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FOREWORD 

An AGARD Seminar was held a t  t h e  National Physical Laboratory, Teddington, England, i n  September 1967. 
The seminar on Numerical Methods i n  Viscous Flows considered (I) so lu t ions  t o  the  complete Navier-Stokes 
equations and (11) solu t ions  t o  t h e  boundary-layer equations. A port ion of P a r t  I1 w a s  devoted t o  a sec t ion  
on Engineering Applications i n  which various inves t iga tors  were i n v i t e d  t o  m a k e  and present  ca lcu la t ions  f o r  
s p e c i f i c  sets of conditions so t h a t  comparisons could be made to assess the  r e s u l t s  of various numerical 
methods. 

The body chosen f o r  t h e  numerical experiments was a lo-degree half-angle hyperboloid a t  two a l t i t u d e -  
ve loc i ty  condi t ions and one p e r f e c t  gas condition. Inviscid pressure d i s t r i b u t i o n s  and boundary-layer edge 
condi t ions w e r e  given t o  a l l  inves t iga tors .  Each p a r t i c i p a n t  was asked t o  compute wal l  s k i n  f r i c t i o n  and 
hea t - t ransfer  c o e f f i c i e n t s  and provide ve loc i ty ,  temperature, species ,  e t c .  p r o f i l e s  across  t h e  viscous 
layer  a t  various loca t ions  along t h e  body. 

Preliminary r e s u l t s  were presented and discussed a t  t h e  AGARD seminar i n  1967. Since t h a t  t i m e  consider- 
able  developments and extensions have been made i n  many of t h e  numerical methods, and it i s  now possible  t o  
make some d i r e c t  comparisons and draw s m e  conclusions regarding t h e  chemical models, numerical methods and 
t h e  a p p l i c a b i l i t y  of  boundary-layer theory under low Reynolds number condi t ions.  

A t  the opening of P a r t  I1 of t h e  seminar, Professor  Milton Van Dyke gave a survey paper on higher-order 
boundary-layer theory. A survey of numeri- 
c a l  methods f o r  laminar boundary-layer flows has  recent ly  been prepared by D r .  F. G.  Blot tner  and i s  a l s o  
included here .  A paper on chemically reac t ing  boundary-layer flows was given by A. M. 0. Smith. The stagna- 
t i o n  poin t  viscous shock layer  i s  t r e a t e d  by F. G. Blot tner  and J. C .  Adams. Higher-order boundary-layer 
e f f e c t s  were considered by C.  H. Lewis, J .  C .  Adams, and R. T .  Davis. Resul ts  a r e  shown from W .  SchBnauer, 
University of Karlshrue, Germany; however, a complete paper descr ibing i n  d e t a i l  h i s  method is not  a v a i l a b l e . .  

That paper has been revised and i s  included i n  t h i s  AGARDograph. 

The purpose of t h e  seminar and t h i s  AGARDograph was t o  provide a means f o r  present ing and comparing 
various methods f o r  pred ic t ing  laminar viscous flows. Although the range of condi t ions spec i f ied  f o r  t h e  
t e s t  cases w a s  no t  la rge ,  the r e s u l t s  should be usefu l  t o  those  seeking r e l i a b l e  numerical methods t o  use i n  
engineering s t u d i e s  and t o  provide extensive numerical r e s u l t s  which can be used to  t e s t  and cmpare with 
o ther  numerical methods. 

Clark H. L e w i s  
Blacksburg, Vi rg in ia  

June 1, 1970 
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A SURVEY OF HIGHER-ORDER BOUNDARY-LAYER THEORY* 

by Milton V a n  Dyke** 

INTRODUCTION 

I f  I undertake a survey o f  higher-order boundary-layer theory,  a t  t h e  present  time it almost goes without 
saying t h a t  I am going t o  discuss  only s teady,  plane o r  axisymmetric, laminar flows, and a t  most second-order 
theory. 
w e l l  enough understood t h a t  a s e n s i b l e  person would t rouble  himself with higher-order refinements. Second- 
order ,  because f o r  gases on t h e  one hand t h e  Navier-Stokes equations a r e  not  v a l i d  t o  any higher  order ,  and 
f o r  l i q u i d s  on t h e  o ther  hand t h e  l a w  of diminishing re turns  probably sets i n  a f t e r  t h e  second approximation - 
which i t s e l f  extends t h e  u t i l i t y  of Prandt l ' s  theory down t o  Reynolds numbers of t h e  order  of ten.  And 
s teady and two-dimensional, because none of  us has y e t  ventured fur ther .  

L a m i n a r ,  because my knowledgeable colleagues assure  me t h a t  turbulent  boundary layers  a r e  not y e t  

When w e  se t  o u t  t o  improve upon boundary-layer theory i n  a systematic  way, w e  na tura l ly  ask f i r s t  what 
Consider f i r s t  t h e  s implest  case of  plane,  approximations were adopted by Prandt l  i n  t h e  c l a s s i c a l  theory. 

s teady,  incompressible flow. 
w i s e  d i f fus ion  i s  neglected compared with t ransverse  d i f fus ion  i n  t h e  longi tudina l  momentum equation, t h e  
transverse pressure grad ien t  i s  disregarded,  and t h e  d i s t a n t  boundary condition i s  replaced by t h e  require-  
ment t h a t  f a r  ou t  i n  the boundary layer  t h e  tangent ia l  ve loc i ty  component approach t h e  i n v i s c i d  sur face  speed. 

These t h r e e  approximations introduce e r r o r s  of r e l a t i v e  order  R - l 1 2 ,  where R i s  a representa t ive  Reynolds 

The cont inui ty  equation and sur face  boundary condi t ions a r e  l e f t  i n t a c t .  Stream- 

number. Hence i f  w e  count Prandt l ' s  theory as t h e  f i r s t  approximation (some writers cal l  i t  t h e  "zero th" l ) ,  
second-order theory w i l l  add cor rec t ions  of order  R - l 1 2 ,  th i rd-order  theory terms o f  order  R-', and so on. 

DISPLACEMENT EFFECT 

The neglec t  of streamwise d i f fus ion  ac tua l ly  causes only a third-order  e r r o r .  Likewise, f o r  f l a t  
sur faces  - p l a t e s  and wedges - t h e  normal pressure grad ien t  e x e r t s  only a third-order  e f f e c t .  Hence f o r  f l a t  
shapes the  only second-order e f f e c t  i s  t h e  change i n  t h e  o u t e r  tangent ia l  speed induced by t h e  boundary l a y e r  
i t s e l f .  This is c a l l e d  t h e  displacement e f f e c t .  

This e f f e c t  appears i n  t h e  f i r s t  discussion of higher-order boundary-layer theory t h a t  I know o f ,  due 
t o  Prandt l  himself .  In  volume t h r e e  of Durand's "Aerodynamic Theory" he wrote, i n  discussing t h e  f l a t  p l a t e  

The displacement of  t h e  stream-lines by t h e  amount 6* produces a s l i g h t  a l t e r a t i o n  i n  t h e  p o t e n t i a l  
flow which w a s  made t h e  b a s i s  of t h e  ca lcu la t ions .  
around a parabol ic  cyl inder  of thickness  26" should be introduced,  which would s l i g h t l y  alter t h e  
pressure d i s t r i b u t i o n .  
but ion and i f  necessary t h e  process repeated on t h e  b a s i s  of  t h e  new measure o f  displacement 
so obtained. 
l i t t l e  d i f fe rence  i n  t h e  regions where t h e  ca lcu la t ions  a r e  usual ly  appl ied i n  prac t ice .  
however become necessary i f  t h e  t r a n s i t i o n  t o  smaller  Reynolds number uoL/v were attempted. 

Instead of a simple p a r a l l e l  flow, t h e  flow 

The above ca lcu la t ion  would have t o  be repeated f o r  t h i s  new pressure d i s t r i -  

Such ca lcu la t ions  have so f a r  not  been performed; they would, i n  any case, make 
They would 

To t h i s  w e  need only add t h a t  - according t o  t h i n - a i r f o i l  theory - it happens t h a t  a t h i n  parabola induces 
no pressure change upon i t s e l f .  
l ayer  on a semi- inf ini te  p l a t e .  

Thus w e  s e e  t h a t  t h e r e  are no second-order cor rec t ions  a t  a l l  t o  t h e  boundary 

For a f i n i t e  f l a t  p l a t e ,  however, t h e  displacement thickness  is parabol ic  only back t o  t h e  t r a i l i n g  edge, 
and then near ly  constant  i n  t h e  wake. Consequently t h e r e  i s  a small favorable  pressure grad ien t  induced upon 
t h e  boundary layer .  On t h i s  b a s i s  KUO (1953) ca lcu la ted  t h e  second-order e f f e c t ,  f inding t h a t  t h e  l o c a l  s k i n  
f r i c t i o n  i s  s l i g h t l y  increased everywhere. 
This is not  proper ,  because t h e  boundary-layer approximation breaks down a l toge ther  i n  a s m a l l  neighborhood 
of t h e  leading edge; and, as I s h a l l  d i scuss  later i n  more d e t a i l ,  t h i s  l o c a l  deviat ion a f f e c t s  t h e  drag t o  
second order .  

However, he made t h e  mistake of  i n t e g r a t i n g  t o  f i n d  t h e  t o t a l  drag. 

"ONE-AND-A-HALF-ORDER" THEORY 

The displacement e f f e c t  i s  o f t e n  more d i f f i c u l t  t o  c a l c u l a t e  than any o f  t h e  o ther  second-order e f f e c t s ,  
because i t  alone i s  global  i n  nature  - the correct ion a t  any poin t  depending upon t h e  e n t i r e  course of  t h e  
boundary layer .  Nevertheless, I have discussed i t  f i r s t  because i t  i s  invar iab ly  present .  (The only excep- 
t i o n  might a r i s e  i f  w e  contr ived t o  apply suct ion t o  a porous w a l l ,  o r  t o  cool t h e  w a l l  i n  a compressible 
f l u i d ,  i n  just  such a way t h a t  t h e  displacement thickness  w a s  everywhere zero.) 

Before discussing o ther  second-order e f f e c t s ,  I want t o  express t h e  opinion t h a t  displacement e f f e c t s  
deserve more a t t e n t i o n  than they have received. Indeed, very usefu l  r e s u l t s  can he  obtained by stopping 
s h o r t  of second-order boundary-layer theory, a t  what we might cal l  "one-and-a-half-order theory" - t h a t  i s ,  
t h e  c l a s s i c a l  boundary l a y e r  p lus  i t s  flow due t o  displacement. 

*This paper w a s  presented a t  t h e  AGARD seminar i n  September 1967, and a t  the  same time i ssued  as Stanford 
University Department of Aeronautics and Astronautics repor t  SUDAAR N o .  326, AFOSR No. 67-2291. A consider- 
ably revised and extended vers ion of  most of t h i s  mater ia l  was published i n  June 1969 (Van Dyke 1969). 
Several  po in ts  have been elaborated i n  o ther  papers (Conti and Van Dyke 1969a, 196933; Van Dyke 1970), whereas 
a few matters have not  been reconsidered elsewhere a t  a l l .  Accordingly, t h e  paper i s  presented here  i n  its 
o r i g i n a l  form; but  a series of notes  has been i n s e r t e d  throughout t o  br ing it up t o  da te ,  and the  papers 
c i t e d  there in  have been added t o  t h e  l i s t  of references.  

**Professor of  Aeronautics and Astronaut ics ,  Stanford Universi ty ,  Stanford,  Cal i forn ia .  
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For example, chemical engineers have i n  the l a s t  few years  disputed t h e  o l d  problem of  viscous entry 
This  problem w a s  f i r s t  t r e a t e d  i n  1934 by Schl icht ing,  who applied boundary-layer theory i n t o  a channel. 

t o  the  w a l l s ,  and assumed i n  between a uniform core that acce lera tes  downstream. 
f a i l s  near t h e  en t ry .  Recently Wang and Longwell (1964) solved t h e  f u l l  Navier-Stokes equations numerically 
f o r  a cascade of  p l a t e s  a t  a Reynolds number of 150, based on channel width and upstream condi t ions.  
a t  such a la rge  Reynolds number it i s  scarcely necessary t o  appeal t o  the f u l l  equations, o r  even t o  second- 
order  boundary-layer theory. 

Obviously this assumption 

However, 

One need only ca lcu la te  properly t h e  flow due t o  displacement thickness .  

Near t h e  e n t r y ,  the displacement thickness  i s  a parabola  f o r  each p l a t e ,  a s  ind ica ted  i n  Fig. 1. Hence 
the flow due t o  displacement thickness  i s  j u s t  the p o t e n t i a l  flaw p a s t  a cascade of  parabolas ,  which can be  
found by elementary means ( w i t h  due a t ten t ion  t o  indeterminate forms). Fig. 2 shows how w e l l  t h e  r e s u l t  f o r  
t h e  ve loc i ty  p r o f i l e  across  t h e  entry plane agrees w i t h  the numerical so lu t ion  of  the f u l l  equations. 
d e t a i l s  of this ana lys i s  of  channel en t ry  a r e  t o  be published soon ( V a n  Dyke 1970). I t  i s  found that 
Schl ich t ing ' s  so lu t ion  i s  a "downstream approximation" discussed above i n  t h e  sense of t h e  method of  matched 
asymptotic expansions. 

The 

I have recent ly  ca lcu la ted  a l s o  the  flow induced by a var ie ty  of jets and plumes - results that have 
apparently never appeared i n  p r i n t ,  bu t  a r e  usefu l  i n  understanding the flow p a t t e r n .  For example, the w e l l -  
known boundary-layer so lu t ion  f o r  an axisymmetric laminar j e t  y i e l d s ,  i n  c y l i n d r i c a l  coordinates ,  t h e  p a t t e r n  
of  s t reamlines  shown i n  Fig. 3, which appears i n  Prandt l ' s  (1938) a r t i c l e .  The flow f a r  ou ts ide  t h e  j e t  
happens, w i t h  t h i s  choice o f  coordinates ,  t o  be that appropriate  t o  a j e t  i ssu ing  from an i n f i n i t e  plane w a l l .  
Suppose, however, t h a t  w e  are i n t e r e s t e d  r a t h e r  i n  a j e t  i ssu ing  from a long s lender  nozzle. Calculat ing t h e  
flow due t o  displacement shows that t h e  outer  stream surfaces  a r e  paraboloids o f  revolut ion.  
so lu t ion  shown i n  Fig. 4 i s  ind is t inguishable  from the exact  so lu t ion  of  the f u l l  Navier-Stokes equations 
sketched by Whitham on page 153 o f  Rosenhead's "Laminar Boundary Layers". Some of these  flows were ca lcu la ted  
e a r l i e r  f o r  tu rbulen t  j e t s  by Stewart (1956). Recently, Rubin P Falco (1968) have c a r r i e d  out  t h e  correspond- 
ing ca lcu la t ions  f o r  a plane laminar j e t .  

The composite 

L e t  m e  add one l a s t  remark on "one-and-a-half-order'' theory. This  i s  t h e  province of Kaplun's (1954) 
optimal coordinates; and it se- t o  m e  imperative that w e  extend that remarkable idea  - f i r s t  t o  axisymmetric 
flows, and then i f  poss ib le  t o  three-dimensional and unsteady motions as w e l l  as t o  higher  approximations. 

LONGITUDINAL CURVATURE 

I f  t h e  sur face  o f  a body i s  curved, r a t h e r  than f l a t ,  cen t r i fuga l  forces  y i e l d  pressure changes across  

H e  s tud ied  the s p e c i a l  case of a p l a t e  w i t h  curvature  varying as the inverse  square 
t h e  boundary layer  t h a t  e x e r t  a second-order e f f e c t .  This e f f e c t  of  longi tudina l  curvature w a s  f i r s t  i n v e s t i -  
gated by Tani i n  1949. 
r o o t  of d i s tance  from t h e  leading edge, because this admits a se l f - s imi la r  so lu t ion .  H e  found a reduction of  
l o c a l  s k i n  f r i c t i o n  due t o  convex curvature  ( i n  c o n t r a s t  to  e a r l i e r  Japanese work, based on a momentum i n t e -  
g r a l ,  t h a t  suggested an increase) .  

The sathe problem w a s  solved independently by Murphy i n  1953, who found the same t rend  but  a smaller 
c o e f f i c i e n t .  Tani thereupon r e a l i z e d  that h i s  treatment had been incons is ten t ,  and i n  1954 published a ' re -  
vised version w i t h  y e t  another value of the coef f ic ien t .  
lous comedy of e r r o r s ,  which seems t o  have been resolved only within the l a s t  year .  

Further  d e t a i l s  of  t h i s  prolonged controversy, including the various second-order equations o f  motion 

Fig. 5 shows t h e  subsequent h i s t o r y  o f  t h i s  r id icu-  

adopted by d i f f e r e n t  w r i t e r s ,  are given i n  Van Dyke (1969). 

Of t h e  inves t iga tors  whose names appear here ,  Murphy, Cooke, Massey and Clayton, and Narasimha and Ojha 
have ca lcu la ted  t h e  e f f e c t s  of  longi tudina l  curvature f o r  a more general  class of  flows. These are what I 
w i l l  c a l l  completely se l f - s imi la r  so lu t ions ,  i n  t h e  sense t h a t  t h e  second-order cor rec t ion  is s i m i l a r  not  only 
t o  i t s e l f  b u t  a l s o  t o  the f i r s t - o r d e r  so lu t ion  - which i s  a member of the Falkner-Skan family. W i t h  equal  
ease I have ca lcu la ted  severa l  cases of  what I may ca l l  separa te ly  se l f - s imi la r  so lu t ions :  t h e  f i r s t -  and 
second-order so lu t ions  are s i m i l a r  to  themselves, bu t  no t  t o  each o ther .  These have t h e  advantage that t h e  
curvature  may be  taken t o  be everywhere f i n i t e .  It  might be  worthwhile t o  ca lcu la te  a few more of these; 
whereas I be l ieve  t h e  subjec t  of completely se l f - s imi la r  flows i s  closed with t h e  appearance of t h e  d e f i n i t i v e  
papers of Cooke and Narasimha and Ojha. 
been pointed out  by Massey and Clayton (1966), and t h e  work of  t h e  l a t t e r  i s  a l s o  open t o  some object ion.)  

(That o f  Murphy i s  inva l ida ted  by c e r t a i n  incons is tenc ies  t h a t  have 

Werle (1968) recent ly  made an admirably d e t a i l e d  ana lys i s  and comprehensive ca lcu la t ion  of t h e  "separately 
se l f - s imi la r"  so lu t ions  f o r  each second-order e f f e c t ;  see also Werle and Davis (1970). 
closed some s i n g u l a r i t i e s  i n  the second-order terms whose physical  s ign i f icance  i s  not  y e t  understood. 

That study has d i s -  

L e t  m e  now make a possibly cont rovers ia l  comment on the range of  a p p l i c a b i l i t y  of  these  r e s u l t s .  Murphy, 
Massey and Clayton, and Schultz-Grunow and Breuer assume - either e x p l i c i t l y  or t a c i t l y  - t h a t  t h e i r  so lu t ions  
remain v a l i d  even when t h e  w a l l  curvature  i s  so g r e a t  t h a t  the radius is  of  the order  o f  t h e  boundary-layer 
thickness .  I am sure  t h a t  t h i s  i s  n o t  t r u e ,  and t h a t  - as I w i l l  d iscuss  l a te r  - q u i t e  a d i f f e r e n t  approxima- 
t i o n  must be  adopted i n  t h a t  range. They therefore  spend an unnecessary amount of labor  i n  solving equations 
that a r e  not  s p l i t  i n t o  f i r s t -  and second-order components, and i n  present ing r e s u l t s  f o r  a range of  curva- 
t u r e  parameter. As Narasimha and Ojha poin t  o u t ,  t h e r e  i s  no j u s t i f i c a t i o n  f o r  a t tach ing  any s igni f icance  t o  
t h e  departure  of  their curves from the i n i t i a l  tangents .  

TRANSVERSE CURVATURE 

A second curvature  e f f e c t  arises when w e  extend our considerat ions t o  bodies  o f  revolut ion.  In t h e  
c l a s s i c a l  theory t h e  boundary layer  i s  negl ig ib ly  t h i n  compared w i t h  the l o c a l  radius of  the body; and this 
penni ts  it t o  be r e l a t e d  t o  an equivalent  plane boundary layer  by the Mangler transformation. However, on 
a very long s lender  body - a needle  - the boundary layer  may grow much th icker  than t h e  body even a t  high 
Reynolds number. We exclude this s i t u a t i o n  - which requi res  a f resh  approach i n i t i a t e d  by Glauert and 
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L i g h t h i l l  (1955) and Stewartson (1955) - and consider t h e  e f f e c t s  of  t ransverse  curvature  over a s h o r t  body 
o r  t h e  forward por t ions  of a long one.* 

Transverse curvature  appears i n  its most near ly  pure form i n  t h e  boundary l a y e r  on a c i r c u l a r  pipe.  The 
i n t e r n a l  flow w a s  s tud ied  by Atkinson and Goldstein ( c f .  Goldstein 1938, p .  304) , and the externa l  flow by 
Seban and Bond (19591, w i t h  important cor rec t ions  by Kelly (1954). The l a t t e r  f i n d  t h e  l o c a l  s k i n  f r i c t i o n  t o  
be increased over the f l a t - p l a t e  value by the  f a c t o r  

1 + 2.10 - 0.48 - U", - +. . . 

where a i s  the radius of  t h e  pipe.  In  t h i s  form w e  recognize t h e  second term as a second-order boundary-layer 
e f f e c t  - proport ional  t o  the  inverse  square root  of the Reynolds number - and t h e  t h i r d  term as  a third-order  
e f f e c t .  Whereas convex longi tudina l  curvature usual ly  reduces t h e  s k i n  f r i c t i o n ,  convex t ransverse  curvature 
appears t o  always increase  it, as i n  t h i s  case. 

Although longi tudina l  curvature  i s  absent i n  this problem, the second-order displacement e f f e c t  does not  
vanish f o r  a tube as it does f o r  a p l a t e .  Hence a cor rec t ion  f o r  displacement m u s t  be  added t o  t h e  above 
r e s u l t .  For t h e  i n t e r n a l  flow, Atkinson and Goldstein adopted Schl ich t ing ' s  idea  of a uniform accelerated 
core; and this alters the  c o e f f i c i e n t  of t h e  second term. I in tend  t o  c a l c u l a t e  properly t h e  flow due t o  
displacement thickness ,  i n  order  t o  assess  t h e  error i n  these theories.** 

EXTERNAL VORTICITY 

The next  second-order e f f e c t  I want t o  mention w a s  f i r s t  recognized i n  supersonic  problems, bu t  can occur 
a l s o  i n  incompressible flows. F e r r i  and Libby (1954) pointed out  that t h e  boundary l a y e r  must be a f fec ted  t o  
some exten t  by the externa l  v o r t i c i t y  generated. by a curved bow shock wave. L i  (1955) then proposed a simple 
incompressible model of  t h i s  phenomenon tha t  d isp lays  i t s  e s s e n t i a l  fea tures  - a semi- inf in i te  f l a t  p l a t e  i n  
a uniform shear  flow. H e  a t  f i r s t  omitted t h e  pressure grad ien t  that i s  induced by i n t e r a c t i o n  of  the exter -  
n a l  shear  flow w i t h  t h e  displacement thickness  of  t h e  boundary l a y e r ,  bu t  corrected himself the following year  
( L i  1956). However, t h a t  cor rec t ion  was challenged by Glauert  (1957) and others ;  and a l i v e l y  and extended 
controversy arose.  F ina l ly ,  however, thanks t o  the carefu l  ana lys i s  of  Murray (1961) and t h e  diplomatic i n t e r -  
cession of Toomre and Rott  (1964), t h e  d ispute  has been resolved i n  a consensus of  near ly  a l l  t h e  p a r t i c i p a n t s .  
Further  d e t a i l s  of t h i s  controversy a r e  given i n  Van Dyke (1969). 

THE METHOD OF MATCHED ASYMPTOTIC EXPANSIONS 

We see  t h a t  even i n  t h e  s implest  case of s teady,  plane,  laminar incanpress ib le  flow t h e  development o f  
higher-order boundary-layer theory has been marred by an unfortunate series of  e r r o r s ,  misunderstandings, and 
controversies .  The reason i s  simply that the i n s i g h t  of  even Prandt l  begins t o  f a i l  a t  about t h e  second 
approximation. What one then wants i s  a r o t e  procedure that can be appl ied a u t a n a t i c a l l y ,  without undue 
mental e f f o r t .  

The required technique is the method of matched asymptotic ( o r  "inner and outer")  expansions. This  usefu l  
method is i n  f a c t  an outgrowth of Prandt l ' s  boundary-layer i d e a ,  as developed by Fr iedr ichs  (1953), Kaplun and 
Lagerstrom (1957), and o thers .  I bel ieve t h a t  this method can no longer be dismissed as an e s o t e r i c  s p e c i a l  
technique, b u t  should be p a r t  of  t h e  working e q u i p e n t  of every appl ied mathematician and t h e o r e t i c a l  engineer. 

In the present  s u b j e c t ,  it i s  f a i r  t o  a s s e r t  that a l l  t h e  many errors and d isputes  have a r i s e n  from re ly-  
ing upon physical  i n s i g h t ;  and t h a t  no t  a s i n g l e  f a l s e  s t e p  has been made by any o f  us  who t r u s t e d  r a t h e r  t o  
systematic  appl ica t ion  of the method of  matched asymptotic expansions. 

COMPRESSIBLE FLOW 

Even though the emphasis of  t h i s  meeting i s  on compressible flow, I have spoken so f a r  only of  incom- 
p r e s s i b l e  motion, because it is  simpler and exemplifies most of the e s s e n t i a l  fea tures .  J u s t  as i n  the classi- 
cal theory, dramatic compressibi l i ty  e f f e c t s  are l imi ted  t o  t h e  outer  i n v i s c i d  flow, and t h e  boundary layer  
i t s e l f  s u f f e r s  changes only o f  d e t a i l ,  even i n t o  the hypersonic range. This  po in t  of view has recent ly  been 
challenged by Weinbam and Garvine (1966); bu t  I th ink  it would be  c h a r i t a b l e  t o  say t h a t  they have misunder- 
s tood  t h e  asymptotic nature  of boundary-layer theory, confusing it w i t h  the so-cal led "strong-interaction' '  
theory,  which is based upon q u i t e  a d i f f e r e n t  double l i m i t  process. 

The four  second-order e f f e c t s  that I have discussed so  f a r  - displacement, longi tudina l  curvature ,  t r a n s -  
verse  curvature ,  and ex terna l  v o r t i c i t y  - p e r s i s t  f o r  compressible motion. In my own work, I found it conven- 
i e n t  t o  subdivide t h e  e f f e c t  of ex terna l  v o r t i c i t y  i n t o  that of entropy gradien t  and of s tagnat ion enthalpy 
gradien t ,  t h e  la t ter  being absent  f o r  the usual i soenerge t ic  flows o f  aerodynamics. To these  are added two 
new phenomena associated w i t h  t h e  boundary condi t ions a t  t h e  surface:  
j-. 
no t  unique, and a considerable p a r t  of the controversy i n  this subjec t  has a r i s e n  only because of  d i f f e r e n t  
ways o f  dividing among displacement, curvature ,  and ex terna l  v o r t i c i t y .  

the e f f e c t s  of  slip and temperature 
I t  should be emphasized, however, as pointed out  by R o t t  and Lenard (1962), t h a t  t h i s  c l a s s i f i c a t i o n  i s  

*We th ink  of  bodies t h a t  grow more slowly than a paraboloid. 
more rap id ly ,  such as a cone, f o r  which the r a t i o  of  boundary-layer thicknes t o  body rad ius  decreases  
downstream. 

The s i t u a t i o n  i s  reversed f o r  those t h a t  grow 

**This ana lys i s  has not  y e t  been prepared f o r  publ ica t ion .  
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In  contrast  t o  t h e  incompressible theory, t h e  more complicated compressible second-order boundary-layer 
theory has been developed with a minimum of e r r o r .  
( V a n  Dyke 19611, Masien (19621, and Lenard (1962) - developed independently i n  about t h e  same year  - seem 
to  have withstood t h e  test o f  t i m e .  

In  p a r t i c u l a r ,  t h e  comprehensive analyses o f  myself 

APPLICATIONS I N  COMPRESSIBLE FLOW 

The f i r s t  appl ica t ions  of t h e  theory f o r  compressible flow were again t o  s tagnat ion poin ts  and leading 
edges, f o r  which se l f - s imi la r  so lu t ions  e x i s t  (Van Dyke 1961, Maslen 1962, Fanneltip and FlUgge-Lot2 1965, 
Davis and FlUgge-Lot2 1961a). 
undertaken (Devan 19641, t h e  most comprehensive r e s u l t s  - u n t i l  t h i s  meeting - being those of Fanneli5p and 
F1Ugge-Lot2 (1966) f o r  plane flow p a s t  a circular cyl inder  and a p l a t e  with semi-circular  leading edge, and 
of D a v i s  and FlUgge-Lotz (1964b) f o r  axisynunetric flow p a s t  a paraboloid, sphere,  and hyperboloid. 

Later, numerical in tegra t ion  of  the f i r s t -  and second-order equations w a s  

The most troublesome component o f  these ca lcu la t ions  i s  t h e  flow due t o  displacement thickness .  In  
p r i n c i p l e ,  w e  should per turb  t h e  bas ic  i n v i s c i d  blunt-body so lu t ion .  However, w e  have a l l  resor ted  t o  t h e  
strategem of  approximating t h e  body p lus  the displacement thickness  by a magnified and s h i f t e d  r e p l i c a  of  
i t s e l f ;  and t h i s  does not  seem t o  have introduced ser ious  e r r o r s .  

These r e s u l t s  show t h a t  t h e  various second-order contr ibut ions may vary widely i n  s ign  and magnitude, 
depending upon body shape, sur face  temperature, and o ther  parameters i n  t h e  problem. The same i s  t r u e  of  
t h e  resultant, which i s  o f t e n  smaller than any of  its components. Consequently it is important t o  ca lcu la te  
a l l  second-order e f f e c t s  i f  any s igni f icance  i s  t o  be at tached t o  t h e  r e s u l t .  

Experimental confirmation is perhaps s t i l l  not  conclusive. A few years ago t h e  s i t u a t i o n  seemed t o  be  
t h a t  experiments car r ied  out  i n  New York agreed with t h e  r a t h e r  la rge  e f f e c t s  pred ic ted  by severa l  p a r t i a l  
theor ies  developed i n  t h e  same s ta te ,  and experiments i n  Cal i forn ia  tended to  agree with t h e  smaller e f f e c t s  
pred ic ted  by theor ies  developed there .  I am not  sure how much t h i s  s i t u a t i o n  has  been c l a r i f i e d ;  b u t  I hope 
t o  leam more about it a t  t h i s  meeting. 

SEPARATION 

One poin t  of s p e c i a l  i n t e r e s t  a t  t h i s  meeting is t h e  l i g h t  t h a t  second-order theory can shed on laminar 
separat ion.  Unt i l  recent ly ,  most of us bel ieved t h a t  t h e  c l a s s i c a l  boundary-layer theory breaks down s h o r t l y  
before  the s k i n  f r i c t i o n  vanishes - as i n  Howarth's (1938) so lu t ion  f o r  a l i n e a r l y  decreasing sur face  speed. 
A s  usual  i n  per turbat ion theor ies ,  w e  might expect t h i s  f a i l u r e  of  t h e  f i r s t  approximation t o  be confirmed 
by compounded s i n g u l a r i t i e s  i n  higher  approximations. 

Two b i t s  of evidence suggest t h a t  t h i s  does happen. In  t h e i r  completely se l f - s imi la r  so lu t ions  f o r  
incompressible flow, Narasimha and Ojha have observed t h a t  t h e  second-order c o e f f i c i e n t  of s k i n  f r i c t i o n  due 
t o  longi tudina l  curvature  seems t o  be r i s i n g  rapidly as t h e  cr i t ical  value of t h e  Falkner-Skan parameter i s  
approached. Again, i n  t h e i r  f u l l  second-order so lu t ion  f o r  a sphere a t  Mach number 10, Davis and FlUgge-Lotz 
(1964b) found t h e  e f f e c t s  of  longi tudina l  curvature becoming l a r g e  as t h e  s k i n  f r i c t i o n  f e l l .  

Our ideas  on separat ion have, however, been overturned by t h e  recent  discovery of Cathera l l  and Mangler 
(1966) t h a t  t h e  c l a s s i c a l  boundary-layer so lu t ion  w i l l  proceed smoothly through zero  s k i n  f r i c t i o n  i f  it is 
permit ted t h e  s l i g h t e s t  freedom t o  choose the l o c a l  pressure d i s t r i b u t i o n  so as t o  avoid catastrophe.  
would be  i n t e r e s t i n g  t o  re-examine t h e  second-order theory i n  t h e  l i g h t  of  t h i s  remarkable turn of  events .  

It 

CORNERS AND EDGES 

I have already expressed the opinion t h a t  higher-order boundary-layer theory w i l l  break down long before  
the sur face  curvature  becomes so g r e a t  t h a t  the rad ius  of curvature  i s  comparable with t h e  boundary-layer 
thickness  - and t h i s  would be  true of  t ransverse  as w e l l  as longi tudina l  curvature. I be l ieve  t h a t  t h e  proper 
way of  t r e a t i n g  such problems has been pointed out  by Brailovskaya (1965) and Neiland and Sychev (1966). They 
consider plane flow p a s t  a c o m e r  t h a t  i s  s l i g h t l y  rounded, with a radius of  t h e  order  of t h e  l o c a l  boundary- 
l a y e r  thickness .  Classical boundary-layer theory holds as a f i r s t  approximation ahead of  t h e  c o m e r ,  and again 
behind it. In t h e  immediate neighborhood of  the comer ,  hawever, t h e  small viscous forces  are i n s i g n i f i c a n t  
compared with the pressure and i n e r t i a l  forces ,  so t h e  flow is  governed l o c a l l y  by t h e  Eu le r  equations of  
r o t a t i o n a l  i n v i s c i d  flow. This local so lu t ion  matches t h e  boundary layers  upstream and downstream i n  t h e  sense 
of t h e  method of matched asymptotic expansions. 
no-sl ip  condi t ion,  a t h i n  sub-boundary layer  m u s t  b e  added c l o s e  t o  the w a l l .  

F ina l ly ,  because the l o c a l  i n v i s c i d  so lu t ion  v i o l a t e s  t h e  

Neiland and Sychev consider only rounded corners i n  order  t o  avoid having t o  d e a l  with t h e  f u l l  Navier- 
For i f  the c o m e r  i s  sharp,  a l o c a l  so lu t ion  of t h e  f u l l  equations i s  evident ly  required. Stokes equations. 

However, it w i l l  have a c e r t a i n  simple and universa l  character ,  and may therefore  be worth working out  
numerically. 

I 

I 

I 
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One case t h a t  seems t o  be w e l l  i n  hand i s  incompressible flow near  a cusped leading edge. The l o c a l  
problem i s  the s tandard one of  viscous flow p a s t  a semi- inf ini te  f l a t  p l a t e .  Thir teen years  ago I m a i  (1957) I 
showed, by ingenious use of g loba l  momentum balance, t h a t  although t h e  Prandtl-Blasius boundary-layer so lu t ion  
breaks down near  t h e  leading edge, it can be used to  f i n d  t h e  second term i n  t h e  in tegra ted  sk in  f r i c t i o n  I 
(which from t h e  crude poin t  of view of  t h e  boundary-layer approximation appears as a concentrated force  a t  the 
leading edge) .  More recent ly ,  Davis (1967) has solved t h e  problem i n  d e t a i l  using t h e  semi-numerical method 
of series t runcat ion;  and h i s  so lu t ion  agrees so w e l l  with both t h e  global  result of I m a i  and a much-neglected 
ana lys i s  of  Dean (1954) t h a t  w e  can accept it with confidence. This  l o c a l  cor rec t ion  can be  appl ied to  Kuo's 
so lu t ion  f o r  t h e  f i n i t e  f l a t  p l a t e ,  t o  t h e  cascade of  f l a t  p l a t e s ,  t o  t h e  so lu t ions  o f  Atkinson and Goldstein 
and Seban and Bond f o r  t h e  c i r c u l a r  pipe,  and so on. In supersonic and hypersonic flow t h e  problem i s  more 
d i f f i c u l t ,  and has not  y e t  been s a t i s f a c t o r i l y  solved. I 

I 
I 



Perhaps t h e  s imples t  case o f  flow over a sharp c o m e r  i s  a cusped t r a i l i n g  edge i n  an incompressible 
stream, because t h e r e  is no quest ion of separat ion.  I f  w e  consider, f o r  example, t h e  s tandard problem of t h e  
f i n i t e  f l a t  p l a t e ,  w e  s e e  t h a t  t h e  Prandtl-Blasius so lu t ion  appl ies  over most o f  t h e  sur face ,  and t h e  wake 
so lu t ion  of Goldstein (1930) and Tollmien (1931) almost everywhere behind it. The boundary-layer so lu t ion  
f a i l s  i n  a c i r c u l a r  neighborhood of t h e  leading edge whose radius  i s  of  t h e  order  of R-1 times t h e  length of 
t h e  p l a t e ,  R being t h e  Reynolds number based on length;  and here  w e  can use t h e  r e s u l t s  of  I m a i ,  Dean, and 
Davis. A t  t h e  t r a i l i n g  edge t h e  thickness  of  t h e  boundary l a y e r  is of order  R-112, and t h e  theory of Neiland 
and Sychev would suggest t h a t  a l o c a l  Euler so lu t ion  is required i n  a neighborhood of t h a t  s i z e .  However, i n  
t h i s  simple case t h a t  correct ion vanishes. 
i n  a smaller neighborhood of t h e  t r a i l i n g  edge, whose rad ius  i s  of  t h e  order  o f  R-3/4 t i m e s  t h e  length of the 
p l a t e .  (This corresponds t o  Neiland and Sychev's sub-boundary l a y e r . )  The f u l l  Navier-Stokes equations must 
be  solved there;  and w e  hope t o  car ry  this out  by series t runcat ion.  

I have convinced myself t h a t  a correct ion i s  then required only 

Without making t h e  d e t a i l e d  ca lcu la t ions ,  we can s e e  t h a t  t h i s  t ra i l ing-edge cor rec t ion  w i l l  cont r ibu te  
to t h e  in tegra ted  sk in  f r i c t i o n  a term of  order  Rm5I4. Thus f o r  cusp-ended shapes we m u s t  reconsider our  
numbering scheme. What we have heretofore  c a l l e d  second-order theory adds a cor rec t ion  of r e l a t i v e  order  
R - l 1 2 ,  and third-order  theory a term of  order  R - l ;  bu t  now w e  s e e  t h a t  t h e  t ra i l ing-edge cor rec t ion  suppl ies  
a "two-and-one-half-order'' term i n  R-3I4, and so  on (whatever t h a t  may mean!). 

That t h e  s t r u c t u r e  o f  t h e  flow near  t h e  t r a i l i n g  edge i s  more complicated than t h a t  suggested above has 
recent ly  been shown independently by Stewartson (1969) and Messiter (1970). In addi t ion t o  t h e  region of 
order  R-314 i n  s i z e  mentioned above, there  is a " t r i p l e  deck" cons is t ing  of  nested regions w i t h  t ransverse 
dimensions of orders  R-518, R-112,  and R-318, and streamwise dimensions of  orders  R - l 1 2  and R-3/8. 
consequence, t h e  f i r s t  correct ion t o  t h e  in tegra ted  sk in  f r i c t i o n  i s  of  order  R-7/0. 

As a 

The s i t u a t i o n  i s  d i f f e r e n t  again when we encounter l a r g e  o r  i n f i n i t e  t ransverse  curvature. The s implest  
example i s  perhaps t h e  incompressible flow along a c o m e r ,  which has been re-examined recent ly  by Rubin (1966) 
from t h e  poin t  of view of matched asymptotic expansions. In t h i s  case t h e  c r u c i a l  problem t o  be  solved i n  
t h e  immediate v i c i n i t y  of  t h e  c o m e r  involves equations s impler  than t h e  f u l l  Navier-Stokes equations, but  
more complicated than t h e  conventional boundary-layer equations. The only attempt a t  solving t h i s  problem 
numerically w a s  made by Pearson (1957) t h i r t e e n  years  ago i n  h i s  unpublished Cambridge University t h e s i s .  
I f  t h i s  correct ion i s  appl ied t o  t h e  flow ins ide  a rectangular  channel, w e  see t h a t  i t  contr ibutes  a term 
of  r e l a t i v e  order  R-112 t o  t h e  drag - and is therefore  to be  included with t h e  second-order displacement 
e f f e c t  discussed e a r l i e r .  

The flow near  t h e  outs ide  comer  on such a channel i s  more complicated, as  i s  indicated by Stewartson's 
(1961) study of t h e  q u a r t e r - i n f i n i t e  p l a t e .  And again t h e  corresponding supersonic problems are s t i l l  more 
d i f f i c u l t  . 
SINGULAR OUTER FLOWS 

Fina l ly ,  I want t o  d iscuss  an i n t r i g u i n g  new f i e l d  of  appl icat ion f o r  higher-order boundary-layer theory. 
This i s  motion i n  which t h e  b a s i c  inv isc id  flow is  s ingular  a t  t h e  sur face  of  t h e  body. This s i t u a t i o n  has 
a r i s e n  recent ly  i n  various branches of  high-speed aerodynamics, of  which I w i l l  mention four:  (1) Perhaps 
t h e  s imples t  case t o  understand i s  t h e  i n v i s c i d  s tagnat ion region of  a b lunt  body i n  hypersonic f l i g h t  through 
a completely t ransparent  rad ia t ing  gas. A p a r t i c l e  of  f l u i d  on t h e  s tagnat ion s t reamline requi res  an i n f i n i t e  
time t o  reach t h e  s tagnat ion p o i n t ,  and so  - because t h e r e  i s  no re-absorption - r a d i a t e s  away a l l  its energy. 
Hence t h e  i n v i s c i d  sur face  s t reamline i s  a t  absolute zero temperature. In a model of t h i s  phenomenon s tudied  
by Burggraf (1966) t h e  ve loc i ty  and enthalpy both vanish as negat ive f r a c t i o n a l  powers o f  t h e  logarithm of  the  
d is tance  from t h e  w a l l .  (2) Similar ly ,  f o r  an i n v i s c i d  s tagnat ion 'point i n  a chemically-reacting gas ,  t h e  
temperature and degree of  d i ssoc ia t ion  (as  w e l l  as  t h e  o ther  thermodynamic proper t ies )  approach some equili- 
brium values a t  t h e  s tagnat ion poin t ;  and t h e  normal grad ien ts  a r e  zero f o r  s u f f i c i e n t l y  f a s t  reac t ions ,  
f i n i t e  f o r  a p a r t i c u l a r  intermediate  r a t e ,  and i n f i n i t e  f o r  slower reac t ions  (Fig. 6 ) .  This  behavior has been 
discussed by Conti and myself. (3)  Hayes (1964) has s tud ied  t h e  r o t a t i o n a l  i n v i s c i d  flow near  a th ree-  
dimensional s tagnat ion point .  H e  f inds  t h a t  i n  a l l  b u t  very s p e c i a l  cases  t h e  so lu t ion  i s  non-analytic and 
the v o r t i c i t y  i n f i n i t e  a t  t h e  w a l l ,  t h e  s tagnat ion s t reamline being tangent  t o  t h e  sur face .  (4)  In  hyper- 
sonic  small-disturbance theory t h e  se l f - s imi la r  so lu t ions  assoc ia ted  with s t rong  power-law baw shock waves 
are s i n g u l a r  a t  t h e  sur face  of  t h e  body. This case i s  t h e  subjec t  of  a paper t o  be  presented a t  t h i s  meeting 
by L e e  and Cheng, e n t i t l e d  "Higher-order approximation i n  t h e  theory of  hypersonic boundary layers  on s lender  
bodies. " 

I f  w e  now consider applying boundary-layer theory t o  any of these  problems, quest ions arise t h a t  force  us 
to re-examine t h e  b a s i s  of P r a n d t l ' s  classical theory. Should w e  s t i l l  use t h e  i n v i s c i d  sur face  speed as t h e  
tangent ia l  ve loc i ty  a t  t h e  outer  edge of the  boundary l a y e r ,  even though t h e  grad ien t  i s  i n f i n i t e ?  Is the 
boundary-layer thickness  s t i l l  o f  order  R-l12? 
s i n g l e  boundary l a y e r  s u f f i c i e n t ,  o r  are intermediate  t r a n s i t i o n  layers  required? 

Do higher  approximations proceed i n  t h e  usual way? Is a 

Conti and I have concluded t h a t  - a t  least  i n  the f i r s t  t w o  cases ,  of  s tagnat ion poin ts  i n  rad ia t ing  o r  
reac t ing  flows - t h e  s i t u a t i o n  i s  i n  general  as  follows: Class ica l  boundary-layer theory remains v a l i d  even 
though t h e  i n v i s c i d  sur face  grad ien ts  a r e  i n f i n i t e .  That i s ,  t h e  boundary-layer thickness  i s  s t i l l  o f  order  
R-112, and t h e  i n v i s c i d  sur face  speed is approached a t  t h e  o u t e r  edge. 
i n  higher  approximations. Rather than being smaller by a f u l l  inverse  h a l f  power o f  Reynolds number, t h e  
second-order cor rec t ion  follows c l o s e  on t h e  hee ls  o f  t h e  c l a s s i c a l  so lu t ion .  In t h e  case of  slow chemical 
reac t ions ,  it may d i f f e r  by only a very s m a l l  negat ive power of Reynolds number, so  t h a t  severa l  o r  even a 
g r e a t  many higher-order terms intervene before  t h e  conventional second-order cor rec t ion .  And i n  the  case o f  
r a d i a t i o n ,  successive terms d i f f e r  from one another only by f r a c t i o n a l  powers of  t h e  logarithm of t h e  Reynolds 
number, so t h a t  an i n f i n i t e  number of  terms intervene.  

Hmever, important d i f fe rences  appear 

These conclusions d i f f e r  somewhat from those of Burggraf. The reason i s  t h a t  he  considers only t h e  
degenerate case of vanishing sur face  temperature. Then t h e  sur face  boundary condi t ions on both ve loc i ty  and 
temperature are s a t i s f i e d  by t h e  i n v i s c i d  s o l u t i o n ,  so  t h a t  no conventional boundary l a y e r  is required. The 
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f i r s t  correct ion i s  what would ord inar i ly  be t h e  second-order term; and i t  is  a consequence of t h e  non- 
l i n e a r i t y  of t h e  governing equations that the boundary l a y e r  then has a thickness  t h a t  i s  s l i g h t l y  g r e a t e r  
than usua l ,  by an amount smaller than any power of  the Reynolds number. 

Our conclusions appear a l s o  t o  d i f f e r  from those reached by Lee  and Cheng i n  t h e i r  study o f  power-law 
bodies i n  hypersonic flow, f o r  they invoke a t h i r d  region t h a t  serves  t o  j o i n  t h e  i n v i s c i d  flow t o  t h e  boundary 
layer .  From my poin t  of view, t h i s  meeting w i l l  be a success  i f  w e  can c l a r i f y  our  thoughts on this f a s c i -  
nat ing new branch of  t h e  subjec t .  

The study of an i n v i s c i d  s tagnat ion poin t  i n  a chemically-reacting gas has now been published (Conti 
and Van Dyke 1969a) ,  as has the corresponding boundary-layer ana lys i s  (Conti and Van Dyke 1969b). Lee and 
Cheng's ana lys i s  of  hypersonic small-disturbance theory has a l s o  appeared elsewhere (Lee and Cheng 1969). 
s t i l l  simpler example of a boundary l a y e r  under s ingular  ex terna l  condi t ions i s  t h a t  on an ogive of  revolu- 
t i o n  i n  supersonic flow. 
been worked out  by Stahara (1969). 

A 

This w a s  pointed o u t  severa l  years  ago by Cheng (1966) , and t h e  d e t a i l s  have now 

Convincing confirmation o f  higher-order boundary-layer theory by experiment has not  y e t  been achieved. 
However, as out l ined  b r i e f l y  i n  Van Dyke (1969), most experiments seem t o  show a t  least  q u a l i t a t i v e  agreement 
with t h e  pred ic t ions  of  second-order boundary-layer theory. 
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FINITE DIFFERENCE SOLUTION OF THE FIRST-ORDER BOUNDARY LAYER EQUATIONS 

by F. G.  Blottner* 

SUMMARY 

A review of various methods f o r  solving t h e  laminar-boundary-layer equations by numerical techniques i s  
given. The emphasis is on the  f in i te -d i f fe rence  schemes t h a t  have been employed recent ly  and how t h e  present- 
l y  employed techniques have evolved. 

The governing equations a r e  presented i n  t h e  s i m i l a r i t y  coordinate system f o r  a multi-component gas with 
f i n i t e  reac t ion  r a t e s .  An i m p l i c i t  f in i te -d i f fe rence  technique is presented which i s  appropriate  f o r  solving 
flows with a la rge  number of chemical species ,  as occurs with ab la t ion  contaminants. This method does not  
requi re  i t e r a t i o n s  a t  each s t e p ,  and so lu t ions  can be obtained when t h e  gas is near chemical equilibrium. 
!WO tes t  cases a r e  presented f o r  t h e  boundary-layer flow on a sharp cone and hyperboloid a t  reentry condi- 
t ions .  

REVIEW OF NUMERICAL TECHNIQUES 

The step-by-step so lu t ion  of t h e  f i r s t - o r d e r  boundary-layer equations was considered by Prandt l  [ l ]  as 
e a r l y  as 1938. A review of t h e  ear ly  work (up t o  1955) on numerical so lu t ions  of  t h e  boundary-layer equations 
i s  given i n  121, while a more recent  review of t h e  Russian l i t e r a t u r e  i s  given i n  [3,41. There has been a 
rap id  development of numerical techniques i n  recent  years ,  and these  can be divided i n t o  t h e  following 
categories:  (i) di f fe rence-d i f fe ren t ia l  procedure, (ii) method of i n t e g r a l  r e l a t i o n s ,  (iii) f in i te -d i f fe rence  
schemes. 

The d i f fe rence-d i f fe ren t ia l  procedure was o r i g i n a l l y  developed by Hartree and Womersley [SI and has been 
appl ied by Leight [6] and Manohar [7] t o  the boundary-layer equations. Smith and col leagues [a-131 have 
exploi ted and developed t h i s  procedure even f u r t h e r ,  and have appl ied it t o  a v a r i e t y  of  problems. In this 
scheme t h e  der iva t ives  i n  t h e  d i r e c t i o n  along t h e  sur face  a r e  usual ly  replaced with f in i te -d i f fe rence  rela- 
t i o n s ,  t h e  p a r t i a l  d i f f e r e n t i a l  equations reduce t o  ordinary d i f f e r e n t i a l  equations with two-point boundary 
condi t ions.  
i t e r a t i o n  procedure t o  s a t i s f y  t h e  boundary condi t ions a t  t h e  outer  edge. 
approach has been used by Zamurayev [141 and Le Marechal and Ronat [ P i ] ,  b u t  these  authors l i n e a r i z e  t h e  
ordinary d i f f e r e n t i a l  equations and obta in  t h e  so lu t ion  i n  an i t e r a t ive  manner with f in i te -d i f fe rence  method. 
S t e i g e r  and Sepri  [16] have inves t iga ted  t h e  so lu t ion  of t h e  boundary layer  with t h e  d i f fe rence-d i f fe ren t ia l  
procedure where t h e  normal der iva t ives  a r e  replaced by f in i te -d i f fe rence  r e l a t i o n s .  This r e s u l t s  i n  a system 
of f i r s t - o r d e r  ordinary d i f f e r e n t i a l  equations of t h e  i n i t i a l - v a l u e  type,  and these  equations a r e  o f  t h e  
" s t i f f "  type a l s o .  This approach has been developed f u r t h e r  by Lubard and Schetz [171. 

The ordinary d i f f e r e n t i a l  equations are solved as an i n i t i a l - v a l u e  problem which requires  an 
The d i f fe rence-d i f fe ren t ia l  

The method of i n t e g r a l  r e l a t i o n s  is  a s p e c i a l  case o f  t h e  method o f  weighted res idua ls ,  as has been 
discussed by Finlayson and Scriven [ l a ] .  This method i s  due t o  Dorodnitsyn [191 and has been employed i n  l 
a nmber  of  Russian papers [19-221. The procedure has a l s o  been employed by Pallone and colleagues [23,241, 
and inves t iga ted  f u r t h e r  by Bethel [25,261. This technique reduces t h e  p a r t i a l  d i f f e r e n t i a l  equations t o  I l 
a system of ordinary d i f f e r e n t i a l  equations of t h e  i n i t i a l - v a l u e  type. 

Recently Kendall and B a r t l e t t  [27] have used t h e  i n t e g r a l  method t o  replace t h e  normal der iva t ives ,  I 

I while t h e  d i f f e r e n t i a l - d i f f e r e n c e  procedure of replacing t h e  tangent ia l  der iva t ives  has a l s o  been employed. 
The p a r t i a l  d i f f e r e n t i a l  equations are thus reduced t o  a system of nonl inear  a lgebra ic  equations which must 
be solved a t  each s t e p  along t h e  body. I 

After  t h e  e a r l y  f in i te -d i f fe rence  techniques [28-361, which have been reviewed i n  [ 2 ] ,  t h e  emphasis was 
on t h e  so lu t ion  of t h e  boundary-layer equations i n  t h e  Crocco form, as  exemplified by 137-411. The approach 
was p a r t i a l l y  used by Eichelbrenner; t h e  procedure was developed f u r t h e r ,  and preliminary examples w e r e  com- 
puted by FlUgge-Lotz using a desk ca lcu la t ion .  
d i g i t a l  computer w a s  u t i l i z e d  f o r  t h e  f in i te -d i f fe rence  so lu t ion .  In t h i s  work an e x p l i c i t  f in i te -d i f fe rence  
scheme was employed i n  which the s t e p  s i z e  along t h e  wal l  i s  r e s t r i c t e d  by s t a b i l i t y  considerat ions.  

This work was extended by Baxter and FlUgge-Lotz, and a 

In order  t o  avoid t h e  s t a b i l i t y  r e s t r i c t i o n s  required i n  e x p l i c i t  schemes, Kramer and Lieberstein [421 
employed an i m p l i c i t  scheme with t h e  Crocco form of  t h e  equations.* 

Another d i f fe rence  scheme t h a t  has been used by Raetz [431 f o r  solving t h e  three-dimensional boundary- 
layer  equations i s  t h a t  o f  Dufort-Frankel. This scheme is s t a b l e ,  b u t  c a r e  must be taken t o  insure t h a t  t h e  
t runcat ion e r r o r  i s  s u f f i c i e n t l y  small. In d i f fe renc ing  t h e  p a r t i a l  d i f f e r e n t i a l  equation, a term has been 
added t o  t h e  equat ions,  and t h i s  term w i l l  only be small i f  t h e  appropriate  r a t i o  of t h e  s t e p  s i z e s  are 
taken. 

Besides employing various f in i te -d i f fe rence  procedures, t h e  form of  t h e  boundary-layer equation can be 
changed. The von Mises transformed boundary-layer equations have been solved with an e x p l i c i t  f i n i t e -  
d i f fe rence  scheme by Mitchel l  and Thomson [44,451. 
i s  t h a t  t h e  cont inui ty  equation has been eliminated. There i s  a s i n g u l a r i t y  a t  t h e  wal l  vhich introduces 
d i f f i c u l t i e s ,  bu t  these  have been overcome i n  t h e  papers by Mitchel l  and Thomson. 

The advantage o f  t h i s  form of  t h e  boundary-layer equations 

*Staff  Member, Aero and Thermodynamics Department, Sandia Corporation, Albuquerque, N e w  Mexico. 

*The Crocco form of t h e  equations i s  a t t r a c t i v e  because t h e  cont inui ty  equation has been eliminated and t h e  
independent var iab le  u/ue, which i s  r e l a t e d  t o  t h e  thickness  of  t h e  boundary layer ,  goes from zero t o  one. 
I f  t h e  ve loc i ty  within t h e  boundary layer  exceeds t h e  edge ve loc i ty ,  t h e  Crocco form o f  t h e  equations is 
d i f f i c u l t  t o  apply. 
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The so lu t ion  of  t h e  boundary-layer equations i n  untransformed o r  physical  coordinates appears t o  be t h e  
next  development i n  t h e  numerical schemes. In t h e  paper by FlUgge-Lotz and Yu [461, an e x p l i c i t  f i n i t e -  
d i f fe rence  procedure was appl ied t o  t h e  compressible equations. This proved r a t h e r  unsuccessful, as  t h e  
s t a b i l i t y  requirements a r e  very s t r i n g e n t  and t h e  replacement of t h e  cont inui ty  equation caused many problems. 
In t h e  paper by Wu [471, t h e  treatment of the cont inui ty  was such t h a t  more stable so lu t ions  w e r e  obtained 
w i t h  an e x p l i c i t  d i f fe rence  scheme. Also ,  by transforming t h e  compressible equations i n t o  incompressible 
form, w i t h  t h e  Howarth-Dorodnitsyn r e l a t i o n ,  t h e  s t a b i l i t y  requirements a r e  not as  r e s t r i c t i v e  when a constant 
s t e p  s i ze  across  the  boundary layer  i s  used and when t h e  s t e p  s i z e  i s  t h e  same f o r  both coordinate systems. 
For these  condi t ions,  t h e  physical  d i s tance  f o r  the  f i r s t  g r i d  poin t  away from the wal l  i s  much l a r g e r  i n  the  
Howarth-Dorodnitsyn var iab les .  In Russia, Chudov and Brailovskaya [48,491 a l s o  s tudied  t h e  so lu t ion  of  t h e  
boundary-layer equation i n  physical  coordinates; however, an i m p l i c i t  s ix-point  f i n i t e - d i f f e r e n c e  scheme was 
used. The governing equations a r e  replaced with f i n i t e  d i f fe rences  such t h a t  t h e  coupling between equations 
i s  i n i t i a l l y  neglected. Then an i t e r a t i o n  process i s  employed t o  obta in  the des i red  accuracy of  t h e  dependent 
var iab les  with coupling and nonlinear e f f e c t s  included. 
s tandard program f o r  equations of the  boundary-layer type by Paskonov [SO]. In t h i s  program a procedure i s  
described which allows the  s t e p  s i ze  across  the  boundary layer  t o  vary. A t  about t h e  same time, i n  the 
United S t a t e s  a s i m i l a r  i m p l i c i t  technique was developed independently f o r  t h e  boundary-layer equations i n  
physical  coordinates  by Flngge-Lotz and Blot tner  [511. The main d i f fe rence  between t h i s  work and t h a t  of 
Chudov and Brailovskaya i s  that coupling between t h e  equations i s  allowed. This r e s u l t s  i n  a t r id iagonal  
matrix with matrix elements, which is somewhat more complicated t o  so lve  than t h e  uncoupled equations. The 
boundary-layer equations transformed with t h e  Howarth-Dorodnitsyn r e l a t i o n s  w a s  a l s o  inves t iga ted  by FlUgge- 
Lotz and Blo t tner ,  and both a four-point and s ix-point  (Crank-Nicolson) d i f fe rence  scheme w e r e  considered. 
For hypersonic boundary-layer flows, using t h e  transformed equations with t h e  s ix-point  i m p l i c i t  scheme is  
t h e  b e t t e r  procedure. 

This type of procedure has been developed i n t o  a 

One of  t h e  problems w i t h  a l l  the previous methods i s  the s t a r t i n g  of t h e  so lu t ions  of t h e  equations. 
I n i t i a l  p r o f i l e s  of t h e  dependent var iab les  a r e  required across  t h e  boundary l a y e r  a t  some p o i n t ,  and t h e  
so lu t ion  then proceeds downstream. For sharp bodies one would want t o  s ta r t  t h e  so lu t ion  a t  t h e  t i p ,  while 
f o r  a b lunt  body t h e  so lu t ion  should s t a r t  a t  t h e  s tagnat ion poin t .  A t  t h e  t i p  o f  a sharp body, t h e  boundary 
layer  thickness  goes t o  zero and t h e  f in i te -d i f fe rence  scheme i s  inappropriate  i n  t h e  physical  coordinates.* 
I f  t h e  boundary-layer equations a r e  transformed i n t o  s i m i l a r i t y  var iab les  ( r e l a t i o n s  developed by Mangler, 
Gdrt ler ,  Howarth-Dorodnitsyn, Levy, and Lees) ,  then i n  t h e  transformed plane t h e  boundary layer  i s  near ly  of 
uniform thickness  f o r  many flow s i t u a t i o n s .  A l s o  the  p a r t i a l  d i f f e r e n t i a l  equations reduce t o  ordinary 
d i f f e r e n t i a l  equations a t  t h e  t i p  of a body o r  a t  a s tagnat ion poin t .  
e n t i a l  equations provides i n i t i a l  conditions f o r  a f in i te -d i f fe rence  so lu t ion  which can s ta r t  a t  t h e  beginning 
of  t h e  body. 
by Blot tner  [52] . The transformed boundary-layer equations w e r e  replaced with an i m p l i c i t  s ix-point  f i n i t e -  
d i f fe rence  scheme, and coupling between the equations w a s  included. 
boundary layer  with seven chemical spec ies  and f i n i t e  react ion r a t e s  by Blot tner  [531. 
ing boundary layer  has been solved w i t h  an e x p l i c i t  f i n i t e - d i f f e r e n c e  scheme by Galowin and Gould 1541. The 
boundary-layer equations a r e  transformed i n t o  von Mises coordinates  before  t h e  d e r i v a t i v e s  a r e  replaced w i t h  
d i f fe rence  quot ien ts .  In this study f o r  flow on b lunt  bodies, t h e  swallowing of  the i n v i s c i d  flow by the 
boundary layer  is taken i n t o  account. 

The so lu t ion  of  these  ordinary d i f f e r -  

This type of  procedure w a s  appl ied t o  a binary gas mixture with f i n i t e  chemical reac t ion  rate 

This procedure was extended t o  t h e  air 
The chemically reac t -  

The appl ica t ion  of  the  f in i te -d i f fe rence  technique t o  second-order boundary-layer theory has been made 
by Davis and Fliigge-Lotz [551 and Fannelop and FlUgge-Lot2 [561 f o r  axisymmetric and two-dimensional bodies ,  
respect ively.  An i m p l i c i t  f in i te -d i f fe rence  technique s i m i l a r  t o  t h a t  developed by Fltlgge-Lotz and Blot tner  
[511 was employed. In l i n e a r i z i n g  t h e  f in i te -d i f fe rence  equat ion,  c e r t a i n  terms are evaluated a t  t h e  known 
g r i d  p o i n t  r a t h e r  than a t  the  poin t  halfway between t h e  known and t h e  unknown poin ts .  For s tagnat ion-point  
flows, Davis and FlUgge-Lotz found it advantageous t o  use l i n e a r  ex t rapola t ion  t o  approximate t h e  unknown 
q u a n t i t i e s  a t  the  halfway poin t .  This procedure requi res  t h a t  two p r o f i l e s  of  t h e  dependent var iab le  be  
known. 

In a paper by Fusse l l  and H e l l u m s  [571, an i m p l i c i t  f in i te -d i f fe rence  procedure i s  appl ied t o ' t h e  simi- 
l a r i t y  form of t h e  boundary-layer equation. The momentum equation has a third-order  der iva t ive  and r e s u l t s  
i n  a pentadiagonal matr ix ,  while the  energy equation becomes a t r id iagonal  matr ix .  The procedure recommended 
i n  t h i s  paper i s  t o  use a 10-point symmetric i m p l i c i t  f in i te -d i f fe rence  scheme, with t h e  equations replaced 
i n i t i a l l y  by a l i n e a r  d i f fe rence  equation. An i t e r a t i o n  procedure is used u n t i l  t h e  nonl inear  d i f fe rence  
equations corresponding t o  the  g r i d  poin ts  employed have been solved. 

An e x p l i c i t  f in i te -d i f fe rence  scheme has been used by Kleinstein E581 t o  so lve  t h e  boundary-layer equa- 
t i o n s  i n  von Mises var iab les .  This work is  f o r  a compressible p e r f e c t  gas ,  and t h e  approach i s  similar t o  
t h a t  of Mitchel l  and Thomson [42] and Galowin and Gould [541, where an incompressible gas and a react ing gas 
a r e  employed, respec t ive ly .  Later a rev is ion  of t h i s  work w a s  reported by Kleinstein [591, and a descr ip t ion  
and operat ion i .nstruct ions f o r  t h e  program were given by Nabi [601. 

For boundary-layer programs a t  General Applied Science Laboratories, Lane [611 i n i t i a l l y  recommended 
t h a t  an e x p l i c i t  f in i te -d i f fe rence  technique be used. Later Lane, Lieberman, and Fox [621 used an i m p l i c i t  
f in i te -d i f fe rence  scheme t o  solve t h e  compressible boundary-layer equations i n  physical  coordinates .  The 
momentum and energy equations a r e  uncoupled, and i t e r a t i o n s  a r e  performed u n t i l  a so lu t ion  of t h e  nonl inear  
coupled equations is  obtained. This method is  t h a t  of Brailovskaya and Chudov [48,491. Lieberman, Lane, and 
Fox [63] have also inves t iga ted  boundary-layer flow of a i r  i n  chemical equilibrium and f i n i t e  r a t e  chemistry. 
In t h i s  work an i m p l i c i t  f in i te -d i f fe rence  scheme i s  used near  the i n i t i a l  s t a t i o n  t o  start  t h e  so lu t ion ,  
and then r e v e r t s  t o  an e x p l i c i t  scheme downstream. 

The numerical so lu t ion  of  react ing boundary layers  has a l s o  been inves t iga ted  by Gruenich and Pindroh 
[64] .  The d i f fe rence-d i f fe ren t ia l  method of Smith [8-131 i s  used f o r  t h e  momentum and energy equat ions,  while 

*The boundary-layer equations a t  t h e  t i p  of a body a r e  a l s o  physical ly  inappropriate ,  as  continuum theory i s  
not  va l id ;  and when i t  i s ,  more complete equations a r e  required.  However, from a mathematical point  of view, 
one can st i l l  consider t h e  boundary-layer so lu t ion .  
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an i m p l i c i t  scheme i s  used f o r  the  species  equations. In t h i s  method an i t e r a t i o n  procedure i s  required t o  
solve t h e  momentum equat ion,  and two t r i a l  so lu t ions  are required f o r  t h e  energy equation. 

In  t h e  i m p l i c i t  f in i te -d i f fe rence  procedure developed by Fliiqqe-Lot2 and Blo t tner  [511, it w a s  assumed 
t h a t  both t h e  normal and tangent ia l  ve loc i ty  components and t h e  temperature d i s t r i b u t i o n  a r e  known from simi- 
l a r i t y  so lu t ions  across the  boundary layer .  In a recent  paper by Ting [651, t h e  compatibi l i ty  conditions f o r  
t h e  ve loc i ty  components have been inves t iga ted  f u r t h e r  than i n  t h e  o r i g i n a l  work of Prandt l .  The proper for -  
mulation i s  t o  specify the  t a n g e n t i a l  ve loc i ty  component and then t o  determine t h e  normal ve loc i ty  component 
from t h e  compatibi l i ty  condi t ions.  This approach has been incorporated i n t o  t h e  i m p l i c i t  f i n i t e 4 i f f e r e n c e  
scheme o r i g i n a l l y  developed by Fliigge-Lotz and Blo t tner ,  and t h i s  technique has been examined f u r t h e r  by 
Krause [661. The normal ve loc i ty  component i s  obtained i n  an i t e r a t i v e  manner by requi r ing  t h a t  t h e  con- 
t i n u i t y ,  momentum, and energy equations a r e  s a t i s f i e d  a t  each s t e p .  The f i n i t e - d i f f e r e n c e  procedure i s  t h e  
same as t h a t  of Fliigge-Lotz and Blo t tner ,  except t h e  normal ve loc i ty  component i s  assumed i n i t i a l l y  i n  order 
t o  solve t h e  momentum and energy equations. Then t h e  cont inui ty  equation i s  solved t o  obta in  a b e t t e r  value 
of  t h e  normal ve loc i ty  component which i s  averaged with t h e  i n i t i a l l y  assumed value t o  obta in  a new est imate  
of t h e  normal ve loc i ty  component. This type of procedure i s  repeated u n t i l  convergence i s  obtained. 

To avoid third-order  der iva t ives  i n  t h e  governing equations, when t h e  boundary-layer equations a re  t rans-  
formed i n t o  s i m i l a r i t y  form, a transformed normal ve loc i ty  i s  introduced by Blo t tner  [521 and t h e  cont inui ty  
equation i s  re ta ined .  Fannelop [67]  has appl ied t h e  same type of  transformation but  has introduced t h e  stream 
funct ion such t h a t  t h e  cont inui ty  equation i s  s a t i s f i e d .  However, i n  introducing t h e  stream funct ion,  t h e  
momentum equation i s  s t i l l  w r i t t e n  as  a second-order equation. 
momentum involves f and af/ag . The value of  f can be readi ly  obtained from an in tegra t ion  once t h e  value of 
t h e  tangent ia l  ve loc i ty  component across  t h e  boundary layer  i s  known. The value of f and af/ag a re  required 
f o r  t h e  so lu t ion  of t h e  momentum equation, and t h e  so lu t ion  of t h i s  equation gives  t h e  tangent ia l  ve loc i ty  
component. The value of  t h e  q u a n t i t i e s  f and af/aE f o r  t h e  d i f fe rence  equation a r e  evaluated by employing 
a l i n e a r  ex t rapola t ion  of the  values of  these  q u a n t i t i e s  a t  two previous p r o f i l e s .  

The new p a r t i a l  d i f f e r e n t i a l  equation f o r  

A multicomponent reac t ing  gas with thermal d i f fus ion  e f f e c t s  included has  been inves t iga ted  by Moore [681, 
where t h e  i m p l i c i t  f in i te -d i f fe rence  scheme was provided by Farrington [691 . The s i m i l a r i t y  coordinates a re  
used with a s t r e t c h i n g  of  t h e  normal coordinate near  t h e  sur face .  A Crank-Nicolson i m p l i c i t  f in i te -d i f fe rence  
scheme is used with t h e  equation uncoupled. 
performed t h a t  cor rec ts  t h e  l inear ized  terms and approximations made t o  uncouple t h e  governing equations. In 
t h i s  work it was observed t h a t  s t a b i l i t y  problems occurred f o r  t h e  Crank-Nicolson scheme with boundary condi- 
t i o n  involving der iva t ives .  T n i s  problem was eliminated by using a four-point i m p l i c i t  scheme a t  t h e  f i r s t  
g r i d  p o i n t  away from t h e  w a l l .  

The f i n a l  so lu t ion  i s  obtained a f t e r  an i t e r a t i o n  procedure i s  

An i m p l i c i t  f in i te -d i f fe rence  scheme of the  boundary-layer equations i n  near ly  t h e  Crocco form has been 
s tudied  by Schonauer [ 7 0 ] .  Rather than using the  shearing stress a s  a dependent v a r i a b l e ,  a quant i ty  propor- 
t i o n a l  t o  t h e  square of t h e  ve loc i ty  grad ien t  is used. The independent var iab le  f o r  t h e  coordinate normal t o  
t h e  sur face  i s  t h e  tangent ia l  ve loc i ty  which i s  nondimensionalized with t h e  ve loc i ty  a t  t h e  edge of  t h e  
boundary l a y e r ,  and t h e  independent var iab le  therefore  var ies  from 0 t o  1. 

A method has been given by Shchennikov [71]  f o r  construct ing f in i te -d i f fe rence  schemes f o r  t h e  boundary 
layer  on t h e  b a s i s  of the laws of conservation. The governing equations a r e  w r i t t e n  as  t h e  divergence of  a 
vec tor  as  two i n t e g r a l s .  The i n t e g r a l s  a r e  then expanded with t h e  t rapezoidal  formula and normal der iva t ives  
are replaced with c e n t r a l  d i f fe rences .  The r e s u l t  of these  operat ions i s  a system of  nonl inear  f i n i t e -  
d i f fe rence  equations with coupling between t h e  equations involving t h e  dependent var iab les .  

An i m p l i c i t  f i n i t e  d i f fe rence  has been developed by Patanker and Spalding [721 f o r  solving boundary- 
l a y e r  equations. The governing equations a r e  transformed with a von Mises-type coordinate system, where t h e  
stream function i s  an independent var iab le  across t h e  layer .  A nondimensional stream function i s  def ined 
such t h a t  it var ies  from 0 t o  1 from t h e  wal l  t o  t h e  outer  edge. A parameter i n  t h e  nondimensional stream 
funct ion i s  determined a s  t h e  ca lcu la t ion  proceeds such t h a t  t h e  g r i d  ad jus t s  i t s  width so as t o  conform t o  
t h e  thickness  of  t h e  layer .  The f i n i t e  d i f fe rence  scheme i s  t h e  Crank-Nicolson i m p l i c i t  scheme, except t h e  
convection terms are based on an in tegra ted  average over a small  cont ro l  volume. This r e s u l t s  i n  t h e  stream- 
w i s e  der iva t ive  being approximated as a weighted average of t h e  d e r i v a t i v e s  a t  t h e  poin t  of i n t e r e s t  and 
those on both s i d e s  of t h i s  po in t .  This method of d i f fe renc ing  t h e  equations i s  similar t o  t h a t  used by 
Shchennikov [711. 

The boundary-layer flow on a r o t a t i n g  cone has been obtained with a f i n i t e - d i f f e r e n c e  method by Koheand 
Pr ice  [ 7 3 ] .  The governing equations a r e  transformed with s imilar i ty- type var iab les ,  and t h e  stream funct ion 
i s  introduced i n  t h e  manner employed by Fannelop [671 a s  previously descr ibed.  A n  i m p l i c i t  f in i te -d i f fe rence  
scheme of the  Crank-Nicolson type i s  employed, and l i n e a r  d i f fe rence  equations a r e  w r i t t e n  such t h a t  the  
coupling between equations i s  neglected i n i t i a l l y .  The l i n e a r  d i f fe rence  equations a r e  solved i n  an i t e r a t i v e  
m a h e r  which gives  t h e  so lu t ion  of t h e  coupled nonl inear  d i f fe rence  equations. 

The f in i te -d i f fe rence  procedure has a l s o  been employed f o r  t h e  Rayleigh problem and a f l a t - p l a t e  boundary- 
layer  flow, with rad ia t ion  e f f e c t s  included by Solan and Cohen [741 and Sibulkin and Dispaux [751, respec- 
t i v e l y .  The boundary-layer equations a r e  transformed with t h e  von Mises transformation i n i t i a l l y ,  and then 
new independent var iab les  a r e  introduced which transform t h e  equations t o  t h e  s imi la r i ty - type  form. In t h e  
absence of rad ia t ion  o r  a t  t h e  leading edge of t h e  f l a t  p l a t e ,  t h e  governing equations become ordinary d i f f e r -  
e n t i a l  equat ions,  o r  s i m i l a r i t y  so lu t ions  a r e  obtained. The p a r t i a l  d i f f e r e n t i a l  equations are solved with a 
Crank-Nicolson s ix-point  f in i te -d i f fe rence  scheme. The r e s u l t i n g  d i f fe rence  equations a r e  nonl inear  a lgebra ic  
equations and a r e  solved by an i t e r a t i o n  scheme given by Douglas [761. A f i n i t e - d i f f e r e n c e  method proposed 
by Douglas [761 was a l s o  inves t iga ted  f o r  t h e  Rayleigh problem, b u t  s t a b i l i t y  r e s t r i c t i o n  required a r e l a -  
t i v e l y  small s t e p  along t h e  body. In t h i s  method n ine  poin ts  a t  t h r e e  t i m e  l e v e l s  are employed and the  
r e s u l t i n g  d i f fe rence  equations a r e  l i n e a r  and are  readi ly  solved. 

The boundary-layer equations f o r  r e a l  equilibrium gases has been solved with an i m p l i c i t  f i n i t e  d i f f e r -  
ence method by Levine [77 ] .  This method i s  t h a t  employed by Blo t tner  [521, where t h e  d i f fe rence  equations 
a r e  coupled. 
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A transformation t h a t  maps t h e  i n f i n i t e  region of t h e  boundary-layer flow i n t o  a f i n i t e  i n t e r v a l  has 
been used by S i l l s  [781. 
di f fe rence  scheme s i m i l a r  to  t h a t  employed by Paskonov [ S O ] .  

The transformed governing equations a r e  then solved with an i m p l i c i t  f i n i t e  

In t h i s  paper a technique f o r  solving t h e  boundary-layer equations f o r  a multicomponent flow with f i n i t e  
chemical reac t ions  is presented. This procedure has evolved over a number o f  years ,  and an e a r l i e r  vers ion 
was reported i n  [791. The motivation f o r  t h e  present  f i n i t e - d i f f e r e n c e  scheme i s  t h e  d e s i r e  f o r  a method 
f o r  solving t h e  governing equations where there  are many chemical species  i n  t h e  flow ( f o r  example, 25) .  
The technique i s  described i n  t h e  following sec t ions ,  and t y p i c a l  r e s u l t s  a r e  presented f o r  t h e  boundary- 
layer  flow on a hyperboloid. 

GOVERNING EQUATIONS 

The general  equations f o r  a multicomponent nonequilibrium gas a r e  given i n  1801, and t h e  r e s u l t i n g  
equations f o r  t h e  boundary l a y e r  have been given i n  1531. The boundary-layer equations a r e  transformed 
i n t o  s i m i l a r i t y  form i n  order  t o  obta in  them i n  a form more appropriate  f o r  numerical so lu t ion .  
independent var iab les  a r e  

The new 

and t h e  der iva t ives  become 

When t h e  new dependent var iab les  

f '  = u/ue 

e = TIT 

( l a )  

are introduced and t h e  transformations a r e  appl ied,  t h e  boundary-layer equations become t h e  following i n ,  
t h e  transformed plane. 

Continuity E q u a z  

a f l  av 
as a n  25 - +  - +  f '  = 0 

Momentum Equation 

Energy Equation 

where 

1 
I 
I 

I 

i 
I 
1 

I 

i 

I 

i 1 

i 
1 

I 

I 
I 
I 
i 
I 

i 

i 

I 

1 
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- - due/& 
e = p u  - 

e e dp /dx 

a i .  

ai = Ti- 
a& - 

& I  = - 
a17 

due e -  25 due B = - -  = 
dx U dS 

- 
The above equations d i f f e r  from those,given i n  [53]  by t h e  quant i ty  e which has been s e t  equal  t o  -1 

i n  t h a t  reference.  
used as t h e  condi t ions a t  t h e  edge of the  boundary layer .  
where swallowing of t h e  i n v i s c i d  flow i n t o  t h e  boundary layer  i s  taken i n t o  account, t h e  value of e must 
be' determined from t h e  expression given above. 

For t h e  c l a s s i c a l  boundary-layer approach, t h e  inv isc id  - flow body s t reamline r e s u l t s  a r e  
For t h e  more ge le ra1  case For t h i s  case,  E = -1. 

In t h e  above r e l a t i o n s ,  the  m a s s  f l u x  r e l a t i v e  t o  t h e  mass-average ve loc i ty ,  j i  has been used and w a s  
w r i t t e n  as 

where 

Lei 
i = k  

AZik i # k 
Zik = { 

N I  
M .  

'#I Lei = 3 
N I  

I : C j  
M . L .  j = 1  3 i j  

j#1 

I f  t h e  Lewis-Semenoy numbers, L i j ,  a r e  constant  f o r  a l l  t h e  spec ies  o r  i f  a t r a c e  spec ies  is being con- 
s idered ,  t h e  term h6ik i s  zero.' 
l ayer  assumption, and the forced d i f fus ion  term is assumed zero. 

In E q .  (5), t h e  pressure d i f fus ion  term i s  neglected due t o  t h e  boundary- 

PeM 
e -  

'e 
The equation of s t a t e  i s  a l s o  required and i s  w r i t t e n  as 

= N I  RT 

RT 1 (Ci/Mi) (6) 
i=l 

where it is assumed t h e  gas cons is t s  of a mixture of chemically reac t ing  p e r f e c t  gases  with t h e  pressure 
cliange across  t h e  boundary layer  neglected. 

The chemical m a s s  rate of production of species  i p e r  u n i t  volume, w i ,  i s  obtained from t h e  Law of Mass 
The gas model f o r  air and t h e  chemical k i n e t i c s  employed are  Action, and t h e  des i red  form is  given i n  [53]. 

t h e  same as descr ibed i n  [El] .  Also t h e  thermodynamic and t r a n s p o r t  p roper t ies  of t h e  ind iv idua l  spec ies  and 
t h e  mixture are required. 
employed i n  [El]. The multicomponent Lewis-Semenov numbers were obtained from r e l a t i o n s  given i n  [821, which 
are w r i t t e n  as 

These proper t ies  are obtained from t h e  same r e l a t i o n s  and information as w a s  

The q u a n t i t i e s  
c o e f f i c i e n t s  : 

M .  

3 

- 1 -  

Li j  = Fij - - F  M. ii 

- 
F i j  are c o e f f i c i e n t s  i n  a matrix which i s  t h e  inverse  of  t h e  matr ix  with t h e  following 

C. N I  cL 
+ M j  I: i # j  

&1 . 

Fij = 0 

(7 )  

The binary Lewis-Semenov numbers are obtained using the d e f i n i t i o n  and binary d i f fus ion  c o e f f i c i e n t s  which are 
expressed as I 

2 ' ij = ( f .  ij 1.0764 x ( f t  /sec) 
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where 

= pressure i n  atmospheres 
- A l n T  + B  
D . .  = e  T~ 

C K (an2 atm/sec) 
17 

The above expression f o r  D .  . was used t o  curve-f i t  tabulated binary d i f fus ion  c o e f f i c i e n t s  given by Yos [83] .  
A revised t a b l e  of values :As used f o r  the NO-NO' in te rac t ion  as  given i n  a l a t e r  paper by Yos [841. 
c o l l i s i o n  c ross  sec t ions  f o r  the atomic and molecular i n t e r a c t i o n s  i n  these r e s u l t s  were obtained from calcu- 
l a t i o n s  of Mason e t  a1 [85,861. Some of t h e  i n t e r a c t i o n  cross  sec t ions  were ca lcu la ted  a s  averages of t h e  
o ther  i n t e r a c t i o n  c ross  sec t ions ,  while the  cross  sec t ions  f o r  t h e  i n t e r a c t i o n s  N - 0 2  and N-NO were assumed 
the  same as  N-N2. 
same as t h e  N-O+ and 0-N+ cross  sec t ions .  
coef f ic ien ts  a r e  given i n  Table I. 

The 

A l s o  t h e  in te rac t ion  cross  sec t ions  f o r  NO+ with a n e u t r a l  spec ies  have been taken t h e  
The curve- f i t  coef f ic ien ts  f o r  t h e  various binary d i f fus ion  

The conditions a t  the  sur face  and outer  edge of t h e  boundary layer  determine t h e  necessary boundary condi- 
t i o n s  f o r  the  foregoing equations. 
sur face  temperature i s  spez i f ied ,  and these condi t ions a r e  expressed as  

A t  t h e  wal l ,  it i s  assumed that t h e  tangent ia l  ve loc i ty  i s  zero and t h e  

u(x,O) = 0; T(x,O) = Tb(x) (10a,b) 

In addi t ion ,  t h e  boundary condition on t h e  mass f l u x  of a spec ies  "i" a t  t h e  sur face ,  ( p i v i ) b ,  i s  

The mass f lux  of a species  a t  the sur face  depends on the  sur face  mater ia l  and what phenomena occur a t  t h e  
gas-surface i n t e r f a c e .  The sur face  conditions employed a r e  given with t h e  numerical examples presented. 

The t o t a l  mass f lux  a t  the sur face  can be determined from N I  

(11) 

and this i s  t h e  boundary condition employed with t h e  cont inui ty  equation. 

The flow a t  t h e  edge of the  boundary layer  i s  determined from the  i n v i s c i d  non-equilibrium flow around 
the  body. 

The boundary conditions a t  t h e  outer  edge of t h e  boundary layer  a r e  

(12)  u + c e ;  T - t T  ; C . + C  (i = 1, 2 ,  ..., N I )  i i  

where U,, Te, and t h e  c i  ' s  are  obtained from the  i n v i s c i d  flow. 
flow with t h e  boundary lzyer  i s  discussed where the  numerical r e s u l t s  a r e  presented. 

The technique f o r  matching t h e  i n v i s c i d  

FINITE DIFFERENCE PROCEDURE 

The so lu t ion  of  multicomponent chemically react ing boundary layers  f o r  pure a i r ,  o r  as many as 11 chemi- 
c a l  spec ies ,  has been solved with a f in i te -d i f fe rence  procedure by Blo t tner  [53] .  
e n t i a l  equations a r e  replaced w i t h  t h e  f i n i t e - d i f f e r e n c e  equat ions,  the r e s u l t i n g  d i f fe rence  equations a re  
coupled, as more than one of the unknown independent var iab les  appear i n  each equation. 
must be solved simultaneously. 
s ion  of 1 2  x 1 2  matr ices  (number of  species  plus  one) ,  where t h e r e  w i l l  be as many of  these  matr ices  as  
po in ts  across  t h e  boundary layer  (50 i n  this program). A l l  t h e  coef f ic ien ts  of  t h e  matr ices  must be saved 
(s tored  i n  t h e  computer memory), which requires  7200 s torage  loca t ions .  
matr ices  increases  rapidly when t h e  number of species  i s  increased. 
and 20 reac t ions ,  requires  near ly  the f u l l  capacity of  t h e  IBM 7094 computer w i t h  32K memory. 
t i o n  time f o r  t h i s  method increases  rapidly when t h e  number of species  becomes la rge .  A t  b e s t ,  one would 
expect t h e  computation time t o  vary near ly  d i r e c t l y  w i t h  t h e  number of  species .  
computation time is proport ional  t o  t h e  nunher of rows o r  columns of t h e  matrix cubed. Since many matrix 
inversions a r e  performed, the  computation time must be proport ional  t o  the  number o f  spec ies  t o  a power 
g r e a t e r  than one and l e s s  than three .  
i s  shown i n  Fig.  1. 
procedure does not  seem appropriate  when one i s  i n t e r e s t e d  i n  boundary-layer flows w i t h  ab la t ion  contaminants 
where there  can be a la rge  number o f  chemical species .  

When t h e  p a r t i a l  d i f f e r -  

Hence, t h e  equations 
Since these  equations a r e  of a spec ia l  form, t h e  procedure requi res  an inver- 

The s torage  requirements f o r  these 
This program, with 11 chemical species  

The computa- 

For matrix invers ions ,  t h e  

The a c t u a l  time required p e r  s t e p  f o r  t h e  present  i m p l i c i t  procedure 
Due t o  t h e  rapid increase  i n  computation time and s torage  requirements, t h e  i m p l i c i t  

The question might be asked, why not  use an e x p l i c i t  procedure where the computation time i s  near ly  
proport ional  t o  t h e  number o f  species  and the  s torage  requirements a r e  probably a minimum? 
layer  computations, t h e  e x p l i c i t  method has not  proved very successful ,  a s  s t a b i l i t y  requirements demand 
t h a t  t h e  s t e p  s i z e  be exceedingly s m a l l ,  which w i l l  r e s u l t  i n  an excessive o v e r a l l  computation time. In  
addi t ion ,  there are problems i n  s t a r t i n g  t h e  so lu t ion  a t  the t i p  o r  s tagnat ion poin t  of t h e  body. 

For boundary- 

A method i s  described below which has t h e  des i rab le  s t a b i l i t y  c h a r a c t e r i s t i c s  of  t h e  i m p l i c i t  procedure 
( la rge  s t e p  s i z e ) ,  with the  computing time being near ly  proport ional  t o  t h e  number of  spec ies ,  as i n  t h e  
e x p l i c i t  scheme. 
been employed previously,  except t h e  d i f fe rence  equations a r e  wr i t ten  such t h a t  only one dependent var iab le  
appears i n  each equation. 
dent  var iab le  separately.* 

The procedure i s  similar t o  the  i m p l i c i t  procedure of t h e  Crank-Nicolson type which has 

Therefore, t h e  r e s u l t i n g  i m p l i c i t  d i f fe rence  equations a r e  solved f o r  each depen- 

I 

i 
I 
~ 

1 
I 

I 

i 
I 
I 

j 
~ 

1 

I 

i 
I 
I ' 

*In Russia, this idea of solving the equations individual ly  has a l s o  been developed (see  [41) .  
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I '  

Another var ia t ion  of  t h i s  procedure has a l s o  been inves t iga ted  and i s  a "predictor-corrector' '  procedure 
s i m i l a r  t o  t h e  method employed by Douglas and Jones [871. 
a h a l f  s t e p  forward, and then these  q u a n t i t i e s  a r e  used t o  give t h e  value of t h e  var iab les  a complete s t e p  
ahead. The t runcat ion e r r o r  f o r  such a procedure i s  of t h e  order  of t h e  s tep-s ize  (Ax)'. 
described below cons is t s  of only t h e  cor rec tor  p a r t  of t h e  above method, w i t h  var iab les  required a t  the  h a l f  
s t e p  evaluated a t  t h e  known s t e p ,  and has a t runcat ion e r r o r  of  t h e  order  of t h e  s tep-s ize .  
method (cor rec tor  only) i s  l e s s  accurate f o r  the  same s tep-s ize  as t h e  predictor-corrector  procedure, the  
predictor-corrector  method requi res  approximately twice t h e  amount of computer time as t h e  present  method. 
When t h e  s tep-s ize  of  t h e  present  method i s  reduced t o  one-half of t h e  predictor-corrector  s tep-s ize ,  t h e  
computation time of t h e  two methods is  near ly  t h e  same and t h e  accuracy appears t o  be  about the  same. Hence, 
t h e  two methods appear almost equivalent as f a r  as  computer time required,  bu t  t h e  present  method i s  e a s i e r  
t o  program and requi res  less s torage.  

With t h i s  method, t h e  var iab les  a r e  predicted a t  

The procedure 

While the present  

The boundary-layer equations, with t h e  exception of t h e  cont inui ty  equation, a r e  of t h e  following form: 

aw aw 
1 a n  2 a t  (13)  - a2w + a - +  a w + a3 + a425 - =  0 

a n 2  
where W represents  any of the dependent var iab les .  The coef f ic ien ts  i n  t h e  above equation a r e  obtained a f t e r  
t h e  boundary-layer equations (4)  have been l inear ized ,  with t h e  following re la t ions :  

1 1 f '  

f '  'm,n m,n 
_ -  - -  ( 2 - F )  W f '  

(14a,b) 
m,n 

0 1  W .  

- = w i - w c  
P i i  

In t h e  above r e l a t i o n s ,  t h e  q u a n t i t i e s  without subscr ip ts  a r e  evaluated i n  t h e  neighborhood of t h e  point  
(m,n). The c o e f f i c i e n t s  i n  Eq. ( 1 3 )  become 

Momentum Equation a; = - (V - .el)/[ 

a' = -2Bf'/L - F/f '  2 

where 

Energy Equation 

1 
4 

a = -f '/L 

a2 1 = [ c l  - c P (V + d + b)]/z 

N I  M 
a 2 =  2 { Epf' (a5;- .) - 1 [WiC1 i e  + > & ( > ) ] } / E  

a: = {GP &(%) 2 - & 1 [iiAhr - eeh. L(3]}/G a e  

i=l 

N I  

e i=l 

Species Equation (i = 3 ,  4 ..., N I  + 2)  

al = - (V - b l ) / b i  a2 i = - eWi'bi 1 
i 

ai = - f ' / b i  (15k, l )  ai 3 = (..n + bti ) /bi  4 

The boundary layer  i s  divided with a g r i d  of s i z e  An and A5 w i t h  5 = m * AS and n = n A n .  It  i s  assumed 
t h a t  f '  , 0 ,  and t h e  c i  ' s  are  known a t  the g r i d  poin ts  i n  t h e  m t h  column and unknown i n  the  (m + 1) th column. 
In  t h e  present  i m p l i c i t  scheme, t h e  der iva t ives  a r e  replaced with l i n e a r  d i f fe rence  quot ien ts ,  and t h e  p a r t i a l  
d i f f e r e n t i a l  equations a r e  evaluated a t  (m + 1 / 2 ,  n ) .  However, t h e  equations a r e  w r i t t e n  with a parameter 
0 which w i l l  g ive t h e  various f in i te -d i f fe rence  schemes as ind ica ted  below: 
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0 Expl ic i t  

Crank-Nicholson (present  scheme) 

1 I m p l i c i t  

With t h e  function W ( 6 ,  n )  represent ing the  dependent var iab les ,  t h e  d i f fe rence  quot ien ts  a re  wr i t ten  as  

m+l,n+l - 2Wm+l,n + w  m+l,n-l ) + (1 - e) ( w ~ , ~ + ~  - ZWm,n + W m,n-1 '1 /''I2 (16c) 

+ z  w ) 
+ e(wm,nZm+l,n m,n m+l,n (16d,e) mi.1 ,n m,n m,n m,n w = ew + (1 - e ) w  w . 2 = (1 - 2 B ) W  z 

When t h e  above d i f fe rence  quot ients  and expressions a r e  used with t h e  p a r t i a l  d i f f e r e n t i a l  equations ( 1 3 ) ,  
t h e  f in i te -d i f fe rence  equations become t h e  simultaneous (involving only one dependent var iab le  across  t h e  
boundary layer )  l i n e a r  a lgebra ic  equations 

where 

+ BiWi 

n = 2 ,  3 ,  ..., n - 1 

i = 1 Momentum equation w 1  = f '  

2 

3 

i = 2 Energy equation w = e  

i = 3 F i r s t  species  equation w = c  
1 

2 
i = 4 Second species  equation W4 = c 

wN I+ 1 i + N I  + 1 N I  - 1 species  equation = c  
N I - 1  

The c o e f f i c i e n t s  i n  t h e  above equations with LT = O ( a i  = a = 0 )  a r e  

i 
Di = - (1 - B)P[ ( 1  + Aqa1/2 ) Wm,n+l + (-2 + aiAn2)Wm,n + (1 - Anal/2 ) Wm,n-l 1 + bw m,n - PAq2a3 

where 

In t h e  above c o e f f i c i e n t s ,  the  a i ' s  a re  determined from r e l a t i o n s  (151, where a l l  q u a n t i t i e s  a r e  evaluated 
a t  the m t h  column of g r i d  points  across  t h e  boundary l a y e r .  
f o r  t h e  e x p l i c i t ,  (m + 1 / 2 )  f o r  the  Crank-Nicolson, and (m + 1) f o r  t h e  i m p l i c i t  schemes. In t h e  r e l a t i o n  
(15g) it was found necessary t o  express the  following der iva t ive  i n  t h e  energy equation as 

The independent var iab le  5 i s  evaluated a t  (m) 

I t  should be noted t h a t  the  momentum equation i s  solved before t h e  energy equation i n  order  t h a t  t h e  values 
of  f '  a t  t h e  (m + :L) th column a r e  ava i lab le  f o r  t h e  above expression. 

From truncat ion-error  considerat ions,  the  m a s s  f rac t ion  i n  r e l a t i o n  (14d) would be  evaluated as shown; 
however, such a form can encounter s t a b i l i t y  problems. 
p r a c t i c a l l y  unaffected by lower order  terms, as discussed by Richtmyer [ 8 8 ] ,  i n  a c t u a l  computations with 
f i n i t e  s t e p  s i z e ,  these  terms can cont ro l  t h e  s t a b i l i t y .  A s  considered by Richtmyer, s t a b i l i t y  i s  concerned 
with what happens i n  t h e  l i m i t  a s  t h e  mesh s i z e s  approach zero. 
be completely s a t i s f a c t o r y  when f i n i t e  mesh s i z e s  a r e  employed. 
that s t a b l e  so lu t ions  a r e  obtained without any r e s t r i c t i o n s  on the  s t e p  s i z e s .  
constant ,  and s t a b i l i t y  problems can occur i f  the  s t e p  s i z e  becomes too l a r g e ,  b u t  t h e  formulation below 
appears t o  minimize unstable  so lu t ions .  In r e l a t i o n  (14d) t h e  mass f rac t ion  i s  evaluated a t  (m + 1) f o r  a l l  

Although s t a b i l i t y  i s  usual ly  considered t o  be 

Therefore, such s t a b i l i t y  analyses cannot 
I f  W p  and W i  were constants ,  t h e  

However, W p  and Wi a re  not  
it appears P 
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di f fe rence  schemes and t h e  evaluat ion of r e l a t i o n  (15j) must be changed. For t h e  spec ies  equation, t h e  value 
of a2  becomes 

A t  a s tagnat ion poin t  o r  a t  t h e  t i p  of a sharp body, 5 = 0 and t h e  p a r t i a l  d i f f e r e n t i a l  equations (13) 
become ordinary d i f f e r e n t i a l  equations and provide i n i t i a l  p r o f i l e s  t o  s t a r t  t h e  so lu t ion  along t h e  body. 
The ordinary d i f f e r e n t i a l  equations can be solved with t h e  same f i n i t e - d i f f e r e n c e  procedure employed f o r  the  
p a r t i a l  d i f f e r e n t i a l  equations. The coef f ic ien ts  i n  Eql (18) f o r  the  ordinary d i f f e r e n t i a l  equations a re  the  
same except t h e  following q u a n t i t i e s  become 8 = P = 1; 6 = 0 and F = 0. 

To complete t h e  system of equations (171, t h e  boundary conditions a r e  w r i t t e n  i n  t h e  following form: 

The boundary condi t ions f o r  t h e  momentum and energy equations (conditions ( l o a ) ,  ( l o b ) ,  (12a) ,  and (12b))  
a r e  readi ly  w r i t t e n  i n  t h e  above form. The m a s s  f lux  of spec ies  i a t  the  wal l  i s  expressed as  

fi, = P. + ~ ~ ( c ~ ) ~  = cipv + j i  
1 1  

T The r e l a t i v e  m a s s  f lux  with Li = 0 i s  wr i t ten  as  

where 

k#i 

The der iva t ive  i n  t h e  above expression i s  wr i t ten  as 

ac, 

a n  - 2Arl 1 =  2 
-- - (-3ci + 4c. - ci ) 

m + l  

The r e l a t i o n s ,  (20) through (22) can now be employed t o  determine the  w a l l  boundary condition coef f ic ien ts  
H1, Fl, and h l .  
below, while t h e  edge condition f o r  t h e  species  equations comes from r e l a t i o n  ( 1 2 ~ ) .  

The remaining boundary-condition coef f ic ien ts  f o r  t h e  momentum and energy equation a re  given 

Momentum: 

Energy: 

= 0 ;  F~ = 0 ;  h1 = 0;  g1 = 1 

H~ = 0; p2 = 0;  h 2 = T /T . g2 = 1 b e '  

Species f o r  i = 1, 2 ,  ..., NI: 

NI NI 

i= 1 i=l 

The q u a n t i t i e s  i n  t h e  above r e l a t i o n s  are evaluated a t  t h e  mth s t e p  where they can be  determined without an 
i t e r a t i o n  process. 
by t h e  m a s s  f lux  ii of  t h e  spec ies ,  as w a s  discussed i n  an e a r l i e r  sec t ion .  
mined from t h e  sum of the  ind iv idua l  species  m a s s  f lux.  

The values of P i  and Q i  depend on t h e  boundary conditions a t  t h e  w a l l  and are  determined 
The t o t a l  mass f lux  i s  deter-  

The d i f fe rence  equation (17) and t h e  boundary condi t ions (19) form a system of l i n e a r  a lgebraic  equations 
of  t h e  t r id iagonal  type. 
equations a r e  uncoupled, a choice of  t h e  order  f o r  solving t h e  dependent var iab les  must be made. 
has shown t h a t  t h i s  order  i s  important. 
species  m u s t  be  solved f o r  before  the  temperature. 
with t h e  f i n i t e - d i f f e r e n c e  representat ion 

These a r e  readi ly  solved with t h e  technique discussed by Richtmyer [881. Since the  
Experience 

The tangent ia l  and normal ve loc i ty  a r e  solved f o r  f i r s t ,  and the  
The cont inui ty  equation is then used t o  obtain V m+1/2  ,n 

I n  t h e  above f in i te -d i f fe rence  procedure, c e r t a i n  q u a n t i t i e s  should be evaluated a t  (m + 1 / 2 1 ,  bu t  have used 
t h e  known values a t  ( m ) .  An i t e r a t i o n  could be employed such t h a t  t h e  values a t  (m + 1/2)  would be used 
when convergence is obtained. However, t h e  present  ca lcu la t ions  have shown t h a t  t h i s  i s  not necessary. 
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In solving the  boundary-layer equat ions,  t h e  f i n i t e - d i f f e r e n c e  procedure i s  applied i n  t h e  transformed 
6 , ~ )  coordinate system. 
edge conditions a r e  given as a function of x and a r e  required f o r  t h e  f i n i t e - d i f f e r e n c e  so lu t ion  as  a funct ion 
of  6 .  
coordinate 5 i s  r e l a t e d  t o  x by t h e  ordinary d i f f e r e n t i a l  equation ( see  Eq. ( l a ) ) .  

The r e s u l t s  must be r e l a t e d  back t o  the  physical  x , y  coordinate system. A l s o  the  

The transformed The procedure of specifying A X ( X m + l  = Xm + Ax) and then f inding A5 has been employed. 

(25) 

The condi t ions a t  t h e  edge,of  the  boundary layer  as a function of x and t h e  body radius  r b  a r e  required 
For a sharp o r  b lunt  conical  body, t h e  body radius  i s  an a lgebra ic  expres- t o  solve t h e  foregoing equation. 

s ion  while, f o r  a hyperboloid, an ordinary d i f f e r e n t i a l  equation must be solved t o  obtain r b  as  a function 
of x .  

For t h e  value of  5 a s  a function of x ,  the  ordinary d i f f e r e n t i a l  equation (25) has t o  be solved numeri- 
When t h e  Runge-Kutta method i s  appl ied t o  t h i s  equat ion,  t h e  following i.s c a l l y  f o r  most body shapes. 

obtained : 

where 

The value of  5 a t  (m + 1/2)  can be obtained from 

The conditions a t  t h e  edge of the  boundary l a y e r ,  U,, Te,  pe, and tie's (air  species  o n l y ) ,  a re  required 
as  a funct ion of x. A t a b l e  of  these edge proper t ies  as a function of x i s  employed, with Lagrange i n t e r -  
polat ion used t o  obta in  t h e  edge conditions and t h e  der iva t ives  of the  edge conditions f o r  any value of x .  

DISCUSSION O F  NUMERICAL RESULTS 

The present  technique f o r  solving the  boundary-layer equations has been used t o  obtain t h e  flow on a 
sharp cone and a hyperboloid. These examples a r e  used as t e s t  cases t o  i l l u s t r a t e  t h e  present  i m p l i c i t  f i n i t e -  
d i f fe rence  scheme when applied t o  an a i r  gas model with f i n i t e  react ion r a t e s .  The f i r s t  case i s  a sharp cone 
a t  150-Kft a l t i t u d e ,  22 Kfps ve loc i ty ,  and a wal l  temperature of l O O O O K  with t h e  gas undissociated a t  the 
surface.  This problem has been inves t iga ted  by the  author [531 previously and a l s o  by Galowin and Gould [54] ,  
Gruenich and Pindroh [641, and Moore [681. Although sharp-cone r e s u l t s  have been presented i n  [241, Moore has 
shown t h a t  these  r e s u l t s  d i f f e r  s i g n i f i c a n t l y  from f i n i t e - d i f f e r e n c e  so lu t ions .  He a t t r i b u t e d  these d i f f e r -  
ences t o  the  inaccuracies  associated with the u s e  of polynomials i n  [241. 

The present  r e s u l t s  f o r  t h e  peak e lec t ron  densi ty  a r e  given i n  Fig. 2 and are compared t o  t h e  r e s u l t s  
of  o ther  authors .  The present  r e s u l t s  employ 28 poin ts  across  t h e  boundary l a y e r  and an i n i t i a l  value of 
Axo = 0.001, and t h e  s t e p  s i z e  increases  according t o  t h e  r e l a t i o n  Ax = Axo(2m - 11, where m = 1 , 2 , 3 ,  ..., M 
a s  each s t e p  i s  taken. A t o t a l  of 1 2 2  s t e p s  a r e  taken t o  obtain t h e  so lu t ion  of 14.884 f t .  The present  
method has been employed with a l l  the  binary Lewis-Semenov nmbers  equal t o  1.4 and with complete multi- 
component d i f fus ion  r e s u l t s  a r e  s l i g h t l y  higher than t h e  binary d i f fus ion  r e s u l t s ,  bu t  t h e  d i f fe rence  would 
not  be  d is t inguishable  i f  both were p l o t t e d  i n  Fig. 2 .  
of [531, t h e  peak e lec t ron  densi ty  is  c lose  t o  t h e  value given i n  [533. The d i f fe rence  between t h e  various 
r e s u l t s  i s  mainly due t o  react ion rates, t ranspor t  p roper t ies ,  and thermodynamic proper t ies .  When Mmre [68] 
used t h e  r a t e s  of  [53], h i s  pred ic t ion  of t h e  peak e lec t ron  densi ty  w a s  i n  c lose  agreement with [531. The 
d i f fe rence  from t h e  present  r e s u l t s  can be a t t r i b u t e d  t o  the  react ion r a t e s  used. The r e s u l t s  of  Gruenich 
and Pindroh [641 employ t h e  same react ion r a t e s  of those of [531, bu t  Suther land 's  v i scos i ty  law i s  used and 
e l e c t r o n i c  e x c i t a t i o n  i s  ignored i n  t h e  thermodynamic proper t ies .  The r e s u l t s  of Galowin and Gould [541 are  
d i f f e r e n t  because of t h e  reac t ion  r a t e s  and t ranspor t  p roper t ies  t h a t  a re  employed. 

When t h e  present  method employs t h e  react ion r a t e s  

AGARD CASE A 

The boundary-layer flow on a hyperboloid has been inves t iga ted  a t  condi t ions corresponding t o  an a l t i t u d e  
of 100 Kft and a ve loc i ty  of  20 Kfps, with a wall temperature of 1000'K. This case i s  a way t o  ver i fy  i f  a 
numerical technique w i l l  operate  properly when t h e  gas i s  near  chemical equilibrium. 
requi res  t h e  so lu t ion  from a s tagnat ion point  downstream where edge conditions change s i g n i f i c a n t l y .  The 
edge conditions were provided by L e w i s ,  and a r e  given i n  Table I1 as used i n  t h e  computer program. These con- 
d i t i o n s  a r e  obtained from t h e  i n v i s c i d  s t reamline along the  sur face  of t h e  hyperboloid with f i n i t e  r a t e  chem- 
i s t r y .  The pressure along t h e  s t reamline o r  body surface i s  t h a t  obtained from modified Newtonian theory. 
The condi t ions a t  t h e  edge of  t h e  boundary layer  a r e  used as  t h e  reference condi t ions;  f o r  example, as r e -  
quired i n  FQ. (la). When' the  body s t reamline i s  used, t h e  c l a s s i c a l  boundary-layer approach i s  being 
followed. For t h e  case of  chemically react ing flows, there  i s  considerable e r r o r  i n  t h e  pred ic t ion  of  t h e  
chemical species  a t  t h e  edge of t h e  boundary layer  f a r  downstream on the body. The usual approach of  taking 
i n t o  account t h e  swallowing of  t h e  i n v i s c i d  flow i s  not  employed. As t h i s  case i s  intended t o  be a test exam- 
p l e ,  t h e  introduct ion of swallowing introduces another var iab le  t h a t  can inf luence t h e  r e s u l t s  obtained by 
any method. 

A l s o ,  t h e  blunt  body 

The sur face  boundary conditions employed i n  t h i s  study a r e  such t h a t  t h e  wal l  i s  e i t h e r  nonca ta ly t ic  o r  
f u l l y  c a t a l y t i c .  For t h e  case of t h e  noncatalyt ic  w a l l ,  t h e  terms f i i ,  P i ,  and Q i  i n  Eq. (20) a r e  zero f o r  
a l l  of t h e  a i r  species .  A f u l l y  c a t a l y t i c  recombination sur face  f o r  a i r  i s  defined as  a wal l  where every 
d issoc ia ted  and ionized species  that s t r i k e s  t h e  sur face  i s  converted t o  a molecular spec ies  due t o  the  
heterogeneous react ions.  For d issoc ia ted  and ionized spec ies ,  t h e  P i ' s  a r e  zero,  while 
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+ 
i = 0 ,  N ,  NO, NO 

For t h e  molecular spec ies ,  t h e  Q i ' s  a r e  zero and 

where 

a' = amount of element j i n  spec ies  k 

i = molecular species  of element j 

k 

The var ia t ion  of t h e  rad ius  of t h e  hyperboloid i s  required as  a funct ion of t h e  d is tance  along t h e  sur-  
face. This i s  obtained by solving t h e  ordinary d i f f e r e n t i a l  equation 

In t h e  r e s u l t s  presented,  28  poin ts  a r e  employed across  t h e  boundary l a y e r ,  with rl = 5.4 a t  t h e  outer  edge. 
The s t e p  s i z e  along t h e  body was increased as t h e  computation proceeded. The s t e p  s i z e s  employed were 0.01, 
0.025, 0.05, 0.1, 0.25, 0.5, 1 .0 ,  and 2.0, where t h e  numbers of  s t e p s  taken of each were 10, 16, 16 ,  20, 1 2 ,  
12, 14, and 12, respec t ive ly ,  f o r  a t o t a l  of 106 s t e p s .  The time required per  s t e p  along t h e  body is given 
i n  Fig. 1 f o r  t h e  case of  binary d i f fus ion .  For t h e  case of a i r  with multicomponent d i f fus ion ,  t h e  compu- 
t a t i o n  i s  approximately twice as la rge .  In  Fig.  1, t h e  times f o r  t h e  IBM 7094 computer correspond t o  t h e  
computer program employed i n  [531 and [791. The times f o r  t h e  CDC 3600 are f o r  t h e  computer program described 
i n  t h i s  paper. 

The boundary-layer flow r e s u l t s  f o r  t h e  hyperboloid tes t  case with a c a t a l y t i c  and noncatalyt ic  w a l l  
a r e  given i n  Fig. 3 through 7. Not too much physical  s ign i f icance  should be at tached t o  t h e  r e s u l t s ,  s ince  
t h e  swallowing of  t h e  i n v i s c i d  flow has been neglected. The displacement thickness ,  

Stanton number, N I  

S t  = ( k  5 - hiji)b/P.Y.'Ho - Hb) i 

i=l 
and t h e  l o c a l  s k i n  f r i c t i o n  c o e f f i c i e n t .  

a r e  given i n  Fig. 3 and 4. The ve loc i ty ,  temperature, and spec ies  d i s t r i b u t i o n  across  t h e  boundary layer  a t  
50 nose r a d i i  downstream f o r  a c a t a l y t i c  and nonca ta ly t ic  w a l l  are given i n  Fig. 5, 6 ,  and 7.  

For t h e  so lu t ion  w i t h  a nonca ta ly t ic  w a l l ,  unstable  r e s u l t s  were obtained w i t h  t h e  Crank-Nicolson 
( 0  = 0.5) method. To avoid t h i s  problem, t h e  i m p l i c i t  method with 8 = 1.0 w a s  employed. The results f o r  
t h e  sharp-cone tes t  were compared with 0 = 0.5 and 1.0, and t h e  r e s u l t s  were i n  c lose  agreement downstream 
on the  cone. Near t h e  t i p  ( f i r s t  few inches)  t h e r e  w a s  a d i f fe rence  between t h e  pred ic t ions  of t h e  two 
methods f o r  t h e  m a s s  f r a c t i o n  of  the  spec ies ,  w i t h  t h e  i m p l i c i t  method giving more accurate  r e s u l t s .  This 
type of  s t a b i l i t y  problem has a l s o  been observed by Moore [681 and w a s  corrected by using t h e  i m p l i c i t  scheme 
f o r  t h e  f i r s t  g r i d  poin t  away from the w a l l .  

The examples i n d i c a t e  t h a t  the  present  method provides a technique f o r  computing t h e  boundary-layer flow 
with f i n i t e  react ion rates when there  a re  a la rge  number of chemical species  and when t h e  flow i s  near l o c a l  
chemical equilibrium. With t h e  equations uncoupled and t h e  technique not  requir ing i t e r a t i o n s  a t  each s t e p ,  
t h e  o v e r a l l  computing time f o r  flaws with many chemical spec ies  i s  reasonable. 
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TABLE I 

Diffusion Curve F i t  Constants 

In te rac t ion  A B C 

N-0 
N-N2 
N-02 
N-NO 
0-02 

N2 -02 
0-N2 

0 -NO 
02 -NO 
N2-NO 
0-NO+ 

02-NO' 
N2 -NO+ 

N-NO+ 

NO-NO+ 

-0.0043383 
0.0191055 
0.0191055 
0.0191055 
0.0216586 
0.0168907 
0.0435927 
0.0183441 
0.0410864 
0.0315955 
0.0003467 
0.0003467 
0.0003467 
0.0003467 
0.0039930 

1.9119177 
1.49044 48 
1.4904448 
1.4904448 
1.3875747 
1.5276702 
0.9784219 
1.4750189 
1.0124720 
1.2225368 
1.8941393 
1.8941393 
1.8941393 
1.8941 39 3 
1.5689336 

-11.891342 
-10.358828 
-10.358828 
-10.358828 
- 9.7389971 
-10.629306 
- 8.3354916 
-10.265935 
- 8.4455480 
- 9.4862934 
-12.978394 
-12 -978394 
-12 -978394 
-12.978394 
-11.441502 
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j = 0 two-dimensional bo* 
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LAMINAR BOUNDAW LAYER CALCULATIONS ON BODIES OF REVOLUPION I N  HYPERSONIC FLOW 

by Gerlina L. Keltner and A.M.O. Smith* s 

SUMMARY 

Two sets of  laminar boundary layer  problems i n  hypersonic flow a r e  presented.  One set  cons is t s  of 
boundary l a y e r  ca lcu la t ions  f o r  equilibrium, frozen and nonequilibrium flows on a hyperboloid of  revolut ion 
f o r  a high Reynolds number a t  Mach 20 and a low Reynolds number a t  Mach 22 .  
each Reynolds number showing a comparison between the t h r e e  types of  flows on the body. 
cons is t s  of boundary l a y e r  ca lcu la t ions  f o r  experimental equilibrium flows on two three-quarter  power-law 
bodies of revolut ion a t  Mach 8 and comparisons with experimental boundary l a y e r  measurements. 
d id  not  compare wel l  w i t h  experiment s ince  t h i s  w a s  a case where the condi t ions assumed when der iving t h e  
i n v i s c i d  flow theory used t o  obta in  addi t iona l  da ta  from t h e  experimental pressure d i s t r i b u t i o n s  w e r e  
v io la ted  by the experimental condi t ions.  

The r e s u l t s  are presented f o r  
The o ther  set 

The results 

The boundary layer  ca lcu la t ions  were done on the IBM 7094 using two boundary layer  programs already i n  
exis tence,  one f o r  t h e  equi l ibr ium boundary layers  and the o ther  f o r  t h e  frozen and nonequilibrium boundary 
layers .  R e a l  gas f l u i d  proper t ies  were used for  t h e  equi l ibr ium cases on t h e  hyperboloid and i d e a l  gas f l u i d  
proper t ies  were used f o r  t h e  cases on the power-law body. 
were used f o r  t h e  frozen and nonequilibrium cases. 
t h e  f l u i d  proper t ies  as o r i g i n a l l y  programmed. 

Fluid p r o p e r t i e s  derived f o r  a binary a i r  model 
The binary model w a s  improved by making modifications t o  

INTRODUCTION 

Two sets of  laminar boundary layer  ca lcu la t ions  on bodies of  revolut ion i n  hypersonic flow are presented. 
One set  cons is t s  of  boundary layer  ca lcu la t ions  f o r  equilibrium frozen and nonequilibrium flows on a hyper- 
boloid of revolut ion.  The o ther  set cons is t s  of  boundary layer  ca lcu la t ions  f o r  equilibrium flow on two 
three-quarter power-law bodies of revolut ion.  The ca lcu la t ions  were done using two computer programs already 
i n  exis tence.  

The f irst  set of  boundary layer  ca lcu la t ions  w a s  done i n  response to t h e  h g i n e e r i n g  Applications Section 
of  the AGARD Seminar a t  M.P.L. on "Numerical Methods f o r  Viscous Flows," September 18-21, 1967, a t tended by 
A.M.O. Smith. Calculat ions w e r e  made f o r  each of t h e  t h r e e  types o f  flows a t  two f r e e  stream Reynolds num- 
bers ,  2.158 x 106/f t  a t  Mach 20 and 5.192 x 103/ft a t  Mach 2 2 ,  making s i x  cases i n  this set. 
flow d a t a  w a s  taken from [ l ]  f o r  equi l ibr ium, frozen and nonequilibrium expansions about the body. The equi- 
l ibr ium boundary layer  ca lcu la t ions  were done on the IBM 7094 under t h e  program number 44KA using t h e  method 
developed by Smith 121. Real gas f l u i d  proper t ies  as developed by Cohen [31 were used. The frozen and non- 
equilibrium boundary layer  ca lcu la t ions  were done on t h e  IBM 7094 under t h e  program number 61RA using t h e  
method developed by Smi th  [41. Fluid proper t ies  developed f o r  a binary a i r  model w i t h  modifications t o  the 
o r i g i n a l  method were used. These modifications w i l l  be discussed l a t e r .  

The inv isc id  

The second set of boundary layer  ca lcu la t ions  were made f o r  comparison w i t h  t h e  experimental r e s u l t s  i n  
[5] f o r  equilibrium air  a t  Mach 8. This was done s ince  experimental boundary layer  measurements a re  d i f f i c u l t  
t o  f i n d  thus enabling t h e  t h e o r e t i c a l  ca lcu la t ions  t o  be checked out .  The i n v i s c i d  flow d a t a  were obtained 
from sur face  pressure measurements and t h e o r e t i c a l  re la t ionships  i n  [51. The measurements were made a t  three  
reservoi r  s tagnat ion pressures  f o r  each of two power-law bodies. The boundary layer  ca lcu la t ions  were made 
using t h e  method i n  [21. Ideal  gas f l u i d  proper t ies  were used s i n c e  these  were appropriate  f o r  t h e  wind 
tunnel condi t ions o f  the experiments. 

The boundary layer  equations appl icable  t o  t h e  flows descr ibed above w i l l  be presented. However, t h e  
methods o f  so lu t ion .wi l1  be discussed only b r i e f l y  s ince  these  a r e  adequately covered i n  the references e i t e d .  
The ca lcu la t ion  r e s u l t s  w i l l  be presented along w i t h  any appropriate  comparisons. Details of preparat ion of  
t h e  i n v i s c i d  flow d a t a  f o r  use i n  the boundary layer  programs w i l l  be  discussed i n  t h e  appendix. 

METHOD OF SOLUTION 

Boundary-Layer Equations and Fluid Proper t ies  

The general  coordinate system and notat ion are shown i n  Fig.  1. The equilibrium cases were solved by t h e  
method descr ibed i n  [21. 
neglect ing second-order t ransverse  curvature  are:  

The laminar boundary layer  equations f o r  equi l ibr ium flow on a body of revolut ion,  

Continuity 

Momentum 

Energy 

where 

*Chief Aerodynamics 

a H  l a  I""" ay 
a H  u - +  v - =  - -  - - +  u(1 - 1/Pr)u "1 ax a y  p ay P r  ay 

H = h + $ u2 (v2 neglected)  

Engineer, Douglas A i r c r a f t  Company, Long Beach, Cal i forn ia .  
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The coordinates are transformed by 

x = x  

Using a stream function JI defined as 

a dimensionless stream funct ion such t h a t  
- a f  = 2 
a n  ue 

and t h e  coordinate transformations (41, t h e  equations become: 

Momentum 

Energy 
I 

af 

e 
1 = - [?+ R]fg' + x [ f '  2 - g '  ax] (7) 

1 
P r  

U2 
- g '  + $ C ( 1  - - ) f ' f "  

H 1 2  1 2  g = -  He = h + ue = hm + - um = constant  outs ide the  boundary layer .  2 He ' 
Prime denotes d i f f e r e n t i a t i o n  w i t h  respect  t o  n .  

The cont inui ty  equation (1) i s  automatically s a t i s f i e d  by t h e  stream funct ion,  Eq. ( 5 ) .  

The f l u i d  proper t ies  p ,  C and Pr i n  (6) and (7) a r e  a r b i t r a r y  funct ions of  l o c a l  enthalpy h. The method 
of so lu t ion  i n  121 allows a choice between i d e a l  gas f l u i d  proper t ies  and t h e  f l u i d  proper t ies  including equi- 
l ibr ium dissoc ia t ion  descr ibed i n  [31. 

The nonequilibrium and frozen cases  were solved by t h e  method descr ibed i n  [41. 
The laminar boundary layer  equations f o r  nonequilibrium dissoc ia ted  flow on a body of  

The coordinate system 
i s  shown i n  Fig.  1. 
revolut ion,  neglecti.ng second-order t ransverse curvature are: 

I Species 

Momentum 
au - L * +  La (U a") 
ax ay p dx p ay a y  

Energy 

aT  
ac D~ 

a H  a H  1 a 1 a a  
ax a y  ay  [,", i: + ~ ( 1  - pr )U (Le  - 1) (h a - h  may^ ) - +  - (ha - hm) -1 ay (11) U - +  v - =  - -  -- 

Using t h e  coordinate transformations (4) and t h e  stream function (51, t h e  equat ions become: 

Species T D 1 

az X 

e 
- $ [ Z c z ' + + C $ ]  m a = S z f ' - [ =  2 + R ] f z ' + x [ f ' ; j ; ; -  z ' E ] - c a p ~ e  3 a (12) 

Momentum 

Energy 
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dc 
C 

a s = 2 5 . 2  where 
z = -  

C '  

Frozen boundary layer  ca lcu la t ions  a re  made by s e t t i n g  t h e  chemical source term i n  3, i n  Eq. ( 1 2 )  equal  
The chemical source term ca lcu la ted  f o r  nonequilibrium boundary layer  i s  derived i n  [41 using atomic t o  zero. 

p roper t ies  obtained by averaging t h e  values f o r  oxygen and ni t rogen.  
a binary a i r  model o f  molecules and atoms as funct ions of  l o c a l  temperature. 
t h e  binary air model are a l s o  averages of  the  oxygen and ni t rogen values. 

Modifications t o  Fluid Propert ies  

The f l u i d  proper t ies  were der ived f o r  
The atomic proper t ies  used i n  

It  was not iced by t h e  author t h a t  t h e  binary a i r  model f l u i d  proper t ies  i n  [41 used f o r  frozen and non- 
Therefore, modifications were made i n  order  t o  improve 

The l o c a l  molecular enthalpy and t h e  atomic source term were changed as  follows. The l o c a l  molecular 
equilibrium cases d id  not  give very accurate  values. 
them. 
enthalpy w a s  approximated i n  [41 by 

h G h - c  ho a a  m 

where ca i s  t h e  mass concentration of a l l  t h e  atoms present ,  added together .  
t h p e r a t u r e  and o ther  f l u i d  proper t ies  a r e  obtained. 
For ca > 0.2 t h e  program used t h e  value of h: f o r  ni t rogen.  
a l l  of t h e  atoms a r e  ni t rogen.  
b e  expected s ince  h t  i s  much l a r g e r  than h:. 

From t h i s  value of hm t h e  l o c a l  

This  i s  equivalent  t o  assuming t h a t  f o r  ca > 0.2 
For ca 2 0.2 t h e  program used t h e  value of % f o r  oxygen. 

As a r e s u l t  t h e  loca l  molecular enthalpy ca lcu la ted  i s  much lower than would 
Therefore (15) w a s  replaced by 

h ; h - c h o - c h o  0 0  N N  m (16) 

The program ca lcu la tes  t h e  atomic concentration ca which includes a l l  the  atoms present .  Therefore, t h e  
following scheme w a s  devised i n  order  t o  obtain co and cN indiv idua l ly .  
known and may be input  t o  t h e  program. Then 

For frozen flow, CO, and a re  

CN = C a / ( 1  + CO /CN ) (17a) 
e e  

and 

(17b) 
CO = CN ( C O  /CN ) 

e e  

s ince  c and cN s t a y  i n  constant proportion through t h e  boundary layer .  For d issoc ia t ing  a i r  i n  equi l ibr ium it 
i s  empir ical ly  known t h a t  t h e  oxygen concentration remains r e l a t i v e l y  constant once t h e  ni t rogen has begun 
d issoc ia t ing ;  oxygen d issoc ia t ion  i s  e s s e n t i a l l y  complete a t  t h i s  t i m e .  For nonequilibrium flow a maximum 
value f o r  co w a s  pu t  i n t o  t h e  program. 

0. 

I f  ca w a s  g r e a t e r  than this m a x i m u m ,  t h e  value of  % was obtained from 

and 

(18b) 
= COmax 

If ca w a s  less than t h i s  maximum then 
c = o  N 

and 
CO = ca 

was used. 
flow proceeds away from equilibrium and toward frozen flow. 
and ca lcu la te  t h e m  ind iv idua l ly ,  but  t h i s  i s  another p r o j e c t  i n  i t s e l f .  
from (16) gave more reasonable f l u i d  property values. 

This scheme w i l l  be  b e s t  f o r  near-equilibrium flow. The e r r o r  w i l l  increase  as  t h e  nonequilibrium 
A remedy f o r  t h i s  i s  t o  add more spec ies  equations 

The l o c a l  molecular enthalpy obtained 

In  order  t o  be cons is ten t  with the above approach, t h e  chemical source term w a s  changed t o  use 30 i n  t h e  
oxygen range and 4, i n  t h e  ni t rogen range. The equation f o r  3, i s  (6.23) from 141: 

where 

The constant  values i n  (19) were obtained by averaging t h e  values  f o r  oxygen and ni t rogen from [61 and [71. 
By s u b s t i t u t i o n  i n t o  (19) of t h e  individual  constant values f o r  oxygen and ni t rogen and t h e  equations f o r  
pd  from [ 7 ] ,  t h e  equations f o r  Go and GN were obtained f o r  t h e  present  work as:  
- 

5 
1.062 x 10 

T X - c  4 =x 0.266664 x lo8 [(l - cole  
CaePue o c  aeUe fi 

5 
2.034 x 10 ( 2 1 )  

X T 3 =x 0.316823 x lo8 [ (1 - c,) e 
aeUe Ji; caePue N c  
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where 
fi(1 - exp{- 4014/T}) (5 + 3 exp{- 410.4/T} + exp{- 588.6/T}) 

@do = -454280 [ 
3 + 2 exp{- 20340/T} 

= 7.203345 fi (1 - exp {-6012/T)) 

Previously, pd had been assumed constant ,  i .e .  

3 pd = 271.65 s l u g s / f t  

a s  ind ica ted  i n  [41. 

General Method of  Solution 

The general  method of  so lu t ion  of these  equations cons is t s  of  replacing t h e  p a r t i a l  der iva t ives  with 
respect to  x by f i n i t e  d i f fe rences  s o , t h a t  t h e  p a r t i a l  d i f f e r e n t i a l  equations become ordinary d i f f e r e n t i a l  
equations. 
so lu t ions  a t  a given x s t a t i o n  as ca lcu la t ion  proceeds downstream. The d e t a i l s  of  so lu t ion  a re  explained 
i n  [2] and [41. I f  t h e  boundary layer  computer program includes an option f o r  t h e  type of f l u i d  proper t ies  
used, t h e  choice must be spec i f ied  p r i o r  t o  so lu t ion  of t h e  equations. 

BOUNDARY LAYER CALCULATIONS 

The ordinary d i f f e r e n t i a l  equations a r e  solved simultaneously by numerical in tegra t ion  t o  obta in  

Hyperboloid of Revolution 

The i n v i s c i d  flow d a t a  was taken from [l] . The body geometry i s  shown i n  Fig.  2. Equilibrium, frozen 
and nonequilibrium expansions about t h e  body were ca lcu la ted  f o r  two f r e e  stream Reynolds numbers. 
d i t i o n s  f o r  each case a r e  l i s t e d  i n  Table I.  A more d e t a i l e d  discussion of  t h e  i n v i s c i d  flow d a t a  and t h e  

TABLE I 

The con- 

~_______ ~ ~ - 
C a s e  Mm Rem/f t P m 4 m  T,,"R T w r " R  p t , , a m  T t , t o R  

A 20.178 2.1579 x l o 6  1.0997 X 408.56 2520.0 6.0352 12,592.8 

B 21.744 5.1920 x l o 3  2.0074 X 351.83 1800.0 0.0129 9,543.3 

um = 20,000 f t / s e c  nose radius  = 1.0 inch 

preparat ion of it f o r  input  t o  t h e  computer programs i s  presented i n  t h e  appendix. 
l ayers  on t h e  body were ca lcu la ted  f o r  cases  A and B using t h e  methods previously described. 

The corresponding boundary 

The equilibrium cases were ca lcu la ted  using f l u i d  proper t ies  i n  [31 where equi l ibr ium dissoc ia t ion  i s  
accounted f o r  by an equivalent  Prandt l  number. 
t h e  modified binary model f l u i d  proper t ies .  
cases and was ca lcu la ted  as modified f o r  t h e  nonequilibrium cases. The c 
i n  Table 11. These values were determined from t h e  i n v i s c i d  flow data .  Approximately 30 x-wise s t a t i o n s  
were ca lcu la ted  f o r  each case. 

The frozen and nonequilibrium cases  were calculated using 
The chemical source term w a s  suppressed f o r  t h e  frozen flow 

Omax used f o r  each case i s  l i s t e d  

TABLE I1 

Case Flow Type '0 max 

A Frozen 0.22624 
Nonequilibrium 0.230* 

Nonequilibrium 0.234* 
B Fro Zen 0.24682 

* 
Averaged over body length.  

The r e s u l t i n g  ve loc i ty  p r o f i l e s  a t  x/rn = 3.0, 10, 25 and 50 a re  presented i n  F ig .  3 f o r  case A and 
case B .  Comparison is made between equilibrium, frozen and nonequilibrium p r o f i l e s  a t  each s t a t i o n .  The 
sk in  f r i c t i o n  d i s t r i b u t i o n s  along t h e  body are shown i n  Fig.  4 and t h e  displacement thickness  d i s t r i b u t i o n s  
are shown i n  Fig. 5. The Stanton number based on t h e  freestream conditions i s  shown i n  Fig.  6. The l a r g e s t  
d i f fe rence  between t h e  t h r e e  types of flows shows up i n  t h e  displacement thickness .  
ence i n  densi ty  p r o f i l e s  i n  t h e  boundary layer .  
each type of flow has a d i f f e r e n t  p r o f i l e  of atomic concentration which r e s u l t s  i n  d i f f e r e n t  densi ty  values .  
All r e s u l t s  look reasonable except f o r  t h e  nonequilibrium Case B.  This  case i s  c lose  t o  frozen flow and t h e  
scheme i n  (18) has t h e  l a r g e s t  e r r o r  here .  

This i s  due t o  the d i f f e r -  
The ve loc i ty  and enthalpy p r o f i l e s  do not d i f f e r  much, but 

A problem which occurred i n  the  nonequilibrium cases  w a s  t h e  f a c t  t h a t  t h e  atomic concentration calculated 
by t h e  boundary l a y e r  program w a s  not t h e  same a s  t h a t  calculated i n  t h e  i n v i s c i d  flow f o r  t h e  same condi t ions.  
Therefore, there  was a s l i g h t  incompatibi l i ty  i n  t h e  atomic concentration p r o f i l e  near the  edge of  t h e  boundary 
layer .  The program did not  c a l c u l a t e  t h e  same cae as t h e  value input  t o  t h e  program as obtained from [11. A 
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remedy might be t o  reca lcu la te  ca 
source term and f l u i d  property re fa t ionships .  

Three-Quarter Power-Law Body of  Revolution 

from t h e  i n v i s c i d  flow conditions using t h e  boundary layer  program chemical 

The i n v i s c i d  flow d a t a  w a s  taken from wind tunnel t e s t s  i n  [SI .  Two models were t e s t e d  a t  Mach 8 i n  equi- 
l ibr ium air .  The model geometry i s  described by 

3/4 (22)  r /L = 6 ( x / L )  

where 6 = 0.235 and L = 3.19 i n .  f o r  t h e  f i r s t  model, and 6 = 0.1 and L = 5 i n .  f o r  t h e  second model. Data w a s  
measured on each model a t  t h r e e  reservoi r  s tagnat ion pressures  i n  t h e  tunnel  f o r  t h e  test conditions l i s t e d  i n  
Table 111. Experimental measurements were made of t h e  sur face  pressure d i s t r i b u t i o n s  and of t h e  p i t o t  pressure 
p r o f i l e s  a t  X/L = 0.8. The r e l a t i o n s h i p  

was used t o  obta in  t h e  rest of t h e  inv isc id  flow d a t a .  However, t h e  condi t ions assumed i n  der iving (23) were 
v io la ted  by t h e  experiment. The experimental scatter i n  the pressure d i s t r i b u t i o n s  w a s  smoothed out before  
t h e  d a t a  w a s  used. 

TABLE I11 

- 
Test Case Mm Pt,,PSig T,,OR TmrPSf Rem/ft 

1 7.871 50 101.535 1.0605 0.304435 x l o 6  
6 

2 7.073 100 101.487 1.8769 0.539356 x 10 
6 3 7.991 250 98.728 3.9330 1.201019 x 10 

T = 1350.6 O R  ad iaba t ic  w a l l  
t 

Corresponding boundary layer  p r o f i l e s  were ca lcu la ted  on each model f o r  each tes t  case. Ideal  gas f l u i d  
proper t ies  were used s ince  t h e  tunnel  temperature w a s  so low. The ca lcu la ted  boundary layer  ve loc i ty  p r o f i l e s  
are presented i n  Fig. 7 f o r  models 1 and 2.  The experimental p r o f i l e s  from [51 a r e  added f o r  comparison. The 
ca lcu la ted  and experimental displacement thicknesses  are s h m n  i n  Fig.  8. The experimental and t h e o r e t i c a l  
r e s u l t s  do not  agree wel l .  This i s  mainly due t o  t h e  f a c t  t h a t  (23) i s  not  v a l i d  f o r  t h e  condi t ions of t h e  
experiment. 
flow d a t a  and not  t o  use a t h e o r e t i c a l  equation t o  f i l l  i n  d a t a  needed. 
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APPENDIX 

The i n v i s c i d  flow d a t a  f o r  t h e  hyperboloid of revolut ion w a s  taken from [ l ]  . The pressure d i s t r i b u t i o n  
on t h e  body is  shown i n  Fig. 9. Using t h i s  pressure d i s t r i b u t i o n  equilibrium, nonequilibrium and frozen flow 
expansions w e r e  ca lcu la ted  about t h e  body. The r e s u l t i n g  ve loc i ty  d i s t r i b u t i o n s  are shown i n  Fig. 10. In 
order  t o  obta in  t h e  atomic concentrat ions,  t h e  oxygen and ni t rogen atoms were added together .  
frozen and nonequilibrium concentrations are shown i n  Fig.  11. 

The r e s u l t i n g  

I n  order  t o  obta in  t h e  parameters 

t h e  d i s t r i b u t i o n s  of cae and U, were d i f f e r e n t i a t e d  numerically with respec t  t o  x ,  using 3-point Lagrange 
d i f f e r e n t i a t i o n  formulas. The values of P and S thus ca lcu la ted  were then smoothed s i n c e  t h e  accuracy of 
numerical d i f f e r e n t i a t i o n  i s  general ly  poor. The values of 

d r  
R = X O  

r d x  

may be  ca lcu la ted  i n  a similar manner i f  d r d d x  i s  not  readi ly  ava i lab le  from t h e  body geometry. 
of P, S and R a r e  shown i n  Fig.  1 2 ,  13 and 14,  respect ively.  

The values 

The i n v i s c i d  flow d a t a  f o r  t h e  power-law body was taken from [5]. The geometry of  t h e  body is given by 

(24) 3/4 r /L = 6 ( X / L )  

Using. (24) the sur face  d is tance  on t h e  body may be  ca lcu la ted .  Since t h e  sur face  element i s  

(25) 2 2  dx2 = dro + dx 

x = /-' v- dX 
t h e  sur face  d is tance  on the  body is  

0 
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The r e l a t i o n s h i p  (24) a l s o  allows t h e  parameter R to be ca lcu la ted  d i r e c t l y .  

The experimental pressure d i s t r i b u t i o n s  a r e  taken from [51 and smoothed before  using them. The re la t ion-  
s h i p  (23) and t h e  pressures  a r e  used to  Zbtain the loca l  Mach number and, therefore ,  ue. Enough addi t iona l  
d a t a  i s  suepl ied a t  X/L = 0.8 t o  obtain Mat  this poin t  and, therefore ,  t h e  constant  of propor t iona l i ty  
i n  (23) .  The parameter P i s  ca lcu la ted  as  previously des- 
cr ibed and i s  shown :in Fig. 15. The parameter S is  not needed s i n c e  these  a r e  equi l ibr ium cases. 

REFERENCES 

M and U, may then be ca lcu la ted  along t h e  body. 

Lukasiewicz, J .  Pr iva te  Communication, von Karman Gas Dynamics F a c i l i t y ,  ARO, Inc. ,  Apr i l  7 ,  1967. 

Smith, A .M.O. and C l u t t e r ,  D .W. "Machine Calculat ion of Compressible Boundary Layers. " AIAA Journal ,  
Vol. 3 ,  No. 4 ,  Apri l  1965, pp. 637-647. 

Cohen, N.B. "Correlation Formulas and Tables of Density and Some Transport Proper t ies  of  Equilibrium 
Dissociat ing A i r  f o r  U s e  i n  Solution of t h e  Boundary Layer Equations." NASA TN D-194, February 1960. 

Smith, A.M.O. and J a f f e ,  N.A.  "General Method f o r  Solving t h e  Laminar Nonequilibrium Boundary Layer 
Equations of a Dissociat ing Gas." A I A A  Journal ,  Vol. 4 ,  No. 4 ,  Apr i l  1966, pp. 611-629. 

Nagasu, Hideo. "Experimental Invest igat ion on Viscous Hypersonic Flow Around Three-par te r  Pmer-Law 
Bodies of  Revolution ." Proceedings, Fourteenth Japan National Congress f o r  Applied Mechanics, 1964. 

Scala ,  S .M. and Baulknight, C.W. "Transport and Thermodynamic Proper t ies  i n  a Hypersonic Laminar Boundary 
Layer." Aerophysics Research Memo 10, General E l e c t r i c  Missile and Ordnance Systems Divis ion,  Technical 
Information Ser ies ,  Document No. 58D232, Apri l  1958; a l s o  published i n  ARS Journal ,  Vol. 29, No. 1, 
January 1959, pp. 39-45. 

Wood, G.P. "Ca.Lculations of t h e  Rate of  Thermal Dissociat ion of A i r  Behind Normal Shock Waves a t  Mach 
Numbers of  10,  1 2 ,  and 14." NACA TN 3634, Apr i l  1955. 



45 

NOMENCLATURE 

CL 

'i 

C 

C 

D 

P 

Dam 

D: 

f 

f '  

g 

h 

hi 

hz 

H 

k 

L 

Le 

M. 

M 
- 

P 

P t  

P 

Pr 

9 

r 

r 

R 

Re 

R '  

s 

0 

st, 
T 

Tt 

U 

V 

Q i 

X 

X 

Y 

1 2  sk in  f r i c t i o n ,  iW/2 p,u, 

m a s s  concentrat ion of species  i, pi/p 

PP/PeUe 

s p e c i f i c  heat  a t  constant  pressure 

d issoc ia t ion  energy 

binary concentration c o e f f i c i e n t  of d i f fus ion  

a t o m  thermal-diffusion c o e f f i c i e n t  

nondimensional stream funct ion,  f = $/pmpmx ue 

af/an, ve loc i ty ,  u/ue 

enthalpy r a t i o ,  H/He 

l o c a l  enthalpy, f t  /sec 

l o c a l  enthalpy of species  i, f t  /sec 

h e a t  of formation per  u n i t  mass of  atoms, f t  /sec 

t o t a l  enthalpy = h + 1/2 U , f t  /sec 

Boltzman constant  

length of  body, f t  

L e w i s  number 

molecular weight o f  spec ies  i 

Mach number 

Avogadro number 

s t a t i c  pressure ,  l b / f t 2  

s tagnat ion pressure,  l b / f t 2  

(x/ue) (due/dx) 

Prandt l  number 

h e a t  t r a n s f e r  a t  sur face  

r a d i a l  d i s tance  from a x i s  of  revolut ion,  f t  

rad ius  of body of  revolut ion,  f t  

(x/r)  (dr/dx) 

Reynolds number 

universal  gas constant  

2 2  

2 2  

2 2  

2 2 2  

(x/cae) (dc+/dx) 

Stanton number,-%/ p,u,He (1 - gw) 

s ta t ic  temperature, OR 

s tagnat ion temperature, OR 

x-component of ve loc i ty ,  f t / s e c  

y-component of  ve loc i ty ,  f t / s e c  

n e t  mass rate of  formation of  atoms per  unit volume due t o  chemical reac t ions ,  s l u g s / f t  sec  

d is tance  along body sur face  measured from stagnat ion p o i n t ,  f t  

a x i a l  d i s tance  from nose of body, f t  

d i s tance  normal t o  body sur face ,  f t  

3 



46 

z 

n 

U 

JI 

P 

'd 

U 

T 

nondimensional atom m a s s  f rac t ion  ca/c 

transformed y-coordinate, Eq. ( 4 )  

v i s c o s i t y ,  s l u g s / f t  sec 

stream funct ion,  E q .  (5) 

densi ty ,  s l u g s / f t  

parameter having dimensions of densi ty  i n  EQ. 

molecular radius  of  species  i, f t  

shear  stress 

3 

(19) 

Prime denotes d i f f e r e n t i a t i o n  with respec t  t o  n, except i n  R' 

Subscripts  

a value f o r  atoms 

e value a t  edge of boundary l ayer  

m value f o r  molecules 

n value a t  t h e  nose, x = 0 

N value f o r  ni t rogen atoms 

0 value f o r  oxygen atoms 

m value a t  reference condi t ions 
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SOLUTION OF THE VISCOUS SHOCK-LAYER EQUATIONS FOR A BINARY MIXTURE 

by R. T .  Davis* 

SUMMARY 

The method of so lu t ion  of t h e  viscous shock-layer equations f o r  a one component p e r f e c t  gas discussed by 
Davis i n  t h i s  AGARDograph is  extended t o  t h e  case of a binary mixture consis t ing of oxygen atoms and molecules. 
Two a l t i t u d e  conditions are considered which correspond t o  e i t h e r  AGARD C a s e  A o r  Cases B and C. The method 
o f  so lu t ion  i s  i d e n t i c a l  t o  t h e  method used t o  solve t h e  one component p e r f e c t  gas case except care  must be 
taken i n  expressing t h e  rate of production of atoms t e r m  i n  both t h e  energy and spec ies  equations. Stanton 
number, w a l l  pressure,  and sk in  f r i c t i o n  d i s t r i b u t i o n s  a r e  presented along with ve loc i ty ,  temperature, and 
atom concentration p r o f i l e s .  

INTRODUCTION 

This paper presents  a method f o r  solving t h e  viscous shock-layer equations f o r  a binary mixture. The 
method of  so lu t ion  i s  almost i d e n t i c a l  t o  t h e  method presented i n  another paper i n  t h i s  AGAPBograph by Davis 
(1970a) f o r  the p e r f e c t  one component gas and therefore  w i l l  not  be discussed i n  d e t a i l  here. Since another 
recent  paper by Davis (1970b) has given extensive ca lcu la t ions  f o r  t h e  binary mixture covering a range of 
a l t i t u d e  condi t ions,  and using t h e  same solu t ion  method as  w i l l  be used here ,  w e  w i l l  not  repeat  those r e s u l t s  
here  but  w i l l  r e s t r i c t  ourselves  t o  t h e  AGARD cases .  Much of t h e  mater ia l  which follows has been ex t rac ted  
from Davis (1970b). For more d e t a i l s  one i s  re fer red  t o  Davis (1970a,b). 

The problem of  ca lcu la t ing  chemically react ing boundary layers  is f a i r l y  w e l l  i n  hand. However, a t  lower 
Reynolds nmbers  where boundary-layer theory is not appl icable ,  the same statement cannot be  made. Even i n  
t h e  boundary-layer regime problems s t i l l  e x i s t  i n  determining proper outer  edge conditions f o r  performing 
boundary-layer ca lcu la t ions .  

For t h e  reasons s t a t e d  above, i . e .  f inding so lu t ions  a t  lower Reynolds numbers and examining outer  edge 
condi t ions,  it i s  des i rab le  t o  develop a model which considers t h e  whole shock layer  about a blunt  body a t  once 
r a t h e r  than consider  t h e  flow f i e l d  a s  a boundary layer  p l u s  an inv isc id  flow which e x i s t s  outs ide of  it. 

Cheng (1963) formulated a set  of viscous shock-layer equations which apply not  only a t  t h e  s tagnat ion 
poin t  but  a l s o  downstream. H e  solved these  equations f o r  severa l  flow cases involving a one component per fec t  
gas using an inverse  method which assumed t h e  shock shape w a s  given and determined t h e  body shape as p a r t  of  
the  so lu t ion .  H i s  method is a l s o  appl icable  but w a s  not applied t o  t h e  d i r e c t  problem. Kang (1968) has solved 
Cheng's (1963) equations, using an i n t e g r a l  method, f o r  flows downstream on b lunt  bodies. H e  l a t e r  (Kang 
(1969)) applied t h e  same method t o  an ionized nonequilibrium flow p a s t  a blunt  body. In both cases  mentioned 
above, Kang's ca lcu la t ions  extended a few nose r a d i i  downstream. 

Davis and FlUgge-Lotz (1964) proposed a s e t  of  equations which a r e  q u i t e  s i m i l a r  to  those of  Cheng (1963) 
but  which contain some curvature terms l e f t  out of  Cheng's equations. Cheng was considering t h e  case of  a 
t h i n  shock layer  f o r  which h i s  equations a r e  va l id .  However, as t h e  shock layer  becomes th icker  t h e  curvature  
terms w i l l  become more important. 
t h e  shock layer  i s  th ick ,  a s  long as  t h e  shock Reynolds number i s  high enough. Davis (1970a) developed a 
method of  so lu t ion  t o  these equations and applied t h e  method t o  flows over severa l  blunt  bodies. 
used i s  an i m p l i c i t  f in i te -d i f fe rence  method similar t o  t h e  method developed by Blo t tner  and Fliigge-Lot2 (1963) 
f o r  solving t h e  compressible boundary-layer equations. In  addi t ion to using the viscous shock-layer equations 
to govern t h e  flow, s l i p  boundary condi t ions were used on t h e  body sur face ,  and t h e  modified Rankine-Hugoniot 
(shock-slip) condi t ions of  Cheng (1963) were used a t  t h e  shock i n t e r f a c e .  The r e s u l t s  compared favorably with 
t h e  experimental r e s u l t s  of  L i t t l e  (1969) f o r  t h e  drag on various hyperboloids a t  severa l  shock Reynolds number 
conditions. 
expect t h e  equations t o  apply. 

The equations proposed by Davis and FlUgge-Lotz (1964) a r e  va l id  even i f  

The method 

Good agreement was found even f o r  shock Reynolds numbers which were much lower than one would 

The present  problem w i l l  be handled i n  exact ly  the same manner. The viscous shock-layer equations are 
developed f o r  a binary mixture with f i n i t e  r a t e  chemical react ions.  Pressure and thermal d i f fus ion  e f f e c t s  
a r e  neglected,  but  could be e a s i l y  considered as  w e l l .  Modified Rankine-Hugoniot (shock-slip) condi t ions are 
used a t  t h e  shock and sur face-s l ip  conditions are used on t h e  body surface.  

With t h i s  formulation, c h a r a c t e r i s t i c s  of t y p i c a l  nonequilibrium chemically reac t ing  flows have been 
s tudied  f o r  intermediate  shock Reynolds number condi t ions,  see Davis (1970b). The high shock Reynolds number 
cases  have a l s o  been s tudied ,  but  d i f f i c u l t i e s  can be experienced i f  one uses constant  s t e p  s i z e s  s i n c e  a t  
high shock Reynolds numbers t h e  boundary layer  near t h e  body becomes t h i n  and t h e  method requi res  a l a r g e  
number of s t e p s  i n  t h e  normal d i r e c t i o n  across  t h e  shock layer  i n  order  to  obta in  s u f f i c i e n t  accuracy. Vari- 
ab le  g r i d  spacings can be used i n  t h e  normal d i r e c t i o n  t o  overcome t h i s  d i f f i c u l t y  and t h e  present  method 
contains  t h i s  op t ion ,  see Davis (1970a). The 100,000 foot  ca lcu la t ions  presented i n  t h i s  paper were made 
using var iab le  s t e p  s i z e s .  

FORMULATION OF THE PROBLEM 

The conservation equations f o r  react ing,  multicomponent gas mixtures can be  found i n  numerous references,  
see  W i l l i a m s  (1965) appendix C ,  o r  Bird, Stewart, and Lightfoot  (1960) chapter  18 f o r  example. For appl ica-  
t i o n  t o  t h e  present  problem these  equations are wr i t ten  i n  t h e  coordinate system shown i n  Fig.  1 and non- 
dimensionalized by var iab les  which are of  order  one i n  t h e  region near  t h e  body sur face  (boundary-layer) f o r  
l a r g e  Reynolds numbers. 
t h e  e s s e n t i a l l y  i n v i s c i d  region outs ide  t h e  boundary layer .  Terms a r e  kept  i n  each s e t  o f  equations up t o  

The same set of equations a r e  then w r i t t e n  i n  var iab les  which a r e  of order one i n  

*Professor of Engineering Mechanics, Virginia  Polytechnic I n s t i t u t e ,  Blacksburg, Virginia ,  U.S.A. 
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second order  i n  t h e  inverse square root  of  a Reynolds number. 
then made and one set  of  equations i s  found from them which i s  v a l i d  t o  second-order i n  both t h e  outer and 
inne r  regions. 
shock layer .  

A comparison of t h e  two sets of equations i s  

A so lu t ion  t o  this set  of equations i s  thus uniformly v a l i d  t o  second order  i n  t h e  e n t i r e  

The der iva t ion  described above i s  exact ly  t h e  same as t h a t  given by Davis (1970a) and Davis and FlUgge- 
Lotz (1964) except t h a t  t h e  present  case i s  f o r  a mixture r a t h e r  than a one component gas. 
equations are q u i t e  similar t o  those given by Cheng (1963), except t h a t  Cheng neglected some curvature  and 
normal pressure gradient  terms which a r e  included i n  t h e  present  equations. 
shock layer  is th in ,  which w a s  the  case considered by Cheng. The present  method w i l l  only be appl ied t o  
problems where t h e  shock layer  is t h i n ,  therefore  there  would be l i t t l e  d i f fe rence  i n  t h e  r e s u l t s  i f  Cheng’s 
equations were used. However, t h e  present  equations are v a l i d  even f o r  t h i c k  shock layers  i f  a s u i t a b l e  
numerical method can be developed t o  solve them i n  t h a t  case. 

The present  

These terms a r e  s m a l l  when t h e  

W e  w i l l  r e f e r  t o  t h e  present  equations as t h e  viscous shock-layer equations. Dimensionless var iab les  
a r e  used as  given i n  t h e  Nomenclature. 
can’ be wr i t ten  as follows when thermal and pressure d i f fus ion  are neglected: 

Governing Equations 

Continuity Equation 

For a chemically react ing binary mixture of atoms and molecules they 

s-Momentum Equation 

where KU T = ll(u - - n 1 + K n )  

n-Momentum Equation 

= o  , 2 V 

p ( u A + w  - K U )  + P ,  1 + K n  n 1 + K n  

Energy Equation 

(2.2a) 

(2.2b) 

- c2 2 
PCP(U - 

2 
[ ( l  + Kn) (r + n cos +)jkT ] + - ‘I PS 

+ VT ) - (U 1+Kn+ vPnl = n n  11 1 + K n  n 
TS 

(1 + Kn) (r + n cos + ) I  

where 
jnA = -FD C p ~ n  

Species Conservation Equation 

(2.4b) 

2 
P ( U  - + VC%) = . -  [(I + Kn)(r  + n cos $1’ jnAln + tjA , (2.5) 1 + Kn (1 + Kn) ( r  + n cos $1’ 

Equation of  S t a t e  

where 

R 
p = -  PT I 

Pm 

- 1 
M =  

MC* 

(1 - CA) 
- 

(2.6a) 

(2.6b) 

In  t h e  above equation of s t a t e  (2.6a) it i s  assumed that t h e  gas cons is t s  of a mixture of p e r f e c t  gases. 

The s p e c i f i c  hea t  a t  constant pressure f o r  t h e  binary mixture can be w r i t t e n  as 
- c = C ( C  - c  ) + C  
P A PA PM PM (2.7) 

Boundary Conditions 

A t  t h e  body sur face  s l i p  and temperature jump boundary conditions are used. The normal component of 
ve loc i ty  a t  t h e  sur face  i s  taken t o  be zero s ince  no problems with m a s s  i n j e c t i o n  a t  t h e  wal l  w i l l  be  con- 
s idered.  The boundary 
condition on species  concentration a t  t h e  sur face  i s  given by various authors. 
i s  e s s e n t i a l l y  t h e  same as t h a t  used by Cheng (1963). 
e f f e c t s  w a l l  c a t a l y t i c i t y  as  a function of Reynolds number. 

The condi t ions on s l i p  and temperature jump are those given by Shidlovskiy (1967). 
W e  choose here  a form which 

Cheng (1963) discusses  how t h i s  boundary condition 

S’rface Conditions 

v = o  , (2.8a) 



and 

The following values of t h e  s l i p  constants  a r e  used i n  (2.8b) and ( 2 . 8 ~ )  above: 

a = 1.2304 1 

and 
C1 = 2.3071 

59 

(2.9a) 

(2.9b) 

The quant i ty  yw i n  Eq. (2.8d) i s  t h e  recombination e f f ic iency ,  i .e.  t h e  probabi l i ty  f o r  each atom t o  recombine 
a f t e r  reaching t h e  surface.  

The condi t ions t o  be imposed a t  t h e  shock are the modified Rankine-Hugoniot r e l a t i o n s  of  Cheng (1963). 
In order  to obta in  these  condi t ions it is  necessary t o  assume t h a t  WA (mass rate of formation of  atoms) i s  
Qegl ig ib le  across  t h e  shock. Chung, Holt, and Liu (1968) have shown t h a t  t h e  assumption of neglect ing t h e  
WA term may be a good one although caution should be used. 
a merged s tagnat ion shock layer  of nonequilibrium dissoc ia t ing  gas with t h e  same proper t ies  as those of Cheng 
(1963). 
those obtained by Cheng using shock s l i p  condi t ions and neglect ing t h e  WA term. 

This was shown by i n t e g r a t i n g  t h e  equations f o r  

Their results obtained from in tegra t ing  through t h e  shock keepjng t h e  WA term were very c lose  t o  

With t h e  coordinate system shown i n  Fig.  1 t h e  shock s l i p  condi t ions may be obtained. Since ve loc i ty  
components tangent and normal t o  t h e  shock a r e  not  t h e  same as those tangent and normal t o  t h e  body sur face  
w e  need transformations t o  r e l a t e  these q u a n t i t i e s .  We l e t  and v&, denote shock q u a n t i t i e s  tangent and 
normal to the shock respect ively.  The variables ush and Vsh are q u a n t i t i e s  a t  t h e  shock tangent and normal 
t o  t h e  body sur face  respect ively.  

Cznditions a t  t h e  Shock 

The transformations are given by: 

ush = U' s i n  (a + B )  t vAh cos ( a  + B )  sh  

and 

and 

The modified Rankine-Hugoniot (shock-slip) condi t ions a r e  given by: 

PShVLh = - s i n  a , 

(2 . loa)  

(2  .lob) 

( 2  . l l a )  

~ ~ v ~ ~ ( u ~  + s i n  a u i h  = s i n  a cos a , 
n sh  ( 2  .lib) 

2 + s i n  a , = - pm 

sh PmU? 
Psh - s i n  a v '  ( 2  . l , l c )  

s i n  a 2 2 
E ksh(Tn)sh + s i n  a [C h 

%, %h 
+ (1 - CA m )h%hl - 7 [ ( u : ~  - s i n  a I 2  + cos2 a - vAh1 = 

(2.11d) 

s i n  a [cAmhAm + ( 1 - C  Am 1 h%I 8 

E F  2 - ac%h + s i n  CL CAsh = s i n  a CA, . 
Dsh an 

( 2  .lie) 

The quant i ty  psh i s  determined from t h e  equation o f  s t a t e  (2.6a) a f t e r  determining P,h, Tsh, and CAsh from 
Fqs. ( 2 . 1 1 ~ 1 ,  (2.11d), and (2.11e). 

G a s  Model 

The binary mixture cons is t s  of oxygen atoms and molecules with the  following thermodynamic proper t ies .  
The s p e c i f i c  hea t  and enthalpy include t r a n s l a t i o n a l ,  r o t a t i o n a l  and v ibra t iona l  energies. 
form they are w r i t t e n  as: 

In dimensional 

2 2  c* = S R  ( f t  /sec OR) , 
PA 2 MA 

(2.12) 
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and 

5 R *  2 2  h* = - - T + 1.666 x lo8 ( f t  /sec ) 
A 2 MA 

* R * 7 0 B/T* 2 2  
h = - T [ - +  - (e  - 1)-l1 ( f t  /sec 2 T* 

'M 

(2.13) 

(2.14) 

(2.15) 

where 8 = 4014'R and T* is  the temperature i n  degrees Rankine. 

The t r a n s p o r t  p roper t ies  a r e  a l s o  wr i t ten  i n  dimensional form. The v i s c o s i t i e s  o f  oxygen atoms and 
molecules have been given by Yun and Mason (1962). D r .  F .  G. B lo t tner  of Sandia Corporation has suppl ied 
curve f i t s  t o  their da ta .  
They a r e  w r i t t e n  as: 

These f i t s  a r e  good over a temperature range from 1,000 t o  10,000 degrees Kelvin. 

* -11.692729 (0.0184896 In TK + 0.4558107) vA = e TK (g/m - sec)  
(2.16) 

and 
* -9.550244 TK(0.0389680 In TK + 0.0094176) (g/m - sec) vM = e 

where TK i s  the temperature i n  degrees Kelvin. 

(2.17) 

The thermal conduct iv i t ies  of the oxygen atoms and molecules are obtained from t h e  Eucken (1913) semi- 
empir ical  formula which can be wr i t ten  as  follows: 

(2 .18 )  

After  the v i s c o s i t i e s  and thermal conduct iv i t ies  of the individual  spec ies  have been determined the 
corresponding proper t ies  of the mixture a r e  determined from Wilke's (1950) semi-empirical formulas, s e e  
Bird, Stewart and Lightfoot  (1960) pages 24 and 258. 

The d i f fus ion  proper t ies  of t h e  oxygen atoms and molecules are determined by assuming a constant  value 
of t h e  L e w i s  number which i s  def ined by: 

c*p *Uh 
Ie=* (2.19) 

The L e w i s  number i s  taken t o  be 1.4 f o r  both the oxygen atoms and molecules which make up the mixture. 

The r a t e  of  production of  atoms f o r  a binary mixture can be w r i t t e n  as: 

where 

- (1 - CA) 

k f l  + kf2CA1 
,*o - L 

A - [ 2  MA 

and 
-2 (1 - CA) 

[ 2  %l + kb2CA1 
'*I = i * o  + 2p 

'A A MA2 A 

where the u n i t s  us d i n  the constants  kf l  e t c .  a r e  such t h a t  
kb2 are determined from t h e  following expressions: 

i s  i n  g/cm3. The q u a n t i t i  

k f r  = TKC2, exp (CO, + Clr/TIo 

and 

kbr = TKD2' exp (DO, + Dlr /TK)  

(2.20a) 

(2.20b) 

(2.20c) 

(2.21a) 

( 2 . 2 l b )  

Considerable d i f fe rence  i n  the r e s u l t s  f o r  atom concentrat ion,  f o r  example, can be  experienced depending upon 
whose constants  are used i n  t h e  above equations. This  w i l l  be demonstrated later.  

Shock Layer Charac te r i s t ics  

Once a so lu t ion  has been obtained, important w a l l  q u a n t i t i e s  such as sk in  f r i c t i o n  and heat  t r a n s f e r  can 
be obtained. These a r e  given i n  dimensionless form (see  Nomenclature) by a sk in  f r i c t i o n  c o e f f i c i e n t  and 
Stanton number def ined by: 

(2.22) 



and 

In dimensionless form these  r e l a t i o n s  (2.22) and (2.23) become: 

and 

where qw i s  t h e  dimensionless sur face  hea t  t r a n s f e r  given by 
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(2.23) 

(2.24) 

(2.25) 

(2.26) 

and H i s  t h e  dimensionless total  enthalpy defined by 

METHOD OF SOLVPION 

The method of so lu t ion  is e s s e n t i a l l y  t h e  same as t h a t  used by Davis (1970a) f o r  solving t h e  viscous 
shock-layer equations f o r  a one component p e r f e c t  gas. 
so lu t ion  here  but  w i l l  ind ica te  b r i e f l y  d i f fe rences  and modifications which have been made t o  develop t h e  
present  method. 

We w i l l  not  go i n t o  t h e  d e t a i l s  of t h e  method of  

As i n  t h e  one canponent p e r f e c t  gas case described by Davis, new var iab les  a r e  defined by dividing a l l  
physical  var iab les  by t h e i r  l o c a l  values a t  t h e  shock. 
exact ly  t h e  same way as before  f o r  the  one component gas  except a spec ies  equation i s  included now which i s  
solved i n  t h e  same way as t h e  o ther  equations. 
The species  equation i s  solved f i r s t  followed i n  order  by t h e  energy, s-momentum, cont inui ty ,  and n-momentum 
equations. 
i n  t h e  normal momentum equation. 

The so lu t ion  f o r  t h e  binary mixture then proceeds i n  

For numerical so lu t ion  t h e  equations a re  uncoupled as before. 

The same i t e r a t i o n  method i s  used as was used by Davis (1970a) on t h e  shock s lope  and t h e  v terms 

Two problems were encountered i n  g e t t i n g  t h e  method t o  converge f o r  t h e  binary mixture which d id  not  
occur i n  t h e  one component case. Blo t tner  (1970) comments on a method f o r  handling these problems. 

The f i r s t  problem w a s  handled by wr i t ing  t h e  r a t e  of production of atoms term as  shown i n  E q .  (2.20a). 
This form allows CA, t h e  atom concentrat ion,  t o  appear as one of t h e  unknowns i n  t h e  species  equation (2 .5) .  
Blo t tner  (1970) comments on why t h e  p a r t i c u l a r  forms f o r  Eqs. (2.20b) and ( 2 . 2 0 ~ )  a r e  chosen. I f  these  forms 
a r e  not  used, one w i l l  have d i f f i c u l t y  i n  g e t t i n g  t h e  spec ies  equations to  converge. 

A similar d i f f i c u l t y  i s  encountered i n  t h e  energy equation (2.4a) ,  again with t h e  term which involves PiA, 
t h e  r a t e  of production of  atoms. 
w r i t t e n  i n  a form such t h a t  T ,  t h e  temperature, appears as one of t h e  unknowns. 
t h e  WA/p term i n  a s e r i e s  as follows: 

To overcome t h i s  t h e  term involving t h e  WA term i n  t h e  energy equation i s  
This  i s  done by expanding 

where k denotes the  number o f  t h e  i t e r a t i o n  f p r  which t h e  so lu t ion  i s  known and k+l  the i t e r a t i o n  number f o r  
which w e  wish t o  obta in  a new so lu t ion .  

It  was found t h a t  i f  an expression of  t h e  type (3.1) was not  used which allowed T, t h e  temperature, t o  
appear as an unknown i n  t h e  energy equation t h e  method would not  converge a t  low a l t i t u d e  condi t ions where 
t h e  gas w a s  approaching equilibrium condi t ions.  Again, Blo t tner  (1970) has commented on t h e  necessi ty  of  
using an expression l i k e  Fq. (3 .1) .  

DISCUSSION OF RESULTS 

Davis (1970b) has discussed t h e  e f f e c t  of  t h e  values of t h e  rate constants  i n  Eqs. (2.21a,b) on t h e  
so lu t ions .  The values t h a t  one uses can have a s i g n i f i c a n t  e f f e c t  on t h e  resu l t s .  We choose t o  use t h e  
values of  Bortner (1968) here .  They are given as follows: 

Constants f o r  K f r  and K,, i n  Eqs. (2.21a,b) 

r = 1 : o2 + o2 2 20 + o2 

D2r DO D 1  
“r ‘lr c2r Reaction 

r = l  44.92777 -59,400 -1.0 37.83461 0 -0.5 

r = 2  45.94634 -59,400 -1.0 38.85627 0 -0.5 
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I 

Based on t h e  constants  used i n  the present  problem stagnation-point so lu t ions  can be ca lcu la ted .  This 
has been done and t h e  r e s u l t i n g  shock Reynolds number determined. The AGARD cases  f o r  t h e  present  calcula-  
t i o n s  then t u r n  o u t  t o  be: 

Flow Conditions f o r  Flow P a s t  t h e  20' AGARD Hyperboloid 

1 

I 

AGARD A l t  
T,('R) 

A 100 1< 408.57 

B,C 250 K 351.83 

C a s e  (ft) 
# 

f t  

2 #-sec 

f t  
Pm(- Pm (7) 4 )  

3.318 x 2.105 x 10 9355.0 7.350 x 10 2520 

7.033 x lo-' 3.842 x 23.4 7.357 x 10 1800 

I n  A l l  Cases: 

Um = 20,000 f t / sec  p r  = p, 
2 

a = 1/12 f t  pr = P,Um 

yw = 1.0 

ur = um 

4 c = 0.0 R = 4.9686 x 10 
Am 

M = 16.0 

M = 32.0 

A 

M 

For t h e  present  ca lcu la t ions  t h e  value of t h e  recombination e f f ic iency ,  yw, i s  chosen t o  be one i n  
Eq. (2.8d). 
e f f e c t s  are important a t  t h e  high a l t i t u d e  condition (250 K) has alreedy been es tab l i shed  by D a v i s  (1970a). 

Figs .  2 - 11 show t h e  r e s u l t s  f o r  AGARD Case A.  Figure 7 shows atom concentration p r o f i l e s  across  t h e  

Calculat ions were then made including both shock and body s l i p .  The f a c t  t h a t  both of  these  

shock layer .  
a t  t h e  pressure and temperature given by t h e  nonequilibrium ca lcu la t ions .  
t h e  boundary l a y e r  along t h e  s tagnat ion s t reamline was e s s e n t i a l l y  i n  equilibrium. 
s tagnat ion p o i n t  t h e  flow d id  not  remain as  near t o  equilibrium conditions. 
i n  determining when equilibrium condi t ions e x i s t  based on s t a g n a t i o n - p i n t  ca lcu la t ions .  

Calculat ions were made which determined t h e  equilibrium atom concentration which would e x i s t  
This  showed t h a t  the flow outs ide  

One should therefore  be  carefu l  
Downstream from t h e  

Fig. 7 shows that t h e  use of E q .  (2.8d) along with a value of recombination e f f ic iency  yw of one r e s u l t s  
i n  an e s s e n t i a l l y  c a t a l y t i c  wall condition for  AGARD Case A. 

Fig. 6 shows an outer  overshoot i n  t h e  temperature p r o f i l e  a t  ten  and twenty-five nose radii which has 
This ou ter  overshoot e x i s t s  i n  t h e  i n v i s c i d  por t ion  of t h e  a l s o  been previously observed by Davis (1970b). 

flow f i e l d .  The e f f e c t  i s  found t o  be more pronounced a t  lower a l t i t u d e  condi t ions.  An explanation f o r  
t h i s  i s  t h a t  t h e  t o t a l  enthalpy i s  near ly  constant over t h e  outer  port ion of  t h e  flow f i e l d .  
r a d i i  t h e  s ta t ic  enthalpy i s  a small port ion of t h e  total  enthalpy and thus a small change i n  ve loc i ty  r e s u l t s  
i n  a f a i r l y  la rge  percentage change i n  temperature. 
t h i s  explains  why t h e  temperature i n  Fig. 6 i s  increasing a t  f i r s t  even though t h e  ve loc i ty  i s  decreasing 
slowly. 
case and the temperature p r o f i l e  bends inward s ince  energy i s  being used i n  d issoc ia t ion  of t h e  oxygen mole- 
cules. 

A t  t e n  nose 

S t a r t i n g  a t  t h e  shock and proceeding toward t h e  body, 

Down to n/n,h of  about 0.6 there  i s  e s s e n t i a l l y  no d issoc ia t ion .  Below t h i s  p o i n t  t h i s  i s  n o t  t h e  

Near t h e  w a l l  a f i n a l  bump occurs, and t h i s  is due t o  viscous d iss ipa t ion .  

Figs. 12 - 21 show r e s u l t s  f o r  AGARD C a s e  B-C. Fig.  17 shows t h a t  t h e  flow i s  e s s e n t i a l l y  frozen and 
thus there  i s  good agreement between these  r e s u l t s  and those computed by Davis (1970a) f o r  t h e  one component 
p e r f e c t  gas case. 
those used by Davis (1970a). 

Some of t h e  d i f fe rence  is due t o  t h e  gas proper t ies  used here  which a r e  d i f f e r e n t  from 

Fig. 17 shows t h a t  t h e  w a l l  is not as c lose  t o  the c a t a l y t i c  conditions as  it was i n  Case A. I n  f a c t  
f a r  downstream t h e  w a l l  condition i s  near t o  the noncatalyt ic  case. 

Fig.  16 does n o t  demonstrate t h e  double overshoot which was found i n  C a s e  A. This  i s  because t h e  viscous 
e f f e c t s  are f e l t  across  t h e  e n t i r e  shock layer  and viscous d iss ipa t ion  i s  a l a r g e  enough e f f e c t  t o  overcane 
t h e  tendency f o r  temperature t o  decrease outs ide the boundary layer  as it did i n  Case A. 
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NOMENCLATURE 

al 

a* 

c1 

CA atom concentration, p;/p* 

Cf 

C s p e c i f i c  hea t  a t  constant  pressure,  C*/C* 

s l i p  constant ,  taken to  be 1.2304 

body nose radius  of  curvature  

s l i p  constant ,  taken t o  be 2.3071 

sk in  f r i c t i o n  c o e f f i c i e n t ,  2 ~ * /  (P:U:~) 
W 

P P Pm 

FD di f fus ion  c o e f f i c i e n t ,  p*D.&/u*(U: 2 /Cia)  

2 H t o t a l  enthalpy, ki*/U: 

h s t a t i c  enthalpy, h*/U22 

JnA 

k 

Le L e w i s  number defined by E q .  (2.19) 

M molecular weight 

n coordinate measured normal t o  t h e  body, n*/a* 

d i f fus ion  flux vector  defined by E q .  (2.4b) 

thermal conduct ivi ty ,  k*/[u*(U:2/C* ) C* ] 
Pm Pm 

q hea t  t r a n s f e r ,  q*/(p;~l:~) 

R universal  gas constant 

r 

s coordinate measured along t h e  body surface,  s*/a* 

S t  Stanton number defined by Eq. (2.23) 

T temperature, T*/(V:'/C* 

U 

v 

radius measured from t h e  as ix  of  symmetry t o  a po in t  on t h e  body sur face ,  r*/a* 

Pm 
ve loc i ty  component tangent t o  t h e  body sur face ,  u*/u: 

ve loc i ty  component normal t o  t h e  body sur face ,  v*/U: 

r a t e  of production of  atoms def ined by Eq. (2.20) A 

o shock angle ,  see Fig. 1 

f4 angle defined i n  Fig.  1 

yw recombination e f f ic iency  

E Reynolds number parameter, E = 

K surface curvature ,  K*a* 

1.I 

p densi ty ,  p*/p: 

T shear  stress, ~*/(p:Ui') 

0 body angle defined i n  Fig.  1 

Superscr ipts  

j 

* dimensional q u a n t i t i e s  

2 
,U *(U: /C*m) 1/2 " 1  piU:a* 

c o e f f i c i e n t  of v i scos i ty ,  p = y*/y*(~:~/c* 
P- 

def ined t o  be  0 f o r  plane flow and 1 f o r  axisymmetric flow 
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Subscripts 

A atom 

e equilibrium value 

M molecule 

n,s dif ferent iat ion w i t h  respect to a coordinate 

sh value behind the shock 

r reference value 

w wall  value 
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Fig. 1 Coordinate system 
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Fig .3  Stanton number for AGARD Case A 

Fig.5 Velocity prof i les  for AGARD Case A 
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Fig, 2 Skin fr ic t ion  coef f ic ient  for 
AGARD Case A 

Fig.4 Wall pressure for AGARD Case A 
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Fig.6 Temperature prof i les  for AGARD 
Case A 
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Fig.7 Atom concentration prof i les  for 
AGARD Case A Fig.8 Shock velocity distribution for 

AGARD Case A 

Fig.9 Shock temperature for AGARD Case A Fig.10 Shock pressure for AGARD Case A 

1.5 - 

F i g . l l  Shock stand-off distance for 
AGARD Case A 

Fig.12 Skin frict ion coef f ic ient  for 
AGARD Case B C  
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Fig.13 Stanton number for AGARD Case B-C 
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Fig.14 Wall pressure for AGARD Case B-C 
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Fig.15 Velocity profiles for AGARD Case B-C 
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Fig. 16 Temperature profiles for AGARD 
Case B-C 

Fig, 17 Atom concentration profiles for 
AGARD Case B-C 
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Fig. 18 Shock velocity distribution for 
AGARD Case B-C 
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VISCOUS SHOCK-LAYER PROBLEM FOR THE STAGNATION POINT OF A BLUNT BODY 

by F. G. Blottner* 

SUMMARY 

A f in i te -d i f fe rence-  method and a nonl inear  overrelaxat ion method a r e  inves t iga ted  f o r  solving the  
viscous shock layer  a t  t h e  s tagnat ion p i n t  of a b lunt  body. An a i r  gas model is employed with f i n i t e  
react ion r a t e s  and accurate  thermodynamic and t ranspor t  p roper t ies .  For a body with a 1-inch nose radius  and 
a t  a ve loc i ty  of 20 Kfps, t h e  present  r e s u l t s  a t  100, 150, 200, and 250 Kft  show that boundary-layer theory 
i s  appropriate  f o r  some a l t i t u d e  below 150 Kft. When the  a l t i t u d e  i s  250 Kft ,  t h e  e f f e c t s  of shock s l i p  must 
be included i n  t h e  viscous shock-layer so lu t ion .  For t h i s  case ,  t h e  air is  only s l i g h t l y  d issoc ia ted  and 
ionized.  

INTKIDUCTION 

A t  the s tagnat ion point  of a b lunt  body, the  Navier-Stokes equations can be reduced t o  ordinary d i f f e r -  
e n t i a l  equations with two-point boundary conditions. This problem is  of ten  considered e a s i e r  t o  solve than 
t h e  p a r t i a l  d i f f e r e n t i a l  equations f o r  a t h i n  shock layer  o r  a boundary-layer flow around t h e  body. However, 
f o r  flows w i t h  many chemical species  and f a s t  reac t ion  r a t e s ,  t h e  ordinary d i f f e r e n t i a l  equation can be 
exceedingly d i f f i c u l t  t o  solve.  Also, t o  start  t h e  so lu t ion  of t h e  p a r t i a l  d i f f e r e n t i a l  equations, t h e  
stagnation-point ordinary d i f f e r e n t i a l  equations must be solved t o  provide i n i t i a l  p r o f i l e s  of t h e  dependent 
var iab les .  The so lu t ion  of t h e  same type o f  ordinary d i f f e r e n t i a l  equations occurs f o r  i n i t i a l  p r o f i l e s  f o r  
boundary-layer flows a t  t h e  t i p  of a sharp body such as a cone o r  wedge. 

The purpose of  t h i s  paper i s  t o  inves t iga te  and develop techniques f o r  solving t h e  viscous shock-layer 
flow a t  the  s tagnat ion p i n t  of  a b lunt  body f o r  a i r  with chemical reac t ions  occurring a t  f i n i t e  r a t e .  A t  
t h e  same time, t h e  so lu t ion  f o r  boundary-layer flows a t  a s tagnat ion p o i n t ,  o r  a t i p  of a cone o r  wedge, w i l l  
be considered. In t h e  problems o f  i n t e r e s t ,  there  can occur many chemical spec ies  as a r e s u l t  of the  disso-  
c i a t i o n  of a i r  and t h e  ab la t ion  products. I n i t i a l  p r o f i l e s  a t  t h e  t i p  of a sharp body a r e  e a s i e s t  t o  obta in ,  
as the term involving t h e  chemical production t e r m  i s  zero and t h e  governing equations a r e  t h e  same as those 
f o r  chemically frozen flow. The i n i t i a l  p r o f i l e s  a t  a s tagnat ion poin t  w i t h  f i n i t e  r a t e s  a r e  exceedingly 
d i f f i c u l t  t o  ob ta in ,  being s i m i l a r  t o  t h e  problems encountered i n  obtaining l o c a l l y  s i m i l a r  so lu t ions  along 
a wal l  [ l ] .  Two techniques f o r  solving ordinary d i f f e r e n t i a l  equations with two-point conditions a re  inves- 
t iga ted .  
i t e r a t i o n  of guessed boundary conditions. 

The flow i n  t h e  s tagnat ion region of a blunt  body has been c l a s s i f i e d  i n t o  a number of  regimes by 

These methods of  so lu t ion  are much more s a t i s f a c t o r y  than previous i n i t i a l  value techniques w i t h  

Probstein [2] ,  and these  r e s u l t s  have been rearranged i n t o  Fig. 1. Also shown i n  t h i s  f i g u r e ,  as given by 
Inger [ 3 ] ,  i s  t h e  value of  t h e  shock Reynolds number a t  which the Rankine-Hugoniot r e l a t i o n s  break down and 
t h e  i n v i s c i d  flow is  no longer i n  equilibrium. A s  t h i s  f i g u r e  shows, t h e  boundary-layer theory can be employed 
only a t  the lower a l t i t u d e s ,  bu t  t h e  appropriate  a l t i t u d e  increases  as t h e  nose rad ius  becomes l a r g e r .  The 
present  inves t iga t ion  w i l l  consider t h e  regimes from boundary-layer flow through t h e  viscous layer  flow. 

The t h i n ,  viscous shock-layer equations, a s  developed by Ho and Probstein [41 and f u r t h e r  s impl i f ied  by 
Cheng [5] ,  are the ones considered i n  t h i s  study. These equations are t h e  same as t h e  f i r s t - o r d e r  boundary- 
layer  equations, except a normal momentum equation m u s t  be  included. 
l a y e r  theory and t h e  thin-shock-layer theory i s  i n  t h e  manner t h e  boundary conditions are appl ied a t  the  outer  
edge. 
sur face ,  which is determined by matching t h e  appropriate  ve loc i ty  behind t h e  shock wave. In  t h e  paper by 
Cheng [51, modified Rankine-Hugoniot r e l a t i o n s  a r e  employed which take i n t o  account a shock t r a n s i t i o n  zone, 
bu t  the gas i s  assumed frozen across  t h i s  region. With t h e  modified Rankine-Hugoniot r e l a t i o n s  t h e  thin-  
shock-layer ana lys i s  can be  extended i n t o  the merged layer  regime, bu t  t h i s  does not  seem appropriate  i f  one 
i s  i n t e r e s t e d  i n  flows w i t h  f i n i t e  chemical reac t ions .  The more cons is ten t  approach i s  t o  solve t h e  flow 
throughout t h e  viscous shock layer  and shock t r a n s i t i o n  zone, as has been done by Lee and Zier ten [61. The 
present  inves t iga t ion  i s  r e s t r i c t e d  t o  t h e  domains per ta in ing  t o  t h e  viscous l a y e r ,  v o r t i c i t y  i n t e r a c t i o n ,  and 
boundary layer  where chemical nonequilibrium e f f e c t s  a r e  more important. 

The d i f fe rence  between t h e  boundary- 

For t h e  shock l a y e r ,  the Rankine-Hugoniot shock conditions a re  appl ied a t  a f i n i t e  d i s tance  from t h e  

There have been a number o f  papers concerned w i t h  t h e  viscous,  thin-shock-layer theory a t  t h e  s tagnat ion 
poin t  of a b lunt  body. 
Cheng [71. Many of  t h e  papers have employed a p e r f e c t  gas model, such as [ 4 ,  8-141, o r  equilibrium air, 
such as [l5-181. Also there have been severa l  papers [5,19-231 concerned with the viscous shock layer  f o r  
a binary gas mixture w i t h  a f i n i t e  chemical react ion rate. The papers by Stoddard [22] and Buckmaster [231 
are even more r e s t r i c t i v e ,  as  the  a n a l y t i c a l  so lu t ions  presented requi re  a small degree of d i ssoc ia t ion  and 
negl ig ib le  recombination r a t e .  
p roper t ies .  The paper by Lee  and Zier ten [61 has employed t h e  most complete chemistry; however, t h e  species  
equations are decoupled from t h e  o ther  thin-shock-layer equations. 
t h a t  a s i g n i f i c a n t  amount of work has been devoted t o  t h e  understanding of  t h e  f l u i d  dynamics of t h e  viscous 
hypersonic blunt-body problem, but  there  i s  a need f o r  so lu t ions  of  t h i s  problem w i t h  r e a l i s t i c  gas models. 
I t  i s  t h e  i n t e n t i o n  of  t h e  present  inves t iga t ion  t o  he lp  provide these  types of  r e s u l t s .  

A complete review of  t h e  viscous hypersonic blunt-body problem w a s  made recent ly  by 

Also, most of these  papers employ s impl i f ied  thermodynamic and t r a n s p o r t  

This b r i e f  review is. intended t o  show 

t, 
GOVERNING EQUATIONS 

The general  equations f o r  a multicomponent chemically reac t ing  gas mixture a r e  given i n  [241 and tnese  
can be w r i t t e n  f o r  t h e  shock layer  i n  a manner similar t o  Cheng [51. The r e s u l t i n g  p a r t i a l  d i f f e r e n t i a l  
equations are t h e  same as those employed i n  boundary-layer s t u d i e s  i n  [251, except t h e  normal momentum 
equation 

*Staff  Member, Aero and Thermodynamics Department, Sandia Corporation, Albuquerque, New Mexico 87115. 
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must be included. The governing equations are transformed by introducing new independent var iab les  

and new dependent var iab les  
f '  = u/u 

The r e s u l t i n g  equations are given i n  [25] with 'e = -'l (see Eq. ( 5 ) ) .  
t o  a s tagnat ion p o i n t  or t h e  t i p  of  a sharp body, the equations become, f o r  cont inui ty ,  

For the case 5 = 0, which corresponds 

dV - +  f '  = 0 
dn (3a) 

f o r  tangent ia l  momentum, 

f o r  normal momentum 

f o r  energy 

k f i  

f o r  spec ies  cont inui ty  

k f i  

where 

1 
du 

B = 3 2 ( a t  s tagnat ion poin t  = - 
ue dC 1 +  j )  

z = PeUe &- due 

L e i =  2 1: A 
j = 1  j j = l  j i j  

NI 

1 
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I f  t h e  binary Lewis-SeEenov numbers, L i j ,  a r e  constant  f o r  a l l  t h e  spec ies  or i f  a trace spec ies  i s  being 
considered, t h e  term Abik i s  zero. In t h e  above equation, t h e  pressure and thermal d i f fus ion  terms are 
neglected due to  t h e  boundary-layer assumption; and t h e  force  d i f fus ion  term is assumed zero. 
of s ta te  is  a l s o  required and i s  w r i t t e n  as 

The equation 

where it i s  assumed t h e  gas  cons is t s  of a mixture of chemically reac t ing  p e r f e c t  gases  and t h e  pressure change 
across  the layer  i s  neglected as a r e s u l t  of Eq. (3c) .  However, there  i s  a var ia t ion  of t h e  r a t e  of change 
of t h e  tangent ia l  pressure grad ien t  across  the layer  a t  t h e  s tagnat ion p o i n t ,  which can be determined from 
Fq. (3c) .  When t h e  pressure is solved from Eq. (3c) and d i f f e r e n t i a t e d  with respect  t o  x ,  t h e  following i s  
obtained a t  t h e  s tagnat ion poin t .  

where % s = -  1 + -  .,I ;I 
For t h e  boundary-layer problem, the value of 
edge condi t ions.  

= -1 when t h e  flow f o r  the body s t reamline i s  used a t  t h e  

The condi t ions a t  t h e  sur face  and outer  edge of  t h e  boundary l a y e r  determine t h e  necessary boundary 
A t  the  wal l ,  it i s  assumed t h a t  t h e  tangent ia l  ve loc i ty  i s  zero condi t ions f o r  t h e  foregoing equations. 

and t h e  sur face  temperature i s  spec i f ied .  These condi t ions a r e  expressed as 

u ( 0 )  = 0 

T(0) = Tb 

In  addi t ion ,  the boundary condition on the m a s s  f lux  of a spec ies  “it‘ a t  t h e  sur face ,  ( P ~ v ~ ) ~ ,  i s  

The mass f l u x  of a spec ies  a t  t h e  sur face ,  mi, depends on t h e  sur face  material and how it i n t e r a c t s  with t h e  
gases  i n  t h e  boundary layer .  
donsidered. 
f l u x  a t  t h e  sur face  i s  zero f o r  t h i s  case. 

In  t h e  present  s tudy,  only t h e  extreme case of a f u l l y  c a t a l y t i c  sur face  is 
The t o t a l  mass For a f u l l y  c a t a l y t i c  wal l ,  t h e  gas i s  assumed undissociated and un-ionized. 

The flow a t  t h e  edge of  t h e  shock layer  i s  obtained from t h e  Rankine-Hugoniot r e l a t i o n s  

Ps = P, + P,V? [I - $ I 
(7a) 

An i t e r a t i o n  process  i s  used t o  solve t h e  above equations where, i n i t i a l l y ,  (vs/V,) is  assumed zero and t h e  
denominator i n  Fq. (7c) is taken equal t o  7000. 
constant .  The use of t h e  Rankine-Hugoniot r e l a t i o n s  ( 7 )  r a t h e r  than t h e  modified r e l a t i o n s  as employed by 
Cheng [SI w i l l  l i m i t  t h e  a p p l i c a b i l i t y  of t h e  ana lys i s  t o  shock-layer Reynolds numbers g r e a t e r  than approx- 
imately 100. 

The m a s s  f r a c t i o n  of  spec ies  across  t h e  shock are taken 

The boundary condi t ions a t  t h e  outer  edge of  t h e  shock layer  are expressed as 

(8a) 
1/2 V ( n  .) = - E{Res/(l + j) [s(l - E )  + E ] }  
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For the shock-layer flow, t h e  value of ne = ns must be var ied u n t i l  condition (Ea)  i s  s a t i s f i e d .  

When t h e  shock-layer Reynolds number becomes large, t h e  so lu t ion  of Eq. (3) from t h e  body t o  t h e  shock 
is not  necessary. In t h i s  case, t h e  boundary-layer approach can be followed where t h e  edge conditions are 
obtained f r o m  t h e  i n v i s c i d  flow a t  t h e  sur face  where t h e  a i r  i s  assumed i n  chemical equilibrium. 
boundary-layer approach, t h e  value of ne = 6 and condition (ea) i s  not  required.  

For t h e  

THERMODYNAMIC AND TRANSPORT PROPERTIES, AND CHEMICAL KINETICS 

The thermodynamic proper t ies  o f  enthalpy and s p e c i f i c  h e a t  of  t h e  ind iv idua l  spec ies  CO2, N2,  0, N, NO, 
NO') are obtained from tabula ted  values as given by Browne [26-281. 
erties based on t h e  a i r  model employed i n  this paper have been determined f o r  an equilibrium canposition a t  
a pressure of 1 atmosphere and temperatures up t o  20,000°K. 
pared with pred ic t ions  of Predrodi te lev [291 and Hansen [301. These authors are i n  c l o s e  agreement except  a t  
temperatures around 4000OK. 
r e s u l t s  of Hansen. The present  r e s u l t s  f o r  enthalpy and s p e c i f i c  h e a t  are i n  good agreement w i t h  the predic-  
t i o n s  of  these authors except a t  temperatures above 10,OOO°K. This  i s  expected, as t h e  present  gas model i s  
v a l i d  only when there  i s  a s l i g h t  amount of ion iza t ion .  

The thermodynamic and t ranspor t  prop- 

The present  r e s h l t s  f o r  enthalpy have been com- 

The present  frozen s p e c i f i c  heat  a t  constant  pressure has been compared t o  the 

The v i s c o s i t y  and thermal conduct ivi ty  of  t h e  gaseous mixture is ca lcu la ted  from Wilke's semiempirical 
The v i s c o s i t i e s  of  the indiv idua l  spec ies  are those given by Yun r e l a t i o n s  (see pages 24 and 258 of  [24] ) .  

and Mason [31]. 
and v iscos i ty  of equilibrium air a t  atmospheric pressure have been compared t o  r e s u l t s  o f  Hansen [301 and Yos 
[32]. 
than 10,00O0K. 

The v i s c o s i t y  of  NO' is assumed equal  t o  t h a t  of NO. The present  frozen thermal conduct ivi ty  

These proper t ies  are i n  reasonable agreement with the predic t ions  of  Yos when t h e  temperature i s  less 

The thermodynamic and t ranspor t  p roper t ies  employed i n  the shock-layer so lu t ion  i n  t h i s  paper are more 
accurate  than i s  ind ica ted  by the equilibrium proper t ies .  
t h e  predominant spec ies  are molecular oxygen and ni t rogen which are included i n  the gas model with reasonable 
accuracy. The temperature decreases toward t h e  body, and probably no s i g n i f i c a n t  amounts of  ionized atomic 
and molecular species  have t i m e  t o  be produced. 
f o r  the cases inves t iga ted  i n  t h i s  paper. 

When t h e  temperature behind t h e  shock i s  very high,  

Therefore, t h e  present  gas model i s  considered reasonable 

The n e t  m a s s  r a t e  of  production of  a chemical spec ies  p e r  u n i t  volume is  obtained from t h e  usual r e l a t i o n s  
as given i n  [25]. The following chemical reac t ions  a r e  used f o r  t h e  pure air gas model: 

r = l  O ~ + M ~ : ~ O + M ~  
P a )  

2 N 2 + M 2 z 2 N + M  2 

The forward reac t ion  rates f o r  t h e  above reac t ions  are expressed as 

where t h e  backward rate is the same form as t h e  forward, with t h e  constants  C replaced with D ' s .  The values 
of these  react ion-rate  c o e f f i c i e n t s  as obtained from Bortner [331 are given i n  T a b l e  I. The corresponding 
t h i r d  body e f f i c i e n c i e s  r e l a t i v e  t o  argon are given i n  Table 11. 

METHOD OF SOLUTION 

From previous experience w i t h  i n i t i a l  value techniques and the r e s u l t i n g  d i f f i c u l t i e s  encountered, a 
f i n i t e  d i f fe rence  method w a s  i n i t i a l l y  chosen as t h e  method of so lu t ion .  
made l i n e a r  i n  t h e  unknown var iab les  and any coupling between t h e  equations w a s  eliminated. 
between t h e  equations i s  allowed ( t h i s  i s  required f o r  the quas i l inear iza t ion  technique as defined by B e l l m a n  
and Kulaba [34] ) ,  t h e  r e s u l t i n g  system of  a lgebra ic  equations f o r  a gas  mixture with many chemical species  

The f i n i t e  d i f fe rence  equations were 
I f  coupling 



requi res  an excessive amount 
conservation equations. 

The governing equations 
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of rapid-access computer s torage.  Therefore, the present  scheme uncouples t h e  

(3) are wr i t ten  i n  t h e  following form: 

where f o r  the tangential.momentum equation, 

- ( & I  - v,/e w =  f '  al - 

= -2Bf'/l 
2 

f o r  t h e  energy equation, 

2 N I  

a3 =kzp[E] - + e 1 i=l [ WiDhy - eh. 1 8 Lp]]}/z ae  p 

f o r  t h e  spec ies  equation, 

w = c .  1 i = 1, 2 ,  ... N I  a 1 = [ b i  - V l / b i  

1 
a2 = -eWi /bi 

where 

The o ther  q u a n t i t i e s  introduced i n t o  the above expressions are given below. 

2 -  
e P  

a = U / ( c  Te) 

0 ( t i p  of cone) 

(s tagnat ion poin t )  
e = &  = 

uedC/& 

k#i  
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1 W 
- =  i WO - WiCi 
P 

C = LeC /Pr 
P 

1/2  1 
- [ 2 [pes - P-] /pes] 

- [ s ( l  - E) + E l  (shock layer )  

(boundary layer )  

The ordinary d i f f e r e n t i a l  equation (10) is  wr i t ten  i n  f i n i t e  d i f fe rence  form, with t h e  usual  d i f fe rence  quo- 
t i e n t s  involving three  poin ts .  
condi t ions,  g ive  a system of the t r id iagonal  form. An e f f i c i e n t  method of solut ion* f o r  computers i s  ava i l -  
able .  
an i n i t i a l  d i s t r i b u t i o n  of  t h e  independent var iab le  W. Then t h e  so lu t ion  can be  obtained t o  give a new value 
of W .  This procedure can be repeated u n t i l  t h e  assumed value of  W is t h e  same or nearly the same as t h e  cal- 
culated value of  W. For some problems it i s  necessary t o  weigh t h e  assumed and ca lcu la ted  so lu t ion  t o  obta in  
a new assumed so lu t ion  f o r  t h e  next  i t e r a t i o n .  

The r e s u l t i n g  equations a r e  l i n e a r  a lgebra ic  equations and, with the  boundary 

I f  t h e  ordinary d i f f e r e n t i a l  equation i s  nonl inear ,  then ai, a2 and a3 must be  approximated by a s s d n g  

For t h e  i t e r a t i o n  procedure t o  converge and t o  have a reasonable rate o f  convergence, severa l  items have 
been found important i n  t h e  method of  so lu t ion .  How t h e  chemical production terms are w r i t t e n  i s  very impor- 
t a n t .  The l i n e a r i z a t i o n  technique employed i n  [251 cannot be  used i n  t h i s  case ,  s ince  t h a t  procedure involves  
a Taylor 's-ser ies  expansion o f  a l l  of  the species  and t h e  temperature. When t h i s  procedure i s  followed, all 
t h e  species  and energy equations would be coupled together .  
w r i t t e n  as 

As ind ica ted  above, t h e  production term is 

W .  0 1 - -  1 - w .  - w c  
P 1 i i  

where, f o r  a binary mixture of  oxygen, t h e  only reac t ion  i s  Eq. (9a) and 

1 -2 
WO = kb P Y Y 

1 O M1 

(14) 

For t h e  case of  an air mixture, reac t ions  4, 5, 6 and 7 cont r ibu te  to t h e  chemical production term of 
In each reac t ion ,  either t h e  forward o r  backward term involves  t h e  mass f r a c t i o n  of atomic atomic oxygen. 

oxygen and allows t h e  chemical production term t o  be expressed as relation (14) .  
about the production term f o r  o ther  species .  For rap id  convergence of  t h e  f i n i t e d i f f e r e n c e  so lu t ion ,  it is  
des i rab le  t h a t  the t e r m s . W :  and W i  be as near ly  constant as possible .  
WO i s  proport ional  t o  yo2 and, when t h e  oxygen i s  highly d issoc ia ted ,  t h e  value o f  yo2 changes rapidly f o r  a 
s m a l l  change i n  yo, since yo2 = (1 - co)/MO2. Therefore, i t  w a s  found b e t t e r  t o  w r i t e  t h e  terms W 8  and W i  
f o r  oxygen as 

Simi lar  comments can be made 

For t h e  case of  oxygen, t h e  value of 

0 

*This method apparently has been developed by several authors ,  b u t  Bruce, Peaceman, Rachford, and Rice are 
general ly  given t h e  c r e d i t  i n  t h i s  country ( see  [351). In Russia, t h i s  procedure is known as t h e  "chasing" 
or double-sweep method, which was developed by Gelfund and Lokutsievski (see [361). 
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0 1 
For t h e  case of t e air mixture, t h e  terms W i  and Wi were expressed i n  a similar manner t o  r e l a t i o n s  (15) .  
Then t h e  W! and Wi f o r  atomic oxygen were modified by adding Mokfl~yMlyo and kflFyM1, respec t ive ly ,  t o  these  
terms, as has been done i n  r e l a t i o n s  (16) .  

P 

When t h e  conservation equations a r e  uncoupled and t h e  dependent var iab les  are solved one a t  a t i m e ,  t h e  
The present  inves t iga t ion  has shown order  i n  which t h e  var iab les  f ' ,  0 ,  and c i ' s  a r e  solved must be  chosen. 

t h a t  t h e  species  equations should be solved before t h e  energy equation. The m a s s  f r a c t i o n  of species  obtained 
from t h e  so lu t ion  of t h e  species  equations a r e  U ed i n  Eq. (14) t o  evaluate  t h e  chemical production term which 
is required i n  t h e  energy equation. 
ve loc i ty  V is  obtained from the  in tegra t ion  of Eq. ( 3 a ) .  

8 The terms W i  and W: a r e  not  reca lcu la ted  i n  Eq. (14). The transformed 

The method of nonlinear overrelaxat ion (see [371) has a l s o  been used t o  solve Eq. (10). A n  inves t iga t ion  
w a s  made f o r  a binary gas of  oxygen t o  compare t h e  nonl inear  overrelaxat ion method with t h e  f in i te -d i f fe rence  
procedure. It appears t h a t  t h e  f in i te -d i f fe rence  procedure general ly  converges f a s t e r ,  as  one would expect. 
For example, f o r  a l i n e a r  ordinary d i f f e r e n t i a l  equation, t h e  f in i te -d i f fe rence  procedure would give t h e  
so lu t ion  d i r e c t l y ,  while t h e  nonl inear  overrelaxat ion method would s t i l l  requi re  an i t e r a t i o n  procedure. The 
nonl inear  overrelaxat ion method, however, w i l l  probably give convergent so lu t ions  f o r  cases when the  f i n i t e -  
d i f fe rence  method diverges. 

DISCUSSION OF RESULTS 

In t h e  AGARD seminar it was requested t h a t  two f l i g h t  environments be inves t iga ted ,  which a r e  c a l l e d  
Case A and C a s e  B ,  and t h e  condi t ions are given i n  Table 111. When Fig.  1 i s  used, Case A should correspond 
t o  a boundary-layer flow with equilibrium invisc id  flow a t  t h e  edge, while C a s e  B i s  i n  t h e  merged layer  
regime. The computer program t h a t  solves  t h e  viscous shock layer  a l s o  w i l l  solve t h e  boundary-layer equations 
which are needed t o  inves t iga te  Case A. 
Hugoniot r e l a t i o n s ,  t h e  r e s u l t i n g  so lu t ions  cannot be expected t o  be completely v a l i d  f o r  Case B where shock 
s l i p  e f f e c t s  a r e  important. Three o ther  cases a r e  a l s o  inves t iga ted  as ind ica ted  i n  Table 111. With the  a i d  
of Fig.  1, Case 1 with boundary-layer theory should not  be appropriate ,  while cases 2 and 3 with shock-layer 
theory should be a reasonable approach. 

Since t h e  present  viscous shock-layer so lu t ion  uses  t h e  Rankine- 

In t h e  present  so lu t ions ,  t h e  binary Lewis-Semenov numbers have a l l  been assumed equal t o  1.4. It  is 
a l s o  assumed t h a t  t h e  shock i s  concentr ic  with t h e  body, which makes s = 1. A t  t h e  wal l  the  gas is  undisso- 
c i a t e d  and un-ionized, which corresponds t o  a f u l l y  c a t a l y t i c  w a l l  when t h e  w a l l  temperature i s  low. 

The tangent ia l  ve loc i ty  gradient  a t  the  s tagnat ion poin t  i s  given f o r  t h e  shock-layer so lu t ions  i n  Fig. 
2.  For the  150- and 200-Kft a l t i t u d e  cases ,  t h e r e  is  a boundary-layer region. For t h e  250-Kft case,  a 
boundary layer  cannot be readi ly  i d e n t i f i e d .  The tangent ia l  ve loc i ty  gradient  f o r  t h e  two boundary-layer 
cases are a l s o  presented. It  should be not iced t h a t  t h e  boundary-layer r e s u l t s  a r e  nondimensionalized by 
t h e  tangent ia l  ve loc i ty  gradient  a t  t h e  body sur face ,  which i s  smaller than t h e  tangent ia l  ve loc i ty  grad ien t  
behind t h e  shock which i s  used f o r  t h e  shock-layer r e s u l t s .  

The temperature across  t h e  shock layer  as obtained from t h e  boundary-layer and shock-layer theor ies  are 
given i n  Fig. 3. The temperature i s  high behind t h e  shock and decreases as  t h e  gas d i s s o c i a t e s  toward t h e  
body. 
t h e  boundary layer  i s  entered.  The temperature c lose  t o  the body surface i s  near ly  t h e  same f o r  both t h e  
shock-layer and boundary-layer r e s u l t s  f o r  t h e  150-Kft case. This f igure  i n d i c a t e s  t h a t  a well-defined 
boundary layer  occurs a t  some a l t i t u d e  below 150 Kft. 

This s i t u a t i o n  i s  espec ia l ly  t r u e  f o r  the  150-Kft case, b u t  the  gas has not  reached equilibrium before 

The m a s s  f rac t ions  of  t h e  various chemical species  a r e  given i n  Fig. 4-7. For t h e  250-Kft case, t h e  a i r  
i s  s l i g h t l y  d issoc ia ted ,  bu t  f o r  t h e  o ther  cases, there  i s  an appreciable amount of d i ssoc ia ted  species .  The 
condi t ions corresponding t o  t h e  edge of t h e  boundary layer  i n  t h e  shock-layer so lu t ion  a t  150 Kft ind ica tes  
t h a t  t h e  gas has not  reached chemical equilibrium. Therefore, t h e  assumption t h a t  t h e  i n v i s c i d  flow is i n  
equilibrium f o r  t h e  150-Kft case i s  not  cor rec t .  
e lec t ron  number densi ty  i s  given i n  Fig. 8 ,  where t h e  shock-layer and boundary-layer r e s u l t s  are near ly  the  
same f o r  t h e  150-Kft case. For t h e  250-Kft case,  t h e r e  i s  only a s l i g h t  amount of ion iza t ion .  

This agrees with the  information presented i n  Fig. 1. The 

The present  r e s u l t s  obtained f o r  Stanton number a r e  compared t o  various theor ies  i n  Fig. 9. In t h i s  
f igure ,  addi t iona l  r e s u l t s  t o  the  f i v e  cases given i n  Table I11 are presented t o  make t h e  p l o t  more complete. 
The f r e e  molecule r e s u l t s  a r e  f o r  i n f i n i t e  Mach number and complete accommodation. The boundary-layer r e s u l t s  
a r e  based on the work of  Fay and Riddell [38] ,  and t h e  enthalpy a t  the  wal l  i s  taken as  0.025Vi. The viscous 
shock-layer so lu t ion  of Cheng [5] f o r  a p e r f e c t  gas i s  a l s o  given i n  t h i s  f igure .  
cludes body and shock s l i p  e f f e c t s  which have been neglected i n  the  present  analysis .  
f o r  small-shock Reynolds numbers a r e  not  accurate ,  due t o  t h e  neglect  of t h e  shock and body s l i p  e f f e c t s .  

The ana lys i s  of Cheng in-  
The present  r e s u l t s  
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NOMENCLATURE 

'i 

$i - 
C 
P 

Di j 

'i j 

f '  

h 

hi 

ji 

k 

kfrrkbr 

e 

Li j 

Li j - 
M 

I Mi 

N I  

Pr  

P 

R 

R 
I N 

Re 

r 

I 

S 

T 

T 
K 

u ,v  

V 

I 

'm 

W 
i 

X 

P 

'i 

mass f r a c t i o n  of species  i, pi/p 

s p e c i f i c  h e a t  a t  constant  pressure of  species  i, f t  /(sec2 O R )  2 

2 2 
frozen s p e c i f i c  h e a t  a t  constant  pressure of t h e  mixture, E cicpi, f t  /(sec OR) 

i 
2 multicomponent d i f fus ion  c o e f f i c i e n t ,  f t  /sec 

binary d i f fus ion  c o e f f i c i e n t ,  f t  /sec 

ve loc i ty  r a t i o ,  u/ue 

enthalpy, hici, f t  /sec 

enthalpy of  species  i, f t  /sec 

m a s s  f l u x  r e l a t i v e  t o  the mass-average ve loc i ty ,  s l u g / ( f t 2  - sec) 

thermal conductivity of  mixture, lb /  ( sec  O R )  

forward and backward rate constants  

densi ty-viscosi ty  product, p u / ( p p )  

multicomponent Lewis-Semenov number, E pD.  . /k 

binary Lewis-Semenov number, E p D .  ./k 

molecular weight of  t h e  mixture, 1/ ( f ci/Mi) , lb/lb-mole 

molecular weight of  species  i, lb/lb-mole 

number of chemical species  

Prandt l  number, c p/k 

2 

2 2  
1 

2 2  

P =I 

P 1 3  

- 
P 

pressure,  l b / f t L  

universal  gas constant ,  l b  ft2/(lb-mole sec2  OR) 

nose radius, f t  

shock Reynolds number, p V R /p 

dis tance  from axis  i n  axisynnnetric problems, f t  

temperature, O R  

temperature, O K  

veloc i ty  components tangent ia l  and normal t o  body sur face ,  f t / s e c  

transformed normal ve loc i ty  ( E q .  (3a) )  

f reestream ve loc i ty ,  fps  

mass rate o f  formation of  species  i, l b  sec / ( f t  sec)  

d i s tance  along sur face  from leading edge o r  s tagnat ion p o i n t ,  f t  

d i s tance  along normal from sur face ,  f t  

densi ty  r a t i o  across  shock, pm/p 

transformed y coordinate 

transformed x coordinate ,  lb2  sec2/ f t2(2- j )  

s t e p  s i z e s  i n  transformed coordinates 

temperature r a t i o ,  T/Te 

curvature of  body, l / f t  

v i scos i ty ,  l b  sec / f t2  

dens i ty ,  l b  sec2/ f t4  

densi ty  of  species  i, l b  sec2/ f t4  

" N  s 

2 4  
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a 

Subscripts 

btw 

e 

I 

S 

m 

Superscripts 

j=O 

j=l 

shock standoff d is tance ,  f t  

conditions a t  body surface 

conditions a t  outer edge of shock layer or boundary layer 

quant i t ies  evaluated a t  some reference condition 

conditions behind shock wave 

frees tream conditions 

two-dimensional body 

axisymmetric body 
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( j - N I ) i  
Z '2 

i = l  

N2 

2 

0 

3 

2.5 

1 

1 

20 

TABLE I 

Reaction Rate Coeff ic ients  

React ion 

59.4 -1.0 3.01 x 10 0 -0.5 15 

16 

18 3.61 x 10 

1.92 x 10 l7 113.1 -0.5 1.09 x 10 0 -0 .5  

r = l  

2 

4.15 x 10 22 113.1 -1.5 2.32 x 10 21 0 -1.5 

75.6 -1.5 1.01 x 10 2o 0 -1.5 20 3.97 x 10 

3.18 l o 9  19.7 1.0 9.63 x 10 3.6 0.5 

6.75 x 10 

9.03 x 10 

11 

13 

19 

37.5 0 1.50 x 10 0 0 

32.4 0.5 1.80 x 10 0 -1.0 

13 

9 

TABLE I1 

Third Body Eff ic ienc ies  Relat ive t o  Ar 

NO I NO' N 

4 

I 

5 1  

( ] - N I )  = 1 - 
e l o  

0 l o  0 +- M2 

1 
- 

0 
I 

4 
20 

TABLE I11 

Conditions for Example Invest igated 

- Case Al t i tude  Theory a T, ( O K )  Fe ( P S f )  T ( O R )  

12772 12603 

11330 

4 

3 

1.43 x 10 

1.54 x 10 

A l O O K  BL 1400 

1 1 5 0 K  BL 1000 1377 

2 2 150K. SL 1000 9.31 x 10 - 
3 200K SL 1000 1.38 x loL - 
B .250K . SL 1000 1.99 x 10 1 - 

f o r  a l l  cases 
V, = 20 Kfps 

= 1 inch 

% L = boundary layer ;  SL = shock layer .  
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CHEMICALLY REACTING BOUNDARY LAYER EFFECTS FOR THE 

AGARD ENGINEERING APPLICATIONS BODY AND FLOW CONDITIONS 

by John C .  Adams, J r .*  

SUMMARY 

Numerical r e s u l t s  f o r  chemical nonequilibrium boundary-layer flow at  t h e  AGARD Case B condition ( f l i g h t  
i n  t h e  e a r t h ' s  atmosphere a t  250,000 f t  and 20,000 f t / sec)  a r e  presented f o r  t h e  AGARD 10.0" asymptotic ha l f -  
angle hyperboloid having a nose radius of  1.0 inch and a wal l  temperature of  1800.0OR. 
model allows multicomponent d i f fus ion  and both c a t a l y t i c  and nonca ta ly t ic  w a l l s .  Also presented a r e  stagna- 
t i o n  poin t  r e s u l t s  f o r  t h e  above body and f l i g h t  conditions using a t h i n  viscous shock layer  ana lys i s  allow- 
ing chemical nonequilibrium and shock merging e f f e c t s  f o r  both wal l  conditions including multicomponent 
d i f fus ion .  Analysis of t h e  r e s u l t s  reveals  t h a t  boundary-layer theory is not  appl icable  t o  t h e  AGARD 
Case B flow condi t ion,  and t h a t  only t h e  merged t h i n  viscous shock layer  s tagnat ion poin t  ana lys i s  may be  
expected t o  have any physical  meaning. However, boundary-layer r e s u l t s  are presented over t h e  e n t i r e  body 
as requested by AGARD so as t o  f a c i l i t a t e  comparison with o ther  t h e o r e t i c a l  and numerical so lu t ions  f o r  t h e  
same body and flow conditions. 

INTRODUCTION 

The boundary-layer 

The present  paper i s  devoted t o  documenting r e s u l t s  presented by t h e  author  a t  t h e  AGARD Seminar i n  
t h e  Engineering Application Section using computer programs developed by t h e  von Karman G a s  Dynamics F a c i l i t y  
of t h e  Arnold Engineering Development Center. The body ( a  hyperboloid of 10.Oo asymptotic half-angle)  and 
t h e  flow conditions (see Table 1) were completely spec i f ied  by AGARD [ l ]  . A l l  r e s u l t s  presented i n  t h e  
present  r e p o r t  are f o r  the AGARD C a s e  B flow condition using chemical nonequilibrium, laminar boundary-layer 
theory f o r  ionized,  multicomponent a i r .  

CHEMICALLY REACTING FLOW SOLUTIONS (AGARD CASE B)  

Theoret ical  Considerations and Description of  Computer Program 

A l l  of t h e  r e s u l t s  f o r  t h e  real gas AGARD C a s e  B condition w e r e  obtained by appl ica t ion  of t h e  chemical 
nonequilibrium, laminar boundary-layer theory f o r  ionized,  multicomponent air as formulated by Blo t tner  [21 . 
In  t h e  present  work a l l  b a s i c  port ions of  B l o t t n e r ' s  ana lys i s  have been re ta ined ,  e .g . ,  considerat ion of t h e  
d i f f u s i v e  m a s s  f l u x  f o r  a multicomponent mixture of  p e r f e c t  gases and expressing t h e  n e t  m a s s  r a t e  of  produc- 
t i o n  f o r  each spec ies  i n  a form espec ia l ly  s u i t e d  f o r  numerical computation. For f u r t h e r  d e t a i l s  on t h e  
t h e o r e t i c a l  formulation of t h e  governing equations, see Blo t tner  [3,41 and Lenard [51. The following guide- 
l i n e s  were followed i n  t h e  course of t h e  study: (a) The complete flow f i e l d  w a s  considered t o  be i n  t h e  
continuum flow regime. (b)  The bas ic  gas model w a s  assumed t o  be a multicomponent mixture of chemically 
react ing p e r f e c t  gases made up of seven chemical species:  (c) The gas was 
assumed t o  be i n  v i b r a t i o n a l  equilibrium b u t  i n  chemical nonequilibrium as cont ro l led  by an eleven chemical 
reac t ion  model using t h e  r a t e s  o f  Bortner [61 tabulated i n  Table 2 .  (d)  Multicomponent d i f fus ion  between 
spec ies  w a s  allowed i n  t h e  viscous region. For t h e  ionized spec ies ,  ambipolar type o f  d i f fus ion  was employed. 
Thermal d i f fus ion  was neglected f o r  a l l  species .  The method of Moore 171 w a s  used t o  ca lcu la te  t h e  required 
binary d i f fus ion  coef f ic ien ts .  (e)  Thermodynamic proper t ies  of  enthalpy and s p e c i f i c  hea ts  f o r  t h e  individual  
spec ies  were taken from Browne [81. ( f )  Multicomponent t ranspor t  p roper t ies  of v i scos i ty  and thermal conduc- 
t i v i t y  f o r  t h e  mixture were obtained from Wilke's formula [91 using ind iv idua l  spec ies  proper t ies  computed 
by the method of Moore 171. (9)  Radiation phenomena were not  considered. (h)  M a s s  t r a n s f e r  e f f e c t s  were 
not  considered. (i) Effec ts  of  w a l l  sur face  conditions were considered by examining both nonca ta ly t ic  and 
equilibrium w a l l s .  (j) The angle of a t tack  of  the  body r e l a t i v e  t o  t h e  freestream w a s  s p e c i f i e d  by AGARD t o  
be zero. (k) The flow f i e l d  analyses, both v i s c i d  and i n v i s c i d ,  were accomplished by computerized numerical 
techniques u t i l i z i n g  a m i n i m u m  number of s implifying assumptions. 

N ,  0 ,  N 2 ,  02, NO, NO+, and e-. 

The governing boundary-layer equations i n  physical  var iab les  were f i r s t  transformed using t h e  Lees- 
Dorodnitsyn transformation [9] and then solved i n  t h e  transformed plane using an i m p l i c i t  f in i te -d i f fe rence  
scheme of t h e  Crank-Nicolson type; d e t a i l s  of t h i s  procedure may be found i n  t h e  repor t  by Blo t tner  [41. The 
condi t ions a t  t h e  w a l l  and t h e  outer  edge of the  boundary layer  determine t h e  necessary boundary condi t ions 
f o r  these  equations. A t  t h e  w a l l ,  it w a s  assumed t h a t  t h e  normal and t a n g e n t i a l  v e l o c i t i e s  w e r e  zero,  t h e  
w a l l  temperature was s p e c i f i e d  by AGARD t o  be 1800.0°R, and t h e  w a l l  w a s  taken t o  be e i t h e r  completely non- 
c a t a l y t i c  with respect  t o  atom recombination o r  i n  loca l  chemical equilibrium a t  t h e  gas-solid i n t e r f a c e .  
These c a t a l y t i c  conditions a t  the  w a l l  were based on the t h e s i s  by Moore [ l o ]  which includes t h e  e f f e c t s  of  
foreign gas in jec t ion .  The v a l i d i t y  of Moore's formalism f o r  cases without m a s s  i n j e c t i o n  has been discussed 
by Adams, e t  al. [ U ] .  A t  the outer  edge of  t h e  boundary layer ,  i n v i s c i d  conditions were s p e c i f i e d  by AGARD 
based on an i n v i s c i d  chemically reac t ing  streamtube expansion using modified Newtonian theory f o r  pred ic t ion  
o f  t h e  pressure d i s t r i b u t i o n  over t h e  body. These outer  edge conditions were recorded on magnetic tape f o r  
input  t o  t h e  boundary-layer program. The outer  edge of  t h e  boundary layer  w a s  hence taken t o  coincide with 
t h e  i n v i s c i d  body s t reamline,  and thus no attempt w a s  made t o  account f o r  viscous i n t e r a c t i o n  such as t r e a t e d  
by Adams, e t  a l .  1111 and Kaplan [121. 

In addi t ion t o  t h e  w a l l  and outer  edge boundary condi t ions,  i n i t i a l  condi t ions are required t o  completely 
determine t h e  r e s u l t i n g  downstream so lu t ion .  In order  t c  ob ta in  t h e  cor rec t  i n i t i a l  condi t ions,  t h e  system 
of boundary-layer equations (which a r e  nonl inear  p a r t i a l  d i f f e r e n t i a l  equations) were reduced t o  t h e  l i m i t i n g  
form of ordinary nonl inear  d i f f e r e n t i a l  equations with two-point boundary condi t ions a t  t h e  s tagnat ion poin t .  
Such two-point boundary value problems a r e  extremely d i f f i c u l t  t o  solve using t h e  more common "shooting" 
method s ince  so many species  equations a r e  involved. Hence, a f in i te -d i f fe rence  method w a s  developed such 
t h a t  t h e  two-end condi t ions were always s a t i s f i e d ;  t h e  fundamentals of  t h i s  technique may be f o m d  i n  Chapter 
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V I 1  of  t h e  book on numerical ana lys i s  by Conte t131. More d e t a i l s  of  t h i s  f i n i t e d i f f e r e n c e  technique appl ied 
t o  t h e  so lu t ion  of  nonl inear  equations may be found i n  the  papers by Holt [141 and Fay and Kaye [15]. B a s i -  
c a l l y ,  t h e  nonl inear  ordinary d i f f e r e n t i a l  equations were w r i t t e n  i n  l inear ized  f i n i t e - d i f f e r e n c e  form so 
t h a t  t h e  r e s u l t i n g  l i n e a r  a lgebra ic  equations were of t r id iagonal  form and a sweeping method of  so lu t ion  w a s  
used. I t e r a t i o n  w a s  then appl ied u n t i l  successive so lu t ions  ( f ' ( n ) ,  e ( n ) ,  and c i ( n ) )  were s u f f i c i e n t l y  c lose  
t o  each o ther .  

Using t h e  above obtained i n i t i a l  condi t ions,  so lu t ions  t o  t h e  complete nonsimilar boundary-layer equa- 

This procedure w a s  found t o  converge rapidly f o r  a l l  cases i n  t h e  present  study. 

t i o n s  were obtained i n  a step-by-step procedure marching downstream using t h e  i m p l i c i t  f i n i t e - d i f f e r e n c e  
method by Blo t tner  mentioned previously.  No s t a b i l i t y  problems w e r e  encountered f o r  t h e  condi t ions s tudied.  

Considerations were a l s o  given t o  t h e  p o s s i b i l i t y  t h a t  a boundary-layer type ana lys i s  may not  be v a l i d  
under t h e  condi t ions of t h e  present  study. 
importance over t h e  e n t i r e  shock layer ,  espec ia l ly  i n  the nose region of t h e  body. 
p o s s i b i l i t y ,  an ana lys i s  w a s  performed where t h e  e n t i r e  shock layer  a t  t h e  s tagnat ion poin t  w a s  t r e a t e d  as 
viscous. A s  shown by Cheng 1161 , Chung [171, H o w e  and Viegas [181, and Lee and Zier ten [191, the governing 
equations f o r  such an ana lys i s  are i d e n t i c a l  i n  form with t h e  boundary-layer equations under t h e  r e s t r i c t i o n s  
t h a t  t h e  shock layer  be t h i n ,  i . e .  A / r N  << 1, w i t h  a l l  curvature e f f e c t s  neglected. Recent work by HOWe and 
Sheaffer [201, Goldberg [211 , Goldberg and Scala  [221, and Chen, Aroesty, and Mobley [231, has f u r t h e r  shown 
t h e  v a l i d i t y  of such an analysis  f o r  cases w i t h  mass i n j e c t i o n  a t  t h e  wall. 

It may be that nonequilibrium and viscous e f f e c t s  have equal 
In order  t o  examine t h i s  

The b a s i c  t h i n ,  hypersonic shock layer  model as formulated by Cheng [161 assumes a s t rong  bow shock wave 
of  negl ig ib le  thickness  that i s  concentr ic  with t h e  body a t  t h e  s tagnat ion l i n e .  Across t h e  shock, the s t a t i c  
pressure and normal ve loc i ty  components are discontinuous according t o  t h e  usual  Rankine-Hugoniot r e l a t i o n s ;  
i n  addi t ion,  the  so-called "shock s l ip ' '  e f f e c t s  ( d i s c o n t i n u i t i e s  i n  composition, t angent ia l  ve loc i ty ,  and 
t o t a l  enthalpy) are allowed immediately behind t h e  shock. Between t h e  shock and t h e  body there  i s  assumed a 
t h i n  ( A / r N  << +) l ayer  of continuum, viscous reac t ing  gas flow. In t h i s  l a y e r ,  t h e  inf luence of body curva- 
t u r e  and surface s l i p  phenomena i s  a l s o  neglected i n  comparison t o  t h e  shock-layer v o r t i c i t y  and "shock s l ip ' '  
e f f e c t s ,  providing t h a t  t h e  body sur face  i s  highly cooled. An important consequence o f  t h i s  t h i n ,  hypersonic 
shock-layer model i s  t h a t  t h e  governing Navier-Stokes equations reduce t o  t h e  f a m i l i a r  parabol ic  p a r t i a l  
d i f f e r e n t i a l  equations of boundary-layer theory as mentioned previously. 

A modification of  the  above model w a s  proposed by Chung [17]. Across t h e  shock, t h e  s t a t i c  pressure,  
enthalpy, and normal ve loc i ty  component a re  taken t o  be discontinuous according t o  t h e  Rankine-Hugoniot condi- 
t i o n s  f o r  a r e a l  gas. However, through t h e  shock t h e  chemical composition i s  taken as frozen a t  t h e  f ree-  
stream conditions. Furthermore, s tagnat ion o r  t o t a l  enthalpy i s  taken as constant  across t h e  shock. Hence, 
none of t h e  so-cal led "shock-slip" e f f e c t s  are considered i n  t h i s  model. Other than t h i s  a l l  o ther  fea tures  
of the  thin-hypersonic shock l a y e r  are re ta ined  including t h e  cent r i fuga l  e f f e c t s  due t o  a normal pressure 
gradient  across t h e  layer .  Between t h e  shock and t h e  body t h e  flow is considered t o  be i n  chemical nonequili- 
b r i m  with t h e  shock s tandoff  d i s tance  determined as p a r t  of the so lu t ion .  

Both of  t h e  above described models were appl ied i n  t h e  present  work. The programs a r e  b a s i c a l l y  t h e  same 
as t h e  s tagnat ion poin t  boundary-layer program described previously s i n c e  t h e  only modifications were deter-  
mination of  t h e  shock standoff d i s tance  and inclusion of t h e  normal pressure gradient  terms. The manner of 
i t e r a t i v e  so lu t ion  w a s  exact ly  t h e  same as i n  t h e  boundary-layer s tagnat ion case. 

DISCUSSION OF RESULTS 

The r e s u l t s  presented i n  t h i s  sec t ion  were obtained from an inves t iga t ion  i n t o  t h e  e f f e c t s  o f  chemical 
nonequilibrium upon t h e  boundary layer  and viscous shock l a y e r  f o r  t h e  s p e c i f i e d  AGARD hyperboloid of 10.0' 
asymptotic half-angle a t  zero angle of a t tack  under t h e  s p e c i f i e d  AGARD C a s e  B condi t ions a s  discussed pre-  
viously.  P a r t i c u l a r  emphasis w a s  placed upon present ing r e s u l t s  f o r  d i f f e r e n t  w a l l  c a t a l y t i c  condi t ions and 
boundary-layer ou ter  edge condi t ions i n  terms of  q u a n t i t i e s  of i n t e r e s t  such as t h e  l o c a l  wall hea t  t r a n s f e r  
and sk in  f r i c t i o n .  Only i n  this manner can one properly assess t h e  inf luence of each of these parameters on 
t h e  r e s u l t a n t  so lu t ion .  

Shown i n  Fig. 1 are t h e  i n v i s c i d  outer  edge conditions as spec i f ied  by AGARD [ l l  f o r  t h e  C a s e  B condi- 
t i o n .  Reference t o  t h e  a l t i tude-ve loc i ty  tab les  of  L e w i s  and Burgess [241 s h m s  t h a t  t h e  Case B conditions 
correspond t o  f l i g h t  a t  250,000 f t  with a ve loc i ty  of 20,000 f t /sec.  
t h e  nonequilibrium and frozen r e s u l t s  f o r  U, and Te a r e  i d e n t i c a l .  
U, and Te w i t h  a r e s u l t i n g  decrease i n  t h e  l o c a l  edge Reynolds number, Re,,,: 
ing  i n v i s c i d  outer  edge species  d i s t r i b u t i o n .  The important po in t  t o  recognize from Fig. 2 i s  that t h e  flow 
f i e l d  is e s s e n t i a l l y  frozen over the e n t i r e  body. The only chemical nonequilibrium e f f e c t s  are seen i n  t h e  
NO, NO+, and O2 d i s t r i b u t i o n s ,  and these  species  a l l  have a m a s s  f rac t ion  less than 
nat ion poin t  i s  taken t o  be i n  chemical equilibrium which r e s u l t s  i n  t o t a l  d i ssoc ia t ion  of 0 2  and about 40 
percent  d i ssoc ia t ion  of N2 so t h a t  t h e  major species  i n  t h e  flow are 0, N ,  and N2.  
frozen over t h e  body, and hence no inf luence of  chemical nonequilibrium i s  r e f l e c t e d  by t h e  major species;  
equilibrium flow has only a s l i g h t  inf luence i n  decreasing N with a corresponding increase  i n  N2 due t o  forced 
recombination. 

I t  i s  t o  be  noted from Fig. 1 t h a t  both 
Equilibrium flow y i e l d s  higher  values f o r  

Figure 2 shows t h e  correspond- 

The i n v i s c i d  s tag-  

These spec ies  remain 

T a b l e  3 i s  a tabula t ion  of  s tagnat ion point  d a t a  f o r  t h e  AGARD C a s e  B. Shown are boundary-layer solu- 
t i o n s  which assume t h e  outer  edge t o  be i n  a s ta te  of chemical equilibrium, t h i n  viscous shock-layer so lu t ions  
which take  t h e  species  immediately behind t h e  shock t o  be t h e  same as t h e  nondissociated free-stream condi- 
t i o n s ,  i .e . ,  a frozen shock with no "shock-slip", and merged t h i n  viscous shock-layer so lu t ions  which allow 
t h e  shock and t h e  viscous layer  t o  merge according t o  t h e  "shock-slip" condi t ions.  
Reynolds number is very low, Re, = 19.40, t h e  merged t h i n  viscous shock-layer so lu t ion  i s  t h e  only approach 
of those presented expected t o  be physical ly  v a l i d  under these  flow conditions; both t h e  boundary layer  and 
t h i n  viscous shock l a y e r  a re  not  appl icable  t o  t h i s  flow. 
poin t  hea t - t ransfer  rates. Boundary-layer theory f o r  a nonca ta ly t ic  w a l l  y i e l d s  r e s u l t s  which i n d i c a t e  a 
tremendous reduction i n  hea t  t r a n s f e r  as compared t o  the equilibrium c a t a l y t i c  w a l l ;  t h i s  i s  due t o  t h e  frozen 
s t a t e  of the boundary layer  so t h a t  recombination does not  OCCUT unless forced by t h e  c a t a l y t i c  w a l l  condi- 

Noting t h a t  the shock 

Such i s  apparent by examination of t h e  s tagnat ion 
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t ion .  Also note  that  t h e  outer  edge locat ion of the  boundary layer  i s  a f a c t o r  of  two l a r g e r  than t h e  shock 
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standoff  d i s tance  predicted by t h e  viscous shock-layer ana lys i s .  
t h e  shock layer ;  such can be  c l e a r l y  seen i n  Figs .  3 ,  4, and 5. The f u l l y  viscous character  of t h e  shock 
layer  i s  obvious from t h e  ve loc i ty  and temperature p r o f i l e s  i n  Figs. 3 and 4; note  t h a t  t h e  c a t a l y t i c  condi- 
t i o n  of  t h e  w a l l  has almost no e f f e c t  on the  viscous shock-layer ve loc i ty  and temperature p r o f i l e s .  Figure 5 
re-emphasizes t h e  frozen state of t h e  shock layer  as w e l l  as t h e  gross  e r r o r  i n  using t h e  boundary layer  with 
equilibrium outer  edge conditions. This i s  an important po in t  t o  note  s i n c e  many p r i o r  boundary-layer inves- 
t i g a t i o n s  have used equilibrium outer  edge conditions with no regard t o  t h e i r  v a l i d i t y .  

Hence t h e  boundary-layer edge i s  outs ide  

The above discussion has shown c l e a r l y  t h a t  a boundary-layer ana lys i s  i s  d e f i n i t e l y  not appl icable  t o  
t h e  AGARD Case B flow under examination. 
en t i r e  body w i l l  be presented f o r  sake of  comparison with o ther  methods. 
these  r e s u l t s  a r e  f o r  t h e  physical  problem. 

However, as requested by AGARD, boundary-layer results over t h e  
It i s  not  apparent how re levant  

Figure 6 shows t h e  displacement thickness  d i s t r i b u t i o n  over t h e  body, while Fig. 7 presents  t h e  l o c a l  
s k i n  f r i c t i o n .  Edge conditions and c a t a l y t i c  condition of t h e  w a l l  inf luence t h e  displacement thickness  b u t  
have l i t t l e  e f f e c t  on t h e  s k i n  f r i c t i o n .  Shown i n  Figs. 8, 9 ,  10, and 11 are t h e  heat- t ransfer  r e s u l t s .  As 
expected, t h e  nonca ta ly t ic  wal l  produces a s u b s t a n t i a l  reduction i n  heat  t r a n s f e r  as ccanpared t o  the equi- 
l ibr ium c a t a l y t i c  wal l .  
edge; t h e  e f f e c t s  of t h i s  recombination can be seen i n  t h e  nonca ta ly t ic  w a l l ,  equi l ibr ium outer  edge r e s u l t s  
o f  Figs. 8,  10, and 11. With respec t  t o  Fig. 9 ,  t h e  Stanton number i s  defined as 

Recall from Fig. 2 t h e  recombination of  N t o  N 2  forced by t h e  equilibrium outer  

S t  = -e, 
P,V, (Bo - hw) 

where, i n  a chemically reac t ing  flow, t h e  w a l l  enthalpy, h, is  a function of  t h e  c a t a l y t i c  condition of t h e  
w a l l .  Such i s  r e f l e c t e d  i n  Fig.  9 with t h e  nonca ta ly t ic  wal l ,  equilibrium outer  edge r e s u l t s .  Hence, one 
m u s t  be extremely carefu l  i n  i n t e r p r e t a t i o n  of Stanton number i n  a chemically reac t ing  flow with c a t a l y t i c  
and nonca ta ly t ic  w a l l  conditions. 

Figures 1 2  and 13 present  t h e  boundary-layer ve loc i ty  and temperature p r o f i l e s  a t  s p e c i f i e d  body loca- 
t i o n s  def ined by AGARD [l] . The corresponding species  p r o f i l e s  a r e  given i n  Fig.  14. Regarding Fig. 13 
r e c a l l  from Fig. 1 t h a t  Te f o r  t h e  equilibrium outer  flow is  higher  than f o r  t h e  nonequilibrium and frozen 
outer  flow; such inf luences t h e  character  of t h e  equilibrium o u t e r  edge temperature p r o f i l e s .  This a l s o  
causes t h e  equi l ibr ium outer  edge boundary-layer thickness  t o  be  l a r g e r  than f o r  t h e  nonequilibrium and frozen 
flows. 

Another quant i ty  of  i n t e r e s t  i s  t h e  in tegra ted  sk in- f r ic t ion  and pressure drag coef f ic ien ts  over t h e  
s p e c i f i e d  AGARD body. The r e s u l t s  a re  shown i n  T a b l e  4 where t h e  reference a rea  i s  taken t o  be t h e  base 
cross-sect ional  area a t  s/rN = 50.0. 
t h e  f a i l u r e  of boundary-layer theory as discussed previously.  

These q u a n t i t i e s  have no t r u e  physical  meaning f o r  t h i s  flow because of  

A few words should be s a i d  i n  conclusion as t o  t h e  computer time requirements and character  of  numerical 
so lu t ions  f o r  t h i s  inves t iga t ion .  The program i t s e l f  w a s  w r i t t e n  i n  FORTRAN 6 3  f o r  so lu t ion  on a CDC 1604-B 
computer. 
so lu t ions  with approximately 60 i t e r a t i o n s  required f o r  convergence; hence, a t o t a l  of  approximately 60 
minutes w a s  required t o  obta in  a s tagnat ion point  so lu t ion .  
dary-layer so lu t ions  over t h e  body averaged 38 seconds per  s t a t i o n  with a t o t a l  of  250 s t a t i o n s  required t o  
t r a v e r s e  t h e  AGARD body of  50 nose r a d i i  i n  length; hence, a t o t a l  of 160 minutes w a s  required f o r  a complete 
boundary-layer so lu t ion .  
transformed (5,n) plane; f o r  t h e  present  inves t iga t ion  t h e  following s t e p  sizes were chosen: 

Computation t i m e  including p r i n t o u t  averaged 60 seconds per  i t e r a t i o n  f o r  t h e  s tagnat ion poin t  

Computation t i m e  including p r i n t o u t  f o r  t h e  boun- 

Using Lees-Dorodnitsyn var iab les  results i n  t h e  so lu t ion  being obtained i n  t h e  

‘lmax 

Boundary Layer Thin Viscous Shock Layer 

‘lshock 6.0 

A‘l 0.10 0.20 

For t h e  boundary-layer so lu t ion ,  t h e  following s/rN s t e p  sizes were used: 

A(s/rN) = 0.05, 0.10, 0.20, 0.40 

where a procedure f o r  doubling t h e  s/rN s t e p  s i z e  w a s  b u i l t  i n t o  t h e  program; hence, t h e  s/rN s t e p  s i z e  w a s  
doubled a t o t a l  of 4 t i m e s  over t h e  body of i n t e r e s t  i n  t h i s  work. 
tageous i n  reducing t h e  t o t a l  computing t i m e  requirements. The i m p l i c i t  f in i te -d i f fe rence  scheme proved t o  
be  inherent ly  s t a b l e  i n  a l l  cases  and r e p e t i t i o n  of the  ca lcu la t ions  with a halved s t e p  s i z e  i n  A n  as w e l l  as 
an increase  i n  nmax t o  8.0 showed no change i n  t h e  numerical r e s u l t s .  A l l  i n  a l l ,  t h e  method m u s t  be  
described as highly s a t i s f a c t o r y  i n  t h e  numerical sense. 

SUMMARY 

Such a s t e p  s i z e  change is highly advan- 

The present  r e p o r t  i s  devoted t o  documenting numerical r e s u l t s  f o r  t h e  AGARD Engineering Applications 
C a s e  B using t h i n  viscous shock layer  and boundary-layer theory f o r  a multicomponent gas i n  chemical non- 
equilibrium. The purpose of t h i s  r e p o r t  i s  t o  present  these  r e s u l t s  i n  a manner spec i f ied  by AGARD so  as  t o  
f a c i l i t a t e  comparison with o ther  t h e o r e t i c a l  and numerical so lu t ions  from t h e  same body and flow condi t ions.  
No attempt has been made t o  f u l l y  analyze t h e  present  so lu t ions .  The reader of t h i s  repor t  i s  f r e e  t o  make 
h i s  own judgment r e l a t i v e  t o  o ther  methods. In a l l  f a i r n e s s ,  however, t h e  reader should keep i n  mind t h e  
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important po in t  t h a t  boundary-layer theory i n  general  i s  not appl icable  t o  t h e  Case B flow condition. Only 
t h e  merged t h i n  viscous shock layer  s tagnat ion poin t  ana lys i s  including "shock s l i p "  may be expected t o  have 
any physical  meaning. 

ACKNOWLEDGEMENT 

This work w a s  sponsored by the  Arnold Engineering Development Center (AEDC), A i r  Force Systems Command, 
U.S. Air Force, under Contract F40600-69-C-0001 with ARO, Inc. ,  Contract Operator, AEDC. The author wishes 
t o  thank D. H .  W u r s t  and M. Brown, Jr.,  Am, Inc., f o r  t h e i r  help i n  performing t h e  numerical ca lcu la t ions .  

REFERENCES 

1191 

AGARD - L e t t e r  from D r .  J. Lukasiewicz, Member, AGARD Fluid Dynamics Panel, Apr i l  7, 1967. 

Blottner,  F.G. -- "Nonequilibrium Laminar Boundary Layer Flow of Ionized A i r . "  AIAA Journal ,  Vol. 2 ,  
NO. 11, 1964, pp. 1921-1927. 

Blo t tner ,  F.G. "Nonequilibrium Laminar Boundary Layer Flow of a Binary G a s . "  General E l e c t r i c  TIS 
R63SD17, 1963. 

Blottner, F.G. "Nonequilibrium Laminar Boundary Layer Flow of Ionized A i r  ." General E l e c t r i c  TIS 
R64DS56, 1964. 

Lenard, M. "Chemically Reacting Boundary Layers. " General E l e c t r i c  TIS R64SD14, 1964. 

Bortner, M.H. "Chemical Kinet ics  i n  a Re-entry Flow Field."  General E l e c t r i c  TIS R63SD63, 1963. 

Moore, J . A .  "Transport Propert ies  f o r  S l i g h t l y  Ionized G a s  Mixtures ." TRW Doc. No. 09823-6719-R0-00, 
1968. 

Browne, W .G. General Electric Company, Missile and Space Division, Re-entry Systems Department, 
Personal Communication. 

Dorrance, W .H. V i s c o u s  Hypersonic Flow, M c G r a w - H i 1 1  , New York, 1962. 

Moore, J .A .  "Chemical Nonequilibrium i n  Viscous Flows." Ph.D. Disser ta t ion ,  S t a t e  University of New 
York a t  Buffalo, 1967. 

Adams, J . C . ,  Jr., L e w i s ,  C .H . ,  Brahinsky, H.S. and Marchand, E.O. "Effects  of  Chemical Nonequilibrium, 
M a s s  Transfer ,  and Viscous In te rac t ion  on Spherical ly  Blunted Cones a t  Hypersonic Conditions." AIAA 
Prepr in t  69-168, 1969. 

Kaplan, B.  "The Nonequilibrium A i r  Boundary Layer on a Blunt-Nosed Body." General E l e c t r i c  TIS 68SD227, 
1968. 

Conte, S.D. Elementary Numerical Analysis. McGraw-Hill, New York, 1965. 

Holt , J.F. "Numerical Solution of Nonlinear Two-Point Boundary Problems by F i n i t e  Difference Methods. " 
ASSOC. f o r  Computing Mach. Communications, Vol. 7 ,  No. 6 ,  pp. 366-373, 1964. 

Fay, J .A. and Kaye, H .  "A Finite-Difference Solut ion of Similar  Nonequilibrium Boundary Layers. " 
AIAA Journal ,  Vol. 5, No. 11, pp. 1949-1954, 1967. 

Cheng, H.K. "The Blunt-Body Problem i n  Hypersonic Flow a t  Low Reynolds Number." Come11 Aeronautical 
Laboratory, Inc. AF-1285-A-10, 1963. 

Chug,  P.M. "Hypersonic Viscous Shock Layer of Nonequilibrium Dissociated G a s . "  NASA TR R-109, 1961. 

Howe,  J.T. and Viegas, J .R.  "Solutions of  t h e  Ionizing Radiating Shock Layer, Including Reabsorption 
and Foreign Species Ef fec ts ,  and Stagnation Region Heat Transfer." NASA TR R-159, 1963. 

Lee, R.H.C. and Zier ten,  T.A. "Merged Layer Ionizat ion i n  t h e  Stagnation Region of  a Blunt Body." 
Aerospace Corp. TR-1001 (S2240-10)-1, 1967. 

H o w e ,  J.T. and Sheaffer ,  Y.S. " M a s s  Addition i n  t h e  Stagnation Region f o r  Velocity up t o  50,000 Feet  
P e r  Second." NASA TR R-207, 1964. 

Goldberg, L. "The St ruc ture  of  t h e  V i s c o u s  Hypersonic Shock Layer." General E l e c t r i c  TIS R65SD50, 
1965. 

Goldberg, L. and Scala ,  S . M .  " M a s s  Transfer i n  t h e  Low Reynolds Number V i s c o u s  Layer Around t h e  
Forward Region of a Hypersonic Vehicle." 

Chen, S.Y., Aroesty, J .  and Mobley, R. "The Hypersonic Viscous Shock Layer with M a s s  Transfer ."  
Rand Memorandum RM-4631-PRI 1966. 

Lewis, C.H. and Burgess, E.G. 111. "Altitude-Velocity Table and Charts f o r  Imperfect A i r . "  Arnold 
Engineering Development Center TDR-64-214, 1965. 

General E l e c t r i c  TIS R65SD27, 1965. 



NOMENCLATURE 

A,, base cross-sect ional  a r e a  

C sk in- f r ic t ion  drag c o e f f i c i e n t  referenced t o  base area 

C pressure drag c o e f f i c i e n t  referenced t o  base area 

Cf = 2Tw/p,Vm skin- f r ic t ion  c o e f f i c i e n t  

c m a s s  f rac t ion  of spec ies  i 

c 

f '  = u/Ue ve loc i ty  r a t i o  

Ho stagnat ion enthalpy 

h enthalpy 

M, free-stream Mach number 

P i n v i s c i d  pressure 

P; 

P r  Prandt l  number 

Ps 

D f 

DP 
2 

i 

P 
s p e c i f i c  h e a t  a t  constant  pressure 

free-stream normal shock p i t o t  pressure 

i n v i s c i d  pressure behind normal shock 

w a l l  h e a t  f lux  

Res = PmVmrN/pS shock Reynolds number 

Re-= PmVmrN/pm Reynolds number based on nose radius  and free-stream conditions 

rN nose radius ,  1,0 i n .  

St,= R/P,V, (H -h ) Stanton number based on free-stream conditions o w  

S 

T 

Te 

TS 

'e 

U 

VW 

Y 

A 

6 

6* 

sur face  d is tance  measured from stagnat ion poin t  

temperature 

temperature a t  edge of boundary layer  

free-stream normal shock s tagnat ion temperature 

temperature behind normal shock 

i n v i s c i d  tangent ia l  ve loc i ty  a t  edge of boundary layer  

t a n g e n t i a l  ve loc i ty  component 

f ree-stream veloc i ty  

d is tance  normal t o  t h e  sur face  

shock-layer thickness  

boundary-layer thickness  

boundary-layer displacement thickness  

E= P,/P, normal shock densi ty  r a t i o  

e=  T/Te temperature r a t i o  

p viscos i ty  

C,n transformed coordinates def ined by Blo t tner  [21 

p densi ty  

Subscr ipts  

BL boundary l a y e r  

ECW equi l ibr ium c a t a l y t i c  w a l l  

EQUIL equi l ibr ium 



96 

e 

MPVSL merged t h i n  viscous shock layer  with "shock s l i p "  

NCW nonca ta ly t ic  w a l l  

NEQ nonequilibrium 

o s tagnat ion condi t ions 

s nonnal shock conditions 

TVSL t h i n  viscous shock layer  without "shock s l ip" '  

w wal l  

( ) A  normal shock s tagnat ion condi t ions 

- f ree-s t reamcondit ions 

condi t ions a t  ou ter  edge of boundary layer  
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TABLE 1 

Gnditions for AGARD Engineering Applications Section 
Hyperboloid (10.0' Asymptotic Half-Angle) 

Case 

- 
A 

"03 
(ftlsec) 

Re03 
(Based on 
nose ra- 
dius of 

Po' 
(atm) 

6.0352' 

0.0129" 

0.01221 

Altitude M, 

20.178 

r N  1.0 I in.) 
I I 

226.98 1 1.0997 x I 179,828.5 20,000.0 

B '1  250,000.0121.744 I20,000.0 I 195.46 I2.oO74x I 430.9 5,301.9' I 1,000.0 I 0.1886 I 0.2237 I 
C ~ 2 5 0 , ~ . 0 ~ 2 1 . 7 4 4 ~ 2 0 , 0 w ) . O  I 1 9 5 . 4 6 1 2 . 0 0 7 4 ~ 1 0 ~ ~ 1  430.9 18,678.21 I 1,000.0 I 0.0535 I 0.2237 I 

*Normal Shock Equil ibrium Stagna tion Conditions 

tNormal Shock Ideal Gas fy = 1.40) Stagnation Conditions 

(Based on Sutherland Vlscoslty Law) 

TABLE 2 

Chemical Reactions and Rates 

- 
a f 

- I  

- I  

- I  

- I  

- I  

- I  

- I  

3/ 

0 

0 

I 

- 

- 

Catal  y t  I c 
Bodv ( M I  

e ?Gk cb "b c f 

2.3 1019 

0.5 x 1019 

3.0 x l O 1 O  

3.0 x 1019 

1.3 x 1O2O 

1 .9  1019 

2 .4  1017 

4.3 

2 .0  1014 

1.3 x I08 

6.8 x I O l 3  

React i on 

02 + 02= 20 + 02 

0 2 + 0 = 2 0 + 0  

02 + M 20 + M 

N2 + N 2 x  2N + N2 

N2 + N z ' 2 N  + N 

N2 + M 

NO + M N+O+M 

N O + O Z 0 2 + N  

N2 + 0 NO + N 

N2 + 02z 2NO 

2N + M 

N + o 2 NO+ +e- 

59,400 

59,400 

59,400 

113,200 

I 13,200 

113,200 

75 ~ 500 

IY, 100 

37,750 

61,600 

31,900 

1.9 x 1016 

7.1 x I O 1 '  

2.5 1015 

2.0 x 1018 

7.0 x 1018 

1.0 x 1018 

(5.0 x 1016 

1.8 x I O 8  

1.5 1013 

1 . 0  1013 

2.0 1 0 1 ~  

-1/2 

-1/2 

-1/2 

- I  

- I  

- I  

-1/2 

3/2 

0 

0 

- I  

0 

0 

0 

0 

0 

0 

0 

3020 

0 

40,000 

0 

N,Nz,NO, I n e r t  

0,02,NO, I n e r t  

0,0z,N,N2. I n e r t  

Note: React ion r a t e s  are from Bortner,  M. H. "Chemical K i n e t i c s  i n  a Re-entry F low F ie ld . "  
GE T I  S R63S063, August 1963. 

k f  = C f  Taf exp (-e 

T i n  'I< 

/kT),  &/mole sec kb = CbTab exp (-e,,b/kT) 
0, f 

k i s  Boltzmann's constant  
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TABLE 3 

Stagnation Point Data fo r  AGARD Case B 

Boundary Layer So lu t l on  

Nonequl l lbr lum BL Frozen BL 
Equ l l l h r l um Outer Edge Equi I l b r l u m  Outer Edge 

ECW NCW ECW NCW 

-qwL (Btu/ f t2-sec)  145.00 42.07 145.76 42.00 

6*/rN -0.005 16 0.00005 -0.00805 -0.00001 

6/rN ( e  f'=0.995) 0.1228 0.1246 0. I225 0. I246 

PG ( I h f / f t 2 )  27,299 c 

T o  ( O R )  9543.3 

Species Mass Fract ions 

C I  ECW 

0 5.16-10 

02 2. so-0 I 

NO 5.94-05 

N 1.23-21 

NO' 4.8 1-25 

N2 7.50-01 

EQUI L 

NCW Outor Edge ECW NCW 

2.35-01 2.34-01 5.13-10 2.34-01 

7.78-06 1.64-05 2.47-01 1.64-05 

1.17-04 1.70-03 5.91-05 1.70-03 

2.46-01 2.47-01 1.23-21 2.47-01 

1.25-04 2.72-04 4.80-25 2.72-04 

5.19-01 5.17-01 7.53-01 5.17-01 

Th in  Viscous Shock Layer So lu t i on  

Nonequl I l b r i u m  Frozen 
€01 NCW ECW NCW 

- G ~ J ~  (Btu/ f tz-sec)  249.35 247.55 249.33 249.31 

A/rN 0.0642 0.0643 0.0644 0.0644 

P, ( I b f / f t 2 )  24.818 c 

Ts ( O R )  24494.8 * 

Species Mass Fract ions 

C l  ECW 

0 5.24-10 

02 2.34-01 

NO 5.81 -05 

N 1.30-21 

NO' 5.00-25 

N 2  7.65-01 

Outer 
NCW Edge ECW f l 0 1  

3.69-03 0 5.24-10 0 

2.28-01 2.35-01 2.34-01 2.35-0 I 

2.17-03 0 5.81-05 0 

2.78-04 0 1.30-21 0 

I. 34-09 0 5.00-25 0 

7.66-01 7.65-01 7.65-01 7.65-0 I 

Msrged Th in  Viscous Shock Layer So lu t i on  

Nonequl l lbr lum 
ECW NCW 

-G& (B tu l f t 2 -5ec )  178.02 

A / r N  0.0617 

Ps ( I b f / f t 2 )  25.498 

T, ( O R )  19960.0 

Species Mas5 Fract ions 

C l  

0 

02 

NO 

N 

NO' 

N2 

Addl t lonal  lnformatlon: 

172.08 

0.0615 

25.541 

I9620 .O 

ECW 

Shock Wall 

4.47-03 5.18-10 

2.28-01 2.35-01 

2.05-03 5.81-05 

3.52-04 1.29-21 

2.74-09 4.93-75 

7.65-01 7.65-01 

rN = 0.083333 f t  

T, = 1800.0 O R  

E = 0.1194 (Frozen Normal Shock Crossing) 

Re, = 19.40 

NCW 

Shock Wall 

7.75-03 9.97-03 

2.25-01 2.21-01 

3.28-03 4.68-03 

4.52-04 4.09-04 

I. 18-08 I .63-08 

7.63-01 7.64-01 
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10-1 

10-2 

TABLE 4 

AGAR0 Case B /N, N .--------- 0 0 0  .-L_------- N - Nonequilibrium 
Equilibrium 
Frozen 

---_- : 

P i  - 27.299 lblft2 
9 T l  * 9543.3OR 

Integrated Skin-Friction and Pressure Drag Coefficients 

Nonequi I i b r i u m  Outer  Edge 
E q u i l i b r i u m  C a t a l y t i c  Wall  0 .114  0.0547 
N o n c a t a l y t i c  \Val I 0. I 1 4  J.0520 

E q u i l i b r i u m  Outer  Edge 
E q u i l i b r i u m  C a t a l y t i c  Wal I 0.  I I 4  0.0625 
N o n c a t a l y t i c  Wal I 0. I14  0 .0602  

Frozen Outer  Edge 
E q u i l i b r i u m  C a t a l y t i c  Wail 0. I 1 4  0 .0549  
N o n c a t a l y t i c  Wai I 0.114 0 .0521  

Condi t ions  

AGARO Case B 

= - 112 P,V, Ab 

where Ab = 3.62206 f t 2  a t  s / rN  = 50 .0  

AGARO Case B 
NE0 Inviscid Outer Edge 
Frozen Inviscid Outer Edge 
EQUIL Inviscid Outer Edge --_-_ 

p, - 0.042481 lbflft2 
T, * 351.828'R 
U, - 2W00. 0 ftlsec 

10-2 t I I 1 I I 3 I I 1 I I I I I , , , , , , , , , , 
0.W 4.00 8.W 12.00 16.00 20.00 24.00 28.00 32.00 36.W 40.00 44.00 48.M) 

slrN 

Fig. 1 Inviscid outer edge conditions 

Fig.2 Outer edge species d is t r ibu t ion  using inviscid streamtube expansion 
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0.250 

0.225 

0.200 

0.175 

AGARD Case B 
0.250 

- 
AGAR0 Case B 

- Stagnation Point 

- EL with le -9543.3% 

. 

Nonequil ibrium Flow 

TVSL wi th  1, - 2U94. 78OR 
M N S L  with le - 24494.7B0R 

- EL 
TVSL ----_ 

- M N S L  
0.175 

1.80- 

1.60- 

1.40- 

1.20 

0.150} 

- 

0.125 
yirN i 

0. im 1 ECW and N C W ~  

0.075 

0.050 

0.025 

0. WO 
0.09 0.10 0.20 0.30  0.40 0.50 0.W 0.70 0.80 0.90 1 . C O  

ulu, 

Fig. 3 Stagnation point velocity prof i les  

AGARD Case B 
Stqnat ion Point 
Nonequil ibrium Flow 
Equil ibrium Catalyiic Wall 
- EL 

TVSL 
M N S L  

_ _ - _  

NOt < for TVSL and M N S L  

lo*i.oM) 0.025 0.050 0.075 0. IW 0.125 0.150 0.175 0.200 0.225 0.250 

)'ITN 

Fig. 5(a) Stagnation point species prof i les  

b o k N  

AGARD Case B 

1 . W -  

0.80- 

0.60- 

0.150 

0.125 

YirN 1 
N C W y  

0.075 -",.l 

0.025 

0. WO 
0.000.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 

Tme 

Fig. 4 Stagnation point temperature prof i les  

? ACARD Case B 
stagnation Point 
Nonequil ibrium Flow 
NoncatalVlic Wall 

EL -. Il::k . NO 1-11 M N S L  TVSL 

-- - 4 N  NOt 
CI 

10'~ 

NO' < 10-710r TVSL and M N S L  

lo-:, WO 0.025 0.050 0.075 0.1W 0.125 0. 150 0.175 0.2W 0.225 0.250 

YlrN 

Figure 5(b) 

'"1 
ACARD Case B 

10-1 

cf, 

EQUIL. EC\V J r E Q U l L  NCW --========= NEQ, NCW 
Frnipn N r W  NEQ, ECW . . -- -. ., . .- . . 

'Frozen, ECW 

10-3 
0.W 4.W 8.W 12.W 16.W 20.W 24.W 28.W 32.W 36.W 40.W 41.W 4 . W  

sirN 

Fig. 6 Displacement thickness distribution Fig.7 Skin fr ic t ion  distribution 
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8 . W r  

'."- 
6.46- 

5 . 6 0 -  

Id 

I02  

AGARD Case B 
Noncatalytic wall. T, .18ffi. OOR I 

- NEQ Boundary Layer, NEQ Inviscid Outer Edge I 
Frozen Boundary Layer. Frozen Inviscid Outer Edgd 
NEQ Boundary Layer. EOUIL Inviscid Outer Edge I -____ 

I 
I 

AGARD Case B 

6.40 

5.60- 

4.80 

'MUIL. ECW EQUlL NCW 

10' 

Frozen, NCW 

- AGARD Case B 
Equilibrium Catalytic Wall, T, = 1800.CoR 

- NEQ Boundary Layer, NEQ Inviscid Outer Edge 

_ _ _ _ _ _  NEQ Boundary Layer. EQUIL Inviscid Outer Edge - 

I 
Frozen Boundary Layer. Frozen Inviscid Outer Edge1 

I 

I 

Fig.8 Dimensional surface heat transfer 
d i s t r ibu t ion  

I 

AGARD Case B 

NCW ,-Frozen. ECW 

Frozen. NCW E W l l  ECW- 

0.w 4 . w  8.co 12.w 16.w 2 0 . 0 ~  z4.w 28.w 32.w 36.00 40.00 M.W a m  
slrN 

Fig.9 Stanton number d is t r ibu t ion  

AGARD Case B 

AGARD Case B 

sfrN 

Fig. 10 Surface heat t ransfer  d i s t r ibu t ion  

8. w 

7.20[ 

3.20 

2.40 

I.  60 

0.80 1. 0 

1.0 
0. m 

0.W 0.10 0.20 0.30 0.4 0.56 6.60 0.70 6.80 0.W 1.80 

l0:!X '4 ' 8  U1 '12'00 16'W'ZO'00'24'00'Z8'00'3200'36'W'4C'W'M'00 48'00' 
slrN 

Fig.11 Surface heat t ransfer  r a t i o  
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COMPUTATION OF HIGHER-ORDER BOUNDARY-LAYER EFFECTS W I T H  

A FIRST-ORDER TREATMENT AND COMPARISON W I T H  EXPERIMENTAL DATA 

by Clark H. Lewis* 

SUMMARY 

The e f f e c t s  o f  t ransverse  curvature, shock generated ex terna l  v o r t i c i t y ,  boundary-layer displacement, and 
w a l l  s l i p  and temperature jump are considered as f i r s t - o r d e r  boundary-layer e f f e c t s .  
l ayer  equations were modified t o  include t h e  higher-order e f f e c t s ,  and flows over a 9-deg half-angle b lunt  
cone were considered a t  M, = 9 and 18. Comparisons a r e  made with second-order theory and experimental da ta .  
Primary i n t e r e s t  i s  given t o  predic t ing  t h e  higher-order e f f e c t s  on z e r o - l i f t  drag and comparison with experi- 
mental da ta .  Range of a p p l i c a b i l i t y  of  higher-order boundary-layer theory i s  indica ted  based upon t h e  a b i l i t y  
t o  p r e d i c t  z e r o - l i f t  drag. Vor t ic i ty  w a s  t h e  dominant higher-order e f f e c t ,  and t h e  theory i s  most appl icable  
t o  r e l a t i v e l y  s h o r t  s lender  bodies. A t  very l o w  Reynolds numbers, s t rong coupling of t h e  higher-order e f f e c t s  
was found t o  e x i s t .  

The c l a s s i c a l  boundary- 

INTRODUCTION 

Experimental d a t a  from wind tunnel  tests have provided t h e  incent ive  f o r  a study of  higher-order boundary- 
Several  years  ago t h e  s t rong  inf luence of higher-order 

Since t h a t  
l a y e r  e f f e c t s  under near ly  per fec t  gas condi t ions.  
viscous e f f e c t s  w a s  experimentally observed on t h e  drag of  s lender  cones a t  M, = 10 t o  20 [ l ] .  
time a study of t h e o r e t i c a l  and numerical methods has been made t o  analyze and p r e d i c t  observed experimental 
t rends.  
d i c t i n g  the observed r e s u l t s  over the e n t i r e  ranges of Mach and Reynolds numbers experimentally s tudied.  

To d a t e  the b e s t  ava i lab le  t h e o r e t i c a l  models and numerical methods have not been successfu l  i n  pre- 

The purpose of the present  paper i s  t o  i n d i c a t e  t h e  r e su l t s  of t h e  appl ica t ion  of f i r s t -  and second-order 
boundary-layer theories to a sphere-cone f o r  a range of Reynolds numbers a t  M, = 9 and 18. 
focus a t t e n t i o n  on some i n t e r e s t i n g  r e s u l t s  from t h e  appl ica t ion  of  t h e  t h e o r e t i c a l  models and methods, and 
t h e  comparisons i n d i c a t e  where one might expect t h e  t h e o r e t i c a l  t o  be appl icable .  

The i n t e n t  i s  t o  

L e w i s  and Whitf ie ld  [ l ]  presented some of t h e  e a r l y  work done i n  von K m a n  Gas Dynamics F a c i l i t y  (VKF) 
where they appl ied i t e r a t e d  inviscid-viscous flow f i e l d  models t o  p r e d i c t  pressure and heat- t ransfer  d i s t r i -  
but ions and z e r o - l i f t  drag of a 9-deg half-angle, spher ica l ly  blunted cone a t  M, = 9 and 18. 
an inverse  b lunt  body and c h a r a c t e r i s t i c s  so lu t ion  f o r  t h e  i n v i s c i d  outer  flow w a s  i t e r a t e d  with a f i r s t - o r d e r  
boundary-layer so lu t ion  which included approximate t ransverse  curvature terms. 
teristics method used w a s  due t o  Inouye, Rakich, and Lmax [21 and the boundary layer  method of C l u t t e r  and 
Smith [31. In  many respec ts  t h e  r e s u l t s  of  the predic t ions  of  L e w i s  and Whitf ie ld  were i n  surpr i s ing ly  good 
agreement with t h e  experimental r e su l t s  s ince  the e f f e c t s  of shock-generated ex terna l  v o r t i c i t y  and s l i p  and 
temperature jump were not  considered and the e f f e c t s  of  t ransverse  curvature and displacement were only 
approximately t r e a t e d .  

In t h a t  work 

The b lunt  body and charac- 

Davis and Flugge-Lotz [41 considered second-order boundary-layer e f f e c t s  on hyperboloids, paraboloids, 
and spheres a t  i n f i n i t e  Mach number and ten ,  respect ively.  The theory of Van Dyke [51 w a s  used w i t h  an impli- 
c i t  f i n i t e - d i f f e r e n c e  scheme o r i g i n a l l y  proposed by FlUgge-Lotz and Blo t tner  [61 f o r  t r e a t i n g  t h e  classical 
f i r s t - o r d e r  boundary-layer equations f o r  two-dimensional flows. As w i l l  be s h a m  i n  this paper, the theory 
of Van Dyke when coupled with the i m p l i c i t  f i n i t e - d i f f e r e n c e  method of Davis and FlUqqe-Lotz gives  a powerful 
t o o l  f o r  extending c l a s s i c a l  boundary-layer theory to  lower Reynolds number. 

I n  addi t ion  t o  t h e  second-order treatment based on V a n  Dyke-Davis and FlUgqe-Lotz, a f i r s t - o r d e r  treatment 
of v o r t i c i t y ,  displacement, t ransverse  curvature (TVC), and s l i p  and temperature jump (STJ) i s  developed i n  
t h e  present  paper based on a modification of t h e  f i r s t - o r d e r  boundary-layer method of C l u t t e r  and Smith. The 
treatment of v o r t i c i t y  i s  based on t h e  suggestion of Hayes and Probstein [71 where t h e  outer  boundary condition 
i s  changed t o  account f o r  an increase  i n  ve loc i ty  and a nonzero ve loc i ty  grad ien t .  

To emphasize s o m e  of  t h e  more i n t e r e s t i n g  r e s u l t s  obtained with t h e  f i r s t -  and second-order methods, only 
general  descr ip t ions  of  the methods w i l l  be made and a t t e n t i o n  w i l l  be  focused on results such as sk in- f r ic t ion  
c o e f f i c i e n t s ,  and pressure and fr ic t ion-drag coef f ic ien ts .  These d a t a  w i l l  then be  compared with experimental 
d a t a ,  and some general  conclusions w i l l  be drawn. 

HIGHER-ORDER BOUNDARY-LAYER THEORY 

Second-Order Ef fec ts  

Since t h e  second-order boundary-layer theory has been t r e a t e d  i n  d e t a i l  elsewhere by Van Dyke [51, Davis 
and FlUgge-Lotz [41, and Adams 1101 and Marchand, L e w i s  and Davis [ l l l ,  only those numerical methods which 
have been recent ly  developed w i l l  be discussed i n  d e t a i l .  Those i n t e r e s t e d  i n  the second-order theory are 
r e f e r r e d  t o  t h e  above papers f o r  a d e t a i l e d  presenta t ion  of t h e  theory and so lu t ion  method used t o  solve the 
second-order boundary-layer problem. Van Dyke [12] has recent ly  surveyed higher-order boundary-layer theory. 

The second-order e f f e c t s  of ex terna l  v o r t i c i t y ,  displacement, t ransverse  and longi tudina l  curvatures, and 
s l i p  and temperature jump w e r e  i d e n t i f i e d  by V a n  DLke [51 and a method of so lu t ion  developed by Davis and 
FlUgge-Lotz [4] .  
second-order theory [ S I ,  the second-order i n v i s c i d  outer-flow pressure grad ien t  i s  

The d iv is ion  of e f f e c t s  due t o  v o r t i c i t y  and displacement i s  a r b i t r a r y .  From Van Dyke's 
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where prime denotes der iva t ives  with respect  t o  t h e  stream function. 
and v o r t i c i t y  a r i s e s  through t h e  las t  term i n  Eq. (1). The invisSid v o r t i c i t y  i s  = rw3R1(T1S1' - HI') 
a t  y = 0 .  
of va on t h e  displacement thickness  6*. Van Dyke c a l l e d  t h e  e f f e c t  "displacement speed" i f  t h e  l a s t  term i n  
Eq. (1) is considered as a v o r t i c i t y  e f f e c t ;  it was c a l l e d  "displacement pressure"  i f  t h e  term i s  t r e a t e d  as 
a displacement e f f e c t .  The r e s u l t i n g  sum of both e f f e c t s  i s  independent of t h e  t w o  c l a s s i f i c a t i o n s ;  however, 
it i s  important t o  note t h e  coupling between t h e  two e f f e c t s  and t o  consider t h e  sum of both e f f e c t s  s i n c e  t h e  
r e s u l t i n g  separa te  e f f e c t s  a r e  s t rongly a f fec ted  by t h e  treatment (see Adams 1101 and L e w i s  1131). 

The i n t e r a c t i o n  between displacement 

Davis and FlUgge-Lotz obtained t h e  expression V2 = (rw3R1U16*)x/rw3R1 which s h m s  t h e  dependence 

In what i s  presented i n  t h i s  paper and denoted as second-order displacement e f f e c t ,  t h e  displacement 
pressure notat ion appl ies .  In  general ,  t h i s  d iv is ion  of e f f e c t s  reduces the v o r t i c i t y  e f f e c t  and correspond- 
ingly increases  t h e  displacement e f f e c t .  

The second-order contr ibut ion due t o  longi tudinal  curvature  w a s  approximately computed from t h e  second- 
order  theory and found t o  be very s m a l l ,  and thus i s  not considered f u r t h e r  [U]. The e f f e c t  of t h e  discon- 
t i n u i t y  i n  sur face  curvature i s  important f o r  t h i s  s m a l l  e f f e c t ,  bu t  a more accurate  numerical treatment does 
not appear t o  be warranted. 

The second-order e f f e c t  due t o  s l i p  and temperature jump follows V a n  Dyke. 

FIRST -ORDER EFFECTS 

Transverse Curvature 

The o r i g i n a l  treatment of C l u t t e r  and smith [31 included an e r r o r  i n  t h e  t ransverse  curvature terms 
a r i s i n g  from t h e  transformations and evaluation of t h e  stream funct ion.  The e r r o r  would be d i f f i c u l t  t o  
cor rec t  without a reformulation i n  terms of a more appropriate  s e t  of transformations. In t h e  revised version 
of t h e  repor t ,  C l u t t e r  and Smith termed t h e  t ransverse curvature as approximate (which indeed it must b e ) ,  and 
t h e  degree of approximation w a s  never determined t o  t h i s  writer's.knowledge. 
which has been made of  t h e  various forms of t h e  Douglas programs, some comparisons w i l l  be  given here  t o  
i l l u s t r a t e  t h e  degree of approximation which one might expect from using t h e  so-called "approximate" C l u t t e r  
and Smith formulation. 

Because of t h e  extensive use 

A new and c o r r e c t  formulation of t h e  f i r s t -order  transverse curvature e f f e c t  has recent ly  been given by 
J a f f e ,  Lind, and Smith [91. In t h i s  more recent  work, t h e  Levy-Lees and Probstein and E l l i o t t  transformations 
were combined so t h a t  t h e  r e s u l t i n g  transformed momentum and energy-equations a r e  q u i t e  s i m i l a r  i n  form t o  
t h e  C l u t t e r  and Smith equations with addi t iona l  terms. Attention i s  drawn t o  t h i s  l a t e r  work s ince  i n  addi- 
t i o n  t o  correct ion of t h e  e r r o r  i n  t ransverse curvature c e r t a i n  o ther  d i f f i c u l t i e s  and def ic ienc ies  with t h e  
o r i g i n a l  C l u t t e r  and Smith treatment have been el iminated,  and t h e  new method i s  capable o f  t r e a t i n g  nonreact- 
ing binary gas boundary layers  which a r e  of considerable cur ren t  i n t e r e s t .  

S l i p  and Temperature Jump 

The f i r s t - o r d e r  s l i p  and temperature jump boundary conditions a r e  given i n  Appendix A. 

Displacement Ef fec ts  

The e f f e c t s  of  displacement were based upon t h e  now standard approach [l, 11, 13, 171.  The geometric 
sphere-cone w a s  perturbed by adding t h e  boundary-layer displacement thickness .  The r e s u l t i n g  "ef fec t ive"  body 
w a s  curve f i t t e d ,  and t h e  i n v i s c i d  b lunt  body and c h a r a c t e r i s t i c s  so lu t ions  were obtained f o r  t h e  "ef fec t ive"  
body geometry [U, 131. In t h i s  paper, t h e  inviscid-viscous flow f i e l d  was not  i t e r a t e d ;  a procedure con- 
s i s t e n t  with second-order boundary-layer theory [131. The s i g n i f i c a n t  d i f fe rence  between t h e  f i r s t -  and 
second-order t reatments  i s  i n  t h e  normal pressure gradient .  In t h e  second-order theory,  t h e  second-order 
normal momentum equation was used t o  ex t rapola te  t h e  pressure along t h e  e f f e c t i v e  w a l l  t o  t h e  geometric wal l  
o r  body surface.  Consistent with t h e  o r i g i n a l  f i r s t - o r d e r  boundary-layer theory. t h e  normal component of  
momentum w a s  no t  considered i n  t h e  f i r s t - o r d e r  t reatment ,  and t h e  pressure w a s  assumed constant  throughout t h e  
boundary-layer normal t o  t h e  sur face .  Therefore, i n  t h e  f i r s t - o r d e r  treatment t h e  perturbed i n v i s c i d  outer  
flow pressure i s  impressed upon t h e  f i r s t -order  boundary layer  as the  edge pressure.  

The comparative e f f e c t s  on t h e  f i r s t -  and second-order so lu t ions  a r e  as follows: 

F i r s t ,  over t h e  nose where t h e  longi tudinal  curvature K = 1, t h e  pressure on t h e  sur face  may be e i t h e r  
increased or decreased from t h e  e f f e c t i v e  w a l l  value, depending on whether t h e  displacement thickness  i s  
negative (highly cooled w a l l )  o r  pos i t ive .  Over t h e  conical  afterbody where K = 0, t h e  f i r s t -  and second- 
order  t reatments  y i e l d  t h e  same sur face  pressure,  assuming equivalent displacement thicknesses .  
because of t h e  e f f e c t s  of  t h e  inv isc id  v o r t i c i t y  along the  w a l l ,  t h e  ve loc i ty  a t  t h e  sur face  i s  always less 
over t h e  conical  afterbody based upon t h e  second-order theory. 
independent of  inclusion o r  exclusion of t h e  v o r t i c i t y  e f f e c t  i n  t h e  second-order boundary-layer t reatment .  

However, 

This e f f e c t  due t o  i n v i s c i d  v o r t i c i t y  i s  

Secondly, t h e  f i r s t - o r d e r  displacement treatment always produces an increase  i n  f r i c t i o n  and pressure 
drags. 
displacement thickness  and longi tudina l  curvature and t h a t  of inv isc id  ex terna l  v o r t i c i t y .  

The second-order e f f e c t s  may be e i t h e r  p o s i t i v e  or  negat ive,  depending on t h e  s ign  and magnitude of  

These two major f a c t o r s  can cause t h e  f i r s t -  and second-order displacement treatments t o  y i e l d  substan- 
t i a l l y  d i f f e r e n t  e f f e c t s  on such global  q u a n t i t i e s  as  drag and t o t a l  heat  t r a n s f e r ;  however, f o r  t h e  length 
of  t h e  cone and o ther  condi t ions t r e a t e d  here ,  t h e  f i r s t -  and second-order treatments predicted induced-drag 
e f f e c t s  i n  good agreement. 
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External Vor t ic i ty  

Hayes and Probstein [71 def ined a v o r t i c i t y  i n t e r a c t i o n  parameter as 

v o r t i c i t y  a t  t h e  outer  edge of boundary layer  
average v o r t i c i t y  across  t h e  boundary layer  

Using t h e  expressions der ived by V a n  Dyke [51 f o r  t h e  v o r t i c i t y  a t  t h e  outer  edge and t h e  C l u t t e r  and Smith 
t ransformations,  it is shown i n  Appendix B t h a t  t h e  outer  boundary condition f o r  t h e  f i r s t - o r d e r  momentum 
equation i s  f '  The C l u t t e r  and Smi? method w a s  modified t o  permit t h e  use of t h i s  
v o r i t i c t y  i n t e r a c t i o n  bounJary condition [131 . 

n =  

= 1 + nJnm(pe/p)dT). 

Because of t h e  i m p l i c i t  r e l a t i o n s h i p  between t h e  i n v i s c i d  entropy layer  and t h e  boundary layer ,  a v o r t i -  
c i t y  i n t e r a c t i o n  model i s  only appl icable  where t h e  entropy layer  i s  th ick  with respect  t o  t h e  boundary layer  
(such as the nose region of a b lunt  body). For long s lender  wisymmetric bodies ,  t h e  entropy layer  becomes 
t h i n  with respec t  t o  t h e  boundary layer  and some adjustment should be made i n  t h e  outer  boundary condition on 
the boundary layer .  Some models have been proposed which permit  t h e  boundary l a y e r  t o  "swallow" t h e  entropy 
l a y e r  and thereby reduce t h e  edge ve loc i ty  and i t s  gradient  from t h a t  cons is ten t  with secondrorder theory. 
This model, however, i s  highly approximate s ince  some physical  boundary-layer edge and i t s  corresponding 
stream funct ion are required t o  determine t h e  outer  boundary condi t ion.  A l s o ,  it i s  not  uncommon t o  f i n d  a t  
low Reynolds numbers t h a t  t h e  f i r s t - o r d e r  boundary-layer thickness  is g r e a t e r  than t h e  i n v i s c i d  shock-layer 
thickness  (see, e.g. Lewis and Whitf ie ld  [l]) . Under these  condi t ions it i s  not  clear how such matching i s  t o  
be accomplished. 

NUMERICAL RESULTS AND DISCUSSION 

The r e s u l t s  o f  t h e  f i r s t - o r d e r  treatment of  higher-order boundary-layer e f f e c t s  w i l l  f i r s t  be t e s t e d  by 
comparison with resu l t s  from t h e  second-order theory [5,4,10,111. Comparisons of t ransverse  curvature ,  vor- 
t i c i t y ,  s l i p  and temperature jump (as a s i n g l e  e f f e c t ) ,  and displacement w i l l  be  presented.  A s e n s i t i v e  quan- 
t i t y  f o r  such comparisons is  t h e  e f f e c t  on z e r o - l i f t  drag,  and t h i s  w i l l  be used pr imari ly  f o r  comparisons 
of numerical r e s u l t s  and experimental da ta .  
of second-order so lu t ions  i n  physical  var iab les  using a square-root v i scos i ty  law and so lu t ions  i n  transformed 
Levy-Lees var iab les  using t h e  Sutherland v iscos i ty  l a w .  A l l  so lu t ions  used p e r f e c t  gas  (y = 1 . 4 ) ,  constant  
Prandt l  number (Pr = 0.71), uniform wall temperature (Tw/To = 0.2 a t  M, = 9 and 0.066 a t  M, = 1 8 ) ,  and i d e n t i -  
cal  pressure d i s t r i b u t i o n s  from ideal-gas blunt  body and c h a r a c t e r i s t i c s  so lu t ions  a t  M, = 9 o r  18. 

The e f f e c t s  of v i scos i ty  l a w  a r e  a l s o  e a s i l y  shown by comparison 

The second-order so lu t ions  f o r  each v o r t i c i t y  and displacement based upon displacement pressure treatment 

I t  has been shown, however, t h a t  t h e  sum of both displacement and v o r t i c i t y  was unique 
were found t o  be flOVlW&pe. 
i n  physical  var iab les .  
and w a s  equal  t o  t h e  displacement speed treatment of  t h e  sum of  both e f f e c t s  [ l o ] .  
e f f e c t s  is unique, no l o s s  i n  accuracy i s  involved when comparisons are made with t h e i r  combined e f f e c t s .  

Transverse Curvature Effec ts  

The so lu t ions  were a f fec ted  by both Ay o r  A n  s t e p  s i z e s  and n, o r  its equivylent 

Since t h e  sum of t h e  two 

A comparison of  the transverse-curvature-induced f r i c t i o n  drag a t  M, = 18 is shown i n  Fig. 1. The 
d i f fe rences  are s m a l l  between second-order so lu t ions  w i t h  d i f f e r e n t  v i scos i ty  l a w s ;  however, t h e  approximate 
treatment of C l u t t e r  and Smith pred ic t s  an increment about 30 percent  less. This i s  a s i g n i f i c a n t  e r r o r ,  and 
t h e  C l u t t e r  and Smith treatment cannot be recommended. A s  noted earlier, TVC was cor rec t ly  t r e a t e d  by J a f f e ,  
Lind, and Smith [91. 

Vort ic i ty  In te rac t ion  Effec ts  

Figure 2 shows t h e  l o c a l  sk in- f r ic t ion  c o e f f i c i e n t  predicted by f i r s t -  and second-order methods. Good 
agreement e x i s t s  f o r  about 8.5 nose radii from t h e  s tagnat ion poin t .  
d i c t i o n  increases  whereas t h e  second-order r e s u l t  remains approximately constant  t o  t h e  base o f  t h e  cone 
(x = 16.4) .  

Beyond t h a t  po in t  t h e  f i r s t - o r d e r  pre-  

The e f f e c t s  of both Ax and AT) s t e p  s i z e s  were inves t iga ted  f o r  t h e  f i r s t - o r d e r  solut ions.  I t  w a s  found 
t h a t  t h e  so lu t ions  were s e n s i t i v e  t o  An bu t  i n s e n s i t i v e  t o  Ax step s i z e s .  
F i r s t ,  t h e  transformations used by C l u t t e r  and Smith are such that without v o r t i c i t y  e f f e c t s  t h e  c l a s s i c a l  
boundary layer  was s u b s t a n t i a l l y  reduced from n, = 6 a t  x = 0 t o  n, = 2 over much of t h e  conical  afterbody 
( f o r  longer bodies o r  bodies w i t h  more favorable  pressure grad ien t ,  nm < 1 w a s  n o t  uncommon). 
i n  boundary-layer thickness  i s  less i n  t h e  Levy-Lees transformed plane than i n  e i t h e r  t h e  physical  o r  C l u t t e r  
and Smith transformed plane. Therefore, f o r  c l a s s i c a l  boundary-layer s o l u t i o n s ,  t h e  C l u t t e r  and Smith t rans-  
formation i s  not  optimum f o r  bodies with s t rong favorable pressure grad ien ts .  
t h e  ex ten t  of  t h e  f i r s t - o r d e r  boundary l a y e r  with v o r t i c i t y  i n t e r a c t i o n  i s  l imi ted  by a l i n e  of maximum 
veloc i ty  flma = 1/(1 - hd/He)1/2. This l i m i t i n g  ve loc i ty ,  coupled 
with t h e  increasing f ' ( x )  a t  constant  n, s u b s t a n t i a l l y  reduced nm below t h e  allowed c l a s s i c a l  so lu t ion  value 
(131. 
t h e  body. 
i n t e g r a t e  t h e  momentum and energy equations. The so lu t ions  were accepted when similar ca lcu la t ions  were made 
with reduced s t e p  s i z e  and no s i g n i f i c a n t  changes w e r e  observed i n  fW" and 9,'. 
Ax-stepsize s i g n i f i c a n t l y  increased machine time without a f fec t ing  t h e  so lu t ion .  
p r o f i l e s  showed they asymptotically approached a l i n e a r  v a r i a t i o n  as n + nm [131. 

This i s  explained as follows: 

The var ia t ion  

Secondly, and more importantly, 

Along this l i n e  T i  = 0 and pi + -. 
It w a s  therefore  necessary t o  occasional ly  reduce t h e  AT) s t e p  s i z e  as t h e  so lu t ion  proceeded along 

The d a t a  normal t o  t h e  surface were in te rpola ted  so t h a t  a minimum of  200 ?I poin ts  were used t o  

Similar  reduction of 
Examination of  t h e  f (TI) 

The good agreement i n  Cf, f o r  x C 8.5 i s  g r a t i f y i n g  and might have been expected; however, t o  t h e  a u t h o r ' s  
knowledge, t h i s  i s  t h e  f i r s t  t i m e  t h e  essential agreement between f i r s t -  and second-order so lu t ions  has been 
demonstrated. 
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Displacement Ef fec ts  

F i r s t -  and second-order displacement-induced pressure and f r ic t ion-drag  increments a re  shown on Fig. 3. 

The two predict ions f o r  displacement-induced pressure drag d i f f e r  only by the e f f e c t  of  the normal 
Perturbed i n v i s c i d  outer-flow so lu t ions  were obtained f o r  four  values of  E a t  M, = 9 and three values a t  
Mm = 18. 
pressure gradient  over the nose; the e f f e c t  i s  included i n  the second-order b u t  not  i n  the f i r s t -order  
treatment. 

The d i f fe rences  between the t w o  treatments of  displacement-induced f r i c t i o n  drag a r e  la rger ,  and t h e  
r e su l t s  are more i n t e r e s t i n g .  In  t h e  f i r s t - o r d e r  treatment, only t h e  e f f e c t  of displacement of t h e  i n v i s c i d  
outer  flow-field pressure i s  included. In the second-order so lu t ions ,  however, t h e  e f f e c t s  of i n v i s c i d  
v o r t i c i t y  on the outer  edge ve loc i ty  and temperature are  also present .  

Caution must be  used when t ry ing  t o  general ize  the r e s u l t s  shown i n  Fig.  3. The second-order results 
f o r  displacement-induced pressure and f r ic t ion-drag  increments were not  simply l i n e a r l y  and quadra t ica l ly  
dependent, respect ively,  on E .  It i s  i n t e r e s t i n g  t o  note ,  however, t h a t  t h e  f i r s t -order  f r ic t ion-drag  r e s u l t s  
w e r e  quadra t ica l ly  dependent. 
induced f r i c t i o n  drag has been found. The e f f e c t s  of geometry (both sur face  s lope  and length) ,  wall-to- 
s tagnat ion temperature r a t i o ,  and v iscos i ty  law used had the s t ronges t  inf luence on second-order w a l l  shear- 
s t r e s s  d i s t r i b u t i o n .  For t h e  conditions t r e a t e d  here ,  the e f f e c t s  of  wall-to-stagnation temperature r a t i o  
caused small d i f fe rences  i n  the  induced-drag increments f o r  both f i r s t -  and second-order treatments. 

S l i p  and Temperature Jump Effec ts  

For o ther  bodies under d i f f e r e n t  condi t ions,  negat ive second-order displacement- 

The slip-and-temperature-jump-induced f r ic t ion-drag  r e su l t s  a r e  shown i n  Fig.  4 .  A t  t h e  highly cooled 
w a l l  conditions a t  Mm = 18, the second-order so lu t ion  i n  physical  var iab les  w a s  Ay-step s i z e  dependent, and 
w e  were unable t o  obta in  an acceptable so lu t ion  f o r  this e f f e c t  a t  these  condi t ions using physical  var iab les  
[ U ] .  I n  either the C l u t t e r  and Smith o r  Levy-Lees transformed planes,  the highly cooled wal l  presented no 
d i f f i c u l t y ,  and s t a b l e  so lu t ions  were obtained w i t h  reasonable (An = 0.025 o r  0.05) s t e p  s i z e s .  Both f i r s t -  
and second-order treatments evaluated the proper t ies  i n  t h e  s l i p  veloci ty  and temperature jump cons is ten t  
w i t h  those theories. The d i f fe rences  between f i r s t -  and second-rder t reatments  are la rge  f o r  t h i s  separate  
e f f e c t .  However, s ince  t h i s  drag component i s  small compared w i t h  o ther  second-order e f f e c t s ,  t h e  d i f fe rence  
between the two treatments of  this separa te  e f f e c t  w a s  not an important inf luence on the t o t a l  drag predic t ion  
f o r  E < 0.2. 

Coupled Effec ts  

The f i r s t - o r d e r  treatment of higher-order e f f e c t s  on sk in- f r ic t ion  c o e f f i c i e n t  a t  M, = 9 is  shown i n  
The r e s u l t s  are shown f o r  a la rge  value o f  the expansion parameter E = 0.533 i n  order  t o  magnify Fig. 5. 

sane of the e f f e c t s  and c l e a r l y  e s t a b l i s h  the s t rong coupling inf luence between c e r t a i n  e f f e c t s .  

I 
The individual  e f f e c t s  of  t ransverse  curvature (TVC) , v o r t i c i t y  (vor t )  , displacement (disp)  , and s l i p  

and temperature jump (STJ) on the sk in- f r ic t ion  coef f ic ien t  are seen by comparison w i t h  the c l a s s i c a l  f i r s t -  
order  axisymmetric result. 
induced compression region over the e f f e c t i v e  body and the r e s u l t i n g  displaced i n v i s c i d  o u t e r  flow. Although 
a t  the condi t ions considered i n  Fig. 5 each separa te  higher-order e f f e c t  had a s i g n i f i c a n t  inf luence on the 
sk in- f r ic t ion  d i s t r i b u t i o n ,  the separa te  e f f e c t  of v o r t i c i t y  was c l e a r l y  dominant. The s t rong  e f f e c t  of  
coupling displacement and v o r t i c i t y  can be seen by comparison of  t h e  r e s u l t s  of  these  combined e f f e c t s  with 
t h e  sum of  the independent e f f e c t s .  We see that coupling displacement w i t h  v o r t i c i t y  roughly doubled t h e  
vorticity-induced sk in- f r ic t ion  coef f ic ien t .  The displacement-induced pressure s t rongly a f fec ted  the v o r t i -  
c i t y  index 0 which i n  turn cont ro l led  the v o r t i c i t y  e f f e c t .  Coupling TVC with displacement and v o r t i c i t y  
increased t h e  coupled e f f e c t  of the la t ter  two by about the increment due to  transverse-curvature-induced 
sk in  f r i c t i o n  only. 

The bumps i n  the curves including displacement were caused by a displacement- 

The most surpr i s ing  r e s u l t  w a s  found when s l i p  and temperature jump e f f e c t s  were coupled with displace-  
ment, v o r t i c i t y ,  and t ransverse curvature. Near the end of  t h e  body the e f f e c t s  of coupling STJ were l a r g e r  
than t h e  combined e f f e c t s  o f  displacement and t ransverse  curvature1 The trends c l e a r l y  ind ica te  i f  the body 
were longer t h e  e f f e c t s  of  s l i p  and temperature jump would have o f f s e t  not  only t h e  e f f e c t s  of  displacement 
and t ransverse  curvature but  v o r t i c i t y  as w e l l .  Elsewhere [131 it w a s  shown t h a t  f ' ( n  = 0) = f "  (n = 0 ) .  
Vor t ic i ty  increased f w ' *  which i n  turn increased the s l i p  ve loc i ty  f * ( n  = 0) which reduced the ve loc i ty  
gradient  f "  (q = 0 ) .  This coupling between v o r t i c i t y  and s l i p  can be seen by comparison of the almost l i n e a r  
increase  i n  the vorticity-induced sk in- f r ic t ion  c o e f f i c i e n t  w i t h  the almost l i n e a r  decrease i n  the combined 
t o t a l  e f f e c t s  including STJ. 

The r e s u l t s  f o r  the coupled higher-order e f f e c t s  are c l e a r l y  not  l i n e a r l y  independent as are the second- 
order  e f f e c t s  of  t ransverse and longi tudinal  curvatures, v o r t i c i t y ,  and s l i p  and temperature jump according 
t o  Van Dyke's theory 151. The obvious result here i s  that s m a l l  separa te  higher-order e f f e c t s  can have a 
s t rong inf luence when coupled w i t h  o ther  higher-order e f f e c t s ,  and a simple l i n e a r  combination of each f i r s t -  
order  e f f e c t  i s  not  j u s t i f i e d  and can lead t o  erroneous r e s u l t s .  

Range of  Applicabi l i ty  

The range of  a p p l i c a b i l i t y  of the f i r s t -  and second-order theories must f i n a l l y  be determined by compari- 
sons with experimental data;  however, it is i n s t r u c t i v e  t o  consider the range of  a p p l i c a b i l i t y  pred ic ted  from 
t h e  numerical results. 

The f i r s t - o r d e r  boundary layer-to-shock layer  thickness  r a t i o  over t h e  cone a t  Mm = 18 is  shown i n  
Fig. 6. 
0.995 andy is  the f i r s t - o r d e r  (non-perturbed) i n v i s c i d  shock-layer thickness  Prom t h e  b lunt  body and 

The boundary-layer thickness  i s  defined t o  be the normal d is tance  from the wal l  where f '  = u/ue = 

shock 
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c h a r a c t e r i s t i c s  Solution. 
i s  indica ted  between E = 0.11 and 0.16 where 6/yshock 
viscous and boundary-layer theory i s  not appl icable .  

The var ia t ion  of 6/Yshock i s  small over the e n t i r e  body (See Fig.  61, and a region 
1. Beyond this region the shock-layer w a s  f u l l y  

Since t h e  boundary-layer thickness  w a s  a r b i t r a r i l y  def ined,  t h e  e f f e c t  of the d e f i n i t i o n  of the boundary- 
l a y e r  thickness  on 6/yshock w a s  inves t iga ted  and found t o  have a negl ig ib le  inf luence on the r e s u l t s  shown i n  
Fig. 6 [131. 

COMPARISON OF NiMEFUCAL RESULTS AND EXPERIMENTAL DATA 

We now wish t o  cmpare  the results of  the f i r s t -  and second-order treatments w i t h  some ava i lab le  experi-  
mental d a t a  on pressure and hea t - t ransfer  d i s t r i b u t i o n s  and z e r o - l i f t  drag of  a sphere-cone a t  M, = 9 and 18. 

Pressure Dis t r ibu t ions  

The displacement-induced pressure over a spher ica l ly  blunted cone a t  M, = 20 is  shown i n  Fig.  7. The 
f i r s t - o r d e r  i t e r a t e d  r e s u l t s  of  L e w i s  and Whitf ie ld  [11 and the second-order r e s u l t s  using Van Dyke-Davis 
and FlUqge-Lotz a t  M, = 18 a r e  cmpared with the experimental d a t a  of L e w i s  [141 and G r i f f i t h  and L e w i s  [151. 
I t  i s  obvious t h a t  the t rends of  the experimental r e s u l t s  are not  pred ic ted  by e i t h e r  f i r s t -  o r  second-order 
treatments. The nonl inear  character  of the f i r s t - o r d e r  r e s u l t s  of L e w i s  and Whitf ie ld  i s  due t o  the e f f e c t s  
of  i t e r a t i n g  the i n v i s c i d  outer  flow and the viscous boundary-layer flow f i e l d s .  
i s  always to  reduce the displacement-induced pressure.  

The e f f e c t  o f  this i t e r a t i o n  

The poor agreement between numerical r e s u l t s  and experimental pressure d a t a  i s  not  understood. The 
experimental d a t a  l i e  i n  a range where the second-order theory should be appl icable ,  and t h e  e r r o r s  due to  
approximations i n  the numerical treatments and experimental scatter are bel ieved t o  b e  s m a l l  deviat ions.  

The lack o f  agreement between theor ies  and experiment shown on Fig.  7 should be  contrasted w i t h  t h e  good 
agreement found by Pappas and Lee [161 who compared their experimental d a t a  w i t h  p red ic t ions  by L e w i s ,  Adams, 
and Gil ley [171 f o r  the displacement-induced pressure d i s t r i b u t i o n s  over a spher ica l ly  blunted cone a t  l o w  
densi ty  hypersonic condi t ions w i t h  and without sur face  m a s s  t r a n s f e r .  
predicted pressure and hea t - t ransfer  d i s t r i b u t i o n s  and experimental d a t a  were good even f o r  moderately s t rong  
blowing rates [161. 

In general ,  the agreement between 

Heat-Transfer Dis t r ibu t ion  

Fig. 8 shows a comparison of f i r s t -  and second-order hea t  t r a n s f e r  t o  a sphere-cone a t  M, = 18. In  
cont ras t  with the pressure d a t a  comparisons, t h e  second-order hea t - t ransfer  r e s u l t s  are i n  exce l len t  agree- 
ment w i t h  the experimental d a t a  of G r i f f i t h  and L e w i s  [151. Again predic t ions  by L e w i s ,  Adams and Gi l ley  1171 
using procedures i d e n t i c a l  to those used i n  the present  paper but  including i t e r a t i o n  of the inviscid-viscous 
flow f i e l d s  were i n  good agreement w i t h  the experimental hea t - t ransfer  d a t a  of Pappas and Lee [16]. 

Zero-Lift Drag 

The f i n a l  and m o s t  i n s t r u c t i v e  comparisons between f i r s t -  and second-order numerical r e s u l t s  and experi- 
mental da ta  are given i n  Fig. 9 and 10. 
experimental d a t a  of Whitf ie ld  and G r i f f i t h  [181. 
numerical r e s u l t s  and the ava i lab le  experimental d a t a .  For E > 0.2 the agreement i s  poor. I f  w e  r e c a l l  t h a t  
i n  the second-order theory [SI it w a s  assumed that E << 1, one should expect t h a t  as E increases  a t  some 
value the theory w i l l  no longer be appl icable .  For these condi t ions,  this poin t  appears t o  be  near E = 0.15. 
From this comparison t h e  range of a p p l i c a b i l i t y  of  the theory i s  cons is ten t  w i t h  t h e  range predic ted  from 
considerat ion of boundary layer-to-shock layer  thickness  r a t i o ,  6/ysho& ( c f .  F ig .  6) . 

The total  drag predicted by t h e  two treatments i s  compared w i t h  t h e  
For Mm = 18 and E < 0.15 w e  f i n d  good agreement between 

The previous f i r s t - o r d e r  results of L e w i s  and Whitf ie ld  111 are a l s o  shown f o r  comparison. The appar- 
e n t l y  good agreement i s  simply for tu i tous  s ince  only approximate t ransverse  curvature  (Clu t te r  and Smith) and 
displacement ( i t e r a t e d  inviscid-viscous flow f i e l d s )  were included. The comparisons of  transverse-cumature- 
induced f r i c t i o n  drag showed t h a t  t h e  approximate C l u t t e r  and S m i t h  treatment l e d  t o  an error of  about 30 
percent  i n  that component. Also, i t e r a t i o n  of  t h e  inviscid-viscous flow f i e l d s  reduced t h e  displacement- 
induced pressure and f r i c t i o n  drag. In a f i r s t - o r d e r  sense, it can be argued t h a t  i t e r a t i o n  i s  allowable 
u n t i l  there is  negl ig ib le  change, i n  P(x) . 
exis ted  i n  the t ransverse  curvature term and the  important contr ibut ion of  e x t e r n a l  v o r t i c i t y  w a s  not  
considered. 

The f a c t  remains, however, that i n  earlier work a s i z a b l e  error 

The comparison of drag d a t a  a t  M, = 9 is shown i n  Fig.  10. Here the experimental d a t a  w e r e  i n  the range 
E = 0.26 t o  0.54, and f o r  this range, t h e  f i r s t -  and second-order results s u b s t a n t i a l l y  overpredicted t h e  
z e r o - l i f t  drag. Again the predic t ion  of L e w i s  and Whi t i f ie ld  w a s  i n  for tu i tous ly  good agreement w i t h  the 
experimental data .  

Because o f  the much lower Reynolds number f o r  much of the M, = 9 da ta ,  the treatment of the outer  flow 
as i n v i s c i d  w i t h  a simple Rankine-Hugoniot shock wave i s  highly suspect .  Van Dyke [SI notes  that t h i r d -  
order  boundary-layer theory requi res  t r e a t i n g  the o u t e r  flow as viscous r a t h e r  than i n v i s c i d  which i s  consfs- 
t e n t  w i t h  the second-order theory: The s u b s t a n t i a l  disagreement between second-order r e s u l t s  and experiment 
i n d i c a t e s  the need f o r  s u b s t a n t i a l  improvement i n  the t h e o r e t i c a l  model. 

CONCLUS IONS 

Based upon a comparison of f i r s t -  and second-order t reatments  of  t ransverse  curvature ,  v o r t i c i t y ,  dis- 
placement, and s l i p  and temperature jump, a comparison of numerical r e s u l t s  w i t h  experimental d a t a ,  the 
following conclusions are drawn: (i) The approximate treatment of  t ransverse  curvature by C l u t t e r  and S m i t h  
l e d  to  errors i n  w a l l  shear  stress which i n  turn led  t o  e r r o r s  i n  transverse-curvature-induced f r i c t i o n  drag 
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of  about 30 percent .  (ii) The f i r s t -  and second-order treatments of  v o r t i c i t y  i n t e r a c t i o n  were i n  substan- 
t i a l  agreement over the forward h a l f  o f  t h e  body, and t h e  f i r s t - o r d e r  treatment pred ic ted  higher  w a l l  shear  
and thus higher  t o t a l  vorticity-induced f r i c t i o n  drag than the second-order results gave. A l s o ,  a coupling 
between entropy and boundary layers  i s  needed i n  the f i r s t - o r d e r  treatment f o r  more real is t ic  predic t ions  of  
w a l l  shear  stress and displacement e f f e c t s .  
a ture  jump l e d  t o  s i g n i f i c a n t  d i f fe rences  i n  s l i p  ve loc i ty  and temperature jump but  small d i f fe rences  i n  
l o c a l  ( t o t a l )  shear  stress. The d i f fe rences  i n  t h e  f r ic t ion-drag  predic t ions  f o r  t h e  two treatments w e r e  
s i g n i f i c a n t  f o r  t h i s  separa te  e f f e c t ,  bu t  t h e  e f f e c t  on t h e  l i n e a r  combination o f - e f f e c t s  w a s  not large.. 
s t rong e f f e c t  o f  f i r s t - o r d e r  s l i p  and temperature jump w a s  observed when coupled with a l l  o ther  higher-order 
e f f e c t s  a t  very low Reynolds number. 
coupling were small. ( i v )  The f i r s t -  and second-order t reatments  predicted s u b s t a n t i a l l y  t h e  same 
displacement-induced f r i c t i o n  drag. 
d i e n t  and ex terna l  v o r t i c i t y  on t h e  second-order outer-edge ve loc i ty  and temperature s i n c e  these e f f e c t s  
were neglected i n  t h e  f i r s t - o r d e r  treatment. 
p red ic ted  t h e  experimentally measured pressure d i s t r i b u t i o n  f o r  a sphere-cone a t  M, = 18. 
are not  understood s ince  the comparisons were made under conditions where t h e  second-order theory should be 
appl icable .  More extensive experimental d a t a  are needed t o  c l e a r l y  e s t a b l i s h  the d i f fe rences .  ( v i )  The 
agreement between second-order predict ions of  Stanton number and experimental d a t a  w a s  exce l len t  f o r  M, = 18. 
( v i i )  For M, = 18 and E < 0.15, good agreement was found between second-order pred ic t ion  of z e r o - l i f t  drag 
and experimental r e s u l t s .  
p red ic ted  the t o t a l  drag. Higher-order e f f e c t s  are needed to improve agreement between theory and experiment. 
( v i i i )  For t h e  condi t ions t r e a t e d ,  t h e  range of a p p l i c a b i l i t y  of  f i r s t -  and second-order boundary-layer 
theories as predicted t h e o r e t i c a l l y  (6/Y,hock 5 1) and from comparison with experimental z e r o - l i f t  drag d a t a  
w a s  found t o  be  E < 0.2. 

(iii) The f i r s t -  and second-order t reatments  of  s l i p  and temper- 

A 

However, i n  t h e  range of a p p l i c a g i l i t y  of t h e  theory, the e f f e c t s  of  

This d i f fe rence  was a t t r i b u t e d  t o  t h e  e f f e c t s  o f  normal pressure gra- 

(v) Both f i r s t -  and second-order treatments s u b s t a n t i a l l y  over- 
These d i f fe rences  

For E > 0.2 a t  both M, 9 and 18,  the second-order treatment s u b s t a n t i a l l y  over- 

In  summary, it has been shown t h a t  except f o r  t h e  pressure d a t a  i n  t h e  expected range of  a p p l i c a b i l i t y  
of  t h e  second-order theory (E  << 1 1 ,  f i r s t -  and second-order treatments are i n  s u b s t a n t i a l  agreement with 
t h e  experimental da ta .  For E > 0.2, t h e  pred ic t ions  from the numerical treatments w e r e  s u b s t a n t i a l l y  i n  
e r r o r .  From these comparisons it is  c l e a r  t h a t  higher-order boundary-layer treatments are n o t  the c o r r e c t  
approach. 
viscous "external" flow and t h e  e f f e c t s  of  t ranspor t  p roper t ies  on t h e  shock wave. 

A t h e o r e t i c a l  model is needed which properly takes  i n t o  account higher-order e f f e c t s  such as 
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APPENDIX A 

FIRST-ORDER SLIP AND TEMPERATURE JUMP BOUNDARY CONDITIONS 

For second-order boundary-layer theory, Van Dyke [5] shows that the slip-flow boundary condi t ions are 

u(o )  = u/p(nRT/2)1/2(au/ay)w 

T(0) = Tw + (15/8) l/p((RT/2)11/2(aT/ay)w 

when t h e  b i l l i a r d - b a l l  model is used t o  evaluate  t h e  coef f ic ien ts .  

Transforming t h e  equations t o  the x,n-plane and expressing i n  terms of  convenient var iab les  f o r  inclusion 
i n  t h e  C l u t t e r  and Smith numerical scheme gives  

f'(q=O) = C(p,/p)Fsf"(n=O) 

where 

Here, as elsewhere, subscr ip t  w denotes proper t ies  evaluated a t  t h e  no-sl ip  w a l l  condi t ions,  and a l l  o ther  
proper t ies  are evaluated a t  t h e  s l i p  temperature T ( q  = 0 ) .  Thus, the boundary condi t ions must be  found by 
i t e r a t i o n .  This poses no problems f o r  inclusion within the C l u t t e r  and Smith i t e r a t i v e  so lu t ion  method f o r  
t h e  coupled momentum and energy equations. Moreover, no problems were experienced with numerical s t a b i l i t y  
o r  s i g n i f i c a n t l y  changing rate of convergence of the momentum and energy equation i t e r a t i o n  loop. 

APPENDIX B 

FIRST-ORDER VORTICITY BOUNDARY CONDITIONS 

The f i r s t - o r d e r  momentum and energy equations a r e  

and 

2 

1. 2 { r [  - c '  g + 2 C ( 1  - - ) f ' f ' ' ] }  1 = [ + R] f g '  + X [ f ' g  - gear 1 
P r  ax He . c, r a q  P r  

where 

and a l l  o ther  symbols have t h e  usual  meaning. 

Inclusion of v o r t i c i t y  does not a l ter  the b a s i c  equations b u t  only the boundary conditions. 
Probstein [7] def ine  a v o r t i c i t y  parameter 

dY 

Hayes and 
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where 5 i s  t h e  i n v i s c i d  v o r t i c i t y ,  and subscr ip t  i denotes t h e  inv isc id  conditions i n  t h e  absence of boundary 
layers .  From Crocco's l a w  i n  terms of Van Dyke's var iab les ,  

* *  
5, = (aui/ay l W  = (uz/r:) au,/ay = - (u:/r;) r 'R  1 1 1  T s 

where f o r  y = 1.4 one f inds 
2 2 2  - 1 . 6 ( M m  - 1) a 

2 
si = 

(2.8Mm - 0 . 4 ) ( 2  + 0.4M:) 

with a = rn/rs. A second-order expansion of t h e  (viscous) ve loc i ty  leads t o  

u(s,y;E) = (x ,y)  + Eu2(xty) - u(X,o) - Y r ; R l T l S i  

f '(m) = 1 + n /  (Pe/P) dn 

1 

Dividing by U = Ui*/U,* and introducing t h e  17 transformation leads t o  
'1, 

0 
f o r  t h e  outer  boundary condition on t h e  momentum equation with ex terna l  v o r t i c i t y .  Without mass t r a n s f e r  o r  
s l i p  and temperature jump, t h e  w a l l  boundary conditions a r e  t h e  usual ones: f (0) = f '(0) = 0. The boundary 
conditions on t h e  energy equation are unchanged from t h e  usual case: g ( m )  = 1 and y(0)  or y ' ( 0 )  are prescr ibed 
functions of x. 

The v o r t i c i t y  index Q can be  wr i t ten  as 

where 

independent of x .  



NOMENCLATURE 

A l l  lengths  a re  nondimensionalized by t h e  nose radius .  

= pp/pepe ,  densi ty-viscosi ty  product r a t i o  

= f r ic t ion-drag coef f ic ien t  referenced t o  base a r e a  

= pressure-drag c o e f f i c i e n t  referenced t o  base a rea  

= 2~~/p,U, , sk in- f r ic t ion  c o e f f i c i e n t  

C 

CDf 

CDp 

C 

f = dimensionless stream function 

f '  = u/ue, ve loc i ty  r a t i o  

g 

h,H = s t a t i c  and s tagnat ion enthalpy, respect ively 

href = reference enthalpy 

M = Mach number 

P = i n v i s c i d  outer  flow pressure 

P r  = Prandt l  number 

pip; = s t a t i c  and free-stream p i t o t  pressure,  respect ively 

R = i n v i s c i d  outer-flow dens i ty  

Rem = p U r /pm, Reynolds number 

Re, = p*u,rn/!J*, Reynolds number 

r ,r  = body and nose radius ,  respect ively 

2 
f rn 

= H/He ,  s tagnat ion enthalpy r a t i o  

m m n  

n 

'i 
S t m  

T 

U 

u m  

U 

V 

X 

Y 

a 

Y 

6* 

E 

5 

rl 

K 

!J 

P 

T 

n 

nl 

= enthropy der iva t ive  i n  bas ic  inv isc id  flow 

= q,/p U H (1 - gw)l  Stanton number 

= i n v i s c i d  outer-flow temperature 

= t angent ia l  component, inv isc id  outer-flow ve loc i ty  

= free-stream ve loc i ty  

= t angent ia l  ve loc i ty  

= normal component, inv isc id  outer-f low ve loc i ty  

= sur face  d is tance  from stagnat ion poin t  

= dis tance  normal t o  sur face  

= angle between tangent t o  sur face  and ax is  of synunetry; nose-to-shock radius  r a t i o  

= r a t i o  of s p e c i f i c  hea ts  

= boundary-layer displacement thickness  

= (U* (Ut2/C;) /ptUtror l ; )  'I2, V a n  Dyke's expansion parameter 

= i n v i s c i d  v o r t i c i t y  

= transformation var iab le  

= longi tudina l  curvature 

= dynamic v iscos i ty  

= densi ty  

= shear  stress 

= v o r t i c i t y  index 

= Van Dyke's i n v i s c i d  v o r t i c i t y  

"0 
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Subscripts  

0 = stagnat ion conditions 

1,2 = f i r s t -  and second-order quant i ty ,  respect ively 

d i s p  = displacement e f f e c t  

e = a t  t h e  edge of t h e  boundary layer  

i = i n v i s c i d  

STJ  = s l i p  and temperature jump e f f e c t  

TVC = t ransverse  curvature e f f e c t  

v o t t  = v o r t i c i t y  e f f e c t  

w = w a l l  

x,y 

* = i n v i s c i d  sonic  condi t ions on the body 

m = free-stream condi t ions 

= der iva t ive  with respect  t o  x- and y-coordinate 

Superscr ipts  

' 

* 
= der iva t ive  w i t h  respect  t o  independent var iab le  

= dimensional quant i ty  i n  second-order theory 
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HIGHER ORDER BOUNDARY-LAYER EFFECTS FOR THE 

AGARD ENGINEERING APPLICATIONS BODY AND FLOW CONDITIONS 

by John C. Adams, J r . *  

SUMMARY 

Numerical r e s u l t s  f o r  p e r f e c t  gas boundary-layer flow a t  t h e  AGARD C a s e  C condition (M, = 21.744, 
Re,,rN = 430.9, and Tw/To = 0.0535) a r e  presented f o r  t h e  AGARD 10.0' asymptotic half-angle hyperboloid. 
boundary-layer model u t i l i z e s  f i r s t -  and second-order boundary-layer theory which accounts f o r  displacement, 
ex te rna l  v o r t i c i t y ,  longi tudina l  curvature ,  t ransverse  curvature ,  s l i p ,  and temperature jump e f f e c t s .  
Analysis of the  r e s u l t s  reveals  t h a t  t h e  AGARD Case C flow regime i s  such t h a t  second-order boundary-layer 
theory is  not  appl icable  s ince  t h e  boundary-layer thickness  i s  much g r e a t e r  than t h e  v o r t i c a l  (entropy l a y e r )  
thickness  so t h a t  c o r r e c t  asymptotic matching of t h e  two l ayers  is not possible .  Hence t h e  numerical r e s u l t s  
presented here in  have l i t t l e  meaning r e l a t i v e  t o  the  physical  problem; however, t h e  r e s u l t s  a r e  presented i n  
a manner s p e c i f i e d  by AGARD so as  t o  f a c i l i t a t e  comparison with o ther  t h e o r e t i c a l  and numerical so lu t ions  f o r  
t h e  same body and flow condi t ions.  

The 

INTRODUCTION 

This paper i s  devoted t o  documenting r e s u l t s  presented by t h e  author a t  t h i s  AGARD Seminar i n  t h e  
Engineering Application Section using computer programs developed by t h e  von Karman G a s  Dynamics F a c i l i t y  of  
t h e  Arnold Engineering Development Center. The body ( a  hyperboloid of  10.0' asymptotic half-angle) and t h e  
flow condi t ions (see Table 1) w e r e  completely spec i f ied  by AGARD [ l ] .  A l l  r e s u l t s  presented i n  the present  
r e p o r t  are f o r  t h e  AGARD Case C flow condition using f i r s t -  and second-order compressible boundary-layer 
theory f o r  a p e r f e c t  gas. 

PERFECT GAS SOLUTIONS (AGARD CASE C )  

Theoret ical  Considerations and Description of Computer Program 

A l l  of t h e  r e s u l t s  f o r  t h e  per fec t  gas AGARD Case C condition w e r e  obtained by appl icat ion of t h e  second- 
order  compressible boundary-layer theory derived by V a n  Dyke [21. Basical ly ,  V a n  Dyke's approach involves 
solving f i r s t -  and second-order boundary-layer equations which are found from t h e  complete Navier-Stokes equa- 
t i o n s  by an expansion i n  inverse powers of  t h e  square-root of a Reynolds number. The expansion procedure used 
i s  t h e  method of inner  and outer  expansions and r e s u l t s  i n  replacing t h e  Navier-Stokes equations by two 
separa te  sets of equat ions,  one set  which i s  v a l i d  i n  the  outer  i n v i s c i d  region and another se t  which i s  v a l i d  
i n  the inner  viscous (boundary-layer) region. By using Van Dyke's per turbat ion procedure t h e  resu l t ing  
second-order boundary-layer equations a r e  l i n e a r  and can be  subdivided t o  e x h i b i t  severa l  second-order 
boundary-layer e f f e c t s ,  namely displacement, ex te rna l  v o r t i c i t y ,  longi tudina l  curvature ,  t ransverse  curvature ,  
s l i p ,  and temperature jump. 
i n  flow regimes where t h e  expansion parameter E i s  small b u t  not so small t h a t  second-order terms i n  t h e  para- 
m e t e r  are negl ig ib le .  

However, t h i s  theory i s  not  un iversa l ly  appl icable  i n  t h a t  it should be  appl ied 

Numerous authors i n  addi t ion t o  V a n  Dyke, e .g . ,  Lenard [ 3 ] ,  Maslen [41, and Davis and Fliigge-Lot2 [51, 
have obtained second-order boundary-layer so lu t ions  which are v a l i d  only i n  t h e  stagnation-point region. 
work by Davis and Flllgge-Lotz [6] represents  t h e  f i r s t  attempt a t  so lu t ions  of  t h e  second-order boundary-layer 
equations i n  regions removed from the  nose. They employ an i m p l i c i t  f in i te -d i f fe rence  method and consider a l l  
second-order e f f e c t s  so t h a t  t h e  r e s u l t a n t  so lu t ions  represent  a complete f i r s t -  and second-order boundary- 
layer  theory. They march t h e  f in i te -d i f fe rence  so lu t ions  along t h e  body sur face  and terminate  them severa l  
nose r a d i i  downstream of t h e  s tagnat ion poin t ;  t h r e e  d i f f e r e n t  a n a l y t i c  bodies a re  considered, a paraboloid,  
a hyperboloid (22.5O asymptotic half-angle) ,  and a sphere. The case of flow over t h e  hyperboloid exhib i t s  
s t rong  growth of  v o r t i c i t y  i n t e r a c t i o n  as  the computation proceeds downstream and indica tes  t h a t  t h e  e f f e c t  
of v o r t i c i t y  i n t e r a c t i o n  w i l l  become a f i r s t - o r d e r  e f f e c t  a t  dis tances  f a r  downstream from the  nose. This 
r e s u l t  i s  very i n t e r e s t i n g  i n  t h a t  s i g n i f i c a n t  v o r t i c i t y  e f f e c t s  .may be expected on c e r t a i n  s lender  blunt-  
nosed bodies which i n  turn can now be analyzed using t h i s  method. 

The 

In view of t h e  a b i l i t y  of second-order boundary-layer theory t o  sort o u t  t h e  var ious second-order e f f e c t s  
and t h e i r  contr ibut ion t o  such q u a n t i t i e s  of i n t e r e s t  as t h e  viscous-induced drag increment, considerable 
a t t e n t i o n  has been devoted t o  this mathematical model. A computer program has been formulated t o  so lve  t h e  
governing f i r s t -  and second-order boundary-layer equations i n  physical  var iab les  using t h e  i m p l i c i t  f i n i t e -  
d i f fe rence  scheme of Davis and FlCigge-Lotz discussed previously. 
be considered f o r  a spec i f ied  body geometry; however, t h e  pressure d i s t r i b u t i o n  along t h e  body sur face  m u s t  
be input  t o  t h e  program from a separa te  source, say an i n v i s c i d  blunt  body and method o f  c h a r a c t e r i s t i c s  solu- 
t i o n .  
w e l l  as t h e  l a t e r  AIAA paper by Marchand, Lewis, and Davis [E]. 

Any combination o f  second-order e f f e c t s  may 

Further  d e t a i l s  of t h i s  work may be found i n  the paper by L e w i s  [71 presented a t  the AGARD Seminar as  

Experience with t h i s  program has revealed severa l  undesirable fea tures  connected with regions of  s t rong  
boundary-layer growth (where an excessive number o f  po in ts  are used i n  the f in i te -d i f fe rence  scheme t o  tra- 
verse  t h e  boundary l a y e r ) .  
problem i n  t r e a t i n g  t h e  f i r s t - o r d e r  boundary-layer equations with crossflow. With t h i s  def ic iency i n  mind, 
and r e c a l l i n g  t h a t  it i s  of ten advantageous t o  work with s i m i l a r i t y  var iab les  when solving t h e  boundary-layer 
equations by numerical methods, it w a s  decided t o  transform t h e  governing f i r s t -  and second-order boundary; 
l a y e r  equations using t h e  well-known Levy-Lees transformation [ l o ]  w r i t t e n  i n  terms of  f i r s t - o r d e r  q u a n t i t i e s .  
A computer program similar t o  t h a t  f o r  t h e  physical  var iab les  was w r i t t e n  t o  so lve  t h e  r e s u l t a n t  se t  of t rans-  
formed equations using a modification of  t h e  Davis and FlUgge-Lot2 i m p l i c i t  f i n i t e - d i f f e r e n c e  scheme t o  

It i s  i n t e r e s t i n g  t o  note  t h a t  Fannelop [91 has encountered prec ise ly  t h e  same 

*Supervisor, Theoret ical  G a s  Dynamics Sect ion,  Hypervelocity Branch, Aerophysics Division, von Karman G a s  
Dynamics Faci l i , ty .  



124 

account f o r  var iab le  s t e p  s i z e  along t h e  body i n  t h e  transformed plane. 
t o  allow so lu t ions  f o r  e i t h e r  a Sutherland or power v iscos i ty  l a w  as w e l l  as a r b i t r a r y  (but  constant)  Prandt l  
number and s p e c i f i c  h e a t  r a t i o .  
Kutta-Gill numerical in tegra t ion  rout ine  i n  conjunction with an i t e r a t i v e  cor rec t ion  scheme; a l l  second-order 
q u a n t i t i e s  were s e t  equal t o  zero  a t  t h e  s tagnat ion p o i n t ,  and hence a forward marching of  approximately . 
twenty s t a t i o n s  with a very s m a l l  s t e p  s i z e  w a s  required before  t h e  second-order so lu t ion  became va l id .  
Another fea ture  included i n  t h e  program was t h e  capabi l i ty  of  obtaining a f i r s t - o r d e r  l o c a l l y  similar so lu t ion  
by s e t t i n g  t h e  nonsimilar terms i n  t h e  governing f i r s t - o r d e r  equations equal t o  zero. 
coupled ordinary nonl inear  d i f f e r e n t i a l  equations was then solved by a successive approximation technique 
coupled t o  t h e  same i m p l i c i t  f in i te -d i f fe rence  scheme used f o r  t h e  nonsimilar case. By t h i s  approach the 
accuracy and l imi ta t ions  of  t h e  oft-used loca l ly  similar approximation can properly be  assessed using a w m o n  
method of  so lu t ion .  

Provisions were made i n  t h e  program 

The f i r s t - o r d e r  s tagnat ion poin t  so lu t ion  w a s  obtained by use of  a Runge- 

The r e s u l t a n t  set of 

The present  sec t ion  i s  concerned s o l e l y  with analyzing t h e  var ious second-order boundary-layer e f f e c t s  
on t h e  spec i f ied  AGARD body, a hyperboloid of  10.Oo asymptotic half-angle a t  zero angle of a t tack ;  t h i s  body 
geometry and shock shape a r e  shown i n  Fig.  1. The spec i f ied  AGARD flow condi t ions are given i n  Table 1 where 
t h e  present  r e s u l t s  are f o r  t h e  AGARD C a s e  C which is a p e r f e c t  gas ,  y = 1.40 flow. As mentioned e a r l i e r  the 
sur face  pressure d i s t r i b u t i o n  must be input  t o  t h e  program from an ex terna l  source. For the  present  work 
modified Newtonian theory as deduced by Lees [ill was used f o r  pressure pred ic t ion  as s p e c i f i e d  by AGARD. 
The modified Newtonian theory turns  out  t o  be  i n  good agreement with a more exact  i n v i s c i d  b lunt  body and 
method of  c h a r a c t e r i s t i c s  so lu t ion  as shown by Fig. 2.  

Controversy has a r i sen  i n  t h e  p a s t  over the  proper method f o r  t r e a t i n g  t h e  second-order v o r t i c i t y -  
displacement i n t e r a c t i o n  e f f e c t ;  exce l len t  discussions of  t h i s  p i n t  may be found i n  t h e  reviews by V a n  Dyke 
[121 and Cheng [131. Following Van Dyke [141 one i s  f r e e  t o  choose e i t h e r  a "displacement speed" o r  
"displacement pressure"  treatment f o r  t h e  separate  e f f e c t s  of  second-order v o r t i c i t y  and displacement. 
Bas ica l ly ,  t h e  c l a s s i f i c a t i o n  o f  displacement speed means t h a t  t h e  second-order pressure gradient  term 
a t t r i b u t a b l e  t o  v o r t i c i t y  i n t e r a c t i o n  i s  t r e a t e d  as a v o r t i c i t y  e f f e c t  i n  t h e  second-order t a n g e n t i a l  momen- 
t u m  equation, whereas displacement pressure means t h a t  t h i s  pressure gradient  term i s  considered as a d i s -  
placement e f f e c t .  Various authors have s a i d  that t h i s  term does not  e x i s t  o r  t h a t  it i s  negl ig ib le ,  while 
o ther  authors have s a i d  t h a t  it e x i s t s  b u t  then f a i l  t o  include it. The quest ion has been answered i n  t h e  
a f f i rmat ive  by Van Dyke [121 who shows i n  a very clear manner t h a t  t h i s  term does indeed e x i s t  and should 
properly be included i n  any second-order analysis .  
f i c a t i o n  of  displacement speed should r e s u l t  i n  giving the  second-order displacement and v o r t i c i t y  e f f e c t s  
an unduly la rge  value which i s  not  representa t ive  of t h e  ac tua l  magnitude f o r  flows over b lunt  bodies. 
such is indeed t r u e  has been shown by Adams [151, who concluded t h a t  one should properly i n t e r p r e t  second- 
order  v o r t i c i t y  and displacement as a combined e f f e c t  (vort ic i ty-displacement  i n t e r a c t i o n ) .  
w i l l  be followed i n  t h e  present  work; however r e s u l t s  showing t h e  separa te  e f f e c t s  o f  second-order v o r t i c i t y  
and displacement t r e a t e d  i n  a displacement speed sense w i l l  also be presented. 
t h i s  type of  t reatment  is t h e  only c o r r e c t  procedure f o r  analyzing these  separa te  e f f e c t s  using t h e  second- 
order  boundary-layer theory of  V a n  Dyke [21. 

However, a s  speculated by Cheng [131, Van Dyke's classi- 

That 

Such an approach 

As discussed by Adams [15] 

The method developed by Davis and Flliaqe-Lotz [61 f o r  t r e a t i n g  t h e  second-order displacement e f f e c t  i s  
l imi ted  i n  a p p l i c a b i l i t y  t o  t h e  extreme nose region of  the  body. 
which i s  v a l i d  over t h e  e n t i r e  body and uses f i r s t - o r d e r  i n v i s c i d  theory. 
with t h e  second-order theory of Van Dyke [21 and has been used f o r  t h e  so lu t ions  presented herein.  

DISCUSSION OF RESULTS 

Hence, Adams 1151 formulated a new technique 
This approach i s  f u l l y  compatible 

The r e s u l t s  presented i n  t h i s  sec t ion  were obtained from an inves t iga t ion  i n t o  second-order boundary- 
l a y e r  e f f e c t s  on t h e  spec i f ied  AGARD hyperboloid of  10.0' asymptotic half-angle a t  zero angle o f  a t tack  under 
t h e  s p e c i f i e d  AGARD Case C condi t ions as  discussed previously. 
r e s u l t s  f o r  d i f f e r e n t  v i scos i ty  l a w s ,  Prandt l  numbers, and types of  so lu t ion  i n  terms of  q u a n t i t i e s  of  
i n t e r e s t  such as t h e  l o c a l  sk in- f r ic t ion  c o e f f i c i e n t  and Stanton number. 
assess  t h e  inf luence of  each of  these parameters on the  r e s u l t a n t  so lu t ion .  

P a r t i c u l a r  emphasis was placed upon present ing 

Only i n  t h i s  manner can one properly 

In t h i s  examination of t h e  e f f e c t  of various v iscos i ty  laws upon both f i r s t -  and second-order boundary- 
layer  so lu t ions ,  th ree  d i f f e r e n t  r e l a t i o n s  were considered: Sutherland, square-root, and l i n e a r .  A compari- 
son of  these  laws i s  shown i n  Fig.  3 where it i s  seen t h a t  t h e  Sutherland law i s  i n  exce l len t  agreement with 
t h e  square-root l a w  i n  t h e  temperature range of cur ren t  interest .  
l a w  underpredicts t h e  v iscos i ty  (as compared t o  the  Sutherland value) by a s u b s t a n t i a l  amount, approximately 
60 percent  m a x i m u m  deviat ion.  One must keep these discrepancies  i n  mind when evaluat ing t h e  numerical r e s u l t s  
of t h i s  inves t iga t ion  s i n c e  t h e  choice of v i scos i ty  law inf luences t h e  boundary-layer character  t o  a consider- 
able  ex ten t  as  w i l l  now be shown. 

It  i s  important t o  note  t h a t  t h e  l i n e a r  

In t h e  p a s t  many boundary-layer inves t iga t ions  have been conducted under various assumptions, e .g . ,  
l i n e a r  v i scos i ty  l a w ,  Pr  = 1.0, loca l ly  similar s o l u t i o n ,  e t c . ,  without due considerat ion as t o  t h e  e f f e c t  of 
these  assumptions on t h e  r e s u l t a n t  so lu t ion .  
c l a r i f y  some of these  e f f e c t s  by presentat ion of  t h e  r e s u l t s  shown i n  Figs. 4 through 8 .  
var ia t ion  of v i scos i ty  l a w ,  Figs. 4 and 5 show t h a t  use of t h e  l i n e a r  v i scos i ty  l a w  r e s u l t s  i n  a severe 
underprediction of both sk in- f r ic t ion  coef f ic ien t  and Stanton number as compared t o  t h e  square-root and 
Sutherland values ,  which are i n  good agreement. 
i n  t h e  r e s u l t i n g  so lu t ion .  Ef fec ts  of Prandt l  number and type of so lu t ion  on t h e  sk in- f r ic t ion  c o e f f i c i e n t  
and Stanton number a r e  shown i n  Figs. 6 and 7 f o r  t h e  Sutherland v iscos i ty  l a w .  
e f f e c t s  are negl ig ib le  f o r  the present  body and flow condi t ions.  
f i r s t - o r d e r  boundary-layer inves t iga t ions  used a l o c a l l y  similar so lu t ion  without  j u s t i f i c a t i o n .  

An attempt has been made i n  t h e  present  study t o  def ine and 
With respect  t o  

Hence, the choice of v i scos i ty  law can produce l a r g e  variance 

It i s  seen t h a t  both of  these 
Such i s  of i n t e r e s t  because many p r i o r  

One of t h e  most s e n s i t i v e  boundary-layer q u a n t i t i e s  is t h e  displacement thickness .  
such information using Davis and FlUgge-Lotz [61, Fq. (2.33), f o r  t h e  two-dimensional form o f  t h e  f i r s t - o r d e r  
displacement thickness .  Again, t h e  square-root v i scos i ty  l a w  r e s u l t s  are i n  good agreement with t h e  Suther- 
land predic t ion ,  whereas t h e  l i n e a r  l a w  underpredicts by a s u b s t a n t i a l  amount. 

Figure 8 presents  

The larae inf luence of  Prandt l  
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number i n  changing from 0.70 t o  1.0 is r a t h e r  surpr i s ing ;  hmever ,  one must remember t h a t  the Prandt l  number 
e f f e c t i v e l y  controls  the r a t i o  of  viscous shear  work t o  thermal h e a t  conduction, and hence a change i n  Prandt l  
number r e s u l t s  i n  a r e d i s t r i b u t i o n  of both the ve loc i ty  and temperature p r o f i l e s  which i n  t u r n  cont ro l  the 
displacement thickness .  

Turning now t o  s p e c i f i c  considerat ion of second-order boundary-layer e f f e c t s ,  Figs. 4 through 7 show the 
inf luence of including second-order e f f e c t s  concurrently. The l a r g e  inf luence of  second-order e f f e c t s  i s  
s t r i k i n g l y  apparent, espec ia l ly  f a r  downstream on the body where t h e  f i r s t -  and second-order results are 
approximately twice Me f i r s t - o r d e r  pred ic t ions .  In order  t o  properly i n t e r p r e t  these r e s u l t s ,  one must i n  
turn examine each second-order e f f e c t  considered separa te ly  over t h e  e n t i r e  body range of  i n t e r e s t .  
9 and 10 present  such information. W i t h  r espec t  t o  the increment i n  t h e  l o c a l  sk in- f r ic t ion  c o e f f i c i e n t  as 
shown i n  Fig. 9,  vort ic i ty-displacement  i n t e r a c t i o n  is by f a r  t h e  dominant second-order e f f e c t .  Note t h a t  the 
v o r t i c i t y  continues t o  grow w i t h  increasing d is tance  along t h e  hyperboloid; however, as pointed o u t  by Adams 
[15], one must consider v o r t i c i t y  and displacement i n  a combined sense (vorticity-displacement i n t e r a c t i o n )  
when i n t e r p r e t i n g  r e s u l t s .  Hence, t h e  displacement e f f e c t  w i l l  tend t o  cancel t h e  v o r t i c i t y  e f f e c t  on the  
a f t  por t ion  of  t h e  hyperboloid which can be seen i n  the character  of  t h e  r e s u l t a n t  t o t a l  curve. 
note t h a t  a l l  o ther  second-order q u a n t i t i e s  are e s s e n t i a l l y  negl ig ib le  ( t ransverse  curvature has a very small 
e f f e c t )  w i t h  respec t  t o  t h e i r  inf luence on the  l o c a l  sk in- f r ic t ion  increment. With regard t o  t h e  l o c a l  
Stanton number increment, one sees  i n  Fig. 10 t h a t  a l l  second-order e f f e c t s  are of  t h e  same order  of magnitude 
f o r  both bodies. One notes  t h a t  here  s l i p  and temperature jump e f f e c t s  are of importance i n  t h e  nose region. 
Furthermore, Fig.  10 shows t h a t  vort ic i ty-displacement  i n t e r a c t i o n  i s  dominant on t h e  a f t  port ion of the 
hyperboloid. 

Figures 

Further ,  

Based on the above d e t a i l e d  inves t iga t ion  i n t o  second-order e f f e c t s ,  one can s a f e l y  say t h a t  v o r t i c i t y -  
displacement i n t e r a c t i o n  i s  the dominant f a c t o r  i n  second-order boundary-layer theory. However, a word of  
caution m u s t  be i n j e c t e d  as t o  t h e  a p p l i c a b i l i t y  of  second-order theory i n  general  and t h e  present  r e s u l t s  i n  
p a r t i c u l a r .  It is  assumed that t h e  boundary-layer thickness  i s  much smaller than the v o r t i c a l  (entropy l a y e r )  
thickness  so that t h e  boundary condi t ions a t  the common boundary obtained by asymptotic matching of the two 
layers  remain va l id .  
i n  thickness  while the v o r t i c a l  l ayer  i s  diminishing. What i s  needed i s  a "swallowing-type" boundary-layer 
ana lys i s  o r  a f u l l y  viscous shock-layer treatment of t h e  same problem i n  order  to  c l e a r l y  def ine where second- 
order  boundary-layer theory becomes inappl icable  w i t h  respec t  t o  pos i t ion  along the body. Such an ana lys i s  
would permit one to  properly assess t h e  present  r e s u l t s .  

Such may not  be t r u e  on the a f t  port ion of the body s i n c e  t h e  boundary layer  i s  growing 

A s  mentioned previously,  the second-order compressible boundary-layer theory o f  Van Dyke [2] i s  meant t o  
be appl ied t o  flow regimes where the expansion parameter E i s  s m a l l  bu t  not so s m a l l  t h a t  second-order terms 
i n  the parameter are negl ig ib le .  For t h e  present  AGARD Case C condi t ion,  T a b l e  1 shows t h a t  E = 0.2237 based 
on the Sutherland v iscos i ty  l a w .  For this value of E ,  Fig. 11 shows t h a t  t h e  f i r s t - o r d e r  boundary-layer 
thickness  (defined t o  be t h e  normal d is tance  from t h e  body sur face  where t h e  ve loc i ty  r a t i o  ul/ue = 0.995) is 
between 1.3 t o  1.8 times t h e  i n v i s c i d  shock s tandoff  d i s tance .  Hence, t h e  boundary layer  more than f i l l s  t h e  
i n v i s c i d  shock l a y e r ,  which is a c l e a r  ind ica t ion  t h a t  c l a s s i c a l  boundary-layer theory i s  not  v a l i d  f o r  this 
flow condition. 
t h e  shock t o  merge with t h e  viscous layer .  

What i s  needed f o r  ana lys i s  of t h i s  flow is  a f u l l y  viscous shock layer  treatment allowing 

It i s  i n t e r e s t i n g  t o  note  from Fig.  11 t h a t  i f  E = 0.10, t h e  boundary layer  would only f i l l  approximately 
60 t o  80 percent  of  t h e  i n v i s c i d  shock layer ;  such is more c lear ly  shown i n  Fig.  12. Hence, f o r  the present  
flow condi t ion,  one would have t o  requi re  E < 0.10 i n  order  t o  even consider t h e  use of  c l a s s i c a l  boundary- 
layer  theory. In t h i s  connection Fig. 13 shows the var ia t ion  of free-stream Reynolds number w i t h  respec t  to  
the per turba t ion  parameter. 
required i n  order  t o  produce an E < 0.10. Since t h e  a l t i t u d e  and f l i g h t  condi t ions are f ixed ,  t h i s  would 
requi re  that t h e  nose radius be increased by an order  o f  magnitude, i . e .  rN > 10.0 inches,  i n  order  f o r  
E < 0.10. From this discussion t h e  u t i l i t y  of E as a sca l ing  parameter f o r  b lunt  body flows should be 
apparent. Such has been exploi ted by Marchand, L e w i s ,  and Davis 181 i n  t h e i r  ana lys i s  o f  drag and hea t  
t r a n s f e r  d a t a  on a spher ica l ly  blunted cone. 
with experimental measurements, they concluded t h a t  E < 0.2 appears t o  be t h e  range of a p p l i c a b i l i t y  f o r  
appl ica t ion  of second-order boundary-layer theory. 

From t h i s  f igure  it i s  seen t h a t  an order  of magnitude increase  i n  Rem i s  

By comparison of r e s u l t s  from second-order boundary-layer theory 

Turning now t o  d e t a i l s  of t h e  flow f i e l d ,  Figs .  14 and 1 5  present  ve loc i ty  and temperature p r o f i l e s ,  
respec t ive ly ,  a t  se lec ted  loca t ions  along t h e  body as s p e c i f i e d  by AGARD. Both f i r s t - o r d e r  as w e l l  as f i r s t -  
and second-order r e s u l t s  a r e  shown. The overwhelming inf luence of second-order vorticity-displacement i n t e r -  
ac t ion  i s  apparent, espec ia l ly  f o r  the temperature which assumes negative values f o r  body locat ions g r e a t e r  
than about two nose r a d i i  downstream of t h e  s tagnat ion poin t .  Such anomalous behavior can be t raced t o  use 
of second-order boundary-layer theory i n  a flow regime where t h e  asymptotic matching conditions are not  appl i -  
cable ,  i .e . ,  the boundary-layer thickness  i s  much g r e a t e r  than t h e  v o r t i c a l  (entropy layer )  thickness  so that 
asymptotic matching of  t h e  two layers  is not  possible .  As previously discussed,  c l a s s i c a l  f i r s t - o r d e r  
boundary-layer t h e o q  i s  not  even appl icable  to t h i s  flow ( r e c a l l  t h e  boundary-layer thickness  outs ide the  
i n v i s c i d  shock layer )  so t h a t  any of  the  cur ren t  boundary-layer pred ic t ions ,  either f i r s t - o r d e r  o r  f i r s t -  and 
second-order must be regarded a s  suspect .  

Another quant i ty  of  i n t e r e s t  i s  the in tegra ted  sk in- f r ic t ion  and pressure drag c o e f f i c i e n t s  over the  
s p e c i f i e d  AGARD body. The r e s u l t s  are shown i n  Table 2 where t h e  reference area i s  taken t o  b e  t h e  base 
cross-sect ional  area a t  s/rN = 50.0. 
of t h e  f a i l u r e  of  boundary-layer theory as discussed previously. 

These q u a n t i t i e s  have no t r u e  physical  meaning f o r  t h i s  flow because 

A few words should be s a i d  i n  conclusion as t o  t h e  computer t i m e  requirements and character  of  numerical 

Computation t i m e  including p r i n t o u t  f o r  both f i r s t -  and second-order equations averaged 1 2  seconds 
so lu t ions  f o r  this inves t iga t ion .  The program i t s e l f  was w r i t t e n  i n  FORTRAN 63 f o r  so lu t ion  on a CDC 1604-B 
computer. 
per  s t a t i o n  i n  transformed var iab les  w i t h  a t o t a l  of  355 s t a t i o n s  required t o  t r a v e r s e  t h e  AGARD body of  50 
nose radii  i n  length;  hence, a t o t a l  o f  71 minutes w a s  required f o r  the complete so lu t ion .  Using Levy-Lees 
var iab les  r e su l t s  i n  the so lu t ion  being obtained i n  t h e  transformed (5,111 plane; f o r  t h e  present  inves t iga t ion  
t h e  following s t e p  sizes were chosen: - 6.0, An = 0.050, A(s/r ) = 0.0125, 0.0250, 0.0500, 0.1000, 0.2000, "max - N 
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0.4000, where a procedure f o r  doubling the s/rN s t e p  size a t  any chosen loca t ion  w a s  b u i l t  i n t o  the program; 
hence, t h e  s/rN s t e p  s i z e  w a s  doubled a total  of  s i x  t i m e s  over the body of  i n t e r e s t  i n  t h i s  work. Such a s t e p  
s i z e  change procedure is highly advantageous i n  reducing the t o t a l  computing t i m e  requirements. Repet i t ion of  
the ca lcu la t ions  w i t h  a halved s t e p  size i n  A n  as w e l l  as an increase  i n  
numerical resul ts .  That t h e  body i n  question i s  e s s e n t i a l l y  independent o f  the A(s/rN) s t e p  s i z e  i s  evidenced 
by t h e  excellent agreement of the l o c a l l y  s i m i l a r  so lu t ion  (which i s  independent of  t h i s  s t e p  s i z e ) .  
i m p l i c i t  f in i te -d i f fe rence  scheme proved t o  be inherent ly  s t a b l e  i n  a l l  cases, and any o s c i l l a t i o n s  introduced 
by t h e  second-order s tagnat ion poin t  treatment were quickly damped out .  
described as highly s a t i s f a c t o r y  i n  the numerical sense. 

t o  9.0 shcmed no change i n  the 

The 

A l l  i n  a l l ,  the method must be 

SUMMARY 

The present  paper i s  devoted to  documenting numerical r e s u l t s  f o r  the AGARD Engineering Applications 
C a s e  C using compressible f i r s t -  and second-order boundary-layer theory f o r  a p e r f e c t  gas. The purpose of 
this r e p o r t  i s  to present  these re su l t s  i n  a manner s p e c i f i e d  by AGARD so as t o  f a c i l i t a t e  comparison w i t h  
o ther  t h e o r e t i c a l  and numerical so lu t ions  f o r  the same body and flow condi t ions.  No attempt has been made t o  
f u l l y  analyze the present  so lu t ions .  
o ther  methods. In  a l l  fa i rness ,  however, the reader  should keep i n  mind t h e  important po in t  t h a t  boundary- 
layer  theory i n  general  is not  appl icable  t o  t h e  C a s e  C flow condition. 

The reader  o f  this r e p o r t  i s  f r e e  t o  make h i s  own judgment r e l a t i v e  t o  
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NOMENCLATURE 

skin-friction coefficient 

skin-friction drag coefficient referenced t o  base area 

pressure drag coefficient referenced t o  base area 

2 
Cf = 2TJPmUm 

cDf 

C 
P 

C spec i f ic  heat a t  constant pressure 

free-stream Mach number "m 

P inviscid pressure 

free-stream normal shock p i t o t  pressure 

P r  Prandtl number 

wall heat flux 

Reynolds number based on nose radius and free-stream conditions 

radius, nose radius, shock radius, respectively 

CI, 
Rem = pmUmrN/pm 

r, rN, rs 

Stm = - ~ , J P , U ~ C ~ ( T ~  - tw) Stanton number based on free-stream conditions 

S 

Tet Tmo To 

t, tw 

'e' um 

U 

z 

Y 

h 

6 

6* 

E 

F,n 

)I 

P 

T 
W 

Subscripts 

0 

1 

2 

e 

N 

ref 

S 

W 

m 

surface distance measured from stagnation point 

inviscid temperature a t  edge of boundary layer,  free-stream temperature, free-stream 
stagnation temperature, respectively 

temperature, wall temperature, respectively 

inviscid tangential velocity a t  edge of boundary layer,  free-stream velocity respectively 

tangential velocity 

distance along physical body axis 

r a t i o  of spec i f ic  heats 

inviscid shock standoff distance 

boundary-layer thickness ( a t  ul/Ue = 0.995) 

boundary-layer displacement thickness 

Van Dyke's expansion parameter [21 

transformed Levy-Lees coordinates [lo] 

dynamic viscosity 

density 

w a l l  shear s t r e s s  

stagnation conditions 

first-order quantity 

second-order quantity 

a t  the edge of the boundary layer 

a t  the nose 

reference condition 

a t  the  shock 

a t  the physical w a l l  

a t  free stream conditions 
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TABLE 1 

Gnditions for AGARD Engineering Applications Section 
Hyperboloid (10. Oo Asymptotic Half-Angle) 

- 
Case 

- 
Tw/T,,' 
- 

E' Altitude 
(ft) 

PW 
(atm) 

Rea3 
(Based on 
nose ra- 
dius of 

in. 1 
rN = 1.0 

TO - 
(OK) 

"W 
(ftlsec) 

A 

B 
- 

9.178 

!l. 744 
- 

?0,000. 0 179,828.5 5.0352" 

I. 0129" 

I. 0122: 

- 

- 
1 

- 

1, 400.0 0.2001 D. 0103 

D. 2237 
- 

226.98 I 1.0997 x 6, 996.0" 

5, 301.9" 

100, OOO. c 

250, OOO. c 3, om. 0 195.46 I 2.0074 x 10-5 430.9 1,000.0 0.1886 

0.0535 
- 

- C - 250, OOO. c !l. 744 B,000. 0 195.46 I 2.0074 10-5 430.9 1,000.0 D. 2237 - 18, 678.2 

"Normal Shock Eauilibrium Stagnation Conditions 

+Normal Shock Ideal Gas b - 1.40) Stagnation Conditions 

* 112 

- 1 1 ~ 1 ~ ~ ~  1 1 + 112iTa 

E = 1 Re,,, [(U - 1)M; t 112/T,,,] 

(Based on Sutherland Viscosity Law) 

TABLE 2 

Integrated Skin-Friction and Pressure Drag Coefficients 

First-Order (No Second-Order Effects) 
c 0.10901 C D ~  0.08671 

DP 

First- and Second-Order (All Second-Order Effects 
1 ncl uded Concurrently) 

C 0.12Q4 C = 0.29626 
Df DP 

Conditions 
AGARD Case C 
M, = 21.744, E = 0.2237, y = 1.40, P r  = 0.70, TwlTo = 0.0535 
Sutherland Viscosity Law 
Perfect Gas 

' D =  1 

where Ab = 3.62206 ft2 at s/rN = 50. o 

Drag Force 

7 p m u i  Ab 
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AGARD Case C 16 

14 

12 - Shock Shape from Inviscid 
- Blunt Body and Method of 

10 . Characteristics Solution 

- 
Perfect Gas 
y 1.40, M, - 21.744 
rN Nose Radius = 1.0 in. 

- 

Hyperboloid, 10.0-deg 
Asymptotic Half-Angle 

Shock Parameters at Stagnation Point 

Fig.1 Body and shock geometry 

AGARD Case C 
Hyperboloid, 10.0-deg Asymptotic Half-Angle 
Perfect Gas, y = 1.4, M, = 21.744 

0.4 Modified Newtonian Theory 
o Inviscid Blunt Body and Method of Characteristics Solution 

0.2- 

PIP,' 

0.1; 
0.08- 
0.06 - 

0.04 - 

0 4 8 12 16 20 24 28 32 36 40 44 48 
0 . 0 1 ~ " " " " " " " " " " " " '  

sIrN 

Fig. 2 Pressure distribution 

AGARD Case C 

Tref . (7 - 1.0) M& T, 
b ref - P (Tref) 
y - 1.40, M, - 21.744, Ta, - 195.46"K 

o Sutherland 0.8 - 

Range of Current Interest 

" 
0 0.2 0.4 0. 6 0.8 1.0 

PIPref 

Fig. 3 Comparison of various v i scos i ty  laws 
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AGARO Case C 
Conditions: M - 21.744 E - 0.2237. y = 1.40, Pr - 0.70, Nonsimilar Solution 

-_----- Square-Root Viscosity Law 
~ S3herland Viscosity Law 

Linear Viscosity Law 

s/rN 

Fig. 4 Effects of viscosity law on f i r s t -  and second-order local skin-friction coeff ic ients  

AGARD Case C 
Condit ions: M, - 21.744, E -0.2237, y - 1.40, P r  = 0.70, Nonsimi lar  Solut ion 

Su the r land  Viscosity Law 
Square-Root Viscosity Law 
L inear  Viscosity Law 0.21 I1 --- ------ 

Fig.5 Effdcts of viscosity law on f i r s t -  and second-order local Stanton numbers 

0.24 AGARO Case C 
Conditions: M, - 21.744 E - 0.2237, y = 1.40, Sutherland Viscosity Law 

- 

A 
o 

Pr - 0.70, Nonsimilar Solution 

P r  - 1.00, Nonsimilar Solution 
Pr  = 0.70, Locally Similar Solution 

\ 
\ 

0.15 

Cf, 0.12 

First- 
0.03 I Order 

] Theory 
0~""""""""""""' 
0 4  8 1 2 1 6 2 0 2 4 2 8 3 2 3 6 4 0 4 4 4 8  

s/rN 

First- and 

Fig.6 Effects of Prandtl number and type of solution on f i r s t -  and 
second-order local skin- fr ict ion coeff ic ients  



ACARD Case C 
0'24[ \ Conditionr: M, -21.744 E -0.2237. y - 1.40. Suther land Viscosity Law 

0 . 2 1 . '  

0. 18 

Sb 0.15 0.12 

0.09- 

0.06- 

~ 1 P r  - 0.70, Nonsimi lar  Solut ion 

1 A P r  - 1.00, Nonsimilar Solut ion 
o P r  *0.70. Locally S imi lar  Solut ion 

st, - -%+ 
- [-- p m "w Cp KO Tm' 

A \  

A x 
First- and  Second- 

[ Order Theory 
! First-Order 

0.03 

0 

s l rN 

Fig.7 Effects of Prandtl number and type of solution on f i r s t -  and 
second-order local Stanton numbers 

AGARD Case C 
Conditionr: b - 2 1 . 7 4 4  E -0 .2237 .~  -1.40 

SutherlandVlscoslty Law, P r  -0.70 1 
b n s i m i l a r  Solution 

Linear Vlsmsity Law. P r  -0.70 \ 
o Sutherland Viscosity Law. P r  -0.70, Laa l l y  Similar Solutlon 
A SutherlandViscosity Law. P r  - 1.00, Nonsimilar Solution ~ 8 

____- SquareRoot Viscosity Law. P r  - 0.70 

slrN 

Fig. 8 Comparison of first-order displacement thicknesses 

AGARD Case C 
Condilions: M -21.744, E -0.2237, y - 1.44 Pr -0 .70 .  TWITo -0.0535, 

S a h e r l a n d  Viscosity Law 
B te rna l  Vorticity, Displacemenl Speed Treatment VDS 

DDS Displacement. Displacement Speed Treatment 

TC l ransverse Curvature 
LC Longitudinal Curvature 
STJ Slip and Temperature Jump _ _ _ _ - -  

VDI Vorticity - Displacement In teract ion 
_ _ - - -  __- -  __ - -  

- < - -  
VDS __- - -  _ - -  0. @a - - - ~  __ - -  

Resultant Total, - 
\ V D I  0.04 

I 
0.02 

,. /STJ ,,r TC 
0- -0 

-0.04 

-0.06 
- - _ _  

0 4 8 1 2 1 6 2 0 2 4 2 8 3 2 3 6 4 0 4 4 4 8  

s l rN 

Fig.9 Increment i n  local  skin-friction coeff ic ient  due to second-order e f fects  
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0.045 - 

0.040 - 

0.035 - 

Suther land Viscosity Law 
VDS External Vorticity, Displacement Speed Treatment 
DDS Displacement, Displacement Speed Treatment 
VDI Vort ic i ty - Displacement Ipteract ion 
TC Transverse Curvatu r e  
LC Longitudinal Curvature 

; STJ Slip and Temperature Jump 

s/rN 

Fig. 10 Increment i n  loca l  Stanton .number due t o  second-order e f f e c t s  

AGARD Case C 
H erboloid (10 C-d As m totic Half-Angle) 

Conditions: M - 2 1 . 8 4  y - 1.40,'Pr %7d( {/T -0.0535. SutherlandViscosity Law 
6& ~ (6 Taken at ul/Ue = 0.895) 
6 In,---- 

1.8 

1.6 

1.4 

1.2 

n/nS 1.0 

0.8 

0.6 

0.4 

0.2 

[I 
0 

s/rN - 50.00 
25.00 
10.00 

1.50 m/ 

0.1 0.2 0. 
E 

/ 

U 

-- 
C Y  

.... -- 
.--- 

_-- 
I 

!37 0.25 

Fig.11 Variat ion of  boundary-layer parameters S .and 6* with respect  t o  per turbat ion parameter E 
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1.8- 

1.6 

1.4 

1.2 

1.0 

0.250 
0.200 

S 

- 

- 

- 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Shock 

0. loo 
0.080 

E 

0.040 

0.020 

0.4 ~-~; ;g3; - - - - - 
/__/----- 

_/-- 

/- ____-_-- -  
-0  

G . K  ,// _ _ _ _ -  ------ 0.21 / 

o r  
0 4 8 12 16 20 24 28 32 36 40 44 48 52 -0.lI I g I 1 ' ' 1 1 ' ' ' ' ' ' ' ' 1 1 ' ' ~ ' 1  

s/rN 

Fig.12 Variation of boundary-layer parameters S and S* w i t h  
respect to  body surface location s/rN 

AGARD Case C 
Hyperboloid (IO. 0-deg Asymptotic Half-Angle) 

Condit ions M, = 21.744, y - 1.40, Pr  - 0.70, Tw/To - 0.0535, T, - 195.46OK, 
Suther land  Viscosity Law 
Nose Radius rN = 1.0 in. 
Re, = P, U, rN/v, 

\ 

I 
I 
I 

I + AGARD Case C Condition 
I 
I 
I 
I 
I 

0.010 I I ,  I , , , ,  

102 103 104 Id 
Rem 

Fig.13 Variation of free-stream Reynolds number, Re, , with respect 
to  perturbation parameter E 
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4.5 - 
AGARD Case C 

Hyperboloid, 10.0-deg Asymptotic Half-Angle 
Perfect Gas, y = 1.40, Pr  = 0.70, M, = 21.744 
TWITo = 0.0535, Sutherland Viscosity Law 

Fi rst-Order 
First- and Second Order ---- 

5.0- 

4.5 

4.0 

2.5 - 

10.0 

- 

- 

u/ue 

Fig. 14 Velocity profi les  

AGARD Case C 
Hyperboloid, 10.0-deg Asymptotic Half-Angle 
Perfect Gas, Y = 1.40, P r  = 0.70, M, = 21.744 
TWITo = 0.0535, Sutherland Viscosity Law 

Fi rst-Order 
First- and Second-Order ----- 

3.5 

3.0 

2.5 

2.0 

1.5 

1.0 

0.5 
.o 

'0 0.2 0.4 0.6 0.8 1.0 

t'Te 

Fig. 15 Temperature profi les  
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THE HYPERSONIC VISCOUS SHOCK-LAYER PROBLEM 

by R. T. Davis* 

SUMMARY 

Laminar flow p a s t  axisymmetric blunt  bodies moving a t  hypersonic speeds i s  considered on t h e  b a s i s  o f  
a s e t  of equations which govern t h e  f u l l y  viscous shock-layer f o r  moderate t o  high Reynolds numbers. 
shock-layer equations a r e  derived by wr i t ing  t h e  f u l l  Navier-Stokes equations i n  boundary-layer coordinates 
and performing an order  of magnitude ana lys i s  on t h e  terms i n  t h e  equations. 
order  i n  t h e  inverse  square r o o t  of t h e  Reynolds number from both a viscous and an i n v i s c i d  viewpoint, so 
t h a t  t h e  s impl i f ied  governing equations a r e  uniformly v a l i d  t o  moderately. low Reynolds numbers. To t h e  
order  of t h e  approximations involved t h e  body sur face  condi t ions a r e  given by s l i p  and temperature jump 
condi t ions while a set  of  shock s l i p  condi t ions are used t o  determine condi t ions behind t h e  shock. The 
t h i n  shock-layer approximation is then appl ied t o  t h e  s impl i f ied  set  of governing equations, and t h e  r e s u l t -  
ing equations are found t o  be of  parabol ic  type. 
so lu t ion  of t h e  problem is  concerned s i n c e  these  equations can be solved by numerical methods s i m i l a r  t o  
those developed f o r  solving t h e  boundary-layer equations. 
i n i t i a l  d a t a  a t  t h e  stagnation-point and then in tegra t ing  downstream using an i m p l i c i t  f in i te -d i f fe rence  
method. 
ing equations i n  t h e  usual boundary-layer coordinates, it is found t h a t  it i s  more convenient t o  work with 
t h e  equations i n  a transformed form. 
var iab les  by t h e i r  loca l  values a t  the  shock. 
by dividing t h e  o ld  normal var iab le  by t h e  l o c a l  d i s tance  from the  body t o  t h e  shock. 
t o  demonstrate t h e  method and t o  compare with second-order boundary layer  theory. 

INTRODUCTION 

The 

Terms a r e  kept up t o  second- 

This i s  an important s impl i f ica t ion  as f a r  as numerical 

The numerical procedure cons is t s  of f inding 

The t h i n  shock-layer approximation is then removed by i t e r a t i o n .  Rather than work with t h e  govern- 

New dependent var iab les  a r e  def ined by dividing t h e  old dependent 
In addi t ion,  a new normal independent var iab le  i s  def ined 

Examples are presented 

The problem of  computing t h e  hypersonic laminar flow a t  moderate Reynolds numbers p a s t  axisymmetric 
b lunt  bodies is an i n t e r e s t i n g  one and.has a t t r a c t e d  considerable i n t e r e s t  due t o  t h e  appl ica t ion  t o  re-entry 
problems. Two of these methods a r e  through numerical s o l u t i o n  
of t h e  second-order boundary-layer equations and through numerical so lu t ion  of t h e  t h i n  shock-layer equations. 

The idea  of using t h e  second-order boundary-layer of Van Dyke [ l ]  t o  compute t h e  flow f i e l d  i s  appealing; 
however, t h i s  approach can lead t o  considerable d i f f i c u l t y .  This d i f f i c u l t y  a r i s e s  f o r  two d i f f e r e n t  reasons. 
F i r s t ,  t h e  computing time from using second-order boundary-layer theory i s  excessive s i n c e  one must compute 
t h e  i n v i s c i d  flow, f i r s t - o r d e r  boundary-layer flow, flow due t o  displacement thickness  and then the  second- 
order  boundary-layer flow. 
second-order boundary-layer theory i n  its present  form does not properly take i n t o  account t h e  e f f e c t  of 
s t rong v o r t i c i t y  i n t e r a c t i o n  which may occur f a r  downstream on bodies of t h i s  type. In s p i t e  of t h i s ,  Davis 
and FlUgge-Lot2 [21 have developed a numerical method, based on t h e  earlier work o f  Blo t tner  and FlUgge-Lotz 
[3] f o r  solving t h e  f i r s t - o r d e r  boundary-layer equations. FaMelOp and FlUgge-Lot2 [161 have appl ied essen- 
t i a l l y  t h e  same method t o  plane problems. 
with s t rong v o r t i c i t y  i n t e r a c t i o n ,  and has access t o  a numerical method f o r  solving f o r  t h e  f i r s t - o r d e r  
i n v i s c i d  flow and f o r  the second-order inv isc id  flow which arises due t o  displacement thickness. Davis and 
FlUgge-Lotz [2 ]  and Fannelop and FlUgge-Lotz [161 used an approximate method t o  ca lcu la te  t h e  flow due t o  
displacement thickness;  however, l a t e r  Marchand, L e w i s  and Davis [4] and Adams [5] calculated t h e  flow due 
t o  displacement thickness  exact ly ,  and appl ied t h e  method t o  a number of  o ther  flow problems. 

One may approach t h e  problem i n  severa l  ways. 

Second, one can experience d i f f i c u l t y  on long wisymmetric blunt  bodies s ince  

This method is successfu l  a s  long as one does not have problems 

Because of  the  d i f f i c u l t i e s  mentioned above it i s  des i rab le  t o  seek an a l t e r n a t e  method of  approach t o  
t h e  problem. The most appealing method i s  one o r i g i n a l l y  suggested by Cheng [61 (see  also Cheng [151) f o r  
solving a set  of equations v a l i d  i n  t h e  e n t i r e  shock-layer. Davis and FlUgge-Lotz 121 have given a similar 
s e t  of equations, bu t  ones which contain some second-order curvature terms l e f t  ou t  of  Cheng's theory. 
Kaiser and FlUgge-Lotz 1141 have shown t h a t  these  curvature terms have an inf luence on s tagnat ion poin t  shock 
stand-off d i s tance  and sk in  f r i c t i o n  f o r  y = 1.4; however, as expected, t h e  e f f e c t  i s  s m a l l .  The shock-layer 
equations contain a l l  of the  terms i n  t h e  Navier-Stokes equations which contr ibute  t o  second-order boundary- 
layer  theory p lus  those which a r i s e  t o  second order  i n  t h e  outer  i n v i s c i d  flow. 
layer  approximation on t h e  r e s u l t i n g  momentum equation normal t o  t h e  body sur face ,  these  equations are 
reduced t o  a se t  of equations which a r e  parabol ic  and can thus be solved numerically i n  a manner s i m i l a r . t o  
t h e  method of Blot tner  and FlUgge-Lotz [31 f o r  solving t h e  f i r s t - o r d e r  boundary-layer equations. This 
approximation i s  removed by i t e r a t i n g  on t h e  normal momentum equation which includes neglected terms. 

By making t h e  t h i n  shock- 

Cheng's [61 equations a r e  appl icable  t o  e i t h e r  t h e  d i r e c t  o r  inverse problem. However, he appl ied t h e  
method to only t h e  inverse problem so t h a t  b e t t e r  accuracy could be gained. 
appl ied to t h e  d i r e c t  problem only and determines t h e  shock shape i f  t h e  body shape i s  given. 
i s  f a s t  i n  terms of computer t i m e  and avoids t h e  d i f f i c u l t y  of s t rong  v o r t i c i t y  i n t e r a c t i o n  encountered i n  
second-order boundary-layer theory. 

The method presented here  i s  
The method 

We choose here  t o  consider only t h e  axisymmetric problem; however, t h e  plane problem can be handled i n  
exact ly  t h e  same manner. W e  consider only the  case of a p e r f e c t  gas; however, no d i f f i c u l t i e s  should be 
encountered i n  extending t h e  method t o  chemically react ing flows. 

The method t o  be discussed here  i s  similar i n  idea ,  b u t  represents  a v a s t  improvement i n  t h e  method 
developed by Davis and Chyu [71 and Chen [El. 

*Professor, h g i n e e r i n g  Mechanics, Virginia  Polytechnic I n s t i t u t e ,  Blacksburg, Vi rg in ia .  
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FORMULATION OF THE PROBLEM 

The compressible Navier-Stokes equations a r e  wr i t ten  i n  a boundary-layer coordinate system (see Fig. 1) 
and non-dimensionalized (see Nomenclature) by var iab les  which a r e  of order  one i n  t h e  region near  t h e  body 
sur face  (boundary layer )  f o r  l a r g e  Reynolds numbers. 
Van Dyke [ l ] .  
t i a l l y  i n v i s c i d  region outs ide  the  boundary layer .  Terms i n  each set of equations a r e  kept  up t o  second 
order  i n  t h e  inverse  square r o o t  of a Reynolds number. 
made and one set  of equations is found from them which is v a l i d  t o  second order  i n  both t h e  outer  and inner  
regions. 
l ayer .  

This se t  of equations and var iab les  a re  given by 
The same set of  equations a r e  then wr i t ten  i n  var iab les  which a r e  of order  one i n  t h e  essen- 

A comparison of t h e  two sets of equations i s  then 

A so lu t ion  t o  t h i s  s e t  of  equations i s  thus uniformly v a l i d  t o  second order  i n  t h e  e n t i r e  shock 

The shock-layer equations obtained from keeping terms up t o  second-order a r e  of a hyperbolic-parabolic 
nature .  
d i f f i c u l t  t o  solve numerically. 

I f  terms were kept  up t o  t h i r d  o r  higher order ,  t h e  equations would be e l l i p t i c  and thus very 

A f i n a l  approximation i s  made t o  the  shock-layer equations by making t h e  t h i n  shock-layer approximation 
t o  t h e  normal momentum equation. 
b o l i c .  
boundary-layer theory. 

The purpose of t h i s  approximation i s  t o  make t h e  equations t o t a l l y  para- 
This f i n a l  se t  of equations can then be  solved by numerical methods similar t o  methods used i n  

An i t e r a t i o n  method w i l l  be used t o  remove t h i s  approximation. 

A more d e t a i l e d  discussion of t h e  shock-layer equations can be found i n  a paper by Davis and Fliigge- 
Lotz [21. Weinbaum [9] has discussed the same s e t  of equations, bu t  appl ied t o  t h e  near  wake problem. 

The viscous shock-layer equations a r e  given by: 

Continuity Equation I 

s-Momentum Equation 

KU 
where T = U (Un - r 

n-Momentum Equation 
I V 

P ( U  

where with t h e  t h i n  shock-layer approximation t h i s  equation (2.3a) becomes 

I 

Energy Equation 

I Equation of S t a t e  

P =  Y - l p T ,  

and 

Viscosity Law 

C* where c '  = 
(Y - 1) M,~T-* 

1 + c '  p = - ( T l 3 I 2  , 
T + C'  

(2.1) 

(2.2a) 

(2.2b) 

(2.3a) 

(2.3b) 

(2.4a) 

(2.4b) 

(2.5) 

(2.6a) 

(2.6b) 

I c* i s  taken t o  b e  198.6O R f o r  a i r .  

Consistent with the  approximations used i n  the above set of equations t h e  boundary condi t ions a r e  given 
as below. 
t h e  case of  shock s l i p  even though it i s  a third-order  e f f e c t .  

S l i p  a t  t h e  body sur face  i s  a second-order e f f e c t  and i s  thus included here ,  w e  a l s o  consider 

The conditions a t  the body sur face  are given by (see  Fig. 1): 
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sur face  Conditions 
v = o  

a t n = O  

and 

(2.7a) 

(2.7b) 

( 2 . 7 ~ )  

(2.7d) 

In t h e  above al, b l  and c1 a r e  constants  ( see  Shidlovskiy [ lo]  and Nomenclature) and t h e  s u b s c r i p t  w r e f e r s  
t o  t h e  body surface.  The above boundary condi t ions can be modified t o  include m a s s  i n j e c t i o n  a t  the boundary. 
Eq. ( 2 . 7 ~ )  is not  used as a boundary condi t ion,  bu t  i s  needed t o  obta in  t h e  sur face  pressure and t o  c a l c u l a t e  
t h e  drag. 

The condi t ions a t  t h e  shock including s l i p  are given by ( s e e  Fig. 1) : 

Shock Conditions 

(2.8b) and v = - U '  COS (a + 5 )  + vgsh  s i n  (a + 6)  sh  sh  

where u ih  and v '  
a r e  given along with temperature, pressure,  and densi ty  from t h e  following expressions: 

a r e  t h e  components of ve loc i ty  tangent and normal t o  t h e  shock i n t e r f a c e  respect ively and s h  

psh v t s h  = - s i n  a , 

c2uSh + s i n  c1 utsh  = s i n  a cos a , 
( 2 . 8 ~ )  

(2.8d) 
s i n  a 

psh (Tn)sh + s i n  a T - - ( U l s h  - cos a12 = 
sh  E2U-1 

s in2  a +  (z- , (2.8e) 

and 

Y - 1  

Y(Y + 1) Mm2 
s i n  - , 

'sh = y+l 
(2.8f) 

The angles used i n  t h e  shock conditions are shown i n  Fig. 1. Primes used with U and v denote components 
evaluated tangent and normal t o  t h e  shock i n t e r f a c e  respect ively.  A l l  o ther  quai%ities used i n  t h e  boundary 
condi t ions and governing equations are as defined i n  t h e  Nomenclature. 
d i f f e r e n t  from those of  Cheng [6,151 and Bush [17] i n  t h a t  they have been modified t o  give t h e  exact  shock 
r e l a t i o n s  f o r  f i n i t e  Mach number when s l i p  i s  not  present .  

sh  

The condi t ions given are s l i g h t l y  

I f  one examines Eq. (2.1 - 2.6) ,  it i s  found t h a t  t h e  equations a r e  parabol ic  i f  E q .  (2.3b) i s  used f o r  
t h e  normal pressure gradient .  These equations a r e  q u i t e  s i m i l a r  t o  t h e  compressible boundary-layer equations. 

For ease i n  numerical computation a d i f f e r e n t  form o f  Eq. (2.1 - 2.6) i s  used. This i s  done i n  t h e  case 

This e l iminates  i n t e r p o l a t i o n  t o  determine t h e  shock pos i t ion  and el iminates  

The transformation i s  a l s o  4mportant as f a r  as t h e  i t e r a t i o n  method t o  determine t h e  shock 
We a l s o  def ine new dependent var iab les  by dividing t h e  

of  t h e  independent normal var iab le  i n  order  t o  have a constant  number of  'steps i n  t h e  f in i te -d i f fe rence  g r i d  
between t h e  body and t h e  shock. 
the problem of adding g r i d  poin ts  i n  the normal d i r e c t i o n  as the computation proceeds downstream from the 
stagnation-point. 
p o s i t i o n  i s  concerned. 
o l d  dependent var iab les  by t h e i r  l o c a l  values a t  t h e  shock. 
one a t  t h e  shock. 

This w i l l  be discussed later.  
The new dependent var iab les  thus have t h e  value 

The new independent and dependent var iab les  are def ined by: 

0 = n/n 

s = s ,  

sh  ' 

; = u/u 

; = v/v 

sh  ' 

s h  ' 

s h  ' t = T/T 

(2.9a) 

(2.9b) 

( 2 . 9 ~ )  

(2.9d) 

(2.9e) 
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and - 
!J = lJ/!J+) . (2.9h) 

The d i f f e r e n t i a l  r e l a t i o n s  needed to  transform Eq. ( 2 . 1  - 2.6) are given by: 

s h  a n' a a  
as a g  TI Y K '  _ = - -  

sh  

a i a  
an n a n  ' sh  
_ -  

( 2  . loa)  

( 2 .  lob) 

a 2  1 a 2  

an2 n2 a n 2  

- =--  and , 
(2.10c) sh  

&sh 
"Ish = where 

The s-momentum and energy equations (2.2a, 2.4a) wr i t ten  i n  t h e  transformed 5,' plane can be w r i t t e n  i n  
the s tandard form f o r  a parabol ic  equation as 

aw aw 
+ a4 K" 0 (2.11)  

a2w 

a$ + al zi + a2W + 

- 

where w equals 
be w r i t t e n  as follows: 

for the s,?nomentum equation, and f o r  the  energy equation. The c o e f f i c i e n t s  a1 - a4 can 

s-Momentum Equation - -- cos $ nsh 'sh'shn'sh nsh pur( - 'shvshnsh E + 5 + Knsh + - r + nshn cos $ 
sh' 

1 + Kn 
"'sh !J 

1 + Knshn - a =  1 
!J E2!Jsh 

cos $ n 

and 

Energy Equation 

a = - .  'shnsh "sh 1 1 n '  sh  nPn + - "sh ;) 
3 EL!Jsh 1 + Kn L 

'sh 

-- 
'sh'shnsh "sh pu 

shn lJ 
- ,  a = -  

4 ELIJsh 1 + Kn 

- 
Kn cos $ n -- 

sh  
L sh + 1 + Kn sh'l r + nshn cos $ 

a =  Pshushn'sh' sh  pun - Pshvshnsha E - + -  lJrl + 
E 'sh lJ 1 1 + Knshn ; 

-- 
a = -  shUshnshT ' sh' nsh pu 

2 EL!JshTsh 1 + KnShTI E I 

p',h 
'sh 

and 
-- n 

a = -  s h'shnsha sh  pu 
4 1 + Knshn E - 

The remaining equations are w r i t t e n  as  follows: 

Continuity Equation 

(Go - 
sh  

1 + Kn 

Kn 

sh' 

(2.12a) 

(2.12b) 

(2.12c) 

(2.12d) 

(2.13a) 

(2.13b) 

( 2 . 1 3 ~ )  

(2.13d) 
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n-Momentum Equation 

K - 
' (2.15a) Po = 0 

'sh U v - -  n '  V '  
v -  sh p;2 + s h  - sh  

s h  sh'shvshnsh sh  U sh nsh n 1 + Knshn v 1 + Kn 

where with the t h i n  shock-layer approximation t h i s  equation becomes 

- 'shULshnsh --2 
PU r 

shn 'sh pq - 1 + En 
Equation of S t a t e  

; = p t  , 
and 

Viscosi ty  Law 

where c '  i s  as defined i n  Eq. (2.6b). 

The boundary conditions become: 

Surf ace Conditions 

and 

and 

Conditions a t  t h e  Shock 

- 
v = o ,  

(2.15b) 

(2.16) 

(2.17) I 

(2.18a) 
\ 

( 2 . 1 8 ~ )  

(2.19a- 
2.19f) 

The shock condi t ions are now involved i n  the  governing equations (2.11 - 2.15) and a r e  obtained from 
Eq. (2.8a-) . In t h e  above equations (2.12-2.15) ( ) ' means d (  )/dg, which should not  be confused with t h e  
primes i n  Eq. (2.8) which a r e  defined d i f f e r e n t l y .  

An equation of  mass conservation can be obtained from Eq. (2.14) by in tegra t ing  from q = 0 ( t h e  body) 
t o  rl = 1 ( t h e  shock) while holding 6 constant .  This r e s u l t s  i n  

(2.20) 5%- dE - (r + nsh cos $1 tn'shPshush - (1 + Knsh) pshvsh1 

where 

(2.21) 

i s  proport ional  t o  t h e  rate of  m a s s  flux between t h e  body and shock a t  a given pos i t ion  on t h e  body sur face .  

Eq. (2.20) and (2.21) w i l l  be  used t o  determine t h e  shock loca t ion  i n  t h e  numerical method which deter-  
mines t h e  flow f i e l d .  

The dimensionless shear  stress, h e a t  t r a n s f e r  and w a l l  pressure ( see  Nomenclature) a r e  given by 

(2.22) 

and 

while  t h e  Stanton number i s  def ined as 

R 
Ho - Hw 

s t = - -  . (2.25) 
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The second term i n  Eq. (2.23) is a term which arises only i n  s l i p  flow and i s  due t o  s l i d i n g  f r i c t i o n  
I f  wal l  i n j e c t i o n  is present  i n  s l i p  flow, addi t iona l  terms arise i n  these shear  stress (see Maslen [ l l ] ) .  

and h e a t  t r a n s f e r  expressions. 

STAGNATION-POINT SOLUTIONS 

The governing equations ( 2 . 1 1  - 2.17) reduce t o  ordinary d i f f e r e n t i a l  equat ions a t  t h e  stagnation-point 
This can be done by expanding t h e  shock condi t ions i f  w. (2.15b) i s  used f o r  the normal pressure gradient .  

(2.8a-g) i n  power series. I f  E q .  (2.15b) i s  used f o r  the normal momentum equat ion,  no t runcat ion of  t h e  
series i s  required and the  series can be in tegra ted  term by term indica t ing  that  t h e  equations are parabol ic .  
There is a d i f f i c u l t y  w i t h  the boundary condi t ions,  however. 
a power series f o r  t h e  shock shape i n  t h e  form 

This  can be demonstrated as follows. A s s u m e  

(3.1) 

Using t h i s  r e l a t i o n  i n  the equation f o r  Ush (2.8a) along w i t h  Eq. (2.8c-g) and s implifying w e  can f i n d  an 
expression f o r  Ush i n  terms of a power s e r i e s .  
The f i r s t  term i n  the series is  of  the form 

For s impl ic i ty  w e  consider here  only the no s l i p  case.  

U = 11-- 2 
sh  Y + l  

A similar expression r e s u l t s  f o r  the pressure behind the shock. This i s  given by 

sh  2 
2n 

Psh = - 2 - Y - 1  - - L ( l - l + n 2 ) s z + . . .  . 
sh. Y + l  y + 1 Y(Y + 1)M-Z 

(3.3) 

I 
Vsh, Tsh and Psh do not  involve nsh2 i n  the f i r s t  terms of their expansions. 

The d i f f i c u l t y  mentioned is that nsh2 cannot be  determined from the s tagnat ion-point  equations. It i s  

In order  to f i n d  stagnation-point so lu t ions  w e  do t h i s ,  but  later 
It w i l l  be  shown that t h e  assumption t h a t  nsh2 = 0 i s  included 

a quant i ty  that depends upon t h e  flow downstream. 
assumption i s  t o  assume t h a t  it is  zero. 
we show how t h i s  assumption can be  removed. 
i n  the assumption of  l o c a l  s i m i l a r i t y  and can r e s u l t  i n  an e r r o r  of  about 20%. 
stream shock shape on t h e  so lu t ion  has t h e  e f f e c t  of making t h e  problem e l l i p t i c  r a t h e r  than parabol ic .  
Fortunately i n  some cases t h e  problem i s  so weakly e l l i p t i c  t h a t  t h e  e l l i p t i c  nature  of the boundary condi- 
t i o n s  can be overcome by i t e r a t i o n .  It  may be poss ib le  t o  t r e a t  nsh2 as  an i n i t i a l  condition and determine 
it from the condition that the so lu t ion  proceed downstream. 

W e  must therefore  assume a value f o r  nsh2. The usual  

The inf luence of  t h e  down- 

This  p o s s i b i l i t y  has not  been explored. 

Fig. 2 - 9 are the r e s u l t s  obtained from solving t h e  governing equations a t  t h e  stagnation-point. These 
r e s u l t s  w i l l  be discussed l a t e r .  The next  sec t ion  w i l l  d e a l  w i t h  t h e  method of  so lu t ion  of the equations. 

METHOD OF SOLUTION 

In this sec t ion  w e  discuss  the method of so lu t ion  of the problem. The problem b a s i c a l l y  reduces t o  t h e  
so lu t ion  of  parabol ic  p a r t i a l  d i f f e r e n t i a l  equations. There are many ways t o  solve t h i s  type of equation. 
The method that w i l l  be used here  i s  s i m i l a r  t o  the method t h a t  Blo t tner  and FlUgge-Lotz [31 developed f o r  
solving t h e  boundary-layer equations. 
t i o n s  have been made t o  the method t o  solve the present  problem. Below w e  w i l l  g ive a b r i e f  discussion of 
the appl ica t ion  of this method t o  t h e  present  problem. 

This method has been shown to be  s t a b l e  and accurate .  A few modifica- 

The der iva t ives  i n  Eq. (2.11)  are replaced with f in i te -d i f fe rence  quot ien ts .  In order  t o  handle high 
Reynolds number cases w e  allow f o r  var iab le  g r i d  spacing i n  t h e  n d i r e c t i o n  so t h a t  w e  can use many poin ts  
i n  t h e  region near  t h e  body sur face  where the var iab les  are changing rapidly.  L e t  t h e  subscr ip t  m denote 
t h e  s t a t i o n  measured along t h e  body sur face  and n denote the s t a t i o n  measured normal t o  the body sur face .  
It can then be  shown by Taylor series expansions that c e n t r a l  d i f fe rences  taken i n  the n d i r e c t i o n  a t  the 
poin t  m,n are 

aw Ann-l Ann W 
Ann - A Q n - l  

w -  m,n Ann-l ( A n n  + Ann-1) m,n-l ( - 1  = a n  m,n ~n~ ( ~ n ~  + ~ n ~ - ~ )  Wm,n+l + ~n~ ~ n ~ - ~  
(4.1) 

and 

The subscr ip t  n on a s t e p  increment denotes t h e  s t e p  from the nth t o  the n p l u s  f i r s t  po in t .  

The der iva t ive  i n  the  6 d i r e c t i o n  i n  Eq. (2.11)  i s  handled i n  the usual  way as a two-point d i f fe rence .  
I f  the der iva t ive  aw/ag is evaluated a t  t h e  midpoint (m - 1 / 2 ,  n )  and t h e  o ther  terms are averaged w e  ob ta in  
the Crank-Nicolson scheme. I f  a backward d i f fe rence  i s  used f o r  aw/ag  a t  t h e  poin t  (m,n) and a l l  o ther  quan- 
t i t i e s  are evaluated a t  (m,n) a l s o  w e  ob ta in  a purely i m p l i c i t  scheme. The i m p l i c i t  method i s  more s t a b l e  
than t h e  Crank-Nicolson scheme; however, it was found that i n  t h e  present  problem both schemes were s t a b l e  
as long as shock s l i p  was not  included. When shock s l i p  w a s  included it w a s  found that t h e  Crank-Nicolson 
method could become unstable .  
t runcat ion e r r o r s  i n  t h e  6 di rec t ion  i n  t h e  Crank-Nicolson scheme are smaller than those i n  the i m p l i c i t  
scheme, therefore  one would expect more accurate  r e s u l t s  from t h e  Crank-Nicolson scheme f o r  a given s t e p  
s i z e  A C .  The numerical r e s u l t s  do not  show much d i f fe rence ,  however, between t h e  two methods. 

This w a s  probably due t o  the way i n  which t h e  shock s l i p  w a s  handled. The 
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When the d i f fe rence  quot ien ts  a r e  s u b s t i t u t e d  i n t o  the d i f f e r e n t i a l  equation (2.11) a d i f fe rence  equa- 
t i on  of t h e  following form resu l t s .  

AnWn-l + B W + CnWn+l = Dn n n  (4.3) 

The so lu t ion  to this equation i s  s t ra ightforward once the boundary conditions are given. 
so lu t ion  one i s  re fer red  t o  Richtmyer [121. 
s l i p  condi t ions (2.18b) o r  ( 2 . 1 8 ~ )  i n  three point  forward d i f fe rence  form. Manipulation of t h i s  equation, 
E q .  (4 .3) ,  and the equation f o r  the so lu t ion  t o  the problem allows one t o  determine a condition t o  s a t i s f y  
t h e  w a l l  condi t ions.  
as unknown c o e f f i c i e n t s  i n  t h e  Eq. (2.12) o r  (2.13). 

For the method of 
The boundary condi t ions a t  t h e  wal l  are given by wr i t ing  the 

The condition a t  the shock i s  given by W = 1; however, the shock conditions now appear 

The method of  so lu t ion  is then as follows. S t a r t  a t  the stagnation-point where aw/a€, = 0. Eq. (2 .11)  
then reduces t o  an ordinary d i f f e r e n t i a l  equation. C a r e  must be taken t o  evaluate  t h e  pressure gradient  term 
properly a t  t h e  s tagnat ion-point .  This can be done by series expansion. Make i n i t i a l  guesses f o r  a l l  of t h e  
flow p r o f i l e s .  In tegra te ,  using the f in i te -d i f fe rence  method, t h e  energy equation (2 .11  and 2.13). N o w  
evaluate  a l l  q u a n t i t i e s  r e l a t e d  t o  temperature such-as v iscos i ty .  
s momentum equation (2 .11  and 2.12) t o  determine a U veloc i ty  p r o f i l e .  
t i o n  (2.14) t o  determine f i r s t  the shock stand-off d i s tance  from Eq. (2.21) and then t h e  v component of 
ve loc i ty  from E q .  (2.14) . A t  t h e  stagnation-point these  equations must also be  handled w i t h  series expan- 
s ions.  F ina l ly  i n t e g r a t e  Eq. (2.15) t o  determine the pressure.  Evaluate t h e  c o e f f i c i e n t s  i n  the equations 
using t h e  shock conditions (2.8) and the new value of nsh. Repeat t h e  above s t e p s  u n t i l  t h e  so lu t ion  con- 
verges. Then s t e p  along the body sur face  and i t e r a t e  a t  each s t e p  i f  necessary. 
p r o f i l e s  are used a t  each new s t e p  as a f i r s t  quess. It  w a s  found t h a t  there w a s  very l i t t l e  change a f t e r  
the second i t e r a t i o n  a t  each s t e p  except a t  t h e  s tagnat ion-point  where more i t e r a t i o n s  a r e  needed. 

i s  equal  t o  zero a t  each s t e p  on the body surface.  We 
also use Eq. (2.15b) i n  t h e  f i r s t  approximation. "9, t h e  second approximation, w e  use nlSh ca lcu la ted  from 
the stand-off d i s tance  i n  the f i r s t  approximation. W e  a l s o  use t h e  V terms ca lcu la ted  i n  the f i r s t  approxi- 
mation to approximate t h e  V terms i n  Eq. (2.15a) i n  the second approximation. Further  i t e r a t i o n s  are per- 
formed u n t i l  t h e  so lu t ion  converges. 
equation are necessary i n  order  t o  make the equations parabol ic .  

Next, i n t e g r a t e ,  i n  the same manner, t h e  
Next i n t e g r a t e  thz  cont inui ty  equa- 

The previous values of  t h e  

In  t h e  f i r s t  approximation w e  assume that n '  

These approximations on nGh and the V terms i n  t h e  normal momentum 

The shock-slip condi t ions (2.8) were handled by simply evaluat ing the (U'n),h and (TnIsh terms from the 
previous s t e p  i n  t h e  i t e r a t i o n  and then solving t h e  r e s u l t i n g  equations f o r  t h e  shock condi t ions.  This w a s  
found to converge even f o r  f a i r l y  small values of Reynolds number. 

The option of using var iab le  g r i d  spacing i n  t h e  n d i r e c t i o n  helps  i n  high Reynolds number o r  cold w a l l  
cases. 
creasing the computation time while a t t a i n i n g  high accuracy. 
t h e  n direction i n  Eq. (2.11)  using Eq. (4.1) and (4.2) one f inds  that they are 

The computer program contains  t h e  var iab le  spacing opt ion ,  which has been used w i t h  success i n  de- 
I f  one looks a t  t h e  t runcat ion e r r o r  terms i n  

We have neglected the las t  term i n  Eq. (4.2) s ince  it w i l l  be small. 
w e  can c a l c u l a t e  t h e  terms i n  t h e  brackets .  Then by s e t t i n g  the r e l a t i v e  t runcat ion error equal t o  a constant  
w e  can c a l c u l a t e  t h e  g r i d  spacing A n n  t h a t  would produce the des i red  t runca t ion  e r r o r .  
s i z e  d i s t r i b u t i o n  w e  can then reca lcu la te  a so lu t ion  which, f o r  t h e  same number of  s t e p s  i n  n, should be much 
more accurate. A ca lcu la t ion  of  this type done a t  the stagnation-point can save considerable computing time 
f o r  a computation t h a t  goes f a r  downstream. A method could be devised f o r  changing t h e  g r i d  spacing as w e  
go downstream also; however, i n  t h e  present  program t h e  g r i d  spacing determined a t  the stagnation-point i s  
used a t  every downstream s t a t i o n .  

From a constant  s t e p  s i z e  ca lcu la t ion  

Using t h i s  new s t e p  

DISCUSSION OF RESULTS 

A s  a check on t h e  method of s o l u t i o n ,  stagnation-point so lu t ions  were ca lcu la ted  t o  compare with sane 
o f  t h e  r e s u l t s  of  Cheng [131. Cheng gives  extensive r e s u l t s  but  only a few poin ts  are shown t o  poin t  ou t  
t h e  agreement that i s  obtained. I d e n t i c a l  flow condi t ions w e r e  assumed. The r e s u l t s  are shown i n  Fig. 2 
f o r  Stanton number. Even though the equations are s l i g h t l y  d i f f e r e n t  from Cheng's, one sees t h a t  the r e s u l t s  
a r e  almost i d e n t i c a l .  
behind me shock on t h e  s tagnat ion s t reamline.  The c h a r a c t e r i s t i c  length taken i n  the shock Reynolds number 
i s  the body nose radius. The inf luence 
of  this assumption w i l l  be shown l a t e r .  

The f r e e  stream condi t ions were taken t o  be s tandard atmospheric condi t ions a t  250,008 f e e t  w i t h  a f r e e  
stream veloc i ty  of 20,000 f e e t  per  second. Prandt l  number U i s  taken t o  be  0.7, t h e  r a t i o  of s p e c i f i c . h e a t s  
y i s  taken t o  be  1.4 and Suther land 's  v i scos i ty  l a w  i s  used. I f  the body nose radius  of curvature i s  chosen 
t o  be one inch ,  then E turns  out  t o  be 0.224. 

The K2 parameter is a parameter def ined by Cheng [131 and Res i s  the  Reynolds number 

The term nsh2 i n  Eq. (3.1) i s  taken t o  be  zero i n  the ca lcu la t ions .  

Fig.  3 - 6 are s tagnat ion-point  r e s u l t s  f o r  a t y p i c a l  flow s i t u a t i o n .  Again nsh i s  taken t o  be zero. 

The r e su l t s  shown i n  Fig. 3 and 4 i n d i c a t e  t h a t  f o r  l o w  Reynolds numbers, shock and body s l i p  a r e  la rge  
e f f e c t s ,  i n  f a c t  above values o f  E o f  about 0.2, they should not  be neglected. These two f igures  a l s o  give 
some indica t ion  of  the range of v a l i d i t y  o f  second-order boundary-layer theory.  For both s k i n  f r i c t i o n  and 
Stanton number, second-order boundary-layer theory p r e d i c t s  an increase  over f i r s t - o r d e r  theory, therefore  
these curves should show an upward curvature  i n i t i a l l y  as they do. The t rend  has a l ready reversed a t  around 
an E of  about 0.3, so second-order boundary-layer theory appears t o  only be v a l i d  t o  an E of about 0.2. I f  
one looks a t  Fig. 5 and 6 one not ices  that this i s  about the value of  E when the  viscous l a y e r  extends from 
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t h e  body t o  t h e  shock. 
when there  is no d i s t i n c t  boundary-layer o r  ou ter  i n v i s c i d  flow. The ve loc i ty  and temperature p r o f i l e s  shown 
i n  Fig. 5 and 6 are f o r  t h e  case when both shock s l i p  and body s l i p  are included. 

One would not  expect t h a t  even higher order  boundary-layer theory would be v a l i d  

A t y p i c a l  case was chosen t o  compare t h e  present  r e s u l t s  with second-order boundary-layer theory. Com- 
p l e t e  second-order ca lcu la t ions  have been made by Adams [51 f o r  flow over a hyperboloid which i s  asymptotic 
t o  a cone of 45O t o t a l  i n t e r i o r  angle. For purposes of comparison t h e  same flow condi t ions,  v i scos i ty  law, 
e t c .  were chosen here .  Free stream Mach number M, i s  10.0, E is 0.1806, Prandt l  number a is  0.70, and t h e  
r a t i o  of s p e c i f i c  heats  y i s  1.40. The r a t i o  of wal l  t o  inv isc id  stagnation-point temperature i s  taken t o  
be 0.2. Shock and body s l i p  a r e  included i n  a l l  ca lcu la t ions .  

Fig.  7 through 9 ind ica te  t h e  e f f e c t  of various approximations a t  t h e  stagnation-point. Fig. 10 and 

terms a r e  neglected i n  t h e  

Fig.  11 shows t h e  d i s t r i b u t i o n  of nsh along t h e  body 
and ? ca lcu la ted  from t h i s  approximation a r e  put  

In subsequent 

11 show t h e  so lu t ions  f o r  one p a r t i c u l a r  value of E a t  poin ts  along t h e  body sur face .  I n  t h e  f i r s t  approxi- 
mation nAh is taken t o  be zero a t  every poin t  along t h e  body sur face  and the  
normal momentum equation (2.15a). The lower curve i n  Fig.  7 shows t h e  stand-off d i s tance  a t  t h e  s tagnat ion-  
point  as a function of E with these  approximations. 
sur face  f o r  one p a r t i c u l a r  value of E .  The values o f  n '  
back i n t o  the  equations and t h e  equations a r e  integrate2hagain r e s u l t i n g  i n  a new so lu t ion .  
i t e r a t i o n s  t h e  previous ca lcu la ted  values of the  q u a n t i t i e s  n;h and v a r e  used. 
and 11 t h e  convergence i s  achieved i n  two s teps .  There i s  very l i t t l e  d i f fe rence  i n  t h e  r e s u l t s  i n  fur ther  
i t e r a t i o n s  as t h e  f igures  show. These r e s u l t s  are a l s o  a good check of  the  assumption of l o c a l  s i m i l a r i t y  
a t  t h e  stagnation-point. The e f f e c t  of nGh being equal  t o  zero represents  an e r r o r  of about 20% i n  i t s e l f  
a t  t h e  stagnation-point i n  ca lcu la t ing  sk in  f r i c t i o n  as i s  shown i n  Fig. 8. This i s  found by comparing t h e  
two t h i n  shock-layer ca lcu la t ions ,  one including t h e  e f f e c t  of  nAh, the o ther  no t .  
pronounced on o ther  flow q u a n t i t i e s  such as Stanton number shown i n  Fig. 9. Kaiser and FlUgge-Lotz [141 have 
found s i m i l a r  resu l t s  f o r  flow p a s t  a sphere i n  using t h e  method of series t runcat ion.  I t  i s  i n t e r e s t i n g  t o  
note  t h a t  t h e  shock stand-off d i s tance  a t  t h e  stagnation-point converges t o  t h e  exact  i n v i s c i d  value as E 

goes t o  zero ( i . e .  Reynolds number goes t o  i n f i n i t y ) .  The value obtained a t  AEDC from an i n v i s c i d  blunt-body 
so lu t ion  using the  Lomax Ames program gives  a value of 0.1498 f o r  t h e  stagnation-point shock stand-off 
d i s tance  under i d e n t i c a l  f r e e  stream conditions. Fig.  7 shows t h a t  a value very c lose  t o  t h i s  i s  being 
approached as  E goes t o  zero. Other flow f i e l d  q u a n t i t i e s  show s i m i l a r  c o r r e c t  t rends.  

A s  i s  shown i n  Fig. 10 

The e f f e c t  i s  not as 

One reason t h a t  t h e  method works so w e l l  is t h a t  t h e  shock stand-off d i s tance  i n  t h e  f i r s t  approximation 
i s  q u i t e  c lose  t o  t h e  f i n a l  r e s u l t  and therefore  t h e  nAh value calculated from t h e  f i r s t  approximation i s  
q u i t e  accurate. Fig. 11 indica tes  t h i s  and a l s o  shows t h a t  t h e  stand-off d i s tance  does not  change a f t e r  
t h e  second i t e r a t i o n .  

Fig. 1 2  and 13 show ve loc i ty  and temperature p r o f i l e s  a t  various s t a t i o n s  along t h e  body sur face .  These 
were obtained from t h e  second i t e r a t i o n .  One sees c l e a r l y  how t h e  l i n e a r  type ve loc i ty  p r o f i l e  is  swallowed 
up as t h e  outer  flow becomes an inv isc id  cone type flow. 

Second-order boundary-layer theory gives  erroneous r e s u l t s  when appl ied t o  a problem of t h i s  type. 
Fig.  14 shows t h e  r e s u l t  o f  applying second-order boundary-layer theory t o  t h e  problem. The e f f e c t  of s t rong  
v o r t i c i t y  i n t e r a c t i o n  i s  not  taken care  of  properly by second-order boundary-layer theory. 
show similar comparisons f o r  Stanton number and sur face  pressure. 

Fig. 15 and 16 

Fig.  17 ,  18 and 19 show a comparison of r e s u l t s  obtained from t h e  present  method with experimental 
r e s u l t s  obtained by L i t t l e  [181. The t e s t  cases were ' for  a range of shock Reynolds numbers r e s u l t i n g  i n  t h e  
d i f f e r e n t  values of E and f o r  flows over hyperboloid shaped bodies of  various lengths  opening t o  asymptotic 
t o t a l  i n t e r i o r  angles o f  9 0 ° ,  45O, and 20°. The numerical ca lcu la t ions  w e r e  performed including both shock 
and body s l i p .  

L i t t l e  [181 has mentioned t h a t  some of  the  d a t a  f o r  t h e  90° hyperboloid cases  i s  not  appl icable  t o  t h e  
present  ca lcu la t ions ,  espec ia l ly  f o r  t h e  s h o r t  bodies, s ince  t h e  bodies were not  long enough f o r  the  flow t o  
reach a supersonic condition before  t h e  base of t h e  body w a s  reached. This should explain t h e  s c a t t e r  i n  t h e  
d a t a  f o r  t h i s  case. The same type of s c a t t e r  is not  present  i n  t h e  o ther  cases and t h e  d a t a  seems t o  follow 
a d e f i n i t e  trend. Use of values of O r  and a t  i n  the  s l i p  condi t ions o ther  than one would reduce t h e  drag and 
would make t h e  ca lcu la t ions  agree b e t t e r  with t h e  experiments. 
e r r o r  i n  drag a t  p lus  o r  minus seven percent .  In general ,  t h e  ca lcu la t ions  f a l l  wi th in  these error bounds. 
Pressure jump w a s  included i n  ca lcu la t ing  t h e  drag, bu t  had a small e f f e c t  due to  t h e  warm body condi t ions.  

L i t t l e  es t imates  h i s  poss ib le  experimental 

AGARD CASE C 

Sample numerical ca lcu la t ions  were i n v i t e d  f o r  a seminar "Numerical Methods f o r  Viscous Flows" held a t  
t h e  National Physical Laboratory, Teddington, England, f o r  t h e  per iod of 18-21 September 1967. One of t h e  
cases considered w a s  as follows: 20' Tota l  I n t e r i o r  Angle Hyperboloid, Al t i tude  = 250,000 f t . ,  Freestream 
Veloci ty ,  Um = 20,000 f / s ,  Wall Temperature, Tw = 1,800°R, Nose Radius, a = 1 i n .  

The parameters i n  t h e  viscous shock layer  method which r e s u l t  from these  condi t ions are: Wall t o  
Stagnation Temperature Rat io ,  Tw/To = 0.0535, Free Stream Mach Number, Mm = 21.75, Per turbat ion Parameter, 
E = 0.2232. 

Fig. 3 and 4 i n d i c a t e  how these  conditions inf luence s tagnat ion-point  so lu t ions .  We s e e  t h a t  w e  are i n  
what might be ca l led  a second-order boundary-layer regime where s l i p  e f f e c t s  a r e  s m a l l .  Fig. 20-25 show t h e  
so lu t ions  f o r  f i f t y  nose r a d i i  downstream on t h e  hyperboloid. Unless otherwise noted, a l l  s l i p  e f f e c t s  are 
included. A s  i n  the  previous case f o r  a 45' hyperboloid, see Fig. 10  - 16,  second-order boundary-layer 
theory i s  not  v a l i d  f a r  downstream where v o r t i c i t y  i n t e r a c t i o n  e f f e c t s  a r e  overpredicted by second-order 
boundary-layer theory. Fig. 22 ind ica tes  t h e  inf luence of  t h e  pressure jump condi t ion,  !?q. ( 2 . 7 ~ )  and (2.241, 
on t h e  w a l l  pressure .  
e f f e c t  has been overlooked i n  previous second-order boundary-layer and viscous shock-layer ca lcu la t ions .  

For cold wal l  conditions such as AGARD CASE C t h i s  can be a s i g n i f i c a n t  e f f e c t .  The 
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The in tegra ted  drag e f f e c t s  have been ca lcu la ted  and a r e  as shown i n  t a b l e  1. Table 1 a l s o  includes 
values f o r  sk in  f r i c t i o n ,  Stanton number and wal l  pressure.  
e f f e c t .  

The drag ca lcu la t ions  include t h e  pressure jump 
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NOMENCLATURE 
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= s l i p  constant  taken t o  be 1.2304 (2  - er ) /e r  

= body nose radius  of curvature 

= s l i p  constant  taken t o  be 1.1750 (2  - 0 ) / e r  

= s l i p  constant  taken to  be  2.3071 (2  - at)/at 

= drag c o e f f i c i e n t  based on the l o c a l  cross  s e c t i o n a l  a rea ,  2 Drag/(pmUm A) 

r 

2 

,. 
= s k i n  f r i c t i o n  c o e f f i c i e n t ,  2 ' 1 * ~ /  (p:~:") 

= s p e c i f i c  h e a t  a t  constant pressure 

= t o t a l  enthalpy, H*/U:L 

= f r e e  stream Mach number 

= coordinate measured normal t o  t h e  body, nondimensionalized by t h e  body nose radius 

= pressure ,  p*/ (p:~:") 

= h e a t  t r a n s f e r ,  q*/(pzU: ) 

= radius  measured from t h e  axis of symmetry t o  a point  on t h e  body sur face ,  nondimensionalized by 

3 

t h e  body nose radius 

= coordinate measured along t h e  body sur face ,  nondimensionalized by t h e  body nose rad ius  

= Stanton number defined by Eq. (2.25) 

= temperature, 'r = T*/ (u:'/c*) 

= f r e e  stream temperature 

= veloc i ty  component tangent t o  t h e  body sur face  u*/U: 

= f r e e  stream veloc i ty  

= veloc i ty  component normal t o  t h e  body sur face ,  v*/U: 

= a x i a l  d i s tance  measured from t h e  s tagnat ion poin t  

= shock angle ,  see Fig. 1 

= thermal accommodation coef f ic ien t ,  taken t o  be 1 

P 

= angle defined i n  Fig.  1 

= r a t i o  of s p e c i f i c  hea ts  

= per turba t ion  parameter, E = 

= f r a c t i o n  of inc ident  molecules d i f fuse ly  r e f l e c t e d ,  taken t o  be 1 

= sur face  curvature ,  nondimensionalized by t h e  inverse  o f  t h e  body nose rad ius  

= c o e f f i c i e n t  of v i s c o s i t y ,  

= dens i ty ,  p = p*/p: 

= f r e e  stream densi ty  

= shear  stress, r*/(p:U$ 

= body angle defined i n  Fig.  1 

[ P*(u:2/c*) I l l 2  

p:U:a* 

2 

Subscr ipts  

w = w a l l  value 

o = stagnat ion-point  value 

sh  = value behind t h e  shock 

m = f r e e  stream conditions 
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superscripts 

- = quantities divided by their  shock values 

* = dimensional quantities 

j = 0 for plane flow and 1 for axisymmetric flow 

I 

I 

~ 

I 
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TABLE 1 

Drag and Stagnation Point Values for the 
AGARD Case C Hyperboloid 

AGAR0 Case C 

Drag Coefficients 

Pressure Friction Total 

Df - Cotot 
C 

Shack + Body Slip 0.103 0.122 0.225 

No Shock Slip 0.102 0.124 0.226 

Stagnation Point Values 

st - pw - CflS - 
Shack + Body Slip 0.491 0.383 0.628 With Jump 

No Shack Slip 0.541 0.423 0.617 With Jump 

0.925 Without Jump 

0.924 Without Jump 

Fig. 1 Coordinate system 

0 0.2 0.4 0.6 0.8 1 . 0 E  
m 4.068 0.935 0.393 0.217 0.134 K2 
m 37.02 10.76 5.358 3.274 2.177 Re, 

Fig.2 Comparison of  the present results  
with those of Cheng13 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Fig.3 Skin frict ion a t  the stagnation point as a function of E 
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Fig.9 Stanton number a t  the stagnation point as  a function of E 
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Fig. 11 Shock stand-off distance on a hyperboloid 
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Fig.12 Velocity p r o f i l e s  tangent t o  the body surface of a hyperboloid 

1.0 

0 .9  

0.6 

0.7 

0.6 

nln,h 0.5 

0.4 

0.3 

0.2 

0.1 

n 

45O Hyperboloid 
M, - 10.0 - 

E * 0.1805 
r - 1.40 
a - 0.70 la" - 0.2 

\ 
I I \ \ \  

0 0.1 0.2 0.3. 0.4 0.5 0.6 0.7 0.8 0 . 9  1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 

'ltsh 

Fig. 13 Temperature p r o f i l e s  normal t o  a hyperboloid surface 
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Fig.18 Drag coe,fficient f o r  a 45' hyperboloid 
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Fig.19 Drag coe f f i c i en t  f o r  a 20' hyperboloid 
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Fig.20 Skin f r i c t i o n  on the AGARD Case C hyperboloid 
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Fig.21 Stanton number on the AGARD Case C hyperboloid 
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Fig. 22 Pressure distribution on 
the AGARD Case C 
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Fig. 23 Shock stand-off distance on the AGARD Case C 
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Fig.24 Velocity profiles on the AGARD Case C hyperboloid 
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NUMERICAL METHODS FOR NONREACTING AND CHEMICALLY 

REACTING LAMINAR FLOWS - TESTS AND COMPARISONS 

by Clark H .  Lewis* 

SUMMARY 

Equilibrium, nonequilibrium and i d e a l  gas (y = 1.4) laminar boundary layers  and viscous shock layers  over 
a l o o  half-angle hyperboloid 50 nose-radi i  long a t  t h r e e  a l t i tude-ve loc i ty  condi t ions were computed by s e v e r a l  
inves t iga tors .  Results of  sk in- f r ic t ion  and hea t - t ransfer  c o e f f i c i e n t s  and displacement-thickness d i s t r i b u -  
t ions  over the body and property p r o f i l e s  across  the layer  a t  the ends of t h e  body were compared. 
d i t i o n s  chosen t e s t  the a b i l i t y  of  the numerical methods t o  compute nonequilibrium viscous layers  near  chemi- 
cal equi l ibr ium and t h e  a p p l i c a b i l i t y  of  boundary-layer theory a t  low Reynolds number conditions. Resul ts  
show t h a t  recent ly  developed f i n i t e - d i f f e r e n c e  methods a r e  super ior  to  e a r l i e r  methods. 

INTFODUCTION 

The con- 

During the p a s t  t e n  years  a number of numerical methods have been developed f o r  the so lu t ion  of laminar 
boundary-layer flows of  nonreacting and chemically reac t ing  gases over two-dimensional and axisymmetric bodies 
a t  zero l i f t .  In 1967 t h e  Advisory Group f o r  Aerospace Research and Development (AGARD) of  the North At lan t ic  
Treaty Organization sponsored a seminar on numerical methods i n  viscous flows a t  the National Physical Labor- 
a tory i n  Teddington, England. One objec t ive  of t h a t  seminar w a s  t o  provide a forum f o r  presentat ion of numer- 
i c a l  methods and comparison of  r e s u l t s  f o r  se lec ted  tes t  cases. A body and s e t  of conditions were chosen t o  
test boundary-layer theory, computational methods and chemical models used by various inves t iga tors .  

Preliminary r e s u l t s  were given a t  the AGARD seminar of  1967; however, s u b s t a n t i a l  extensions and improve- 
ments have been made s ince  t h a t  time, and it is now poss ib le  t o  present  comparisons from more complete 
ca lcu la t ions .  

The purpose o f  the present  paper is t o  present  the r e s u l t s  from those involved i n  t h e  AGARD seminar f o r  
the s p e c i f i c  set of tes t  cases. I t  i s  thus poss ib le  t o  draw c e r t a i n  conclusions regarding higher-order 
boundary-layer e f f e c t s  and the e f f e c t s  of  various chemical models on measurable q u a n t i t i e s .  
that o ther  inves t iga tors  who were not involved previously and have developed operat ional  methods w i l l  a l s o  
use these r e s u l t s  f o r  f u r t h e r  tests and comparisons. 

I t  i s  a l s o  hoped 

The tests condi t ions w i l l  be descr ibed and the numerical methods and chemical models used by t h e  various 
inves t iga tors  w i l l  be  ind ica ted .  Next, sk in- f r ic t ion ,  heat- t ransfer ,  and boundary-layer displacement- 
thickness  d i s t r i b u t i o n s  over the body w i l l  be presented and discussed f o r  t h e  various t e s t  cases. 
order  boundary-layer e f f e c t s  on sk in- f r ic t ion  and hea t - t ransfer  d i s t r i b u t i o n s  w i l l  be  presented and p r o f i l e s  
of flow q u a n t i t i e s  through t h e  shock layer  w i l l  be  compared a t  the end of the body. F ina l ly ,  a comparison of 
t h e  pred ic ted  s tagnat ion heat  t r a n s f e r  w i l l  be presented from t h e  various methods and flow models. 

Higher- 

The r e s u l t s  presented i n  this paper should be usefu l  t o  those i n t e r e s t e d  i n  design appl icat ions s ince  
d a t a  are presented which permit comparison of  various methods f o r  the same tes t  conditions. Because of t h e  
c o s t  involved t o  perform t h e  numerical ca lcu la t ions ,  a wider range of  conditions w a s  not  considered f e a s i b l e .  
Of course, t h e  condi t ions chosen do not  adequately t e s t  laminar boundary-layer theory with regard t o  e i t h e r  
chemical e f f e c t s  o r  higher-order boundary-layer e f f e c t s .  It  i s  necessary t o  keep t h e s e  poin ts  i.n mind when 
considering the range of  conditions s p e c i f i e d  f o r  the tes t  cases. 

TEST CASE CONDITIONS 

I n  t h i s  sec t ion  the condi t ions of  the tes t  cases w i l l  be given. It  i s  not  poss ib le ,  however, t o  include 
a l l  d a t a  which were furnished t o  t h e  various inves t iga tors .  From what i s  given i n  this paper, it i s  poss ib le  
t o  i n t e r p r e t  t h e  r e s u l t s  presented and t o  perform nonreacting (per fec t  gas) laminar boundary-layer ca lcu la t ions .  

Three t e s t  cases A,  B, and C were def ined and t h e  condi t ions a r e  shown i n  Table 1. A free-stream ve loc i ty  
of 20,000 f t / s e c  w a s  spec i f ied  f o r  a l l  conditions. Case A a t  100,000 f e e t  a l t i t u d e  w a s  spec i f ied  t o  t es t  
f i n i t e  r a t e  chemically reac t ing  flow models a t  condi t ions near  chemical equilibrium. C a s e  B a t  250,000 f e e t  
a l t i t u d e  can be compared w i t h  the results of Case C a t  t h e  same a l t i t u d e  conditions b u t  f o r  p e r f e c t  gas con- 
d i t i o n s .  Methods have not been developed which include t h e  e f f e c t s  of  nonequilibrium chemistry and higher- 
order  boundary-layer e f f e c t s ;  therefore ,  Case C w a s  designed as a p e r f e c t  gas (y = 1.4) t e s t  condition. 

The body, a 10' half-angle hyperboloid 50 nose radii  long with a nose radius of 1 inch,  i s  shown i n  
Fig.  1. 
body and c h a r a c t e r i s t i c s  so lu t ion  f o r  p e r f e c t  gas flows over t h i s  ana ly t ic  shape. It  was found that the 
d i f fe rence  i n  pressure d i s t r i b u t i o n  w a s  negl ig ib le  ( l e s s  than 5%);  therefore ,  Newtonian pressure d i s t r i b u t i o n  
w a s  prescr ibed f o r  a l l  tes t  condi t ions.  For t h e  chemically reac t ing  viscous flow Cases A and B ,  frozen, 
equilibrium and nonequilibrium streamtube expansions were performed from the equilibrium stagnat ion condi- 
t i o n s  given i n  Table 1 and f o r  the Newtonian pressure d i s t r i b u t i o n  along the body using the method of  L o r d i  
and Mates [ l ] .  Complete tabula t ions  of these  i n v i s c i d  expansion d a t a  were provided t o  each o f  t h e  inves t iga-  
t o r s ,  and these  d a t a  can be provided t o  o thers  i n t e r e s t e d  i n  making comparisons w i t h  t h e  d a t a  presented i n  
t h i s  paper by wr i t ing  t o  t h e  author of  t h e  present  paper. Fig.  2 shows t h e  temperature d i s t r i b u t i o n  and oxy- 
gen concentration d i s t r i b u t i o n  from the invisc id  streamtube expansion da ta .  It  can be  seen from Fig.  2a t h a t  
C a s e  A is  indeed near  chemical equi l ibr ium and C a s e  B i s  near  t h e  chemically frozen l i m i t .  However, from 
Fig. 2b w e  see that the concentration of oxygen from t h e  nonequilibrium expansions are not  near  t h e  e q u i l i -  
b r i m  o r  frozen limits. Therefore, it is des i rab le  to use the complete se t  of nonequilibrium expansion d a t a  
t o  determine the i n v i s c i d  outer  boundary-layer condi t ions.  

A comparison w a s  made between modified Newtonian pressure d i s t r i b u t i o n  and t h e  r e s u l t s  of a b lunt  

, 

*Professor of Aerospace Engineering, Virginia  Polytechnic I n s t i t u t e ,  Blacksburg, Virginia .  



The inves t iga tors  involved i n  t h e  AGARD competition were J. C. Adams, ARO, Inc.; F. G. B lo t tner ,  Sandia 
Corporation; R. T .  Davis, Virginia  Polytechnic I n s t i t u t e ;  A. M. 0. Smith, McDonnell-Douglas Corporation; and 
W. Schanauer, University of  Karlsruhe. The methods used and cases  t r e a t e d  a re  ind ica ted  i n  Table 2. A l l  
inves t iga tors  except Smith used an i m p l i c i t  f i n i t e  d i f fe rence  method to  so lve  t h e  boundary-layer o r  viscous 
shock-layer equations. Papers descr ibing t h e  numerical methods a r e  given i n  Refs. 2-5. 

RESULTS AND DISCUSSION 

C a s e  A 

The sk in- f r ic t ion ,  hea t - t ransfer  and boundary-layer displacement thickness  d i s t r i b u t i o n s  over t h e  body 
The nonequilibrium so lu t ions  of  Blot tner  and Smith, the equi l ibr ium so lu t ion  of are shown i n  Fig. 3-5. 

SchBnauer, and f o r  comparison t h e  p e r f e c t  gas (y = 1.4) so lu t ions  of  Adams a r e  shown. A l l  ca lcu la t ions  were 
based upon t h e  same free-stream condi t ions and modified Newtonian pressure d i s t r i b u t i o n .  

The sk in- f r ic t ion  predic t ions  of  Blo t tner  and Smith are within ?bout 5% of each o ther  over t h e  e n t i r e  
body. S c h h a u e r ' s  equilibrium gas pred ic t ion  i s  about 10% below and t h e  p e r f e c t  gas (y = 1.4) pred ic t ion  i s  
about 10% above t h e  nonequilibrium gas r e s u l t s .  

The nonequilibrium hea t - t ransfer  predict ions of  Blo t tner  and Smith are  again within about 5% over t h e  
body. The equi l ibr ium and p e r f e c t  gas r e s u l t s  a re  within about 10% of each o ther  and both a r e  about 25% 
below t h e  nonequilibrium r e s u l t s .  The nonequilibrium (NEQ),  nonca ta ly t ic  (NCW) w a l l  r e s u l t s  o f  Blot tner  a r e  
not  shown, but  t h e  hea t - t ransfer  w a s  reduced about 15%. The p e r f e c t  gas hea t - t ransfer  pred ic t ion  i s  there-  
fore  within about 10% of  t h e  NEQ,NCW predic t ion .  

From Fig. S w e  s e e  t h a t  the predic t ions  of  displacement thickness  d i f f e r e d  s u b s t a n t i a l l y  from t h e  var ious 
inves t iga t ions .  
Smith, and t h e  equilibrium gas pred ic t ion  of Schanauer w a s  about 25% below Smith's NEQ r e s u l t s .  The p e r f e c t  
gas pred ic t ion  w a s  s u b s t a n t i a l l y  above Blo t tner  I s  predic t ions .  Thus even though t h e  sk in- f r ic t ion  and heat-  
t r a n s f e r  pred ic t ions  of  Blo t tner  and Smith were i n  good agreement, t h e  pred ic t ion  of displacement thickness  
d i f f e r e d  s u b s t a n t i a l l y .  

The nonequilibrium gas pred ic t ions  of  Blo t tner  were about twice t h e  values pred ic ted  by 

A comparison of species  p r o f i l e s  a t  t h e  end of t h e  body (s/rn = 50) i s  shown i n  Fig.  6 from t h e  NEQ cal- 
cu la t ions  of  Blo t tner  and t h e  equi l ibr ium gas r e s u l t s  of Schanauer. 
d id  not  include ion iza t ion .  Species concentrations near t h e  wal l  were i n  good agreement, and t h e  d i f fe rences  
near  t h e  outer  edge of t h e  boundary layer  a r e  probably due mostly t o  d i f fe rences  i n  t h e  i n v i s c i d  boundary 
condi t ions from t h e  equilibrium and nonequilibrium streamtube expansions. 

The equilibrium gas model of  Sch6nauer 

The chemical model of Blo t tner  i s  t h e  most complete and exac t ,  and h i s  d a t a  a re  considered t h e  reference 
condition f o r  t h i s  case.  It  should also be noted that Adams t r i e d  t o  solve t h i s  nonequilibrium gas case and 
w a s  unable t o  obta in  a convergent so lu t ion  s ince  t h e  flow w a s  near  equilibrium. Thus B l o t t n e r ' s  a b i l i t y  t o  
solve t h i s  case ind ica tes  t h e  improvements made i n  nonequilibrium bound--layer so lu t ion  methods from 1967 
t o  1969. 

Case B 

The sk in- f r ic t ion ,  hea t - t ransfer  and displacement-thickness d i s t r i b u t i o n s  are shown i n  Fig.  7-9. The 
nonequilibrium so lu t ions  from Smith, Blottner and Adams and f o r  comparison t h e  p e r f e c t  gas r e s u l t s  o f  Adams 
are  shown. 

The nonequilibrium sk in- f r ic t ion  r e s u l t s  of Blo t tner  and Smith a r e  shown as one curve s i n c e  t h e  d i f f e r -  
ences were not  p l o t t a b l e .  
so lu t ions  were within 5%. Adams' p e r f e c t  gas pred ic t ion  w a s  about 60% above h i s  nonequilibrium r e s u l t .  

Except f o r  t h e  s tagnat ion region (s/rn < l), t h e  r e s u l t s  of a l l  nonequilibrium 

The hea t - t ransfer  r e s u l t s  a r e  shown i n  Fig. 8. The e f f e c t s  of nonequilibrium c a t a l y t i c  (Em) and non- 
c a t a l y t i c  (NCW) wal l  boundary condi t ions can be seen from t h e  d a t a  shown. Adams' ECW predic t ion  i s  25% above 
h i s  NCW r e s u l t s .  For s/rn > 10, B l o t t n e r ' s  ECW i s  higher  (as  much as  15%) than Adams' r e s u l t s  f o r  t h e  same 
w a l l  condi t ions.  This w i l l  be  discussed i n  mre d e t a i l  below. Adams' p e r f e c t  gas and NEQ,NCW r e s u l t s  are 
within 5% of  each o ther .  Considering a l l  ca lcu la t ions ,  t h e  NEQ hea t - t ransfer  pred ic t ions  d i f f e r  as much as 
50% f o r  s/rn > 20. 

The displacement-thickness r e s u l t s  are shown i n  Fig. 9 where t h e  d i f fe rences  are even l a r g e r .  Using 
Adams' NEQ,ECW predic t ion  f o r  reference,  Blo t tner ' s  r e s u l t s  f o r  t h e  same chemical model i s  twice as  la rge ,  
Smith's r e s u l t  i s  60% higher  (but  i n  good agreement with Adams' p e r f e c t  gas p r e d i c t i o n ) ,  and SchBnauer's 
equilibrium r e s u l t  i s  about 50% below t h e  reference value. 

In  concluding considerat ion of t h i s  case,  it i s  of  i n t e r e s t  t o  compare separa te ly  t h e  r e s u l t s  of Adams 
and Blot tner .  Adams used t h e  numerical methods developed by Blo t tner  [71 i n  1964. Both used 6 spec ies ,  and 
Blo t tner  and Adams used a 7 and 8 reac t ion ,  multicomponent gas model respect ively.  Adams used Bortner 's  1963 
react ion-rate  c o e f f i c i e n t  [E] while Blo t tner  used Bortner 's  1966 d a t a  191. Lacking d i r e c t  comparison from 
one i n v e s t i g a t o r  using both s e t s  of  r a t e  d a t a ,  t h e  d i f fe rences  are not  expected t o  be  s i g n i f i c a n t  on heat- 
t r a n s f e r  and displacement-thickness r e s u l t s .  The most s i g n i f i c a n t  d i f fe rence  between t h e  methods used by 
Adams and Blo t tner  i s  t h a t  Adams i t e r a t e d  h i s  so lu t ion  of t h e  conservation equations a t  each s t e p  along t h e  
body u n t i l  t h e  ve loc i ty ,  temperature and a l l  spec ies  p r o f i l e s  d i f f e r e d  by l e s s  than 0.1% a t  a l l  p o i n t s  across  
t h e  boundary l a y e r  while Blo t tner  d id  not i t e r a t e  h i s  so lu t ion .  From Fig.  8 w e  see t h a t  Blo t tner  and Adams 
hea t - t ransfer  pred ic t ions  a r e  i d e n t i c a l  f o r  s/rn < 4; however, beyond t h a t  po in t  d i f fe rences  as l a r g e  as  20% 
occur. Also f o r  s/rn > 4 ,  l a r g e  d i f fe rences  e x i s t  i n  displacement-thickness d i s t r i b u t i o n .  From t h e s e  d a t a  
it appears t h a t  s-stepwise i t e r a t i o n  of t h e  so lu t ion  i s  required f o r  accurate  r e s u l t s .  
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C a s e  C 

A comparison of  predicted sk in- f r ic t ion  c o e f f i c i e n t  from f i r s t -  and second-order boundary-layer theory 
and viscous shock-layer theory is shown i n  Fig.  10. We see t h a t  c l a s s i c a l  f i r s t - o r d e r  theory underpredicts 
sk in  f r i c t i o n  by about 30% over t h e  entire body. 
shock-layer r e s u l t  f o r  one nose radii and t h e r e a f t e r  increasingly overpredicts  t h e  sk in- f r ic t ion  coef f ic ien t .  
Whereas t h e  t rends of  t h e  f i r s t - o r d e r  pred ic t ion  a re  cor rec t  over the e n t i r e  body, t h e  t rends of  t h e  second- 
order  theory are incor rec t  beyond 30 nose r a d i i  where the e f f e c t s  o f  v o r t i c i t y  a r e  g r e a t l y  overpredicted by 
t h e  second-order theory. 

Second-order theory i s  within about 10% o f  the viscous 

The predic ted  hea t - t ransfer  d i s t r i b u t i o n  i s  compared i n  Fig. 11. Here w e  see t h a t  t h e  f i r s t - o r d e r  theory 
i s  within 10% of the viscous shock-layer r e s u l t  over t h e  e n t i r e  body whereas again the second-order theory 
overpredicts  the viscous shock-layer r e s u l t  by as much as a f a c t o r  of two a t  t h e  end of t h e  body. 
i n t e r e s t i n g  t o  note  t h a t  t h e  f i r s t - o r d e r  pred ic t ion  of h e a t  t r a n s f e r  i s  s u b s t a n t i a l l y  i n  b e t t e r  agreement 
than the predic ted  sk in- f r ic t ion  d i s t r i b u t i o n  upon comparison w i t h  t h e  viscous shock-layer results. Also 
even though higher-order boundary-layer (low Reynolds number) e f f e c t s  are important, p red ic t ions  based on 
c l a s s i c a l  f i r s t - o r d e r  boundary-layer theory are s u f f i c i e n t  f o r  pred ic t ions  of  w a l l  hea t  t r a n s f e r .  

I t  i s  

For this case a comparison i s  poss ib le  f o r  viscous e f f e c t s  on t h e  sur face  pressure d i s t r i b u t i o n ,  and the 
r e s u l t s  are shown i n  Fig.  1 2 .  The e f f e c t s  of boundary-layer displacement on t h e  i n v i s c i d  (Newtonian) pressure 
d i s t r i b u t i o n  i s  compared with the viscous shock-layer pred ic t ion .  Boundary-layer displacement increases  t h e  
sur face  pressure d i s t r i b u t i o n  about 15 - 20% over most of t h e  body whereas the viscous shock-layer result i s  
about 40% above t h e  i n v i s c i d  r e s u l t .  
and such a comparison would be most i n t e r e s t i n g .  

Certainly this d i f fe rence  i s  large enough t o  measure experimentally, 

A comparison of predicted flow-field var iab les  a t  the end of t h e  body (s/rn = 50) is  s h m n  i n  Fig. 13.  
The i n v i s c i d  shock-layer r e s u l t s  were computed by the author from a p e r f e c t  gas (y = 1.4) method of charac- 
teristics (MOC) so lu t ion .  The f i r s t -  and second-order boundary-layer r e s u l t s  were computed by Adams and t h e  
viscous shock-layer r e s u l t s  a r e  from Davis. A n  addi t ive  composite expansion of t h e  ( inner)  f i r s t - o r d e r  
boundary-layer r e s u l t s  with t h e  (outer )  i n v i s c i d  MOC r e s u l t s  can be compared w i t h  the viscous shock-layer 
r e s u l t s .  A composite expansion using t h e  second-order r e s u l t s  w a s  not  attempted s i n c e  it i s  c l e a r  that 
second-order theory i s  not appl icable  a t  t h a t  loca t ion  on the body. Also, t h e  composite expansion f o r  t h e  
f i r s t - o r d e r  temperature i s  not  shown s ince  a negat ive temperature i s  predic ted  using t h e  f i r s t - o r d e r  boundary- 
layer  r e s u l t .  

From the data shown i n  Fig.  13, w e  see t h a t  t h e  composite expansion y i e l d s  a ve loc i ty  d i s t r i b u t i o n  i n  
reasonably good agreement with t h e  viscous shock-layer results; however, the predic t ion  of a l l  o t h e r  flow- 
f i e l d  var iab les  i s  i n  poor agreement with t h e  more complete theory. 

F ina l ly ,  f o r  the conditions of  t h i s  case, t h e  pred ic t ions  of  boundary-layer theory are s u b s t a n t i a l l y  i n  
error upon comparison with the viscous shock-layer r e s u l t s .  
h e a t  t r a n s f e r  w a s  within l o % ,  t h e  e r r o r s  i n  s k i n  f r i c t i o n  (30%) and viscous-induced pressure (40%) predic t ions  
were s u b s t a n t i a l  and the predic t ion  of most flow-field var iab les  were o f t e n  i n  e r r o r  by a f a c t o r  of  two. 

Stagnat ion Point  

Although the f i r s t - o r d e r  pred ic t ion  of sur face  

Stagnation poin t  ve loc i ty ,  temperature and spec ies  p r o f i l e s  f o r  C a s e  B multicomponent nonequilibrium 
boundary l a y e r  (BL),  t h i n  viscous shock l a y e r  (TVSL), and t h i n  viscous shock layer  with shock s l i p  (TVSLSS) 
are shown i n  Fig.  14 f o r  both nonca ta ly t ic  (NCW) and equi l ibr ium c a t a l y t i c  (ECW) w a l l  condi t ions.  The cal- 
cu la t ions  were from Adams. 
about 20% below the frozen shock-crossing values. The equi l ibr ium i n v i s c i d  s tagnat ion condi t ions were used 
as t h e  outer  boundary condi t ions f o r  the boundary-layer so lu t ion .  

The e f f e c t s  of  shock-slip reduce t h e  ve loc i ty  and temperature behind t h e  shock 

The s tagnat ion  poin t  species  d i s t r i b u t i o n s  are shown i n  Fig.  14c f o r  the three t h e o r e t i c a l  models. A l l  
Including shock s l i p  e f f e c t s  i n  t h e  TVSL species  except N2 a re  s t rongly  a f fec ted  by t h e  shock-layer models. 

model reduced t h e  concentrat ions of 0, N and NO by about one order  of magnitude j u s t  behind t h e  shock. 
e f f e c t  could be important i f  gas rad ia t ion  were t o  be considered f o r  these  condi t ions.  

The 

Also shown i n  Fig.  14c f o r  comparison are t h e  pred ic t ions  of s tagnat ion heat- t ransfer  rate from t h e  t h r e e  
theories. 
shock layer  without shock s l i p  should increase  the hea t - t ransfer  rate t o  t h e  sur face  by 70% and including, t h e  
e f f e c t s  o f  shock s l i p  should reduce t h e  hea t - t ransfer  rate about 30%. 
consider the e f f e c t s  of t r a n s p o r t  p roper t ies  on t h e  shock wave when predic t ing  t h e  s tagnat ion hea t - t ransfer  
rate under s i m i l a r  condi t ions.  

I t  i s  not  obvious from t h e  considerat ion of t h e  temperature p r o f i l e s  i n  Fig. 14b t h a t  t h e  viscous 

Fran these d a t a  it i s  important t o  

Stagnation Heat Transfer  

The f i n a l  comparison of d a t a  i s  shown i n  Table 3 where t h e  s tagnat ion poin t  Stanton number pred ic t ions  
from a l l  ava i lab le  sources and f o r  a l l  condi t ions considered by t h e  inves t iga tors  are s h w n .  For Case A t h e  
l imi ted  d a t a  ava i lab le  f o r  NEQ,BL predic t ions  are within 5%, and the EQ,BL pred ic t ions  are wi th in  about 6%. 
For Case B, t h e  NEQ,BL predic t ions  are within 3% while t h e  EQ,BL r e s u l t s  d i f f e r  by 15%.* 
(y = 1.4) Case C ,  t h e  f i r s t -  and second-order pred ic t ions  were about 10% below and above, respec t ive ly ,  t h e  
viscous shock l a y e r  pred ic t ion ,  and t h e  e f f e c t s  of  shock s l i p  reduced t h e  hea t - t ransfer  rate by 1 2 % .  
t o  be  compared w i t h  the C a s e  B r e s u l t s  where t h e  e f f e c t s  of  shock s l i p  reduced the heat- t ransfer  rate by 
23.5%. 
nat ion hea t - t ransfer  rate than does shock s l i p  alone i n  t h e  p e r f e c t  gas case. 

For the p e r f e c t  gas 

This i s  

Therefore the e f f e c t s  of f i n i t e - r a t e  chemistry and shock s l i p  have a s t ronger  inf luence on the s tag-  

I 
*This case is  not  near  chemical equilibrium and these  EQ,BL r e s u l t s  are shown only f o r  purposes of  comparing 
numerical r e s u l t s .  
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CONCLUSIONS 

1. 
cous flows with f i n i t e  r a t e ,  multicomponent, nonequilibrium chemistry and w a s  ab le  t o  compute flow f i e l d s  
near chemical equilibrium. 

Blo t tner  has recent ly  made s u b s t a n t i a l  improvements i n  numerical methods f o r  computing laminar v i s -  

2 .  For Case A (100,000 f t ) ,  p red ic t ions  of sk in- f r ic t ion  and heat- t ransfer  d i s t r i b u t i o n s  were within 
about 15% whereas displacement thickness  d i f f e r e d  by a f a c t o r  of t w o .  
p r o f i l e s  a t  50 nose radii were cont ro l led  pr imari ly  by d i f fe rences  i n  edge conditions from t h e  i n v i s c i d  
streamtube expansion. 

Equilibrium and nonequilibrium spec ies  

3. For Case B (250,000 f t ) ,  nonequilibrium predic t ions  of sk in  f r i c t i o n  were within 10% while heat-  
t r a n s f e r  r a t e s  d i f f e r e d  by as much as 50%,  and d i f fe rences  i n  displacement thickness  were again by a f a c t o r  
of two. Ef fec ts  of  i t e r a t i n g  t h e  so lu t ion  of t h e  conservation equations resu l ted  i n  d i f fe rences  i n  hea t  
t r a n s f e r  of 20% using s i m i l a r  numerical methods and chemical data .  

4. For C a s e  C (Perfect  Gas 250,000 f t ) ,  f i r s t - o r d e r  boundary-layer heat- t ransfer  pred ic t ions  were within 
10% whereas pred ic t ion  of  sk in- f r ic t ion  was 30% i n  e r r o r .  
not appl icable ,  and t h e  viscous shock-layer theory must be used f o r  these  condi t ions.  
sur face  pressure r a t i o  w a s  about 1 .4 .  
teristics) results d i d  not i n  general  y i e l d  r e l i a b l e  shock-layer property p r o f i l e s .  

Except i n  t h e  nose region,  second-order theory was 

Composite expansions of boundary-layer and i n v i s c i d  (method of charac- 
Viscous-to-inviscid 

5.  For similar chemical and viscous flow f i e l d  models, s tagnat ion poin t  hea t - t ransfer  pred ic t ions  were 
i n  good agreement among a l l  inves t iga tors .  
and without shock s l i p  s u b s t a n t i a l l y  a f fec ted  t h e  s tagnat ion heat- t ransfer  r a t e .  

Viscous shock-layer models with nonequilibrium chemistry with 

6. F ina l ly ,  although t h e  range of  conditions covered by t h e  t es t  cases w a s  no t  espec ia l ly  broad or 
severe it showed t h a t  s u b s t a n t i a l  d i f fe rences  ex is ted  i n  r e s u l t s  from the various pred ic t ion  methods. Also, 
comparison with p e r f e c t  gas r e s u l t s  shows t h e  need f o r  adequate chemical and viscous flow-field models f o r  
pred ic t ing  w a l l  and viscous-layer measurable proper t ies .  
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Case A 
Alt i tude ,  f t  100 K 
Veloci ty ,  f t / s e c  20,000 

20.178 
226.98 
1.0997 

2157943. 
1400 

6.0352a 
6996a 

E 

20,000 

21.744 
195.46 
2.0074 

5192. 
1000 

0. 012ga 
5302a 

250 K 

C - 

250 K 
20,000 

21.744 
195.46 
2.0074 

5192. 
10 00 

0.01223b 
18,67Eb 

Table 1. T e s t  case condi t ions 

%quilibrium normal shock s tagnat ion  condi t ions 

bIdea l  gas (y=1.4) normal shock s tagnat ion  condi t ions 

I n v e s t i g a t o r  - JCA E E W s  

G a s  M o d e l  
Binary A,B 
Multicomponent B A,B A,B 
P e r f e c t  G a s  

(Y = 1.4) C C 

Chemistry 
Frozen A i B  
Equilibrium A,B A,B 
Nonequilibrium B A,B A,B 

Numerical Method 
F i n i t e  d i f f e r e n c e  * * * 
D i f f e r e n t i a l  d i f f e r e n c e  * 

T a b l e  2. T e s t  cases computed and methods used 

Source Conditions 

Adams BL,NEQ,NCW 
BL,NEQ ,ECW 
TVSL,ECW 
TVSL I NCW 
TVSLSS , NCW 
TVS LS S ECW 
1st O.BL 
2nd O.BL 

Blo t tner  BL,NEQ,NCW 
BL,NEQ, ECW 

Davis SL 
SLSS 

S ch6n aue r BLtEQ 

II  

0.0189 
0.0204 

0.0177 

B - 
0.128 
0.44 
0.706 
0.705 
0.52 
0.54 

- 
0.432 

0.417 

Smith BL I NEQ 0.0199 0.418 
BL,EQ 0.0166 0.354 
BL, Frozen 0.0201 0.427 

- 
- 
- 

0.38 
0.46 

0.421 
0.373 

Table 3. Stagnat ion p o i n t  Stanton n m b e r  
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NOMENCLATURE 

2 
2TW/PmUm, sk in- f r ic t ion  coef f ic ien t  

species  mass f r a c t i o n ,  gm/gm-mixture o r  moles/gmmixture 

' f m  

'i 

H s tagnat ion enthalpy 

M Mach number 

P s t a t i c  pressure 

l o c a l  p i t o t  pressure through t h e  shock l a y e r  PT 
2 q heat - t ransfer  rate, Btu/f t  -sec 

r,rn 

Rem pmUm/um, free-stream u n i t  Reynolds number 

radial d is tance  normal t o  t h e  ax is  and body nose rad ius ,  respec t ive ly  

S sur face  d is tance  from forward s tagnat ion poin t  

stm 
T temp er a t u  re 

U tangent ia l  ve loc i ty  component 

%/pmU,(Hm - H w ) ,  Stanton number 

f re e-s tream vel0 c i  t y  um 
Y r a t i o  of s p e c i f i c  heats  

6* boundary-layer displacement thickness  

P mass densi ty  

Subscr ipts  

W w a l l  

m f r e e  stream 

Other Notation 

( ' d  
BL boundary layer  

EQ chemical equi l i b r i m  

ECW 

free-stream normal shock s tagnat ion conditions 

equilibrium c a t a l y t i c  w a l l  with species  d i f fus ion  and convection 

NCW nonca ta ly t ic  w a l l  

NEQ f i n i t e - r a t e  chemical nonequilibrium 

SL viscous shock layer  

SLSS shock layer  with shock s l i p  

TVSL t h i n  viscous shock layer  

TVSLSS t h i n  viscous shock layer  with shock s l i p  
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. . . U  , 1 1 1  1 1 1 . ) 1 - 1 ~ ( ’ ‘ ”  

M, =21.744 
PERFECT GAS ( Y=1.4) 
MOC SHOCK SHAPE 
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0 -  - 
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- 

IOo HALF-ANGLE HYPERBOLOID - 

- 
- 
- 
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Q8 

0.6 
I 
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0.4 

- 
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Fig.l Hyperboloid geometry and perfect gas shock wave 

CASE A 
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1.0 
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0.4 

CASE B 
250,000 ft/20,000 f t /sec 

o*2 I 
- 

1.0 0.8 0.6 0.4 0.2 0 1.0 OB 0.6 0.4 0.2 0 

Fig, 2(a) Inviscid streamtube temperature distribution 
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1 I 1 1 . _  
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1.0 0.8 

Fig. 2(b) Oxygen concentration distribution from the inviscid streamtube expansions 
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A G A R D  Case A 
100.000 f t / 20.000 f t / sec 
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/SMITH, NE0 

i 0.001 
SCHONAUER 
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Fig. 3 Skin-friction distribution for  Case A 
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LGARD CASE A 

100,000 FT 120,000 F T I  SEC 

[BLOTTNER. NEQ. ECW 

S', 

SCHONAUER. EOUIL 

t 
t 

I 

i 

1 
1 

I I 1 1 1 1 1 1 1  I I I 1 1 1 1 1 1  I I I $ 1 I l l  

I 10 50 100 
10-41 

01 

Fig.4 Heat-transfer distribution for Case A 

GAS WALL 
SOURCE MOOEL CONDITION 

aOAMS PERFECT - 4--- (7.1.41 

A G A R D  C o a e A  

Tr= 1400 K 
lw,mff/20.mf?/UC 

06 - 

0 4 -  

NONEO 

NONEO 

NONEO 

EOUlL 

NCW 

ECW 

7 

EOUlL 

s/r, 

Fig. 5 Boundary-layer displacement-thickness distribution for Case A 

&D CASEA 
1w.000 f112O.ooO111nc 
- 8LOTTNER.NEQ.ECW ___ SCHONAUER EOUlL }%'m 

I 

Fig.6 Species distribution for Case A (s/r,, = 50) 
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A G A R D  Case B 
250,000 f t  / 20.000ft /sec 

AOAYS PERFECT GAS i y  I 4 1  

lo .$ 01 /L..-&-w 10 
100 

sir, 

Fig. 7 Skin-friction distribution for 
Case B 
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06 .. 

0 4  - 
C 

AGARD CASE n 
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Fig.8 Heat-transfer distribution for 
Case B 

18 AGARD Case B - 
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I 2  - 
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NONEO. 
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EC w 
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Fig. 9 Boundary-layer displacement-thickness distribution for Case B 
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Fig. 10 Skin-friction distribution for Case C 
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I I 1 - 
A G A R D  Case C - 

250,00Oft/20,000ft/sec - 
Perfect Gas ( y  = 1.4) - 

- 
- - 

t 

P 
Pb 
- 

Fig. 11 Heat-transfer distribution for Case C 

Fig.12 Surface pressure distribution for Case C 
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Fig. 13(a) Shock layer velocity prof i le  
f o r  Case C (s/rn = 50) 

4 

3 
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Fig. 13(c) Shock layer s t a t i c  pressure 
prof i le  for  Case C 

(s/rn = 50) 

Fig. 13(b) Shock layer temperature prof i le  
for Case C (s/rn = 50) 

VlSCOUS 
SL 

1st 0. BL 

INVlSCll 
SHOCK 

Y - 2 -  
rn 

I -  

1st 8 2nd O. BL 

0 
0 I 2 3 4 5 

P 
P. 
- 

Fig. 13(d) Shock layer density prof i le  for  
Case C (s/rn = 50) 
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Fig . lJ(e)  Shock layer Mach number profi le  for 
Case C (s/r,, = 50) 
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Fig . l3( f )  Shock layer total  (p i tot )  pressure 
profile for Case C (s/r,, = 50) 
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Fig. 14(a) Stagnation point velocity 
profi les  for Case B 

(after Adams) 
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BL WITH T.= 9543.3.R -- TVSL WITH T. 824495OR 
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1 . 1 . 1  

0 0.20 0.40 060 a60 ID0 + 
Fig.l4(b) Stagnation point temperature 

profi les  for Case B 
(after Adams) 
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Fig. 14(c) Stagnation point species profi les  
for Case B (after Adams) 
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