RSS feed Add to your Facebook page Watch us on Youtube

Activity title

Machine Learning for Wide Area Surveillance

Activity Reference

SET-278

Panel

Sensors & Electronics Technology

Security Classification

NATO UNCLASSIFIED

Status

Planning

Activity type

RTG

Start date

2019

End date

2022

Keywords

ABI, GMTI, Machine Learning, Maritime Radar, WAMI, Wide Area Surveillance

Background

A key building block underpinning intelligence, surveillance, target acquisition, and reconnaissance (ISTAR) is the provision of a wide area surveillance (WAS) capability. A fundamental sensor technology for achieving WAS remains the radar sensor which has traditionally employed real aperture radar (RAR) scanning modes to rapidly survey large areas. More recently, the WAS capability has been supplemented and greatly enhanced by the development of wide area motion imagery (WAMI) based on electro-optical (EO) sensors which provide the basis for a detection based surveillance capability across regions of tens of square kilometers. Despite these developments in sensor technology the continued evolution of the problem space raises significant new challenges to the achievement of robust WAS. For instance, the migration of sensors to high altitude platforms, such as Remotely Piloted Aircraft System (RPAS), leads to greatly increased surface clutter interference resulting in severe degradation of radar performance. Furthermore, the increased importance of surveillance of urban areas coupled with the desire to detect and track small maneuverable targets in support of activity based intelligence (ABI) results in an extremely challenging detection and tracking problem for both EO and radar sensors due to complex target and clutter feature sets. Legacy detection and tracking approaches tend to perform poorly under these new clutter environments. This failure is strongly linked to the inability to accurately represent statistical processes associated with the clutter and target signatures which have been observed to be complex nonlinear functions of time, space, environment and target class. This is the type of challenge for which machine learning (ML) has been shown to be highly applicable in other fields. While the transference of civilian applications, such as object recognition or speech recognition techniques, have been investigated for application to military problems such as SAR image analysis or micro-Doppler analysis there has been very limited investigation of the application of ML techniques to the WAS problem.

Objectives

The broad objective is to apply and quantify the effectiveness of machine learning techniques for improved detection, tracking and classification under WAS radar and WAMI surveillance. The specific goal is to provide high quality, continuous, unambiguous tracks of sufficient quality to support activity based intelligence (ABI). Specific objectives to support this research goal are as follows. 1) Collect and identify common data sets to support development and comparison of data sets across multinational effort. Develop truthing strategies and tools to support labelling and annotation of data sets. 2) Develop metrics for performance of machine learning algorithms for detection, tracking, classification and ABI. 3) Identify unique/characteristic features of collection environment and strategies to exploit this information via ML. 4) Baseline performance of competing machine learning algorithms and compare with traditional approaches. 5) Leverage lessons learned from higher TRL WAMI ML processing to identify most suitable ML algorithms for maritime detection and tracking. 6) Develop/modify/improve ML algorithms to address identified challenges including but not limited to: automated track repair, use of external semantics data (e.g. road layouts, building data, weather etc.), improvement of static detectors, integrated ML detection and tracking and learning track semantics

Topics

i. Supervised versus unsupervised machine learning for WAMI and RAR ii. Machine learning for object detection, tracking, classification and ABI. iii. Optimization of existing ML approaches for real-time application, e.g., processing load. iv. Semantic segmentation of surveillance space v. Feature space definition and extraction

Contact Panel Office