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FOREWORD

The Structures and Materials Panel of the Advisory Group for Aerospace
Research and Development (AGARD) comprises scientists, engineers and technical
adminigtrators from government, universities and industry, who are concerned
with the advancement of aerospace research and development and with the
provision of data necessary for the design and fabrication of the vehicles
and equipment which NATO requires. The Panel provides a mechanism for discussion,
the exchange of information and for conducting co-operative theoretical and
experimental studies in selected areas.

This volume describes the present state of development of the use of
mathematical programming techniques in the optimum design of aerospace and
similar structures. Although optimization with respect to cost is considered
when possible, the main emphasis is on the minimization of weight, due to the
overwhelming importance of this parameter in aerospace applications, and also due
to the fact that it is one of the few werit functions that can be defined with
reasonable precision. The use of mathematical programming techniques in the
selection of materials is also discussed to the limited extent meaningful at the
present time.

The text is divided into four main sections, the first of which describes
basic ideas, reviews the literature, and indicates the relationship of mathe~
matical programming methods both to practical optimization techniques of a more
traditional kind, and to relevant aspects of the classical theory of least weight
design. Fundamental concepts are introduced first in the context of simple
examples for the benefit of newcomers to the field and are subsequently
re-expressed in a general form.

The second section consists of three chapters on the algorithmic methods
available for the solution of mathematical programming problems, and the third
section describes some of the more ambitious applications to date of some of
these techniques in the structural design context.

The fourth and final section is devoted to classes of application which
are still at a relatively early stage of development but which promise to be
fruitful in the future in the design of practical structures. Optimum design
based on considerations of reliability - a subject of great importance - is
considered in the opening chapter. This is followed by a chapter on optimiza-
tion in the presence of aeroelastic constraints which includes some material
on classical variational methods that is used in simple examples to illustrate a
number of subtleties of optimization in that field. The volume concludes with a
consideration of the optimum design of aerospace vehicles in a broader context
to demonstrate that structural optimization is but one small sub-field of the
areas of aerospace design where mathematical programming techniques are
potentially useful.

To assist the reader the editors have imposed a degree of uniformity on
the notation and conventions employed by the various contributors. They have,
however, refrained from enforcing strict conformity when, in their opinion,
authors have introduced variations which are unlikely to cause difficulty. Such
variations are most frequent in Section 4, which covers ground well outside the
confines of the earlier chapters.

The AGARD Structures and Materials Panel first became active in the field
of structural optimization early in 1967 and its work in this subject will not
be complete for some time yet. In addition to the preparation of this volume,
for which the Panel was indeed fortunate to have the services of Prof. Schmit
and Dr. Pope as editors, a major symposium was held at Istanbul in the fall of
1969 organised by Dr. R. A. Gellatly. The Panel is also fortunate in being able
to delegate the management of its interest in this subject to an expert working
group, chaired, first of all, by Mr. A. N. Rhodes (UK) and at present under the

chairmanship of Lt. Col. C. K. Grimes (USA).
‘EZ::jit,
—

Anthoky J. Barrett
Chairman

AGARD, Structures &
Materials Panel
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Chapter 1

INTRODUCTION AND BASIC CONCEPTS
by
L. A, Schmit and G. G. Pope
1.1  Introduction

During the last decade, the use of large scale digital computing facilities for structural analysis
has become commonplace. This has led rather naturally to a growing interest in the application of
digital computers to other quantifiable portions of the structural design process. The combining of
computer oriented structural analysis techniques with mathematical programming methods has played a
central role in the development of automated procedures for directed redesign. While automated
procedures for structural design embrace some form of structural ‘analysis as a subroutine, they must be
recognized as only a component part of the overall design process.

It is useful to distinguish between conceptual design, computer aided design and automated
procedures for directed redesign. Conceptual design is characterized by ingenuity and creativity and it
deals with the overall planning of a system to serve its functional purposes. Computer aided design
involves man-machine interactions and it is characterized by qualitative judgments based on externally
displayed quantitative information. Automated procedures for directed redesign seek a balanced optimum
design in a defined sense and they are characterized by preprogrammed logical decisions based upon
internally stored quantitative information. In computer aided design, the use of graphical input-output
devices such as oscilloscope display units and light-pens facilitate crossing the man-machine interface.
Automated procedures for directed redesign are aimed at keeping the quantifiable portion of the design
procedure in the machine and thus avoiding the unnecessary crossing of this interface. These two
approaches to the effective use of the large amount of information generated by modern gtructural
analysis methods are not mutually exclusive, but rather they complement and reinforce one another. The
portion of the structural design process that can be automated responsibly has moved forward rapidly
during the past decade and continued advances are anticipated for the immediate future.

1.2 Basic Concepts

The basic ideas that are fundamental to understanding structural design applications of
mathematical programming methods can be introduced by considering two elementary examples. Graphical
illustrations will be employed to help fix ideas and mathematical abstraction and the associated
generality will be avoided for the present.

1.2.1 Simply Supported Colummn

Consider a simply supported column with a uniform annular cross section (Fig.l.l) subject to a
compressive load of P = 5000 1b. Let the length £ = 100 in, the modulus of elasticity

E = 10 x 106 1b/in2 and the density p = 0.1 1b/in3. The mean diameter is denoted by D = (D° + Di)/2
where Do and Di are respectively the external and internal diameter, and the wall thickness of the

tube is denoted by T. Find D, T and the weight W of the minimum weight design such that
D € 3.5 in, T 2 0.04 in; the compressive stress in the member is to be equal to or less than
20000 1b/in2, and the design must be such that neither Euler buckling nor local buckling can occur.

At the outset, note that the length of the column and the material have been preassigned and that
only the mean diameter and the wall thickness are variables to be determined. Note also that only one
load condition is given, namely P = 5000 1b, Thus, the possibility of various lateral loads acting in
combination with P is ignored. The region of all possible positive values of D and T can be
viewed geometrically as shown in Fig.l.2, Note that the region is immediately reduced by excluding
values of D > 3.5 in (line a~a) and excluding values of T <0.04 in (line b-b). It should also be
noted that the internal diameter Di = D ~ T, and since the minimum geometrically realizable value of Di

is zero, the region to the left and above the line D = T (line c-c) is also excluded. The requirement
that Euler buckling be precluded is stated as follows:

o~a, <0 . (1-1)

where o denotes the stress caused by the applied load P, that is

P
9 = Tor 1-2)
and % represents the Euler buckling stress
2
o = “Ep?srh . (1-3)

8L



Assuming T <D and substituting the given numerical values & = 100 in, P = 5000 1b, and

E = 10 x 106 lb/inz, the curve d-d in Fig.1.2 along which the actual stress equals the Euler buckling

stress is defined by the equation

2 2

3000 _ 495 .2 p2 o o o (1-4)

m DT

where T2 is neglectea as small compared with -Dz. The region to the left and below the curve d-d in
Fig.1.2 is therefore excluded in order to avoid Euler buckling. The requirement that local buckling of
the thin walled tube be precluded is stated as follows:

o-= g, < 0 } (1-5)

where o dendtes the local buckling stress which is assumed to be given by the following simple

expression
g = =X (1-6)

Substituting the given numerical values P = 5000 1lb and E = 10 x 106 1b/in2 the line along which the
actual stress equals the local buckling stress as given by the equation

5000 _ 6

or 4 x10

T
5 4] (1-7)
which is essentially equivalent to

T-002 = 0 (1-8)

since D and T are necessarily non-zero and positive. The region below the straight horizontal
line e-e given by Eq. (1-8) is therefore excluded in order to avoid local buckling. Note that this
constraint is in fact less restrictive than the minimum gauge requirement that T 2 0.04 in. The

requirement that the stress in the member be equal to or less than 20000 1b/in2 is stated as follows:
o -20000 <0 . ) 1-9)
' L2,
The curve f-f in Fig.l1.2 along which the member stress equals 20000-1b/in” is given by

5000 ) _
ﬁ—'_l‘- - 20000 = O : (1 10)

The region below and to the left of the curved line f-f-in Fig.l.2 is excluded therefore, in order to

prevent stress in excess of 20000 1b/in2. Note that this constraint is less restrictive than the
Euler buckling constraint in the region of interest. The weight of the tubular column member is
expressed as follows: : ‘

W o= panm D& = 10 DT . . . . . (i—ll)
The line g-g in Fig.li} along which the weiéht eéuéls 4 1b, is given by the equation
4-10 7« DT = O . T (1-12)
and a second contour (h-h) along with the weight eguals 6 1b is plotted using the expression
6 -10 DT = O . (1-13)

It is apparent from Fig.l1.2 that the minimum weight design satisfying the various stated limita-
tions lies at point j (D = 3.2 in, T = 0.04 in, W= 4.0 1b). Fig.1l.2 is a geometric representation
of this simple two variable optimum design problem. By plotting the constraints and contours of constant
weight we may scan the entire set of possible designs, points in the (D, T) space, and immediately
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seek out the minimum weight design at point j. This design happens to lie at the vertex formed by the
Euler buckling stress constraint and the lower limit on the tube wall thickness. It should be noted
that if the requirements D < 3.5 in and T > 0.04 in were changed to say D <5 in and T 2 0.015 in, then
the minimum weight design would lie at point k (D = 4 in, T = 0.02 in, W = 2,52 1b). In this case,
the optimum design happens to lie at the vertex formed by the Euler buckling stress constraint and the
local buckling stress constraint. The fact that both buckling stress limits are equal to

20000 lb/:i_.n2 is fortuitous.

Fig.1l.2 is a two-dimensional illustration of what is known as a design space representation; in
a design problem involving N design variables such a space has N dimensions. The region corresponding
to designs which satisfy all the constraints is known as the feasible region and the surface bounding
it is referred to as the constraint surface; for the two-dimensional example shown in Fig.l.2 this
surface degenerates into a collection of lines. In a two-dimensional space a vertex is formed by the
intersection of two lines while in an N-dimensional space a vertex represents the intersection of
N surfaces.

1.2.2 Two Bar Truss¥*

In the foregoing example, it was seen that various combinations of constraints could be critical
at the optimum design depending upon the limitations specified. However, the optimum designs at
point j in Fig.1.2 (for the case when D < 3.5 in and T 2 0.04 in) and at point k (for the case when
D<5 in and T 2 0.015 in) are both vertices. The second simple example illustrates that an optimum
design need not necessarily lie at a vertex point in the design space.

Consider a symmetric two member truss (see Fig.l1.3) subject to a load 2P = 66000 1b. Let the two
identical members have uniform annular cross section with a preassigned wall thickness T = 0.1 in. The
horizontal distance betweén the support points is 2B = 60 in and the pertinent material properties are

given as follows; modulus of elasticity E = 30 x 106 1b/in2, density p = 0.3 1b/in3, and yield stress
cy = 60000 1b/in2. The problem is to find the mean tube diameter D, the height H of the truss and

the minimum weight W such that the compressive stress in the members is equal to or less than the
Euler buckling stress o, and the yield stress cy. In this example, the wall thickness T, the

support spacing B, and the structural material have been preassigned and only the mean diameter D
of the tubes and the height of the truss H are variables to be determined. It should be noted that
only one load condition is considered. The problem takes the following algebraic form:

Minimize W = 2p m DT (B% + B%)? (1-14)

subject to the inequality constraints:

(1) Euler buckling

P (B2 + HZ)i - w2 E (D2 + Tz) < 0 (1-15)
m TDH 8 (BZ + HZ)
(2) Yield stress
2 2,4
P (B" + HD)® _ -
—-——_’—r-,FD—H_ Gy < 0 . (1 16)

Introduction of the given numerical values into Eq. (1-14) through (1-16) makes it possible to construct
the design space representation of this example shown in Fig.l.4.

It is apparent from the design space depicted in Fig.l.4 that the minimum weight design satisfying
the various stated limitations lies at point p (D = 2.47 in, H = 30 in, W = 19,8 1b). In this case, the
optimum design does not lie at the vertex, rather it is seen ‘that the only critical constraint at
point p in Fig.l.4 is the yield stress limitation. It is interesting and important to note that if the

yield stress limit is raised to oy = 100 000 lblinz, and the rest of the problem statement remains

unchanged, then the design space is modified to that shown in Fig.l.5. Examining the design space shown
it is apparent that the minimum weight design lies at point p (D = 1.87 in, H = 20.2 in, W = 12.8 1b);
in this instance the optimum design happens to lie at a vertex formed by the intersection of the Euler
buckling and the yield stress constraints.

1.2.3 Relationship to Traditional Approaches

Early contributors to the literature of the least weight design of aircraft structures such as
Farrar [1.2], Shanley(l.3] and Gerard[l.4] almost always formulated the structural optimization problem
in terms of equations. That is to say, the solution of a given problem was sought by preselecting the
set of critical constraints that were thought to characterize the optimum design. This approach yields
least weight designs in certain useful classes of application where the required number of constraints

*This example is due to R. L. Fox, see(l.1].
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are critical and where the critical constraints are easily identified. A wrong choice of critical
constraint can, however, lead to a wrong solution which may violate a comstraint that was assumed not to
be critical. For example, it might be assumed in the column application described in the. preceding
section that local buckling and overall buckling are both critical. Equating the failure stresses in
these two modes, a design would be obtained in which D = 4 in and T = 0.02 in; the minimum gauge
constraint, that T = 0.04 in would thus be violated. This approach also falls down, of course,. in
applications where the optimum design involves less than the necessary number of critical constraints
and consequently does not lie at a vertex of the constraint surface in design space.

A common variation of this traditional approach is the reduction of the objective function to a
function of a single variable by preselecting an appropriate set of critical constraints. In the case
of the two bar truss, it might be assumed for example that the yield stress constraint is critical at
the optimum design, then it would follow from Eq. (1-16) that

2. .24
P (B” + HY)
D = —1my—- . A (1_19)

Using Eq. (1-19) to eliminate D from the weight expression given by Eq. (1~14) would yield

20 P (32 + Hz)

Wos = T . (1-20)
y
Setting the derivative of W with respect to H to zero gives
. ) ) .
aw _ 2P| (B” +HD) - _
@ - [ 3 + 2 O‘ (1-21)
y H

which would indicate that W 1is a minimum at H = B = 30 in. The corresponding values of D and W
could then be computed from Eq. (1-19) and (1-20) respectively, and they would be found to be
D = 2.47 in and W = 19.8 1b (see point p, Fig.l.4). Using this approach for the case where

oy = 100 000 1b/in2 would lead to the design H = 30 in, D = 1,48 in, W = 11.9 1b that is clearly
in violation of the Euler buckling constraint (see point q, Fig.l.5).
The feature to be emphasized here is that, in general, it cannot be anticipated how many or which

constraints will be critical at the optimum design. Thus, the use of inequality constraints becomes
essential to a proper treatment of the structural design optimization problem.

1.2.4 Terminology and General Problem Statement

The application of mathematical programming techniques to structural design problems will be
facilitated by introducing the following terminology. An idealized structural system can be described
by a finite set of quantities that specify the materials, the arrangement, and the dimensions of the
structure. Preassigned parameters are those quantities defining a structural system that are fixed at
the outset of the automated design procedure. They are not varied by the directed redesign algorithm.
Design variables are those quantities defining a structural system that are varied by the automated
design procedure., The term load condition refers to one of several distinct sets of mechanical and
thermal loads that approximately represent the effect on the structure of the environment to which it
is exposed. A failure mode is defined as any structural behaviour characteristic subject to limitation
by the responsible engineer. A rather broad class of failure modes which includes limitations on stress,
defléction, buckling, natural frequency, and other behavioral characteristics can be formulated using
inequality constraints. An objective function is defined as a function of the design variables the
value of which provides a basis for choice between alternative acceptable designs

A rather general and very significant class of structural design problems can be stated concisely
as problems in mathematical programming using the foregoing terminology. Given the preagsigned
parameters and a set of digtinct load conditions, find the vector of design variables (D) such that
the objective function M(D) is minimized (or maximized) subject to a collection of inequality
constraints on the design variables,

hj(ﬁ) <0 ; j=1,2,...d

where the functions hj(B) are such that

(1) unsatisfactory behaviour with respect to each failure mode under each load condition is
precluded and

(2) the design variables are subject to further restrictions based upon considerations such as
fabrication limitations, geometric realizability, and analysis validity.



' Example

The usefulness of the terminology and the general problem statement is illustrated by discussing
a simple example problem that is indeterminate and involves two distinct load conditions. Consider
the three bar symmetric planar truss shown in Fig.l.6*. The configuration and the truss material are
assumed to beafixed, i.e, the preassigned parameters are N = 10 in, 81 = 1350, Bz = 90°, 83 = b5°,
p = 0.1 1b/in~, and E = 10 x 106 lb/inz. Since the truss is to be symmetric, it is required that

A1 = A3 and, therefore, the two independent design variables are A1 and A2. There are two distinct

load conditions, the first specified by P1 = 20000 1b acting at an angle of 45° to the X axis and the

second specified by P2'= 20000 1b acting at an angle of 135° to the X axis. The failure modes to be

guarded against are simple upper and lower limits on the stress in each member in each load conditiom.
Also, since negative areas must obviously be excluded, the range of admissible values for the design

variables A1 and A2 have lower limits, i.e. Al 20 and A2 2 0. Minimization of the total weight is

the goal of the optimization and, therefore, the objective function can be expressed in terms of the
design variables as follows:

W@B) = o N([2/Za + 4, (1-22)

o > .
where it is understood that a point in the design space Al, Az is defined by the vector D, that is

T
b = LA, Ay . (1-23)

Let cij refer to the stress in the ith member in the jth load condition. From symmetry, it is

obvious that 911 = 9320 931 = %92 and 931 = 9yp° Therefore, it is only necessary to consider 9410 %91
and Ogp- The tensile stress limits can be written in standard form as follows:
>
=2 - < -
hl(D) 011 20000 0 (1-24a)
a - < -
hz(ﬁ) 0,y = 20000 0 . (1-24b)
a - < -
h,(®) 04y = 20000 0 (1-24c¢)

where the maximum permissible tensile stress is 20000 1b/in2. The compression stress limits are
expressed ‘in the form,

hl.(_ﬁ) = -0, -15000 < 0 (1-25a)
N
hS(D) =0y - 15000 < 0 (1-25b)
- - - < -
h6(i5) aq; - 15000 0 (1-25¢)

where the maximum permissible compressive stress is 15000 1b/in2. The constraints precluding negative
areas can be put in the standard form,

h7(b’) = -4 <o (1-26a)

h8(3) = -4, <0 . (1-26b)

From elementary structural analysis the following expressions may be substituted in Eq. (1-24) and
(1-25):

1 A
4 24) A, + /ihl
2000072
O9p = - ZAI (1-27b)

- 2
24, A5+ »/z'A1

*This example was first presented in [1.5].




. 20000A2
© 2 s ——— (1-27¢)

31 2
24 A+ /EAI

The significant portion of the design space for this example is shown in Fig.1.7. The constraints
separating the region of acceptable designs from the unacceptable domain are hl(D)‘< 0 (the tension

gtress limit in member 1 under load condition 1) and h6(3) < 0 (the compressive stress limit in member
3 under load condition 1). Note that the constraint hz(ﬁ) <0 (the tension stress limit in member 2
under load condition 1) is always satisfied for designs in the positive quadrant [h7(3) <0, hs(ﬁ) < 0]
provided the tension stress limit in member 1 in load condition 1 is satisfied [i.e. hl(ﬁ) <0].
Selected contours of constant weight BEE =W s%nce p N=0,1 x 10 = 1) are also shown in Fig.l.7.
Scanning this design space, it is apparent that the minimum weight design lies at point 1

(i.e. & =4, = 0.788 in’, A

does not lie at a vertex and it represents an indeterminate structure in which member 2 is not fully

stressed in either load condition. The design represented by point 2 [i.e. A1 = A3 = 1.0 and

W= 2.83 1b] is not the minimum weight optimum design in this case even though it is (a) at a vertex,
(b) determinate, and (c) fully stressed in the sense that each member is fully stressed in at least

one load condition*. It may be observed that the design represented by point 3 in Fig.l.7 is

(a) at a vertex, (b) indeterminate, and (c) not fully stressed. This example illustrates again that the
intuitive substitution of what is thought to be an equivalent problem for an inequality constrained
minimum weight design problem can lead to incorrect results.

2 = 0.41 in2 and W = 2,64 1b]. It should be noted that this optimum design

1.2.5 Features of the Mathematical Programming Approach

/
The application of mathematical programming techniques to structural design problems may be
viewed as a generalization of conventional methods for structural optimization based on the realization
that inequality comstraint concepts are, in general, essential to proper formulation of these problems.
When the structural design optimization problem is viewed as a mathematical programming problem:

(a) it is possible to consider the design of a structural system rather than the design of
individual elements; allowance can be made where appropriate for quantities such as the weight of

structural connections using, perhaps, statistical information,

(b) the behavioral characteristics of the optimum design need not be pfesumed, rather they
emerge as a consequence of the design procedure,

(c) a variety of failure modes in each of several load conditions may be guarded against,

(d) restrictions on the design variables arising from fabrication considerations and limitations
of the analysis employed can be treated,

(e) a wide variety of restrictions on structural behavior including stress, displacement,
buckling, dynamic and thermal response can be dealt with,

(f) the approach is not inherently linked to weight minimization; that is to say, objective
functions other than structural weight may be readily employed.

While reviewing the potential of mathematical programming techniques in the structural design
field, it is well to point out a fundamental property of these techniques which can sometimes be a
cause of difficulty. In any optimization problem of the form illustrated in Fig.l.8a, standard
mathematical programming methods will yield the optimum solution; such problems are referred to as
convex problems. Many structural applications are, however, of a more general form as, for example,
illustrated in Fig.1.8b where local optima exist as well as the global optimum which is sought. Now
mathematical programming techniques look, in effect, for conditions which are satisfied by a local
optimum, so the solution obtained is liable to depend on the initial design from which the search
procedure is started. This difficulty can be alleviated by repeating computations from radically
different starting points and comparing results until reasonable confidence is built up that the
global optimum has been achieved. A single application remains a powerful tool, however, as a means of
improving a design which is the best that can be achieved by traditional means; in many problems
single applications of mathematical programming techniques have yielded significantly more efficient
designs than can be achieved without their aid.

1.2,6 Relationship to Materials Selection

The formulation of the structural design problems as a mathematical programming problem is in
principle general enough to embrace both the design of the structural configuration and the
structural material. Most applications of mathematical programming techniques have assumed that the
design variables are continuous variables. However, the materials selection problem is usually
characterized by a discrete set of available materials from which a choice is to be made. Such discrete

*The assumption that a fully utilized design is equivalent to a minimum weight design is frequently
but not always valid. This topic has been examined in some depth and the interested reader is
referred to [1.6], [1.7] and [1.8].
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variables might in theory be incorporated in the optimization process at the expense of a considerable
increase in complexity and computational time, but when there are only two or three candidate materials
and when the same material is to be used throughout the structure, it would probably be more efficient
to perform the optimization on the basis of each material in turn and to compare the results at the end.
Even if it is hypothesized that material variables can be treated as continuous, serious practical
problems arise because most of the engineering material properties that are important in structural
design depend upon experimental characterization. Furthermore, the dependence of engineering material
properties, including cost, upon processing, fabrication and composition variables currently defies
description.

The idea of applying mathematical programming techniques to simultaneous selection of a
structural configuration and materials can be illustrated by the following simple but admittedly
rather impractical example [1.9}. Consider the problem of designing the lightest weight three bar
planar truss to transmit to a fixed support line represented by r-r in Fig.l.9, various concentrated
loads (Pk) applied at point (8) and oriented at angles @ to the X axis. Stress, displacement, and

buckling failure modes are to be guarded against in each of several distinct loading conditions
(mechanical and thermal). It is assumed that the pertinent engineering material properties may be
expressed as continuous functions of the density. For this example the modulus of elasticity,

thermal expansion coefficient and the yield stress of a representative class of structural alloys were
plotted versus ‘density and then curve-fitted, see [1.9] for details. The cross section of each

truss member is assumed to be annular, with a preassigned mean-diameter to wall thickness ratio
selected to preclude local buckling. The preassigned parameters for this example are: N, the normal
distance from point s to the support line r-r in Fig.l.9, the mean diameter to thickness ratio

% , for each thin walled tubular member, the modulus of elasticity as a functjon of density E(p),
the coefficient of thermal expansion as a function of density g(p), and the yield stress as a
function of density Oy(p). The design variables are the density (p_), the orientation angle (Bp)

and the cross sectional area (Ap) for each of the members (p = 1, 2, 3).

Constraints are placed on the range of values that can be assumed by the various design variables
as follows:- :

0.05 < 0 €032 ; p=1,23 (1-28)
8, < 8, < 7 (1-29a)
By < B, < B (1-29b)
0o < 33 < 32 (1-29¢)
and
o < A, < (A pax (1-30)

where the (Ap)me represent upper limits on the cross sectional areas. From an examination of

Fig.1.9 it can be seen that the constraints stated in Eq. (1-29) serve to preclude the possibility of
members of infinite length and they also order the position of the members. The load conditions are
specified by giving the magnitude Pk and the orientation & of the mechanical load applied at

joint s for each load condition k as well as the corresponding temperature changes AT Inequality

pk’
constraints are easily generated to guard against unsatisfactory behavior with respect to the several
failure modes. The stress in each member p in each load condition k is required to be equal to or
less than the tensile yield stress and equal to or greater than the compressive yield stress or buckling
stress whichever is critical (assuming tensile stress is positive and compressive stress is negative).
The x and y displacement components of the point s are subject to upper and lower limits in each
load condition. The structural weight which is seen to be the non-linear function of the nine design
variables,

3

N
WA - —_— A -
( p8p2Pp) p£1 Py oTm 5 % (1-31)

is taken as the objective function.

The analysis used to predict the behavior of any particular trial design follows from a straight
forward application of elementary structural mechanics. The directed redesign procedure used to obtain
numerical results is described in {1.9]. Results for several numerical examples* are given there and
it is shown that mathematical programming techniques can be used to carry out simultaneous selection of
structural material and configuration within the context of this rather highly idealized example.

*Another interesting aspect of these results was that when displacement constraints governed the
design, it was often found that many optimum designs all having the same minimum weight existed.



Fig.1.9 Three Bar Truss




While this example is admittedly impractical, the basic approach it illustrates may have long range
potential.

The emergence of high performance composite materials has encouraged some further consideration of
the idea of simultaneous design of structural configuration and structural material. For example, in
fiber composites the volume fraction of fibers could be considered as a design variable. With carbon
fibers the modulus of elasticity in the longitudinal direction may be treated in principle as a
continuous design variable over a very wide range.

It should be noted that ply orientation angles are not viewed here as material design variables
but rather they are thought of as laminate configuration design variables. 1In the area of ceramic
materials and particulate composites, it is possible in principle to represent both the composition
and the density of the material using continuous design variables. Here again difficulties are
experienced due to the dependence of engineering material properties, including cost, on the material
design variables which can in general only be obtained by an extensive experimental characterization
program., Even if one imagines carrying out such a program for a sample set of material design variable
values, there is no assurance that interpolation between such data points is valid.

For the foregoing reasons, the materials selection problem even for composite materials tends in
practice to be discrete., While the simultaneous design of materials and structures remains a
desirable long range goal, major advances are needed in the prediction of engineering material
properties from material design variables to make this possible. For the present, the application of
mathematical programming techniques in structural design can aid in the materials selection process by
making it possible to compare optimum designs based upon alternative discrete materials. It may be
noted that these existing methods can also be used to generate optimum designs based on hypothetical
material properties that are judged to be realizable in the future. In this way, methods for seeking
optimum structural designs for alternative hypothetical and existing materials can be used to help
guide materials development effort into areas of high payoff.
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Chapter 2
A BASIS FOR ASSESSING THE STATE-OF-THE-ART
by
L. A. Schmit
2.1 Introduction

The growing awareness that a significant class of structural design problems may be attacked by
combining computer oriented structural analysis with mathematical programming methods to generate
automated directed redesign procedures has led to a diverse and increasing body of knowledge. In order
to provide a basis for reviewing some of the recent literature and to help achieve an organized and
coordinated overview of the subject, the following philusophical framework is set forth. Most of the
successful structural design applications of mathematical programming techniques deal with the problem
in design variable space. The method of attack corresponds to that illustrated by the various simple
examples of Chapter 1 (see Sections1.2.l, 1.2.2, 1.2.4). This general class of problems can
be concisely stated as follows:

Find D such that hj(-ﬁ) <0 ; j=1,2,...J (2-1a)

and M(D) -+ Min . , (2-1b)

The vector of N design variables D locates a point in an N-dimensional space, while the J inequality
constraints (2-la) must be satisfied for a design to be acceptable; M(D) is the objective function.
Structural design problems of this form are finite in the sense that the design vector contains a
finite number of components. It is assumed that the assignment of numerical values to these components
specifies a unique structure. It should be noted in passing that many problems in structural analysis
and integrated analysis-design may be viewed as mathematical programming problems. Some of these will
be discussed briefly in Section 2.7. However, structural design applications having the form of

Eq. (2-1) are of primary interest in this volume.

2.2 Finite or Analyfic

It will be useful to distinguish finite optimization problems, to which mathematical programming
techniques may be applied directly, from analytic optimization problems in which the goal is to find
the form of one or more functions. In the case of analytic optimization problems, the structural
design is represented by one or more unknown functions and the formof these functions is sought sguch
that the objective functional is minimized subject to various equality and inequality constraints.
Analytical solutions of structural design optimization problems* when they can be found, provide
valuable insight and benchmark solutions against which finite solutions can be evaluated. However,
it is likely that the design optimization of practical structures exhibiting realistic complexity will
continue to be accomplished mainly by the use of finite formulations. This viewpoint is supported by
the well established widespread use of finite formulations in structural analysis. It should be noted
that essentially this same opinion-was expressed by Sheu and Prager .in the concluding remarks
section of their recent literature review [2.3].

2.3 Design Philosophy

Characterization of a structural design philosophy involves many considerations.  Thrée of the
more important bases for characterization are:

(a) classification of the design philosophy as deterministic or probability based,
(b) identification of the kinds of failure modes to be guarded against,

(c) classification with respect to consideration of service load conditions and/or overload
conditions.

Structural systems are usually subjected to environments that are complex and continuously
changing with time. In design practice, the environment is usually replaced by a multiplicity of
distinct loading conditions and this idealization is a critical step requiring professional judgement
and experience. Both deterministic and probability based design philosophies are possible within the
idealized context in which a discrete set of load conditions is presumed to replace the actual
environment. If any of the quantities involved in a structural design problem are treated as random
variables, the formulation will be classified as probability based (PB). On the other hand, if all
of the quantities involved in a structural design problem are treated as deterministic (DET), then
the formulation will be so classified. Although the elastic deterministic design philosophy is
still common practice today, it can be argued that in view of uncertainties with respect to load levels
and strengths, it would be more rational to tréat these quantities (and others) as random variables,
see for example [2.4], [2.5] and [2.6]. Recent developments in the area of probability based
structural design optimization are discussed in Chapter 10.

*For some recent examples, see [2.1] and [2.2].




There are various ways of seeking to assure that a structural system will perform its specified
functional purposes. These consist of striving to avoid the occurrence of various kinds of failure
modes. What constitutes failure must be carefully defined and this can be expected to vary from one
deslgn task to another. Furthermore, the kinds of failure modes to be guarded against under service
load conditions will usually differ msrkedly from those considered under overload conditions. Service
load conditions will be defined as design load conditions representative of normal use. Overload
conditions will be defined as load conditions representative of certain anticipated extraordinary or
emergency situations, It is useful to dxst1n3u1sh overload conditions that stem from scaling up a
service load condition (by multiplying by a 'safety factor') from overload conditions, such as earthquake
and nuclear weapons effects, that do not correspond to any service load condition. In aircraft
structural engineering practice static service load conditions are generally called "limit load' condi-
tions and overload conditions are generally called 'ultimate load' conditions. In civil engineering,
however, overload conditions obtained by scaling up service load conditions are often called limit or
ultimate load conditions. Adequate performance of a structural system may be sought by trying to avoid
failure modes such as initial yielding, excessive deflection, and local instability under service load
conditions and/or by striving to prevent failure modes such as rupture, collapse, and general instability
under overload conditions,

One well known approach is to design the structure so that initial yielding under service load
conditions is avoided. For -example in civil engineering practice the elastic deterministic design
philosophy consists of applying a 'safety factor' to the material yield stress in order to establish
allowable working stresses and then designing the structure deterministically so that these allowable
working stresses are not exceeded under service load conditions. The obJect1ve of this approach is to
make it highly unlikely that the yield. stress will ever be exceeded under service load conditions. In
an elastic probability based desxgn philosophy the structure is deslgned so that the probability of
exceeding the yield stress under service load conditions is less than a specified minimum. In other
words, failure is assumed to have taken place if the yield stress in any member is exceeded in any
service load cond1t1on, and the structure is designed to insure that the probab111ty of failure is less
than a specified minimum, .

. A second well known approach, which may be used as an alternative, or in addition to the fore-
going, is to design so as to prevent collapse under service load conditions. For example, in civil
engineering practice deterministic limit design philosophy consists of applying a 'safety factor' to
the service load conditions in order to establish the overload conditions and then designing the
structure deterministically so as to preclude plastic collapse under the overload conditions. The
objective of this approach is to make it highly unlikely that plastic collapse will occur under '
service load conditions. 1In a probabllxty based limit design phxlosophy ‘the structure is des1gned 80
that the probab111ty of plastic collapse is less than a specified minimum when the structure is subject
to a set of service load conditions. It should be noted that from a probab111ty based viewpoint,
design against plastic collapse and design against initial yield are both service load oriented desxgn
philosophies. Deterministic design to preclude plastic collapse under overload conditions scaled up
from service load conditions, may be viéwed as an artificial device for trying to keep the probability
of plastic collapse under service load conditions small.

Another approach to seeking assurance that a structural design will perform its specified func~
tional purposes is to design the structure to avoid permanent damage under service load cond1t1ons
and catastrophic failure under overload conditioms. For example, aircraft structural engineering
practice often consists of designing the structure deterministically so as to preclude damage under
static service load conditions (limit loads) as well as prevent catastrophic failure under overload |
conditions (ultimate loads), The corresponding probability based design philosophy would seek to limit
the probability of permanent damage under service load conditions as well as the probability of
catastrophic failure under overload conditions. Within the spirit of this design philosophy it would
also be appropriate to str1ct1y limit the probability of catastrophic failure under service load
conditions.

In examining a particular application of mathematical programming to structural desxgn, it will
be useful to

(a) classify the design philosophy as deterministic or probability based,
(b) identify the kinds of failure modes considered,
(¢) know if service load conditions and/or overload conditions are considered.

2.4 Kinds of Design Variables

The design variables used to descr1be structural systems can be categorized from a mathematical
and physical viewpoint. From a mathematical point of view, it is important to distinguish between
continuous and discrete design variables. In practical design problems, many of the design .variables
are strictly speaking, discrete. For example, sheet thicknesses may only be selected from commercially
available gauges. However, if a large number of discrete values exists uniformly distributed over a
limited interval, use of a continuous variable representation is often satisfactory, followed by '
selection of the nearest available discrete value. When a strictly discrete design variable is -
handled in this way, it will be categorized as pseudo-discrete. While a significant class of .
structural synthesis problems can be adequately formulated using continuous or pseudo-discrete design
variables, it should be recognized that situations arise where it will be essential to employ discrete
or integer variables., Integer variables can play an important role in describing a structural system.
The number of major rings i1n a stiffened cylindrical shell, the number of plies in a laminated ply
construction, the number of flange splices in a continuous welded girder are all examples of important
integer variables. Problems involving integer variables are often further complicated by the fact that
the number of continuous, pseudo~discrete, or discrete design variables describing the structure often
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depends upon the value of the integer variable(s). Declaration of the existence (1) or absence (0) of a
structural element, such as a truss member joining two nodes, may be thought of as an important special
case of an integer variable limited to the values O and 1. Sved and Ginos [2.7] have pointed out that
optimization problems with inequality constraints can have singular global minima that cannot be

reached from an arbitrary point through the continuous set of variables involved. They illustrate this
point with a three bar truss example. This suggests that it may be necessary to represent some design

variables D, as the product of a 0-1 integer Gi and a scalar Bi [i.e. D, = 61 Bi].

From a physical point of view, it may be helpful to consider that a design variable hierarchy
exists which facilitates classification of the various quantities describing structural systems. Thus
section properties or cross sectional dimensions of structural elements are said to describe the sizing
or proportioning of a structure. The coordinates locating joints in trusses and frames may be viewed
as configuration or geometric layout variables. In fiber composite materials ply orientation angles
can be thought of as configuration variables while the number of plies at each angle is an integer
sizing variable. Furthermore, in such materials the fiber volume fraction and the longitudinal modulus
of elasticity of the fibers may in some cases, be viewed as a class of quantities that can be called

material design variables. Another level in the hierarchy is represented by the possibility of using

integer variables in a connectivity matrix to describe whether or not a member exists (1) or is
absent (0). Design variables of this type will be referred to as topological variables.

2.5 Objective Function

When considering the application of mathematical programming to the structural design problem, it
is necessary that a basis for choice between alternate acceptable design be selected. The nature of the
structural design problem is such that there will usually be many designs that perform the specified
functional purposes adequately provided that limitations on weight and/or cost are ignored. The
objective of structural design optimization is frequently taken to be weight minimization. It can
éften be argued that weight minimization tends toward an economical structure since cost is intimately
related to the amount of material required. Perhaps another reason that weight is so often used as the
objective function in this field is because it is readily quantifiable, This is soon appreciated when
one attempts to gather information for comstructing a cost function including in addition to material
cost, fabrication costs, tooling costs, etc. Indeed the cost of initially designing and constructing
a structure is only a part of the overall cost picture which would usually include factors such as
operating and/or maintenance costs, repair costs, insurance costs, etc. Ignoring the difficulties of
quantification, .an approach that appears rational would be to seek a structure of minimum total cost
subject to constraints that limit the probability of failure during a specified lifetime. It is even
possible to imagine carrying this thought one step further to minimization of total cost, including
failure costs which depend upon the probabilities of failure. Contributions to the total cost, charged
against failure, could be given by the damage cost associated with a particular failure multipled by
its probability of occurrence. It is, however, recognized that answering the moral question of what
constitutes an appropriate failure damage cost is likely to be as difficult as selecting an acceptable
probability of failure.

The selection of an objective function that is quantifiable and which effectively relates a
structural system (or subsystem) to the larger system of which it is a part calls for mature
professional judgement, experience, and deep insight. One guide to selecting an objective function
may be stated as follows: the design should be optimized with respect to the 'most important' design
property that can be 'meaningfully quantified' and that is not constrained in advance. 1In this
connection it may be noted that if weight or cost are severely constrained in addition to the
structural behavior, the set of acceptable designs may be extremely small or even null.

It addition to being readily quantifiable, weight is often the most important design property in
aerospace applications as well as in other vehicle systems, including ships, trains and trucks.
Structural weight saved can be converted directly into increased payload or indirectly into increased

" range, etc. The demand -for high performance aerospace structures has provided a major impetus to the

development of tools for minimum weight design. It must, however, be emphasized that the application
of mathematical programming to the structural design problem is not inherently committed to the
exclusive use of weight as the objective function.

2.6 Formulations and Algorithmic Tools

Once a structural design problem has been formulated and cast in the form of a mathematical
programming problem, selection of a solution procedure remains. The basic non-linear programming
problem of Eq. (2-1) may be attacked directly employing various feasible direction methods (see
Chapter 7) or the problem may be transformed into an alternative form such as a sequence of linear
programs (see Chapter 5) or a sequence of unconstrained minimizations (see Chapter 6). It should be
noted that the classical formulation of the inequality constrained minimization problem, using
Lagrange multipliers and slack variables, may be viewed as a way of transforming the basic problem,

Eq. (2-1), into a set of non-linear simultaneous equations. Replacement of the basic problem statement
with an equivalent substitute problem is a formulative device leading to an alternative casting of the
basic problem. This step precedes the selection of an algorithm for obtaining numerical results. It
is useful to distinguish between various alternative formulations because for each casting, a different
collection of algorithmic tools may be drawn upon. The relationship between the four alternate
formulations and the corresponding collection of algorithmic tools is summarized as follows:



Relevant portion

Formulation Algorithmic Tools of this Volume
Sequence of Simplex and other Section 2.6.1 and
Linear Programs LP Algorithms Chapter 5
SLP
Sequence of Unconstrained Section 2.6.2 and
Unconstrained Minimization Chapter 6
Minimizations Algorithms
Techniques
SUMT
Basic Non-linear Feasible Direction Section 2.6.3 and
Programming Methods Chapter 7
Approach
NLP
Clagsical Formulation Methods for Solving Section 2.6.4
with Slack Variables Non~-linear Simultaneous
and Lagrange Equation
Multipliers

Note that a guide to portions of this volume dealing with each formulation and the corresponding
algorithms is given in the foregoing outline.

" 2.6.1 Sequence of Linear Programs (SLP) Formulation

Transformati%n into a sgquence of linear programming problems can be accomplished by replacing
the functions hj( ) and M(D) (see Eq. (2-1)) by linear approximations obtained from Taylor series

expansions about a point Bp. Let 30 denote the initial trial design, then the sequence 3p’

p=1, 2, 3, ... represents successive solutions of the following linear programming problem:

Find S such that ?{gl’) (ﬁ) < 0 ; j=1,2,... (2-2)
and ﬁ(p)(ﬁ) +> Min (2-3)
h x® - _ _
where B 6)) hj(isp) + (Bp) . ID Bp] (2-4)

S @) + w@d) . 3-8 (2-5)

for p = 0,1,2,...

This alternative formulation, as a sequence of linear programs, makes it possible to bring existing
linear programming algorithms to bear on the basic non-linear programming problem. The basic ideas
involved in this approach are illustrated graphically in Fig.2.1 which depicts a sequence of three
linear programs for the two member truss problem previously discussed (see Figs.l.3 and 1.5, also
Section 1.2.2); it will be seen that additional constraints known as move limits have been
introduced to prevent undesirably large changes in the variables in a given linearized problem.

In this example (Fig.2.1), the actual solution lies at a vertex point in design space. If the
solution of the original problem does not lie at a vertex, additional constraints have to be introduced
to achieve convergence. It is best in problems that are not known to be convex to use move limits for
this purpose. This and other techniques for achieving convergence have been studied by Reinschmidt,
Cornell and Brotchie [2.8] and by Moses [2.9] and the subject is discussed more fully in Chapter 5
which is devoted to the sequence of linear programs formulation. .

2.6.2 Sequence of Unconstrained Minimizations Techniques (SUMT)

There are several alternative castings of the basic problem (see Eq. (2-1)) that can be classified
as penalty function formulations. Penalty function methods transform the basic problem into alternative
formulations such that numerical solutions are sought by solving a sequence of unconstrained minimiza-
tion problems. For example, the Fiacco-McCormick formulation [2.10], [2.11], [2.12] can be stated as
follows:

. I3 I3 . - 3 . = o
Given an initial value of the scalar rp a r1 and an initial value of D = 30 such that

hj('ﬁo) <0 , je=1,2,...J

>
generate a sequence of vectors Dp, p=12,...
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Fig.2.1 Sequence of LP’s for Two Bar Truss
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such that ¢(3,rp> > Min (2-6)
and hj<3> <0; j=1,2,...3 (2-7)
where
8 8 !
¢ ( ,l'p) = M(D) - rp JEI m)— (2-8)
and rp+1 < rp . ’ (2-9)

The first term on the right hand side of Eq. (2-8) is the objective function and the second term is a
constraint repulsion function that serves to keep D inside the acceptable region defined by the J
inequality constraints. For large values of rp, the penalty function

J
) 1
14 hj(s)

j=1

. . S
interferes with the true minimum of M(D). However, small values of rp lead to functions ¢(3,rp)

‘that are difficult to minimize, so a sequence of tractable unconstrained minimization problems is
generated by reducing rp gradually. Considerable insight into the nature of the Fiacco-McCormick

penalty function formulation can be gleaned from the sequence of three contour plots shown in Fig.2.2
which are based on the two bar truss problem greviously discussed (see Eq. (1-14) through (1-16) and
Chapter 6). The unconstrained minimum of ¢(D,r1) shown in Fig.2.2a is at point 1. The second

- 3 . . s . 3 =4 . 2 . *
unconstrained minimization stage {i.e. find D such that ¢(3, rz) + Min] terminates at point 2 in

Fig.2.2b, and the third stage terminates at point 3 in Fig.2.2c. Note that as r decreases
[r1 >'r2 >'r3] the function becomes more eccentric. It is seen that the method generates a sequence

of designs that approach the constraints gradually. The solution of the initial unconstrained
minimization problem begins from a given starting design Do which satisfies the inequality

constraints, (2-7). Each subsequent stage can use the solution of the previous stage as a starting
point. However, it is possible, in many applications, to accelerate the overall procedure by employing
extrapolation techniques to determine starting points for subsequent unconstrained minimization cycles
(after two or more minimization stages have been completed). Starting points obtained by extrapolation
must be checked to be sure that they satisfy the constrajnts, (2-7), because at each stage, it is
necessary to start the unconstrained minimization of ¢(D,rp) from an acceptable design point,

Since each of the designs generated by the foregoing penalty function approach lies inside the
acceptable region of the design space, the method is classified as an interior penalty function
formulation. This constraint repulsion feature has important engineering implications. The method
tends to generate a sequence of designs which decrease the value of the objective function such that
none of the designs in the sequence is critical with respect to the set of inequality constraints,
(2-7). Qualitatively speaking, it can be said that the method tends to 'funnel' the sequence of trial
designs down the middle of the acceptable region. This characteristic makes it possible to consider
the use of approximate analysis methods during major portions of the optimization procedure, see [2.13])
and [2.14]. Marcal and Gellatly [2.15] have suggested that this type of formulation can be extended
to embrace discrete variables.

As suggested by Zoutendijk [2.16], this formulation can also be extended to deal with parametric
inequality constraints of the form

hj(z,ﬁ) <o ; 2z <z<3z ; j=1,2,..J (2-10)

by redefining the function ¢(3,rp) in Eq. (2-8) as follows:

J 2
B,r) = u@ - L f dz .} . 2-11
o( rp) M(D) rP jz]_ [(zz - zly ) hj(z,-ﬁ) ( )
1 .

The effect of this extension is to introduce into the penalty function the influence of each inequality
congtraint over the entire specified range of values for the parameter 2z, rather than just the
influence of each conmstraint at the 2z value for which it is most critical. When using the integral
penalty function formulation (Eq. (2-11)) care must be exercised to ensure that the parametric
inequality constraints represented by Eq. (2-10) are not violated at any value of 2z in the range
between z, and z, during any stage of the solution process. This approach can be further extended
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to deal with inequality constraints that are dependent on several parameters such as time and/or
spatial parameters, see for example [2.17]. It should also be noted that envelope type loadings
(see Fig.2.3) or moving load situations (see Fig.2.4) can be dealt with using integral penalty
functions to introduce the influence of parametric inequality constraints.

As a second example of a penalty function formulation, consider the following transformation of
the basic problem:

Given asmall initial value of rp = and an initial value of D = 30 generate a sequence of vectors
Bp’ p=1,2,... such that

¢(3,rp) + Min- (2-12)
where |
R R I
¢(D,tp) = M(D) + T jzl (hj(D)) | (2-13)
h® ; w@ >0
J J
(h,@®» = (2-14)
) o hj(ﬁ) <o ;
.and r > r . (2-15)

The first term on the right hand side of Eq. (2-13) is the objective function and the second term is
the penalty function. Note that each contribution to this penalty function has the property that it is
zero in the acceptable region. Therefore, in this formulation there is no penalty for approaching the
constraints from the acceptable region, rather a penalty is incurred only if an inequality constraint

is violated. As the scalar r_  is increased (rp+1 >'rp) the sequence of solutions is driven toward

the acceptable region of the design space where the ingquality constraints are satisfied. In this
formulation, large values of rp lead to functions ¢(D,rp) that are difficult to minimize; therefore,

by increasing rp gradually, a sequence of tractable unconstrained minimization problems is generated.

The unconstrained minima in the sequence of designs generated lie outside the acceptable region of the
design space and therefore this formulation may be classified as an exterior penalty function method.
From an engineering design point of view, exterior penalty function methods have the disadvantage that
intermediate designs obtained prior to the optimum design are not acceptable (i.e. they violate one or
more of the inequality congtraints). On the other hand, exterior penalty function methods do not
require a starting point o that satisfies the inequality constraints, (2-la).

It should be pointed out that penalty function formulations can be subject to operational diffi-
culties because the functions generated are sometimes difficult to minimize. Relative minima present
in the basic problem statement do not vanish and in some cases additional relative minima are created
by the formulation. Usually, the convexity of the functions involved in the basic problem statement
cannot be assured and strict equivalence of the substitute problem cannot be guaranteed. Unconstrained
minimization algorithms and penalty function formulations are dealt with further in Chapter 6.

2.6.3 Basic Non-linear Programming (NLP) Approach

Most of the large scale applications of mathematical programming to structural design optimization
problems have attacked the problem directly using one of the various feasible direction methods.

To begin, assume that an acceptable design 3q is available, .that is, let ﬁq be a design such
that

hj(ﬁq) <0 3 j=1,2,...3. (2-16)

The next design in the sequence Bq can be generated by moving in the direction of steepest descent,

+1
that is let 3q+1 be determined as follows:

> >
B = D +a 8 2-17
q+l a” % °q (2-17)

where

§q - - vu(ﬁq) (2-18)
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and o is the solution of a one~dimensional inequality constrained minimization problem, This one-

dimensional problem is depicted graphically in Fig.2,5 and it can be stated concisely as follows:
find o such that

h-(s + a g ) = h.(a < 0 ] - 1 2 PN § 2'19
J q q J( ) * > ( )
and

M(ﬁq +a §q) = M(a) -+ Min . (2-20)

In almost all structural design optimization problems, modification in the direction of steepest
descent leads to a design q+l with one or more constraints critical, that is

hj(ﬁqﬂ) 0 forj€J, . (2-21) !

The point ¢+l in the two-dimensional design space shown in Fig.2.6 represents such a design.

The next design in the sequence is determined from the expression

3q+2 - i5q+1 + o §q+1 (2-22)

vhere the direction of modification §§+1 must satisfy the following inequality constraints
S B <0 5 e (2-23)

and Ve |
L by <o . (2-24)

Directions §q+1 that satisfy Eq. (2-23) are feasible in the sense that design modification in such a
direction is possible without violating the currently critical constraints. Directions §§+1 that
satisfy Eq. (2-24) are called usable because they are directions such that the objective function is
reduced or at least held invariant. Any direction g+l that satisfies Eq. (2~23) and (2-24) is

called a usable-feasible direction. Design modification in such a directjon does not violate the active
constraints and does not increase the value of the ogjective function M(D) locally. Three particular
methods for determining usable-feasible directions that have found application in structural

)

q+l .
design optimization are presented in detail in Chaper 7. Once a usable-feasible direction §q+1 has
been determined the scalar a in Eq. (2-22) that determines how far to go can again be determined

q+l
as the solution of a one-dimensional inequality constrained minimization problem. Note also that this
one-dimensional minimization problem (aq+1) may be unconstrained &s shown in Fig.2.6 or it may be con-

strained as depicted in Fig.2.7, In the case shown_ in Fig.2.6 the desigﬁ procedure can continue by making
another move in the direction of steepest descent Sq+2 = - VM( q+2) while in the case illustrated in
Fig.2.7 the design procedure is continued by generating another usable-feasible direction considering the
new set of critical constraints at 0+2

2.6.4 Classical Formulation

It is interesting to observe that the classical formulation of the inequality constrained
minimization problem may be viewed as a device for transforming the basic problem (Eq. (2-1)) into a
set of non-linear simultaneous equations. Using slack variables 8, (i.e. variables to convert

inequalities into equations) and Lagrange multipliers u, the classical formulation can be cast in

terms of a set of non-linear simultaneous equations as follows:
Find (D,8,1) such that a@,8,0) is stationary

where

J
a®,8.0. = uB) + T . (82 + n. D) (2-25)
j=1 ] ] ]
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which implies

J dh
A M _d =0 : = -
" T .X b5 35, 0 3 is=1,2,...1 (2-26)
i i =]l i
9 2 > . .
i g, +h. D) = 0 B J=1,2,...3 (2-27)
uj i} J
an . ) _
—aB—j Zuij o] H ] 1,2,...J (2 28)

These simultaneous ngn—linear equations (Eq. (2-26), (2-27) and (2-28)) are only necessary conditions
for a minimum of M(D) subject to the inequality constraints, (2-la), and in general they admit
multiple solutions, It is observed that this formulation increases the number of unknowns from I to
(I+2J). Finding all of the solutions and then sorting out which of these represents the best solution
of the basic problem is usually an exhaustive task. The classical formulation was applied to inequality
constrained minimization problems in the context of structural design by Klein [2.18]. It should be
pointed out that while the classical formulation has serious practical limitations, it can be useful,
particularly when some foreknowledge is available as to how many and which of the inequality constraints
are critical.

Since so much of the structural optimization literature tends to assume that the responsible
engineer can often anticipate how many and which inequality constraints will be active for the optimum ,
design, it may be well to briefly elaborate on the relationship of this view to the classical formula-
tion of the inequality constrained minimization problem. Consider an example with 3 inequality
constraints (J = 3). The possible combinations of critical constraints can be listed as follows in
terms of the set of integers denoted Jc: null; (1); (2); (3); (@, 2); (2, 3); (3, 1); (1, 2, 3).

The slack variables and the Lagrange multipliers for each of these eight combinations can be tabulated
as follows:

Combination J ] B B u u u
Number c 1 2 3 1 2 3
1 Null * * * (4] 0 V]
2 (1) 0 * * * ) V]
3 (2) * 0 * 0 * 0
4 (3) * * 0 0 0 *
5 1, 2) (] 0 * * * 0
6 (2, 3) * ] 0 0 k *
7 (3, 1) (V] * 0 * 0 *
8 a, 2, 3) 0 0 0 * * *
where * indicates an unknown to be determined from the solution of the equations
' 3h,
oM .
5t L s .= 0 3 i=1,2,..1 (2-29)
i &g i
c
B2+h@ =0 ; jeu (2-30)
[ R N

which follow from Eq. (2-26), (2-27) and (2-28). Note that Eq. (2-29) can be written in an alternative
form as

M+ ] .V, = 0 . (2-31)
. j
JGJC

For any particular assumed combination of critical constraints (1 through 8), the value of u, obtained

from the solution of Eq. (2-29) and (2-30) can be examined to determine whether or not the Kuhn-Tucker
conditions [2.19) is satisfied. This necessary condition for any constrained optimum is that the .
negative gradient (-VM) of the objective function be a non-negative linear combination of the gradients
to the critical constraints (th; j€ Jc). Therefore, if the Lagrange multipliers "j in Eq. (2-31)

are non-negative the Kuhn-Tucker condition is satisfied. If the constraint functions are convex and
the objective function is at least locally convex, then satisfaction of the Kuhn-Tucker condition is
sufficient to establish the constrained optimum under examination as a local optimum. If both the
constraint functions and the objective function are convex, then satisfaction of the foregoing condition
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is sufficient to establish the constrained optimum being tested as a global optimum. Thus, it becomes
apparent that for problems where insight or prior experience suggest which combination of constraints
are likely to be critical at the optimum, it may not be necessary to solve Eq. (2-29) and (2-30) for all
possible combinations of critical constraints., This discussion is offered to show that many of the
traditional methods of structural optimization may be viewed as special cases of the more general view-
point represented by the application of mathematical programming techniques., It is suggested that
whenever design optimization is sought by assuming that a certain set of critical constraints charac-
terize the optimum, an effort should bé made to determine whether or not the result obtained at least
satisfies the necessary condition represented by the Kuhn-Tucker test.

2.7 A More General View

While most applications of mathematical programming techniques to structural design optimization
have attacked the problem as an inequality constrained minimization problem having the form of Eq. (2-1),
it should be recognized that a more general class of problems in structural engineering can be viewed in
the context of mathematical programming. The general mathematical programming problem can be stated
concisely as follows:

Find X such that fk(i) = 0 ; k=1,2,...K ‘ (2-32a)
jhj(i) <0 ; j=1,2,...0 4 (2-32b)

and
M) -+ Min . (2-32¢)

It is understood that the vector X locates a point in an N—dimensionallspace, the functions fk(i) =0
denote equality constraints, the functions h.(X) <o represent inequality constraints and M) is an

objective function. The previously discussed class of structural dgsign optimization problems
(see Eq. (2-1)) are clearly a special case of Eq. (2-32) in which X 1is replaced by the design
variables and equality constraints are not present.

The more general formulation given by Eq. (2-32) embraces a wide variety of structural engineering
problems including design optimization problems, analysis problems  and integrated analysis—design
optimization.

Design problems involving equality constraints between the design variables are easily imagined.
The three bar truss discussed in Section 1.2.4 is a simple example. Symmetry of the final design can

be imposed using an equality constraint, namely A1 = A3 and then dealing with the problem as a three

variable problem (A1 2 A ) Alternatively, in the case of simple equality constraints the number of

independent design var1ab1es can be reduced. When this approach is taken, the number of variables for
the three bar truss example is reduced to two (A1 and Az) and the design problem is of the form given

by Eq. (2-1). 1In situations where the equality constraints between design variables are complicated,
it may not be possible to use equality constraints to reduce the number of independent design variables.
When this situation exists the structural design optimization problem has the form of a general
mathematical programming problem (i.e. Eq. (2-32)).

Structural analysis problems can be viewed as special cases of the formulation given by
Eq. (2.32). For example, the analysis of a structural system based upon mln&mlzxng the total pgtentLal
energy may be viewed as an equality constrained minimization problem. Let Rg replaced by u, the
vector of generalized displacement variables and let the objective function M(X) be replaced by
m (u) the total potential energy. Then the structural analysis problem can be stated as follows:

Find U such that "p(ﬁ‘) +> Min ‘ (2-33)
subject to a set of equality constraints
->
fk(u) = 0 3 k=1,2,...K (2-34)

that impose the geometric adm1ssib111ty conditions on
the displacement variables.

The total potential energy np(ﬁ) is quadratic in the generalized displacement variables for linear

analysis problems. Extension to include geometric non-linearities is easily accomplished using non~

linear strain-displacement relations representing various levels of refinement. For instance, the use
of §1n1te d1sp1acement cheory strain-displacement relations leads to a total potential energy function
n (u) that is quartic in the generalized displacement wvariables. Extension to include mater1a1 non- -

11near1ty is also straightforward in principle, provided the non-linear stress-strain relatxons can be
adequately represented by a strain energy dens1ty type of potential function; however, most plastic
stress-strain relations do not satisfy this requirement.
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If the geometric admissibility conditions (Eq. (2-34)) are used to reduce the number of displace-
ment variables, then the structural analysis problem can be viewed as an unconstralngd minimization
problem expressed in terms of the kinematically independent displacement variables U, that is

Find ;c such that %p(:c) + Min ., (2-35)

‘Some example app11cat1ons of finite element structural analyses based on this mathematical programming
viewpoint will be found in [2 20] and [2.21].

The analysis of a structure based upon minimizing the total complementary energy may also be
viewed as an equality constrained minimization problem. Let X, be replaced by F the vector of
generalized force variables, and let the objective function M(X) be replaced by = (F) the total
complementary energy. Then the structural analysis problem can be stated as followst

Find ¥ such that “c(i) + Min (2-36)

subject to a set of equality constraints

fk(F) = 0 ; k=1,2,...K : (2-37)

thay impose the static admissibility conditions on the force variables. The total complementary energy
nc(F) is quadratic in the force variables for linear analysis problems. Extension to include

material non-linearities is easily accomplished provided the non-linear strain-stress relations can be
adequately represented by a complementary energy density type of potential function. Extensions to
include geometric non-linearities are generally unsuccessful because the nonlinear force displacement
relations are such that the total complementary energy cannot be expressed solely in terms of force
variables.

If static admissibility conditions (Eq. (2-37)) are used to reduce the number of force variables,
then the structural analysis problem can again Rg viewed as an unconstrained problem expressed in terms
of the stat1ca11y independent force variables R, that is

Find R such that 7 (®) - Min . (2-38)

Limit analysis offers another example of the applicability of the general mathematical programming
formulation Eq. (2-32) in the context of structural analysis. The limit analysis of a structure, from
the statical point of view, has as its goal determination of the maximum load carrying capacity of the
structure subject to the requirements that the force distribution satisfies the equilibrium conditions
and ‘the yleld conditions. In thecase of a truss [2.22] the problem of the determination of the maximum
load carrying capacity has the following form:

Find ¥ and A such that

j§1 a3 Fy 2UAR; i=12,..0 (2-39)
Ly - F; < 0 ;. j=1,2,...3 ' (2-40a)
P, - U <0 ; j= 1,:2,...J | (2-40b)
apd
| - XA =+ Min (2-41)

vhere Fj represents the force in the jth member,

Pi represents the contribution of the applied load condition to the ith equilibrium equation,

aij‘ represents the contribution to ‘the ith equilibrium equation of a unit value of the force in
the " jth member,
Lj represents the force required to yield the jth member in compression,
‘Uj represents the force required to yield the jth member in tension, .
A is a positive scalar factor which determines the magnitude of the applied loadvcondi;idn.

The I equations embodied in Eq. (2-39) are the equilibrium equations, the 2J inequalities stated by

Eq. (2-40a) and (2-40b) are the yield conditions, and the objective function (Eq. (2-41)) is - A since
the maximum load carrying capacity is sought. It is apparent that the limit analysis of trusses from
the statical point of view has the form of a linear programming problem in terms of the force
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variables (f) and the load factor (1). It should be clearly recognized that this limit analysis can
only be carried out for a structure of specified design, that is the geometrlc layout, the member areas
and the yield stresses of the member materials must be given.

The combined analysis and design optimization of a structural system can often be stated as a
general mathematical programmlng problem having the form of Eq. (2-12) In the case of combined
analysis and des%gn optlglzatlon, %t is useful to view the vector X in Eq.*(2-32) as the concatenation
of two vectors and Y,k where is the vector of design variables and Y is the vector of analysis
variables. This vector Y should be understood to contain an independent component for each analysis
unknown for each load condition. . Depending upon the analysis method adopted, the analysis unknowns may
characterize the displacement state, the force distribution or a combination of both.

An . interesting example of a combined analysié-design optimization formulation can be generated by
considering the minimum weight sizing of trusses based upon limit analysis as described in Chapter 3.
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Chapter 3
CLASSICAL OPTIMIZATION THEORY RELEVANT TO THE DESIGN OF AEROSPACE STRUCTURES
by
G. G. Pope
3.1 Introduction

Special classes of structural design problems which can be solved advantageously by analytical as
opposed to numerical techniques have been studied widely, and comprehensive references on the subject
will be found in the review papers by Sheu and Prager [3.1] and by Wasiutynski and Brandt [3.2].

Since attention is concentrated in this present volume on the use of mathematical programming techniques
in the design of aerospace structures, most of which must behave elastically under service conditions,
it is appropriate here to restrict our attention to those aspects of analytical work on structural
optimization which are relevant in this narrower context.

This Chapter is concerned mainly with the classical theorem due to Michell which is applicable
directly to the least weight design of highly idealised frameworks. Apart from the obvious value of
this theorem in the derivation of exact solutions for use as yardsticks in the assessment of the
efficiency of practical structures, the general results which may be derived from it can also provide
useful guidance in the choice of the layout not only of frameworks but also of stressed-skin and plate
type structures. For example, an appreciation of the properties of the optimum types of strain field
derived by Michell can reduce significantly the range of geometries which need to be considered in the
laborious numerical studies that are often necessary to obtain an optimum structural layout. A useful
indication may, moreover, sometimes be obtained of circumstances where the least weight design is non-
unique and where consequently the designer may be able to impose geometrical restrictions to suit
requirements not included in the idealised design problem, without increasing the structural weight.

The analysis given in this Chapter starts from the assumption that the structure is fabricated
from a material with elastic/perfectly plastic properties. It is demonstrated, however, that the
least weight design obtained on this basis when one load condition only is applied is identical with
the least weight design for purely elastic deformation provided stress limits only are considered.
Michell's theorem of minimum weight design is deduced for a framework consisting of a finite number of
members, by formulating the search for the least weight design as a problem in linear programming, and
by using the duality properties of problems of this class, following arguments given previously by
Hemp [3.3], [3.4] who along with Pearson [3.5] and with Dorn, Gomory and Greenberg [3.6] has employed
linear programming techniques in the least weight design of ideal frameworks of this type.

3.2 Basic Theory for Elastic/Perfectly Plastic Frameworks

3.2.1 Single Load Condition

Congider the minimum weight design of a pin-jointed framework which is supported in such a way
that all the external reactions may be evaluated directly from the overall equilibrium conditions. No
restrictions are imposed on the permissible displacements and buckling effects are neglected; the
members are all fabricated from the same material and the weights of the connections between them are
assumed negligible. The basic geometry is specified, and the cross-sectional areas of the M members
that constitute the framework are treated as design variables and are denoted by a column vector D.
Loads are applied at the nodal points joining adjacent members and the single load condition which is
considered initially is specified by a column vector P; this has an element corresponding to each of
the K equations required to establish equilibrium. These equations may be expressed in the form

GF = P (3-1)

= . . . . 3 3
where F 1is a vector of M terms defining the loads in the members and G 1is an appropriate
transformation matrix.

. . . . . + - .
If the yield stresses in tension and compression are given by o and o respectively and are
the same for the entire framework, the loads in the members must satisfy the following conditions:

D <F <P . (3-2)

=y

Note that o is so defined that it will in practice have a negative value.
The total volume V of the members constituting the framework is given by

+>T>

vV = D

where £ is a vector containing the lengths of the members. The problem of finding the least weight
design reduces therefore to minimizing V subject to the constraints (3-1) and (3-2). This is a linear
programming problem which may be expressed purely in terms of positive variables by substituting

Fo= ¥ - .
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Expressing each of Eq. (3-1) as a pair of inequalities, this problem may be expressed in the
following form:

minimize N
ve @8 0DTE B
where
#F B >o0
and } (3-3)
-1 1 c+1 f' > 3
I -I -o1| |P )
G -G ol |D P
6 ¢ 0 )
J

The optimum solution is necessarily one in which all the members are fully-stressed, since a reduction in
the cross-gection of any member which is not fully-stressed would reduce V without violating any of the
governing equations. It is however possible for the cross-sectional area of unnecessary members to
vanish completely.

The dual of the above problem may be expressed as follows:

maximize
N
We =2—@ 383 -BTq o W
o €
where
('Y*v ',Y'u “:' -1:"} > 0
and ? (3-4)
-1 I ¢t || T 3
- -1 -6t et < |3
CAEL N A S | 0 o ||u | ;
" y

+ - - . : . : f s
the product o € , where ¢ is the yield strain in compression, is introduced so that the dual
variables may be interpreted as extensions and displacements.

Since the optimum framework is necessarily fully-stressed, half the constraints in the primal
problem derived from the inequalities (3-2) must be satisfied as equalities in the optimum solution,
i.e. one for each member of the framework. It follows therefore from the sgcond of the properties of
dual problems described in Chapter 5 that the corresponding components of ¥' and ¥Y'" must be zero
in the optimal solution to the dual problem. Consequently the latter problem may be re-expressed as
follows:

maximize
1 T -
Vo =g (3-5)
o €
where
-+ T >
Y G ' (3-6)
el €Y < 72 (3-7)
and where
-l:v"-l;"-l:" s ;“-Y)"'-;" :

+ . i . : ) s - . . . .
€ represents the yield strain in tension. If now the variables u, are interpreted as virtual dis-

placements of the nodes of the framework, the resulting work done by the applied forces is proportional
to the value of the merit function W. Substituting Eq. (3~1) and (3-6) in Eq. (3-5) we obtain

w e 137
+ =
g €
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. > : . . . . . >
Since fT Y represents the increment of strain energy associated with the virtual displacements U

it is clear that the variables ? represent the corresponding deformations of the individual members.
The dual problem geeks therefore to maximize the virtual work done by the external forces when the

strains in all members are restricted to being less in absolute value than e’ in tension and € in
compression. Using again the second of the duality properties described in Chapter 5, it may further
be deduced that the following conditions are necessary and sufficient to ensure that a pin-jointed
framework has the least possible weight:

. + s -
(1) The stresses in all the members due to the applied loading are either o  (tension) or o
(compression).

(2) The framework must permit a virtual displacement of all its possible nodes which produces a
. + . . . : - i s . :
strain of € in its tension members, a strain of e in its compression members and no tensile

1 + 2 : : - .
strain greater than € or compressive strain greater in absolute value than € 1in any segment
along which a potential member could lie.

In the special case when et and -c are equal, the above conditions reduce to those shown by
A. G. M. Michell {3,7] to be sufficient to establish a least weight design; in the more general case

+ - N P .
when ¢ and -e are not equal, it may be demonstrated that these conditions are equivalent to
Michell's conditions by considering a virtual dilatational strain in addition to the strain system
considered in the present analysis.

The arguments, based on duality properties, which have been used here to show that the above
conditions are necessarily satisfied by a minimum weight design are due to Hemp [3.4); they are
only strictly applicable when the number of potential members is finite.

The virtual strain system defined in Eq. (3-6) becomes identical with the actual strains
when a minimum weight design is achieved. It follows that the minimum weight design is necessarily an
elastic design and also that a statically determinate least weight design must always be possible,
although there may be other designs of the same weight,

It should be noted that the linear programming technique described here sometimes yields an array
of members which is a mechanism rather than a structure; additional members are then necessary to carry
even the most trivial alternative loading. Under such circumstances it is, of course, advantageous
when possible to deduce an alternative minimum weight design.

It may readily be shown that the least weight design for a framework to carry a single load condition

is also the stiffest framework which will carry the loading at the same level of stress; a concise proof
of this result is given by Hegemier and Prager [3.8] in a paper which is concerned primarily with the
introduction of constraints on natural frequency into the design of idealised frameworks.

3.2.2 Multiple Load Conditions

If the equilibrium equation (3-1) and the inequalities (3-2) are increased in number to include
several load conditions applied in turn to the framework, the search for a minimum weight design remains
a problem in linear programming. The strain criteria deduced in Section 3.2.1 are, however, no longer
valid and consequently the optimum design experiences, in general, plastic deformation under at least
one of the design load conditions.

Hemp [3.4] has shown, with the aid of the dual problem, that in the special case where two loadings
only are considered, the least weight design may be obtained by superposing the least weight designs for
the single load conditions i(fi + ?2) and 5(31 - 32) where 31 and 32 represent the applied load
systems. Some general results for least weight elastic/perfectly plastic structures under multiple load
conditions are given by Shield [3.9].

3.3 Optimum Layout of Elastic Frameworks

A. G. M. Michell used conditions equivalent to those deduced in Section 3,2.1 to evolve, for a
single loading, least weight frameworks in which no restrictions are imposed on the number and position
of the nodal points. Such structures usually involve an indefinitely large number of infinitesimal
members so they are seldom suitable for direct use in engineering design; they are, nevertheless, of
significant value for the reasons indicated in Section 3.1, and they have two general properties that
are worthy of note:

(1) Tension and compression members necessarily meet orthogonally to satisfy the conditions
imposed on the strains.

(2) Any fully-stressed design in which all the member loads are of the same sign necessarily
satisfies the optimality conditions; an infinite number of optimum configurations exists therefore
when such designs are possible. '

The latter result may also be deduced directly from a theorem due to Clark Maxwell [3.10] which
preceded Michell's contribution to this field.

Least weight frameworks of the type evolved by Michell are considered in detail by Cox [3.11] and
close approximations to them have been obtained by H. S. Y. Chan [3.12] using the linear programming
approach and assuming that member intersections only occur at a finite number of points; members are

R —— —
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permitted to run between any pair of the assumed intersection points. The design of Michell frameworks
is analogous to the analysis of the slip line fields associated with the flow of rigid/perfectly plastic
materials. A graphical technique developed for use in the latter context has been employed by

A. S. L. Chan [3.13] to obtain framework designs of least weight.

The optimum configuration of frameworks in which the layout is more severely restricted may, of
course, also be obtained,by specifying the points at which member intersections can occur and, if
necessary, by restricting the pairs of intersections between which members may lie. It is likely that
some of the possible members will vanish completely in the optimization process; this is permissible
because no compatibility conditions are involved directly in the primal analysis. It should be noted
that it is much more difficult to permit members to vanigh in the more complex problem, considered
elsewhere in this volume, of the design of an optimum structure to carry several load systems in turn
without yielding, since the analysis equations would there impose artificial constraints on the strains
in the non-existent members [3.14].

Acknowledgement — This Chapter is British Crown Copyright, reproduced with the permission of the
Controller, Her Majesty's Stationery Office.
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Chapter 4

LITERATURE REVIEW AND ASSESSMENT OF THE PRESENT POSITION
by
L. A. Schmit
4,1 Introduction

There are several valuable reviews and annotated bibliographies already available in the
literature. A rather comprehensive bibliography and assessment of optimum structural design concepts
for aerospace vehicles through 1966 will be found in [4.1] and [4.2]). The literature review contained
in [4.3]) appeared in 1963 and the majority of the references cited deal with single load condition
situations and assume a plastic collapse design philosophy; many references to the Russian and Polish
literature are included. A comprehensive review of more recent developments in optimal structural
design is given in [4.4]. This review makes clear the distinction between 'single purpose' and
'multipurpose structure' and it points out that currently research is proceeding on two fronts:

(1) application of the numerical methods of mathematical programming to specific highly realistic
problems and (2) analytical treatment of a variety of optimal design problems for structural elements
and simple structures. The review presented in [4.5] deals specifically with the application of non-
linear mathematical programming in structural design optimization through 1966.

The literature review to be presented in this Chapter will focus on applications of mathematical
programming to structural design optimization and it will be limited to finite problems. In Section 4.2,
an effort is made to trace the development of mathematical programming applications in structural design,
using the philosophical framework set forth in Chapter 2 to help keep the review organized. Since the
papers selected for discussion in Section 4.2 are limited in number, a more comprehensive list of
references is given in Appendix A. In Section 4.3 under the heading of future trends, brief reviews
of (1) structural optimization in the dynamic response regime; and (2) reliability based structural
optimization are offered. In Chapter 10, reliability based structural optimization is discussed in
more detail. The dynamic response regime and particularly the subject of structural optimization
considering aeroelastic constraints is examined in greater depth in Chapter 1l1. Finally in Chapter 12,
overall configuration considerations and optimization methods in preliminary design are considered.

4.2 Selective Review

It is to be understood that the literature survey given in this section is not intended to be
exhaustive., Rather, it is a careful but probably somewhat subjective selection of a collection of
papers that are thought to have strongly influenced the development of mathematical programming
applications in structural design optimization during the last decade. Several of the references
discussed are summarized in Tables 4.1 and 4.2 using the framework set forth in Chapter 2.

In [4.6], published in 1955, Klein pointed out that an important set of minimum weight structural
design problems could be viewed as non-linear mathematical programming problems. The importance of
inequality constraints in properly stating structural design optimization problems was clearly
recognized. The influence of this paper was probably limited by the fact that the problem was treated
in classical form using Lagrange multipliers and slack variables (see Section 2.6.4). The large
number of unknowns and the need for finding all the solutions of the governing set of non-linear
simultaneous equations were discouraging when larger problems were contemplated.

In [4.7], published in 1958, Pearson working within the plastic design philosophy treats the
minimum weight design problem considering a multiplicity of overload conditions. Displacement constraints
under service load conditions are ignored and.compatibility conditions can be neglected under overload
conditions since the plastic collapse design philosophy is adopted. The problem is treated as a
simultaneous analysis-design optimization problem. Dealing primarily with planar trusses and frames,
each redundant in each load condition is considered an independent variable. The equilibrium equatioms
are used to determine all other member forces given a set of values for the redundant forces. The
member section properties are computed by requiring that the yield stress is not exceeded in any member
in any load condition. The key idea is using the redundants as the design-variables. The essentials of
the approach can be summarized for the case of a general truss structure as follows:

Let Ai denote the cross-sectional area of the ith member,
Fij the force in the ith member under the jth load conditionm,
Rkj the value of the kth redundant force under the jth load condition.
. . + - . . . ‘s
Given the yield stresses o and gy the geometric configuration and the load conditions,
find the Rkj such that

o] A, < F.. S o} A (4-1)
i1 ij i7i

1
WR () = Y oo Ly A > Min (4-2)

i=1
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where
: J |Fi.|
A, 5 Max —>d- (4-3)
i . [
j=1 i
K
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IJ(RkJ) kzl a1k RkJ Bij ( )
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o; ;3 if F.. P20
i ij
‘C, =
1 - .
R < -
loi( 3 oif . <o . (4-5)

A method of random steps 1is employed to seek the unconstrained minimum of W(Rkj) using only function
evaluations [no gradients of W(Rkj) are calculated]. The fascinating aspect of this approach is that

it simultaneously seeks an optimum design and the critical collapse mechanisms for each load condition.
It should be noted that the problem dealt with in {4.7] can be alternatively cast as a linear programming
problem in an extended space spanning the Ai's and the Rkj's.

In [4.8] published in 1959, Livesley working within the plastic design philosophy studied the
minimum weight design of planar frames and emphasized the importance of considering multiple loading
conditions, postulating that a structure should be designed so that its behavior will be satisfactory
for any condition within a prescribed loading envelope. Let every load condition within such an
§pve19pe be represented by a vector P that is a linear combination of several component loading systems

g0 Lee.

e o, b

Loy ¥ (4-6)

where the loading envelope is specified by defining a region R in 3 space. A typical component of
a 1is denoted by oy and each point @ in the region R defines a possible load condition. The

envelope idea is illustrated by a simple example in Fig.4.l. Using a finite number of distinct loading
conditions, an approximation of the loading envelope can be obtained by considering a set of points on
the boundary of the region R. For example, one may elect to consider a set of J distinct load
conditions defined by distinct points in the & loading space, that is

B, = Jo.. B 3 j=1,2,...0 . (4-7
i

The notion of approximating a loading envelope with distinct load conditions is illustrated in Fig.4.2.

Ref. [4.9], published in 1960, showed that working within the elastic design philosophy the minimum
weight design of elastic statically indeterminate structures could be cast as a non-linear programming
problem in design variable space. The formulation set forth there considered a multiplicity of distinct
load conditions and a variety of inequalities, including stress, displacement and side constraints. It
was pointed out that the minimum weight design for a statically indeterminate structure is not
necessarily one in which each member is fully stressed in at least one load condition. Since the design
optimization problem formulated had the form of a non-linear programming problem, it followed that the
optimum design did not necessarily lie at a vertex in the design space. The algorithm used to generate
solutions for several simple three bar truss examples was a rather primitive version of a feasible
direction method, that was called the method of alternate steps.

Ref. [4.10], published in 1963, reported an automated minimum weight optimum design capability for
rectangular simply supported waffle plates (see Fig.4.3 in which the 7 design variables are identified)
subject to a multiplicity of load conditions each of which was specified by giving the inplane force
resultants Nx’ Ny and ny. The failure mode concept was broadened and elastic instability as well as

combined stress yield constraints were included in addition to uniaxial yield stress limits and side
constraints. The influence of the total depth (H) available and the material selected, on the optimum
design concept was illustrated by the numerical examples reported in that paper. As the total depth
available was increased the optimum design shifted from a thick sheet, to a thin sheet with heavy
stiffeners, to a thin sheet with light stiffeners and finally, if enough depth was available, the full’
depth was not used, suggesting the need for flanged stiffeners. The results reported exhibited relative
minima in the design space and it was possible to associate the various major pockets with distinct
subconcepts embedded within the statement of the mathematical programming problem. It was also found
that the minimum weight design was often not unique., In particular, many designs all having the same
minimum weight with different values of bx, t, by, t but invariant ratios bx/tw and b /tw

y b : y X
were found. It was also noted that the payoff for permitting unsymmetric designs tends to decrease when
there are many load conditions.
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In [4.11], published in 1964, Moses introduced the idea of treating the structural design
optimization problem as a sequence of linear programs. The integrated analysis-design optimization
problem was stated in an extended space where the vector of unknowns X represents a concatenation of
design and analysis variables. The inequality constraints were drastically simplified and non-linearity
was confined to the analysis equations. A simple planar truss and a planar frame example were used to
illustrate the method employed, The principal disadvantage of this formulation is that the
dimensionality of the vector X grows rapidly, particularly for problems involving a large number of
analysis variables and load conditions, It should be noted in passing that the integrated analysis-
design optimization approach has also been explored using a penalty function formulation to transform
the problem into a sequence of unconstrained minimizations [4.12], [4.13].

In [4.14], publighed in 1966, Reinschmidt, Cornell and Brotchie applied the sequence of linear
programs formulation to the structural design optimization problem stated as an inequality constrained
minimization problem in design variable space (see Section 2.6.1). A substantial number of planar
truss and frame examples were studied and the need for convergence aids was revealed. Several techniques
for coping with difficulties encountered in applying the SLP formulation were suggested in [4.14] and
are discussed in Chapter 5. It should be noted that Pope [4.15] and Romstad and Wang [4.16] have also
made contributions recently relevent to the minimum weight design of structures having prescribed
geometric configuration using the SLP approach.

In [4.17], published in 1966 by Brown and Ang, the inequality constrained minimum weight
structural design problem was dealt with directly in design variable space employing a modified
gradient projection method (see Chapter 7). The capability reported treats planar trusses and frames
and includes stress and displacement limits based on the American Institute of Steel Construction (AISC)
Code. Multiple service load conditions are considered. Area and moment of inertia design variables are
treated as continuous design variables and then a special program is used to transform the continuous
solution into an optimum available section solution. The main computer program {4.18] is modular and
hegce applicable to other problems where user generated auxiliary programs compute the objective function
M(D) the constraint functions h,(D) and the gradients of the critical constraint functions
th(ﬁ); i€y i

Dorn, Gomory and Greenberg [4.19], Hemp [4.20] and Fleron [4.21], all published studies in 1964, on
the minimum weight design of planar trusses including both member location and sizing within the plastic
design philosophy. Variation of topology was achieved by optimizing over a large preselected set of
admissible members. The formulations of [4.19] and [4.20] lead to large linear programs. It should be
noted that these studies were limited to structures that were statically determinate externally and subject
to a single load condition. Minimum weight planar truss configurations were found to be statically
determinate under a single load condition. It was shown by Dorn, Gomory and Greenberg through an
interpretation of the dual LP problem that the minimization of weight is equivalent to the maximization
of work done by the external loads on the joint displacements. Problems of this type were also discussed
in the preceding Chapter. It should be noted that Felton and Dobbs [4.22] have recently examined the
problem of truss member location and sizing considering multiple load conditions. An elastic design
philosophy is adopted and a direct stiffness method of analysis is employed; both stress and member
buckling constraints are considered.

In [4.23], published in 1966, GCoble and DeSantis reported on an optimum design capability for
continuous composite welded girders using mixed steels. The objective function to be minimized is a
cost function including both material and fabrication costs. The design variables include cross
sectional dimensions of discrete segments along the girder and steel type based on yield strength, as
well as the location and number of splice points. The formulation considers moving loads and the
constraints are based on the American Association of State Highway Officials (AASHO) Code. Optimum
designs are sought employing heuristic decomposition in conjunction with a dynamic programming technique.
This work is viewed as a pioneering effort in that it tackles cost as an objective function, discrete
variables and moving load conditions. Cost has also been used successfully as an objective function by
Moe and his coworkers [4.24], [4.25] in the context of ship structures.

The minimum weight design of stiffened cylindrical shells represents a recurring problem of
fundamental importance in aerospace applications. The application of mathematical programming methods
to this problem was first studied by Kicher [4.26]. A capability for the automated minimum weight
design of stiffened cylindrical shells representative of the state-of-the-art -(circa 1968) was reported
in [4.27]. The problem is formulated using the Fiacco-McCormick interior penalty function (see
Section 2.6.2 and Chapter 6) and numerical results are obtained by executing a sequence of unconstrained
minimizations using the variable metric algorithm described in Chapter 6. The constraint repulsion
characteristic of this formulation made it possible to employ approximate buckling analyses during major
portions of the optimization. This work is discussed more fully in Chapter 9. The SUMT formulation has
also been applied to the minimum weight design of stiffened fiber composite cylinders by Chao [4.28].

In this study fiber volume fraction and ply orientations are added to the collection of design variables.

In [4.29], published in 1968, Thornton and Schmit reported on an application of mathematical
programming to the automated minimum weight design of a thermo-structural panel. Both time and distance
through the thickness of the various layers were treated parametrically. This work which is described
in Chapter 9 is thought to have been the first structural design application of the integrated penalty
function formulation outlined by Eq. (2-10) and (2-11) in Section 2.6.2.

Gellatly reported in [4.30] on the development of a large scale automated minimum weight optimum
design capability based on a displacement méthod finite element analysis and a feasible directions
search procedure. This contribution is discussed in Chapter 8.

Melosh and Luik pointed out in [4.31] that the structural analysis problem associated with design
optimization has the special characteristic of requiring the analysis of a large number of structures of
similar form. Attention is focused on methods for the efficient analysis of a family of similar
structures (multiple configuration analysis) used in conjunction with a univariate allocation scheme,



38

It is shown that the analysis scheme employed provides an efficient method for obtaining excellent
approximations to the stress and displacement behavior as the design is modified. .The method is applied
to the minimum weight design of indeterminate space trusses considering stress constraints under multiple
load conditions as described further in Chapter 8. The design variables are cross sectional areas and
gselection from an available set of discrete values introduces no special difficulties. This capability
points up the importance of considering the relationships between structural analysis methods and design
optimization techniques.

Karnes and Tocher [4.32] reported on a large scale automated minimum weight structural design
capability, for stressed skin structure using a feasible. direction method. Their work is described in
Chapter 8.

Having used the framework presented in Chapter 2 to construct the summary review contained in
Table 4.1, it may be observed that advances in the application of mathematical programming techniques to
structural design optimization have usually exhibited one or more of the following characteristics:

(1) broadening of the design philosophy by considering a wider range of load conditions and
failure modes,

(2) extending the approach to more appropriate and often more complex objective functions,

(3) consideration of a widening class of design variables from both a mathematical and a physical
viewpoint,

(4) application of more sophisticated mathematical programming techniques including formulative
and algorithmic innovations often based on engineering insight and physical understanding of the
structural system,

(5) applications to large systems or to special problems with unusually complex loading
environments and failure mode analyses.

4.3 Future Trends

The application of mathematical programming techniques to structural design is still a relatively
new and growing area of interest and activity. In this Section, some current trends are identified and
a few speculations concerning future research directions are offered. In Section 4.3.1, a brief
review of some applications of mathematical programming to structural systems subject to dynamic
response constraints is given. This subject and in particular the optimum design of structures subject
to aeroelastic behavior constraints is treated further in Chapter 11. In Section 4.3.2, a brief
survey of applications of mathematical programming to probability based structural design optimization
problems is given. This topic is discussed in greater detail in Chapter 10. A few miscellaneous
speculations about future trends, including the anticipated importance of various levels of approximate
analysis, are discussed in Section 4.3.3.

4.3.1 Dynamic Response Regime

An area of investigation that has recently started to receive considerable attention is structural
optimization in the dynamic response regime. The need for considering dynamic response in structural
optimization is particularly pressing in lightweight flexible structures such as those that find
application in aeronautical engineering. It is to be emphasized, however, that consideration of failure
modes that require dynamic analysis should be in addition to appropriate static stress, displacement,
and buckling limitations. In the recent literature, several structural optimization investigations
have been reported that deal with one particularly troublesome behavior constraint. For example, in
[4.33) and [4.34] attention has been focused on the flutter constraint while in [4.35] and [4.36],
effort was centered on the natural frequency requirement. A highly idealized double wedge wing example
that considered a plausible mix of constraints was reported in [4.37]; these included limitations on
flutter, static stress, displacement, and angle of attack. Fox and Kapoor [4.38] have reported a
capability for minimum weight optimum design of planar truss-frame structures with distributed and
concentrated mass. Inequality constraints are placed on the maximum dynamic displacements and stresses,
and the natural frequencies of the structure are excluded from certain bands. The limited class of
structures notwithstanding (tubular members, planar truss-frames), this work represents one of the most
comprehensive structural optimization investigations carried out to date in the dynamic response regime.

4.3.2 Probability Based Optimization

A steady improvement in our tools for achieving optimum designs may have a substantial influence
upon design philosophy. In particular, our ability to generate designs that press right up against the
limits of current specifications may lead to structures with a lower probability of survival than those
usually designed against the same specifications using conventional design procedures. Thus, as optimum
designs are achieved more frequently, it may become necessary to re-examine existing structural design
specifications., Recognition of the philosophical attractiveness of seeking to design directly against a
limited probability of failure can be expected to grow, in spite of the formidable difficulties inherent
in implementing the probability based approach.

During the last decade, the foundations of structurgl design within a reliability philosophy have 1
been set forth, The design problems studied to date are primarily illustrative and they indicate some |
of the problems that can be expected in both analysis of failure probabilities and design based on an
allowable probability of failure. By and large, these studies have assumed that the environment can be
replaced by a discrete set of load conditions; however, the loading magnitude and .the strengths of the
structural elements have been treated as random variables with a specified statistical description.

Using mathematical programming methods, it has been possible to proportion member sizes of simple trusses
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and frames for minimum weight subject to a constraint on the overall probability of failure. One of the
first papers to report on structural optimization with reliability constraints was presented by Hilton
and Feigen [4.39]. Considering a single load condition, they used a Lagrange multiplier formulatiom to
minimize weight subject to a probability of failure comstraint, based on the assumption that the contri-
butions of individual member failure probabilities to the overall probability of failure are independent.
Significant weight savings compared with that obtained using a design rule based on an equal failure
probability in each member resulted because lower failure probabilities were allocated to lighter members
than the heavier members. Kalaba [4.40] showed that a dynamic programming formulation would give the
optimum member proportions more efficiently than the Lagrange multipler technique. A necessary condition
for the dynamic programming method to be applicable is that the contributions of the member failure
probabilities to the overall probability of failure are independent. Switsky [4.41], followed Hilton
and Feigen's Lagrange multiplier formulation and showed that several additional but reasonable assump~
tions lead to a simple scheme for proportioning members so as to achieve minimum weight and specific
overall failure probability. In particular, Switsky showed that at the optimum, the weight of

member i divided by the total weight equals the probability of failure of the ith member divided by

the overall allowable probability of failure.

Moses and Kinser [4.42] report the minimum weight optimum design of multi-element statically
indeterminate structures subject to multiple load conditions and an allowable overall probability of
failure. By considering system interaction in the failure probability analysis, it was shown that
significant weight reductions could be achieved particularly for systems with large numbers of members
and failure modes. The probability of failure analysis computes the statistical correlation between
failure modes and an ordering method was developed to find probabilities of failure of a mode
conditional upon survival in the other modes. The probability of failure analysis presented is
applicable to any elastically designed structure and it can treat any frequency distribution for each
loading and element strength. Minimum weight results exhibit the characteristic that heavy members
appear to have lower safety factors than light members when the structure is viewed deterministically.
Recently, Shinozuka and Yang [4.43] extended the model of Kinser and Moses to an aerospace application
in which proof-loading could be used. Minimum cost, including costs of members, of failure and of
proof-loading became the objective function. Moses and Stevenson [4.44] report the reliability based
minimum weight design of planar frames based on plastic collapse analysis. The method presented is,
however, applicable to any redundant structure for which the collapse mode equations can be written
as a combination of load and strength random variables. The feasible direction method of
Zoutendijk (see Chapter 7) was introduced as an efficient method for reliability based optimization
in which weight was the objective function and overall probability of failure the only behavior
constraint. In frames it was found that traditional safety factors were a poor guide in indicating
failure probabilities, particularly near & minimum weight design. It should be noted that any
frequency distribution for independent load and strength variables can be handled by the method
employed .

Chapter 10 contains a rather comprehensive review of approaches to structural reliability and
optimization. It would appear that reliability based optimum design facilitates solution of the
mathematical optimization problem by replacing the numerous behavior limitations of deterministic
design by a single constraint on overall probability of failure. However, the conservation of
difficulty principle applies since the mathematical and computational complexities have been transferred
from the design optimization aspect to the analysis of the probability of failure.

i

4.3,3 Projections and Speculations

In this Section, some unsolved problems are identified and the importance of considering
various levels of approximation in structural analysis is discussed.

4.,3.3.1 Relative Minima

The existence of relative minima in many structural design optimization problems represents a
basic difficulty. There is evidence, see for example [4.10] and [4.27], which suggests that relative
minima are often associated with subconcepts present within the problem statement. The selection of
initial trial designs, side constraintg, design variable linking options, and the option to preassign
any subset of the design variables can all be used to guide automated optimum design capabilities into
various anticipated subconcept regions. In this connection, the complementary relationship between
automated structural design and computer aided design employing man machine interactions should be
emphasized. The relative minima problem must be recognized as one of the longstanding fundamental
problems of design optimization and the view that it is in some sense a mathematical manifestation of
the design creativity problem merits continuing re-examination.

4.3.3.2 Integer Variables

The problems associated with integer and strictly discrete variables are important and difficult.
Techniques for dealing with mathematical programming problems with integer or mixed integer and
continuous variables should be studied within the context of structural design applications. The idea
of using O-1 integer variables to declare the absence or presence of members in a structural system
should be studied further. Structural optimization of rectangular multistory steel frames with
respect to O-1 topological variables and geometric layout has been studied by Soosaar and Cornell [4.45].
Toakley [4.46] has investigated the application of discrete programming techniques to the optimum design
of planar frames and trusses using available sections. Porter Goff [4.47] has reported on the use of
dynamic programming to obtain minimum weight layouts for cantilever trusses.

4.3.3.3 Parametric Constraints

The common occurrence of parametric inequality constraints (see Eq. (2-10) and (2-11)) in
structural design problems suggests that further attention should be given to finding efficient schemes
for dealing with such constraints, Parametric constraints can arise in a variety of ways. For example,
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the transverse displacement of a plate w(x, y, t) may be limited over some time period of interest
and over a specified two-dimensional region. Moving load conditions and loading envelopes represent
other sources that can generate parametric constraints.

4.3.3.4 Decomposition

The study of formalized schemes for the decomposition of structural design-analysis problems into
manageable subproblems which can be linked together and treated iteratively, warrants atteantion., The
conventional separation of structural analysis and design procedures may be viewed as a traditionally
accepted decomposition scheme. Note that substructuring concepts may be viewed as a form of decomposi-
tion in structural analysis. The separate consideration in aeronautical engineering of structure,
weight and balance, aerodynamics, power plant, etc., while iterating through the overall systems design
problem, may be thought of as an intuitive decomposition scheme. Formalizing the analysis and design
decomposition of large structural systems poses a formidable challenge.

4.,3.3.5 Approximate Methods of Analysis

The use of various levels of approximation as well as iterative solution methods are time honored
practices in structural analysis and design. - It is thus only reasonable to expect that these ideas have
a place in the application of mathematical programming methods in this field. The multiple configura-
tion analysis employed by Melosh and Luik [4 31], is an example of an iterative method in which
approximations of the structural behavior are used to guide the optimization procedure. Iterative
methods of this type together with those based on energy search methods [4.48] make it possible to
guide a design optimization procedure using analysxs information that is subject to gradual refinement
as the design evolves. It should-be noted also in this commection that Fox and Kapoor [4.49], have
reported on an iterative method for finding eigenvalues and eigenvectors based upon minimization of the
Rayleigh quotient. This method appears to be particularly well suited to dealing with the problem of
normal mode analysis that is central to ‘structurdl optimization in the dynamic response regime.

In [4.27], dpproximate shell buckling analyses were used during major portions of the structural
synthesis procedure. In this instance, the shell buckling analyses were approximate in the sense that
only a small number of possible buckling mode shapes were examined. It is emphasized that the constraint
repulsion characteristic of the interior penalty function formulations (such as the Fiacco-McCormick
method, see Section 2.6.2 and Chapter 6) often make it possible to use approximate analyses during
major portions of the.optimization process while still generating a sequence of steadily improving
designs each of which is acceptable (even with respect to more refined analyses).

Exploration of the potential benefits to be gained from using iterative methods of analysis and
various levels of analysis approximation in structurpl synthesis has just begun. Numerous opportunities
exist for exploiting the idea of using approximate analyses during major portions of a structural
optimization procedure. For example, consider the problem of limiting the maximum transverse displace-
ment of a plate when the location at which the maximum occurs is not known. A coarse mesh of locations
could be used for the approximate analysis while a fine mesh could be used to locate the maximum
deflection more precisely at the end of each unconstrained minimization stage.

Useful approx1mat1ons of structural behavior can often be obtained using Taylor series expansions
of the analysis variables (Y) as functions of the design variables (D). Assume that a static linear
structural analysis of the form

AY = B (4-8)

governs the behavior of a structural system under investigation. For example, in the case of a linear
tatic displacement method of structural analysis, A would become the system stiffness matrix (K),

Y would become the vector of independeng generalized displacements (U) and B would become the load

vector for a particular load condition (P). Given the results of an analysis for a design q’

i.e. ?(Bq) and a first ozder sqnsftiv1ty analysis¥,

L@y ; i=1,2,...1

a’
(=]
[
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for a design Bq, a first order Taylor series expansion for each analysis variable Yk can be

written as follows:
: T
Yk(ﬁ) = Yk('ﬁq) + @ 3q) vyk(ﬁq) +eans (4-9)
where it is understood that the elements of the vector VYk(Bq) are

oY,

k
=@) |,
BDi q

*This refers to the sensitivity of the analysis variables to changes in the design variables as
distinguished from the sensitivity of the optimum design to changes in the limitations imposed by the
inequality constraints,
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i.e. the partial derivatives of the kth analysis variable with respect to the ith design variable
evaluated at Dq. If a second order sensitivity analysis is available, then a second order Taylor

series approximation can be formed by adding the following term to the right hand side of Eq. (3-9)

[
T k ;
+ *(6 - 3q) LW (BQJ (3 - 3q) . (4‘10)

It is interesting to note that if A depends on the Di linearly and B is independent of the Di’
then it can be shown that

A NP A ) & (4-11)
aD. 3D, 8D, 3D, aD, 3D, *
1 J 1 J b 1 .

Thus it is seen that first or second order Taylor series expansions can be used to generate approximations
of the analysis variables Yk that are useful over some region of the design space in the neighborhood

of 3 .
q

Another powerful collection of approximate analysis methods is based upon the idea of using a
limited basis to represent the solution vector of a set of simultaneous equiations or an eigenproblem,
It has often been observed that the number of degrees of freedom required to adequately represent the
behavior of a structure is frequently far less than that dictated by its geometry and the idealization
techniques available. Thus, in dynamic analysis, it is common practice to express the displacement
behavior in terms of a reduced set of generalized coordinates and normal modes. It is interesting to
note that Turner [4.33] works with a fixed set of normal modes to seek a first approximation to the
optimum design. When the first stage of the optimization is completed, a new set of normal modes (for
the first approximation optimum design) is calculated and used to obtain a second approximation of the

‘optimum design.

The idea of expressing the approximate solution of the analysis as a linear combination of a few
vectors containing information about the behavior of the structural system can be used in a variety of

ways. For example*, the analysis variables ¥ for the design 3q+1 can be approximated by the linear
combination of

(a) the analysis variables for the initial trial design ?(D(l))
(b) the analysis variables for the current or qth trial design ?(5(q))

and (c) the directional derivative of the analysis vector along the design modification vector §(q)
@Y - 6 T@W) 48, W) + 8, 3. WEY (-12)

where the B8's are undetermined coefficients. Another variation of the limited basis idea that has been
explored by Fox and Muira [4.50], is to approximate the analysis vector as a linear combination of the
results from r previously analyzed designs, that is let

T
i® = ] s IG®) . (4-13)
kel

e

Substituting either Eq. (4-12) or Eq. (4-13) into the éppropriate energy statement, the stationary
condition will yield a set of simultaneous equations to be solved for the B's.

4.3.4 Concluding Remarks

Current trends in the application of mathematical programming methods to structural design
optimization seem to be characterized by: (a) efforts to generate large scale structural capabilities
involving drastic idealization and consideration of a limited class of failure modes (see Chapter 8);
(b) efforts to generate structural optimization capabilities for relatively small special problems
considering complex failure mode analyses involving less idealization (see Chapter 9) and (c) applica-
tions in preliminary design of vehicle configuration (see Chapter 12). In dealing adequately with a
small subsystem type problem, the engineer runs the risk of dealing adequately with the wrong problem.
On the other hand, in seeking to deal with the large system, it is inevitable that idealizations and
simplifications will be found necessary and, therefore, the engineer runs the risk of treating an
inadequate representation of the right problem. ’

*This suggestion can be viewed as a generalization of the approach taken by Melosh and Luik [4.31].
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Table 4.1

SUMMARY OF SELECTED REFERENCES (Deterministic)

Ref, [4.10] ‘
Ref. [4.6] [Ref. [4.7] | Ref. [4.8] |[Ref. [4.9] |[Schmit, Kicher Ref. [4.11])
Klein Pearson Livesley Schmit Morrow Moses
1955 1958 1959 1960 1963 1964
o e |70 e [T fev [Haemedin |
Plastic Plastic
Collapse Collapse
Kind of Service Overload Overload Service Service Service
Load Conditions Single Multiple Multiple Multiple Multiple Multiple
Kind of Continuous | Continuous | Continuous | Continuous Continuous Continuous
Design Variables Sizing Sizing Sizing Sizing Sizing Sizing
Config.
Objective Weightl Weight Weight Weight Weight Weight
Function Non-linear .Linear Linear Linear Non-linear Linear
Formulation Classical —_— Linear NLP NLP SLP
and ) Program (extended space)
Algorithm —— Random Alternate Alternate Simplex
Steps Step Step
Type of Beam Planar Planar Simple Waffle Planar
Structure Trusses + Frame Planar Plate Truss and
Frames Truss Frame
Ref. [4.14]
Reinschmide |Ref: (4.17] |Ref. [4.19] Ref. [4.23] Ref. [4.27] Ref. [4.29]
Brown Dorn, Gomory Goble and : Thornton and
Cornell, . Morrow, Schmit .
Brotchie and Ang Greenberg DeSantis 1968 Schmit
1966 1964 1966 1968
1966
Kinds of c g, u 9 1d o Shell Buckling Temp., €
Failure Modes AISC < AASHO Combined o Combined o
Plastic
Collapse
Kind of Service Service Overload Service Service Service
Load Conditions Multiple Multiple Single Moving N, p, T Parametric
Multiple (Re-entry)
Kind of Continuous |Continuous Continuous Discrete Continuous Continuous
Design Variables Sizing Sizing Sizing Sizing Sizing, Sizing
BT B and Location Config., Config. Config.
Material
Objective Weight Weight Weight Cost Weight Weight or Depth
Function Linear Non-linear Linear Non-linear Non-linear Non-linear
: or Linear
Formulation SLP NLP Linear Heuristic SUMT SUMT
and - . Simplex Grad. Proj. Program Decomposition Fletcher- Fletcher-
Algorithm Dynam. Prog. Powell Powell
Type of Planar Planar Planar Continuous Integrally Thermo—-
Structure Trusses Trusses Trusses Welded Stiffened Structural
Frames Frames Girders Cylindrical Panel
Shell




SUMMARY OF SELECTED REFERENCES (Deterministic) (Contd)

Table 4.1

Ref. [4.31] Ref. [4.32] Ref. [4.38]
Ref. [4.30]) Melosh and Tocher and Fox and
Gellatly Luik Karnes Kapoor
1966 1967 1968 1969
Kinds of g, u o o, u o, u
Failure Modes Dynamic
Kind of Service Service Service Service
Load Conditions Multiple Multiple Multiple Single
Kind of Continuous Discrete Continuous Continuous
Design Variables Sizing gizing Sizing Sizing
Objective Weight Weight Weight Weight
Function Linear Linear Linear Linear
Formulation NLP NLP NLP NLP
and Feasible Feasible
Algorithm Alternate Univariate Direction Direction
Step Search Zoutendijk * Zoutendijk

Type of Bars, Shear Planar and Bars and Tubular
Structure Panels, Space Triangular Planar

Membrane Trusses Membranes Truss~Frames

Plates’
Table 4.2

SUMMARY OF SELECTED REFERENCES (Probability Based)

Ref. [4.39] Ref. [4.42] Ref. [4.44] Ref.[4.43]
Hilton and Feigen Moses and Kinser Moses and Stevenson Shinozuka and Yang
1960 1967 1968 1969
Kinds of o o °y1d o
Failure Modeg Plastic
Collapse
Kind of Service Service Service Service and
Load Conditions Single Multiple Multiple Proof Loading
Multiple
Kind of Continuous Continuous Continuous Continuous
Design Variables Sizing Sizing Sizing Sizing
Objective Weight Weight Weight Cost
Function Linear Linear Non-Linear Non~-linear
Formulation Classical NLP NLP NLP
and Alternate Feasible Feasible
Algorithm ——— Step Direction Direction
Zoutendi jk Zoutendi jk
Type of 2 Member Indeterminate - Planar Determinate
Structure Structure Trusses Frames Trusses
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Chapter 5
SEQUENCE OF LINEAR PROGRAMS
by
G. G. Pope
5.1 Introduction

Linear programming problems are of importance in their own right in many commercial and techno-
logical fields and consequently their mathematical properties have been studied in depth and efficient
computer programs have been developed for their solution. This available expertise can be utilised in
two distinct ways in the solution of non-linear programming problems. Firstly the choice of an efficient
direction in which to search for a lighter feasible solution, starting from a feasible solution in which
one constraint at least is active, may be expressed as a problem in linear programming, following the
procedure due to Zoutendijk which is described in Chapter 7. Secondly the non-linear programming problem
may itself be replaced by a sequence of linear programming problems. The latter approach which has the
attraction of simplicity but which also contains some pitfalls for the unwary, is discussed in this
Chapter. First, however, a brief description is given of the more important properties.of linear pro-
gramming problems themselves.

5.2 Linear Programming

In order to demonstrate clearly the duality properties of linear programming problems, it is con-
venient in this section to depart slightly from the vectorial notation used in the preceding text and to
employ instead the well-known convention in which repeated suffices are used to denote summations, i.e.

The fundamental theory of linear programming is developed rigorously in the texts by Hadley [5.1]
and by Dantzig [5.2]. A completely general problem of this class may be expressed in the following form.
Find a vector di of 1 terms which satisfies the equations

fij di - a s i=1,2,...3 , (5-1)
and the inequalities
hodo 2 b 5 k=1,2,...k , (5-2)
d, 2 0 3 1=1,2,,..1 (5-3)
and which minimizes a merit function defined by
M = e di . (5-4)

Extra positive variables, known as slack variables, may always be added so that the inequalities (5-2)
may be incorporated in Eq. (5-1); conversely the latter may be expressed as the inequalities

f..d. =2 aj R
(5-5)

Thus either Eq. (5-1) or the inequalities (5-2) may be omitted from the formulation without loss
in generality.

5.2.1 Terminology and Method of Solution

Consider now a typical linear programming problem which is so formulated that the inequality con-
straints (5~2) do not appear explicitly. A feasible solution is defined as any solution which satisfies
both Eq. (5-1) and the necessary condition (5-3) that the variables are positive. A basic solution
is defined as a solution consisting of J non~zero variables and (I - J) zero variables. Degenerate
solutions in which there are more than (I ~ J) zero variables can be ignored in practical computations.
It may readily be demonstrated that, if a feasible solution exists at all, there must necessarily be a
basic feasible solution which minimizes the merit function, although there may sometimes be other feasible
solutions which reduce this function to the same value.
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Linear programming problems are usually solved by the Simplex method developed by Dantzig or by
methods closely related to it. Applications of these methods start from a khown basic feasible solution
and progress successively to solutions of the same type closer to the optimum until the latter is reached.
Provided degenerate solutions do not occur this procedure necessarily converges in a finite number of
operations. In many applications a combination of non-zero unknowns which will yield a basic feasible
gsolution is known initially and can be used as a starting point. When no such prior information is avail-
able the linear programming problem may be enlarged artificially to a problem with an obvious basic
feasible solution, using the following technique which is due to Zoutendijk-[5.31. Eq. (5-1) are
first arranged in such a way that the constants a, are all positive. A different additional variable

ig then added to each of the equations that do not include a slack variable preceded by a positive sign,
and the merit function is modified to become

[ -
M e di + P(x1 Xyt Xy e xJ) (5-6)

where X to x; are the additional variables and the slack variables of this type, and P 1is a large

positive constant. A basic feasible solution to this enlarged problem is obtained by selecting the
variables x, to x; to be non-zero. The optimum solutions to the original and enlarged problems will

obviously be the same provided, of course, that the former has a basic feasible solution and that the
constant P 1is sufficiently large.

5.2.2 Duality

Consider a typical linear programming problem expressed for convenience in the form:

minimize
M = e, d.
i
where
d]-_ 2 0 (5-7)
and

h,, d, 2 b sy k=1,2,...K .
ik i

This is closely related to another linear programming problem involving the same coefficients e bk

and hik which may be expressed as follows:

maximize
N = bk Y
where )
and
ho v S e 5 i=1,2,...1 . .

Whichever of the above problems is of primary interest in a particular application is referred to as the
primal problem and the related problem is referred to as the dual problem.

The following duality properties are useful in the present context:

(1) The optimum solution of one problem may be deduced directly from the optimum solution of the
other, and the merit function in both problems has the same optimum value.

(2) Consider the optimum solution of both problems when every constraint in each problem involves
a slack variable. When the slack variable in the kth constraint in one problem is non-zero, the kth
variable in the other problem vanishes; conversely, if the kth variable is non-zero in one problem, the
slack variable in the kth constraint in the other problem is zero.

It sometimes proves more economical from the computational viewpoint to solve the dual problem
rather than the primal problem, especially when a basic feasible solution is known initially to the
former but not to the latter (see, for example,Paragraph 5.3.4). More general conditions under which it
is preferable to solve the dual problem vary to some extent with the algorithm used in the solution and

depend on the number of equality constraints in the primal problem that do not involve slack variables
and on the ratio of the number of constraints to the number of variables.

5.3 The Reduction of Non-Linear Programming Problems to a ‘Sequence of Problems in Linear Programming

The properties of non-linear programming problems may most readily be described by considering
first problems in which all the constraints are expressed as inequalities and in which only two
variables are involved. Consider the following linear programming problem:
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minimize
subject to the constraints

+h, d, 2 b s k=1,2,...K (5-9)

where

This problem is presented in graphical form in Fig.5.1. The constraints consist of a number of inter=-

- secting straight lines where the hatching indicates the edges of the region in which feasible solutions

are obtained. The line AB indicates the locus of points along which the merit function M has a
constant value and the corresponding loci for other values of M are lines parallel to AB; the problem
of minimizing M reduces therefore to that of finding a line parallel to AB which passes through the
extreme vertex C of the feasible region. Consider now the non-linear programming problem:

minimize
M(dl’ d2) o
subject to the constraints ‘

h(d), d)) 2 b k=1,2,...K ‘ (5-10)

1’
where again

d1 Z 0 , d2 = 0. .

In general, neither the boundaries of the feasible region nor the contours of equal values of the merit
function are stralght lines, and they may take such complex forms as are illustrated in Fig.5.2. It is
immediately obvious therefore that the optimum solution need mnot necessarily be at an intersection of
constraints, and also that local optima may occur in addition to the global optimum which is sought.
This latter difficulty does not arise in problems where the constraints and merit function have the forms
illustrated in Fig.5.3; such problems, which are  usually referred to as convex problems, are difficult
to identify when the number of unknowns is large. Consequently, since all deterministic solution
techniques search in effect for local optima, it is strictly necessary to repeat solution procedures from
several untrelated starting points before a calculated optimum can be treated with confidence as a global
optimum. ) ‘

"If more general problems are now considered which are expressed purely in terms of inequality con-
straints and which involve N variables dn, the (dl’ dz) plane may beé generalised into an

N-dimensional space so that the constraint intersections on the edges of the feasible region in the plane
become vertices on the boundaries of a corresponding region in the N-dimensional space. Using the
notation of the preceding Chapters such problems may be expressed in the following form:

minimize
M) - ‘
subject to the constraints . . l (5-11)
' hk(ﬁ)‘> 0 ; k=1,2,...K ’

=o 3 . . k3 - ! 3
where the column vector D corresponds to the variables d1 e dN but is not necessarily .expressed in

terms of components which are constrained to be positive.

5.3.1 The S1mglest Approach

The following procedure, which has been employed in the structural design context by Moses [5.4]
and by Karihaloo et al. [5.5] is the simplest possible for replacing a typical non-linear programming
problem by a sequence of problems in linear programming: .

N (1) Linearise the constraints and the merit function in the neighbourhood of an arbitrary point
D° ‘and solve the resulting linear programming problem which is given by
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minimize
>
M(Bo) + ™M@ ) . B - Bol
subject to the constraints (5-12)

n @)+ m By . B-8] >0 5 k=12 .

(2) Repeat the process until the optimum solutions of successive linearised problems are

3 . . . . > . 3 3 .
virtually identical, redefining Do each time as the optimum solution to the preceding problem.

This procedure will only converge if the optimum solution happens to be at a vertex of the feasible
region in the N-dimensional space referred to above. If the curvature of the comstraints or of the merit
function is such that the optimum solution does not correspond to a vertex, the numerical results will
oscillate indefinitely between adjacent vertices; such a situation is illustrated in Fig.5.3. This
difficulty may be overcome in convex problems by the use of the procedures described in Sections 5.3.2
and 5.3.3; in more general applications the procedure described in Section 5.3.3 may be employed.

5.3.2 The Cutting Plane Method

The cutting plane method, which was developed independently by Cheney and Goldstein [5.6] and by
Kelly [5.7], employs the useful property that linearised constraints in convex problems necessarily lie
entirely outside the feasible region. Consequently an envelope of such constraints may be used to
represent the critical non-linear constraints to any required degree of accuracy. A typical version of
the method proceeds as follows when the objective function is linear:

I3 . . . . 3 I3 - o
1) Linearise the constraints in the neighbourhood of an arbitrary point Do and solve the
resulting linear programming problem.
(2) Substitute the results of the linearised computation in the non-linear constralnt equations
and find which of the latter is most seriously violated. -
(3) Linearise this constraint about the optimum solution ﬁp to the preceding linear programming
problem and find the modified optimum solution when this additional linearised constraint is added.

(4) Repeat steps (2) and (3), adding an extra linearised constraint each time, until all non-
linear cons;raints are satisfied to an acceptable standard of accuracy.

Cornell, Reinschmidt and Brotchie [5.8], [5.9] have studied the possibility of disgarding inactive
constraints to reduce the size of the linear programming problems involved in the application of this
method. They have found, however, that the computations required to identify the constraints that can
rigorously be omitted are too lengthy in general to be of practical value. Simple semi-empirical rules
suggested by these authors for the elimination of such constraints are unlikely to be suitable for general
application. Difficulties of this kind are also discussed by Moses [5.10], [5.11],

The cutting plane method has two very undesirable features:
(1) When the optimum solution does not coincide with a vertex of the feasible region, the angle
between the active linearised constraints is small; consequently round-off errors can sometimes debase

numerical accuracy to an unacceptable extent.

(2) The method cannot be employed satisfactorily in problems which are not strictly convex since
the linearised constraints may then exclude legitimate parts of the feasible region.

Thig second feature, in particular, makes the cutting plane method unacceptable in practical pro-
blems where convexity cannot be demonstrated.

5.3.3 The Move Limit Method

An alternative approach due to Griffiths and Stewart [5.12], which does not suffer the above
deficiencies, makes use of artificial limits on the variation of the design variables in a typical
linearised computation; it has been used successfully by several workers in the structural design
field [5.8], [5.9], [5.13}, [5.14], [5.16] and proceeds as follows:

N (1) Linearise the constraints and the merit function in the neighbourhood of an arbitrary point
D° and impose additional constraints of the form

3°-Z<3<3°+§ (5-13)

. . . > > . .
as illustrated in Fig.5.4, where o and B are suitably chosen vectors of positive constants.

(2) Repeat the process, redefining 30 as the optimum solution to the preceding linear pro-

gramming problem, until either no significant change occurs in the solution, or successive solutions
start to oscillate between the vertices of the fea51b1e region; in the latter event continue
computations using suitably reduced values of 4 and .
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Diagretion nd experience must be employed in the choice of values for the components of the
vectors o and B. For computational efficiency it is desirable to choose relatively large values
initially so that the imposed limits do not impede rapid convergence to the immediate vicinity of the
optimum solution. Insufficient evidence is yet available to indicate the best way to reduce these
values when oscillation occurs; the author has, however, obtained satisfactory convergence by
repeatedly halving the amplitude in structural applications in which equal values were employed for all
the components of these vectors associated with the design variables. For computational efficiency
it may, of course, be desirable to impose severe limits only on those variables which are immediately
associated with oscillatory behaviour; this aspect has not yet been studied in depth.

The above method, which is known either as the "move limit method' or as the 'method of approxi-
mation programming', involves a complete relinearisation of the non-linear problem before each linear
sub-problem. Consequently, in structural problems where the constraints consist only of lower bounds
on the design variables and upper bounds on the displacements and stresses, negligible additional effort
is involved in factoring each linearised solution so that it is just a feasible solution of the relevant
non-linear problem. Any increase in the value of the factored merit function after successive
linearised computations may then be taken as an adequate indication that a reduction in the move limits
is necessary. :

It has been assumed in the foregoing discussion that each non-linear comstraint has been’
represented by a single linear constraint in the individual sub-problems of the move limit method.
Better approximations mway, however, be incorporated by retaining appropriate non-linear terms in a
Taylor's series expansion of the constraint about the starting point o and by representing this power

series expansion approximately between the move limits by a series of tangent planes in the
N-dimensional space referred to above. Such techniques are discussed by Cornell, Reinschmidt and
Brotchie [5.8], [5.9] and by Moses [5.10], but little experience has yet been obtained in their use.

5.3.4 Use of the Dual Problem in the Structural Optimization Field

A useful property of any of the above methods when applied to structural problems is that the
coefficients of the design variables in the objective function of the primal problem are nearly always
all positive. Thus a basic feasible solution to the dual of this problem may be obtained directly by
choosing the slack variables to be the non-zero variables [5.14]. The Simplex method may then be used
to find the optimum solution of the dual problem and consequently of the primal problem as well. There
is, in theory, a possibility that no feasible solution exists to the primal problem; the objective
function of the dual problem can then take an indefinitely large value. Difficulties of this kind
cannot, of course, occur if the linearisation process starts from a feasible solution of the non-linear
problem; they are only likely in practice when upper limits are imposed on the permissible values of
the design parameters in the non-linear problem, or when lower limits are placed on the absolute values
of the displacements. Under these circumstances a detailed investigation may be required to show whether
the difficulty is due to linearisation about an inappropriate point or whether the non-linear problem
itself has no feasible solution,

5.3.5 Discrete Variables

Variables that can only take discrete values introduce major complications whatever solution pro-
cedure is employed. Such variables may in theory be incorporated in procedures based on linear pro-
gramming with the aid of the integer-programming techniques developed by Gomory and by Beale, see
Dantzig [5.2). Convergence difficulties were, however, experienced by Toakley [5.15] when he employed
Gomory's algorithm in the structural optimization field.

Acknowledgement - This Chapter ig¢ British Crowm Copyright, reproduced with the permission of the
Controller, Her Majesty's Stationery Office.
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Chapter 6
UNCONSTRAINED MINIMIZATION APPROACHES TO CONSTRAINED PROBLEMS
by
R. L. Fox
6.1 Introduction

There are many approaches to the constrained minimization problem. Methods which have developed a
great deal of currency are the unconstrained minimization formulations of the constrained problem. The
basic idea of these methods is to convert the constrained problem, with its obJectlve function and
equallty and 1nequa11ty constraints, into a problem in which some new function is minimized without
regard for constraints. The solution to the original constrained minimization problem is then developed
through a sequence of unconstrained minimizations.

There are several reasons for the appeal of the unconstrained minimization formulations and it is
ugeful to examine some of these briefly even before looking at the structure of the methods themselves.
One is that algorithms for the unconstrained minimization of rather arbitrary functions are well studied
and generally are quite reliable. These methods are establishing a solid place for ‘themselves in the
numerical analysis spectrum and they have a considerable and sophisticated literature. A second reason
for the appeal of the unconstrained formulation of the constrained problems is that the sequential nature
of the methods allows, in some cases, a gradual or sequential approach to criticality of the constraints.
In addition, the sequential process permits a graded approximation to be used in the analysis of the
system. This latter allows coarse approximations to be used during early stages of the optimization pro-
cedure and finer or more detailed analysis approximations to be used during the later stages. A final
reason for the appeal of the methods is that for some types of problems, the formulation and implementation
using available computer programs is quite straightforward. This characteristic permits the generation
of capabilities for solving the constrained optimization problem with a minimum of programming time.

This is in contrast with the direct methods, discussed elsewhere in this volume, which may require
extensive computer programming for their implementation.

A brief introduction to the basic structure of unconstrained formulations should help to provide an
orientation for what follows. First of all, to restate the basic optimization problem we first examine
the problem with inequality constraints only, of the form:

Find D such that M(®) + minimum and
. > M . ' .
B®) <0 5 j=1,2,..0 . . (6-1)

This problem is converted to an unconstrained minimization problem by constructing a function of the
form;

6®B,r) = M@B) + P [hl(’ﬁ) , ,hz(ﬁ) Y e hJ(B),r] - o © o (6-2)

where P 1is some function, which will be discussed later, of the constraints and of a parameter r

such that violations of the constraints produce a penalty to be appended to the objective function in such
a way that unconstrained minimization of ¢ tends, in a variety of ways for different methods, to the
solution of the constrained minimization problem given by Eq. (6-1). There are a variety of P functions
and strategies for applying the method and the most applicable of these will be discussed in later
gections of this Chapter. Optimization problems involving both equality and inequality constraints may
also be expressed in an unconstrained form. This is done through functions similar to (6-2), but
including the effects of the equality constraints.

In any event, the ultimate goal of the formulation is to convert the original problem into an
unconstrained problem in which the function ¢ can be minimized without regard for constraints and for
~which the minimum tends, in some sequential way, to the solution of the original problem. Therefore, the
second aspect of these approaches is the utilization of an unconstrained minimization algorithm.

Techniques for unconstrained minimization usually take the form of an iteration:

. R 3q+1'=‘3q'+a§q S ‘ _ (6-?)

: . . + P . . . '
where in o 1is a 'step-length' in some direction given by Sq. This iteration is applied to the

é-function until a point is reached which is determined to be its.minimum. Mgst of these methods owe
their partlculat characterlstlcs to the ratlonale used to determine o and . The effectiveness

of the unconstralned mlnlmlzatxon algorlthm is-crucial to the operation of the overall method and there-
fore a detailed discussion of some of these procedures will be taken up before their application to the
constrained problem is considered.
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6.2 Unconstrained Minimization Methods

6.2.1 Some Early Methods

In this section, we will examine the methods of solving the problem:

Find i such that F(i) + Min (6-4)

where there are no restrictions on the choice of X. The earliest and most primitive approach to the
problem is that which goes under the various names gridding, exhaustive enumeration or exhaustive search.
This approach is simply to select for each of the variables a range and an increment or spacing within
this range and then to examine all possible combinations of the variables selecting that combination
which produces the least value of the F-function. Simple arithmetic will reveal that in order to obtain
any reasonable accuracy for even a modest number of variables, an enormous computational effort is
involved in obtaining a solution. An alternative which is only slightly more effective is the random
search.

The random search is nearly as simple as the grid search, but it has the advantage that on each
successive sample, every point in the space is equally likely to be tested., It consists of generating a

4 3 3 Q3
set of X's each component of which is a random number in some preselected range. Most computer
libraries have random number generators and usually this can be done quite conveniently.

Comparison between the two methods (grid and random) is probably fruitless inasmuch as the results
will depend heavily upon the function being searched and also because the methods would be used only
when efficiency is really no object.

A random-based method which is somewhat more sophisticated is the random walk. The version which we
will discuss is based upon the idea of a sequence of improved approximations to the minimum, each of
which is derived from the preceding approximation. The sequence is determined from the prescription:

-

> -
= + -

Xq+1 xq pe, (6-5)

where X_ is the 'old' approximation to the minimum and iq+l is the 'new' approximation, p is a

scalar step length and ér is a unit random vector. The algorithm is based upon the following steps:

(i) Choose a starting point io and a step length p which is large in relation to the final

accuracy desired.
(ii) Generate ér'
(iii) Calculate ¥ = F&q +p8).

(iv) 1If the result of (iii) is less than F(ﬁ ), them set §q+1 = iq +p ér and repeat (iii)
and (iv); otherwise, just repeat (ii), (iii) and (iv).

k3 . s 2 . . ®
(v) If a sufficient number of trials produces no acceptable Xq+ reduce p and continue (ii),

(iii), (iv).

1?2

(vi) When p has been reduced to within the accuracy desired, terminate.

This method, while slightly more efficient than the grid or pure random search, is still quite
inefficient except on very small problems and is recommended only in cases where programming ease is
the principal objective.

Further methods which should be mentioned are the gradient or steepest descent methods of uncon-
strained minimization. These methods are based upon the well-known property that the negative of the
gradient direction is the direction in which the functjon decreases at the greatest possible rate, These
methods all utilize the iteration of Eq. (6-3), with Sq equal to =-VF evaluated at Xq. The different

steepest descent methods are based upon different strategies and techniques for choosing «. The basic
drawback of the gradient methods is that for functions with any degree of ill-conditioning, the iteration
usually settles into a steady N-dimensional zig-zag and convergence becomes very slow. It should be
noted that the ¢-—functions used in the methods discussed subsequently in this Chapter tend by their
nature to be ill-conditioned.

6.2.2 One-Dimensional Minimization

One form of steepest descent method, while not notably effective as an overall method is based
upon a strategy for picking & in Eq. (6-3) which has important implications éor other more practical
methods. The idea is to choose the o which minimizes F 1in the direction q = -VF(Xq). An obvious

advantage of this approach is that each step will produce the greatest possible reduction in F and
hence one might expect the process to converge faster than if the minimum were not sought. Another,
more important, advantage, which will be discussed subsequently, is that by taking the minimizing step
at each iteration of Eq. (6-3), certain very valuable properties will pertain.
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Consider any vector gq and the move prescription:-
> >
X = X +af$ 6-6
. q q (6-6)

where, if o 1is thought of as a variable, then the_ locus of X for a range of values of o 1is a
straight line. Substituting this formally into F(X) we obtain

F(X) = F(iq +a §q) = F(a) (6-7)

. . . > > . .
since F can be considered a function of o alone, (X and § are considered fixed). Here the value

of o which minimizes F(a) 1is sought. Note that thls value, denoted a*, does not produce the
global minimum of F unless, of course, the line X = Xq + o é contains the global minimum point.

With this concept, the problem of minimizing F(X) can be reduced to a succession of one-
dimensional minimization problems regardless of the dimensionality of X. 1In practice, a* can rarely
be obtained explicitly and generally we must resort to a numerical means for finding a*.

Consider approximating the function F(a) by a function h(u) which has an easily determined
minimum point. The simplest one variable function possessing a minimum is -the quadratic

h(a) = a + ba +.ca? (6-8)
the minimum of which occurs where
Lo b2 =0 _ (6-9)
or
a* = -2 | (6-10)

The constants b and c¢ for the approximating quadratic (a is not needed) can be determined by

sampling the function at three different a« values, @5 Gpy O and solving the equations
: 2 - h
Fl a+ bal + coy
3 .
Fy = a+bay+coy > _ (6-11)
F, = a + ba, + ca2 -
3 3 3. /
where F. denotes the value F(al), etc. A choice of a5, o, and a, for which Eq. (6-11) are

1 3
particularly easy to solve and which can save one function evaluation is 0, t, 2t where t is a
preselected trial step. Note that if F at o =0 is presumed known from the previous iteration
only two new function evaluations are required. With this choice, Eq. (6-11) become

F, = a+bt+ct? _ I . (6-12)

F = a + 2bt + Act2

from which
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1
4F, - 3F. - F
G RS S -
b T (6-13)
e - F3 + Fl - 2F2
2t
and.
4F, - 3F, - F,
%* __..—_.__.__ -
@ oF -2F3-2F1 . (6-14)

For a* to correspond to a minimum and not a maximum of h(a), a* must satisfy

2 .
d_‘zl >
do” |a=a*

o . (6-15)
For the case where h is quadratic, this requires ¢ >0 or

+F. > 2F . {(6-16)

Fy+ Fy 2

A scheme for insuring that the condition Eq. (6~16) is satisfied and further that the minimum lies
in the interval 0 <a <2t is as follows:

(i) Choose an initial value for t = t based upon previous iterations or other information

regarding a reasonable value for the step length. Ideally, t, would be of the order of a%*.
(ii) Compute F(t).

(iii) If F(t) > F(0) = F1 then set F3

set F2 = F(t), double t, and repeat (ii).

= F(t) and cut t in half and repeat (ii); otherwise,

(iv) When a value of. t has been obtained such that F < Fl and F3 >'F2, compute a*

according to Eq. (6-14).
It should be noted that even a function possessing a single minimum in the space of X may have
multiple minima along a line. If a test is made to insure that F(o*) < Fl, the process will not

dxverge or cycle; however, it is a good rule to try to select t 8o that only the nearest minimum to
X is included in the interval 0 <a <2t if possible. This precaution is wise because some of the

methods to be discussed later depend for their efficiency upon a smooth progression along the contours
of the function.

. . . . . . P PR v .
A variety of tests are possible to ascertain if the approximation to the minimum (call it o*) is
a sufficiently good approximition to the exact a*. A sort of ultimate criterion is

Fo* +¢) = F'
Fa%) < and (6-17)
F(a* -¢) = F :

where ¢ 1is the minimum significant change of the variable in the direction under consideratiom.
Computationally, this criterion has two main disadvantages: first, it requires two extra function
evaluations and secondly, it is not really as certain as it seems since the values F* and F~ may be
contaminated by roundoff noise rendering the results of the test inconclusive. An alternative is to

e . N
compute an approximation to dF/da at a* as

N 4]
¥ - Ea* s A)ZZ F(a* - 4) (6-18)

where A is a numerically significant, but still small, change in a, and cowpare this with zero.
The range of the absolute value of the derivative of h in the interval O to 2t can be used as a
basis of comparison; in other words, the maximum value of |dh/da| is either b (at a = 0) or

b + 4ct (at o = 2t) and these can be used to determine if ¥ ois sufficiently small. For example
we might require
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2lb] + 4lelt
Fr o< 56 (6-19)

which is 1/100th of the average of |h'(0)| and |h'(2t)|. This sort of criterion still requires two
additional function evaluations and it is not foolproof.

An alternative criterion which is practically 'free' from the computational point of view is the

following: compare F(:*) and h(g*) and consider h(g*) a sufficiently good approximation if they
differ by a small amount. It can be shown that

2
(4B, -3F, - F,) 2
ey o 217" b -
n@y = F 3 ey s nERCES (6-20)

For example, we might require

InGw - p@| o, (6-21)

[na) |
where ¢ 1is a small fraction, say 0.01.

If the criterion chosen for the accuracy of the minimum is not satisfied, the original algorithm
can be reapplied at a* or t, whichever is a better approximation, or a general quadratic fit can be

made using the 'best' 3 of the points O, t, 2t and ax.,

It is easy to concoct numerous function interpolation schemes based on higher order polynomials
using more sample points or finite approximations to derivatives. Such algorithms may have advantages
in certain problems, but in giving the rein to one's imagination, care should be exercised to avoid
excessive function calculation and algorithmic complication. If refinement of the minimum is necessary
in ill-behaved problems, it is generally better to apply the same simple algorithm repeatedly in
successive approximations than to attempt to construct an air-tight technique to secure the minimum in
one trial. i -

In some cases, a higher order interpolation for the one~dimensional minimization is appropriate. In
particular, if the function has continuous first partial derivatives, a 2-point cubic fit can be used
economically. If the gradient of the function being minimized is easily obtained, it is reasonable to
consider a minimization algorithm based upon derivatives of the function. Note that the derivative
dF/da is

N ax
dF F i -
o " Lu W €-22)
i=] i :
In a move of the form of Eq. (6-6) axi/Ba - sgq). Therefore
dF Y oF ( ‘ T >
T Z -é—— S.q) 2 VF S (6'23)
a jep 0%; 1 q

where VF 1is evaluated at the point along % where the slope is to be determined. As with the previous

method this method hinges on approximating F(X + a§) = F(a) by a function h(a). However, in this case
rather than a quadratic, h is taken to be the cubic

h(a) = a + ba + caz + da3 . (6-24)

Values of F(A), (dF/da)A, F(B) and ,(dF/da)B are available and thus the parameters of h(a) can be

determined from the solution of

a+bA+cAl+ dad = F, = F(A) 7
a + bB + ch + dB3 - FB = F(B) &
(6-25)
b+ 2cA + 3dAZ = F! = (dF/da)
B A
2 _ oo -
b + 2¢B + 3dB FB = (dF/du)B ©

and the minimum would be one of the two points where
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Fig.6.1 Flow Diagram for Cubic Interpolation
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gh _
ix ° h 0 ) (6-26)
or where
2
b+ 2ca + 3da” = Q . (6-27)
Defining the quantities
3(F, - F)
= A B g ' : -
z Sy FA + FB (6-28)
and
= 2_ vvi -
Q [z® - FFl (6-29)
the solution of Eq. (6-27) can be expressed as [6.7]
Fy+ Q-2
ax = B-'—ﬁT—_-—I‘n——(B-A) . (6-30)
B A

The conditions FA <o, Fé >0 insure that the estimated minimum point, a*, will lie between A and B.
The flow diagram shown in Fig.6.1 is the logic for a basic algorithm using cubic interpolation.

The two items left undetermined in this flow diagram, to and the contents of block A, are somewhat

related and will be discussed together. The choice of t, is crucial to efficiency since each traverse

of the loop containing block A adds significantly to the labor involved in making the step. Indeed, in
most problems the major effort of making an iteration is that expended in block B and ideally it would be
done only once. The conflict is this: if t, is chosen comfortably large so that Fé is certain to be

positive in the first pass through test C, the interpolation may take place over so large an interval as
to produce a poor approximation. On the other hand, if t is too small, numerous increases in t may

be necessary before test C is satisfied.

A number of techniques have been used to attempt to establish a proper range for t,. Perhaps the
most widely used a priori method is to assume initially that F(a) can be approximated by a quadratic and
use F(0), F'(0) and a guess at the minimum value of the function, §, along S, as the data for inter-
polation, Of course, this still leaves % to be estimated. A low estimate of the minimum of F(a)
may often be obtained easily and the use of this will generally result in overestimating t, Another

approach is to estimate the expected reduction in F based upon preceding iterations,

The possibilities for estimating t, are endless and what is efficient in one problem may be
inappropriate in another. A careful eye should be kept on this aspect of the minimization routine,
however, since this is usually where the time consuming computation is generated.

Once an estimate of o* has been obtained the F* z F(i + gk §) can be computed. If F, is less
than both FA and FB, then at least i* is a candidate for a minimum point. If this is indeed the
case, the ggodness of fit can be checked by calculating c¢, a measure of the orthogonality between the
direction S and the gradient at a%, which is given by

3,
- (6-31)
HEX

where E* = VF(ﬁ + a* §),

The test |c| < ¢ may be used as the final criterion for acceptance of o*. Values for ¢ of from

10 2 down to 10'“, where m is the number of working digits in the computer, have been used;

however, these lower values can be very difficult to satisfy especially if there are many variables in
the problem. The stringency of this orthogonality requirement should bear a relationship to the overall
method in which the minimizing step routine is embedded and even at this level it canmot be stated with
certainty what the best strategy is.

If the test for a minimum fails, then block D of Fig.6.1 may be re-entered and a new interpolation

attempted. Before entering, it is merely necessary to test the sign of §T E*, if it is positive then set
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B « q*
F, o+ ¥, (6-32)
T >
Fro« §° 8,
otherwise set
A <« a*
FA + F, (6-33)

Fo« 3Te

Since the formula for o* is arranged so that A < a* < B, each refit will narrow the gap B-A, the
size of which can also be tested as a precaution against pathological functions or overly zealous
criteria for the minimum, and in principle the minimum can be located to within the desired accuracy by
successive refits. .

There are several types of schemes for one-dimensional minimization which have been omitted in this
discussion and the reader is referred to the literature: Most of these are highly organized hunt and peck
schemes with elegant logic behind them; however, their usefulness is generally limited to problems where
the interpolation methods fail, for example in some of the discontinuous derivative cases. One method in
particular deserves mention; the Fibonacei search which is based upon the fascinating Fibonacci numbers.
This is a sampling method which traps the minimum in successively smaller intervals. For a lucid
explanation of this and some related techniques, see Wilde and Beightler [6.1].

6.2.3 Quadratically Convergent Methods

Because most of the functions we will be minimizing have a convergent Taylor series at and near the
minimum, it is useful to consider a quadratic approximation to the function. A Taylor series about any
point X is of the form,

PR < F@E) + &-T)TFE) + & -F)TaE-K) 4 . (6-34)

where J 1is the matrix

2

3°F
J o= X, IxX, (6-35)
13

and hence in the vicinity of the minimum we may think of F as approximated by

F = X AX+XB+c = Q (6-36)

. 1 c e . . . .
for some matrix A, vector B and scalar c¢. A minimization method is said to converge quadratically
if it will minimize a general quadratic in a finite and predetermined number of steps.

It is found that in practice a surprising number of functions are well approximated by a quadratic
even at points moderately distant from fm (the minimum point) and hence quadratically convergent methods

are usually far more efficient for general applications than those lacking this property.

Most quadratic methods are based, in one way or another, on the concept o% conjugate directions. In
the context of the minimization of a quadratic function a set of N directions is said to be conjugate

or more accurately A-conjugate if
§§A§j =0 , foralli#]j (6-37)

where A is an N x N symmetric matrix.

A set of such directions possesses an extremely powerful property:

If a quadratic function Q 1is minimized sequentially, once along each direction of a set of N linearly
independent, A-conjugate directions, the global minimum of Q will be located at or before the Nth
step regardless of the starting point.

Note that the order in which the directions are used is immaterial to this property.
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5 There is an interesting geometrical interpretation of this property. Starting from g&e point
1, if we minimize Q along 1 and then from the resulting point X2 minimize along S2 (which is

A-conjugate to 3 ) then the resulting point is the minimum of Q in the plane containing § and §2

and passing through Xl In other words, it is the minimum in the plane
> >
X = “1§1 + a2§2 + X1 (6-38)

where o and a, are variables.

Thls result generalizes to the jth cycle in that the sequential minimization along the conjugate
vectors Si’ i=1,2,...] produces the minimum point of Q in the subspace spanned by the vectors

>
§1....,sj

It should be noted that these results require that each step must terminate at a minimum in the
given direction. This point is emphasized because it is precisely the numerical difficulty of computing

exactly the minimizing steps at each iteration which causes most of the practical problems with these
methods.

. Thus, at or before the Nth step, the global minimum point of Q will be reached.

The conjugacy relations do not define a unique set of directions, but any set of N independent,
mutually A-conjugate directions will suffice. The various ways for generating such directions without
knowing A form the basis for different methods which are quadratically convergent.

6.2.4 Powell's Method

A quadratically convergent method [6.2] which does not require the evaluation of the gradient of
the function or any other derivatives will now be discussed. Consider a set of directions

§q’ q = 1,2,...N which are initially set equal to the coordinate vectors. That is, if we denote

the ith component of §q by siq then
s, = &, i i,q=1,2,...N

where diq is the usual Kronecker delta.

The method may be concisely outlined as follows:
. > 3 3
(i) Y « X arbitrary ,
. e = 2z > .
(ii) X«X+ af Si B i=1,2,...N,

(i) & . «%X-¥%

N+1
(iv) Ke¥«Xeap 3.
) gi « §i+1 . i=1,2,...N,
(vi) return to (ii) .

Thus, the method involves m1n1m1z1ng fltst once in each of the coordinate directions (actually any set of
independent directions will do) and then in the direction deflned by a vector from the starting point of
the cycle to the ending point of the cycle. This so-called, 'pattern move' is in the direction of the
trend of the collective minimizations in the coordinate directions. After this minimization is carried

out, §1 is dropped and replaced by §2, §2 is replaced by 3. and so on until §& is replaced by the

3
pattern direction. The process is then repeated with the new set of directions.

Theoretically, more is required to make the method truly efficient on general functions, but the
idea is contained in the above. The flow diagram shown in Fig.6.2 is a codification of the simplest
version of the method. Note that a pattern direction is constructed (block A), then used for a

minimization step (blocks B and C) and then it is stored in N (block D) as all of the directions are

up-numbered and § discarded. The direction §N will then be used for a step to a minimum just prior

to the constructlon of the next pattern direction. As a consequence of this for the second cycle both
X and Y in block A are points which are minima along N’ the last pattern direction. This

sequence will impart special properties to S = X - Y which are the source of the rapid convergence

N+1
of the method.
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Fig.6.2 Flow Diagram for Powell’s Method
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. We zill now show that Powell's msthod generates conjugate directions. Given two vectors
. . .. . v . > . . 3
Xa and Xb and a direction §; if Ya is a minimum of Q from Xa along § and Yb i8 a minimum
>
from ib along S, 1i.e. if

-> -

Y, = X +at 3 (6-39)
Y. = X +or3

b Xb a¥ (6~40)

3 2 2 . . s . s
then Ya - Yb and S are A-conjugate. This fact is easily demonstrated starting with the definition of

a*, By definition

é% {Q&a +a8)} = 0, at a=0 . (6-41)
and
% {Q(?b +a$)} = 0 , at a=0 . (6-42)

Therefore, by substituting the above expressions into the equations of the quadratic, differentiating
and then setting a = 0, we obtain

T2 a t+® = o0 (6-43)
and
T2a 1, +® =0 (6-44)

and subtracting Eq. (6-44) from Eq. (6-43), we find
T > >
28" A (@, -Y) =0 (6-45)

).

which demonstrates the conjugacy of % and (?a - ?b
Returning now tg the flow diagram %f Fig.6.2, we see that_in block A, both X and ¥ are minimg
along the direction Sy and therefore N+1 is conjugate to N Thus, after N cycles, all of the

are mutually conjugate and a quadratic will theoretically be minimized in Nz one-dimensional
minimizations.

As is so often the case in these matters, things are not as good as they first seem. To begin with,
the functions to be dealt with are not usually quadratics, and thus the number of iterations will
ordinarily be greater than N. However, consider the least possible computational effort for N
minimizing steps. Suppose it requires at least three function evaluations per step, then for 50 variables
it requires 7500 function evaluations to achieve minimization. In practice, moreover, it is found

that even with luck, this can skyrocket to N3 or more minimizations with 5 to 7 function evaluations
each. This brings the number for 50 variables to around 700 000 evaluations!

In addition to the possibility of requiring a large number of function evaluations, the basic
version of Powell's method described above can come to a halt before the minimum is reached. Both this

complete failure and the previously described inefficiency are due to the fact that the §j may become
dependent or ‘'almost’ dependent. The original set of 3. are, of course, independent and- in theory

each of the succeeding directions which are generated should be linear combinations of all of the
preceding gj unless some a? = 0 during the cycle. It has been found, however, that the basic method

has a tendency to choose nearly dependent directions in ill-conditioned problems and for more than 5
variables the method can break down, One simple remedy is to reset the directions to the original
coordinate vectors periodically and/or whenever there is some indication that the directions are no
longer productive. This technique is sometimes useful but a procedure recommended by Powell [6.2]
while somewhat more complicated, is very effective.

Powell recommends a termination criterion for ordinary use such that when a cycle produces a
change in all variables of less than one-tenth of the required accuracy, the process is stopped. A safer
(i.e. less likely to stop prematurely), but much more time consuming criterion also given by Powell is:

(1) Apply the normal procedure until a cycle causes a change of less than one-tenth of the
desired accuracy. Call the resultant point A.
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(ii) Increase every variable by ten times the desired accuracy.

(iii) Apply the normal procedure until a cycle again causes a change of less than one-tenth of the
desired accuracy. Call the resultant point .

(iv) TFind the minimum on the line through 32 and 3; call it'vé.

(v) Assume ultimate convergence if the components of (K - E) and (ﬁ - E) are less than one~
tenth of the desired accuracy in the corresponding variables, otherwise

(vi) include the direction (K - E) in place of §1 (i.e. the X direction) and restart the
procedure from (i).

It should be mentioned that one of the most éonfounding problems in minimization, indeed of most’”
iterative procedures, is that of termination. The preceding is a relatively safe rule, but it is
expensive, (the problem must essentially be solved at least twice); in some problems, a more lax
criterion may be appropriate and even other kinds of criteria may be reasonable. It is, however,
difficult to set down general rules for termination with anything approaching confidence.

6.2.5 The Method of Conjugate Gradients

As has been mentioned already, the gradient, or steepest descent method when used with a
minimizing step algorithm is not particularly efficient. The cause of inefficiency is a phenomenon
called zigzagging. Note that in the iteration of Eq. (6-6) if the minimizing a (i.e. a%*) has been

chosen, then the gradient at the new point, VF(X 1) is perpendicular to §q. To see this, observe
that at o%, dF/da = O and that dF/da = S: CVER L.

orthogonal to VF(X ) For eccentric functlons, the process settles into an N-dimensional oscillation

This latter, of course, implies that §q is

and convergence is often painfully slow. The convergence difficulties of the steepest descent method
can be greatly reduced by a very simple modification which converts it to the conjugate gradient
method [6.3], [6.4]. This consists of using an §q in Eq. (6-7) defined by

3 vF 3 6-46
= new +8 old (6-46)
where
7 IVFnew|2
B = — (6-47)
IVFoldI
or, writing the entire algorithm out,
. > .
(i) Xo + arbitrary ,
.. <> >
(ii) Go +,V?‘Xo) ’
) =+
(iii) So + Eo .
> >
: . * -
Gv) X, + X+ ot 5, (6-48)

. g, e F&E,)

. 2 2
. (Vl) ’ Bi . |Gi+1| /|Gi| )

i+l P §

) "\ (v1}) §i+l;f L. B. 3. .
Clearly froﬁ this definition’ $, . is 'a linear combination of 6i+1 and §a.§ ""’gi and

hence, it is a linear combxnatlon of 5 E ,...,3 Returning to the minimization of the quadratic

i+1®
XTAi + ? B +c, we have seen thac if the §i are A-conjugate, the minimum is attained in N or
fewer steps. The process descrlbed by Eq. (6-48) is 8o constituted that the §i satisfy the

condition 3. Ag =0, i # j. This partlcular algor1thm is derived from a Gram-Schmidt orthogonallzat1on

~

of the Ei [6 s]; for a dlfferent v1ew see [6.3]. The conjugate gradient method was, in fact,

originally proposed as a techn1que for solv1ng any system of linear algebraic equations derived from the
stationary conditions of a quadratic [6.4].

-
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Theoretically, because the directions are A-conjugate, the process should converge in N or fewer
cycles for a quadratic; however, for very badly conditioned quadratics, i.e. those with highly eccentric
contours, it can take considerably more than N cycles. This phenomenon is due fundamentally to the
finite digit arithmetic in whlch all actual calculations must be carried out. It manifests itself as

a progressive contamination of S , the only quantity carried over from iteration to iteration. All

of the errors resulting from 1naccuracies in the determination of at and the roundoff in accumulating
the successive B S terms are carried forward in. this vector. These difficulties lead to the need for
occasionally restartlng the process, that is for setting Sq = —VF(iq) and then continuing the

standard process as before. In addition to a strategy for restarting, a great deal of improvement can
be obtained by scaling the variables to reduce the eccentricity of the function. These and other topics
are discussed in Fletcher and Reeves [6.3] and Fox and Stanton [6.6].

Essentially the conjugate gradient method is a good, efficient minimization technique which comes
into its own for very large problems (say 150 variables and up) because of its modest storage and
manipulative requirements. On the other hand, few design problems have this many design variables, and
a more stable and reliable method, described in the next section, is more appropriate for the intermediate
sized problem (10-50 variables).

6.2.6 The Davidon-Fletcher-Powell Varigble Metric Method¥*

The conjugate gradient method is a quadratically convergent method but it suffers from a lack of
stability when used on eccentric functions. In this section, we will describe a method which has much
stronger stability although it involves a more elaborate computation to generate the steps of the
iteration, which proceeds as follows:

3 . ¢ . . =4 . . » . . . 3 » .
(i) - Start with an initial Xo and an initial positive definite symmetric matrix, Ho’ (for
3 . v > ’
example, the identity matrix) and set So + -HOVFO.

(ii) Compute
- .
+«X + a*§
q+1 q qq
where a* minimizes F(i + oS ).
q q q

(iii) Compute

.Hq+1 +Hg + Mq + N‘q (6-49)

]
1
(213

. . 3 _ > - >
wﬁere, def1P1ng Yq e+~ = VF(Xq+1) YF(Xq),

and

(iv) Compute

q+1 © _Hq+laq+1
and repeat from (ii).

The basic algorithm is extremely powerful for a first order method, i.e. one using only first
derivatives of F, converging quadratically and possessing very good stability. By stability, we mean
here that even in highly distorted and eccentric functions it continues to progress and needs little of
the sort of spec1a1 attention requlred by the conjugate gradient method. There is a plausible. argument
for this increase in stability in that with the conjugate gradient method, the entire history of the

path is carried to §q+1 in the intelligence of Bq Q’ a single vector. In the variable metric method,
on the other hand, we carry the data in a full matrix which we carefully upgrade at each step. Another
point of view is that the carryover term qug is only good if applied to VF(Xq) and produces nonsense

if applied to the gradient at some other point. On the other hand, it can be shown that H_ is a

positive definite approx1mat1on to the matrix of second pattlal derlvatlves,‘the He591an, and is
applicable anywhere in the space. ‘

*The method was essentially invented by Davidon, [6.7) and ‘was further described and sharpened by .
Fletcher and Powell [6.8],
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As will be seen, the positive definiteness is preserved in theory only if a: is the true
. . .o 2T 2
minimum point, i.e. if Gzﬂsq = 0, and furthermore, roundoff error may again dog our steps so that

even- this process can occasionally get into trouble. Before discussing modifications of the iteration
to protect against this possible breakdown, we will state without proof (see Fletcher and Powell [6.8])
some important results concerning the theory of the method.

Again, returning to consideration of the quadratic

i A% + iTE +c

we state that for the iteration given by (i) through (iv):
(a) - §§A’s'j =0; i#i,

® ] oM o=al,
i=0 !

(c) ENu.
. i=0
(d) Hq is positive definite.
Thus (a) indicates that this is a conjugate direction method and hence is quadratically convérgent
while (b) and (c) show that HN = A—1 regardless of H . For the general nonquadratic problem (a), (b)

and (c¢) have no exact meaning because there is no slngle A-matrxx, but as the iteration nears the
solution, X , it is expected that Hq will tend to J , where

[3" 9x; :lx=x ) (6=503

It may be shown that the matrix H_ is always positive definite even in the general problem and hence

that the method is stable. Moreover, this matrix does not depend upon the form of F and its positive
definiteness is influenced only by the accuracy with which ua is determined. In applying the method,

therefore, care must be exercised to insure that the H matrix is not updated with data arising from
poor approximations to aa. There are a number of approaches to this problem:

First, the algorithm used for computing aé may be reapplied until §TE is sufficiently small;

+1
another alternative is simply to skip the 'update' cycle [step (iii)] when gz&q is too large. In other

-> -
. x 3 .. - -
words, if aq is not close enough to the minimum along §q’ set Hq+1 Hq and Sq+1 Hq+1Gq+1

and continue as before. As long as F <F_, the method will continue to progress towards the
minimum. a+l 1

It is difficult to choose between these approaches; the first may require excessive computation
to refine a* at points far from X while on the other hand, the second approach may miss valuable
opportunities to improve the H—matrlx. A reasonable compromise is to set a moderate criterion for
*TE +1° limit the number of refits to 1 or 2 and then skip the update if the criterion is not met after
thls.

Another area of numerical difficulty with the method has been identified [6.9]. This is a classical
roundoff error problem. Suppose Ho = I; the elements of Ho are of the order of 1 and so are those

. - >

of L but M is another matter. The elements of the latter matrix will be of order |a:So|/|Y°|

whlch may be anythlng, depending upon the scale factors on F and %. Consider minimizing bF where b
is some positive scalar; Mo will be scaled by b but No will be unchanged. On the other hand,

consider working in the space aX where a is a positive scalar; Mo will be scaled by az. The

numerical significance of these relationships is that if the scaling turns out to be bad then in
finite arithmetic, either

(a) Hl o Ho + No

or ) Hl 5 Mo

and the latter form is s1ngu1ar. There is then little hope of recovery. Bard [6.9] recommends overcoming
this problem by either increasing the precision of the arithmetic or scaling the variable appropriately.
The initial scaling should, for these purposes, be such that the diagonal elements of M are

approximately 1. The scaling should be rechecked and revised as necessary either if the method bogs
down or if it is observed that the magnitude of the elements of H, M and N are consistertly disparate.
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In practice, the method is so powerful that difficulties seldom arise except on very badly
distorted or eccentric functions. In such problems, however, the H-matrix will occasionally become

indisposed in spite of all precautions and it will occur that E:gé is positive, indicating that gq

is not a direction of descent. When this happens, the most efficacious remedy seems to be to set H
back to Ho, or some other predetermined positive definite matrix, and proceed as if starting over

again. The previously mentioned rescaling would have to be done in conjunction with a resetting of H.
Of course, if this has to be done repeatedly and in many fewer cycles than N, the method would not
be expected to work well.

Finally, we note that as with any gradient method, the computation of VF by finite difference
can be considered for the variable. metric method. Stewart [6.10] develops some special techniques for
this purpose. Briefly, these involve the fact that since H_ 1is an approximation to [aZF/axiaxj]'I,
we can extract an approximation to 82F/3x§ from it, With this and an a priori estimate of the accuracy

. . N . . o .
with which- F(X) itself can be computed, Stewart develops a solid estimate for the finite difference
increment to produce maximum accuracy. With Stewart's modifications, this method becomes competitive
with Powell's method for situations where formulas for the gradient components are not easily obtained.

6.3 Penalty Functions

The unconstrained minimization methods of the previous section are quite general and reliable for
finding the unconstrained minimum of a function but are not usable for constrained problems without
modification. Their reliability has, however, prompted the use of a variety of so~called penalty function
formulations for solving the constrained problem. In this section, we will discuss a subclass of these
formulations employing interior penalty functions, but first we note briefly the nature of the other
main subclass,which employs exterior penalty functions. In this latter, the penalty term

[P(hl,hz,---r) in Eq. (6-2)] is constructed so that when D is a point not satisfying the constraints,

then P takes on some positive value which increases as the constraints are approached from outside the
feasible region.

Usually at points inside the feasible region, P 1is zero. In the most common form of exterior
penalty function, the parameter r 1is a simple multiplier of the penalty so that as r is increased P
changes proportionally. The operation of the method is to choose a value of r, minimize ¢ and then
check the constraints. If the constraints are sufficiently well satisfied, then terminate the method;
otherwise increase r and minimize ¢ again. This sequence of unconstrained minimizations is
continued until an optimum is found.

Some advantages of the method are that it allows the solution sequence to be started from an
infeasible point, eliminating the need for a preliminary procedure to find an initial acceptable design
as do most other methods. It provides a reasonably well-conditioned function to minimize, and the
sequential nature of the method yields a set of starting points for the individual minimizations which
are good initial approximations to the minima if r 1is changed a moderate amount each time.

The most serious disadvantage of the method is a need for careful weighting of the component parts
of P for each h, and no general procedure is available to select a satisfactory weighting. This
failing can, in many problems, cause the method to be inoperable. For details of the exterior penalty
function method see Zangwill [6.11].

6.3.1 An Interior Penalty Function

The exterior penalty method seeks to obtain an optimum feasible point by minimizing a penalty
function for an increasing sequence of values of the penalty parameter. This technique forces the minimum
B . = o . . k3 » . .
point of ¢(D,r) toward the feasible region from the outside. In this section, we discuss a penalty
function, also for inequality constraints, which always has its minimum inside the feasible region and
which, for a decreasing sequence of values of the penalty parameter L forces the minimum point

> . . . » . .
Dmin(ri) towards the constrained optimum from the interior. This approach has a number of computational,
as well as engineering advantages which will be discussed.

As with the exterior penalty function, the idea here is quite simple. The objective function is

augmented with a penalty term which is small at points away from the constraints in the feasible regionm,
but which 'blows up' as the constraints are approached. The most commonly used such function is:

I 1

6®,r) = M@®) -
§=1 b, @)

(6-51)

where M is to be minimized over all D satisfying hj(ﬁ) <0, j=1,2,...J.

Note that if r 1is positive, then since at any interior point all of the terms in the sum are negative,
the effect is to add a positive penalty to M(B). As a boundary is approached, some h, will approach
zero and the penalty will 'explode'. The penalty parameter, r, will be made successively smaller in
order to obtain the constrained minimum of M. -

To show how such a function looks, we consider the two bar truss optimization problem shown in
Fig.6.3. The members are of tubular steel and the yield stress constraint is represented by
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2 2.4 .
= B (B +H)T '
hyoE o= Hd - 100 000 < o0

for a material with a strength of 100 000 psi.: The Euler buckling comstraint is

L 2, 2.4 2 2, .2 .
b, %.———-—2—(5 2 B) TR U 2H) <o

(B2 + Hz)

The volume,'which is to be minimized, is given by
M = 2ned 8%+ wD)t .

The penalty function plotted in Figs.6.4, 6.5 aud 6.6 for this problem is thus

. . = M"r[—"’-] . -+ (6-52)

‘The interior mxnlma, 1nd1cated by '+' in the fxgures, for successxvely smaller values of tend
towards the constrained optimum of the or1g1na1 problem. It is also observed that the closer to the
constrained optimum of M the minimum of ¢ is forced, the more eccentric the functlon becomes. ,This
again leads to the necessity for sequentlal minimization of ¢.

An algor1thm wh1ch possesses the steps most commonly used is as follows:

(i) Given a-starting point 30 satisfying all hj(B) <0 and an initial value-for 'r,
minimize ¢. ’ ' ' |
(ii) Check_for convergence of D to the ostimum.
(iii) If the convergence criterion is not satisfied, reduce r by r.+ rc where c <1.

. (iv) Compute a new starting point for the minimization, initialize the mlnxmlzatlon algorlthm
and repeat from (ii). .

o

There are a number’ of p01nts to be consxdered in applying the method ;

(a) The starting design, 30 required by (i) is usually available in engineering problems, but

sometimes. finding such a point may cause difficulty.
(b) A proper initial value for «r must be seleeted.

- (e) The possibilities for the convergence criteria of (ii) are numerous and there  are choices
to be made.

(d) Because of the sequential nature of the process, it is possible to improve the starting
points for the third and subsequent minimizations.

(e) In some cases, considerable improvement in efficiency of the minimization method itself is-
possible by taking advantage of the special nature of the process.

6.3.1.1 Starting point

Starting with the first of these, we note that in many engineering sxtuat1ons, particularly in the
structural- and mechanical désign areas, it is easy to find a- poxnt satisfying - h (D) < 0 at the expense

of large values of M. For example, in structural design if cost or we1ghc of the structure is
ignored, it is usually easy to propose many designs which fulfill the basic requirements of strength
and rigidity for the particular application. In other design situations, it may not be at all obvious
what the acceptable designs are. In these sltuatxons, the initial acceptable design required by the
interior penalty function method can be obtained as follows.

o Suppose an’ engxneerlng sssessment of the situation has produced the desxgn D " which satisfies
(D ) <0, j=1,2,...m, but has h (D ) >0, j=mtl,...J where the express1ons have -been

renumbered so that the last J-m 1nequa11t1es are the unsatisfied ones. Select k for which .
hk(D ) is a maximum where k =m+l,...J and temporsrxly define hk(D) ‘to be the obJecr1ve function for

' B

the problem.

B - P . Lo PR . L i
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Find D such that hk('ﬁ) + Min and
i) hj(ﬁ) <0, j=1,2,...m

(ii) hj(ﬁ) -hj(iso) <0, j=ml,m2,...0 .

Whenever, during the process of solving this problem by the penalty function method, the value of hk(ﬁ)
drops below zero, the procedure is halted. The point so obtained satisfies at least one more constraint
than the original 30. The procedure can be repeated until all the constraints have been satisfied and a
30 is obtained for which “3(30) <0, j=1,2,...J. Ordinarily this approach should yield a point

30, if one exists, although there are circumstances where it will converge to a constrained or
unconstrained local minimum of some hk(ﬁ) which is positive. Some ingenuity is required in such

situations to select new starting points from which to repeat the sequence.

6.3.1.2 An Initial Value for r

The matter of selecting an initial value of the penalty parameter r has been the subject of
discussion in the literature [6.12], but while there is some theory available, the task is still mainly an
art. The problem is similar to onme encountered with exterior penalty functions., If r is large, the
function is easy to minimize, but the minimum may lie far from the desired solution to-the original
constrained minimization problem: On the other hand, if r is small the function will be hard to
minimize.

A feeling for the problem can be developed by considering a few simple ideas. If the initial design
is conservative, i.e. not near any constraints, one would like to pick the initial r = r  so that
Mmin(ro) would not increase drastically over the original design. In other words, r ought to be chosen
small enough so that in the neighborhood of the initial design the -r Z 1/hj terms do not completely
dominate ¢. A rule which might follow from this observation is that if 30 is a conservative design,
pick r =~ so that -r ) 1/h(3°) approximately equals M(Bo)' In practice, this approach usually yields ‘

reasonable initial values for «r.

If 30 happens to be a near-critical but nonoptimal design, i.e. such that one or more of the hj |

are small but negative quantities, the situation becomes more complicated because the r value dictated
by the above rule might be too small to allow the first minimization to be carried out. In this case, a ‘
proper value of T, will probably be large enough so that in minimizing ¢( ,ro), M will increase from

its value at 30. While this is distressing, it probably cannot be helped with this form of penalty
function without a good deal of complex logic. Furthermore, unless something really drastic happens, very
little is lost since r can be reduced quite quickly in this method.

Another approach to this latter problem which seems appealing in some cases, is to pick a
relatively large value of r but to temporarily add a new constraint to the problem in the form of

hiy = M@®) -u(ﬁo) <o | B (6f53)

or, to make it easier to get a starting point

by, = MO -[u(iSo) +e] €0 (6-54)

where € is some small amount of increase which will theoretically be permitted in M during the first
minimization. The penalty function for this revised problem is then

¢@.r) = M@ - r{'

-J

(e 1

1, 1_ } . (6-55)
1% M@ - (M®B)) + €]

The minimum for large values of r is approximately the point where the term in brackets alone is a
minimum. As r is decreased, the fictitious constraint term can be removed or left in as desired since
it will ultimately vanish.

6.3.1.3 Convergence Criterion

As the ¢-function is minimized for various decreasing values of r, the sequence of minima,

i
|
|
1
|
\
|
> . . : f e e
Dmin(ri)' i =1,2,,.. should converge to the solution of the constrained minimization problem and a
means is needed to ascertain this convergence without an unnecessarily large number of minimizatioms.

One simple criterion is to compute the relative difference

M a (g ) - M)

(EE)I (6-56)

M.
min
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and stop when & drops below a specified value. It can require clever logic in some cases to prevent
premature termination in situations where the process temporarily bogs down. Furthermore, the magnitude
of & must bear some relation to ¢, the fraction by which r is reduced each cycle. In general,
however, this concept can form the basis for a useful convergence criterion.

An equally appealing group of convergence test numbers are contained in various norms of the vector

T = Emi (c; ) =B, ) . | (6-5’7)
For example, we could impose as a test for convergence
IAjI < & j =1,2,...N (6-58)
or
:max(IAJ.]) < ¢ : (6-59)
or g
lKlg z I{q A?]* < ¢ | (6-60)
j=1 !

and all of these have been used to advantége in various problems. The choice of norm and the proper
value for € depend upon the problem.

Another level of sophistication in nmethods of termination follows from the observation that Mm1 (ri)

in
is merely a point on what one would expect to be a continuous function of r, namely, Mmin(r)‘ This

function can be approximated by a function g(r) from data accumulated in two or mére minimizations and

then g(o) will serve as an approximation .to the true solution Mmin(o) = Mopt' If this approximation

appears to be reliable and if the latest solution Mmin(ri) is acceptably close to the latest approxi-

mation gi(o), then the process is terminated.

Computational experience and some theoretical support [6.12] suggest the use of an extrapolation

function in the form of a polynomial in ri; In particular, the most éommonly [6.12] used form is

Mmin(i) = a"*br& 2 g(x) (6-61)

where the ith approximation is determined from interpolating - co

Bry) = gy + byl o= M) (6-62)
g () = ag +ber, o w ) (6-63)
which leads to
g = lebm. @ ) - Mmm(ri)l/(ci -1) = g(0) (6-64)
- H ' -
by = My Crgp) —agbie (6-65)

This approximation scheme essentially fits a parabola to the data.

6.3.1.4 Improving the Starting Points, Extrapolation

. . x .
The sequential process which converges the point ﬁmin(ri) toward the solutionm, Dopt' is
essentially a means for finding a sequence of good starting points for an ever more difficult sequence
of minimization problems. It is possible to improve these further by using an extrapolation scheme
similar to that given by Eq. (6-61) for extrapolating Mmin(ri). i

... . ->
Writing a vector extrapolation for Dmin(r) as

B ) = T+et3 2 T C (6-66)
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. . ->
we can interpolate two known points Dmin(ri

. ' ‘ = ! 3 .=
I, ) K‘+ i, B o= B ) (6-67)
and
> . ) s >
Z(x)) Bager, PP3 = B . () (6-68)
which lead to
l > _*
y O ¢ Dmin(ri"l) Dmin(ri) (6-69)
(ci -1
and . ‘
B . (r,_,)-%
3 = min " i-1 . , (6-70)
Ti-1
From these, an improved starting point for the next value of r can be estimated:
| § 3t )
T, ) = K+eclr, P? B (6-71)
or

2(:. Yy = (cl +1) D . (r.) - c} D (r

i+l min" i min i-l) e (6-72)

It is, of course, necessary to check the extrapolated point f(r1 against the constraints.

+1
If the constraints are satisfied, the vector may be used as a starting point. If not, and there is no
guarantee that it will be, it must be abandoned. We can, however, attempt to salvage something of the
extrapolation in these cases by taking a minimizing step in either the direction

. . -P_-P > . . .
[ 3 (r ) - Bmln(r._ ) or the direction § = min(ri) Z(r1 1) from D (r ). This will ;erta1n1y

produce a feaslble point and will generally yield a good starting point for m1n1m1z1ng ¢$(D, Ti41

6.3.1.5 Minimizing-Step Difficulties

The function defined by Eq. (6-51) cannot be minimized over the whole 3-space, but only in the
interior of the feasible region hj < 0. ' The ¢-function 'is actually unbounded in both the positive and

negative directions on the boundary of the feasible region and special steps must be taken to keep the
minimization process in the proper portion of the space. An effective strategy for accomplishing this
requires some ingenuity and it is not always clear what the best approach is.

The problem centers about finding the minimum when taking the step Bq = Bq +a gq' In applying

interpolation methods, the sample points should all be in the domain of definition and_ should preferably
bracket the minimum. Fig.6.7 111ustrates a hypothetical plot of ¢ vs o along some S . From this

flgure it can be seen that the task involves two difficulties: (1) f1nd1ng at least one sample point
in Zome "A", and (2) getting a reasonable interpolation of this perverse function.

Approaches to the first part of the problem must take into account the nature of the search
problem at hand: we seek a point in the narrow region, A, which is bordered on one side by the
unacceptable region, C, and on the other by the negative slope region, B. Simple interval splitting
schemes may be appropriate for this problem. That is, given a point in B and a point in C, take a
point midway between them; if this point is in B, wuse it to replace the current B point and repeat,
and similarly if the point falls in C use it to replace the current C point. This technique is
hampered because zone B 1is distinguished from zone A by a difference in the sign of the slope of ¢.
When ¢ is of a nature where its derivatives are too difficult to compute, it may be necessary to use
a crude finite difference scheme to locate the point.

Moe [6.13] has suggested some efficient approaches for coping with the difficulties in the one-
dimensional minimization problem associated with interior penalty function methods. These techniques
are based upon employing interpolated approximations for the hj functions themselves rather than

working with their reciprocals.

6.3.1.6 Engineering Implications of the Interior Penalty Function Method

An aﬁpealing feature of the interior penalty function method is the fact that, given an initial
acceptable design, an improving sequence of acceptable designs is produced.
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Moreover, the constraints are approached in this sequence in such a way that they become critical
only near the very end of the procedure. This is a desirable feature in a structural design process
because instead of taking the optimum design, a suboptimal but less critical design can be chosen if
desired. Such designs are often said to have 'reserve capacity' to absorb overload or abuse and are
prepared in advance for the performance upgrading processes which so often occur. The interior penalty
function method is said to 'funnel the optimum design process down the middle', keeping the designs away
from the constraint surfaces until final convergence.

In spite of the appeal of its simplicity, this approach to true safety is not endorsed here and
the more direct methods of reliability based optimum design (see Chapter 10) should be used if these
considerations are a factor. On the other hand, these ideas can sometimes be useful if applied
intelligently and with a proper recognition of their true nature.

6.3.2 Penalty Functions for Equality Constraints

In many engineering design problems, a complicated or at least time consuming analysis must be
performed to relate a set of values for the hj to a particular set of values of the design variables

D. oOften this analysis involves the solution of a system of algebraic equations of the form

zi(ﬁ,?) = 0 3 i=1,2,...1 (6-73)

for the analysis variables Y fora given D and then computing the h, from their explicit

dependence upon Y. If the penalty function method is applied to the direct formulation, each
computation of the ¢-function would require a new solution of the equations. For problems of the size
considered practical from the analysis point of view in the aerospace industries, a large number of
repetitions of such simultaneous equation solutions is expensive. Furthermore, in an increasing number
of situations, the simultaneous equations are non-linear in the analysis variables ¥ and they require
the application of iterative solution methods.

The fact that iterative solution methods can or must be used has motivated the development of

penalty functions which include equality constraints. Almost all such methods are based upon the idea
that one way of solving the equations

2@ = 0 3 i=1,2,...1 (6-74)
for Y is to solve a minimization problem:
Find Y such that: Z 2 Min .
i=1

I3 1] . . > . » .
If the above minimum is zero, then the corresponding Y is a solution to Eq. (6-74). The term to be
minimized is sometimes referred to as the residual of those equations and is expressed as-

-+ I > I 2
R(X) I R = § ¢ - (6-75)
i=1 i=1

where the dependence of R upon i, i.e. (0,¥), reflects that it is a function of both the design
-+
variables, D, and the analysis variables, Y.

It should be noted that solving the equation for ¥ by minimizing R is not generally the
most efficient approach if the only purpose is to obtain a solution. This is because the residual is

. 3 3 . 2 . 2 3> ] . 3
often a poorly conditioned function in Y-space [6.6]. In linear problems, AY = B, the 'conditioning'
or measure of difficulty in obtaining accurate solutions is ordinarily related to the ratio of largest
to smallest eigenvalue of the matrix of coefficients A. However, in residual minimization, it is

related to the ratio of largest to smallest eigenvalues of ATA, assuming A is symmetric. Thus, if
A has a conditioning number of 100, then the residual has one of 10000 which is much worse.

A number of penalty functions for equality constraints have been described in the literature
and some of these will be briefly presented here.

Fiacco and McCormick [ 6.13] report some success with the formulation

I
sxt ] A2 : (6-76)

N J
6(X,r) = M-r Z
= i=1

1
. h,
j=1 7]
where ¢ is minimized for a sequence of decreasing values of r. As r is made small, the second
term does its familiar job of allowing the minimum to approach the constraints from the inside and the
third term successively forces a satisfaction of- R = 0. The reasons for the -} power on r in the
third term are given in [6.14]. The method works in principle and it has been used successfully
on a number of problems. However, in many cases it presents an extremely difficult minimization

problem and scale disparities between the terms M - r ) l/hj, and r-& ) li are hard to resolve.
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An exterior penalty function of the same type has been proposed as

s &,r) = M+:LZ <h)2+ 2 22} (6-77)
=] i=1
where
2 0, z < 0O
(z) = (6-78)
Z, z 20

which would be minimized for a sequence of increasing values of r. This formulation would doubtless
suffer from the same scaling problem as the interior function.

A different approach to the problem is to consider the residual as the function to be minimized
subject to the usual constraints hj <0, j=1,2,...J plus a new constraint M - Mo <0 where Mo

is a constant selected as a goal for the objective function in a particular cycle of minimization.
Thus, the problem is posed as:

Find X such that: R(i) -+ Min subject to:
(i) hj X) <o j=1,2,...3 (6-79)
(1i) M - Mo <0 .

I3 > . K3 . 3
If an X for which R(X) = 0 is obtained as a solution to this problem, then we have an acceptable
design and its correct analysis and one which has a value of the obJectlve function which is less than
Mo. Optimization is carried out by 501v1ng the problem for a succession of decreasing values of M

until one is chosen for which R i (X) > 0. The optimum design lies between the last two values of Mo
and if the steps taken in Mo are small enough, the last successful design can be taken as a

reasonable approximation to the optimum.

The alternative formulation given by Eq. (6-79) which treats the residual of the analysis

equations R(i) as an objective function can be attacked using e1ther external [6.15], [6.16] or
internal [6.17] penalty function methods.

There are many possibilities for the different segments of a program for the unconstrained
minimization approach to equality and inequality constrained problems. It is definitely a situation
where the algorithm must be tailored to the problem in order to be successful. These approaches for the
general equality constrained problem represent a state-of-the-art situation; the problem is not really
solved, but some useful approaches are available. .
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Chapter 7
FEASIBLE DIRECTION METHODS
by
J. S. kowalik
7.1  Introduction

The methods which are designed to solve a general non-linear programming problem

3 3 I3 . .
minimize M(D) subject to

hJ.(B) <0 ;3 §=1,2,...7 (7-1)

fall into the following two categories: methods which handle side constraints explicitly and those where
formulation (7-1) is transformed to a sequence of unconstrained optimizations. Within the first
category we can distinguish between (a) the methods where the non~linear problem is replaced by its
linear approximation and solved in the repetitive manner by the simplex method, (b) the feasible
directions methods which are discussed in this Chapter and (c) methods handling problems of a -special
nature, such as: separable programming, geometric programm1ng, etc. We focus our attention on the
second group and, in particular, the following three algorithms are presented here which have proved to
be successful and applicable to structural optimization problems: the methods of Zoutendijk [ 7.1],

Rosen [ 7.2] and Gellatly {7.3].

As far as theoretical validation is concerned the first two algorithms have been shown to converge
to the global optimum for convex problems. In the general case where we cannot test our problem on
convexity, we expect that these methods will find local ‘solutioms.

The question as to which of these three methods is preferable is difficult to answer without con-
sidering various aspects in conjunction with the problems which are being solved: Some of the most
important aspects are: restrictions 1mposed on problems which the methods can handle, speed of con-
vergence, ability to solve nonconvex or highly non-linear problems, ability to solve large scale
problems, simplicity of code, etc. We will -attempt to compare some of the merits of these methods and..
emphasize their advantages and disadvantages, from the theoretical and computational point of view.

The reader interested in a comparhtlve numerical study of non-linear- prdgramming,ireétrlckéa to
the .computational aspects of several methods tested on a few selected problems, ia referred to a recent
paper of . Colv111e [7.4]. : : )
7.2 Zoutendgjk s ‘Usable Fea81b1e D1rect1ons Method

'

‘-7.2.1- Pre11m1nary Conslderat1ons ..- : - . '-.: S

The feasible directions method of .Zoutendijk [7.1], [7.5] s%arts and operatés inside the feasible
region., It generates a sequence of feasible points 31, g9 v

q+1* " such that for'arl q
M(ﬁqu) < u(ﬁq) , S _ L e
where
3<1+1 B Bq“‘q §q - : e (7-3)
and
mq > 0 .

The move from Bq to is accomp11shed in two stages. . In the f1rst stage the direct1on fxndxng

)
q+l :

problem is solved, i.e., the vector §q is computed. 1In the second stage the step length uq is found.

Assuming that the current approximation to the solution D is a feasible point (interior or
located at the boundary) we say that a direction vector §a is feasible if we do not immediately violate
any constraint when making a sufficiently small step along this direction. Clearly, any direction § is
feasible if D is an internal feasible point. If, however, Bq is a boundary point, then some vectors
are directed to the outside of the feasible region and we cannot take a step of any length in these
directions without violating some constraints.

We say that h.(ﬁ) is a critical constraint with respect to ﬁq if h.(ﬁ ) = 0 and denote a set

q
of all the critical constraints by Jc' Feasibility of §q is assured if §; satisfies the inequality

P
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T L. -
(§q) th(ﬁq) <0 ; jEJI (7-4)

and all critical constraints are linear. If, however, some of the constraints are non-linear then (7-4)
will not be, in general, sufficient, and we have to require that for the non-linear hj(ﬁ)

(§q)TVh (3q) <o ; je€31 . (7-5)

i

Introducing a slack variable and individual scaling coefficients we get from (7-5),

(§q)T vuJ.(iSq) +cio S0 ; €I (7-6)

where

c > 0 , c, > 0 .

i

Furthermore, we want the direction § to be usable, i.e., to be able to yield a reduced objective

function value in the vicinity of Dq. This requirement is: for aq -0,

aM@® +ao 3y T . : ,
-9 9 . -
daq ‘ (Sq) VM(Dq) < 0 . -7

Any direction vector §q satisf&ing Ehé last two relations is usable-feasible and could serve our

purposes.

Once we have obtained the direction § we have to find a step length ua >0 which minimizes

a*1 in the feasible

region. The problem of finding aa is a one-dimensional optimization problem and is solved by various

M(Dq +a §q) and at the same time gives a new approximation to the solution )

search techniques. In some special cases, for example, when the objective function is quadratic and the
constraints are linear then a* can be found easily from explicit formulas. In more general cases

this problem has to be solved by iterative techniques. The two methods most frequently used are; the
golden section method and interpolation by low-order polynomials. In the first method the minimum is
bracketed in an interval which is then systematically narrowed by comparing function values computed

at the optimally chosen points inside the interval. The golden section method has a guaranteed con-
vergence to the minimum but its rate of convergence is very slow if the minimum has to be found with high
precision. In the second type of method the function is evaluated at several points and a low-order
polynomial (typically quadratic or cubic) is fitted to it and the minimum of this interpolant is sought
(see Chapter 6). Certain precautions are necessary to avoid divergence or convergence to unwanted
stationary points. A comparison of these two approaches to the one-dimensional optimization can be

found in [7.6].

7.2.2 Determination of Usable, Feasible Directions

To take into account two different feasibility requirements (7-5) and (7-6) we define our
optimization problem as follows:

minimize H(S) subject to

hJ.dS) <o, j€u, (7-8)
Z?B<bj, jes

L

where %6)<Oam %3<bjauthnmﬂhurmdumucmumhmruwahﬂw Let us also

denote by JCN and JcL the sets of indices of the non-linear and linear critical comstraints. The

direction finding problem can now be formulated in the following manner:



81

given Bq' find §q and ¢ >0 such that

. > T s .

i) (Sq) Vh; (Dq) + CJ. ¢ 0, jE I (7-9)
(i) ('s’q)T G <o, jeyy (7-10)
(iii) (Eq)T vu(Bq) +o <0 , (7-11)

(iv) §a is normalized by an additional requirement such as

one of the following:

(a) <§q)T 8, - 1, (7-12)
(b) -1 < s, <1, aui, (7-13)
() (vu('ﬁq))T §,< 1, et _ (7-14)
) o is maximm . (7-15)

Any solution of (i)-(v) with o0 >0 gives a usable-feasible direction §§. If we select all Cj =1
>

then we can interpret our auxiliary optimization problem (i)-(v) as an attempt to find a direction Sq

in which the constraint functions hj(ﬁ) decrease about the same amount as the objective function in the

s * 4
vicinity of Dq'

It is desirable that this decrease be maximal.

In the case when only linear constraints are critical the auxiliary optimization problem reduces

to:

given Bq, find §q such that

(i) (gq)T :j <0, j€3,; ., (7-16)
(ii) an §q normalization condition is satisfied and
(iii) (Eq)T \m(ﬁq) is minimized . (7-17)

Both auxiliary problems are linear provided that a linear S—mormalization is selected. Furthermore, if
this condition is chosen to be -1 < Sqi €1, which can be transformed to 0 < Sqi < 2, then both

auxiliary problems are linear programming problems with upper bounded variables. They can be solved by
an efficient, special simplex method subroutine without the necessity of storing these normalization
constraints. If the auxiliary problem leads to ¢ >0 then M(ﬁ) can be+improved within the feasible
region. If, however, we obtain o = O then it can be demonstrated that Dq is the optimal solution.

7.2.3 Special Acceleration Techniques

Special precautions are necessary to guarantee and speed up the convergence of the feasible

direction method.

Careful investigation shows that the process described in Sections 7.2.1 and 7.2.2

may be very slow or nonconvergent due to so~called jamming which occurs when the algorithm generates a

sequence of (ﬁq)

which converge to a non-solution point. This happens when the sequence (Bq)

becomes caught in a cornmer of the feasible region ‘and is unable to leave it. This phenomenon was first
observed by Zoutendijk [7.1] and numerical examples of the feasible direction procedures which lead to
jamming when used to solve certain sample problems can be found in papers by Wolfe [7.7] and

Zangwill (7.8].

Another common feature of all gradient methods is that sometimes a large number of very short
steps are taken in strongly alternating directions. This is caused by a rapid change of the gradient
vector in the direction of the feasible region (zigzagging). Small steps may also occur when the
algorithm progresses along the boundaries. To prevent these inefficiences and secure convergence we can
try to stabilize the search directions and keep an iterative solution away from the boundaries by
including in the set of 'critical' constraints those nearly critical constraints which are likely to be

approached. Let
which the h, @

2 ] -
JCN(D,e) denote the set of integers identifying those non~linear constraints for

are within ¢ of zero, i.e. - ¢ <hj (B) < 0. Similarly let JCL(B,E) denote the set

of integeré identifying those linear constraints for which
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>T >

-e¢ € a,D- bj € 0 .

e

Then J(B,e) is the concatenation of these two sets of integers. These sets include as a particular

case the sets of critical constraints, Joy = JCN<3’O) and JCL = JCL(B'O)' Since we want to avoid the
phenomenon of slow creeping along the boundaries we may solve a modified direction finding problem where
JCN(B,E) and JCL(ﬁ,e) replace JCN and JCL respectiyely. The Earameter € should be reduced when
small values of o in the direction finding problem indicate that Dq approaches the optimal solution.

In a more refined procedure the constraints which have been encountered twice during the
optimization process are kept in the critical set for a certain number of iterations. The following
strategy has been successfully used in practice [7.,9]:

. . >,
(a) If at the current step of the iterative process the approximate solution D is on the

boundary of a linear constraint (j) which has been met at least twice before, then the condition

EH)Ta, <o (7-18)
q J ’ .
is added in the determination of 3 in subsequent problems. If, however, the variable ¢ has not
improved by a significant amount from the previous step then only critical constraints are entered and
the antijamming entries are deleted.
(b) If at the current step of the iterative process the point Bq is on the non-linear boundary j

which has been approached previously then we require
3T @) < o e T
@) . B | o (7-19)
in all auxiliary problems following the first oﬁe in which
> T -
S %h.D) +0 < O 7-20)
(q) 3 q) (

has to be required. We delete this requirement as soon as we arrive again at this constraint.

(¢) In both cases (a) and (b), the antijamming inequalities are deleted if the current point is
within the feasible region or if o is less than some predetermined number (which can be gradually
reduced). :

The danger of zigzagging inside the feasible region can be avoided by introducing the principle of
‘conjugate directions as an additional requirement in the direction finding-subproblem, which may be
expressed in the form

e > T » ' s A o
fVM(D£+1) VM(Dl)) Sq = 0 . . . ) . (7-21)
where L=, r+l,...q~1 and Br is the last step located on the boundary. All the subsequent points

X » » .
r+1""’Dq are interior—feasible.

The condition (7-21) is taken from the quadratic programming problems where the conjugacy of the
search directions gives a computational procedure with a finite number of steps. In a more general
problem it may be expected that the application of this principle improves the convergence properties of
the algorithm.

7.2.4 Algorithm

This sample algorithm shows the essential computations which are executed to perforﬁ-a single
iteration step from- Bq to 3q+1’ using the Zoutendijk method of feasible directions.

(i) If Bq is a feasible interior point then

> >
§ = =~ 9M(D) : ’ -
q . q S

is used as a usable-feasible direction.
A superior strategy would be to generate a conjugate direction using equations (7-21).

(ii) Otherwise the auxiliary subproblem (7-9)-(7-15) or (7-16)-(7-17), which can also include
the antijamming precautions, is solved as described in Section 7.2.3. '

A
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N (iii) If the auxiliary subproblem leads to a solution with ¢ = 0 to the required accuracy then
Dq is assumed to be the optlmum.

»

(iv) If 0>0 then Sq is usable-feasible and the objective function will decrease in this

direction.
(v) Determine the best step size aa in the direction.:gq, i.e.
a* = Min M(B + a § )
q q qQ q
and set
> >
D = D + a* § .
q+l q 9 q

(vi) If

M('ﬁq) - M(-I;qﬂ) < n : : (7-22)

where n is a preset small positive number, then the computations are terminated. Otherwise repeat
from (i). .

7.2.5 Summary of the Zoutendijk Method of Feasible Directions

'

Zoutendijk's method offers an efficient way of reduc1ng the non-linear programming problem to a
sequence of linear programming problems if a linear normalization of § is used. Furthermore, the

method is finite for quadratic programming problems and can handle nonconvex problems. From the practical
point of view, it offers an additional advantage of generating feasible intermediate approximations to

the solution. The method has been used successfully to solve realistic problems [7.10]. Following
Zoutendijk's critique [7.5] we indicate the followxng dlsadvantages of this method°

(a) The determ1nat10n of the steplength a: i8 a time consumlng process wh1ch hae to be

performed in every step.
(b) The computer program is rather complicated and has to include anéijamming precautions.

There are several questions which can be investigated and answered only on the basis of extensive
computational experience, such as:

(a) What is an appropriate choice of the parameters Cj >0 and of antijamming devices (both

are probably heavily formulation and problem dependent). . = ‘ -
(b) What type of § - bounding gives the most.efficiently solvable subproblems.

.(e)  To. achieve the best overall efficiency should we take the optxmal steps ug; i.e.

aa = Min M(Dq +a'$ ) ‘ot just try to satisfy relation: -

« o P
q

. > . . >
| M@ + o §q) < P«(pq) .

.7 2.6 . Modified Feasible Directions Method - .

It is worth-while to sketch briefly a recent version of the feas1b1e d1rect10ns method suggested
by Zoutendijk [7.5]: and referred to by him. as MFD .(Modified Feasible Directions). The original non-

11near programmlng problem (7-8) is converted to a form with a linear obJectlve function' by adding
M(D) + h <0 to the constrarnts and maximizing h . The method uses the 11nearxzat10n technlque

(. . . -

extens1ve1y and generates three sequences of p01nts'

(a) Interior feasib}e points ﬁq, such that M(Eq+l) <ZM(Eq), which converge to the solution.
(b) Infeasible points Kq with nondecreasing values of M(Kq) giving a lower bound for a

minimum. . R

(c) Boundary points B giving at each step an upper bound for the minimum.
4 q

c. . ) P R S - SRR , et
To start the computation a feasible initial point Do,.ls needed, . The algorithm consists of two ..

phases. ’ - ' -
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Initial Phase
(i) Solve the linear auxiliary problem Lo which is minimize H(B), or -ho if M(s) ig non-

linear, subject to the linear constraints of the problem

:J?B-bj'< 0 (7-23)

and the additional restriction

IDiI < o

where a is a sufficiently large positive number. Call the solution Ko and proceed to (iii).
Iteration Phase
(ii) Solve the subsequent auxiliary linear problem Lq (q 1) and call the solution Kq.
(iii) Find the boundary point Eq which is located on the line joining Kq and Eq, i.e.

-> -> -+ >
B = D +a (A -D -24
q q q( q q) (7-24)

with the maximum uq for which Bq is feasible.

(iv) All constraints for which hj(iq) = 0 are linearized with respect to ﬁq,

> > .
th(iq) (D‘- B) <o (7-25)

and these linear inequalities are added to the constraints of the current linear problem Lq' This

enlarged set of constraints will be used in the auxiliary problem L

q+1
(v) A new point Bq*l is computed which is interior feasible and is located between Bq and iq,
that is '
-+ 3 +
Dq+1 = a 4 + (1 - a) Bq , 0<a<1 . (7-26)

(vi) 1f M(ﬁq) - M(KA) < ¢ then stop. Otherwisé, q + q+1 and the process is repeated from (ii).

7.2.7 Summary of the Modified Feasible Directions Method

(a) The modified Zoutendijk algorithm utilizes some of the ideas of the cutting plane method of
Kelly {7.11]. However, in contrast to that method which produces infeasible points, the MFD method
generates the feasible sequence (3q). :

(b) Computational performance of the method is not known to the author of this paper, but the
method should be efficient for problems with nearly linear constraints.

(c) It is possible to foresee some computational problems similar to those encountered in the
cutting plane method. We may have bad conditioning of linear problems due to near-dependency of con-
straints, which occurs close to the solution. This may probably be prevented by removing nonactive
linearizations from the linear subproblems.

(d) In the problems where the feasible region defined by the constraints is nonconvex there is
a possibility that some portions of the feasible region can be cut off by the tangential planes. A
simple rule enables us to avoid this danger. From time to time all the constraints are checked and if

for some of them hj(xq)'< O then the linearizations of hj(ﬁ) which determine the solution Xq

are taken out in the next auxiliary linear problem.
(e) The method can be speeded up by using the principle of conjugate directions.

7.3 The Gradient Projection Method

7.3.1 Preliminary Considerations

The gradient projection method of Rosen [7.2] in contrast to Zoutendijk's method does not require
the solution of auxiliary linear optimization problems. It uses projections of the objective function

gradient into the manifold defined by constraints which are currently active. The method works with vectors

% which are feasible and usable, that is vectors which satisfy the relationships [ ™M <0 and

§T th = 0. The latter is required for all active constraints. We assume here, that all the
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constraints are linear hj(ﬁ) = ;§ 3 - bj‘< 0, and the critical constraints have indices

j= jl’j2""jk' It is convenient to introduce the matrix of constraint gradients

N [vh, , Vh, ,..., Vh, ] (7-27)
k It I

so that the feasibility condition can be stated concisely by

T 2T

Nk s = 0 . (7-28)
In the iterative process we move from Bq to 3q+1 using the relationship i
- - -+
D = D -a PYM(D ) 7-29
4+l q q ( q) ( )

where the matrix P projects VM(B) into the manifold formed by the active constraints. The projected

vector P VM(ﬁ) can be obtained from VM(B) by subtracting from it the vector Nk V, wvhere V is such
that .

N vM®) = N (M@ -N V) = o (7-30)
k k k
which leads to
> T -1 T .+
v (Nk Nk) Ni‘ VM (D) , (7-31)
and
T .-1.T :
P 1 Nk(Nk Nk) N (7-32)

Matrix P 1is called a projection matrix and it projects every vector into the intersection of the
k € n hyperplanes (linear critical constraints). It is assumed that all columns of N are linearly

'k
independent from which it follows that (N{ Nk) is nonsingular and can be inverted. '
The normalized directions §q can be found from
§ < -pvM®)/|Pwd . 7-33
q ( q)/| ( q)| . ( )
If § #0 then it is possible to find [ such that‘ D ig feasible and M(ﬁ »)-% M(B ) If
q q+1 ' q+1 g+l q’" ’
however, §q = 0 then from (7-30) we have
- o >
- WO) = -N Vo, ~ (7-34)

i.e., the negative gradient of the objective function can be expressed as a linear combination of the
gradients of the active constraints. If all components of =V are nonnegative then the first order
necessary conditions of Kuhn-Tucker for a to be the minimum are satisfied and the computation is

terminated. In the case when this condition does not hold, then the computation is continued after the
projection matrix is modified by deleting from N the column which-corresponds to the most negative
component of - V. By releasing a critical constraint which correspondg to the negatlve component of
-V, a lower value of M(D) can be obtained. It may also occur that +1 which gives the manifold

optimal value of M(D) is located at a new constraint .(hyperplane). We then have to form a new manifold
by adding this constraint to the set of critical constraints. In consequence, a considerable com-
putational effort is involved in the periodical updating of the prOJectxon matr1x P. This problem will
be discussed in Section 7.3.3. . ’ ’

7.3.2 Algorithm

The following are the steps to compute 3q+1 from ﬁq using the gradient projection method:

(i) Compute §q = -PV M(’n‘q)/lpvmﬁqn,
T . \-1.T
where P = I Nk (Nk Nk) Nk \

and Nk includes all currently critical (linearly independent) constraints.
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(11) 1If § # (0 the one-dimensional minimization problem is stated as follows:
a* = MinM(D +a_ 8), O0<a <
q ©q q q . q

where o"®* is the largest step which may be taken from Ba along gq without violating any

constraints. This value is computed from
max

D+ Ey-b, = 0
i T % °q i .

for those j for which ;§ gq >0 and j € Jn where Jn denotes the current set of noncritical

constraints. We have to accept the smallest a?ax from the set of all these values, i.e.,
B -b,
max .
a = Min T &
- a., S
. I |
clearly omex > 0 since ;} Bq - bj <0 (-ISq is feasible) and - Zf -§q <o.

Two cases should now be considered:

(a) If aa = M3 then some new constraints (one or more) become active [hj(3q+1) = 0] and

should be added to the matrix Nk' The projection matrix is modified and the computation.returns to
(i).

max

(b) 1f aa<< o then matrix P remains unaltered and the computation returns to (i).

(iii) If § = 0 then we compute vector - 6 from (7-31)

<> T -+
v (N k) Nk VM(Dq) .
Two cases are possible:
(a) All coﬂponents of -V are ﬁonnegative, which indicates that a minimum has been found
and the computation is terminated.
(b) If some components of - V are negative then the column VhJ correspondxng to the most

negative component is deleted from Nk’ matrix P is modified and the computation returns to (i).

Remark

The method can easily handle linear equality constraints. Suppose our constraints are
h (D) = aJ D - b <0, j= 1,.:.,m and h (D) = *T B —'bJ = 0,'j = m+tl,...,J. We reduce 'the
N-d1mens1ona1 space E of the original problem to the manifold determined by the intersection of the
J-m hyperplanes

> . !
hj(D) = 0 , jEwmdl, 0,0 .

That means that a11 the feaslble p01nts ﬁq must 11e in the manxfold defined above. With this

restriction the problem with equal1ty and lnequallty constraxnts can be treated as one- hav1ng . 1
1nequa11t1es only. Computatxonally this can be accomplxshed by formlng lnltlally the matrix Nk Nk)

where N = [vh a1t e Vh ] k= Jm- and keeplng Yectors th+1 cees VhJ ,1§ Nk throughéut the .

whole computlng process.

7.3.3 Computational Aspects of the Gradient Projection Method

A considefabie'computational}ﬁroblem is~iﬁtroduced.by the ﬁeriodiéalwupdating of the projectioﬁ )
matrix., Fortunately the subsequent matrices N differ usually by only one column Vh, which is either

dropped from the set of active constraints or is added to it. It 13 possible to avoid the complete
-1

recomputation of (N from its deflnltlon, which takes O(k ) multlpllcatlons, and use a more
efficient recursive procedure which generates the new inverse in only O(k ) multiplicatiéns. The
technique is based on the partitioned form of an inverse. Suppose that the inverse (Ni Nk)-} is known
and that Vh, is to be deleted from N, = [Vh, , Vh. , ..., Vh. ] and the new inverse

I k iy I ‘
(NE_1 N)Tl is sought vhere N, = [thl"thz’ ...,'thk;i].



Let
>
T A z
Nk L (7-35)
z a
where
A = NN 7-36
k-1 k-1 * ( )
The desired inverse of A can be computed from the available submatrices of
B >
T -1 u
(Nk Nk) = [+T ] . (7-37)
u b

The relationship

- >
B u A z
u b z a

gives
-+ =T
BA+uz = 1 (7-39)
Bz+au = 0 (7-40)
WTa+bt =3 (7-41)
T » .
uz+ab =1 . (7-42)
From Eq. (7-39) and (7-41) we get
Al = B3 A (7-43)
and
Al < powptaAT (7-44)
This procedure can be generalized in the case when a th other than Vh, is dropped from N. It is

L : k
sufficient to interchange the %th and kth row and column of (N{ Nk) 1 before relationship (7-44) is

applied. 1In a similar way we can obtain a procedure for computing (Ni Nk)—l when a column is added to
T -1

N _,- We assume the inverse Ny Nk-l) and thk are known. We have
. >
T T Az
(Nk Nk) = (Nk—l’ th ) (Nk-l’ th )y = »T (7-45)
k k z a
where
A = NN (7-46)
‘k-l k-1 ’
7 = N Vh, (7-47)
k-1 i
k
a = Vh, Vh, . (7-48)
e X
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From Eq. (7-39) and (7-41) we get

B o= aloaal o A lapalil At ebu
where
w = alz
W= -bAYZ = -bu .

Scalar b can be found from Eq. (7-42), i.e,

>T

b = at@-T3 « alaebztaly

and
>T =1 >-1 T T -1 T -
b (a=-2 A" 2z) (thk a N1 (Nk_1 Nk—l) Nk—l) th )
T -1 =2
= (Vh, P Vh. a P Vh, .
J k1 ]k) I k-1 Jkl
The last éﬁuality holds because
Py thk L thk)
which is an obvious property of the projection matrix,
The computational procedure can be summarized as follows,
(i) An auxiliary vector is computed,
> T -1.T
Vo B M) B Ty

together with the scalar

(ii) The segments of the matrix

T B u
U e
u b

are given by the relations

b = c_1 .
-> —1->
u = =¢ .
T ~1 -1 » =T
B = (Nk-l Nk—l) +cww .

This procedure can also be used recursively to obtain the initial inversion of (Ni Nk)-1 and Pk

the set of active constraints.

k

(7-49)

(7-50)

(7-51)

(7-52)

(7-53)

(7-54)

(7-55)

from

An additional advantage of using this recursion is its ability to select

the largest set of linearly independent critical constraints from the set of all critical constraints.

It is clear from Eq. (7-55) that (Ni Nk)'1
reveals that Vh,
ik 1

ignored. Unfortunately the matrix (NE Nk)

is linearly dependent on the set of the vectors th , th

2

cannot be obtained if Pk-l th

= 0,
k
.. 9h,
Jk-1

This equation

,» and should be

is frequently very ill-conditioned (with respect to the
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inverse problem) and, if (N: Nk)-l ‘is computed without special precautions, it may be greatly influenced
by round-off errors. This is a well known numerical difficulty which appears in linear least squares

problems, It is therefore desirable to compute (N{ Nk)_l without forming the numerical product matrix

(NE N). To do this, the matrix N, is decomposed in the following manner,

k

N, = QR (7-56)

where Q 1is an orthogonal matrix (product of unitary elementary matrices),

f
R = ( ) (7-57)
0/(n~k)x (k)

and R(kxk) is upper triangular. Thus, we have

N:NkakTQTQR=RTR=”sz (7-58)

which is the Choleski decomposition of Ni Nk'
triangular and this inverse can be computed directly from R. An essential gain is that we do not work

Now it is easy to compute (Ni Nk)-l since ﬁ is

with (NE Nk) but with R which is better conditioned. There are a number of ways to achieve the

decomposition Eq. (7-56) and a very effective one is by using the Householder transformation [7.12], (7.13].
This type of inversion procedure is very important because it usually secures numerical stability (accuracy)
in computations, and is highly recommended. Kalfon et al.J?.lh], [7.15) implemented such techniques in

their version of the gradient projection method and achieved a very stable inversion process.

7.3.4 Problems with Special and Non-linear Constraints

Further simplifications in computing the projection matrix P can be achieved if some of the
constraints have a special form Di’< constant [7.16]. Let us assume that, for example,

> 3
h, = Dr <0, and let e, be a unit vector which has all components equal to zero except component

P
number r which is 1, If this constraint is critical then

N = [Vh, , Vh, , eeey (Vh, = ©) , ve. Vh, ] (7-59)
J]. J2 JP r Jk

and the projection matrix P has the null row and column number r. This property of P follows from
the observation that the projected vector S = PV must have Sr = 0 for all possible vectors V and

that P 1is symmetric, It can also be shown that the reduced matrix P (which is the P matrix without

the null row and column) is P=1- ﬁ(ﬁT ﬁ)-l ﬁT where N 'is obtained from N by deleting column p
and row r from N, This simplification reduces the size of P thus reducing computer storage required
and decreases the computational effort,

In general, the gradient projection method has been found efficient if used for solving problems
with linear constraints. There are, however, at least two. ways in which this method can handle non~
linear constraints., One possibility is via the Fiacco and McCormick transformation where the non~linear
constraints are absorbed by the redefined objective function and the linear constraints remain as side
restrictions. This transformation reduces the original problem with non-linear constraints to the
formulation with linear constraints.

Another technique is to linearize locally the critical non-linear constraints and consider a
sequence of approximate problems with the linearized constraints. There are unfortunately at least two
reasons why this last technique is not as efficient as it is in cases where all the constraints are
linear. A major computational problem is introduced by the fact that we cannot in general, use the

- - X >
recurrence formulas which relate (Ni Nk) L and (N'li_1 Nk—l) 1. Vhen the new solution Dq+1 has been
K will have to be replaced by the new linear

approximation to the constraints. Thus, the old inverse becomes almost useless and a completely new one
has to be computed. This is true even when the new set of critical constraints remains unchanged or
differs only by one constraint from the last one. Another difficulty is introduced by the problem of
returning back to the convex constraints after a move has been performed along the projected gradient on
the intersection of the hypersurfaces tangential to the critical set of constraints. Such a correction
move (iterative) to the feasible region may be relatively easy if the steps performed in the infeasible
region are short enough. On the other hand this would cause the growth of the total number of steps
which are necessary to obtain the solution of the problem. There is therefore an obvious trade-off
between the length of step in each iteration and the effort of returning to the feasible regiomn.

obtained it is very likely that several columns of N
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7.3.5 Conjugate Gradient Version of the Method for Problems with Linear Constraints

The Rosen projection method can be viewed as the steepest descent method with the ability to handle
constraints. It is therefore reasonable to expect that the method may be improved by using the conjugate
gradient vectors instead of gradients. Design of such a refinement has been attempted by Goldfarb and
Lapidus [7.17) and their method has proved to be quite successful. The capability of the method is
limited to cases with linear constraints and its derivation is based on the quadratic objective function

M@®) = Mo+§T3+5'ﬁTA3 . (7-60)

It follows from Eq. (7-60) that

-+ -> -1 > >
Dq+1 - Dq = A (VM(Dq+1) - VM(Dq)) (7-61)

and, if 3q+1 gives a minimum of M(B) on the cross-section of the hyperplanes hj s p=1,2,...k then
P

) = NY (7-62)

>
M( Kk

Dq+1
where Nk is defined as in Section 7.3.1, and ; is a vector to be determined.
From Eq. (7-61), (7-62) and the condition that Nk(3q+1 - 3q) =0 we get

Beap Bq -pal \m('ﬁq) , (7-63)

2>

where

p = 1-aln (NiA N

k (7-64)

Formula (7-63) is an extension of the Newton method, where by using matrix P the search for the
minimum is restricted to the feasible region defined by the linear constraints of the problem. Due to
the well known disadvantages of the Newton method it is preferred to implement the conjugate directions
method of Davidon. This idea leads to a version of the variable metric method (Davidon) which is capable
of optimizing a non-linear function subject to the linear constraints. The method uses positive definite

matrices Hq which approximate -p A~1 and are updated whenever a hyperplane is added or dropped from
the constraints. In addition the matrices Hq are modified as in the unconstrained version of Davidon's
>
method and this modification is applied if the minimum of M(B) is found along §q = - Hq VM(Dq) before
a new constraining hyperplane is reached.
The same method can be used if the objective function is non-linear and non-quadratic. This is

motivated by the assumption that in the neighborhood of the solution the non-linear function can be
adequately approximated by a positive definite quadratic form.

7.3.6 Summary of the Gradient Projection Method

In the gradient projection method, the linear optimization subproblems are replaced by matrix

inversion schemes. These schemes have to be able to handle the ill-conditioned matrices N, via

special decomposition techniques. The method is computationally efficient if all the constraints in the
problem are linear and becomes less practical if non-linear constraints are involved. There have been,
however, reported successful applications of the method to structural optimization problems with non-
linear constraints [7.18].

The method has the advantage of being able to deal with nonconvex constraints. The disadvantages
include: rather complex computer code, computational difficulties in inverting (Nk Nk) and the expensive

process of correcting iterations back to the feasible region if problems involve non-linear constraints.

7.4 Gellatly's Optimum Vector Method

7.4.1 Concept of the Method

Gellatly [7.3] has suggested a feasible direction method where the direction of search is determined
from a set of simultaneous linear equations. First note that the direction vector q can be expressed

by a linear combination of the gradients of the objective function and critical comstraints at the

. 3 >
current iteration point Dq’

2 = -am@®)+ § B, Wm.O) , (7-65)
q q jEJc J J q
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where J. is theé set of critical constraints. Gellatly distinguishes between the two components of
Eq. (7-65) which correspond to the two types of travel modes; the steepest descent and side-step mode,
In the first case we have all ﬁj =0 and §§ = - aVM(Bé). In the second we demand that

T >

E)Twmd) = o , : (7-66)

q q

+ T - ’
S Vh.(D ) +e. = 0O j E€J -
( q) J( q) 3 s ] c (7-67)
where the ej are some preset positive constants. If M(B) is a linear function then any vector
satisfying Eq. (7-66), (7-67) is feasible and a step can be taken along §A which holds the value of the

objective function constant. System (7-66), (7-67) is symmetric, positive definite as iseasily demonstrated
when a more uniform notation is introduced. Let o = 80, W™ = Vho, ces={o, TEps TEpaeces -em] and

j € I, if j =1,2,...m., We also define the matrix H = [vno, Yh,yeee, th]. From Eq. (7-66), (7-67) it

1
follows that

v T
( ¥ By Wy ) Vny = -eo j =0,1,2,...m (7-68)
i=0

and in matrix form

HHE = -2 (7-69)

Linear set (7-68) can be considered as being a side condition of an optimization subproblem (as in
Zoutendijk's method) or it can be solved for some fixed values of ¢€,. Gellatly takes the latter approach

and selects arbitrarily the unit values for ej, j > 0. In the more general case when M(B) is a
non-linear function, conditions (7-66), (7-67) are not sufficient for determining a usable-feasible
direction and the problem has to be reformulated if the same method is to be used.

In order to obtain an equivalent problem with a linear objective function an additiomal variable is
introduced which replaces the objective function. The modified optimization problem becomes:

Min Dn+1

subject to the original constraints and in addition

>
M(D) - Dn#l <0 . (7-70)

.With this modification the method of Gellatly can be used without any substantial changes except that

the first equation of the set (7-66), (7-67) drops out from the set. Due to the particular formulation
of the new objective function, the steepest descent step can be obtained simply by reducing Dn+1. In

the side-step the variable Dn+1 is kept constant but the non-~linear weight function M(B) may change.

7.4.2 Computational Problems

Some comments should be made on the solvability of the linear set of equations (7-66), (7-67) which
determines the direction §. There are three cases where the coefficient matrix of this set becomes
singular (or nearly singular) and special actions must be taken to circumvent this difficulty.

The most obvious case of singularity occurs when the number of vectors WM, th, j € Jc exceeds

the dimension of the multivariable space n, so that these vectors cannot be linearly independent and
consequently a, Bj are not uniquely defined. A similar difficulty occurs when there is a linear

dependence between some of the vectors VM, th, j € Jc (whose total number can be less than =n).

Finally, the system matrix also becomes singular when the optimum solution is reached where =VM becomes
a nonnegative linear combination of the gradients to the active constraints (Kuhn-Tucker optimum
condition).

A straightforward procedure can be used to remove any linearly dependent equation from the system,
Eq. (7-69), which is solved by Cholesky decomposition. During the decomposition process we obtain a
zero on the main diagonal of the triangular matrix due to the dependence of the linear equations. The
first zero appears in the row corresponding to the first dependent equation. To remove this equation
the complete row and corresponding column ig set to zero (including ei) with the exception of the main

diagonal element where the unit value is ingerted. This operation results in computing Bi = 0 for the

corresponding linearly dependent vector which eliminates this vector from Eq. (7-65). It is, furthermore,
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necessary to detect the case when the linear dependence is caused by optimality. To do this we check
the vector products, Eq. (7-67), after determining the solution. If the products are negative we have
a feasible Sq and optimization is continued. 1f, however, some of them do not satisfy this condition

we assume that the optimal solution has been reached and the computation is terminated.

7.4.3 Summary of the Optimum Vector Method

In the Optimum Vector Method the feasible direction finding problem is reduced to the solution of

linear equations. Since these equations involve the positive definite matrix H H the efficient and
stable Choleski decomposition method can be used to solve them. We may, however, expect numerical
difficulties if H is not well-conditioned unless special techniques are used to decompose H' H (see
Section 7.3.3). Another feature of the method which we should consider as being disadvantageous

is the arbitrary choice of the t-vector. This method has the ability to handle nonconvex problems.

7.5 Conclusion

Table 1 summarizes briefly some of the important features of the methods discussed in this Chapter.

It has to be pointed out that the methods have not yet been compared by numerical experimentation.

Table 1
Feasible Gradient Optimum
Direction |Projection Vector
Method Method Method
Feasible direction subproblem Linear Matrix Solution
or quad- inversion of
ratic and up- linear
program-— dating equations
ming
1 Efficient for problems with yes no yes
non-linear constraints
Ability to handle nonconvex yes ' yes yes
problems
Unstable numerical process no yes yes
involved
Generates strictly feasible yes no yes
directions (nonlin.
constr.)
Simplicity of computer code no no no
Successful applications to yes yes yes
structural optimization large small large
problems size size size
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Chapter 8
COMPUTER PROGRAMS FOR THE OPTIMUM DESIGN OF COMPLEX ELASTIC STRUCTURES
by
G. G. Pope
8.1 Introduction

This Chapter describes a number of computer programs which have been developed for the optimum design
of idealised aerospace structures of arbitrary geometry, and which include not only optimization algorithms
but also segments for the efficient finite element analysis of structures of this class. These programs
are concerned mainly with the choice of member cross-sectional areas and thicknesses, but some of them
include facilities which, in principle, permit the lengths and spacings of members to be varied within a
prescribed topology.

Early direct applications of finite element methods to the design of efficient structures concentrated
on the generation of fully-stressed designs in which every member is either fully-stressed under at least
one of the applied loadings or has a minimum permissible cross~section or thickness. Such designs, which
usually approximate to or coincide with a least weight design in applications where no constraints are
imposed on the displacements, can normally be deduced iteratively by repeatedly modifying members on the
basis of the local stress level, and by re-analysing the resulting structures. The computations involved
in this process are relatively short compared with those usually associated with a rigorous search for a
least weight design, although the efficiency of techniques for the computation of the latter is continually
being improved (see, for example, Section 8.4). The fully~stressed design approach continues to find use-
ful applications and some relevant recent developments are described in Section 8.5. It also provides a
means of generating useful initial trial designs for a more general class of optimization problems.

The main portion of this Chapter is concerned with more rigorous optimization procedures.
Section 8.2 describes computer programs developed at the Bell Aerosystems Company as the culmination of
the first major exercise in the application of mathematical programming techniques to the design of
complex structural components, and Sections 8.3 and 8.4 describe major subsequent contributions from the
Boeing Company and the Philco-Ford Corporation.

8.2 Bell/AFFDL Programs for the Least Weight Design of Stressed-Skin Structures

The Bell Aerosystems Company, working under contract to the U.S, Air Force Flight Dynamics
Laboratory, has developed several computer programs [8.1], [8.2], [8.3] for the least weight design of
stressed-skin structures of arbitrary geometry. Two of these programs are described in this Section.
Both are written for use on IBM 7090/7094 computers or equivalent machines with a core store of 32K words.
The first is directly applicable only in situations where the basic configuration of the structure is
fixed, where the design variables consist solely of skin thicknesses and member cross—sectional areas, and
where consequently the merit function is linear. Structural dimensions within a prescribed topology may
be treated as variables in the second program described, which also permits the study of larger problems
of fixed geometry; this more powerful program is, however, less efficient in applications where either
program could be used.

8.2.1 Analysis Procedure

Both programs employ the finite element displacement method for analysis purposes and include as a
basic facility the following types of element: axially-loaded bar, shear web, quadrilateral shear panel,
triangular region in plane stress, quadrilateral panel in plane stress. Displacements are assumed to
vary linearly along the edges of all these elements. The bar elements have uniform cross-sectional areas
and the plane elements are of uniform thickness. The modular form of the programs enables additional
elements to be added with a minimum of modification. An option is included to take account of the
symmetry of lifting surfaces of symmetric cross-section. Several independent load conditions may be
considered and temperature variations may be prescribed over the structure to correspond to the load
conditions. Buckling effects are not included but restraints may be imposed on the amplitudes of the
displacement components and on the minimum permissible values of the design variables. The analysis
segments have a nominal capacity of 200 discrete elements and 170 degrees of freedom in the fixed geometry
program; the nominal capacity of the corresponding segments in the larger varying geometry program is
600 discrete elements and 450 degrees of freedom. The size of idealisation which can be handled in
practice by either program depends on the detailed specification of the problem under consideration and
is influenced by such factors as the bandwidth of the non-zero terms in the stiffness matrix. The
Choleski method is used to solve the analysis equations, storing the intermediate triangular matrix in
the computer core locations previously occupied by the stiffness matrix.

8.2.2 Optimization Procedure employed in the Fixed Geometry Program

In the fixed geometry program where the weight is, by definition, a linear function of the design
variables, the optimum design is sought by a direct application of Gellatly's optimum vector method which
is described in detail in Chapter 7. Starting from a known feasible design, a search is first made along
a 'steepest descent' path in design space, normal to the planes representing structures of equal weight,
to find a design in which one constraint at least is active. At this constrained design a direction of
search is selected within the relevant constant weight plane, pointing into the feasible region and away
from the current critical constraints. A further constrained design is found following this direction
of search, and a design midway between the two constrained designs of the same weight is used as a start-
ing point for a repetition of the whole process.

The following procedure is adopted in this program to find the appropriate distance of travel along
each path in design space. First the structure is re-analysed after the design has been modified by a
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specified amount. The step length between successive designs is then doubled as many times as is -
necessary to achieve a design which is not feasible. This design is then modified by an increment which
is half that used in the final step of the preceding process but which is of opposite sign. The step
length between successive designs is then halved repeatedly, the sign of each step being always chosen
to be such that the direction of travel is towards the edge of the feasible region. The process is
continued until a constrained design is obtained to the required accuracy.

In order to select a suitable direction of search in a typical constant weight plane it is
necessary to evaluate at the relevant starting point the partial derivatives with respect to each of the
design variables of the stress and displacement components which are subject to active constraints.
These derivatives are calculated directly from an analytical expression with significantly less effort
than would be involved in the application of first order difference techniques in which the structure is
re-analysed for small changes in each of the design variables in turn (see also Fox [8.4]).

Large savings in computing time can often be achieved by generating iteratively a design which is
approximately fully stressed, before entering the above search procedure. The program includes
facilities for the automatic generation of such designs.

8.2.3 Optimization Procedure employed in the Varying Geometry Program

In this more powerful program where the weight is a non-linear function of the design variables,
the optimization problem is reformulated in terms of a linear merit function by introducing an additional
variable and an additional constraint, i.e. the basic problem

. 3 . > .
minimize M(D) subject to
> .
b® <0 j=1,2,...0
is replaced by
minimize A subject to
hj(ﬁ) <o
and
M@) -A < 0 .

With this reformulation the steepest descent searches in the Gellatly optimum vector method become
trivial and the computational task is then concentrated in the searches conducted at constant values of
A; it should be noted that a constant value of this variable does not correspond to a constant
structural weight. The required partial derivatives of the actively constrained stress and displacement
variables and of the weight function M with respect to the design variables are calculated by a first
order difference procedure, as it did not prove practicable to adapt the analytical procedure used in the
fixed geometry program. Facilities are included for the generation of fully-stressed designs when the
structural geometry is specified.

8.2.4 Applications

A number of applications of the fixed geometry program have been reported. These include a
re-sizing of the members of the idealised fin of the Bell X-22A ducted fan VIOL aircraft [8.3), [8.5}.
This application involved 141 degrees of freedom and 136 design variables; multiple load conditions were
specified and both strength and stiffness requirements had to be satisfied. A weight saving of the order
of 357 relative to the idealised structure of the actual fin was obtained at a computing cost of less than
500 dollars. Another interesting application has been to the design of the horizontal stabiliser of a
supersonic aircraft [8.6]. Here the avoidance of binary flutter contributed an active constraint which
was represented approximately by a limitation on the ratio of the overall flexural and torsional
rigidities; the program was modified to incorporate constraints of this type. Applications of the varying
geometry program reported so far have been limited in the main to pin-jointed trusses of relatively
simple geometry.

8.3 Boeing Program for the Least Weight Design of Stressed-Skin Structures

Karnes and Tocher [8.7] describe a computer program which they have developed at the Boeing Company
to search for the least weight design of stregssed-skin structures, with emphasis on regions containing
holes and cut-outs, in circumstances where buckling effects can be neglected. The program permits the
design to be influenced by a number of independent load conditions and also enables the user to spec1fy
limitations on the maximum and minimum permisgible thicknesses.

8.3.1 Analysis Procedure

The sheet is idealised as an assembly of trxangular membrane elements, each of which is assumed to be
in a state of uniform strain, and corresponding flanges which can carry axial loads only. The thicknesses
of the individual membrane elements and the cross-sectional areas of the individual flange elements are
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prescribed uniform. An efficient routine, in which all the non-zero elements required to specify the
stiffness matrix are carried simultaneously in the core store, is used to analyse the idealised
structure by the direct stiffness (displacement) method., The equilibrium equations are solved
iteratively using block over-relaxation. Such iterative techniques often prove very efficient in
optimization problems since the changes in the design parameters between analyses are usually relatively
small; thus the displacements before a typical redesign are usually a good first approximation to those
after the redesign has taken place.

The number of design variables can easily become very large when finite element idealisations are
used in optimization studies. Karnes and Tocher therefore express the distribution of sheet thickness in
terms of the thicknesses.of a limited number of elements only; the program defines the thicknesses of the
remaining elements automatically by a linear interpolation technique. It has been demonstrated that the
intelligent use of this approach leads to a dramatic reduction in problem size without materially
influencing the optimum design.

8.3.2 Optimization Procedure

The optimization problem is solved by a version of Zoutendijk's method of feasible directions,
following the procedure outlined in Section 7.2.4. A known feasible design is used as a starting point
and a single search is made in a direction of steepest descent to find a feasible design in which at
least one constraint is active; this procedure is of course unnecessary if the initial design is itself
of this type. The constrained design is used as a starting point in a search for a lighter constrained
design in a direction established by solving. the linear sub-problem which is formulated in Eq.

(7-9) to (7-15). The latter process is then repeated starting each time from the lighter constrained
design obtained in the preceding application, until the least weight design has been found to an
acceptable standard of accuracy. The setting up of each ancilliary sub-problem involves the choice on
the basis of experience of a set of constants denoted by Cj in Chapter 7. Using a slightly different

formulation, Karnes and Tocher choose these constants, in effect, to be equal; the actual value is
selected on a basis of experience to prevent rapid changes in the direction of search (zigzagging) and
excessively small steps along the boundary of the feasible region. The following procedure is adopted
to establish the distance of travel along each search path:

(1) Assuming that the partial derivatives of the design variables with respect to relevant stress
and displacement components are constant, an estimate is made of the changes in the design variables
necessary to reach a lighter constrained design.

(2) The modified design is analysed and the lighter constrained design is computed more accurately
by linear interpolation (or extrapolation) between the modified design and the previous critical design.

(3) This interpolated design is analysed and if it does not represent the critical design to an
acceptable standard of accuracy it is used together with the two preceding designs to obtain a better
approximation by parabolic interpolation.

(4) The parabolic interpolation procedure is repeated if necessary, using each time the three most
recently analysed designs, until a constrained design is obtained to a specified standard of accuracy.

The same interpolation technique is employed in obtaining the initial critical design along a steepest
descent path, once a design outside the feasible region has been obtained by a simple step-doubling process.

The partial derivatives of the design variables with respect to the stress and displacement
components subject to active constraints are calculated in this program by a first order difference pro-~
cedure which involves re-analysis of the structure for small changes in each of the design variables in
turn. The user specifies the amplitude of design modification which is likely to lead to a significant
variation in these derivatives; when the design modifications are below this level the derivatives are
assumed constant in the interest of computational efficiency.

8.3.3 Application

The Boeing program is written for the CDC 6600 computer and permits the employment of up to 100
design variables and 700 degrees of freedom. It has been used to study possible improvements in the
design of a window panel for the 747 aircraft, An initial application to the whole panel, which includes
three windows, employed a finite element idealisation involving 600 elements and 300 nodes, under
five independent loadings. A design was produced after a computing time of 3} hours which was lighter
than any that had previously been generated by hand. In a second stage a more detailed application was
made to the local region between adjacent windows; a finer grid was employed involving 144 nodes and
267 finite elements. It only proved necessary to consider two load conditions, and the running time on
the CDC 6600 was 45 minutes. The configuration obtained in this way was 107 lighter than the best hand-
generated design based on the first stage of the optimization study.

8.4 Approximate Multiple Configuration Analysis and Allocation Procedure (Philco~Ford/AFFDL)

Melosh and Luik [8.8], [8.9], working at the Philco~Ford Corporation under a contract from the
U.S. Air Force Flight Dynamics Laboratory, have developed a technique for the design of least weight
structures which has proved very efficient in a number of trial examples and which is particularly well
suited to applications where the design variables can take a series of discrete values only. The current
implementation is limited to pin-jointed trusses, but stressed-skin structures have been optimized with
its aid, using the Hrennikoff analogy [8.10] to deduce an equivalent framework, Stress limitations are
the only constraints considered, and the design variables consist solely of the cross-sectional areas of
the members; variations in geometry have, however, been included in one application where it proved
possible, without imposing specious strain restraints, to incorporate a sufficient number of members in
the initial idealisation to include to an adequate degree of accuracy, any member which might be present



99
in the optimum design. The computer program, which is written for the Philco 212 computer, is capable
of handling a maximum of 1000 truss elements, 1000 sizing variables, 450 degrees of freedom, and up to
five independent load conditions.

8.4.1 Analysis Procedure

The search technique is made practicable by the use of an efficient approximate procedure to
estimate, without repeating the analysis of the entire structure, the influence on the internal force
system of a change in a single design variable. The effect of such a modification is estimated by a
complementary energy analysis in which three force systems only are considered, namely:

(1) the internal forces in the structure before any modifications were incorporated,

(2) the self-equilibrating system obtained by subtracting the above system from the internal
force system immediately prior to the modification under comsiderationm,

(3) a self-equilibrating system corresponding to a self-straining of the member to be modified.
1f the above procedure is applied repeatedly with self-straining of each of the members in turn,
but without any design modifications, it can easily be seen that an exact analysis will be obtained of

the idealised structure.

8.4.2 Optimization Procedure

A series of permissible discrete values is assigned to each design variable. A typical variable
is then decreased tentatively from its value in an initial feasible design to the next permissible
smaller value, and the structure is re-analysed approximately by the above technique to see whether any
stress constraints are violated. The design change is rejected immediately if the modified member is
over-stressed; if the stress in this member remains within the permitted range but the stress limit is
exceeded in another member or members, a trade-off calculation is performed to see whether any weight
saving is achieved if the critical members are appropriately re-sized. Tentative decreases are made in
all the design variables in turn, and the procedure is repeated until no significant modification results
from a cycle involving attempted changes in all the design variables.

8.4.3 Applications

Melosh and Luik [8.8], [8.9] describe the application of the above procedure to a number of design
problems and show that it is comparable in efficiency with an iteration to a fully-stressed design when
the latter is relevant. They also show that the efficiency of their computer program compares
favourably in several applications with existing programs based on more conventional non-linear program-
ming techniques.

8.5 Application of Iterative Procedures for the Generation of Fully-Stressed and Similar Designs

8.5.1 Contributions of the Grumman Aircraft Corporation

Some investigations have been conducted at the Grumman Aircraft Corporation into practical
techniques for the generation of fully-stressed designs in the airframe context [8.11], [8.12). a
number of structural configurations typical of aircraft lifting surfaces have been studied and fully-
stressed designs have been obtained. The conventional displacement method was employed for analysis
purposes and the average equivalent stress in each structural panel was used in the initial study as a
basis for factoring the thickness after each iteration. Since many of the panels were relatively large
from an analysis viewpoint, individual panels sometimes included significant variations in stress.
Consequently it was found that designs evolved by straightforward iteration sometimes involved erratic
thickness variations between individual elements which no designer would accept.

Recognising that this difficulty arose because average panel stresses were employed in the iteration
rather than the peak stresses which are likely to occur, for example, in regions of load diffusion, the
Grumman investigators re—interpreted the results of the individual displacement method analyses in a
format typical of the force method, by re-idealising the structure as an assembly of flange elements
with linearly varying end load, and panels in a state of pure shear. Members were subsequently
re-sized using the results in this form, direct stresses at the panel corners being deduced from the
loads in the adjacent flanges. It was found that more satisfactory fully-stressed designs were
obtained in this manner which were of virtually the same weight as those derived by the more direct
approach. This reintroduction of a force method idealisation does, of course, complicate the pro-
gramming of the redesign procedure and simpler techniques might produce an equivalent improvement. This
idealisation is, however, valued in its own right by designers who need to interpret the results of
overall structural analyses in the context of the design of structural details and an automated sequence
of computer programs has been developed for its use in this way in the generation of fully-stressed
designs.

Lansing et al. [8.12] have recently adapted this kind of approach to the design of structures in
fibre-reinforced composite materials. Such structures are usually fabricated from layers of
unidirectionally-reinforced material which each have a prescribed thickness and volume fraction in their
cured state. Each skin thickness parameter associated with design in isotropic materials is replaced
therefore by the numbers of layers of composite with fibres orientated in each of the prescribed
directions; a free variation of fibre direction is usually impracticable from the fabrication viewpoint.
In this Grumman procedure the structure is first analysed with assumed values for the design variables
and the results are interpreted using a force method idealisation as described above. Stress fields
which may be critical are identified in each composite panel, and with the aid of these a rigorous
optimum lay-up is calculated for the panel, allowing for practical restrictions on thickness and fibre
orientation; elements in conventional materials are re-sized in the customary manner. The structure is
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then re~analysed and the process is repeated iteratively until no significant change in weight occurs
between successive cycles.

A successful trial application to composite construction has been made in the design of a
horizontal stabiliser for a supersonic aircraft. Boron epoxy composite was selected as the skin material,
supported by full-depth aluminium alloy honeycomb; other internal structure and attachments were

designed in titanium alloy. The boron fibres were permitted to lie in four directions, i.e. at 0°, 90°

and +45° to a datum direction. The structural idealisation which took account of the symmetry of the
structure and of the loading about the mid surface, employed approximately 1000 structural elements and
1100 degrees of freedom; four independent load conditions were considered. Starting from arbitrary but
intelligently chosen member sizes, the structure was redesigned five times by an automated version of
the above procedure; it was found that the structure weight was sensibly constant after the second
redesign.

8.5.2 Generation of Structures with Uniform Strain Energy Density

An alternative semi-intuitive method for the generation of near optimum designs, which has been
developed by Venkayya et al. [8.13], 1is closely related to the fully-stressed design procedure and in
some applications is, in effect, identical to it. This method is based on the hypothesis that the strain
energy density is uniform throughout a least weight structure designed to withstand a single load
system when instability constraints are inactive and displacements are unrestrained. If more than one
loading is involved, the strain energy due to each is evaluated in turn and the maximum value of the
strain energy density is found at every point in the structure. It is then postulated that the least
weight design is one in which the maximum strain energy density is uniform.

When displacement constraints are active, a uniform maximum strain energy design is obtained first
by the above procedure and the member sizes (e.g. cross—sections in the case of a pin-jointed truss) are
factored up, if necessary, so that none of the critical displacement components exceed their permissible
amplitudes by more than about 20Z. The first order gengitivity of the various restrained displacements to
unit changes in the volumes of the individual members is then calculated and the increases in member sizes
proportional to these sensitivities are derived which would be necessary to satisfy each displacement
constraint in turn; whenever an individual sensitivity is such that an increase in volume results in an
increase in the critical displacement, the size of the member concerned is held constant. The increases
in the individual member sizes required to satisfy the various displacement constraints are compared, and
the structure is modified on the basis of the largest values, resulting in a feasible design in which the
displacement constraints are not necessarily critical. The re-sizing procedures are repeated using
starting points each time based on the results of the proceding applications, as described in
Venkayya et al. [8.13], wuntil no further reduction occurs in the structure weight.

A computer program for an IBM 7094-I1-7044 DCS has been prepared for the implementation of the above
process in the context of pin-jointed trusses. The largest applications reported have been to a geodesic
dome (61 nodes, 132 bars, 4 load conditions) and a plane truss involving 77 nodes, 200 bars and 5 load
conditions; active displacement constraints were present in both these examples. Of particular interest
is an application to the design of a ten node twenty~five bar transmission tower under two.independent
loadings, with upper bounds imposed on all the displacements. This design problem had been studied pre-
viously by Fox and Schmit [8.14] and by Gellatly [8.3]. Venkayya et al. obtained, after a computing
time of 24 seconds, a structure of virtually identical weight to the least weight design obtained by
Gellatly; the latter employed the fixed geometry program described in Section 8.2 with a computing time of
20 minutes on an IBM 7090. Both Vankayya et al. and Gellatly have indicated improvements that might be
incorporated in their programs to improve efficiency; the above computing times are, however, convincing
evidence of the effectiveness of the Venkayya approach in this application. ’

Acknowledgement — This Chapter ie British Crown Copyright reproduced with the permission of the Controller,
Her Majesty's Statiomery Office.
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Chapter 9

SPECIAL PURPOSE APPLICATIONS
by
L. A. Schmit
9.1 Introduction

The previous Chapter describes some general purpose structural optimization capabilities for
relatively large scale systems. In this Chapter, a few examples of mathematical programming applications
to specific structural design problems are described.

It is suggested that the cost of developing a special purpose structural optimization capability
may be justified when a particular design problem can be identified as fundamental and recurring.
Problems in this category often require complicated failure mode analyses. When developing a special
purpose structural optimization capability, it is possible to carefully tailor the analysis and
optimization scheme together. Exploitation of physical insight with respect to the analysis and
familiarity with the characteristics of the various mathematical programming formulations and the
associated algorithmic tools, facilitate the development of tractable optimization capabilities based
upon careful and detailed failure mode analyses. The examples to be discussed point up the important
role structural optimization can play in evaluating alternative design concepts and materials based
upon a comparison of optima. In Section 9.2, the stiffened cylindrical shell optimization capability
reported in [9.1] is reviewed in some detail. The extension of this capability to shells with slight
meridional curvature [9.2] is briefly discussed and two recently reported special purpose applications
to fiber composite structures are noted [9.3], [9.4]. In Section 9.3 application of an integrated
penalty function approach (see Figs.2.10 and 2.11) to the optimum design of an ablating composite
type heat shield [9.5] is described.

9.2 Integrally Stiffened Cylindrical Shell Example

The frequent occurrence of stiffened cylindrical shell configurations in aerospace structural
applications is well known. This example represents a state-of-the~art special purpose application of
mathematical programming in structural design optimization as of 1968,

9.2.1 Problem Statement

Consider an integrally stiffened cylindrical shell of radius R and length L such as that shown
in Fig.9.1. The stiffeners are assumed to be integral and of rectangular cross section. There are two
sets of stiffeners, one in the longitudinal direction and ome in the circumferential direction. Each
set of stiffeners may be entirely inside or entirely outside the shell. The radius R of the shell
wall middle surface, the total length L, and the material properties of the skin and stiffeners are
preassigned parameters. It should be noted that the influence of a different but uniform structural
temperature (in each of several load conditions) can be introduced by preassigning different values to
the material properties in each load condition.

Seven design variables (see Fig.9.2) are dealt with by the optimization procedure namely:
(1) the skin thickness ts’ (2) the thickness of the longitudinal stiffeners (tx), (3) the thickness
of the circumferential stiffeners (t¢), (4) the depth of the longitudinal stiffeners (dx)*, (5) the
depth of the circumferential stiffeners (d¢), (6) spacing of the circumferential stiffeners (zx) and
(7) spacing of the longitudinal stiffeners (2¢). Any particular design is represented by a point in
the design space located by a vector B such that
-DPT

= [cs, ter By d, d¢, L JL¢] . (9-1)

The option to preassign any subset of design variables is available and the stiffener depths may
optionally be linked as follows

d = 4 (9-2)

which in effect requires that the stiffeners be flush and on the same side of the shell wall.

Side constraints on the design variables limiting the range of admissible values and insuring
geometric realizability are considered. The upper bounds on the design variables Dj < Uj: jo=1,2,...7

are expressed in the following normalized form

N D, - U,
hy(@) = Tt S0 5 =127 (9-3)
i

*Note that the stiffenmer depth is taken positive for internal stiffening and negative values of dx and
d, denote external stiffening.

¢
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\J’\ ! J/uv

© Fig.9.1 Integrally Stiffened Cylindrical Shell

4

Fig.9.2 An Element of the Stiffened Cylinder
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where Uj and Lj denote the upper and lower limits on the value of the jth design variable (Dj)
for j = 1,2,...7. The lower bounds on the design variables Lj-? < Dj_7; j=8,9,...14 are expressed

in normalized form as follows

L.,-D._, . :
hJ.(B) s F——pt <0 5 §=89,...14 . (9-4)
=7 " Ti-7

The geometric requirements that the stiffener thicknesses must not exceed the corresponding stiffener
spacings, are expressed as follows:

£, < 2¢ , that is D, < D, (9-5)
or in normalized form
D, -D
W@ = 2+—L <0 ; j=15 (9-6)
] U, - L
7 7
and
t¢ < Lo s that is D3 < D, (9-7)
or in normalized form .
D, -D
h. (3) 36 <o ; j=16 . (9-8)
3 U ~ Le

Note that all the side constraints represented by Eq. (9-3), (9~4), (9-6) and (9-8) are normalized so
that for acceptable designs

-1 < hJ.(ﬁ) <0 ; j=1,2,...16 . " (9-9)

The stiffened cylinder is subject to a multiplicity of K distinct load conditions and the
maximum number of load conditions that can be handled by the program reported in {9.1] is ten
(i.e. Kmax = 10). Each load condition (k) 1is specified by giving the applied uniform axial load

per unit length of circumference (N , compression positive, temsion negative), the net uniform radial
pressure (pk, inward positive, outward negative), and material properties for the shell and stiffeners

corresponding to a given uniform temperature (Tk).

The automated minimum weight optimization procedure reported in [9.1] guards against unsatisfactory
structural behavior by considering eleven independent failure modes as follows:

(1) buckling of the entire stiffened cylinder (Gross Buckling - G.B.)

(2) buckling of the stiffened cylinder between the circumferential stiffeners
(Panel Buckling - P.B.)

3) buckling of the cylindrical skin between longitudinal and circumferential stiffeners
(Skin Buckling - S.B.)

(4) buckling of the longitudinal stiffeners (Longitudinal Stiffener Buckling - L.S.B.)

(5) buckling of the circumferential stiffeners due to contraction of the cylinder
(Circumferential Stiffener Buckling Contraction - C.S.B.C.)

(6) buckling of the circumferential stiffeners due to expansion of the cylinder
(Circumferential Stiffener Buckling Expansion -~ (.S.B.E.)

7 yield failure under biaxial stress in the skin (Skin Yield - S.Y.)

(8) yield failure in the longitudinal stiffeners under uniaxial tensile stress (Longitudinal
Stiffener Yield Tenmsion - L.S.Y.T.)

(9) yield failure in the longitudinal stiffeners under uniaxial compressive stress
(Longitudinal Stiffener Yield Compression - L.S.Y.C.)
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(10) yield failure in the circumferential stiffeners under uniaxial tensile stress
(Circumferential Stiffener Yield Tension - C.S.Y.T.)

(11) yield failure in the circumferential stiffeners under uniaxial compressive stress (Circum-
ferential Stiffener Yield Compression - C.S.Y.C.).

Let the index i refer to the ith failure mode where i = 1,2,...11 and let the index k refer to
the kth load condition where k = 1,2,,..K < 10. Each of. the failure modes is characterized in terms
of a behavior variable Yik such as a force resultant, a stress, or a strain. Each behavior variable

in each load condition (Yik) is checked against its critical or limiting value to determine whether

or not the structural behavior is acceptable. The failure mode constraints may be expressed as follows

Y,
2 ik :
h., (D) = -1 <0 ; i=1,2,...11
ik (Yikscr k=1,2,...K
K <10 . (9-10)

Note that the behavior variables (Yik) and their limiting values (Yik)cr may in general depend upon

both the design (3) and the load condition (k). The behavior constraints of Eq. (9-10) can be written in
the following alternative form .

b @ < o (9-11)

where

j = 16+k+(1i-1)K ; i=1,2,...11
k=1,2,...K (9-12)
so that the behavior constraints are represented by
j =17,18,...% (9-13)
where
N
J = 16 +11 K . (9-14)

Note that the behavior constraints have also been normalized (Eq. (9-10)) so that for acceptable designs
-1 < hJ.(B) <0 ; j=17,18,...5 . (9-15)

The objective of the optimization procedure is taken to be minimization of the total weight of the
cylinder. The objective function (M) in terms of the design variables and preassigned parameters is

> ) 2
M(D) = 2mRLt, yS+L|dxl B YNt PR, - dy -t |d¢| Tt oy, n

¢ ¢ ¢ ¢ ¢
- Min (ldxl, ld¢|) Sxo tx to (vy S0 * Y, 8 Ny My (9-16)
where ’
ng = L ; 'x , ) (9-17)
X
n, = %i;-‘i : (9-18)

6x¢ =| 0 stiffener sets on opposite sides of skin
1 stiffener sets on same side of skin R (9-19)
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dx

x
M¢x + 3 do X

Fig.9.3 Force and Moment Resultants
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Fig.9.4 Circumferential Stiffener
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8 =10 longitudinal stiffeners continuous
1 circumferential stiffeners continuous , (9-20)

and

6¢w = {? circumferential stiffeners continuous

1 longitudinal stiffenrs continuous . (9-21)

The first term in Eq. (9-16) represents the weight of the shell skin, the second term adds the weight
of the longitudinal stiffeners, the third term introduces the weight of the circumferential stiffeners,
and the fourth term accounts for the fact that the stiffeners may cross when they are on the same side
of the cylinder and the material at this intersection must not be counted twice.
The problem statement can be summarized as follows :
. >
Find D
such that hJ.(B) <0 ; j=1,2,...5
> .
and M(D) -+ Min

where D is defined by Eq. (9-1), the ny (B) are given by Eq. (9-3), (9-4), (9-6), (9-8) and (9-11)
and M(ﬁ) is given by Eq. (9-16)

9.2,2 Features of the analysis

The first three failure modes involve determining the buckling load values for a cylindrical shell
and comparing these with the corresponding applied load. The same basic analysis can be used to
determine the critical loads for gross (G.B.), panel (P.B.), and skin (S.B.) buckling provided appro-
priate shell stiffness properties and buckling mode displacement patterns are employed. A linear small
displacement buckling analysis is used and a uniform prebuckled membrane force distribution as well as
simply supported boundary conditions are assumed. Bending and torsional stiffness of the stiffeners
is taken into account as well as stiffener eccentricity; however initial imperfection sensitivity is
neglected. 1In both the gross (G.B.) and panel (P.B.) buckling analyses the effects of the stiffeners
are averaged over stiffener spacing (smeared).

The uniform prebuckled membrane force distribution is given by the following expressions

(9-22)

and

N, = -pR . (9-23)

The positive sign convention for force and moment resultants is indicated in Fig.9.3. The buckling
equilibrium equations are those given by Flugge [9.6] but they contain only the buckling force terms
recommended by Hedgepeth and Hall [9.7] and they are

aN

“'—ax %—Lad, =0 (9-24)
1M, aNx¢_Lait-laMx¢-Nﬁ’. -0 (9-25)
R 3¢ X 2 3¢ R ox 2
R Ix
2 2 2 2
M 3 M M 3™ 2 2
A QL i"+R Xemy, -NRZ2¥ - pr( &% 4uw) = 0 (9-26)
2 9x3¢ ax9¢ 2 ¢ 2 2 :
3¢ 3% X 3

The buckling equlibrium equations (Eq. (9-24), (9-25) and (9-26)) can be expressed in terms of displace-
ments u, v and w using the force-displacement relations given by Eq. (A-2) and (A-3) of [9.1].

The force-displacement relations are obtained from the force resultant definitions in terms of the
stresses by relating the stresses to the displacements using the elastic stress-strain law and the
strain-displacement relations. Thus for example, the force resultant Nx may be expressed as a

function of the displacements (u, v and w), the design variables (3) and the material properties.
The three buckling equilibrium equations in terms of the displacements u, v and w are homogeneous
linear coupled partial differential equations [see Eq. (A-16) of [9.1]].
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Substituting the following displacement functions

u = Asin n¢ cos Ax (9-27)
v = B cos nd sin Ax (9-28)
w = C sin n¢ sin Ax (9-29)

into the three buckling equilibrium equations in terms of the displacements leadsto a 3 x 3 stability
determinant. Note that the assumed displacements given by Eq. (9-27), (9-28) and (9-29) satisfy the
gimply supported boundary conditions assumed. The same basic buckling analysis may be used for the
gross buckling (G.B.), panel buckling (P.B.) and skin buckling (S.B.) analyses provided appropriate wave
length parameters n and X are chosen for each of the three failure modes as follows:

i = 1 gross buckling (G.B.)

A = %} : m=1,2,..,. (9-30)
n = n ;3 n=0,1,2,.., , (9-31)

i = 2 panel buckling (P.B.)

A = %ﬂ ; m=1,2,... (9-32)
x
n = n ;7 n=0,1,2,... , (9-33)

i = 3 gkin buckling (S.B.)

A = 2‘—" H m= 1,2,.-- (9-36)
< _
n = %1 : n=1,2,... . (9-35)

<

In each case, setting the 3 x 3 stability determinant to zero gives an expression for the buckling load
of the form

+ .
Nik = f£(D, PP, i, k, m, n) . (9-36)

Thus given a design D and the preassigned parameters PP (R, L and the material properties), buckling
loads for the ith failure mode i = 1,2,3 in the kth load condition (Nik)cr can be obtained by

seeking the minimum of (Nik) over a range of integer values for m and n; that is

>
= = Mi i = i x %
(Yik)cr (Nik)cr Mén Mﬁn (Nik) £(D, PP, i, k, n*, m*)

where m* and n* denote the integer values of m and n that make Nik a minimum.

It is useful to sort out, order and gtore the first M most nearly critical combinations of m
and n. The first M most nearly critical combinations of m and n provide a basis for conducting
approximate buckling analyses in failure modes i = 1,2,3, that is in gross (G.B.), panel (P.B.) and
skin buckling (S.B.). As modest changes in the design are made during the optimization procedure
shifting of the critical buckling mode shape is to be expected, but it is very likely that the new
critical mode shape will be amongst the previously identified M most nearly critical modes. This
characteristic is used to advantage subsequently in constructing the optimization procedure
(see Section 9.2.3).

The buckling of the longitudinal stiffeners is guarded against using a failure analysis that
treats the stiffeners as a long plate simply supported on three edges and free on the fourth. BRecause
the longitudinal and circumferential stiffeners can have different depths and because they may indeed
not even be on the same side of the shell, provision jis made for using various combinations of plate
planform dimensions in this analysis. The longitudinal stiffener buckling failure mode is represented
by the following inequality

Yk

h, (B = -1 €1 (9-38)
4k W er
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where
vak R - (H82 + H¢) Nk
Yo = Oxdie = Ege B, +H) G, + H¢) - “3 ’ (9-39)
and
"2 Exs tx)z d 2 ]
Opder = O = - ;;?I_:_:E-; (7;- [(I) + 0.425 . (9-40)

p.<)

In Eq. (9-39) the H's aré section properties that depend upon the design variables and the material

properties, P and Nk are mechanical loads for the kth load condition, R 1is the shell radius,

and Exs is the modulus of elasticity of the longitudinal stiffeners. In Eq. (9-40) v represents

xs
the Poisson's ratio and t. is the thickness of the longitudinal stiffeners. Selection of the length
(2) and the depth (d) to be used in computing the longitudinal stiffener buckling stress is carried
out according to the following prescription:

(1) stiffeners on opposite sides of the shell

d = ldxl , =1

(2) stiffeners on the same side of the shell and

la] < la

¢| , then let

d = |a| , 2=21

X X

(3) stiffeners on the same side of the shell but

fa | > |d then (o), is given by Eq. (9-40) with

¢| ’

either

 d = |a| , 2=

X X

or
() 4 = |a| - |d¢| , &=L
whichever gives |(°c)kl smallest.

It should be noted that analogous situations are encountered with respect to the determination of
the critical buckling strain in the failure mode analysis of .the circumferential stiffeners.

The circumferential stiffener failure mode analysis treats the stiffener as a circular plate with
a concentric circular hole in the middle,simply supported along the edge that forms the shell (see
Fig.9.4). Due to their curvature external circumferential stiffeners can buckle when the cylinder
expands. Two separate failure modes are considered: one associated with contraction of the cylinder

e¢ <0 (C.S.B.C.) the other associated with expansion c¢ >0 (C.S.B.E.). 1In the case of
contraction (C.S.B.C.) there are six possibilities that must be considered:

circumferential (1) longitudinal stiffener outside

stiffener inside

d¢>0 (2) inside and Idxl > |d¢|

(3) inside and Idxl < |d¢|

circumferential (1) 1longitudinal stiffener inside

stiffener outside ;

d¢<0 (2) outside and |dx| > |d°|

(3) outside and |d_| < |[d

x ¢|

In the case of expansion (C.S.B.E.) of the shell, circumferential stiffener buckling can only occur
when it is on the outside of the shell and only three possibilities need to be considered:
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circumferential (1) longitudinal stiffener inside
stiffener outside
d¢<0 (2) outside and ]dxl > |d¢[

(3) outside and |dx| < |d¢| .

The remaining failure modes i = 7,8,9,10,11 deal with yield stress constraints and they need
not be elaborated on here. It may be noted, however, that the yield constraint for the skin considers
the biaxial stress condition. This failure mode was found to be of particular importance in the case of
barrel shells [9.2].

9.2.3 Features of the optimization procedure

The problem is formulated using the Fiacco-McCormick interior penalty function approach (see
Sections 2.6.2 and 6.3.1). This formulation transforms the basic inequality constrained minimization
problem into a sequence of unconstrained minimizations that are carried out using the variable metric
algorithm described in Section 6.2.6. The constraint repulsion characteristics of the Fiacco-McCormick
interior penalty function facilitate the use of approximate analyses. In particular the three
cylindrical shell buckling analyses (G.B., P.B. and S.B.) are carried out using a drastically reduced
number of possible buckling mode shapes (m,n). At the beginning of each unconstrained minimization
stage a full buckling analysis is executed and the M most nearly critical combinations of (m,n)
are ordered and stored. Then, within that unconstrained minimization stage, the shell buckling
analyses are approximate in the sense that the search for the critical buckling mode shape is carried
out over only the M combinations of (m,n) identified at the beginning of the stage.

The Fiacco-McCormick penalty function formulation for this problem can be expressed as follows

4@, =) = u@d - (2 @) + 2 B)] (9-41)
where
. 16
P (D) = pry side
8 §=1 b () constraints, (9-42)
and

k)
behavior

@) = —
j=17 hj(D) constraints . (9-43)

b

The gradient to the function ¢(D, rp) has the following form
= YM - -
V¢ w rp[ VPs + VPb] (9-44)

and the gradients VM and VPs are determined from analytic expressions for the partial derivatives

while the gradient VPb is obtained using first order forward finite difference approximations for

] . (9-45)
D,
i

In Eq. (9-45) it is assumed that the critical buckling mode shape is the same at B and D + ab.
The selection of the finite difference increment sizes ADi can be guided by some foreknowledge of the

the partial derivatives, i.e.

b ,2 : 1 .
=@ = = [p.@®) -? @)
2D, AD]._ [b Lui . ADi) b

gross proportions of the design.

. 3 . > . . =g . L3 »
The unconstrained minimization of the function ¢(D, rp) for each stage is carried out using the

variable metric algorithm, The (q + 1l)th design is obtained from the qth design through a design
modification defined by a direction q and a magnitude aq, i.e.

<> .
B = B : -4
q+1 a " % §q - ' - (946)

where

§q LRI (9-47)
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and aq is the distance to the minimum of ¢(3q + agq) = f(a) along §q° The matrix Hq is initially
taken as the identity matrix and is then systematically updated according to the prescription given in
Section 6.2.6.

For a specified direction §q within an rp stage the problem reduces to a one-dimensional

minimization problem. To find the minimum of £(a) along a line, an incrementation scheme, with the
slope as a test, is used to locate two points such that the minimum lies between them. Then, using

the function value and slope at these two points, a cubic interpolation is made to estimate the location
of the minimum. It should be noted that the Hq matrix (see Eq. (9-47)) is not updated unless the omne-

dimensional minimum has been found within a prescribed tolerance. Also the H matrix is reset to I

whenever the number of one-dimensional minimizations equals the number of independent design variables.

A maximum of five cubic interpolations is made in order to obtain convergence of the one-dimensional
minimization. Convergence is said to have occurred if either the dot product test is satisfied, i.e.

3
V¢ 4. < -
W . l 0.005 (9-48)
q

wy

or the distance between the two points straddling the minimum is less than a specified minimum.

Three alternative criteria are used to test for convergence of each n dimensional unconstrained
minimization stage in the sequence. Convergence of the pth stage is assumed when any one of the
following three criteria is satisfied:

2y
(1) absolute value of the gradient |V¢| < ¢ where € = ____lﬂiﬁlﬁl and n =3 or &
10
(2) estimated amount by which ¢ exceeds its minimum is less than 2% (after n one-dimensional
VoL H Vo
minimizations, just prior to resetting Hq matrix to I), i.e. 1§ ——Sg—ﬂ——— £ 0.02
q

(3) minimum move distance test converged if a move in the negative gradient direction (§ = - V¢q)
which is twice the minimum move distance causes violation of any constraint [hj(_ﬁq + ZTmin §q) > 0]
or if the sign of the slope is reversed, i.e. if V¢(ﬁq + 2Tmin §q) . §q has its sign opposite to
>
v ) . 5.
#( q) q
Convergence of the sequence of n dimensional unconstrained minimization stages is usually based
upon a criterion that depends upon the primal-dual nature of the Fiacco-McCormick method. It is noted
that this criterion given in [9.8] depends upon the convexity of the programming problem. An option to

terminate the SUMT procedure after converging a user prescribed number of stages is also provided in the
computer program. Once a minimum is obtained for one value of the parameter r_, bounds can be placed

on the value of the minimum weight. The minimum weight value is bounded below by the value of the dual
objective function and above by the current value of the weight. This leads to the following convergence
criterion [9.8]

TM -9 <. (9-49)

where e 1is a small number to be assigned and © is the value of the dual objective function given by

v

> > J 1
o, r) = M) + ) (9-50)

y
j=1 h, (D
] J( )

There are several control parameters, in addition to the convergence criteria, that influence the
operational efficiency of this-design optimization procedure in application. Some suggestions for the
selection of these parameters based upon operational experience with the program are:

(1) select the initial value of rp such that

(9-51)

(2) set the cut factor applied to T, after each stage equal to 4 (i.e. let ¢ = } so that

Tl T b)),



112

(3) 1let the number of near critical ordered modes saved for the approximate shell buckling
analyses be

(a) gross buckling, 40 modes (except for cases with external pressure, then 10 modes),
(b)' panel buckling, 20 modes,
(c) skin buckling, 10 modes,
(4) let the number of modes examined in the 'complete' shell buckling analyses be
.(a) gross buckling,longitudinal ok 30 > 50, circumferential Mg © 30,
(b) panel buckling, longitudinal Dok = 10 » 20, circumferential noax C 50 > 150,
(c) skin buckling, longitudinal m = 20 + 30, circumferential n = 15 + 20,
. max max

9.2.4 Sample Results

A substantial body of experience has been gained with this capability and results for over 30
cases were reported in [9.1]. These numerical results illustrated the following points:

(1) the effectiveness of the penalty function approach when used in conjunction with analysis
approximations,

(2) the influence of various combinations of internal and external stiffening,

(3) the sensitivity of the minimum weight design to loading intensity and minimum gage
limitations,

(4) the importance of considering multiple load conditions,

and (5) the existence of relative minima in the design space associated with design subconcepts
embedded within the basic problem statement.

Consider the following example, Case 1-1' taken from [9.1]. The preassigned parameters are
R =60 in, L = 165 in; the material is aluminium with the following properties:

E = 10 x 10% 1b/in®
v = 0.333 ’
p = 0.101 1b/in> ,
°y = 50000 1b/1'.n2 .

The initial trial design has all internal stiffening and the following minimum gage requirements are
stipulated;

£, 2 0.19 in ,

t. & 0.050 in ,

x

t¢ 2 0.050 in .

The stiffened shell is subject to a set of three distinct load conditions summarized as follows:

Loads N P
1b/in 1b/in?
Load condition + compressive | + external pressure
700 V]
2 940 -2.0
3 212 +0.4

The initial trial design and the final proposed optimum design are depicted graphically in Fig.9.5.
The weight is reduced from 715 1b to 293 1b, It may be noted that the stiffener thicknesses are
essentially minimum gage. There are five other constraints that are critical or near critical for
the final design shown in Fig.9.5 and they are
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oe"—-Ji
60"R

INITIAL DESIGN LENGTH - 165 IN.
W=715LBS MATERIAL : ALUMINUM

023"

60"R

FINAL REDESIGN
W=2931LBS

Fig.9.5 Initial and Final Design (Case 1-1)
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(1) gross buckling in load condition 2,

Y12

-(_Y_T— = 0.999 s

127¢cr

(2) skin buckling in load condition 2,

Y39

Ty = 0,999
(Y32 cr ’

(3) panel buckling in load condition 2,

Y22

T = 0,975 »

227 cr

(4) skin yield in load condition 3,

Y73

= 0.968
790 o

(5) skin buckling in load condition 1,

31

TY_)__ = 0.915 >

31l%cr

The design improvement depicted in Fig,9.5 was achieved in twelve unconstrained minimization
stages in which r_  was reduced by a factor of } for each subsequent stage i.e. [rp+1 =} T

p=1,2,...12]. The total run time for the Fortran IV program on the Univac 1107 computer was approxi-
mately 15 minutes. Essentially the same results have been obtained on a Univac 1108 and a CDC 6600
computer-with run times less than 5 minutes. It is interesting to note that for this particular three
load condition example, Case 1-I' from [9.1], the 1107 machine time required for, a complete analysis
was 35 seconds while an approximate analysis required 0.5 second. The efficiency gained as a result of
using approximate analyses for the cylindrical shell buckling mode analyses is very significant.

A collection of twelve examples based on this one basic problem was studied and reported in [9.1].
The twelve cases examined can be generated by considering all combinations of four structural concepts
and three load levels. The structural concepts are:

(1) all inside stiffening, no minimum gage restrictions,

(2) circumferential stiffening inside and longitudinal stiffening outside, no minimum gage
restrictions,

(3) all outside stiffening, no minimum gage restrictions,
and (4) all inside stiffening, with minimum gage restrictions as discussed previously.

The increasing levels of load intensity are given by 6N epk where 6 =1, 2, and 3. The minimum

k,
weights obtained in pounds for each of the twelve cases are summarized as follows:

0
1 2 3

Concept

Inside 231 | 340 | 445
Inside

Outside 235 358 | 459
Outside 240 363 468
Inside 293 [ 389 | 490
min. gage ==

The minimum weight for Case 1-I' previously discussed in some detail is underlined. The foregoing
summary of results show the strong influence on the optimum weight of minimum gage limitations. It
can also be observed that there is a higher percentage penalty for imposing minimum gage limitations
on lightly loaded structures than on more heavily loaded structures. It is also apparent, from these
results, that there is only a moderate weight reduction associated with the various combinations of
internal and external stiffening examined, in this instance. The optimization capability provides a
means of evaluating alternative stiffening concepts based on a comparison of optima. While the best
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concept was found to be load condition dependent in {9.1], it should be noted that the maximum weight
reduction associated with alternative stiffener locations (inside~outside) did not exceed 12% for any
of the examples studied,

The results reported in [9.1] reinforce the contention that subconcepts contained within the basic
problem statement are often associated with relative minima pockets in the design space. Initial 'designs
with all internal stiffening led to final designs with all internal stiffening. The same observation
can be made with regard to all external stiffening and mixed internal external stiffening. It should be
noted that the options provided in the program, to preassign any subset of design variables and to fix
side constraint limits can be used as a creative control device. The user of the program, therefore,
can force the optimization procedure to search for the best design within various subconcept regions in
the design space. This situation illustrates the complementary relationship that exists between
automated optimization procedures and man-machine communication. The experience reported in .[9.1]
suggests that the successful application of mathematical programming techniques to structural design
optimization for complex special purpose applications requires tailoring the analysis and optimization
procedures together.

9.2.5 Recent Further Developments

An extension to barrel shells by Stroud and Sykes [9.2] of the stiffemed cylindrical shell
optimization program reported in [9.1] should be noted. As an illustration of the important role
structural optimization capabilities can play in evaluating design concepts the following quotation from
[9.2) is cited: "For shells designed to support axial compressive loads, the results show that important
weight savings can be provided by slight meridional curvature. For the particular ghell examined herein,
the maximum weight saving is about 30%Z. The large increases (factors of 5 to 9 in strength) recently
attributed to barreling cannot be directly translated into weight savings when comparisons are made
between minimum-weight designs. Yielding becomes an important failure constraint at lower loads for
barreled shells than for cylindrical shells."

Kicher and Chao [9.3] have recently reported the development of a structural optimization
capability for stiffened fiber composite cylinders. The overall length and radius of the cylinder are
preassigned and both longitudinal and circumferential hat cross section stiffeners are considered. The
design variables include the depth and width of the hat stiffeners, the stiffener spacings, the fiber
volume content, and the ply orientation angles. Multiple load conditions are considered and each load
condition is described in terms of a combination of axial, radial, and torsional load. 1In addition
to constraints on the range of the design variables, geometric realizability constraints and behavior
constraints are considered. The behavior constraints are formulated in terms of critical stresses and
strains, and they guard against unsatisfactory behavior in each failure mode in each load condition.
The following eight failure modes are considered in [9.3]: (1) gross buckling, (2) panel buckling,

(3) skin buckling, (4) longitudinal stiffener buckling, (5) circumferential stiffener buckling,

(6) material failure in the skin, (7) material failure in the longitudinal stiffeners, and (8) material
failure in the circumferential stiffeners. The linear eigenvalue analysis for gross and panel buckling
is based upon a method similar to that of Cheng and Ho {9.9]). The cylindrical shell is assumed to
buckle into a torsional waveform. Eight sets of boundary conditions are provided, and the detailed
development of the buckling analysis used is given in [9.10]. The weight of the fiber composite
stiffened cylinder is taken to be the objective function.

The design optimization problem is formulated in design space using the Fiacco-McCormick
interior penalty function and the sequence of unconstrained minimizations is carried out using the
variable metric method. It is pointed out that the weight function is independent of the ply angles
and hence the influence of changing the ply angles is present only in the penalty term of the
Fiacco-McCormick function ¢(B, rp). It is observed that the decreasing sensitivity of the ¢(D, rp)

function to changes in ply angle as rp decreases leads to computational inefficiency. A device which

artificially increases the influence of the ply angles on the penalty function is introduced. Numerical
results for several example problems are presented in [9.3] and [9.10] and the effectiveness of the
algorithmic modification is illustrated. These results also demonstrate the capabilities of the
optimization procedure in the design of stiffened fiber composite cylinders. It is shown that
alternative optima are common for the type of structure considered; i.e. the set of design variable
values which yields the minimum weight is not unique. The research results reported in [9.3] and [9.10]
extend the application of mathematical programming to include ply angles and fiber volume fractiom as
design variables in the minimum weight design of stiffened fiber composite shells.

Waddoups, McCullers, Olsen, and Ashton [9.4] have recently reported a minimum weight structural
optimization capability for a class of anisotropic plate structures. This development includes
capabilities to design: (1) a uniform plate with complex membrane load conditions, (2) a uniform plate
with combined bending and membrane load conditions, and, (3) a simple multicell wing box with a refined
design of the compression cover. A choice of thick plate, rigid core sandwich, or stiffened plate
construction is available. In each case the skins are assumed to be of laminated fiber composite
construction, and the design variables include the thickness and fiber orientation for each lamina.

The most general problem formulated in [9.4] involves 21 design variables (12 for the cover plate and

9 for the wing box), 45 distinct failure modes, and a maximum of 3 independent load conditions. The
program reported permits optional preassigning of a subset of design variables, and it provides for
linking of fiber orientation and lamina thickness design variables. The Fiacco~McCormick interior
penalty function formulation with a variable metric (Davidon-Fletcher-Powell) unconstrained minimization
algorithm was employed. The use of various analysis approximations during major portions of the -
optimization procedure was the key to achieving the low machine running times reported. While the
capability described in [9.4] is oriented toward a special class of structures (anisotropic fiber
composite plates), it is viewed as an important practical application of mathematical programming
techniques to structural design within the context of aerospace engineering practice.
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9.3 Ablating Thermostructural Panel Example

This example, reported in [9.5], illustrates the application of mathematical programming techniques
to the design optimization of a refurbishable composite type ablating heat shield. The design concept
shown in Fig.9.6 is drawn from [9.11]. The functions of the major panel components in this concept are
qualitatively describes as follows:

(1) the ablator protects the substructure from the severe thermal environment associated with
re-entry, : S )

(2)  the substructure transfers the pressure loading through supporting structure to the primary
structure (it mst be stiff enough and thermally compatible with the ablator material so. as to avoid
cracking of the charred ablator), . .

(3) the 1nsu1&t10n, which is assumed to be nonstructural, keeps the primary structure and the
vehicle interior at an acceptably low temperature.

9.3.1 Problem Statement

The idealization on which the problem formulation rests is depicted in Fig.9.7. The non-linear
transient thermal analysis is treated one-dimensionally, considering only temperature gradients through
the thickness of the panel. The structural analysis assumes that the flat rectangular panel can be
treated as a strip exhibiting curvature in the x direction only (see F1g 9.7).

The ablator, substructure, and insulator materials and their temperature dependent mechanical and
thermal properties are preassigned parameters. The design variables are the various thicknesses x)

through Xg shown in Fig.9.7, and the planform dimensions of the panel, Xg and Xge The loading
environment is described by the heat flux input as a function of time qc(t) and the pressure loading

as a function of time p(t). These depend upon ‘the re-entry trajectory and the atpésphere.
Nine failure modes are guarded against by limiting:
(1) 'the‘témpgréture at the ablator substructure interface,
(2) the temperature at the back of the insulation,
(3) the panél'midpoint"def}éctioh,
(4) ablator stress leyéi,
(5) outer 5andwic§ face stress level,
(6) intercell faceAbuckling‘stress,
(7) inner sandwich face stress level,
(8) tenmsile strain in the ablator, and
(9) compressive strain in the ablator.
Two alternative objective functions are considered., Minimization of the weight per unmit area of
surface protected may be taken as the goal of the optimization procedure. In this case it may be
desirable to impose a constraint on the maximum total depth of the shield. Alternatively, minimization
of the total depth of the shield may be taken as the’ obJectlve function subject to a constraint én the

maximum weight per unit surface area protected.

9.3.2 Features of the Thermal Analysis

A simplified one-dimensional ablation analysis due to Swann and Pittman was used to predict the
transient temperature distribution [see Appendix A of [9.5]]. This analysis takes into account “the
surface recession as well as the transient convective heating and reradiative effects. The charring
ablator is treated as though it were a subliming ablator; however, the analysis considers the
blocking effect of pyrolysis gases on convective heating rate and the oxidation of the char 'residue
at the receding ablator surface. The material properties of all layers are taken to be temperature
dependent.

Referring to Fig.9.7 the heat conduction equation for the ablator can be written as

2 cpl (g%) = g_x [kl (%%)] ; s(t) <x< X . L ‘(9-52)
F/x t . : . .

It proves convenient to introduce the following coordinate transformation

A e EDE | (9-53)



ABLATOR

SUBSTRATE

INSULATION
PANEL SUPPORT

VEHICLE STRUCTURE

Fig.9.6 The Double Wall Ablative Heat Shield Concept

¢S (t)

— _T-l—“

X

m

)l(‘ L‘m»fl

b

X3 e——X—0]
<
x
N

w

x? [€
H

(_—3(—_) <

CROSS—SECTION

LI

—

ZJ[ VA AV AV &V A Ay &
<= PRIMARY VEHICLE STRUCTURE

> INSULATOR

> ABLATOR

117

STRUCTURE

Fig.9.7 Design Variables

X7
PLANFORM




118

Making this change of variable in Eq. (9-~52) yields
ok 2
BT) A~1 ds <8T>J 1 [ 1 (GT) 9T
p, € —_) o+ — === 8 —— e | ) 4+ Kk - ;0<>\<1 R (9-54)
1 “pl [(Bt A x1 s dt \3A (xl _ s)2 oA A t 1 Blz

" The boundary condition at the receding surface is

ax

q(t) = - k1 (ﬂ) ;s x = s(t) (9-55)

or making the change of variable indicated in Eq. (9-53)

() = - i S ) I (9-56)
1 ixl - 8) \4x ¢ ’ :

where

q(t) = + Gonvective heating)+(combustive heating)
- (blocking) -(reradiation). (9-57)

In the transient temperature distribution analysis it is assumed that the face sheets of the sandwich
substructure are thin, so that no temperature gradient exists through the thickness of a face sheet,
However, the face sheets are assumed to have significant heat capacity. The core of the sandwich is
assumed to have negligible heat capacity and a linear temperature gradient is assumed to exist through
the core (between the two sandwich face sheets). On this basis, the heat balance relations for the
sandwich faces (see Fig.9.7) are

aT k

%3 P2 %2 Bt o - x|, (9-58)
and
aT k
m+1 5 aT
X, p, € — = + (9-59)
4 P4 p4 ot %5 | o %, me1
whe;e;
ke
Qm,m+1 = x—3- (Tm - Tm+1) ’ (9-60)
n o= AL (9-61)
%5

and ke denotes the effective thermal conductivity of the sandwich core. Referring to Fig.9.7 the

heat conduction equation governing the transient temperature distribution in the insulator is

o e <ﬂ> ] “_szz_u(La“_s)ﬂ
5 “p5 \at n x§ 8n2 xg on Jon 3 o0<n<1l . (9-62)

It is assumed that no heat flows from the insulation into the primary structure and hence the appropriate
boundary condition at the interface between the insulation and the primary structure is

(9-63)

!

]
(=]
3
[
p—
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The thermal response is governed by the field equations (Eq. (9-54) and (9-62)), the heat
balance relations (Eq. (9-58) and (9-59)), and the boundary conditions (Eq. (9-56) and (9~63)).

These governing relationship can be cast in implicit finite difference form (see Appendix C of

[9.5]), so that

[c] 'rt+kj = T

c (9-64)

where the matrix [C] is tridiagonal and its elements depend upon the temperature at time (t + kj).
P

Given the time increments kj and kj— as well as the\temperature distribution T; and

Tex,

1 3-1

. : . . ) . . : .
linear extrapolation is used to compute the estimated temperature distribution at time (t+kj),
i.e. Tz+k . The elements of the matrix [C] in Eq. (9-64) are then evaluated using the estimate
3 .

T and Eq. (9-64) is then solved for T£+

4k This result is compared with the estimated temperature
i

| P

— J
distribution T£+k . If the agreement is close enough the iterative process terminates, if not the
j

temperature distribution obtained by solving Eq. (9-64) is used as an improved estimate
(i.e. Té+k « Tt+k ) and the elements of the matrix,[C] are re-evaluated. This iterative process
i j \

is continued until the agreement between the estimated temperature distribution Té and the
N

+k,
— J .
solution obtained from Eq. (9-64) (i.e. Tt+k ) agree within a preassigned tolerance. If five cycles

of this iteration do not yield convergence the time increment k. is reduced. The time increment to

be used in each successive step is made to depend upon the number of iterations required to achieve
convergence of the prior step. In particular, if convergence occurs in 3 or less iterations then the
time increment is increased; if 'convergence occurs in 4 iterations, the time increment is not changed;
and if convergence requires five iterations the time increment is decreased. The use of an implicit
finite difference formulation makes it possible to assign the time increment size dynamically. This
allows the use of large time increments when q(t) is low and only requires the use of small time
increments when q(t) is high., When an explicit finite difference formulation of the equations
governing the transient heat flow problem is employed, the stability criterion limits the size of the
time increments rather severely. Explicit formulation run times for analyses of typical thermostructural
panels were found to be about three times as long as the corresponding run times based on an implicit
formulation. The use of an implicit formulation and dynamic assignment of time increment size led to
analysis efficiency that was essential to successful development of the optimization procedure.

9.3.3 Features of the Structural Analysis

The structural analysis is a linear elastic analysis employing temperature dependent material
properties. That portion of the ablator in which the temperature is less than 400°F is assumed to
function structurally with the top face sheet of the sandwich. The substructure supporting the
ablator i1s treated as a sandwich with unsymmetrical face sheets.

The bending stiffness of the face sheets is taken into account and transverse shear deformation
of the core is congidered. It is assumed that only antiplane stress is sustained by the core. It is

%
further assumed that X, >'x6 (see Fig.9.7) and that since the aspect ratio ;1 2 3 the flat

6 2
rectangular panel can be treated as a strip with zero curvature in the y direction (i.e. 3—; =0,
. ay

see Fig.9.7). It should be noted that the face sheets are biaxially stressed under this assumption.

2 x
The boundary conditions are assumed to be simple support in bending (i.e. 2—% =0 at x =% —;)
9%
and free to expand in plane membrane behavior. .The structural analysis is described in detail in

Appendix B of [9.5].

9.3.4 Features of the optimization procedure

The nine failure modes guarded against (see Section 9.3.1) are all parametric in time or in time
and space (i.e. through some portion of the thickness of the shield). The first three failure modes
are represented by inequality constraints that are parametric with time as follows:

(1) T at ablator-substructure interface
. T (B, ©)
h, (D, t) = Ty " 1 <0 ; 0<t< te (9-65)

Ts allow
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(2) T at back of insgulation

i) _r__TB(B’ o < <t< (9-66)
h,(D, t) = -1 0 H 0 t t 9-66
2 (TB allow £
(3) panel midpoint deflection
. i o wc(ﬁ, t) < <. < ,
h, (D, t = —S—__— -1 0 H o] t t (9-67
3 (wc allow £

where D represents the vector of design variables and the reentry time per1od is denoted te These
three constraints are of the following form

. Y. (B, ©
h(D, t) = A0 -1 <0 ; t <t<t, (9-68)
J Y., ©

and it should be noted that in general the behavior variable Yj and its allowable value qj may both

depend upon the design D and the parameter t. The'rémaining failure modes (4 through 9 in Section 9.3.1)
are parametric with respect to both time and space. These six constraints are of the general form.

. 1., t, 2)
h,@®, t, z2) = b———-1 < 0 ;
J : Qj(ﬁ, t, z)

tlj < t < t2j

z1j < z < z2j (9-69)

refers to stress in the ablator,

refers to stress in the outer sandwich face,
refers to intercell face buckling stress*
refers to stress in the inner sandwich face,
refers to tensile strain in the ablator,

where

[P ETY S EPY
90000
W~

and

j =9 refers to compressive strain in the ablator.

It is noted that in general the behavior variable Yj and its allowable value %5 may both depend

upon the design D as well as the parameters t and z. It is also pointed out that the range of
values over time ts <t < t,. and space (z €z<z J)- to which constraint is applied may in

general differ for each fa11ure mode (j). In the thermostructural panel example, the time period of
interest was the same for all failure modes, namely the reentry t1me period from t =0 to t = tf.

However, the various constraints (j = 4 + 9) were parametr1ca11y applicable to different regions
through the thickness of the shield.

The thermostructural panel optimization problem was formulated using the integrated penalty
function scheme previously mentioned in Section 2.6.2. This extension of the Fiacco-McCormick interior
penalty function formulation to parametric inequality constraints has the following form as applied to
the thermostructural panel problem in [9.5]:

¢

t z,. t
3 £ dt 1 H i 2t dt dz
0B, ) = wd - |L ][ —E—. L] ety | [ 2= . o
P fe j=1 h, @, vt j=4 (255 = 213 z h, @, ¢, 2)

1j
The basic idea of this formulation is that the penalty function is influenced by the behavior constraints

at all times (0 < t‘s,tf)' and at all locations of interest (z1j <z<S sz)' Thus, the parameters t

and z are accounted for in s natural way, and the entire response, rather than just the critical
response, influences the sequence of designs generated. It should be noted that the parametric inequality
constraints

hj(_ﬁ, £) <0 for 0<t<t. j=1,23 (9-71)

*not strictly parametric in =z,
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%6,gn <0 for 0St<t, j=4,5...9
zlj <z < z2j (9-72)

must be strictly satisfied at all times and locations of interest if the integrals in Eq. (9-70) are to
be proper integrals.

The integrals in Eq. (9-70) are evaluated numerically using the information available from the
thermal and structural analyses of a particular design B." The unconstrained minimizations of ¢(@, rp)

are carried out using the variable metric method of Davidon-Fletcher-Powell and finite difference
approximations are used to evaluate the gradient V¢(3, tp) as needed. Care is taken to minimize

¢(3, rp) over the acceptable.region in the design space, since ¢(3, rp) is not defined for

unacceptable designs. The idea of using approximate or abbreviated analyses is also employed. For
example changing the support spacing (x6 see Fig.9.7) does not require that the thermal analysis be

repeated. Also, if the ablator is thick (x1 > 2.25 in) then small changes in the sandwich face sheet

thicknesses (x2

9.3.5 Sample Result

A sample result taken from [9.5] is briefly described in this Section. The trajectory considered
in this example is of the ballistic entry type, the thermal input 9, used is for a stagnation point

and xh) do not require repetition of the thermal analysis.

)

location, and the time period of interest is te = 900 seconds. The altitude, velocity and cold wall
convective heating rate are plotted versus time in Fig.9.8. Note that the maximum 9. is 500 BTU/ft2 sec

at t = 100 sec while the maximum dynamic pressure is found to be 1700 1b/ft2 at t = 850 seconds. The
materials employed in this example problem are:

(1) ablator - low demsity phenolic nylon,

(2) sandwich - fiberglass,

(3) insulation - microquartz.
The initial design and the final result obtained are shown schematically in Fig.9.9. The weight per unit
surface area protected (the objective function in this example) is reduced from 18.2 1b/ft2 to 8.56 1b/ft
and the total thickness of the shield is reduced from 7.92 in to 3.4l in. The near critical constraints
for the terminal design are:

(1) temperature at back face of insulation (limit 660°R)

. >
Mtn hZ(Dop

e t) = -0.043 at t = 900 seconds,

(2) panel midpoint deflection (limit 0.24 in)

Min h (3 , t) = -0.116 at t = 851 seconds,
N 3 opt

(3) temperature at the ablator-sandwich interface (limit 1200°R)
Min h, B, t) = -0.131 at t = 900 seconds,
. 1" opt

and (4) ablator stress level

Min Min (Eopt’ t, 2) = 0.368 at t = 370 seconds.
t z

The design improvement depicted in Fig.9.9 was achieved in 6 unconstrained minimization stages using a
FORTRAN IV program on a Univac 1107 machine. The run time was approximately 120 minutes. It is
interesting to note that a typical thermal analysis of a trial design required approximately 30 seconds
while a structural analysis given the temperature distribution required approximately 5 seconds.

The capability reported in [9.5] is thought to be the first application of the integrated penalty
function approach to a structural design problem involving complex parametric failure modes representative
of practical application. The capability makes it possible to carry out trade-off studies between weight
minimization subject to maximum depth constraints and total depth minimization subject to maximum weight
constraints. It is also possible to use this capability to evaluate the relative merits of various
combinations of candidate materials, based upon a comparison of optima. This special purpose application
(9.5] also illustrates the importance of tailoring the analysis and the design optimization procedure
together.
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Chapter 10
OPTIMIZATION OF STRUCTURES WITH RELIABILITY CONSTRAINTS
by
F. Moses
10.}, Introduction

The aim of this work is to explore the relationship between optimum design of structures as it
is now formulated in almost 'Classical' terms and reliability or safety of structures. The discussion
will focus on the kinds of structures for which reliability or failure probability can reasonably be
analyzed and have been presented particularly in a redesign or optimization procedure. As the topic
concerns safety in a probabilistic framework some attention must be given to relevant questions of
probability sensitivity, failure costs, limited empirical information, analysis errors, and safety
philosophy. Several examples of optimization with reliability or failure probability constraints will
be presented.

By this time it has become classical on the part of researchers to formulate a structural
optimization problem in the following format [10.1]:

Minimize M(D) (10-1)
such that hJ.(B) <0 ; j=1,2,...0 . (10-2)

The D are design variables that must be determined. M(s) is an objective function usually weight

or cost although some performance criterion may be introduced. The h.(ﬁ) are constraints which should
]

also insure the safety of the structure as well as impose fabrication or construction requirements,
or any other design rules which the engineer wishes to maintain. In most optimization studies reported

in the literature the hj(E) constraints include fixed and predetermined safety factors which limit the

stresses, deflections and stability coefficients to allowable values. In the best of situations the
safety factors have been arrived at in a manner consistent with probabilistic and statistical analyses.
This would be done by accumulating data on loads and strength. A load value PMAX could be chosen such

that it is not exceeded by any of the measured loads except say once in a hundred times. In a similar
way a strength RMIN is chosen such that it is exceeded by say 99.97 of all strength data. Then a
safety factor or ignorance factor is introduced which in ultimate strength design is multiplied by PMAx

to give P or in working stress analysis is divided into RMIN to give . The safety factor

ULT Rdesign
expresses the ignorance or uncertainty regarding the stress analysis, fabrication details and other
factors. Bouton has pointed out the difficulties in choosing the proper safety factor which has varied
for missile and spacecraft from 1.25 to 1.35 to 1.5 as judgement dictated [10.2]., It should be noted
that the safety factor values may have more of an effect on structural cost or weight than accurate
analysis and optimization procedures, The trend to more rational choice of safety factors is seen in
some recent American and European design codes [ 10.3]. In many cases, however, the safety factors have
developed in an evolutionary way giving values which work for existing structures. An important factor,
however, is introduced by an optimization approach. This is illustrated in Fig.10.1 which shows a
design space with linear constraints and a linear objective function., It can be proven for such a
problem as in Fig.10.,l1 that:

number of active constraints number of

; > . . ‘10-
at the optima design variables . (10-3)

A similar conclusion results for fully stressed elastic designs in which the number of active
stress constraints at the termination of the design iteration equals the number of design variables.
From a safety viewpoint the optimization technique has introduced a factor which may be detrimental,

It has been pointed out that optimization methods for aircraft and aerospace structures push the design
so that 'structural systems' are just barely on the high side of the minimum[10,4]. 1In the present
approach safety will be viewed in a probabilistic sense such that the criterion for safety is the
probability of failure, {10.5], [10.6], [10.7], [10.8]., This must recognize that the load environment
and strength are random phenomena defined by frequency distributions. For a structural system,failure
occurs when loads exceed strengths so that the overall safety or failure probability can be expressed as:

Any critical member or mode

reaches its capacity . (10-4)

Probability of Failure = Probability

By using conventional non-probability based optimization procedures more members or failure modes
will be designed against the limit than if redesign were not done. In the absence of any other
constraints this procedure from a probabilistic viewpoint reduces the safety of the structure below
that of an unoptimized design, Furthermore the safety factors used to protect various elements against
failure in the optimization process have been based mostly on previous experience and practice usually
with nonfully-stressed and non-optimized designs, Also, the safety factors may be based on a single
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element and single load condition combination without regard to system interaction. A severe case of
such system interaction would be brittle composite elements of a wing all subjected to the same aero-
dynamic environmental loading. The greater the number of elements the more likely failure is,unless the
safety levels of all members are increased. The optimum way to apportion the increased safety levels is
an example of the problems to be considered. Because a clear relationship exists between the safety of
structures and a design process incorporating optimization this requires the development of both methods
of mathematical programming to do optimum design [10.9] and mathematical methods to compute the expected
safety or probability of survival {10.10}, [10.11].

There are several problems that must be considered in the context of reliability or probability of
failure based design. The first problem is the reliability analysis of structures with derived or
assumed probability distributions for the various random variables including load and strength [ 10,12]
but which also may include expansion coefficients and moduli of elasticity, This involves developing and
evaluating computational models which account for factors such as indeterminacy, types of failure modes
including elastic, brittle, and collapse modes and the numbers of load conditions and failure modes and
the system interaction, A second problem is given a reliability or failure probability analysis to
design or proportion the members of the structure within the reliability comtext. This could be the
minimum cost or weight design for a specified allowable failure probability [10.13], [10.14], {10.15]
or the fixed cost design which minimizes the probability of failure. In a more elaborate framework, it
has been proposed to include the cost of failure directly and to find a design which minimizes total
overall cost [10.16] . Some of the examples to be presented include multi-member elastic designs (weakest-
link structures) and systems designed according to limit design theory ('fail-safe'structures) [10.17].
The approach generally presented herein is to design for a specified allowable overall probability of
failure in which the failure probability constraint is evaluated from a sequence of numerical integrations.

In view of the computational and philosophical questions raised by a probability of failure analysis
and reliability based design some further attention should be given to the reasons for considering its
use. This includes some of the disadvantages of current deterministic approaches and some of the benefits
to be realized by incorporating some features of a probabilistic approach to safety and design. It is,
of course, recognized that a total attitude and approach to design cannot be put completely on a pro-
babilistic basis since some factors such as expected analysis, manufacturing and fabrication errors are
not fully described by probabilistic distribution [10.4], Nevertheless, in an optimization application
probability constraints rather than deterministic constraints will help insure a more balanced and rational
design. Other aspects of the problem will now be considered.

1. In order to reach more significant levels of structural optimization it is necessary to compare
optimized structures of different configuration, material and geometry. Within this decision context a
rational comparison is possible only if the structures have the same level of safety as expressed in terms

of probability of failure. This, of course, presumes that the same level of knowledge or data exists for
each proposed configuration or system regarding mean levels and variability of loadings and element strengths.
Otherwise a Bayesian or subjective approach to be discussed subsequently must be applied,

2, Reliability based optimum design may actually facilitate the mathematical optimization problem by
replacing the numerous limitations (on member stress and deflections) in a deterministic design by a
single constraint on overall structural failure, The mathematical and computational complexity, however,
has been transformed from the design optimization aspect to the analysis of failure probability.

3. The application of new aerospace oriented materials such as ceramic composites, carbon composites,
beryllium and molybdenum and the use of thin shell structures leads to improved strength and stiffness
characteristics in the mean; however, these materials and structures often exhibit increased strength
variability compared with conventional structures [10.4], [10.18]. Failure modes are also more complex
often involving fatigue, creep and thermal considerations. This greater strength variability may
necessitate such high safety factors that the benefits of the improved material properties will be
unrealized unless a direct probabilistic approach is taken., Some current structural applications have
also increased the complexity and the extremes of the structural loading environment, Nuclear reactors,
deep submergence vehicles, space vehicles and high speed aircraft, for example, are often subject to such
broad load spectrums that the picking of a 'worst' possible load condition PMAX is economically
meaningless,

4. Another factor is the need to balance the economy of a structure which is only one component of an
overall system, which can include electrical, fire control and navigational systems. The allotment of
additional costs or weights to various components including the structure to improve overall safety
including trade-off between systems can be made economical when reliability including structural
reliability is directly expressed as a function of design parameters [ 10-16], [10-19].

5. In considering a probabilistic approach it should be clarified that this approach to safety can only
be applied to those phenomena that can be quantified; namely the treatment of high load and understrength
values as random variables. Design, calculation and erection errors or in particular the failure to
consider a particular load condition which turns out to be critical cannot be covered by any design format
code - deterministic or probabilistic., This should emphasize the continuing need for full scale evaluation
of structural behavior both with regard to verifying the structural analysis and also determining if the
failure mode phenomena were properly identified. Quality control standards are also needed to insure that
additional modes of failure are not introduced during the fabrication and assembly process. A

reliability approach, further, does not eliminate the possibility of limitations on the operation of the
structure such as maximum wind velocity during launch of a space vehicle or maneuver operations of an
aircraft. In such cases the frequency distribution of the loads must be based on proper compliance with
the operational limitations. The establishment of an acceptable allowable failure probability should also
not be an obstacle to the rational use of the probabilistic approach. A study of existing structures can
be undertaken to determine the percentage of failures or accidents in structures which have been due
either to overload or understrength factors occurring. An acceptable allowable failure probability due to
these factors under control of the structural engineering design code might be established as being of the
order 1-10% of the total number of failures including those of construction, fire, blast, etc, beyond the
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control of structural designers. A similar approach for ships has proposed that structural failure
probability should be based on about 10% of the total number of failures expected, the remainder of
failures being due to fire, navigation and human errors.

10.2 Reliability Analysis

In formulating a reliability analysis for a structure the first consideration is the structural
analysis or failure modes applicable to the design., This means identifying the failure modes and levels
of failure to be guarded against. There can be reliability values against yielding, excessive deflections
and ultimate collapse. In each case, an appropriate type of structural analysis and failure criterion
would be used whether linear or non-linear. For example, with a linear elastic structural analysis the
failure criterion would bedefined on the basis of the yielding of any member under any load condition
(Weakest-Link Design). This criterion in the case of indeterminate structures ignores the reserve strength
that may exist after the yielding of a member. A total reliability analysis of a structural system would
include all levels of failure and their associated probabilities of occurrence,

The development of reliability analysis usually begins with what is sometimes called the funda-
mental case, It consists of a single member of strength R subjected to a load P as shown in Fig.10.2
along with the frequency distributions of R and P. This problem has many of the elements that dis-
tinguish structural reliability from other reliability problems in electrical networks and systems.
Namely, that both the strength inherent in the design and the load enviromnment are random variables,

Several mathematical and statistical techniques have been used to evaluate failure probability
including Monte Carlo, perturbation, and evaluation of integral equations. The Monte Carlo or simulation
method involves constructing on a computer trial structures according to generated random numbers and
determining the percentage of structures which fail. A large number of trial structures is needed if high
confidence is wanted at small failure probability levels. Many investigations have used these methods for
such problems as the reliability of rocket engines [ 10.16] and random vibration [10.20]. The Monte Carlo
approach requires considerable calculation but it is useful for complex interelated structural systems or
for verification of approximate reliability analyses {10,21].

The perturbation method linearizes the reliability expression and then usually uses a normal
distribution approximation. It is especially applicable for problems in which the modulii of elasticity
or thermal expansion are also random variables. Linear perturbation has been applied extensively by
Diederich, et al [10.6] as in the following example of the reliability of a flat plate buckling under
compressive load. Letting P be the applied load, £ the critical stress, and n the safety factor,
then

3
f bt E t
n = =5 =K 7% (10-5)
l-v
Linearizing about the arbitrary values, n*, E*, t*, P* gives [10-6],
a X 4 —3- * (t-t*) + _L (E - E*) - -tf. (P - p*) (10-6
n n o n B* P* )

Thus the distribution of n can be constructed from the linear combination of distributions of t, E,
and P. Assuming normal distributions greatly simplifies the problem although the Pearson distribution
discussed subsequently could also be used [10,21]. The linear perturbation method is best used to find
the distribution of strength phenomena which can then be incorporated into finding system reliability.

The third technique of reliability analysis developed extensively by Freudenthal and others [ 10,10}
attacks the reliability evaluation directly by constructing integral equations which must then be
evaluated numerically, For example, the probability of failure for the fundamental case is the pro-
bability that the load variable exceeds the strength and may be computed from either of the two integrals:

P, = P (R<P) = J [FR(t)] fP(t:) dt = 1 -J [FP(t)] fR(t) dt (10-7)
[o] o]

where F(t) denotes the probability distribution and £(t) the density or frequency distribution. The
reliability Ro is always determined from the failure probability as 1-Pf.
A plot of Pf vs. n 1is shown in Fig.10,3 for a typical case where P and R follow the normal -

distribution with 20% coefficient of variation of load and a 10% on strength., Analysis by Freudenthal
and others has shown the effects on Pf of changes in coefficient of variation, central safety factor

and the form of the frequency distributions including normal, log normal and extremal functions [10.7].
The results are usually plotted in terms of the safety factor needed to achieve a specific failure pro-
bability [10.10], [10.17].

The fundamental case is useful in clarifying the numerical aspects of reliability by indicating the
sensitivity of failure probability to input statistical parameters. The fundamental case, however, is
only a single element of a complex structure with multi-member multiple load conditions and, therefore,
numerous potential failure modes. Some examples of structures more complex than the fundamental one
member one load case will now be considered using the integral equation approach.

'Weakest~Link Structures'. These structures fail if any single critical member fails. Such a model
is useful for truss or framework like structures in which many elements or members are subjected to
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a loading of a single origin such as aerodynamic gusts. The model has also been proposed for a heat
shield problem in which aerodynamic heating load causes thermal stresses in a vehicle which can cause
failure at n points sufficiently separated so material strengths are independent {10.6]. A
statistical correlation exists between failure modes because different members may simultaneously fail
under the same load condition and the same member may fail under different load conditions. Fig,l10.4a
shows a single member subject to several load conditions or independent repetitions of a single load.
It is easy to verify in this case that the failure probability is:

L m
Pf = 1 —J [ﬂ-FP.(t):l fR(t) dt . (10-8)

[ j=1 J

If there is only one loading but n members as in Fig.10.4b, P_ can be determined from the

following equation: £
i n
LI 1—[ [I I[l-FR_(ait)]:l £,(t) de . (10-9)
. i
o i=]
This result is often approximated in the form {10.13], [10.15}, [10.22], [10.23], [10.24}, [10.25}:
n
1T )
‘ P, o= 1- (1-Pg) = .Z Pey s (10-10)
. i=1
i=1
where Pfi is the failure probability of the ith element. The objection to Eq. (10-10) is not with regard

to the fact that P is usually small which permits replacing the product term by a sum term but rather

fi
the assumption in the.product term that the failure modes are independent. Bouton has pointed out that
this approximation may have arisen by analogy with certain electrical components in which failure modes
are independent [10.4]. Failure modes are not statistically independent for structural systems because
the element stresses are completely correlated if they arise from the same load condition. This factor
has been shown by several investigations and some results to be presented will show its effect on the
optimization process and the minimum weight value.

Eq. (10-9) must be used to give the correct value of the reliability., The constant a; relates the

force or stress level, whichever is appropriate, in member i to the load value P, where t is used as
a variable of integration., The a, can be found from structural analysis methods such as the finite element

methods. For indeterminate structures, as in Fig.10.4c, Eq. (10-9) would still be applicable if the
'"Weakest Link' criterion of first member yielding is taken to be overall failure. If this criterion is
deemed too conservative then a reliability analysis must include the 'fail safe' probability that the
structure survives even if some members have failed or yielded. The computational model for an
indeterminate structure is complicated because of the numerous alternate load paths and yielding of
combinations of members to produce failure [10.26]. One factor, however, is that if the variability or
coefficient of variation of the load is greater than that of the strength, there is little fail safe
reserve probability. That is,the probability of yielding of any single member is only slightly less than
the probability of collapse. This is because proportioning of members is based on a linear relationship .
between mean load and mean strength. If one member yields then it means a high load value has been reached
and if there is small strength variability there is a high probability that other members yield and
collapse ensues. Fail safe reserve strength is only expected when the strength variability is relatively
large compared to the variability of the load. In addition to the ease of computing 'weakest-link'

failure probabilities as compared to 'fail safe' values there is an added factor that most statically
indeterminate trusses have many determinate members in addition to indeterminate members so that overall
failure occurs if any of the determinate members yield. Thus it is concluded that the reliability for
most indeterminate elastic structures can be analyzed by finding the overall probability of any member
failing under any load condition., This greatly simplifies the analysis and is also a conservature
approach,

If all loads are not independent repetitions of the same load but rather independent load conditions,
then Pf could only be determined from multiple integrals [10,11]., Some work has been presented with

approximations using only single integrals that include most of the statistical dependence between failure
modes due to a single load on many members or a single member under several load conditions[10.11]. Some
ugseful bounds on Pf, however, have been presented [10.27].

These works indicate the feasibility of obtaining exact values or when necessary reasonable bounds
on the reliability for 'weakest link' structures which fail if any member fails, The probability of
failure is computed from a sequence of single integrals and any form of frequency distribution for load
and strength can be used, While 'weakest link' analysis is reasonable for most structures the introduction
of ultimate collapse criteria makes it necessary to extend to looking at 'fail-safe' methods of
reliability analysis.,

'Fail-safe' or Redundant Structures — (Ductile Materials). In structures designed by limit or ultimate
design methods or in statically indeterminate structures several members or elements must simultaneously
reach their capacity before failure is reached. Some examples are shown in Fig.10.5. A failure mode
corresponds to the sum of the independent load contributions exceeding the strength terms. If all the
terms are linear this leads to an equation for the random variable of reserve strength, Zj,A in a mode
j of:
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n . L . . s
7. = Z a.. R, -.) b, P i=l...n - critical elements
j i=1 31 i ie1 jk "k j=l...m - collapse modes (10-11)

k=l...L = loads

where Rj represents the strength contributions and Pk the load terms. The overall failure probability

is the probability that any collapse mode has been reached. Thus:

P, = Pr [zl<ol + Pr lzz<0, 21>01 + Pr [z3<o, z,>0, zl>o] +oeee (10-12)

Two methods of numerical analysis other than Monte Carlo simulation have been used to compute fhe
probability of a single failure mode occurring {10.21}, [10.28]. The first approach was to evaluate
directly using recursive integrations the frequency distribution of the reserve strength-variable 2Z, in

Eq. (10-11). Since the terms in this equation are assumed,the distribution of 2. can be found by

successively evaluating the convolution integral numerically. In the specific case where all the R's
and P's are normal then Z 1is also normal., For non-normal distributions a second method for finding the

distribution for Z, uses the Pearson family of distribution functions. This requires the first four

statistical moments of the random variables. The results with the Pearson frequency distributions were
conclusive and showed good agreement with the recursive integration procedure and Monte Carlo simulation.
Normal, log normal and Weibull frequency distribution were studied. A further advantage of the Pearson
distribution system is that it can incorporate both the correlation between load terms and strength of
element combinations. The load correlation would arise, for example, when an entire structural system is
subject to pressure or thermal variation with a known correlation function. Strength correlation could
reflect the fact that elements may come from the same manufacturer or be subject to the same fabrication
tolerances, E

It should also be noted that the computation of collapse mode failure probability could also be
done in the case where the terms in Eq, (10-11) are nonlinear as long as they are separable. Another
factor to be noted about the collapse mode failure probability is the applicability of the central
limit theorem. The sum of independent random variables approaches in the limit a normal distribution.,
This fact tends to make the choice of frequency distribution for load and strength less important
than in the 'weakest-link' analysis, A further point is that the coefficient of variation of the sum of
the load and strength terms decreases as compared to the value of an individual term as the number of
terms increases,

Fail-safe - (Brittle Material). In many aerospace structures it has been found that increasing economy

could be achieved by using brittle materials such as ceramics or carbon composites. In such redundant
designs with brittle materials another factor enters the reliability analysis which makes Eq. (10-11)
inapplicable. That is the fact that when a brittle member reaches its capacity it ceases to take any load at
all, This is also the case with elements that fail through fatigue cracks or exhibit unstable buckling
modes. Thus the evaluation of failure probability must consider the order and various combinations in

which elements fail. Shinozuka has given for the case of m brittle members and one load condition an
expression for Pf which requires evaluating an (m-1)th order integral by numerical integration [10,26].

This is also based on the assumption that all elements have the same strength distribution R. It is
apparent from the multiple integrals that an exact reliability analysis for brittle members is limited to at
most several members especially when it must be incorporated into an optimization routine. Several factors,
however, suggest that statically indeterminate structures with brittle members or unstable elements which
cannot maintain their load after reaching a critical value could be incorporated into the weakest—-link
analysis. One factor is that unless the strength coefficient of variation is relatively large the

failure of one member and the redistribution of its load into adjacent members will almost certainly
'trigger' consecutive failures. This has been borne out in some of the computations by Shinozuka and

others [10.26] . Another factor is if the load variability exceeds that of strength as is often the case,
the failure of a member implies that a high load value has been reached. Since there is a linear
relationship between load and stresses the high load reached, indicated by the failure of a member, will
cause other members to be highly stressed and fail, In general significant-fail safe reserve strength can
only be expected when the strength variability is relatively large compared to the variability of the

load. The approximation of the reliability analysis of a redundant system by a weakest-link model has

also been used for elements which exhibit fatigue failure. This is particularly true if there is not
constant inspection to check crack growth, Furthermore many statically indeterminate structures also

have some important critical members which are determinate and thus belong in a 'weakest-link' analysis.

If there are a large number of redundant brittle elements in an ultimate failure mode then the methods
developed for fiber glass and other yarn materials may be applicable [10.29].

Time Dependent Problems and Random Vibration, Most structural reliability analyses have been based on a
static approach to loads and strength, An overall viewpoint cannot neglect, however, such factors as
stresses or fatigue strength which may be stochastic or time dependent. Numerous cases arise in
structural mechanics as in phenomena such as wind, earthquake, vehicle loads, aerodynamic gusts and
turbulences and ocean waves, in which the loads and stresses.vary with time, When the time variation of
loads is significant with respect to the natural period of the structure under investigation this gives
rise to random vibration. Also the magnitude of the underlying load carrying phenomena may change over
the life of the structure. As an example a structure may be subject to dynamic stresses and vibration
due to wind gusting and also during the life of the structure the mean wind may be changing, causing
variation in mean response.

Studies of random vibration and stochastic processes involve problems which are directly applicable
to the safety and reliability question [10.12], [10.20], [10.30]. Among the results needed are two in
particular:
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(a) The frequency of occurrence of stress levels. These rates are used to compute the expected
fatigue life based on experimental analysis of fatigue specimens along with extrapolation to a
load spectrum [10.31].

(b) The probability of reaching a critical response level at any time during the life of a
structure., A solution to this first passage problem is needed to predict the failure due to yield-
ing or collapse [10.20}, [10.30).

The typical recent results of these investigations have produced curves showing P_ vs. safety factor

£
required. These results can be used to construct frequency distributions for loads to be used in an
optimum design procedure with element strength distributions, The subject of optimum design with random
loading represents an important area of future investigation.

10.3 Reliability Based Optimization

Optimizing element sizes in a design raises questions as to the meaning of an optimum in the
context of a probabilistic model. One alternative minimizes the total cost of the structures, where

C(total cost) = C.I.(initial cost) + P_ x C.F,(cost of failure) . (10-13)

f

Letting the failure cost consist of two parts including the cost of reconstruction assumed to be
the same as the initial cost and another factor C' which expresses the consequence of failure, leads

to the result that the minimum cost Pf allowable should be [10.15]:

P = ¢
f,allowable (C.I.) + C

s §r 1 = 59.- . (10-14)
1+

Eq. (10-14) shows the approximation if the initial cost is small compared to the consequence of failure
as is sometimes the case in aircraft transport and certain other structural vehicle systems.

An alternative approach minimizes Pf subject to an allowable structural weight, so that given
an allowable weight the optimum design distributes it to the various elements to minimize 'Pf of the
structure. If the optimum Pf is too large, then either the structure's feasibility or assigned weight

must be re-evaluated. The approach generally adopted, however, is to minimize the total structural
weight subject to an allowable value of P.. The present state-of-the-art in estimating failure costs

suggests that P be assigned and not determined by the designer as part of the optimization

f,allowable

problem. Curves of minimum weight vs, are, of course, useful and should be considered in

P
f,allowable
trade off studies between different parts of the entire system [10.16], [10.19].

In mathematical programming terminology, the optimization problem is a constrained minimization
of the following form:

s s . *
minimize the weight, W = W(D) (10-15)
subject to the inequality constraint

5
< -

Pf(D) Pf,allowable (10-16)
where D  are the design variables, and Pf(ﬁ) is the failure probability as a function of the design
variables,

If there are other constraints based on deterministic factors such as fabrication or construction
rules, these may be written as:

hj<3) >0 . (10-17)

Eq. (10-15) to (10-17) are similar to the class of structural synthesis problems formulated by Schmit and
others but differ in that a single constraint on Pf replaces the numerous constraints on stresses,

deflections, and buckling in the usual structural optimization problem [10.1]., The use of the constraint
in Eq. (10-16) without regard to optimum weight would apportion Pf allowable equally to all critical
’

failure modes, If there are n failure modes, then each mode i would be designed for an individual
failure probability of:

1
<— -
Pei ‘n Pf,allowable (10-18)
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An optimization approach will achieve greater economy and also provide a better basis of comparing
alternative design schemes, _A design space concept suggests itself consisting of a multi~dimensional
space with a design point (D) in the space corresponding to the values of the design variables that
must be determined. These design variables may be, for example, element areas or beam sizes, A two-
dimensional illustration is shown in Fig.10.6 with a constraint curve such that all points on the curve
have a reliability value equal to the allowable value and designs lying to one side of the curve have
unacceptable failure probabilities. There is also shown an objective function to be minimized which may
be weight, cost or some other criterion, and it is also a function of 3. Eq. (10-15) to (10-17)

should be a simple mathematical programming problem involving only one behavior constraint which is
failure probability. A good minimization procedure is needed, however, because no explicit function for
Pf( ) exists without evaluating integral expressions such as Eq. (10-9), so the total number of

redesign points at which P_ is evaluated should be kept to a minimum,

£

A review of the available inequality constrained minimization methods suggests either a gradient
method based on usable feasible directions or a technique which successively linearizes the reliability
and weight functions and minimizes using linear programming [10.32]. The problems considered thus far
by this author have shown no examples of relative minima,

Examgles

'Weakest-Link' Structures. Most investigations of reliability based optimization have used Eq. (10-10)
to form the design constraint [10.13], [10.15], [10.22], [10.24)}, [10.25]. As discussed above, this
equation neglects the statistical correlation between failure modes due to their being acted on by the
same load conditions, Hilton used a Lagrange multiplier technique to minimize the weight subject to the
Pf constraint based on Eq. (10-10), (10-13)., Siganificant weight saving over an equal failure pro-

bability for each mode rule, as in Eq., (10-18), resulted because higher failure probabilities Pfi were

allotted to heavier members than lighter members, Kalaba showed that a dynamic programming formulation
could give the optimum member proportions more efficiently than the Lagrange multiplier technique [10.23].
A necessary condition for the dynamic programming method is that the contributions of member failure
probability to the overall Pf are independent as in Eq. (10-10). Switzky in an important elaboration of

Hilton's approach showed that at the optimum a linear relationship exists [10.15],

Wi (weight (member i)) Pf (member i)

q . (10-19)
zwi (total weight) Pf,allowable

The development of Eq. (10-19) was based on several assumptions including static determinacy and
linear dependence of the weight function on the design variables, namely,

W = IW, . (10-20)

Using a Lagrange multiplier, A, on the constraint equation and taking the partial derivatives, gives

9 fi
oW, (W + 2 ®p i1owable ~ PPgs)) R TR o . (10-21)
Thus at the optimum design point,
ST
W ° 3 » constant for all i . (10-22)

1

If it is also further assumed that a small change in the allowable failure probability does not
affect the ratio of member sizes or weight, namely;

=— = constant , independent of P (10-23)

f,allowable °’

then Eq. (10-19) follows directly from Eq. (10-22), Using a different P_. weight relationship of the

f
form

et (10-24)

instead of the assumption in Eq. (10-22), Murthy gave the following relationship at the optimum [10.33]):

Wi Pegln Beilap) (10-25)
W. P,. In (P../a.) ‘
j £3 £3°73

A similar result to Eq. (10-19) was found recently by Shinozuka for cases where proof-loading is
incorporated in the design process [10.33]
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Fig.10.8 Member Influence Coefficient a; vs. Member Number, Illustrating Failure Mode
Correlation (see Eq. (10-28))
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Wi Ci
—_l = (10-26)
zWi Callowable

where Ci includes the failure probability term and the probability of failing under the proof-load times

a factor which reflects the ratio of cost of element to cost of failure. It should be emphasized that
Eq. (10-21) assumes that the structure is statically determinate in which case:

= 0,1i#¥%j (10-27)

This is not true for statically indeterminate structures since a change in one design element changes the
force distribution and therefore the mean load levels and failure probability in other members.

To apply Eq. (10-19) for finding a minimum weight design or either of the other results in
Eq. (10-25) and (10-26), a trial and error procedure can be used. For example, assumed ratios of member

sizes can be made so that Eq. (10-19) gives Pfi for each member. Using this probability value and a

relationship between element safety factor and failure probability such as determined in the fundamental
case of structural reliability, a member weight Wi is found from the safety factor. The new computed

ratios of member sizes are compared to the assumed values. When these ratios converge for all members the
process is terminated, Table 10.1 shows the procedure for a 10 member truss example with load and strength
frequency distributions being the same as in Fig,10.3. It converges in 2 cycles starting from an initial
design based on the values of mean load and equal safety factor in each member. The design process for
this example can be done quickly with slide rule calculations for this case since Fig.10.3 is available.
For other distribution functions the curves such as those prepared by Freudenthal for the fundamental
reliability cases are needed. This example illustrates the feasibility of doing reliability analysis and
design for ordinary design practice at least within the assumptions of Eq. (10-19). The weight saved in
the design over a uniform safety factor for all members as illustrated in Table 10.2 is obtained by
arriving at a design such that heavier members have higher failure probabilities than lighter members.

An investigation is needed, however, of the assumptions in Eq. (10-19) and the possibility of
further weight reductions, Recent applications of dynamic programming to several examples indicate
that the assumption of Eq. (10-23) is reasonable and that the ratio of member weights is independent of
allowable failure probability [10.24]. However, both this latter study [ 10.24] and the constraint used,
namely in Eq. (10-10), neglect the correlation between failure modes which invalidates Eq. (10-19). Some
results will be subsequently shown which allow further weight reductions by including this correlation in
the computation of the overall failure probability. '

The effect of failure mode correlation on the weight has been studied independently by considering
a special example [10.14]. All members have equal mean loads and, therefore, the same optimum area.
The consideration of the correlation -this is done by using Eq. (10-9) to compute the system failure prob-
ability rather than Eq. (10-10) -allows each member to be designed for a higher individual failure
probability than if the correlation were ignored. The higher individual failure probability, of course,
means a lower weight and the ratio of the optimum weight including the correlation factor (0.W.) to the
weight assuming independence of failure modes (I.W.) is plotted in Fig.10.7. For the frequency
distribution of load and strength shown the maximum weight reduction reaches 7.3% for case 1 in a 50
element structure, Fig.l0.8 shows the effect of correlation when the overall failure probability is
written as:

P. = a, Pf1 +a, sz toees ta Pfi *eeotag an (10-28)

where Pfi is the probability of failure of the ith member under the single loading. 1If there were no

correlation, and we would have Eq. (10-10), all a's would equal 1,0. If there was complete correlation
and the elements were numbered so that the element with the highest individual failure probability were
first, then a equals 1,0 and all other a's equal zero., The shapes of the curves in Fig,.10.8 depend

primarily on the ratio of the load's coefficient of variation to that of the strength and secondarily on
the value of the allowable overall failure probability [10.11]. Similar results were shown in [10.11]

for Pf = 0.0001. The decrease of a; vs. n shown indicates the important general conclusion that

failure probability allotted per member need not be reduced proportionately for an increase in the number
of members or failure modes in a structure as in Eq. (10-18)., This would only be correct if the load had
negligible variability compared to member strength., To consider an extreme case which may in fact be

applicable to some aircraft under extreme gust or impact conditions, the conclusion is that if each member

be designed for Pf,allowable of the structure then the overall Pf will still be Pf,allowable' For

a given shape of the curve of a; vs. n the amount of total weight saved by incorporating the correlation

factor and using Eq. (10-9) as the constraint depends on the number of members and the member's failure
probability as a function of its weight., This is affected by frequency distributions and variance as
discussed above in the fundamental one member one load case illustrated in Fig.10.3,

An example showing the effect of correlation for structures with unequal mean loads is given in
Table 10.2, It is the same example discussed above presented in Table 10.1 based on Eq. (10-10)
neglecting correlation. Table 10.2 shows the optimum design including the correlation effect (Eq. (10-9))
compared to designs in which a constant safety factor is used for each member and the design based on
Eq. (10-10). The difference between the weights of the optimum design and the equal safety factor design,
2,87,shown in Table 10,2 is due to both the correlation factor and the unequal proportioning of failure
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"Table 10.1

OPTIMUM DESIGN USING FAILURE PROBABILITY APPROXIMATION - 'WEAKEST-LINK' STRUCTURE

TRIAL 1 TRIAL 2
- . ; (£)
MEMBER ) OPTIMIM
MEMBER | 16D wezgat(® 'pfi(b) 2l area (@ Py n | AREA AREA
><10.9 ) IN2 XIO-A

1 0.1P 0.1 0.182 1.92 0.280 0.193 | 1.915 | o0.287 0.287

2 0.2pP 0.2 0.364 1.875 | 0.562 0.377 | 1.87 0.561 0.562

3 0.3P 0.3 0.516 1.855 0.835 0.561 | 1.85 0.832° 0.833

4 0.4P 0.4 0.728 1.835 1.100 0.735 | 1.835 | 1.100 1.101

5 0.5P 0.5 0.910 1.82 1.365 0.917 | 1.82 1.365 1.367

6 0.6P 0.6 1.09 1.81 1.630 1.095 | 1.81 1,630 1.630

7 0.7P 0.7 1.27 1.80 1.890 1.27 1.80 1.89 1.893

8 0.8P 0.8 1.45 1.79 2.150 1.45 1.79 2.158 2.153

9 0.9P 0.9 1.63 1.785 2.410 1.63 1.785 | 2.410 2.413

10 1.0P 1.0 1.82 1.78 2.670 1.79 1.78 2.670 2.672
wezeut‘®), 253.2 "253.2

(a) The weight for Trial 1 is assumed proportional to mean load.
Weighti

Total Weight * Pf,allowable (Eq. (10-19)):

(b) Py = = o.oo1'= I pg (Eq. (10-10)).

Pf,aliowable
(c) Safety factor based on fundamental one member-one load case. See Fig.10.3 for these values.
(d) Areai = ni(mean load i)/gy; Mean P = 60000 1b; Ey = 40000 psi; Length = 60 in.

10

(e) Weight: W= z 0.283 D x 60,
i=1

(f) See [10.33]).

Table 10.2

OPTIMUM DESIGN USING EXACT FAILURE PROBABILITY EXPRESSION INCLUDING CORRELATION -
'WEAKE ST-LINK' STRUCTURES

(b) (c) -
OPTIMUM DESIGN OPTIMUM DESIGN
EQUAL SAFETY FACTORS NEGLECTING CORRELATION INCLUDING CORRELATION
MEMBER
MEMBER P
AREA ” AREA 3 AREA -
w? Pgy ¥ 10 w2 Pey ¥ 10 w? Pgg * 10
1 0.1P 0.274 1.0 0.287 0.193 0.297 0.0519
2 0.2pP 0.547 1.0 0.562 0.377 0.554 0.604
3 0.3P 0.817 1.0 0.833 0.561 0.818 0.958
4 0.4P 1.09 1.0 1.101 0.735 1.09 0.991
5 0.5P 1.37 1.0 1.367 0.917 - 1.35 1.23
6 0.6P 1.64 1.0 1.630 1.095 1.61 1.61
7 0.7P 1.92 1.0 1.893 1.271 - | 1.86 2.08
8 0.8P 2.19 1.0 2.153 1.45 2.11 2.65
9 0.9P 2.46 1.0 2.413 1.63 2.35 3.25
10 1.0P 2.74 1.0 2.672 1.79 2.59 3.91
WEIGHT: 255.6 h 253.2 248.6
(a) See Table 10.1 for Parameters of Example; Pf,allowable = 0.001.

(b) Results from Table 10.1.

(¢) P, computed from Eq. (10-9). Optimum proportioning found from mathematical programming solution
f
of Eq. (10-15) and (10-16).



Table 10.3

OPTIMUM DESIGN - WEAKEST-LINK STRUCTURE INCLUDING PROOF-LOADING

OPTIMUM DESIGN oPTIMUM DESTEN ()
NO PROOF-
MEMBER | 'EMBER (b)
LOAD LOADING! (d) -6 -4
AREA Y = 10 y = 10
AREA AREA
1 0.1P 0.287 0.257 0.283
2 0.2p 0.562 0.498 0.550
3 0.3P 0.833 0.734 0.812
4 0.4P 1.101 0.966 1.060
5 0.5P 1.367 1.196 1.322
6 0.6P 1.630 1.424 1.573
7 0.7p 1.893 1.65 1.821
8 0.8P 2.153 1.875 2.068
9 0.9P 2.413 2.098 2.313
10 1.0P 2.672 2.320 2.556
WEIGHT: 253.2 221.0 243.9
pf(a) 1073 0.613x1073 | 0.625 x1073

(a) P completely based on neglecting correlation in all cases.

(b)
(e)
(d)

See [10.3

3],

See Table 10.2.

vy is the ratio of cost of element to cost of failure.

Ref. [10.33] also shows optimum levels of proof-load testing.

OPTIMUM DESIGN RESULTS OF TWO STORY TWO BAY FRAME

Table 10.4

SHOWN IN FIG.10.10
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OPTIMUM MOMENT CAPACITIES COEF. OF VARIATION
Example K-FT P WEIGHT | FREQUENCY

No. " M " MOMENT LOAD £,allovable | piverron | prsTRIBUTION

T T 4 5 6 | capacrTy

29.2°(95.8 | 84.4 |175.0{ 73.27174.4 ] o0.10 0.20 |[7.78¢-2)(® | 312.47 | NomMAL

27.8 196.3184.4 173.8{72.0|77.9| o0.10 0.20 | 7.80(~2) 312.89 | LOG NORMAL

MONTE CARLO VALUE OF P_

(9500 TRIALS) 7.59(~2)

28.0 |78.7 §71.0 {170.9 169.4 | 74.9 | 0.20 0.10 |7.72¢~2) 297.26 | NORMAL

27.3 |78:3 | 71.3 [166.4 [65.1{74.9| 0.20 0.10 | 7.16(-2) 293.53 | LOG NORMAL
5 29.1 |87.8172.31170.3|68.074.1| o0.15 0.15 | 7.52(-2) 300.56 | NORMAL

MONTE CARLO VALUE OF P _

(7000 TRIALS) 7.50(-2)

(a) Exponents of failure probability are shown in parenthesis (m) and should be read as 10 ™.
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probabilities to the elements as a result of the optimization and mathematical programming solution of
the design problem. The additional weight saved by including the correlation factor depends on the
ratio of load to strength variance, the number of members and independent failure modes, the allowable
failure probability and the frequency distributions used.

Another factor has been introduced into the 'weakest-link' design recently by Shinozuka who
included a proof-load testing to sort out weak members [ 10.33]. This means that a truncated frequency
distribution must be used with a lower bound value corresponding to the level reached by the proof load
stress. A cost is also introduced to cover the proof-testing which depends on maximum proof-load stress.
Optimum design results for the same example discussed in Table 10.2 are shown in Table 10.3 for various
ratios of the cost .of an element to the cost of failure. It should be noted, however, that the results

in Table 10.3 neglect the correlation factor discussed above and express the Pf constraint using

Eq. (10-10). Further weight reduction would be shown if the correlation were included in the constraint
expression.

A recent study considered reliability based optimum design for redundant structures using Eq. (10-11)
as the basis of the reliability analysis [10.21], [10.28]. The specific application was for limit design
of frames although the methods are applicable to any redundant structure such as in Fig.10.5 for which
the collapse mode equation can be written as a linear combination of load and strength random variables,
This includes redundant trusses, grillages and perhaps even plates using yield line analysis, or effective
width concepts. It should be noted that any frequency distribution for independent load and stremgth
variables can be handled. A similar study showed optimum design results for frames using loads and
strength following the normal distribution laws [10.34]. Some examples of the results are shown in
Fig.10.9 for a single story portal frame. There are two design variables corresponding to the plastic

moment capacities of the columns MC and beam MB which give their respective mean strength values. The

examples show optimum material cost or weight with reliability constraints for the single story frame of
a unique geometry and loading.

Fig.10.9 also illustrates sensitivity studies which show the effect on the optimum cost due to changes
in frequency distributions and their parameters and in the overall specified probability of failure. Cost
increases with both allowable overall failure probability and increase in coefficients of variation. To
illustrate the application of the reliability based design method for larger structures, the two story two
bay frame shown in Fig.l10.10 was optimized with a failure probability constraint. There are six design
variables including 3 beams and 3 columns., A deterministic optimum design must have at least 6 active
collapse modes. Table 10.4 shows some reliability based optima for this case. An interesting observation
on some of these results is that the safety factor against collapse in a particular mode is often not a
good indication of its probability of occurrence {10.15}. That is, collapse modes compared in the same
structure might have higher safety factors based on their mean values but also have higher failure pro-
babilities. This is due to the combination and interaction between random loads and element strengths in a
specific collapse mode.

The results further show that the optimum proportioning of structural elements in a large system,
with many potential collapse modes, for an allowable failure probability involves a complex interplay of
members participating in different collapse modes. The computer is needed for both the reliability
analysis of failure probability and the mathematical programming optimization methods for finding the
minimum weight design [10.21, [10.28]. The 'fail-safe' design problem contrasts with some aspects of
'weakest-link' design for which in some particular cases a solution near to the optimum design can
sometimes be found with slide rule calculations as in Table 10.1.

10.4 Future of Reliability Based Optimum Design

In the light of these discussions and the results obtained and other studies underway it may be
possible to consider the future of reliability based design. Although the designs thus far studied
are mostly illustrative they do indicate the problems expected in both analysis of failure probabilities
and design based on an allowable probability value, Some specific comments on reliability based design
with particular reference to optimization may be based on the theory and results presented in this paper.

1. The results presented indicate the feasibility of using reliability or probability of failure
constraints in solving for optimum multi-member structural designs. By using mathematical programming
methods to proportion member sizes a design is obtained which has an overall failure probability equal to
an allowable value. Examples presented include 'weakest-link' structures for which any member failure
constitutes failure of the structure and 'redundant' (fail-safe) structures which fail by forming collapse
mechanisms after several members have simultaneously yielded.

2, It is seen from the examples presented that a reliability based optimum design does not end up with
equal safety factors for all elements. In a 'weakest-link' structure the heavier members have higher
failure probability values than lighter members, This factor is influenced by the degree of statistical
correlation between member failures which depends on the ratio of the variability or coefficient of
variation of the load to the strength. In optimum 'redundant' structures the same safety factor was not
found for each collapse mode at the optimum design. Rather the mathematical programming method pro-
portions each member to achieve minimum weight within the constraint of overall failure probability.

3. An important factor influencing the magnitude of the optimum design as well as its member sizes
will be the choice of load and strength frequency distributions and their parameters particularly the
coefficients of variation. This includes the effect of proof-loading which has the effect of truncating
the strength frequency distribution. Proof-loading actually occurs in all structures since very low
strength levels will be detected by inspections or failure under dead weight. Another important factor

is the choice of an allowable failure probability. This should depend on the function of the structure as
well as the failure consequences in social and economic terms, The fact that many, if not most,
structural failures occur because of designer judgements, analysis errors or fabrication oversights
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introduces some artificiality into a reliability based optimization. Nevertheless the reliability
optimization approach is a rational way of distributing the unreliability of members consistent with the
information available,

4, A truly optimum design should consider the behavior of the structure over various types of loading
operations as well as possible strength deteriorations. In a more extensive approach an optimum design
should be found which considers all levels of failure including yielding, formation of cracks, large
deflections, fatigue, instability and collapse, Although for some 'weakest-link' structures yielding and
collapse occur simultaneously, this is not true for all structures, One approach to this problem would
be to assign allowable failure probabilities for each failure type and to seek an optimum design which
satisfies all such constraints. Another approach is to combine the constraints into one reliability
constraint which would contain the probability of a 1eve1 of failure occurring mu1t1p11ed by a factor
which includes the associated damage,

5. Despite any forseeable advances in reliability analysis and frequency descriptions of loads and
element strengths there will still remain design uncertainties., This arises because of imprecise know-
ledge or alternatively low statistical confidence in the frequency parameters used in computing Pf. In

most cases, there are only estimates of statistical parameters and the final design may require intuitive,
subjective, or Bayesian averaging of values by taking groups of applicable data from different sources and
noting their coefficients of variation and their associated probability of occurrence. For example, data
on buckling coefficients of axially loaded cylinders may show approximately 30% of investigations have 5%
coefficient of variation, 40%Z of investigations, 10% C.V., and 30% of investigations,15Z C.V.. An
optimum design can be found for .each C.V. value and the weight of the structure determined from weighted
averages according to the probability of a C.V, value being encountered., A reliability design procedure
described herein, can indicate the savings if more effort and cost is spent to accumulate data to either
reduce the uncertainty about the actual variability to be encountered or by controlling the fabrication,
and perhaps the operating limitations of the structure so as to reduce the variability itself, Several
other approaches have been made to the problem posed by lack of sufficient data, Confidence levels similar
to classical statistical analysis have been proposed for aeronautical structures [10.6], [10.8] while the
effect of full-scale tests [10.4], [10.35) and proof-load tests have also been considered [10.33].
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Chapter 11
OPTIMIZATION UNDER AEROELASTIC CONSTRAINTS
by
H. Ashley, S. C. McIntosh, Jr., and W. H. Weatherill
11.1 Introduction

In the structural design of large, high-performance aircraft, considerations of stiffness and aero-
elasticity often play nearly as prominent a role as does static strength. Important examples of
phenomena which may influence the sizes of both lifting-surface and fuselage members are the following:
primary wing, empennage or control-surface flutter; effectiveness of controls on a flexible wing;
influence of elastic deformations on static stability and trim; loads or response in turbulent air; and
ride qualities at locations near the extremities of an elongated body. Indeed, cases can be cited where
the required margins on flutter speed could be met only through the addition of several thousand pounds of
material to a wing which had already met all static-loading design conditioms.

In these circumstances, any monograph dealing with the search for optimal airframe configurations
should address the question of aeroelastic and structural dynamic constraints. At least this must be done
to the degree that such constraints impose uniquely different features on the optimization process.
Although techniques for the analytical prediction of aeroelastic properties of a given structure are
highly developed [11.1], [11.2], the introduction of such features into formal structural optimization
has lagged by several years the use of more conventional conditions of strength, stiffness and stability.
Hence the literature is smaller by a substantial factor. To date this literature has tended to remain
rather distinct and to focus on simplified one-dimensional problems aimed at revealing what potential
improvements might accrue to more realistic structure if practical methods of aerocelastic optimization
could be developed. The future will see these constraints appearing more routinely in the'mainstream’
of structural design, but, as of the time of writing, only rather modest published progress in this
direction can be reported.

At the outset of this Chapter, one point must be emphasized. It is that, given suitable com-
putational routines for performing the required analysis, the imposition of such a condition as¥*

Ve = V° , a prescribed minimum allowable maximum speed, (11-1)

during the optimal selection of a finite vector of design variables, should be a routine matter. For
instance, in an application like that described by Morrow and Schmit [11.3), the inverse of [VF - Vo]

would be added to the penalty portion of their composite function F. When finding the gradient of F,
needed for the unconstrained minimization process employed in [11.3], the flutter contribution would be
calculated by forward differencing as with their other 'behavior constraints'. The only difficulties one
can imagine, beyond those already overcome in [11.3], might arise either while seeking an initial design
that meets (11-1) or from the sheer volume of computation inherent in three-dimensional flutter
prediction. When well away from the flutter constraint boundary, simplifying approximations might be
permissible as with some of the buckling conditionms in [11.3].

Despite these observations, the nearest thing to such an application so far published appears to be
the wing design described by Schmit and Thornton [11.4]. 1In their paper, the 'criterion function' chosen
for minimization consists of the total propulsive work required to be done against the drag of a
rectangular wing, while the wing supports a given payload and flies a series of mission segments at fixed
speeds and altitudes, The design is constrained through bounds on airfoil thickness and chord, as well
as by limiting values, over each mission segment, for four 'behavior functions': angle of attack at the
wing centerline; elastic deflection at the leading edge of the wingtip; principal stress in the skin at
the wing root; and Mach number of bending-torsion flutter. Adopting thickness and chord as their two
design variables, the authors employ a method called the gradient-steep descent, alternate step method
to calculate the optimum. The variables are adjusted during each step in such a way as to move anti-
parallel to the (numerically differentiated) gradient of the criterion function. This process is .
continued until a constraining boundary is encountered, whereupon the procedure moves parallel to this
boundary until no further reductions in the criterion can be achieved. In the examples presented [11.4],
quite reasonable double-wedge airfoil shapes are produced. The propulsive work is also found to depend
strongly on the maximum allowable structural weight of the wing. Although these examples tend to be
rather elementary, it is clear that the method is capable of considerable generalization.

With regard to the history of the subject, probably the earliest published accountf of anything
approaching aeroelastic optimization is to be found in a 1953 note of MacDonough [11.5. Later

*Important symbols are defined in Appendix 11A. Here V represents flight speed at an assigned altitude,

and VF is the critical speed of flutter.

t+See, however, the remark about rib structures of a fighter airplane in the first paragraph, page 2,

of Turner [11.13]. It is believed that the developments reported by MacDonough and Turner received their
initial impetus from the work of S. J. Loring. 1In 1942, an internal company report [11.28] was prepared
in which a condition of minimum deflection, for given weight, is found to involve uniform strain energy
density for axially loaded members, shear panels and bending elements composed of similar material.
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Head [11.6) explained how the ideas of [11.5] had been used for some years at intermediate stages of the
design of high-performance aircraft. The problem addressed in [11.5] is to minimize the structural mass
of a single-box shell wing while holding constant the fundamental frequency of torsional vibration. The
point is made that the critical speed of primary lifting~surface flutter is rather closely determined by
this torsional frequency, so that making it the object of optimization tends simultaneously to optimize
the structure for flutter. MacDonough states, [11.5], "it can also be shown that the minimum weight of
structure to attain a given frequency is approached when the energy per unit volume is constant under the
loading associated with the primary mode". Although no proof is given, this is an observation of great
insight and agrees closely with certain static and dynamic energy conditions discussed in [11.7] and other
references cited therein.

A series of internal reports from North American Aviation, [11.8], [11.9], [11.10] and [11.11],
treat the utilization and extension of MacDonough's ideas. They also invoke a condition of uniform shear
strain energy density at the torsional divergence speed as another criterion of optimal aeroelastic

performance. It is surprising that more complicated and realistic applications have not been undertaken
since 1964, )

In the evolution of more recent literature on aeroelastic optimization, two fairly distinct points
of view are emerging:

(1) The structure is idealized and its degrees of freedom limited by the use of assumed-mode or
finite-element techniques. One is thuys led to the minimization of an algebraic or transcendental
function, by the choice of a finite vector of design variables under algebraic constraints.

Refs. [11.3], [11.4] and [11.8] through [11.11] are representative of this approach, as are the more
practical examples of Turner, [11.12], [11.13]. Their motivation is to achieve the capability of treating
complex built-up structures of the sort encountered in actual flight-vehicle design. Some current work

in this area is described in Section 11.3 below. '

(2) Simplified, and therefore less realistic, structures are optimized, so that solutions can be
found by exact or numerical integration of sets of differential equations. Results published to date have
been limited to one-dimensional configurations such as rods, beams and bars. This search for solutions
in function space will hopefully make it possible to explore, to the fullest, the potential savings to be
gained from formal optimization. There are, as yet, several important theoretical questions (e.g.,
uniqueness in problems with dynamic aeroelastic constraints) that remain unanswered. They deserve further
study in connection with cases whose mathematical description is not too complicated. This approach is
discussed first in the following paragraphs and in Section 11.2.

The lead~in to research under the second category may be said to have occurred through analyses of
minimum-mass structures with constraints of fixed fundamental natural frequency of vibratiom.
Niordson's paper [11.14] on the simple beam was apparently the first published on such a problem. This
approach was continued in the work of Taylor [11.15] and Prager and Taylor (11.16]. These latter
articles concern a variety of both static and dynamic problems and contain important proofs of uniqueness
and optimality in certain cases. Taylor also suggested [11.15] that in some instances it may be profitable
to interchange the roles of the constrained eigenvalue and the merit function. For example, the bar of
minimum mass for a fixed fundamental frequency of axial vibration can be found in two ways: one can
directly minimize mass for fixed frequency [11.12], or one can maximize the frequency for fixed total mass.
Solutions in these cases can be proved to be equivalent [11.15].

Section 11.2 begins with a general discussion of how such problems in a single independent space
variable can be identified with the variational problems of Bolza or Lagrange and thus reduced to systems
of first-order ordinary differential equations. The merit function in these, as well as more complicated
situations is usually chosen to be total system mass or structurally-effective mass. Other criteria, such
as minimum mass moment of inertia, may be more suitable in some instances, but little of value will be
accomplished here by including such generalizations. One observation worth noting is that all of these
optimal designs are subject to unstated constraints, which are really a matter of common sense. They
normally have to do with a limitation on the total volume or cross-sectional area that can be occupied by
the structure. To illustrate, if one seeks the circular cylindrical column of fixed length and minimum
mass to sustain a given Euler buckling load, a zero—mass solution is possible through the application of
internal pressure or by allowing the radius to become infinite_(i.e., the mass is proportional to the
product tR whereas the area moment of inertia grows with tR” for a thin shell). Obviously the outer
radius must be bounded before the design becomes physically meaningful.

A final observation to be made in this introduction is that energy considerations can often be used
for the direct construction of an equation which is, in actuality, the Euler-Lagrange minimizing equation
associated with a control or design variable. Relative to the subject of aeroelastic optimization,

Prager and Taylor [11.16] gave the first theorems of this type. They studied such extremal problems as the
bar with maximum buckling load or maximum fundamental vibration frequency, wherein the control variable
enters linearly both the integrand of the merit function and the differential equation of equilibrium,
Their theorems are based on the variational principle underlying the latter equation and result in non-
linear control equations ‘expressed entirely in terms of the displacement function.

In Table 1 of [11.7] some of these control equations are listed, and it is remarked that these are
theorems of 'constant specific Lagrangian density'. For instance, in the case of torsional divergence of
an optimal single-box wing, the control equation reads

(6')2 = const. (11-2)

in terms of the spanwise derivative of the elastic twist 8(x). Eq. (11-2) is precisely the afore-
mentioned condition of uniform specific torsional strain energy.
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As an illustration of these energy theorems [11.7], consider a three-dimensional elastic solid
occupying a volume U and acted upon statically by a system of external forces which are not necessarily
conservative. The density of structurally-effective material is p, the elastic displacement vector

I3 . e . » » q 3
from the unstrained state is q, and the externally applied force per unit volume is Yy R, Here vy is
some parameter, such as the dyngmic pressure of an airstream impinging on a diverging wing, which is held

constant during optimization. R may involve contributions both dependent on and independent of the
state of (small) deformation. Surface forces like aerodynamic pressure can be included in i1 through
terms containing a Dirac delta function of distance from the bounding surface S. All integrals are

. taken over the unstrained positions of mass elements, in the customary manner of the theory of
elasticity.

Hamilton's principle of static equilibrium is

sJ b e@ dU = J y R.6q du (11-3)
U u

for any small variation 6; satisfying the displacement boundary corditions. e(a) is independent of o
and is the quantity called 'specific elastic strain energy' by Prager and Taylor [11.16]. Because of
this independence, there is a limitation to structures whose stiffness is directly proportional to
structurally effective mass. The reduction to one- and two-dimensional situations is self-evident, and
examples of such structures would then be (1) the thin shell in torsion and (2) the sandwich beam or
plate, with thin face sheets relative to core depth, in flexure.

Let subscript zero identify a solution optimal in the sense that, for all neighboring density
distributions corresponding to the same v,

j[p - pO] du = o . (11-4)
U

Hamilton's principle, for the optimal structure under the load system ﬁof reads

> : -+
. - 11-5
GJ °g e(qo) du J Y §°.6q° du . ( )
U U
It is also a well-known consequence of this principle that, if the structure is strained into the
kinematically-admissible deformation shape Eo, the energy variation will have the right-hand side of

Eq. (11-5) as a lower bound:

-»> -+
11-6
c[ pe@) du > fy i{o.cqo auv (11-6)
U U
Subtracting Eq. (11-5) from (11-6), one obtains

, _ -+ _ Je > -
GJ lo - o) e@) av = J o - o) = §q du > o . (11-7)
U v 9%
The meaning of 3e/33° will become evident from what follows.
For general forms of the energy function e(;), no obvious conclusion can apparently be drawn from

Eq. (11-7). If e is a symmetrical homogeneous quadratic form, however, a useful result is deducible.
The quadratic form is the general rule for linear elastic structures. It then follows that one can

choose a particular variation 6;0 n Eo in Eq. (11-7) and employ the familiar relation

B G, = 2@ . (11-8)
3q
[o]
Eq. (11-8) and (11-7) yield
-
J fo - pol- e(q)) dU =0 . | (11-9)

U

The only way that Eq. (11-9) and (11-4) can be made consistent for all p neighboring the optimum is to
require

e(a;) = const. . (11-10)

This result encompasses the torsional divergence problem, Eq. (11-2), and a variety of other static
aeroelastic cases.
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An even more general theorem relating to optimally stiff structures was recently suggested by
Taylor [11.17]. The forms of control equations like those appearing in many examples of Section 11.2
below suggest the probable existence of generalizations covering cases of simple harmonic motion, e.g.,
free vibration and flutter.

11.2 Cases Governed by Ordinary Differential Equations

When the system constraints can all be written as ordinary differential equations, the optimization
can be identified as a variational problem of Bolza or Lagrange (e.g., Halfman [11.18]). This is not,
however, the only possible formulation. In some instances, it may be more fruitful to pose a variational
statement in isoperimetric form (cf. the approach of Taylor [11.15]). As mentioned above, it is assumed
that mass will always serve as a suitable figure of merit. It is further assumed that a relation is
known between the distributions of structural thickness and stiffness, so that the thickness appears
explicitly in the constraint equations.

Reference quantities for the corresponding uniform-thickness system with the same aercelastic eigen-
value will be used where convenient to render all variables dimensionless. Thus if T(X) is the optimum
thickness or running mass distribution and T° the thickness of the reference system, then the ratio of

optimized mass to the reference mass is given simply by
L 1
m = I [T(X)/LTol.dX = J t(x) dx . (11-11)
o o
Here X = Lx, and L 1is the length of linear structure under study.
Only one-dimensional configurations will be considered in this section. The dependence of the
equations of motion on time is eliminated, if appropriate, by the assumption of simple harmonic motion.

The constraint equations are then obtained from the aeroelastic equations of equilibrium by rewriting the
latter into an equivalent system of first-order ordinary differential equations:

.qi - fi(ql,...,qN,t) = 0 , i=1,2,...,N . (11-12)

The qi(x) represent the N dependent variables, some of which may be artificially-introduced

derivatives of system properties, along with the unknown thickness distribution t(x). A functional
is formed [11.18]}, consisting of the thickness distribution to be optimized, augmented by Lagrange
multipliers Ai(x) factoring in the constraint equations:

N .
= - ! -
F t + izl A - al) (11-13)

Conditions for a stationary value, or extremum, of this functional are given by the Euler-Lagrange
equations [11.18]

d /3F oF .
-&;(ﬁi— —371-; o , 1 1,2,...,N

afeE)_2E | g
dx \at', ot *

This formulation results in 2N + 1 unknowns — the N 9> the N Ai, and t - with 2N + 1 equations -

(11-14)

the N + 1 Euler-Lagrange equations plus the N constraint equations.

Boundary conditions are provided for the physical variables 9 by the restraint conditions at the
extremities of the structure and for the 'adjoint variables’ Ai by the transversality conditions

[11.18] . The equations are non-linear, involving products or quotients of t(x) with certain of the

q; or Ai' Typically, boundary conditions for the 9 (and the Ai) are given at both ends of the

structure, so the problem is a two-point boundary-value problem. It is usually too complicated to be
solved analytically, except in certain simple cases, so a numerical iteration scheme must be employed.
Furthermore, there is in general no a_priori guarantee that a physically meaningful solution exists, nor
is there any assurance that a stationary point, once found, represents an absolute optimum. For

certain types of constraints, however, such as those on buckling load or on a frequency of free
vibration, proofs of optimality can be stated [11.16].

One of the first problems to be solved analytically under what is essentially the formulation
described above was that of determining the minimum-weight non-uniform bar with tip mass for fixed
fundamental frequency of longitudinal vibration [11.12]. The arrangement is illustrated in Fig.1l.l.

When the motion is simple harmonic with frequency w, the axial displacement U(X) YT

the differential equation

must satisfy

2
d du w p - -
2GR w0 a1-15)
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Length variables are divided by L and mass per unit length M(X) = pA(x) by the reference quantity
pL2. ‘Eq. (11-15) then becomes

@' +gfm = 0 . (11-16)

The boundary conditions for the restrained root and free end carrying mass Ml are

u(©) = 0, w@ =1 ,
(11-17)

(mu')lxnl = B —3 .

(Although not required, the deflection amplitude has been normalized to unity at the tip.) The fre-
quency parameter appearing in Eq. (11-16) and (11-17) is

B = mL(p/E)4 . (11-18)

Here the dimensionless mass per unit length plays the role of the thickness in the general
formulation discussed above. The objective therefore is to minimize

1
9 = J mdx (11-19)
o

subject to fixed B and other physical conditions as stated. Note also that the reference system is
obtained by setting m constant in Eq. (11-16) and (11-17).

The Euler-Lagrange differential equations (11-14) are applied to the functional
F = m(x) + Ay(x) (- 62 m - y') + xu(x) (y/m -u') , (11-20)

where y is an auxiliary variable proporticnal to axial force in the bar. This gives rise to the
following equations:

A'+a/m o= 0
y u

A -gfma = 0 (11-21)
u y

2 2
B° u Ay + Au y/m= = 1 .

The constraint equations bring the total to five, for the five unknowns u,y,m,ku, and Ay:

y' o+ 82 mu = 0

(11-22)
u' -y/m = 0 .
The physical boundary conditions are given by Eq. (11~17), with y replacing mu', and the
transversality condition gives one boundary condition for an adjoint variable:
xy(o) = 0 . (11-23)

In accordance with the terminology of optimal-control theory, the third of Eq. (11-21), which
relates m algebraically to the other variables, is called the control equation, since m here
corresponds to the aforementioned design or control variable. The differential equations (11-21) and
(11-22), with boundary conditions (11-17) and (11-23), are in a form amenable to numerical solution
by one of several techniques developed in connection with optimal control [11.23]. However, a discussion
of these techniques will be deferred, since an analytical solution can easily be found.

The number of unknowns is reduced to three by some elementary manipulations, so that Eq. (11-21)
and (11-22) become
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@ ')+ 8>m = 0
y y

g2 wh Ay u el (11-24)

(mu')' + 82 m = 0 .

As observed by Turmer [11.12], Ay and u must satisfy the same differential equation and are governed

by the same boundary condition at the origin x = O. Hence they are related by a proportionality factor,

Ay = =-uf/k . (11-25)

Therefore the control equation, the second of Eq. (11-24), becomes
Wl =-8"u" = K ., (11-26)

Differentiating Eq. (11-26) and dividing by u' produces a linear differential equation whose solution
is a linear combination of sinh Bx and cosh Bx. Clearly a hyperbolic sine is indicated, and the form
satisfying u(l) =1 is

u(x) = sinh Bx/sinh B . (11-27)
The third of Eq. (11-24) can be integrated to get the mass distribution
2 2 2
m(x) = AX)/L™ = m(l) cosh” B/cosh” Bx . {11-28)
The final boundary condition contributes
2 = 3
m(l) = M(L)/pL® = BM, (tanh B)/pL . (11-29)

It should be noted that a condition u'(x) # 0 1is assumed during the solution of (11-26), which restricts
the fixed-frequency constraint to the fundamental vibration mode. Higher harmonics do not remain fixed
as m(x) 1is varied.

The total mass ﬁl sinh2 B of the elastic structure can turn out substantially less than the mass

of other bars that would ensure the same fundamental frequency. The ratio of bar mass to tip mass for the

optimized structure is simply sinhZB,while the corresponding ratio relative to a uniform bar is B tan B.
The latter ratio can be interpreted as a measure of the weight saving in the optimized bar, as compared
to a uniform bar with the same density, length, tip mass, and fundamental frequency. This quantity is
plotted versus f inm Fig.11.2, As B increases, the weight saving becomes quite significant, although
the comparison is not strictly valid as B approaches /2,

The value u/2 of the frequency parameter corresponds to a uniform bar with zero tip mass, for
which case the optimum solution is the degenerate one m = O. This situation comes about because the
frequency of a uniform bar without a tip mass does not really depend on m, but only on a ratio of two
quantities that are both linearly proportional to m. This example is but one of many similar ones that
‘could be cited to illustrate how seemingly well-posed optimization problems do not always yield meaning-
ful results.

In the foregoing analysis it was assumed that all of the mass in the bar itself was available for
optimization. From a practical standpoint this is not a very useful assumption, since certain portions
of the total mass of a structure do not contribute to rigidity. To illustrate an approximate analytical
way of allowing for nonstructural mass, consider a wing of rectangular planform and span L, whose
torsionally effective material is concentrated in a single box of fixed cross-sectional shape and
size{11.7]. The box thickness T(X) is small compared with its depth; Bredt's formula then shows that
the torsional rigidity GJ(X) is proportional to T. Let the uniform reference wing have constant
rigidity GJO, thickness To’ and mass moment of inertia Io (per unit span about the elastic axis).

The dimensionless differential equation for the torsional vibration amplitude 6(x) is
" + 92 6 = 0 (11-30)

where

= i -
Q mL(Io/GJO) . (11-31)
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With cantilever-boundary conditions
8(0) = 8'(1) = 0 , (11-32)

one determines for a uniform bar the familiar quarter-sine-wave fundamental mode corresponding to
Q=rn/2.

For the optimization problem, note that
GJ(x)/GJo = T(x)/T0 = t(x) . (11-33)

Let a fraction 61 of the running moment of inertia Ie(x) be contained in the skin; let the remaining

inertia, which is assumed for convenience to have the same radius of gyration as the skin box, be equal
to that of the reference wing. It follows that

Ie(x)/I° = 61 t(x) + 62 (11-34)

where 61 + 62 = 1, The dimensionless differential equation and boundary conditions read
(e8")' + (8, £+ 8)) 26 = 0
(11-35)
8(0) = (ee")] , = 0 , o) = 1 ,

with @ = 7/2 held constant. Note that if all of the mass were assumed concentrated in the skin and
therefore torsionally effective, §, would be zero, &, would be unity, and Eq. (11-35) would be

directly analogous to Eq. (11-16) aﬁd (11-17) with ﬁl 1equal to zero. It will be seen that the provision of
some nonstructural mass is sufficient to ensure a nontrivial optimal solution even when there is no tip
mass.
Solution for a minimum value of
1
s = f t dx (11-36)
o
p;oceeds in the same manner as for the bar. Thus the control equation for the wing can be manipulated to
give

(e')2 - (rr/2)2 61 02 = K . (11-37)

The optimum vibration mode becomes [cf. Eq. (11-27)]

e sinh IX b inh 1L 4 -
] sinh {2 (61) x}lsmh {2 (61)} . (11-38)
The thickness distribution is slightly different from that of the bar, because of the difference in

boundary conditions:
2
T )
2 cosh{% (61) } }

t(x) = -
1 cosh}i (Gl)li}

O

1 . (11-39)

[

Recalling that masses and moments of inertia have been arranged to be in proportion, one finds for the
overall mass ratio

1 . .

8 J tdx+ 3§, = [1 +{sinh w(cl)i}/n(sl)il a - 61)/2 . (11-40)
o

This expression is plotted versus &, in Fig.l1l.3. The uniform-wing limit of unity when 61 approaches

1

zero is self-evident, whereas the limiting case of 6, approaching unity is the unrealistic solution

1
t = 0 discussed earlier.

There is yet another unrealistic aspect of the solution (11-39). This involves the fact that at
the free end of the wing t goes to zero. The same behavior has been observed in a number of instances
where one end of the structure is either free or simply supported and the thickness distribution is
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unbounded. An obvious means of avoiding this situation is to impose an inequality constraint that forces
the thickness to be greater than some specified minimum value. To illustrate the application of this
constraint, which could readily have been specified in either of the foregoing examples, consider instead
the (relatively rare) occurrence of pure-torsional flutter [11.20] . The differential equation of motion
for the torsional amplitude 6(X) (with simple harmonic motion assumed) reads

d dé 2 = =
a—(GJ d_}_(> + Ie w 6 = - MX(X) . | (11-41)

Here ﬁx is the amplitude of the section aerodynamic pitching moment about the elastic axis. With GJ

and Ie both assumed to be proportional to the skin thickness T(X), as in Eq. (11-33), and with
incompressible unsteady strip theory used for ﬁx, Eq. (11-41) can be written in dimensionless form as

(t8')' + (6, t + 52) 8§ =0 . (11-42)
Here

2
8§, = (w/w,)
1 6 (11-43)

32 = (w/we)2 [ﬁu - e(fa + Mh) + e2 ih]/urﬁ .

The terms ia’ ih’ ﬁa' Mh are dimensionless functions of reduced frequency k = wC/2V, as tabulated,

say, by Scanlan and Rosenbaum [11.19]. The other quantities are defined in any text on aeroelasticity
(e.g., [11.19]). The cantilever boundary conditions are as given in the second of Eq. (11-35).

The reference solution for t = 1 has the normalized mode shape

8(x) = sin{(Gl + 32)*x}/sin(al + 32)4 . (11%44)

Moreover, the zero-torque condition at the tip requires that 32 be real and establishes the fundamental

eigenvalue
2
s, + 8, = /4 . . (11-45)

Smilg's solution[11.20] furnishes information on elastic-axis locations and other wing properties that
can satisfy Eq. (11-43) and (11-45). In particular, the imaginary part of 62, which is the component

of aerodynamic moment out of phase with respect to the torsional displacement, may vanish only when the
elastic axis is ahead of the quarter-chord line.

First, the case of unconstrained thickness is examined., By immediate analogy with the torsional-
vibration problem, the optimal solution for real 32 leads to a thickness distribution similar to that

of Eq. (11-39):

co

62 {,: <:osh(61)i ] 2 }
t(x) = - - . (11-46)
28y sh(sl)l x

In its present form, 62 is proportional to the aerodynamic moment in phase with '6; Smilg's

calculations show this always to be negative. Thus one arrives at the meaningless result that the
'optimal' t(x) 1is negative over the whole wing!

It is evident that to produce a viable result requires somehow changing the sign of 62. One way

of doing this is to allocate a certain portion of the total mass to nonstructural purposes, as was
described in the problem of free torsional vibration. If n 1is the fraction of total cross—-sectional
mass to be effective structurally, them Eq. (11-42) is agltered simply by redefining 61 and 62:

[ [ - -
61 nse 62 1 -n) 61 + 48 (11-47)

1°’ 2 °
Radii of gyration are taken equal, as before, A number of parameter combinations can be found which
produce a positive 65. One case was studied from Smilg [11.20] in which the rotational axis was at the

leading edge and the flutter k (defined in Appendix 11A) was approximately 0.04, With 50Z of the mass
in the skin of the reference wing (n = 0.5), Gi and 65 are calculated to be 2,04 and 0,43

respectively. A computation similar to that indicated in Eq. (11-40) then shows a 397 saving in total
mass and a 782 saving in skin weight achieved by going from the uniform wing to the optimum wing with the
same flutter speed. .
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The unrealism of t going to zero at the tip still remains. As suggested above, one can introduce
a constraint to keep the thickness greater than or equal to some minimum value. There are a number of
ways of accomplishing this; a convenient one that will be followed here was employed by Taylor [11.21].
The constraint is stated

() -t - alx) > 0 (11-48)

where t is an arbitrary minimum thickness and a(x) 1is a real function to be determined. Since the

reference wing is given by t = 1, it follows that t, must lie between zero and unity.

The functional for this problem becomes (for real 32)

F = t + Ae(s/t -0') + As [- (61 t + 62) 6 -s8']l + At(t -t - az) . (11-49)

The Euler-Lagrange differential equations are as before, except for the addition of new variables

At and 32:

L =
ke (61t+62) [4) A
Al -
RMRRWL 0 _
} (11-50)
2At a = 0
A s/t2+6 A 6=2 = 1 J
0 1 s t *

The system of differential equations is completed by the comstraint equations

6' - g/t = 0
(11-51)
8 + (61 t + 52) 8 = 0

From the third of Eq. (11-50), it is seen that either At or 32 must be zero. Choosing zero At leaves
the thickness unconstrained, whereas choosing zero a“ requires the thickness to be a constant, t.
One supposes that outboard of some station L 0< xo <1, one can choose zero a2, or t= to.

Inboard of x  one sets At = 0 and allows the thickness to vary.

Physical boundary conditions plus transversality at the wing root are
8(0) = A (0 = 0 (11-52)
while at the tip
s(l) = 0 , 8(1) =1 . (11-53)

At X the Weierstrass-Erdmann corner conditions [11.18] require continuity of all variables. In part,

these requirements can be manipulated to give
8(x)) , 8'(x), t(x) continuous . (11-54)
The solution for the inboard section x < X, proceeds as before, giving for 6 and ¢t

8 = A si.nh{(Gl)i x}

xS<x .. (11-55)

t o=t + a2 = B [cos:h((&l)ix':}]—2 - 62/261

Here A and B are arbitrary constants yet to be determined. The solution for the outboard strip,
x 2 x,, is found from Eq. (11-50) and (11-51) with t = t = const. In particular, the normalized
result for © reads :
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8 = gin y sin yx + co8 Y c08 yx , X > x, (11-56)

with

2
¥~ = 61 + 62/t° >0 . (11-57)
Note here that, if 62 is negative, the requirement for positive YZ puts a constraint on the minimum

thickness:

t > -48,/8

o 2 (11-58)

1
There are now four unknown constants - to’ X A and B - and three continuity conditions (11~54)

to relate them to each other. The simplest way to proceed is to eliminate A and B and arrive at a
transcendental relationship between X and tos which is

y tan{y(l - xo)} = (61)! coth{(él)i xo} . (11-59)

Once X, or t. is chosen, the other is found from Eq. (11-59). A simple integration of the optimal t

over the span then yields the ratio of the mass of the optimized wing to that of the uniform reference
wing. It turns out that the constraint on ts Eq. (11-58), is not enough to produce a reasonable

answer, When 62-< 0, the thickness is no longer negative, but the optimal mass is greater than the
mass of the uniform reference wing., Only for positive 62 is a saving in mass realized by the optimal

solution, It is still necessary, therefore, to allow some of the mass to be nonstructural,

Numerical results for the case discussed above, where 50% of the mass was assumed nonstructural,
are shown in Figs.11.4 and 11,5, adapted from [11.7].

It should be evident from the foregoing that only rather simple optimization problems can be solved
analytically. The introduction of more complicated aeroelastic constraints, even in the function-space
framework to which this section is devoted, of necessity implies that numerical solution techniques have
to be used. One of the first examples which served to validate a particular numerical procedure for
integrating the optimizing equations was that of minimizing the skin weight of a constant-chord unswept
wing of fixed torsional divergence speed (Fig.11.6;[11.22] and [11,7)). The constraint differential
equations and boundary conditions for the problem are (with aerodynamic induction neglected)

8' -8/t = 0
2

s'+02°9 = 0 (11-60)

6(0) = s(l) = 0

o = —y—oc = " . (11-61)
The Euler-Lagrange equations for the function
P o= b+ (s/t-0+r (-0%06 -5 (11-62)
are found to read
2

' - =
Ae Q As 0

t = -
As + Ae/t 0 (11-63)
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Transversality produces two further boundary conditions,
2,0 = A1) =0 . (11-64)

An exact solution to this problem is easily discovered by following the same reasoning that led to
gsolutions of the previous examples. Furthermore, a minimumthickness constraint can be introduced just
as was done for the torsional flutter problem, leading to a transcendental relation between X, and t,

as follows:
x, = [(to)iln] cot [ (1 - x)) n/(to)h . (11-65)

As an aside, it is remarked that an interesting aspect of Eq. (11~65) is the possibility of multiple
solutions., That is, for a small enough value of t, (or a value of X close enough to unity), a

second branch of the cotangent curve, the branch for arguments between n/2 and 3%/2, also yields an
X st combination, As t, becomes still smaller, at some point a third branch, for arguments greater

than 37/2, comes into play, and so on. It therefore appears that an infinite number of optimal
solutions can be found, Furthermore, the corresponding thickness distributions can be made virtually as
small as desired by selecting the proper branch. An eigenvalue analysis of these 'optimal' wings reveals,
however, that solutions associated with the second cotangent branch have their fundamental characteristic
speed of divergence below that corresponding to the eigenvalue of 7/2 held fixed in the analysis. 1In
fact, the number of eigenvalues below w/2 in any given solution turns out to equal the number of
branches, of the cotangent curve in Eq. (11-65), taken beyond the fundamental. Hence the only truly
minimumrmass solutions are those found with arguments of the cotangent less than w/2. There is an
obvious conclusion that every solution of this sort should be carefully examined, before it is accepted,
to ensure that all constraints on the optimization have been satisfied.

As mentioned above, a computational check on the solution of the system of equations and boundary
conditions (11-60), (11-63) and (11-64) was carried out by Ashley and McIntosh [11,7]., A tramsition
matrix algorithm was adapted from Bryson and Ho [11,23] for purposes of numerical integration. In this
relatively simple case, direct numerical differentiation was successfully carried out for the purpose of
determining the required elements of the transition matrix, Essentially exact agreement with the known
solution was attained after about half-a-dozen iterations.

Unfortunately, the rather attractive transition-matrix scheme has proved too inaccurate, in the
absence of special refinements, for more complicated problems., A procedure involving the determination
of "unit solutions' [11.23] turns out to yield much more precise transition matrices, although con-
siderably more computer programming is needed. It operates as follows:

The above differential equations are all seen to be in the form [cf. Eq. (11-12)]

T
= - & yj,t) i=1,N
(11-66)
2 - g(y;) j=1,N

where the yi's and yj's are either the physical variables (such as 6) or their adjoints, A, If
these differential equations are perturbed by means of small changes Gyi to all dependent variables, a

new set is created, These additional equations may be written as

d g afi afi
— (6y.) = — 6y. + == it
d . 3y. at
x i je1 yJ j
(11-67)
N
= L V7 38
st 7t .X T 8y, .
i=1 i

The combined equations (11-66)-(11-67) can be solved simultaneously, using appropriate boundary
conditions, to produce the transition matrix for the system. For instance, if the boundary conditions

Gyi(O) = 0 i#1
(11-68)

6y, (@ =1

are chosen for the perturbation equations, while the usual specified and 'guessed' boundary conditions
for yi(o) are used, the two sets of equations may be numerically integrated from x = 0 to 1, The
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values of Gyi(l) are equal to the changes in the variables y; at x-= 1 caused by a unit change in
the variable y, at zero, with all other changes at x = O held equal to zero. This is precisely the

definition of a column of elements in a transition matrix. Thus, this procedure would be carried out
N times to obtain successive columns of the transition matrix.

It should be noted that, although the original system of differential equations is non-linear, the
perturbed equations (11-67) are linear in the perturbation variables. If the system (11-66)-(11-67) is
not too large, the entire transition matrix may be generated in one cycle of a typical numerical-
integration program. The drawback of this scheme is that there are N governing equations and N
perturbation equations, so that the computer must handle 2N simultaneous differential equations. As
pointed out, however, the perturbation equations are essentially linear with variable coefficients, and
the computer can integrate them with little additional effort relative to the non-linear system of total
order N.

A particularly valuable dividend obtained by using the foregoing method occurs when a minimum—
thickness bound is included in the problem. Imposing this additional constraint on a numerical scheme
requires the addition of a single decision statement. This statement determines whether or not the
computed value of the thickness is greater than or less than the specified minimum t,e If t exceeds

the computed thickness, the computational scheme sets t = to and &t = 0, These values are then

asgumed in the succeeding steps. This method of constraining the thickness has been employed successfully
in a variety of optimization problems.

The method described above has proved to be quite accurate, and analytical solutions, when available,
can be reproduced with great precision. Figs.l11.7 and 11.8 present the resulting optimal thickness
distributions and weight savings for various values of minimum thickness t,e

As a final numerical example, minimizing the weight of a cantilever-free sandwich beam, of constant
core height but variable face-sheet thickness (Fig.11.9), is considered. Again the fundamental bending
frequency is held constant., This case will also serve to illustrate an alternative scheme for formulating
the optimization problem, based on a functional called the Hamiltonian [11.23]. Once again it is desired
to minimize

1

¥ = j tdx |, (11-69)
! .

where t = T(x)/To(x) and x = X/L, subject to the constraints

s )
p' = a/t (@ = tw") (11-70)
R .

a_Jé_ 61 w2
r' = (at +8)w = 2 J

B = 62 w .

These constraint equations are adjoined to the function to be minimized, t, to form the Hamiltonian
H = t+) p+ Ap q/t + Aq T+ [(at + 8wl . (11-71)

A necessary condition for a minimum of 9 is that

A q )
W _ -1 .p -
3t 0 1 7~ +a Ar w . (11-72)

t

Other necessary conditions for the constrained minimum read

N
JH

W

A e -
w

xr(ut + B)

M
ap W

> h (11-73)
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The system (11-70), (11-72) and (11-73) gives the differential equations which govern the problem.

The specified boundary conditions are

w(0) = p(0) = Aq(O) = A0 =0

(11-74)
q(1) = (1) = Rw(l) = lp(l) =0 .
In addition to the above equations, one can impose a minimum thickness constraint, which may be
expressed as
g, -t <0 . (11-75)
In this case, an augmented Hamiltonian would be used:
* = =
H H+u (to t)
where W >0 for t = e (11-76)
p = 0 for to =f < 0 .
Note that the control equation (11-72) may then be expressed as
A q
o= 1A w (11-77)
& T

An analytical solution to this problem is not known. The transition-matrix algorithm, using
determination of unit solutions to find the transition matrix, converged readily and produced thickness
distributions like those shown in Fig.11.10, with the associated weight savings.

The limits of research in aeroelastic optimization, by direct integration of differential equationms,
may be said at the time of writing to be characterized by two problems - both currently under investigation
but without numerical results ready for presentation. The first involves minimizing the mass, for fixed
hypersonic flutter speed, of a thin homogeneous or sandwich plate in two dimensions. The second consists
of optimizing for bending-torsion flutter a cantilever beam-rod wing, in which case the true complex
nature of the aerodynamic forces is accounted for. Although both of these can be set up like other
preceding examples, the airload expressions cause the functional F to be a complex function of the real
argument x.

Special measures must be taken to ensure that the optimal thickness t remains a real quantity.
For this purpose, Turner [11.13] has shown that it is sufficient to treat only the real part of F. Some
of the details of setting up these problems can be seen in [11.22]. Following Turner, the manner of
dealing with the complex behavior is reviewed, in Section 11.3, in connection with discrete-element
systems.

11.3 Discretization by Assumed-Mode and Finite-Element Methods

It is self-evident that applications of aeroelastic optimization which are to have potential
practical value in improved aircraft structural design must, in one way or another, involve the
approximation of continuous systems by means of discrete elements. The design or control variables of
Section 11.2 are then replaced with a finite vector of n adjustable element properties. Minimization
of the chosen merit function amounts to a search of n-vector space rather than function space.

Schmit and Thornton's example [11.4] of the rectangular supersonic wing with minimum propulsive work,
wherein n = 2, was described in Section 11.1 and cited as the only published instance to date of a
flutter constraint applied in combination with more conventional constraints of structural optimization.
Section 11.1 also observed that there is apparently no fundamental obstacle to placing bounds on aero-
elastic properties during minimum-weight design of aeronautical structures. In current literature,
however, the process of merging such constraints into the mainstream has not yet taken place. It
therefore seems appropriate to review the present status of efforts in this direction, inasmuch as they
are compatible with the hoped-for future progress¥.

Whether used separately or jointly, there are two general ways of discretizing a structural-inertial
system. The first consists of division into several compatible finite elements, for each of which the
state of stress and deformation is specified by a set of scalars. When this method is employed in
isolation, r independent quantities are chosen (e.g., the normal displacements at an array of 'panel

*For interesting examples of recent work on finite—element optimization of various structures with
constraints on free vibration or dynamic-response amplitudes, the reader is referred to the second, third
and fourth papers in the proceedings of the AIAA Structural Dynamics and Aeroelasticity Specialist
Conference, April 1969. This volume is cited in commection with [11.13}.
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points' over the surface of a thin wing) which completely specify the state, and they become the
degrees of freedom for construction of equations of motion,

Alternatively, all external forces can be removed from the system and the resulting homogeneous
equations solved for up to r natural frequencies, and associated normal modes, of free vibration.
This is one avenue leading into the second scheme for discretization, which is the superposition of
finite numbers of normal or assumed modes of deformation. The (time~dependent or constant) modal
amplitudes then serve as degrees of freedom. Since the numerous variants of this scheme are amply
described in any advanced text (e.g., Chapters 3-4 of Bisplinghoff, Ashley and Halfman [11.25]) on
structural dynamics, they require no elaboration here.

It should be mentioned, however, that one way of discretizing is to apply Galerkin's procedure to
the sort of differential-equation systems discussed in Section 11.2. An attempt to optimize a
rectangular wing for low—speed flexure-torsion flutter, wherein this procedure was applied to the span~
wise distributions of skin thickness and bending and twisting amplitudes, is reported in (11.24]. Since
it is clear that the approximation has not converged with the rather limited number of degrees of
freedom assumed in [11.24], and since there is a question whether the constrained flutter condition
actually constitutes the minimum critical speed of the 'optimal' designs, it would be premature to
reproduce those results here. This is not to say that such an approach holds no promise for the future.

Turner's procedure for discrete systems [11.13] starts from the following form of the equations of
motion, describing a state of neutrally stable oscillation (flutter, free vibration, etc.):

(Kl ~?d - o? o c® LlA) (@} = {0} . (11-78)

Here [K], [M] and [A] are square matrices of stiffness elements, inertia elements, and dimensionless
aerodynamic loads, respectively. The quantities in [A] are normally complex numbers, representing
generalized forces, aerodynamic coupling and the like; they depend on reduced frequency k, flight Mach
number, and the dimensionless manner in which the motion is approximated (mode shapes, panel-point
locations on a given wing planform, etc.). There are r dimensionless coordinates qj in the column

matrix. The system (11-78) has sufficient generality that virtually any discretized problem can be cast
in this form. :

For definiteness, let it be assumed that the flutter speed is held fixed at a single flight
condition. Let the equations of motion first be set up for a reference structure, identified by a super-
script (0), and let there be n adjustable mass elements m, added to (or subtracted from, if

negative) this structure. During this adjustment process, let the modal shapes on which Eq. (11-78) are
based be held fixed. It will then be true, under rather broad conditions when the increments m., are

sufficiently small, that [A] remains unchanged and the alterations to [K] and [Ml are linear in
the mj. For instance, this would be the case if the mj were associated with thickness modifications

at a set of thin skin elements distributed over the area of a wing. It follows that, for any slightly
altered structure,

= kO]« § aixt)
j=1 7
(11-79)

M o= O+ § om )
je=1 J

the normalized correction matrices [K(J)] and [M(J)] being found by the same procedure that produced
the original equations.

Turner introduces the shorthand definitions

- u? P c L[A] = [c] , (known function of k) (11-80)
n .
W -o?m = 8 = BO1 s § a8 | (11-81)
j=1 J
For an assigned value of airspeed V = V_, but possibly allowing for variations in flutter frequency w,

one's objective is to minimize the structural mass, subject to the r algebraic constraint equations
(8] + [c]) {q} = {0} . (11-82)

A normalizing condition,vsucﬁ as q; = 1, is introduced to make the solution of Eq. (11-82) unique for

the prescribed eigenvalues. Turner also defines a similarly-normalized row matrix [p} by means of

LpJ ([B] +0c]) = Lod . (11~83)
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All the complex quantities pi’qj’ as well as the complex elements of C, are separated into

real and imaginary parts according to the generic notation
= 1] 3 " . . -
P, p; +1ip; (11-84)

Since the uﬁ are obviously real, as are all other elements of [B], rationalization of (11-82) produces

([B] + [C']) {q'} - [¢"] {q"} = {0}
(11-85)
[c"] {q'} + (B] +[c']) {q¢"} = {0}.

A set of r Lagrange multipliers A = A' + i A" 1is used to associate the constraints (11-85) with the
merit function

n
¢ = ) m (11-86)
j=1
which is to be minimized. According to the algebraic theory of extremals, the desired result can be
found by defining the Euler-Lagrange function
n
P e ] o elal [cts + 10Dy ta'y - 1 ")) +Las [iem ') + @B+ ') ") . (-an)
j=1

F must be stationary for independent variations of all mj and the non~normalized values of

qi, qﬂ. The former condition yields the n 'control equations'
1 +Lad B—E— {Q'}'*L)\"Jl:g%-]{q"} = 0 , j=1,2,...n , (11-88)
J 3

where the forms of the derivative matrices are obvious from Eq. (11-81) and (11-79). The latter
condition can easily be shown to be equivalent to the 2r real and imaginary parts of

Lad ([B] +(c*) = (og , ' (11-89)

where the asterisk denotes complex conjugate. It follows from Eq. (11-89) and the definition (11-83)
of the row Lp_] that 2 and p* are proportional, a relationship which Turner writes

LA = A'Lp'd - A" Lp"d
(11-90)
LAl = = A"Lp' ~ A'Lp"J

Here A' and (- A") are the real and imaginary parts of a constant A, to be determined in the
solution process. Eq. (11-90) permit the A to be eliminated in favor of the p. The resulting final
forms of the optimizing equations and constraints (11-88), (11-82) and (11-83) become

Re (ALP.J[B(j)] {q}> = -1, 3=1,2,...n , (11~91)
(0) T G)
([B 1+ mJ.[BJ ] +[c]> {q} = {0} {11~92)
j=1
n .
([n(°)1 e ] om0 [c]T> p} = (0} . (11-93)
j=1

In principle, Eq. (11-91)-(11-93) constitute a system of 4r + n real, non-linear, algebraic
equations in the optimal n masses, the (4r - 2) undetermined parts of {q} and {p}, and the two
parts of A. Variations in frequency must be handled by trying a set of values of w until an absolute
minimum merit function is discovered. In Section IV of [11,13], Turner discusses the practical process
of separating Eq. (11-91)-(11-93) into reals and imaginaries, some details of solution, and limitations
on allowable values of r and n. The algebraic system is solved by an iterative scheme, described
as a generalization of the Newton-Raphson method. The work of Freudenstein and Roth [11.26] is cited with
respect to the importance of finding a starting approximation that is close enough to the desired
solution to ensure convergence. In this connection, however, it should be mentioned that considerable
research is currently in progress on improvement of algebraic optimization procedures; once an
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appropriate system of equations is established, the non-linearity may no longer constitute such an
obstacle and many ways will soon be available for efficiently computing the desired solution.

In [11.13), Turner presents two examples. The first involves a three—segment finite-element
approximation to a sandwich panel fluttering at Mach number 3 and standard sea level demsity. It is
interesting that, for the system parameters selected, the panel of minimum face-sheet mass differs
insignificantly from a uniform panel with the same critical speed. Because the latter was chosen as the
reference condition for optimization, convergence turned out to be very rapid. Since no proofs of
uniqueness are available, however, an intriguing question concerns whether other, more substantially
improved designs might be discovered which are remote from the reference case. The author remarks,

"It is not known whether these findings would be altered significantly if the panel were divided into a
greater number of segments or if the effects of independent variation of core density and associated
effects of shear deformation were included in the analysis."

Turner's second example deals with the cantilever wing, some of whose dimensions are illustrated
in Fig.1l1l.11. Each of the three segments shown was assumed to have constant properties. Bending
displacement in each segment was represented by a cubic polynomial and twist by a linear polynomial.
Thus the total of deflection, bending-slope and twist coordinates at Sections 1, 2 and 3 add to r = 9.

Nonstructural mass was taken to be a uniform 0.0181 1b—sec2/in2 across the span; other details will be
found in the paper.

The reference case was established by finding the combination of m, m, and my which added to

a minimum while holding the fundamental frequency of torsional vibration in vacuo at 15 Hz. A flutter
analysis, based on incompressible aerodynamic strip theory, then gave a sea level VF = 675 knots at a

frequency of 8.99 Hz. Fig.11.12 shows the properties of this initial approximation. Also plotted, vs.
flutter frequency, is the succession of optimal states arrived at by the foregoing method and leading to
the indicated minimum—mass system. The reference state was expected to be close to the desired solution
(cf. [11.5], [11.6]), so it is not surprising to obtain a final result only 2% lighter. Turner
estimates, however, that the optimized structure is 187 lighter than a uniform wing having the same
flutter performance.

In connection both with the cantilever wing example and with the foregoing quotation from Turner
regarding his three-segment panel, it is possible to speculate about the effects of the number n of
design variables. In view of the proof in [11.13] that the optimal panel has a thickness distributien

symmetrical about its midchord, there are really only two independent variables: my and m,. The

relationship between these variables and the flutter eigenvalues VF and ® may be likened to a

transformation from an m - m, =~ plane to a VF - w - plane, as in the sketch below:
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If one assumes that the transformation between points like P and P' (or curves like € and C') is
unique and one-to-one, it is clear that with m = m, there is only a single design corresponding

to a given flutter speed and frequency. This explains, for instance, why the uniform panel is also the
optimal panel for w = 54.75 Hz on Fig.2 of [11.13]. All other points on this figure would be
encompassed by a pair of curves similar to C and C'. Should three independent variables be avail-
able, as with the cantilever, then a curve in three-space corresponds to a point like P'; there would
seem to be considerably greater freedom available to the search for the best system. With the panel,
this could be achieved by going to five or more segments. In general, an adequately large n would
always seem to be necessary for the finite-element design to 'converge'.

Another investigation will next be discussed which aims, by means of somewhat less sophisticated
mathematical analysis, at the ultimate flutter optimization of very complicated airframe structures with
many hundreds of finite-element degrees of freedom and dozens of design variables. Based on a
representation similar to Turner's, Eq. (11-78), this work was conducted at The Boeing Company's
Commercial Airplane Group.

The procedure starts by generating a full stiffness matrix [K] and a corresponding lumped mass
matrix [M], with which a set of normal mode shapes are calculated. These modes are then used as
generalized distributed coordinates to formulate the flutter equations, also in the form of Eq. (11-78).
In determining the sensitivity of flutter speeds to redistributions of structural stiffness, and the
corresponding total structural mass, the most direct procedure is to recalculate new stiffness and lumped
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mass matrices at each step. In the example to be described below, the need for reformulating the stiff-
ness matrix from the beginning was avoided by dividing the configuration into substructures.
Rearrangement of the stiffness distribution was achieved by simply rescaling the stiffness matrix for
one or more of the substructures and then forming the required full stiffness matrix by a straightforward
matrix merge procedure. New stiffness matrices could be obtained in less than a minute of computer

time on the CDC 6600, or well less than 1/30 of what would have been required if the actual finite
elements had been rescaled and the new stiffness matrix generated in one pass. The overall procedure is
outlined in the following steps: ‘ '

(1) Generate basic substructure structural mass and stiffness data.

(2) Scale substructure structural mass and stiffness matrices. (Enter here with new scale
factors.)-

(3) Merge scaled stiffness matrices, reduce out those degrees of freedom needed for merging but
not required for vibration solution. Merge structural mass matrices, combine with fixed mass matrix.

(4) Solve vibration problem for normal mode shapes and frequencies of modified structure.

(5) Interpolate modal data from structural control points to aerodynamic control points.
Generate chordwise slope data for aerodynamic program. (Enter here with new speed regime, new Mach
number. Advanced three-dimensional oscillatory lifting-surface theory is used; see, e.g., Vol.II of
[11.1].)

(6) Calculate generalized aerodynamic forces, generalized mass and stiffness matrices for the
modes of the modified structure. (Enter here with new Mach number, if subsonic or piston theory being
employed.)

(7) Set-up and solve the flutter problem using the so-called 'V-g method' (see Section 9.5. of
[11.25]).

For purposes of a sample problem, a low—aspect-ratio configuration of supersonic-transport type was
divided into 13 substructures. These regions, shown in Fig.11.13, were chosen to isolate logical
structural regions such as the wheel well (panel 4) and the main wing spar (panels 5, 9, 11 and 12). This
should be considered a fairly gross representation. Once general sensitivities have been established,
however, it would be simple to go back and sub-divide panels of particular interest for further study.
Also there is no reason why specific structural members could not be broken out and considered as
separate regions by themselves.

The results presented here are for two Mach numbers (one subsonic and one supersonic) and two air-
craft weight conditions (one light-weight and one heavy, corresponding nearly to maximum gross weight).
The aerodynamic generalized forces were calculated using either supersonic Mach-box or subsonic kernel-
function theory as appropriate*. The critical flutter modes included two low-frequency modes and one
high-frequency mode, any one of which could prove the most critical at a given flight condition.

Table 11.1 shows the dependence of flutter speed on changes in panel stiffness and the corresponding
(proportional) structural weight. 'Sensitivity' R relates to equivalent airspeeds and is defined below
the table. Since weight is of primary interest, these sensitivities are given as the ratio of the
change in flutter speed for 1000 1b change in structural weight to the flutter speed of the reference
condition. Here the structural weight is assumed to vary in direct proportion to the stiffness. This may
be justified by assuming that the increase in stiffness is achieved by increasing skin and spar thicknesses
and spar cap widths®. Table 11.1was obtained by increasing the stiffness and corresponding structural
weight of each region in succession while holding the remaining panels at their reference level. Thus,
these numbers are first-order forward-difference approximations to the derivatives of flutter speed with
respect to structural weight.

Changes in stiffness ranged from 10% to 20% of each panel. Changes in flutter speed were small,
and care had to be taken in interpreting the V-g solutions to be sure of identifying the most critical
condition. As the calculations progressed, larger changes were used. Some idea of the actual linearity
of these derivatives with size of stiffness changes may be gained from Table 11.2. Generally, the
derivatives were fairly linear for +20% modifications in panel stiffness, and flutter speeds for
distributions obtained by rescaling several panels within these limits could be adequately predicted.

The data displayed in Table 11.1 have been used to generate two sets of redistributions of
structural stiffness. The first, based on column 3 of Table 11.1, was designed to raise the flutter
speed for that condition with no net increase in structural weight. Here the amounts of weight added to
or subtracted from the panels were made roughly proportional to the values of their derivatives**, This
redistribution is shown in Fig.11.13and labeled A-1x in Table 11.3. It results in the rearrangement
of some 3000 1b per side of structural weight, but no net weight change. The consequences of doubling
this redistribution are showm as A-2x and of tripling it as A-3x. The numbers in Table 11.3 are given
as flutter speed divided by the flutter speed for the reference structure for each flight condition.

*?he r?ader is again {eferred.to Vol.II of [11.1], and citations made therein, for information on these three-
dimensional aerodynamic theories.

tInformal talks with weights engineers indicate that 0.75 for a value of the ratio of change in
structural weight to change in stiffness would be more realistic.

**This procedure is obviously equivalent to one step in a gradient or steepest-ascent method [11.23] of
optimal search.
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For three of the four conditions this distribution is very beneficial.
condition, however, the flutter speed decreases.

For the light-weight, subsonic
The reason for this may be readily seen in Table 11.1,
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where for the heavy-weight subsonic condition the flutter performance is improved most by stiffening the
wingtip and softening (probably lightening) the trailing edge.
weight subsonic condition.

Linear Derivatives of Change in Flutter with Respect to Change in Panel Stiffness

Table 11.1

The exact opposite is true for the light-

Supersonic Subsonic Subsonic
light-weight | light-weight | heavy-weight
Panel R R R
1 -0.030 -0.007 o]
2 -0.027 -0.011 -0.001
3 0 0 0
4 0 0.003 0.002
5 0.037 0.022 0.003
6 -0.008 ~-0.040 0.003
7 0.033 0.011 0.003
8 0.024 0.022 0.009
9 0.052 0.044 ' 0.015
10 -0.015 0.014 0.013
11 0.022 0.012 0.022
12 ’ 0.016 -0.027 0.028
13 -0.033 0.013 =-0.008
" change in VF 1
1000 1b (VF)REF.

Table 11.2

Typical Non-Linearities in Derivatives of Change in Flutter Speed with Respect to Change in Panel Stiffness

Z change in
Panel stiffness of panel AVF/(VF)REF.
Subsonic
light-weight 12 +50 -0.032
+100 -0.038
+10 '0.007
13 -10 -0.008
-20 -0.018
Supersonic +10 0.024
light-weight 5 +30 0.075
+50 - 0.191
10 0.029
9 30 0.100
50 0.143

If the purpose of the distribution were solely to improve the one condition (subsonic heavy-
weight), when the improvement in flutter speed has fallen off significantly (say, after the
rearrangement of some 6000 1b), a new set of derivatives should be calculated and used to form a new
redistribution. In more realistic circumstances where the purpose is to clear all flight conditionms,
then the sets of derivatives for all the critical conditions should be used in formulating the
redistributions. :

As a second example, a redistribution was designed to improve stability in the low frequency mode
for the light-weight supersonic condition using the derivatives of column 1, Table 11.1, and Table 11.2.
Here, the ground rule was to determine a distribution that would require a minimum additional amount of
weight. No structural weight was to be removed. This distribution, identified as B-1x in Table 11.3,
consisted of increasing the stiffness in panel 5 by 18% and panel 9 by 25%, resulting in the addition
of 2600 1b structural weight per side. The gain in flutter speed is more than would have been predicted
from the derivatives. Also, in doubling this additional stiffness distribution, this particular critical
mode vanished and was replaced by a high frequency mode.
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Table 11.3

Dimensionless Effects on Flutter of Modifying Structural Mass of an Aircraft of Supersonic
Transport Type. Tabulated Quantities represent Flutter Speeds divided by the Reference
Flutter Velocity at the Corresponding Flight Altitude

Supersonic Subsonic

Light-weight | Heavy-weight | Light-weight | Heavy-weight

(']
o0
5 | BASE 1 - 1.0 1.0 / 1.0 1.0
G
Fr) A—lx
£ | 3000 1b rearranged 1.04 1.08 0.98 1.11
'g (See Fig.11.13)
o1 A-2x
® | 6000 1b rearranged 1.07 1.17 0.98 1.17
2
A-3x
9000 1b rearranged 1.11 1.23 0.99 1.19

(a)

Supersonic, light-weight

Low frequency | High frequency

o

[:H]

3

@ | BASE 1.0 1.17
£

«~ | B-lx

$ | 2600 1b added 1.17 1.17
-

8 B-2x

é 5200 1b added * 1.17
=

B | 8-3x

“ | 7800 1b added * 1.17

(b)

Distribution A, No net increase in weight - each increment represents rearrangement of 3000 1b of
structural weight per side.

Distribution B, Addition of 2600 1lb of structural weight per side per increment.
* Low frequency instability no longer exists.

The foregoing obviously constitutes a very preliminary attempt at coping with many degrees of
freedom and several flutter constraints on a given design. Following Taylor [11.15], however, one can
hypothesize a relationship between a system of given mass and maximum flutter speed and one of minimum
mass for given flutter speed. As with other methods aimed at the same objective, a key step in the
computations is to estimate sensitivities — derivatives of flutter eigenvalues with respect to changes in
the physical system. Many years ago, van de Vooren([11.27], Section 9) investigated the analytical
determination of such derivatives from the properties of basic flutter equations like Eq. (11-78). His
work is expected to have special significance in aeroelastic optimization, because of its potentialities
for simplifying the calculations. -Ref. [11.27] also presents formulaé for second- and third-order
effects of system changes; although more involved, these hold out the possibility of accounting for the
sort of non-linearity exposed in Table 11.2.

The essence of van de Vooren's approach can be explained starting from Eq. (11-78). It is
rewritten, in a form closer to the notation of [11.27], as follows:

(K -ulvl) {q} = {0} . (11-94)

Here [U] 1is a combined inertia-aerodynamic matrix - an array of complex numbers when a particular
structure, reduced frequency, flight Mach number and altitude have been chosen. u represents a complex

eigenvalue, which can be equated to the combination wz/(wlzmp [1 + ig]l) when the V-g method is being used.

The r eigenvalues, and associated complex eigenvectors, are computed for Eq. (11-94). The same is
done for the transposed equation ([K] is symmetrical):
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(IKI - 0]y (p} = {0} . (11-95)

The r values of p can be proved equal for these two equations.

Square matrices [Q] and [P] are constructed from the modal columns of Eq. (11-94) and (11-95),
with the columns ordered on increasing frequency. By the bi-orthogonality relation of matrix algebra,
one can show that the following matrices are diagonal:

& o= (27 [
(11-96)
W = 27w .

Now suppose that incremental matrices [e] and [u] are added to [K] and [U], respectively, by a
small system alteration of the sort envisioned in this section. The following nondiagonal matrices are
then calculated:

(51 = [T [e]lq]
(11-97
6l = (R [ulqQ .

It is demonstrated quite straightforwardly in [11.27] that the resulting change in the ith eigenvalue
i of Eq. (11-94) is linearly estimated by

A”i = _]:.]'____Lﬁ . (11'98)
ii

Here the double-i subscripts designate the ith elements of the principal diagonals of the corresponding
matrices.

Each desired sensitivity is determined from Eq. (11-98), when [e] and/or [u]l are linearly
related to the unit change in mass/stiffness, by factoring this change out of Eq. (11-97) and (11-98)
and dividing Eq. (11-98) by it. Usually only the eigenvalue p which is associated with the critical
flutter condition will require this treatment. A careful examination of the computational steps leading
to Eq. (11-98), compared with complete flutter analyses of the reference and n modified systems,
indicates a considerable saving of labor, which should increase with an increasing number of design
variables. The important facts are that the aerodynamic matrix need be constructed only once and that
the complex eigenvalue solution (equivalent to a complete V-g determination) need be conducted only
twice - for Eq. (11-94) and (11-95).

11.4 Concluding Discussion

The most obvious comment to be made about the subject of aeroelastic optimization, as comprehended
in the foregoing sections, is that it is both presently incomplete and in a rapid state of evolution.
It is clear that both continued research and practical applications will be necessary along the two major
lines of development: discrete-element approximation of realistic light-weight structure; and the
differential-equation idealization of simplified systems, which leads to a search of function space for
optimal solutions by methods analogous to those used in modern control theory.

The latter approach is important as a general guide to the potentialities of this branch of
optimization, as a reference source for checking more approximate results, and as a possible avenue to
the proof of theorems illuminating certain questions that arise from the non-linear mathematics.

Assuming that correct and meaningful problem statements can be achieved, one faces the single over-
riding difficulty of finding solutions by numerical integration of rather high-order differential-
equation systems. Experience to date points to the transition-matrix scheme, together with the method of
unit solutions for evaluating the required sensitivities, as most promising for this purpose. Very high-
fidelity computer routines for matrix inversion are an essential adjunct. There are other alternatives
for numerical solution discussed in books like Bryson and Ho [11.23?, however; several among them, such
as the method of backward sweeping, deserve further investigation.

In the area of discretization, the principal goal is to advance to very large numbers of degrees
of freedom and design variables through the use of well-developed finite elements. There are many ways
in which work done to date can be refined. Although it is not anticipated that extreme troubles will be
encountered in the associated algebraic calculations, there remains a question whether better solutions
far removed from the assumed initial design can be anticipated and/or realized. It is finally worth
repeating that the imposition of aeroelastic inequality constraints should fit fairly routinely into
several existing schemes for structural optimization under more conventional conditions on strength and
stiffness.

One step in the direction of realism must be vigorously pursued in connection with both lines of
development. This is the simultaneous imposition of multiple constraints of different types.

Although there are' few general guidepost§ to determining when a problem is'well—posed, it seems
safe to conclude that any mathematically proper solution which also seems physically reasonable is an
acceptable product of an optimal search. Two key and related questions stand unanswered, however,

v
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except in the most elementary cases. These concern when a result is unique and when it constitutes the
absolute optimum, if such exists, among all possible extrema obtainable from a given algebraic or
analytic statement. In the authors' view, these matters represent vital unfinished business for the
applied mathematicians.

The benefits inherent in future exploration of this field are certainly not less than those foreseen
from conventional minimum-weight structural design. One important basis for this opinion is the rather
limited value of experience and intuition in the face of complicated configurations many of whose members
must be sized by aeroelastic considerations. It has been said that modern structural optimization can
produce results roughly comparable to the creations of an experienced designer confronted with the same
requirements. There are few, if any, such designers in aeroelasticity.

With respect to what savings may be hoped for, it is first necessary to ask what one will choose
as a figure of merit or reference solution. If the latter is (in some sense) a uniform structure with
the same aerocelastic behavior, then fairly realistic - if simplified - examples have already been found
where reductions in structurally-effective mass are possible in the order of 15-30%7. (Those cases which
save 70% to more than 907 are regarded either as suspect or physically unrealizable.) The small
improvements so far achieved by finite-element methods are due to the near-optimality of the correspond-
ing reference designs. There are many respects wherein the crude attempts of the past can be
substantially improved, and this new tool is believed to hold substantial promise for the refinement of
future aerospace structures.
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Appendix 11A - List of Principal Symbols

function used for applying minimum-thickness constraint
cross-gectional area of bar
dimensionless aerodynamic matrix

(= [kl - w2[M]) combined stiffness-inertia matrix

» chord of wing

averaged or two-dimensional lift-curve slope of wing or airfoil

2

(== w" p C4 L{A]) abbreviated aerodynamic matrix

strain energy per unit volume

Young's modulus; distance between wing aerodynamic center and elastic axis

function appearing in ith constraint differential equation

Euler-Lagrange function

. structural damping parameter

torsional rigidity of rod

"Hamiltonian function

(= /-1) the imaginary unit

mass.moment of inertia per unit span (constant)
optimum distribution of mass moment of inertia

merit funétion (usually structural mass)

(= wC/2V) reduced frequency

a constant '

matrix of stiffness elements

length of bar or beam; wingspan . )
dimensionless mass or thickness of structure (figure of merit)

added element of mass
aerodynamic pitching moment about elastic axis (positive nose-up)

matrix of inertia elements

mass per unit length of bar
tip mass attached to bar

order of vector of control or design variables

order of state vector of a system (total order of governing differential equations)

various auxiliary functions of x used in reducing a system to state-vector form

row matrix adjoint to {q}
square matrix of adjoint eigenvectors

discrete system coordinate or functional element of state vector
matrix of coordinates 9
matrix of qi—eigenvectors

number of degrees of freedom in a discretized system
sensitivity of flutter speed to mass change
dimensionless thickness of structural material

specified minimum value of t

dimensional thickness

increment to mass-aerodynamic matrix

volume of elastic body

displacement of points along a bar in extensional motion
mass/aerodynamic matrix in theory of [11.27]

airspeed or flight speed

critical values of V associated with divergence, flutter, respectively

(Z Y/L) dimensionless bending deflection

dimensionless length coordinate in beam, bar, etc.



List of Principal Symbols (Contd.)

X value of x at transition from varying thickness to minimum value to

X dimensional length coordinate

s element of state vector

Y(X) bending deflection of beam or plate

a,B quantities proportional to 61 and 62 [ see Eq. (2-60)]

8 (= uwL Vp/E) dimensionless frequency parameter for vibrating bar

Yy . used as a constant in Section 11.1; see also definition in (2-47)

8 variation-

61,62 fractions of mass, in reference uniform system, which are for primary structure and

nonstructural, respectively

8612650 quantities related to &, and 6, [see Eq. (2-37)]

1 2
[e] increment to stiffness matrix
8 elastic twist in rod or wing
X (with various subscripts) Lagrange multiplier or adjoint variable
N complex flutter eigenvaiue
P density of air or solid material
T time coordinate
w circular frequency of simple harmonic motion
Wy : frequency of torsional vibration or flutter
Q general dimensionless eigenvalue parameter

Subscripts, superscripts, etc.

( )o . identifies reference system generally (uniform propertieé)
( )(0) superscript denoting reference system in theory of [11.13]
( )T transpose of matrix

« ) derivative with respect to length coordinate

()',()" real and imaginary parts of complex number

( )=* complex conjugate

D) complei number or complex amplitude of simple harmonic quantity

>
() vector
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A Chapter 12
OPTIMIZATION TECHNIQUES IN AIRCRAFT CONFIGURATION DESIGN
by .
B. Silver and H. Aghley
12.1 Introduction

The present Chapter is a departure from the main theme of this book on structural optimization.
The subject here is 'preliminary' or configuration design - and its optimization. Specifically, how is
the 'best' combination of aircraft design parameters. (such as wing loading, aspect ratio, tail area,
etc.) to be selected in order to meet given system requirements? The study of configuration optimiza-
tion is interactive and complementary to structural optimization; indeed, it is not difficult to foresee
the day when both will coexist within a single computer program. :

The two areas, structural optimization and configuration optimization, can both be classified
under the heading of 'parameter optimization of non-linear systems', a rapidly growing domain of
optimization theory. Thus the discussion of one area has implications for the other - and in fact, for
many other optimization problems as well. In a broad sense, every engineering design problem is one of
parameter optimization. At the risk of duplicating other material .in this book, the present authors have
sought to bring out the general nature of the design optimization problem, while still emphasizing the
specific problem of aircraft configuration optimization. Further, they take the point of view that
present-day methods of aircraft design optimization are a natural extension of past methods; that is,
optimum-seeking computer programs have the same goal as the sliderule-wielding engineer of yore. Both
want to find the 'best' airplane design. Both approaches rely on the designer's intuition for a first-
guess, and both use iterative methods to improve this guess. The major advantage of optimization using
the high-speed digital computer is that the space of design variables may be more exhaustively explored.
The main disadvantage is that this space must be quantitatively defined - a process that de-emphasizes
the roles of experience and intuition while inviting distortions and oversimplifications.

The iterative nature of the engineering design process is indicated in Fig.12.1. The 'search
strategy' simply forms the feedback loop which attempts to improve the design. In the real-world
('reality') the feedback may come from operational experience with the actual airplane. Reality may be
modeled, either with a physical model, such as a wind-tunnel model or a design mockup, or with a
mathematical model ('quantitative abstraction') as shown. This abstraction requires inputs from the
real world or from other models, and its results must be continuously compared with real-world results.
This distinction between reality and abstraction should be kept in mind during computerized optimization
for what is optimized is the model, not reality.

The 'model' involves the space of design variables which is searched. In Fig.12.1, the 'model' is
comprised of (A') ('abstract domain of possible designs') and (B') (the value criterion: 'defined objec-
tive function and constraints'), which are analogues of (A) ('actual domain of possible designs') and
(B) ('measure of actual value').

(A') contains the underlying physics of aircraft design, including aerodynamics, structures,
propulsion, etc. (B') estimates the value of the aircraft design specified by (A'). Conceptually the
model defined by (A') and (B') is the same one used in parametric analyses or tradeoff studies. The
difference is that this model is driven in a sequential manner by (C'), the search strategy. Sequential
search uses the results of previous iterations to select each new design, whereas a nonsequential
search, such as a typical parametric analysis, iterates over a predetermined array of values.

12.1.1 A Comparison between 'Parametric Analysis' and Automated Search Methods

Parametric analysis methods are firmly rooted in the thinking of most aircraft designers. In this
method a range of values of each of a number of parameters is analysed, the remaining parameters
temporarily being held fixed. This is sometimes called a tradeoff study. The optimizer in this approach
is the designer, whose judgment guides the selection of parameters. Of course the judgment of the
designer must also remain active when he interprets the results of an automated optimization.

Table 12.1 has been prepared to summarize the authors' views on the relative merits of these complementary
approaches.

Selected references related to the use of parametric analysis in aircraft design are given in
Reference Section 12A. One of the early efforts that brought together aerodynamics, structures,
propulsion, performance and design into ome aircraft synthesis program is SYNAC {12A.1] developed by
General Dynamics Corporation. Having started as a parametric analysis program, SYNAC is moving toward
an automated mode. Of course, once an integrated mathematical model such as this is developed, it is
conceptually simple to 'drive' it with an automated optimizer. Every major aerospace company has a
multiplicity of parametric computer programs. Both Hornburg of Douglas Aircraft [12F.1] and Hedrick of
Grumman Aerospace [12F.2] believe that one of the major problems at present is obtaining a compatible
integration of the various analysis and synthesis programs. A related problem is that the various
computer programs within a company may not use a common data base. A reduction of the discipline-
interface mismatches is one of the advantages of an integrated aerospace vehicle synthesis program.

Typical of present-day airplane parametric analysis programs is Boeing's 'Thumbprint' [12A.2].
The output of this program is plotted on transparent overlays to give the engineer a better view of
the multi-dimensional space made up of the following: wing loading, thrust loading, gross weight,
approach speed, maximum lift-to-drag ratio, takeoff noise level, initial altitude capability, takeoff
field length and direct operating cost. This program is a useful tool for selecting proper tradeoffs
in the preliminary sizing of a commercial transport.
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Fig.12.1 . The Aircraft Design Optimization Takes Place within a Quantitative Abstraction to Reality. It Contains
Three Phases: (A') the Quantitative Model.(Underlying Physical Laws); (B') a Definition of Value; and (C)
a Search Strategy. Each Phase must be Compared Against the Ideal of ‘Reality’
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Table 12.1

Comparison between Parametric Analysis and Automated Search Methods

. PARAMETRIC ANALYSIS AUTOMATED SEARCH METHODS
1. _Easy to program. 1. Potentially more efficient in locat-]
ing optimum, particularly for
2. Traditional approach, matched to higher-dimensional problems.
industry experience.
2. Potentially better convergence.
3. Maintains designer 'in the loop’',
. thus exercising and strengthen- 3. Applicable to a higher-dimensional
@ ing his judgment. space than man can manipulate,
S 4. Objective function does not need 4. Minimizes human bias.
g to be pre-specified.
| : 5. - Encourages more rigorous analysis.
5. Constraints do not have to be
pre-specified. 6. Applicable to a wide class of
problems, including those in which
‘6. Sensitivity to change in the human intuition is not well
parameters is apparent from the developed (e.g. structural optimi-
results .('maps' the space). zation with flutter constraints).
1. Unwieldy and inefficient for 1. Harder to program and debug.
higher-dimensional spaces.
) 2. 'Best' search method depends on
2. Requires a good nominal or the character of the problem.
starting point. . -
3. Generally finds local rather than
3. Provides less certainty of global optimum,
o obtaining optimum.
(2] 4. Can encounter convergence problems,
8 4, Must often be redone to extend
Z the selected range of parameters. 5. Search often tends to be driven
2. outside the range of the mathe-
g 5. Encourages the use of a restricted matical model which is supported
= number of parameters. by physical data.
6. May not challenge and strengthen
* designer's intuition.
7. Sensitivity generally available
only over linear range (does not
'map' the space).

The remainder of this Chapter will be devoted to methods of optimization that go beyond
parametric analysis. Section 12.2 briefly discusses indirect methods of optimization and Section 12,3
describes some direct methods. The difference between these two approaches is that the indirect method
solves an auxiliary problem [perhaps a generalized set of equations like %% = 0] while the direct
method adopts a 'hill-climbing' strategy on the objective function y(X) directly. Section 12.4
gives some operational results of direct search methods and Section 12.5 briefly describes the rapidly
developing field of man-computer interactive design.

12.2 Indirect Methods of Optimization

[

Typical of indirect methods is the calculus of variations. The results of this approach can
occasionally be elegant closed-form expressions, which represent solutions to a general class of
problems. Unfortunately it has proved difficult to apply the calculus of variations to the optimization
of systems as complex as an aircraft configuration. In fact, formal optimization of systems was not
practical by any method until the advent of the modern computer and the powerful iterative methods
typical of computer solutions.

Annotated references are included at the end of this Chapter. These references are divided into
seven groups, two of which relate to indirect methods. Reference Section 12B lists a few recent books
on the general subject of optimization (Ref. [12B.1) includes two introductory chapters on the use of
variational calculus in optimization); Reference Section 12C deals specifically with indirect methods.
Ref. [12C.1] is particularly concerned with extremal problems in the external shaping of aerodynamic
surfaces, e.g. minimum-drag wings and bodies in supersonic and hypersonic flow. In [12C.2] the calculus
of variations is used to obtain subsonic airfoil profiles of maximum section 1lift coefficient. Although
drag is not constrained, the requirement of a fully attached boundary layer leads also to high
predlcted maximum 11ft—to—drag ratios (59 to 352, corresponding to a Reynolds number range of

106 to 10 ).

A recently developed indirect method is called 'geometric programming' and is associated with
the names of Zener, Duffin and Peterson [12C.3]. Wilde and Beightler [12B.2], comment: '"Geometric
programming can now be used wherever a system is described by generalized polynomials. Potential
applications abound because the technique is 8o new that only a few engineers have had time to put it to
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work. For problems with few degrees of difficulty, geometric programming promises to yield fast,
accurate solutions to horribly non-linear problems. And when there are no degrees of difficulty at all,
the method should produce rigorous 'rules of thumb' giving optimal component proportions that are
completely independent of fluctuating prices and unit charges".

Apparently little has been done with geometric programming in aircraft optimization, although
[12C.4) discusses its use in the design of V/STOL vehicles.

12.3 Direct Methods of Optimization

Methods of direct search are iterative methods which sequentially attempt to improve the defined
objective function while satisfying given constraints. As shown in Fig.12.1, the search strategy (C')
acts as a feedback loop driving the mathematical model made up of (A') and (B'). Although this
Chapter is mainly concerned with (C'), it is worth noting that the real processes (A) and (B) are often
more difficult to model than (C). Various researchers in the field of aircraft design (e.g. [12F.1]
through [12F.6]) have singled out block (A') as presenting particular difficulties. Among the areas of
difficulty mentioned were the following: inadequate theory for predicting aerodynamic forces on an
arbitrary three-dimensional body; insufficiently accurate, simple methods of aircraft weight estimationm;
and inaccurate cost estimation techniques. Regarding the value criterion (B'), in general the aircraft
configuration that is 'optimum' is very sensitive to the definition of this value criterion. Because of
this behavior, the value criterion should continually be re-examined as the design evolves. This
process forms an integral part of design optimization.

The value criterion in (B') is mathematically expressed as an 'objective function', which is to be
optimized, as well as various comstraints (inequality and/or equality) that are simultaneously to be
satisfied. A conceptual difficulty with this formulation is that a single objective function must be
defined. In the design of a commercial air transport, for example, this objective function might be
direct operating cost (DOC). The designer might also wish to minimize takeoff distance (TOD). (Other
parameters will be neglected for simplicity in this example.) A request to minimize both DOC and TOD
independently would make no sense. How much TOD are you willing to give up for an improvement in DOC?
At this point the designer has two alternatives: he can specify TOD as an inequality constraint, such
as TOD < 5000 ft, or he can multiply TOD by a selected constant (which implies the acceptable tradeoff
between TOD and DOC) and add this quantity to DOC to form a new objective function. Either approach
requires a constant to be selected beforehand. The implications of this selection should be tested by a
sensitivity analysis. This refinement introduces an outside iteration loop to the process described by
Fig.12.1.

Suppose that in the above example the designer chooses the constraint, TOD < 5000 ft. After
minimizing DOC while satisfying this constraint, a sensitivity analysis would determine the change in
optimized DOC implied by a small change in the constraint. Suppose that a 1% decrease in TOD caused an

increase in DOC of only 0.001%. 1In this case the sensitivity coefficient is SDOC/TOD = - 0.001, Such a

small sensitivity would tempt the designer to select a shorter takeoff distance. On the other hand, if
the sensitivity coefficient were -0.2 instead of —-0.001, the designer might wish to relax the TOD
constraint, Obviously the logical selection of the constraint depends on the associated sensitivity.
In this case, the first author suggests that the constraint be placed on the sensitivity coefficient
itself, rather than on the parameter. In the present example the designer might try replacing the
constraint on TOD with the comstraint, SDOC/TOD 2 - 0.05.

Many constraints can arise from an incompleteness of the model. If in the above example a higher
level goal, say profitability to the manufacturer, were made the objective function, the constraint
dealing with TOD might be eliminated. Of course, it would then be necessary greatly to expand the
mathematical model to include a description of the selection criteria employed by airlines, whose
representatives would consider takeoff distance. However, this process of extending the wodel to
eliminate constraints can cause serious complications and increase the likelihood of error. The natural
approach would be to start with simple models and proceed to greater complexity as required.

This discussion is intended as an introduction to the problem of setting up a model to be optimized
using a direct search. Subsequent sub-sections will discuss in more detail the problem formulation,
selected direct search methods and convergence criteria.

12.3.1 The Selection of Design Variables for Direct Methods

The efficiency of an optimization search and its chances of success depend strongly on the manner
in which the problem is stated. This section will discuss some implications of direct search
characteristics on the selection of the design variables. In every design problem there are alternate
ways of describing the design. For example, any two of the following four wing variables imply the
other two: span (b), mean chord (), area (S = bc), and aspect ratio (A = b/C). Any two, such as b
and ¢, could be selected as design variables. One would be insufficient, and three (or four) would
be too many and would lead to what is known as 'ill-conditioning', i.e. non-independence.of the
variables.

The goal in selecting design variables is to reduce as much as possible the interaction between
them. When a strong interaction exists there is a 'ridge' (or its inverse, a 'ravine') in the objective
function. It has been found that most direct search methods encounter difficulty with ridges ([12B.1],
p.268 and [12B.2], p.283). For all direct methods the easiest functions to optimize are those whose
constant-value contours are circles. Of course this phenomenon rarely occurs in physical. systems, but
it is generally possible to make the contours more nearly circular (at least locally) by rescaling
(and perhaps rotating) the variables. The designer should use his understanding of the problem in his
selection and scaling of design variables.
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For example, suppose the designer must choose two of the four wing variables mentioned above
(b, ¢, S and A). Many definitions of objective function would lead to a strong dependence on wing
loading and thus on wing area, S. Since S = bc, a strong interaction would exist between b and G,
and they would make a poor pair of design variables. In this case, contours of the objective function
in the b - ¢ plane would disclose a diagonal ridge. The selection of wing area and aspect ratio
would be a better choice in this example.

Among the various ways in which the design variables can be defined, it usually proves most
efficient to make as many as possible dimensionless. (In general, however, at least one design variable
with dimensions will be required to specify the size of the aircraft.) The choice of dimensionless
variables is particularly_advantageous when they have direct physical utility, such as aspect ratio or
tail volume coefficient [V = (Stzt)/(SE), where St = tail area and Qt = tail length].

In aircraft optimization some design variables are more important than others. It is often
worthwhile to order these variables according to their expected importance. Where computer time is a
consideration, one then has the option of searching over just the most important variables. This is
called a 'reduced-space search' ‘and is useful either when the sophistication of a full-space search is
not required or as a starting procedure for a full-space search.

The non-dimensionalization of the problem can be carried further, as discussed in the next
section. One possibility is that all terms in the problem statement may be normalized, in order to
decouple the search from the dimensions of the original problem, This accomplishes the rescaling
suggested in this section.

12.3.2 Problem Statement and Constraint Formulation

The authors have attempted to limit the mathematical content of this Chapter, since its main
purpose is to discuss concepts and report experience. However the normalized formulation presented
here is considered to be of practical value in setting up a design problem for computer optimization.
The reader uninterested in mathematical details may skip to Section 12.3.3.

The general problem of non-linear programming may be stated as follows: Find the vector o of
n variables as, i =1,2,...n (called the 'design variables' in this Chapter) which

(1) minimizes the scalar objective function y(a), subject to (12-1)

(2) design variable limits (aLO. and «a represent the low and high limits, respectively,
i

HI.
i

and will be used later to normalize ai),
%0 < oy < Sur. o i=1,2,...n ; (12-2)
i i
(3) equality constraints,

ej(a) = b. , j=1,2,...3 ; {12-3)

]

(4) and inequality constraints (sometimes called 'restraints'),
£,(a) 2 ¢ » k=12,..K . (12-4)

Here bj and c¢,_ are selected constants with dimensions appropriate to each constraint. These

k
constants will be used to normalize the constraints, a technique which obviates the need for individual
weighting constants in the development of the constraint penalty functions later in this section,

It is convenient to develop optimization search routines (block (C') in Fig.12.1) which do not
have to consider dimensions and unequal orders of magnitude in the various design variables. For
example, the large differences in magnitude between typical values of static longitudinal stability

margin (~0.05), wing area (~1000 ftz), and Reynolds number C~107) would lead (if these parameters
were used as design variables) to another form of ill-conditioning in most search methods., For use in
the search subroutine it is cleaner to normalize the problem statement in the following manner:

(1) define normalized design variables*, Xi,

i=1,2,...n (12-2")
0 <x, <1 |,

*The symbol A means 'equal by definition'.
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(2) define normalized equality constraints,

EJ.AeJ./bj =1, j=1,2,...0 ; (12-3")
(3) and define normalized inequality constraints,

Fkgfk/ck 21, k=1,2,...K . (12-4")

Finally the objective function may be normalized within the program by the initial value of y at the
input point (specified by ary. > ©OF equivalently, e ). Define the normalized objective function,
i i

YOO Ay Iy () . (12-11)

By choosing the normalizing constants in a physically meaningful way, the designer accomplishes
the rescaling suggested in the previous section. For example, suppose that Reynolds number were a
design variable whose range was limited by other considerations in the problem. The designer could
then arbitrarily select a normalizing range (QHI - “LO) which included the actual range. That is,

knowing that Reynolds number would mever exceed 5 x 107, he could use this value for the upper limit
and zero for the lower limit, thus rescaling this design variable to the range zero to one. Note that
in the normalized formulation all variables are of order unity. Thus the designer hasé a good 'feel'
for the percentage change in each variable. The normalization may expose similarities between various
design optimization problems. These analogies might have the effect of improving the judgment of the
design engineer. ‘

12.3.2.1 Problem Statement Example

An interesting example of an aircraft whose design problem might have been simply stated for
computer optimization is the Lockheed U-2 high-altitude research and reconnaissance aircraft. Although
designed long before non-linear optimization techniques were well developed (the U-2 was designed in
1954, with first flight in 1955), the U-2 design problem might have been formalized as something like
the following:

Maximize the service ceiling, hs’ or, equivalently, minimize -~ hs, subject to constraints,

[
|

payload weight = b

1 1

£, A range 2 ¢,

f2 A - (static stability margin) = ¢y

f3 A - an (directional stability) = ey -

1 4000 miles, ¢y = +0.05 and ¢y = +0.001.

The number of design variables is determined by the sophistication of one's mathematical model, but a
few typical design variables are:

The constraint constants might have been b1 = 2000 1b, c

wing area, S (ftz) ~

oy 4

a, A wing loading, W/S (1b/ft2) (implies gross weight, W)
ay A wing aspect ratio

@, A wing chord taper ratio

ag A wing root thickness ratio, (t/c)ROOT
% A (t/c)np/(t/c)koom

@, A wing twist ('washout')

og A ratio of span to tail length

ag A ratio of stabilizer area to wing. area
%0 A ratio of fin area to wing area

@), A fuel weight fraction, wFUEL/w .

Additional design variables which could be investigated include dihedral, incidence, sweep, design lift
coefficient (root and tip) for the wing; aspect ratio, thickness ratio, taper ratio, sweep, control
surface area for both stabilizer and fin; fineness ratio, cross-sectional area, camber for the
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fuselage; thrust vector angle; plus a number of other variables describing the propulsion unit, the
inlets, the control system, etc. When these additional parameters are not design variables, their
values would be assumed or determined by other analyses.

The appropriate design variable limits might be:

0 € o < 1000 (£t2)

1
0 < o, < 50 (1b/£t)
0 < ay < 20
etc.

Note that most of the selected design variables are dimensionless. This approach improves the case
of scaling the aircraft, both within and without the computer program. For use within an optimization
program, the entire problem statement could be normalized as in Section 12.3.2,

No actual solutions can yet be reported on this particular design.

12.3.2.2 Constraint Formulation

There are two basic constraint formulations, One changes the constrained problem into an
unconstrained problem by adding a penalty function, based on constraint violations, to the original
objective function. The other attempts to pick search directions that both satisfy the constraints and
improve the objective function. The penalty function approach is discussed by Fox in Chapter 6.

Examples of the second approach are described in Chapters 5 (sequence of linear programs) and 7 (feaSLble
directions methods) by Pope and Kowalik respectively.

The normalized form developed in Section 12.3.2 is convenient for the following penalty function
formulations:

'Interior' penalty function, P_:

I
‘§ 1
P_ A P i F,_ 21 (12-5)
1= L F -1 k
'Exterior' penalty function, PE:
J K )
P A Z(E.—1)2+Z(F )25k
j=1 3 k=1
} (12-6)
0, F, =1 :
k
where 5k =
1, F <1
B

are defined in (12-3') and (12-4'), respectively).

(Ej and Fk

A new objective function is formed by adding the weighted penalty function to the old objective function:
'Interior' form: minimize yp = ¥+ WP (12-7a)
'Exterior' form: minimize g = ¥ * WP . (12-7b)

The weighting factor, WI or WE, must be adjusted as the search progresses to insure that the constrained

optimum is approached. Refer to Pierre [12B.1], p.338, and to Chapter 6 for discussions of weighting
factor control. Either penalty formulation may be used, but the 'interior' form requires a feasible
starting point and is difficult to use when equality constraints are present. Some engineers prefer the
interior form, however, because solutions lie inside the constraint boundaries (hence the name, 'interior')
and are thus conservative,

The penalty function warps the objective function and creates a two-sided 'ravine' for an equality
constraint and a one-sided 'cliff' for an inequality constraint. These imposed non-linearities make
the search more difficult, In many cases a constraint may be incorporated into the model to eliminate
one of the design variables. In fact, the U-2 design example of the previous subsection was artificially
constructed so that all of the constraints could be easily eliminated. The payload weight and range
constraints could be used in an internal loop to scale the gross weight, thus eliminating ay and @y

and the stability constraints could be used directly to size the tail areas, thus eliminating ag and

310.

search driver (although they are still implicit in the mathematical model).

_Finally it is noted that an inequality constraint is preferable to an equality constraint in the
penalty formulation, because it reduces the likelihood of creating contradictory requirements (an
equality constraint is always 'on') and because it forms only a one-sided warping of the space.

This approach is preferred since it reduces both the number of constraints and design variables in the
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Most aircraft design comstraints, such as take-off distance, rate of climb, stall speed, cruise speed,
etc., can be more satisfactorily imposed as inequality comstraints, anyway.

12.3.2.3 A Penalty Function for Integer Design Variables

Certain meaningful design variables can only take on integral values. Such variables include the
number of engines, the crew size, and the number of windows, landing gears or wheels, hydraulic systems,
etc. Many of these variables form an important part of a design analysis, and two techniques are
suggested here for their introduction.

The first and simplest technique is to allow the integer variables to accept non-integer values
during the first optimization run and then to fix their values at the nearest integer for a subsequent
optimization run. The logic for this can be incorporated into the optimization program.

The second technique employs a penalty function which drives selected variables to integer
values. As an example, the first author suggests a penalty (to be added to the objective function)
of the form, ’

. a
wINT E sin (w nimT)
INT

where WINT is a weighting factor, a 1is a selected constant, and ng is the fractional part of
: INT
the ith integer design variable, Xi (in Fortran 1V, IBM 360, n; = AMOD (Xi , 1)).
INT INT INT
As shown in Figs.12.2a and 12.2b, the exponent a can be used to smooth out the cusps at the
integer values. The first order derivatives are continuous for a > 1 and the second order derivatives
are continuous for a > 2, etc.

Because this penalty acts to prevent the natural migration of the selected design variables
during an optimization, it is suggested that the weighting factor, W be kept at zero until

INT’
'rough convergence' is obtained (Xi are within #0.5 of their estimated converged values), and
INT
then that wINT be sequentially increased until all Xi fall within a given € of being integers.
INT

12.3.3 Summary of Selected Direct Search Methods

It is the intent of this section to discuss the interrelationship between aircraft design
optimization problems and various direct search methods which may be applied to their solution.
Previous sections have stressed the need to formulate the problem in a manner well suited for direct
methods in general. This section briefly describes specific search methods and the types of problem
for which each is suited. This description also lays the groundwork for Section 12.4, in which
operational experience using these methods is reported.

The remainder of this Section attempts to develop the reader's intuitive understanding of
direct methods; subsections 12.3.3.1 through 12.3,3.3 summarize specific methods.

Most direct methods employ two distinct search strategies: one for direction gselection and one
for search along the direction. Direction selection strategies are discussed in subsections 12.3.3.1
and 12.3.3.2. A search along a direction is a one-dimensional search; techniques for this are listed
in subsection 12.3.3.3. A semantic distinction is made in this Chapter between the one-dimensional
iterations, called 'steps' and the overall movements made in each direction, called 'moves'.

Fig.12.3a indicates this distinction. This figure shows the contours of the objective function in the
plane of two design variables. For example, the objective function could be (L/D)MAX - that is,

maximum lift to drag ratio - for a sailplane, and the two design variables could be normalized wing
loading and normalized aspect ratio. This type of plot suggests the intuitive topographical images of
peaks, ridges, passes (saddle points), ravines, etc. Fig.12.3a was drawn with two peaks. Direct
methods generally stop at the first local optimum encountered, as shown (point 5).

Fig.12.3b indicates the dual~loop nature of direct methods. The inner loop is the one-dimensional
search ('steps'), and the outer loop 'moves' to the best point thus found and then selects a new
direction. The number of steps per move should be balanced against the requirements, both in time and
resolution, of the direction strategy.

A numerical evaluation of the gradient at a point requires n perturbations, each of which is as
time-consuming as one step since each requires one objective function evaluation. For aircraft design
problems the number of function evaluations is generally a good measure of computer time expended. The
time~consuming nature of numerical partials has encouraged the development of a number of search
methods which do not require partials; these methods are discussed in subsection 12.3.3.1. When
analytical partial derivatives are available - and often when they are not - methods employing the
partials may be used; these are discussed in subsection 12.3.3.2.

12.3.3.1 Direct Search Methods without Derivatives

Mathematical models for aircraft configuration optimization often require many layers of computa-
tion, many times with internal loops. In addition, tabular input data are generally used. These
factors make it difficult to obtain analytic partial derivatives. In this section, seven direct methods
which do not require derivatives are briefly described. These short descriptions are intended for
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identification of the methods (often, different names are used for the same method) without going into
the mathematical details. The interested reader is referred to the references cited.

Most of the direct methods discussed in this Chapter have been employed in a computer program called
AESOP, 'Automated Engineering and Scientific Optimization Program'. This Boeing Company program is
described in {12D.1], [12E.1], [12F.7] and [12F.8]. It is the most extensive parameter optimization
driver known to the authors. It has nine search strategies, which may be used singly (except for
'Pattern’) or in combination. Storage is provided for 100 design variables, and an unlimited number of
constraints may be employed through a penalty function. AESOP has been applied to many aerospace
problems including aircraft design, [12E.1], [12E.3], [12E.5], [12F.9]. The results of some of these
studies will be discussed in Section 12.4.

The names and descriptions for methods 1 through 6 below are taken from AESOP, [12D.1], p.3:

(1) "SECTIONING - Succession of one~dimensional optimization calculations parallel to coordinate
axes. Variables may be perturbed in random or natural order.”

(2) "ADAPTIVE CREEPING - Search in small incremental steps parallel to the coordinate axes.
Step-size adjusted automatically in the algorithm. Variables may be perturbed in random or natural
order,"

(3) "PATTERN - A Ray Search in the gross direction defined by a previous search or search
combination." This is the acceleration move originally suggested by Forsythe and Motzkin in [12D.6].
Move 2-3 in Fig.12.3a is an acceleration move in the direction defined by the sum of the two previous
moves,

(4) '"MAGNIFICATION - Straightforward magnification or diminution about the origin."

(5) "RANDOM POINT - Function to be oﬁtimized is evaluated at a set of uniformly distributed
random points in a specified region."”

(6) 'RANDOM RAY SEARCH - Function is optimized by search along a sequence of random rays having a
uniformly distributed angular orientation in the multivariable parameter space."

(7) BEST-TRIAL SEARCH (Rastrigin, [12D.4]) - A cross between Random Ray and Statistical
Gradient*, this method tests m random directions and then performs a one-dimensional search in the
most promising direction.

12.3.3.2 Direct Search Methods with Derivatives

When analytic partial derivatives are available, the added computer time required for their
calculation is generally small in comparison with the time required for the objective function
evaluations alone (not to mention the time required for the n evaluations of numerical partials).
The information contained in the partial derivatives can generally be used to improve the search
procedure,

Again, the following short descriptions are intended to identify the methods only. The names
and descriptions of methods 8 through 10 are taken from AESOP, [12D.1], p.3:

(8) 'STEEPEST DESCENT - Search along the weighted gradient-direction. Several weighting options
available."

(9) "DAVIDON'S METHOD' - An attempt to achieve the advantages of second-order search from an
ordered succession of first-order searches." Refer to Chapter 6 and to Davidon [12D.7}, Fletcher and
Powell [12D.8]; also [12B.1], p.320, and [12B.2], p.331.

(10) "QUADRATIC - Second-order multivariable curve fit to the function being optimized, followed
by search in direction of second-order surface optimum."”

(11) PARTAN (from "PARallel TANgents') - Introduced by Shah, et al. [12D.12]. This method
selects directions which are parallel to tangent planes of previous moves; alternating moves are
simple acceleration moves (Method 3). "Tangent plane" refers to the hyper-plane which is tangent to
?he ob%ective function hyper-surface in n+l space. This method is illustrated in Section 7-12 of

128.2].

Some gradient methods, particularly Davidon and Partan, have proven quite powerful in certain
applications, even when the partials were evaluated numerically,

12.3.3.3 One-Dimensional Search Methods

Most of the search methods discussed so far merely determine the direction to be searched without
specifying how the one-dimensional search in this direction is to be conducted. In this subsection a
few standard one-dimensional search methods will be described.

If a slice is taken of the objective function in a selected direction it might look like
Fig.12.4. The starting point is the best point found on the previous move. The first step size may be
determined bypreviously successful step sizes. Some strategy must be used to size subsequent steps.

In Fig.12.4 the steps are simply doubled until an improvement is no longer obtained.

*The gradient is estimated as the scaled sum of m random perturbation vectors, where m <n.



184
A Y

STARTING POINT

_____ MOVE

LINE
| | MINIMUM

§

L e e e —— e c— c— — — — —

: *
SEARCH
»| DIRECTION

|

STEPQ)!  s1eP @

(ACCEPTED)
(REJECTED)

(@31d320v) (DHd3aLs
(031d390V) (@) d3Ls

Fig.12.4 One-Dimensional Search. The Simple Search Strategy used here is to keep Doubling the Step Size until
the Function no Longer Improves. The Move is made to the Last Accepted Point

e ~ MODEL

OPTIMIZER -

Fig.12.5 Separate Nature of Model and Optimizer



185

Since there may be many steps per move, the efficiency of the overall search is obviously
dependent on the speed of the one-dimensional method employed.

Some one-dimensional strategies are:

(A) ONE-STEP - The simplest of all strategies; only one step is taken in each direction. The
size of the step may be chosen on the basis of recent successes. For example, if the last move were a
success, the present step could be double the last step; if a failure, one-half or one-fourth,

(B) ONE-STEP PLUS REVERSAL - A modification of the one-step, this strategy tries a step in the
reverse direction if the first step is a failure. This method is used in AESOP's 'adaptive creeping'.

(C) STEP UNTIL FAILURE - This method continues stepping until the function stops improving, then
moves to the last accepted point. Generally each step size is selected as some multiple of the previous
gtep; that is, S, = KS._1 where S, 1is the jth step size on this move, and K is a selected

constant. In Fig.12.4, K = 2, A rapidly increasing step size, such as K = 10, can be used to bound
the line optimum, a necessary requisite for interval elimination methods.

(D) INTERVAL ELIMINATION - Fibonacci search and golden~section search both attempt to reduce
the interval in which the line optimum lies to be small as possible, [12B.1], p.280; {12B.2}, p.236
and [12B.3]. The difference between the methods is that the number of steps is pre-specified for the
Fibonacci search and not for the golden-section gearch. The Fibonacci search reduces the interval by

a factor of FN' FN’ the Fibonacci number comes from the series (N = number of steps = 1,2,3,4...):

1,2,3,5,8,13,21,.... Note that Fo=F, *F,
less efficient and reduces the interval by (0.618) , the advantage being that the number of steps,
N, 1is not pre-specified. For five steps the reduction ratio is 1/8 (0.125) for Fibonacci and
0.145 for golden section.

for N > 2, The golden-section search is slightly
N-1

(E) CURVE FIT METHODS - A polynomial of degree N may be fitted to N points found in the
one-dimensional search. The location of the optimum on this line can then be estimated by setting the
first derivative equal to zero. If the function evaluated at this point matches the predicted value
within some €, the one-dimensional search is terminated; if not, this point is used to improve
the polynomial, and a new optimum is estimated. A least-squares curve fit can be used where the N
number of points exceeds the degree of the polynomial. For further discussion see Chapter 6 (Fox),
and also [12B.1], p.274.

12.3.4 Convergence Criteria for Direct Methods

As will be seen in Section 12.4 all direct methods do not converge on all problems. In fact, most
commonly used stopping criteria do not guarantee convergence. It is often up to the engineer to
determine how near his result is to the converged optimum. Strictly speaking a (local) optimum is
assured only if necessary and sufficient conditions are fulfilled. The necessary condition requires
the constrained partial derivatives of the objective function with respect to the design variables to
be zero [12H.3], [12B.2]. The sufficient condition, which examines the matrix of second order partials
of the constrained objective function for positive definiteness (for a minimum), can generally be
forgone for aircraft configuration optimizations because it is obvious whether a maximum or a minimum
is obtained (generally only one makes any sense). This leaves the requirement for only the first order
partials, but even these are often not available. When they are available (subsection 12.3.3.2) the
proper test is that all constrained partials be 'small', where 'small' is set by the engineer as
a tradeoff between computer time and nearness of convergence.

When the test on partials can't be performed, some standard stopping criteria are:

(A) Function evaluations exceed a specified number.

(B) Sequential.failures exceed a specified number.

(C) Step size drops below a given limit.

(D) Improvement in the objective function between iterations drops below a given level,

Two methods are available which often discriminate against a false optimum. One is to 'map' the
region in the vicinity of the result; that can be done with a simple parametric analysis at the
supposed optimum. Another method, which in the authors' experience is very effective, is to run the
search again from a few different starting points (see for example, Table 12.2, Section 12.4.1).

Examination of the region of the supposed optimum is valuable not only for testing convergence but
for refining the value criterion. For example, the design of a hypersonic cruise vehicle is discussed
in Section 12.4.1. The objective function is number of passengers. It appears from Table 12.2 that
the optimum is rather flat with respect to wing loading. Other considerations, such as approach speed,
might cause one to select a lower wing loading without much degradation of the objective function,

number of passengers.

12.4 Operational Experience with Direct Methods

The number of parameter optimization studies is growing rapidly. Applications in the field of
aircraft design, however, have lagged those in certain other fields. Stepniewski and Kalmbach [12F.9]
comment: ",.. there is much less optimization activity in the domain of aeronautics than in
astronautics, or even in chemical processes".
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It may be expected that this situation will change as more aeronautical engineers become aware of
the power of optimization methods. One realization that will aid in this process is the fact that
existing mathematical models presently used in parametric analyses can be rather simply modified to be
driven by separate optimization packages. In Fig.12.5, the 'Optimizer' completes a feedback loop on
the mathematical 'Model' which previously may have been used open-loop for a parametric study.

General Dynamic's SYNAC, a large parametric aircraft design program, is moving toward automated search
capabilities.

Boeing, recognizing the separate nature of the Model and the Optimizer, has developed the afore-
mentioned large, general purpose parameter optimization package called AESOP [12D.1], [12E.1], which has
been applied to a variety of optimization problems. This program and its results will be discussed
in more detail in Section 12.4.1.

Some foresight in the structuring of the mathematical model, as suggested in Section 12.3, can
ease the transition to the optimizationp mode. In particular, it is required that all design variables
be available for external manipulation.

Before comparing results of various direct methods it is important to note that more criteria than
speed should be applied in comparing methods. Speed of convergence is certainly important but other

considerations are the following:

(1) Degree of convergence.

(2) Robustness. Convergence is reliably obtained for a variety of initial conditions, constraints

and noise in the data.
(3) Computer memory requirements.
(4) Ease of programming and debugging.

(5) Output capabilities. Does the method calculate sensitivity coefficients, partial
derivatives, etc.?

12.4.1 Operational Experience with AESOP

AESOP was developed by the Boeing Company starting in 1965 under the direction of
D. S. Hague [12D.1]. This general-purpose optimizer can drive up to 100 non-linear parameters, using
requested combinations of nine search methods (described in Section 12.3.3 as Methods 1 through 6
and 9 through 11). AESOP has been applied to several aeronautical problems including [12D.1]:

(1) Two-dimensional minimum drag supersonic airfoil shaping.
(2) Minimum drag supersonic bodies of revolution.

(3) Minimum drag hypersonic bodies of revolution.

(4) Three-dimensional supersonic airfoil shaping.

(5) STOL preliminary design [12F.9].

(6) Hypersonic cruise vehicle preliminary design [iZF.?].

The hypersonic cruise vehicle optimization problem is reported in detail in [12F.7]. A nominal
vehicle was designed by Ames Research Center (NASA) using conventional preliminary design techniques.
This vehicle, shown in Fig.12.6, had the following specifications: 500 000 1lb gross weight, 5500 nm
range and a speed of Mach 6. The nominal payload turned out to be 220.3 passengers*. Five design
variables ('parameters') had nominal values as listed in Table 12.2. This table also shows an off-
nominal starting point (to check sensitivity of the optimum to initial conditions) and the final design
points, obtained from each of these starting points by using an 'adaptive creeping' search method
(Method 2 of subsection 12.3.3.1). The results indicate an improvement in the objective function,
number of passengers, of 33 or 15Z. The fact that the design variables do not converge to the same
values for the two different starting points indicates either that true convergence has not been
obtained or that the optimum is relatively flat in some direction in the design space. Since a number
of other optimization methods resulted in almost the same maximum number of passengers, it might
appear that the optimum is indeed rather flat. Note that the final wing loading varies 6% between
the two cases.

The hypersonic cruise vehicle optimization problem is probably representative of aircraft
configuration designs in regard to the relative success of various optimization methods. In this study
four methods were used to optimize the hypersonic vehicle. Two simple univariate (only one design
variable is changed at a time) methods, 'sectioning' and 'adaptive creeping' were found to be superior
to two more complicated methods, steepest descent and 'quadratic'. The results of these four methods
are shown in Table 12.3.

Although the adaptive creeping technique worked best on this example, it should be pointed out that

five of AESOP's nine search options were not tried, and one of them might have proved better. The
univariate methods which worked so well in this example cannot be expected to show similar success
against a coupled surface, i.e. a ridge. When a univariate method encounters a ridge it starts to

*Number of passengers is treated as a continuous function. In the final design this number would be
rounded off to an integer.
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'zig-zag' along the ridge and is very slow to reach convergence. In fact it may stop quite far from the
optimum, An example of this phenomenon for the sectioning method is shown in Fig.12.7. The fact that
the hypersonic cruise vehicle response surface is relatively uncoupled is pointed out in {12F.7]

and [12F.9].

Table 12.3 shows that the steepest descent method was much slower than either of the univariate
methods. The actual performance was, in a sense, worse than indicated, because it was necessary to
develop a complete empirical weighting matrix even to obtain these results. Unweighted steepest descent
and steepest descent with a weighting matrix based on first derivatives both failed to converge. 1In
view of the fact that steepest descent has been one of the most popular methods in parameter optimization,
these results are a warning. (The accelerated steepest descent, that is, Methods 8 and 3 of
Section 12.3.3, was not tried and might be expected to provide better results.)

The quadratic method, which requires second-order numerical perturbation about a point to fit a
quadratic surface, gave the worst performance. A clue as to why the two sophisticated methods failed
to perform well on this problem is provided in [12F.7], p.42: "... at this scale the response surface
is quite irregular". (Numerical experiments had indicated that the mathematical model gave noisy
results at the fine scale.) '"... numerical derivative calculations in the steepest descent, Davidon,
or quadratic searches could also be in serious error if the control parameter perturbations used in
their calculation is too small."

Additional parameters and constraints were introduced into the hypersonic cruise vehicle
optimization. The successive numbers of design variables used were 6, 11, 17 and 28. Actually, in the
two latter cases, certain 'design variables' were climb-trajectory parameters. This selection indicates
that a continuous function, such as a trajectory, can be optimized using discrete elements. One of the
interesting results of the higher-dimension study was that the number of evaluations required for the
11 variable optimization was only slightly higher than that for the 6 variable optimization.

Table 12,2

Hypersonic Cruise Vehicle Optimization
Using Adaptive Creeping Search [12F.7T

Ames nominal Off-nominal
Parameter

Start Finish Start Finish
Wing loading (1b/£t2) | 80 108.5  |120 115.2
Aspect ratio 1.455 1.499 2 1.563
Fuselage fineness 14 15.8 20 15.46
Engine parameter 4 3.30 5 3.36
Pressure limit 200 150.0 200 150.4
Number of passengers 220.3 253.3 192.8 253.4

Table 12,3

Hypersonic Cruise Vehicle Optimization
Using Four Search Methods [12F.7]

Method Number of passengers | Function Evaluations*
Sectioning 253.1 70
Adaptive creeping 253.3 52
Steepest descent 252.0 150
Quadratic 253.3 220

*Measure of total computer time.

An interesting conclusion made by Hague and Glatt [12F.7], which supports their multi-method
approach,is "... the more 'sophisticated' searches typified by the steepest descent ... the second order
searches, converge less rapidly and reliably than the straightforward creeping search wherever compari-
sons are made. This behavior is in contradiction to several of the numerical experiments performed in
{12D.1]. This emphasizes a point long known to practicing optimization specialists, that no single
universal search technique is best suited to solution of all conéeivable optimization problems.
Conversely, given a particular search algorithm, one can almost always define a surface on which the
particular search will appear superior to other searches".

Other applications of AESOP are reported by Stepniewski and Kalmbach of Boeing's Vertol Division
(12F.9]. One optimization problem investigated was the maximization of the efficiency of a hovering
rotor, the design variables being parameters describing the twist and chordlength distributions along
the blade span. This problem was set up to provide a man-computer interface (with an IBM 2250
graphic display scope), in order that an engineer could monitor and control the optimization. The
results indicated a 46% improvement in the 'static figure of merit' of the rotor in approximately
15 minutes elapsed time (computer time was less).

Other applications reported in [12F.9] are: prop/rotor design for tilt-wing and tilt-roto
aircraft; helciopter rotor design; and the design of an STOL transport. i
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Some results of using various search methods are presented for the STOL tramsport problem, which
may be stated as follows: maximize the payload weight for a fixed takeoff gross weight (100 000 1b),
fixed fuselage and empennage, fixed takeoff distance (1000 ft over a 50 ft obstacle), and fixed cruise
speed (400 kt at 30000 ft). The design variables are

a, wing loading (1b/ft2)

«, aspect ratio (upper limit of 12 from aeroelastic considerations)
wing thickness ratio

o, lift engine thrust/gross weight

a. lift engine thrust angle

6 added 1lift coefficient ACL due to high-lift devices.

Another study added 30 flight path angles (at 1000 ft altitude increments) as 'design variables' in
order also to optimize the climb.

It is obvious from the formulation above that wing design is one of the most critical factors.
Wing weight was estimated by an empirical formula based on the four wing parameters; for example, wing
weight was predicted to increase 227 for each unit increment in ac, .

Equivalent to maximizing the payload is minimizing the sum of the wing weight, engine weights and
mission fuel weight; this sum is defined as y. The results of the various search techniques are
reproduced from [12F.9] in Figs.12.8, 12.9 and 12.10. For this particular study single search methods,
such as steepest descent, quadratic and sectioning, did not perform well. Combinations of search
methods, particularly those employing random ray, showed much better results. The fastest combination
tried is random point + random ray + quadratic + pattern. The philosophy behind the combination
strategy is based on an observation of Wilde [12B.2], who compared optimization search with the three
phases of chess: opening game, middle game and end game. Each requires a different strategy.

The results of the [12F.9] study lead Stepniewski and Kalmbach to state that ".., it appears that
gradient procedures like steepest descent, quadratic and Davidon are of limited help with engineering
problems of the class being investigated here". This experience correlates with the conclusions of
Ref. (12F.71.

Other investigators have reported satisfactory results using a combination of just random ray and
pattern from AESOP [12F.10], [12F.11]. 1In fact they indicate they have standardized on this combination
for the present. It should be added that AESOP is quite a large computer program, almost filling core
memory (IBM 7094) in some applications [12D.1], [12F.10].

The somewhat surprising success evidenced by strategies employing the random ray search, one of
‘the most unsophisticated of methods, may arise from its very simplicity. It has no innate bias and is
not confined to predetermined directions, nor can it be fooled by inaccurate gradient calculations or
noisy data. The method is also of interest for controlling noisy dynamic systems, Rastrigin [12D.4].

12,4.2 Other Operational Experience

The acceleration move (called 'pattern' in AESOP) has proven useful ({12B.1], p.309 and [12B.2],
p.305) in overcoming the 'zig-zagging' tendency of certain methods, such as steepest descent,
particularly on a ridge. In addition to its ability to overcome a ridge, it should be noted that the
acceleration move does not require evaluation of partial derivatives.

Other accelerated searches are the pattern search of Hooke and Jeeves, [12D.9] and [12B.2]
p.307, which is not the same as AESOP's pattern search, and also Rosenbrock's 'method of rotating
coordinates', [12B.2], p.312. Rosenbrock's method has shown good results in overcoming curved ridges.
W. B. Herbst of McDonnell-Douglas Aircraft Corporation reports success with this method when applied
to the FX tactical fighter development and also to the follow-on F-15 design [12F.5]. For the latter
application a specific program called CASE ('computerized systems engineering') was written.

The method of Davidon [12D.7], as extended by Fletcher and Powell [12D.8], has proven to be very
powerful in solving problems with either analytic partials or smooth data from which numerical partials
may be estimated [12B.1], p.320 or [12B.2], p.331. Jameson of Grumman Aerospace Corporation [12F.13]
has described effective applications of this method. That Davidon failed to provide good convergence
in the AESOP results reported in the previous section is probably due to noise in the mathematical model.
Since Davidon obtains an estimate of the second-order derivatives from the changes in the first-order
derivatives, it is obvious that any noise in the data would create spurious results. Kelley and
Myers [12D.10] have discovered that this method is also sensitive to roundoff errors in the computer.
They suggest either the use of double-precision arithmetic or a modified technique in which the
procedure is restarted every n moves. Davidon has demonstrated success on a helical ridge and on
functions with up to 100 variables, [12B.1], p.349. Moreover, Fletcher and Powell [12D.8] have
demonstrated that the number of moves increases only linearly with the number of variables when this
method is employed on a quadratic function.

Experience with various one-dimensional search methods has not been fully reported. The Fibonacci
search has been called 'best' at various times, and some have taken this as being literally true [12F.9].
However, the only claim made for this method is that it is the minimax interval elimination strategy,
that is, it guarantees the best reduction for the worst possible outcomes. Moreover, it assumes very
little about the objective function except that it is unimodal, i.e. has one optimum in the interval.
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For fairly well-behaved functions it is obviously possible to improve over this method; in fact, the
quadratic curve fit finds the optimum in three steps for a quadratic function, This difference is not
trivial, since many search methods spend the bulk of their time in the one~dimensional mode.

When using the curve-fit method for a one-dimensional search, it is generally desirable to select
a low-degree polynomial, such as a quadratic or a cubic. This method works best when the interval of
points (to which the curve is fitted) contains the optimum., To this end, the 'step until failure'
method with K = 10 can be used to find the proper scale before the curve-fit method is applied.

12.5 Man—Computer Interactive Design

There is a semantic problem in titling this section. The area discussed here is commonly called
'computer aided design' (CAD) or 'computer graphics'. These terms do not, in .the authors' opinion,
sufficiently delineate the concept which is the interaction or conversation between man and computer
allowed by new techniques of time-sharing. The first-generation of digital computers were so slow and
difficult to program that a more-or-less continuous man-computer interaction was required., The second-
generation computers emphasized the 'batch-process'. The disadvantage of this approach has been made
frustratingly clear to most engineers and programmers: control of the program is lost until the run is
returned. The time that this takes is called the 'turn-around time', and it may be of the order of a
day. However efficient this appears to be from the point of view of computer operations, it is often
very wasteful of the engineer's time. The interface between the man and the computer shows up the basic
differences in their capabilities: man is much slower and more prone to mistakes than is the computer -
but man does have more adaptability and judgment.

Third~generation computers have the capability of 'time-sharing', which allows many users to be
simultaneously serviced by a single data-processing center. This feature greatly improves the man-
computer interface; each operates at his (its) best speed. It also enables the engineer to retain
control of the program. These advantages do not come without added cost: quoting Narahara [12G.1],

"If engineers were as rigorous as is often claimed, batch processing would be good enough, and the
large investment in interactive systems wouldn't be necessary or even worthwhile. But batch processing
really requires the engineer to know what he wants (beforehand).... The program must be thought out to
the point that the problemsolving method can be specified in intricate detail." This is particularly
significant for aircraft design, which often includes considerations that are difficult to state
analytically.

A terminal for interactive design may be simply a typewriter- or teletype-like terminal which
allows the engineer to converse with the computer. A more versatile and commonly used device, however,
involves a graphic display, such as an IBM 2250 [12G.2], which can display graphs, three—view drawings,
numerical results, etc. This device also has a light-pen and a keyboard, which provide in combination
for the engineer to control the operation of his program. By contrast with batch processing, this
arrangement gives instant turn-around time. Thus more efficient use is made of the engineer's time.

Since time is generally critical in aircraft design development, interactive programming can help
compress the design cycle — if the programming has been prepared beforehand. Chasen of Lockheed~Georgia
{12G.3] suggests that the design process consists of an interactive sequence of events and decisions
involving many specialists, say, individuals A, B and C. A design sequence might be ADBACADCDCBD...,
where D is the computer. It is obvious that this sequence would take many days in a batch-processing
usage of the computer. If these three specialists can be brought together in a conversation with the
computer, however, the design cycle might be compressed greatly.

Rapid growth is predicted in interactive design activities by experts in this field, [12F.2],
{12F.4], [12F.6], (12F.14] and [12F.15]. Among existing applications of interactive design are:

(1) Aircraft preliminary design, especially of large cargo types, Lockheed-Georgia, [12G.6].

(2) Wing/body aerodynamic design, Lockheed-Georgia, [126G.7].

(3) Aircraft sizing, Douglas Aircraft Company, [12G.8].

(4) Helicopter vibration analysis, Boeing Vertol Division, [12G.9].

(5) Integrated wing design (ORACLE), The Boeing Company, [12G.10].

(6) Aircraft and missile preliminary design, The Boeing Company, [12G.10].

Many aerospace companies have developed capabilities for drafting, parts~design, and fabrication
by numerically-controlled tools using computer graphics [12G6.3]. A number of other applications in many
fields have been found for computer graphics, including integrated circuit design, automobile design,

animated dynamics, curve fitting, etc. [12G.3]. A recent instance of aeronautical interest involves
aircraft flight-path optimization [12G.11].



192

List of References

12A Parametric Analysis and Aircraft Design

12A.1 Following three references refer to General Dynamics' computer program SYNAC, (SYNthesis of
AirCraft). This is a comprehensive preliminary aircraft design program in the parametric
analysis vein. :

12A.1a V. A. Lee and H. G. Ball, "Parametric Aircraft Synthesis and Performance Analysis",
AIAA Paper 66-795, October 1966

12A.1b V. A. Lee, et al., "Computerized Aircraft Synthesis", J. Aireraft, Vol.4, No.5,
September-October 1967

12A.1lc H. R. Anderson and J. D. McLeod, "Computerized Aircraft Design Studies", Symposium on Aircraft
Systems Design Synthesis, California Institute of Technology, December 1968. (Reports that
SYNAC, in a parametric analysis mode, ran over 1000 designs in 16 hours of IBM 360/65 computer
time. Results showed a 'considerable' improvement over original configurations proposed by
preliminary designers.)

12A.2 R. A, Davis, "Computer Application to the Airplane Design Selection Process', (Thumbprint),
Boeing Company Document D6-24222TN, September 1969

124.3 F. D. Orazio, "From Technology to Systems in Military Aircraft", Astrondutice and Aeronautics,
July 1969, p.48. (This and the following article give the flavor of present aircraft design.
Of course, a large number of other articles of this type could be given.)

12A.4 E. R. Schuberth and L., Celniker, "Synthesizing Aircraft Design", Space/Aeronautics,
April 1969, p.60

12B  General Books on Optimization

12B.1 D. A. Pierre, Optimization Theory with Applications, John Wiley and Sons, New York, 1969.
(Covers calculus of variations, linear programming, parameter optimization, dynamic programming
and the maximum principle; with particular applications in the fi€¢ld of electrical engineering.)

12B.2 D. J. Wilde and C. S. Beightler, Foundations of Optimization, Prentice-Hall, Englewood Cliffs,
New Jersey, 1967. (Presents a unified view of various optimization approaches; content similar
to previous reference with examples typically in chemical engineering.)

12B.3 D. J. Wilde, Optimal Seeking Methods, Prentice-Hall, Englewood Cliffs, New Jersey, 1964.
(An earlier book by Wilde, of narrower scope than Ref. [12B.2].)

12B.4 A, Lavi and T. P. Vogl, eds., Recent Advances in Optimization Techmiques, John Wiley and Sons,
New York, 1966. (A collection of articles on various aspects of optimization, many of which
deal with design optimization of optical and electrical systems.)

12B.5 A, E. Bryson, Jr. and Yu-Chi Ho, Applied Optimal Control, Blaisdell Publishing Company, Waltham,
Massachusetts, 1969. ("Emphasis is on determining the best way to control complicated dynamic
systems." An introductory chapter is on parameter optimization.)

12B.6 G. Hadley, Non-linear and Dynamic Programming, Addison-Wesley, Reading, Massachusetts, 1964.
("Presents a rather detailed development of the theory and computational techniques....
Topics include: approximation methods, stochastic programming, integer programming and
gradient methods.")

12C Indirect Methods of Optimization

12C.1 A, Miele, ed., Theory of Optimum Aerodynamic Shapes, Academic Press, New York, 1965.
(Subtitled "Extremal Problems in the Aerodynamics of Supersonic, Hypersonic, and Free-
Molecular Flows.")

12C.2 R. H. Liebeck and A. I. Ormsbee, "Optimization of Airfoils for Maximum Lift", AIAA Paper 69-739,
July 1969. (Derives subsonic airfoil profiles using calculus of variatioms.)

12¢.3 R. J. Duffin, E. L. Petersen and C. Zener, Geometric Programming, John Wiley and Sons,
New York, 1967

12€.4 Z. M. v. Krzywoblocki and W. Z. Stepniewski, "Application of Optimization Techniques to the
Design and Operation of V/STOL Aircraft", Annals of the New York Academy of Sciences,
New York, Vol.154, Art.2, p.982, November 1968

12D Direct Methods of Optimization

12D.1 D. S. Hague and C. R. Glatt, "An Introduction to Multivariable Search Techniques for Parameter
Optimization (and Program AESOP)", NASA CR-73200, April 1968. (A description of the direct
search methods used in Boeing's optimization program AESOP.)

12D.2 Ref.[12B.1], Chapter Six. (Entitled "Search Techniques and Non-linear Programming", this
Chapter includes a rather extensive discussion of methods of direct search.




Ref.

12D.3

12D.4

12D.5

12D.6

12D.7

12D.8

12D.9

12D.10

12D.11

12D.12

12E

Some Automated Aircraft Design Programs

- 193

List of References (Contd.)

Ref. [12B.2], Chapters Six and Seven. (Entitled "Direct Elimination", i.e. one-dimensional
interval e11m1nat10n methods,. and '"Direct Climbing", these Chapters cover methods of direct
search.)

L. A. Rastrigin, "Random Search in Optimization Problems for Multiparameter Systems",
Clearinghouse AD 669 542, Springfield, Virginia. Translated from the Russian. (Originally
published by Isdatel'stvo 'Zinatne', Riga, 1965.) (This English translation may be ordered
for $3 from the Clearinghouse. 252 pages.) .

S. M. Movshovich, "Random Search and the Gradient Method in Optimization Problems", pp.60-72 of
Technical Cybernetics, No.6, 1966, USSR. (Available in English translation from the

~ Clearinghouse, TT: 67-30538, $3.)

G. E. Forsythe and T. S. Motzkin, "Acceleration of the Optimum Gradient Method - Preliminary
Report (Abstract)", Bulletin of the American Mathematical Society, p.304, July 1951

W. C. Davidon, "Variable Metric Method for Minimization", AEC R and D Rep. Anl1-5990,
December 1959

R. Fletcher and M. J. D. Powell, "A Rapidly Convergent Descent Method for Minimization",
Computer Journal, Vol.6, No.2, pp.163-168, 1963, (This work further developed and interpreted
Davidon's Method.)

R. Hooke and T. A. Jeeves, "Direct Search Solution of Numerical and Statistical Problems",
Journal of the Association for Computing Machinery, Vol.8, pp.212-229, April 1961. (Introduces
an accelerated r1dge-follow1ng method called Pattern Search; not the same as the pattern method
used in AESOP.)

H. J. Kelly and G. E. Meyers, "Conjugate Direction Methods for Parameter Optimization",
18th International Astronautical Federation, Belgrade, Yugoslavia, September 1967

H. J. Kelly, et al., "An Accelerated Gradient Method for Parameter Optimization w1th Nonllneat
Constraints”, American Astronautical Society Preprint 66-118, July 1966

B. V. Shah, et al., "Some Algorithms for Minimizing a Function of Several Variables",
Journal of the S.I.A.M., Vol,12, No.l, pp.74-92, March 1964 S

12E.1

12E.2

12E.3

12E.4

12E.5

12E.6

D. S. Hague and C. R. Glatt, "A Guide to the Automated Engineering and Scientific Optimization
Program', NASA CR-73201, June 1968. (Boeing's AESOP is a search driver which has been applied
to a number of aircraft design problems, including a hypersonic cruise vehicle, Ref. [12F.7].)

J. Czinczenheim and M. Pottier, "Integrated Airplane Design Optimization", Breguet Aviation '
(France), (Undated but about 1967). (Develops a steepest descent formulation in which constraints
are adjoined to the objective function with Lagrange multipliers. When applied to a 275

passenger airbus, this method gave a 97 improvement over the traditional hand method. This
application took three minutes per iteration and about one hour for convergence on an IBM 7094 II.
Contains a good bibliography.) |

R. J. White, "A Digital Program Useful for Airplane Integration and Design (AID)", Boeing Company
Document D6-23592, January 1969. (Coupled with AESOP, this forms a preliminary design
optimization program.)

W. B. Herbst, McDonnell Douglas Corporation, St., Louis, Missouri, October 17, 1969, private
communication. (Describes a computer program called CASE which uses Rosenbrock's Method of
direct search to optimize the design "during the definition phase of the F-15 Tactical Fighter
development”.)

H. M. Drake, Ames Research Center (NASA), Moffett Field, California, October 17, 1969, private
communication. (Describes two aircraft synthesis programs which may be coupled with AESOP.
Each program contains aerodynamics, propulsion, performance and weights sections.)

W. Z. Stepniewski and C. F. Kalmbach, Jr., "Multivariable Search and its Application to
Aircraft Design Optimization", Boeing Vertol Division, September 1969. (Describes the
application of AESOP to V/STOL design problems.) |

12F Operational Experience in Aircraft Optimization

12F.1

12F.2

12F.3

R. C. Hornburg, Douglas Aircraft Company, Long Beach, California, November 3, 1969, pr1vate
communication

I. G, Hedrick, Grumman Aerospace Corporatlon, Bethpage, New York, October 28, 1969, private
communication

V. A. Lee, General Dynamics, Fort Worth, Texas October 16, 1969, private communication



194

Ref.

12F.

12F.

12F,

12F.

12F.

12F.

12F.
12F.
12F.

12F.

12F.

12F.

126G
126G.

126G.

12G.

126.

12G.

126G,

12G.

126G.

12G.

12G.

12G.

12H

12H.

12H.

12H.

List of References (Contd.)

4 J. A. Thelander, Douglas Aircraft Company, Long Beach, California, November 3, 1969, private
communication ’

5 W. B. Herbst, McDonnell Douglas Corporation, St. Louis, Missouri, October 17, 1969,
private communication

6 H. M. Drake, Ames Research Center (NASA), Moffett Field, California, October 17, 1969, private
communication N :

7 . D. S. Hague and C. R. Glatt, "Application of Multivariable Search Techniques to the Optimal
Design of a Hypersonic Cruise Vehicle", NASA CR-73202, April 1968. (Applies Boeing's AESOP to
the design of a hypersonic cruise vehicle. 'Finds a 157 improvement over NASA supplied
nominal obtained by conventional hand methods.)

8 D. S. Hague, "Application of Multivariable Search Techniques to the Shaping of Minimum Total
Heat Reentry Bodies at Hypersonic Velocity', NASA CR-73203, April 1968

9 W. Z. Stepniewski and C. F. Kalmbach, Jr., "Multivariable Search and its Application to Aircraft
Design Optimization", Boeing Vertol Division, September 1969

10 R. H. Petersen, Ames Research Center (NASA), Moffett Field, California, private commumication
11 R. J. White, Boeing Company, Seattle, Washington, January l4, 1970, private communication
12 D. J. Wilde, Stanford University, Stanford, California, private communication

13 A. Jameson, Grumman Aerospace Corporation; Bethpage, New York, October 29, 1969 private
communication

14 R. Q. Boyles, Lockheed-Georgia Company, Marietta, Georgia, private communication

15 F. D. Orazio, Sr., Wright-Patterson Air Force Base, Ohio, December 16, 1969, private
communication

Man-Computer Interactive Design

1 R. M. Narahara, "Computer-Aided Design", Space/Aeronautics, December 1969

2 Many authors, "Interactive Graphics in Data Processing', IBM Systems Journal, Vol.7, Nos.3
and 4, 1968

3 S. H. Chasen, "The Role of Man-Computer Graphics in the Design Process", AIAA Professional
Study Series Volume, 1969

4 5. H, Chasen and B. Herzog, "Applied Computer Aided Design and Interactive Graphics",
AIAA Professional Study Series Volume, 1969

5 B. Herzog, "Lectures in Computer Aided Design', AIAA Professional Study Series Volume, 1969

6 R. Q. Boyles, "Aircraft Design Augmented by a Man-Computer Graphic System", Journal of Aircraft,
Vol.5, No.5, September-October 1968

7 J. A. Bennett, W. A. Stevens and R. C. Davis, "A Computer-Aided Wing/Body Aerodynamic Design
Concept for Subsonic Vehicles of the 1970-1980 Period", AIAA Paper No.69-1130, October 1969

8 G. D. Buell, Jr., "Aircraft Sizing Using Computer Graphics', Douglas Aircraft Group
IRAD T.R. DAC 67140, July 1968

9 J. J. Sciarra, "Vibration Analysis in 3D with Computer Graphics", Sound and Vibration,
Vol.4, No.l, January 1970

10 Many authors, "Computer Aided Design Workshop', Boeing Company, Attachment to M-7130-025,
September 1969 ‘

11 J. A. Thelander, "Variation Analysis - Applications and Solution Techniques Related to Aircraft
Optimization Problems", AIAA Paper No.67-557, August 1967

Other References

1 "An Indexed Bibliography of Optimization Literature Related to Engineering Design", Vol.3,
Appendix 1 of "Advanced Decoy Technology Program, Final Report (U)", Avco Missiles, Space and
Electronics Group, Wilmington, Massachusetts, February 1968, (636 entries).

2 A. Leon, "A Classified Bibliography on Optimization", Recent Advances in Optimization Techniques,
pp.599-649 of Ref. {12B.4]. (377 entries)

3 G. V. Reklaitis and D. J. Wilde, "Necessary Conditions for a Local Optimum without Prior
Constraint Qualification”, to be published in the Journal Of Optimization Theory




195

APPENDIX A

SELECTIVE BIBLIOGRAPHY



196

Appendix A
" Selective Bibliography

(Each Section is listed in reverse chronological order.)

Engineering Applications

Books
1

Reviews
1

Papers

Fox, R. L., An Introduction to Optimization Methods for Engineers, to be publighed by
Addison-Wesley, Reading, Massachusetts, 1970

Cohn, M. Z., ed., An Introduction to Structural Optimiaation, University of Waterloo, Waterloo,
Canada, 1969 .

Au, T. and Stelson, T. E., Introduction to Systems Engineering-Deterministic Models, lst ed.,
Addison-Wesley, Reading, Massachusetts, 1969

Cox, H. L., The Design of Structures of Least Weight, Pergamon, Oxford, 1965

Gerard, G., Minimum Weight Analysis of Compressive Structures, lst ed., New York University
Press, New York, 1956 ' ’

Shanley, F. R., Weight-Strength Analysis of Aircraft Structures, lst ed., McGraw-Hill,
New York, 1952 : :

Barnett, R, L., "Survey of Optimum Structural Design", Experimental Mechanics, Vol.6, No.l2,
December 1966, pp.19A-26A

Gerard, G., "Optimum Structural Design Concepts for Aerospace Vehicles: Bibliography and
Assessment', USAF, AFFDL TR-66-188, December 1966

Kowalik, J., "Non-linear Programming Procedures and Design Optimization", Mathematics and
Computing Machinery Series NR 13, 1966, Acta Polytechnica Scandinavica, Trondheim, Norway

Gerard, G., "Optimum Structural Design Concepts for Aerospace Vehicles: Bibliography and
Assessment', USAF, AFFDL TR-65-9, June 1965

Wasiutynski, Z. and Brandt, A., "The Present State of Knowledge in the Field of Optimum Design
of Structures", Applied Mechanics Review, Vol.l6, No.5, May 1963, pp.341-350

Micks, W. R., "Bibliography of Literature on Optimum Design of Structures and Related Topics",
RM2304, December 15, 1958, The Rand Corporation, Santa Monica, California

Hemp, W. S., "Theory of Structural Design", Report No.l1l5, August 1958, The College of
Aeronautics, Cranfield, England

Felton, L. P. and Hofmeister, L. D., "Synthesis of Waffle Plates with Multiple Rib Sizes",
AIAA Journal, Vol.7, No.12, December 1969, pp.2193-2199

Shinozuka, M. and Yang, J. N., '"Optimum Structural Design Based on Reliability and Proof-Load
Test", Annals of Assurance Sciences, Proceedings of Reliability and Maintainability Conference,
Vol.8, July 1969, pp.375-391

Zarghamee, M..S., "Minimum Weight Design of Enclosed Antennas", Jowrnal of the Structural
Division, ASCE, Vol.95, No.ST6, June 1969, pp.l1139-1152

McIntosh, S. C., Weisshaar, T. A. and Ashley, H., "Progress in Aeroelastic Optimization -
Analytical vs. Numerical Approaches', AIAA Structural Dynamics and Aeroelasticity Specialist
Conference, New Orleans, La., April 16-17, 1969

Rubin, C. P., "Dynamics Optimization of Complex Structures', AIAA Structural Dynamics and
Aeroelasticity Specialist Conference, New Orleans, La., April 16-17, 1969, pp.9-14

Dayaratnam, P. and Patnaik, S., "Feasibility of Full Stress Design", AIAA Journal, Vol.7, No.4,
April 1969, pp.773-774

Romstad, K. M. and Wang, C. K., "Optimum Design of Framed Structures", Jourmal of the Structural
Divieion, ASCE, Vol.9%, No.ST12, December 1968, pp.2817-2845

Switzky, H., "Designing for Minimum Flexibility or Weight", Jowrnal of Spacecraft and Rockets,
Vol.5, No.12, December 1968, pp.1473-1476

Fox, R. L. and Kapoor, M. P., "A Minimization Method for the Solution of the Eigenproblem
Arising in Structural Dynamics", Proc. of the Second Conference on Matrix Methods in
Structural Mechanicg, WPAFB, Ohio, October 1968, AFFDL~TR-68-150, December 1969, pp.271-306



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

197

AEEendix A (Contd.)

Marcal, P. V. and Gellatly, R. A., "Application of the Created Response Surface Technique to
Structural Optimization", Second Conference on Matrix Methods in Structural Mechanics, WPAFB,
Ohio, October 1968, AFFDL-TR-68-150, December 1969, pp.83-110

Fox, R. L. and Stanton, E., "Developments in Structural Analysis by Direct Energy Minimization",
AIAA Jourmal, Vol.6, No.6, June 1968, pp.1036-1042

McIntosh, S. C. and Eastep, F. E., "Design of Minimum Mass Structures with Specified Stiffness
Properties", ATA4A Journal, Vol.6, No.5, May 1968, pp.962-964

Toakley, A. R., "Optimum Design Using Available Section", Journal of the Structural Division,
ASCE, Vol.94, No.ST5, May 1968, pp.1219-1241

Luik, R. and Melosh, R. J., "An Allocation Procedure for Structural Design', Preprint No.68-329, !
AJAA/ASME 9th Structures, Structural Dynamics and Materials Conference, Palm Springs, Calif.,
April 1968

Pope, G. G., "The Design of Optimum Structures of Specified Basic Configuration", International
Journal of Mechan. Sei., Vol.10, No.4, April 1968, pp.251-263

Prager, W., and Shield, R, T., "Optimal Design of Multipurpose Structures', International
Journal of Solids and Structures, Vol.4, No.4, April 1968, pp.469-475

Zarghamee, M. S., "Optimum Frequency of Structures", AT4A Journal, Vol.6, No.4, April 1968,
pp. 749-750

Prager, W. and Taylor, J. E., "Problems in Optimal Structural Design", Journal of Applied
Mechanics, Vol.35, No.l, March 1968, pp.102-106

Kicher, T. P., "Structural Synthesis of Integrally Stiffened Cylinders", Jowrnal of Spacecraft
and Rockets, Vol.5, No.l, January 1968, pp.62-67

Moe, J. and Lund, S., "Cost and Weight Minimization of Structures with Special Emphasis on
Longitudinal Strength Members of Tankers", Transactions of the Royal Institution of Naval
Architects, Vol.110, No.l, January 1968, pp.43-70

Turner, M. J., "Design of Minimum Mass Structures with Specified Natural Frequencies",
ATAA Jourmal, Vol.5, No.3, March 1967, pp.406-412

Goble, G. G. and DeSantis, P. V., "Optimum Design of Mixed Steel Composite Girders", Jowrnal of
the Structural Division, ASCE, Vol,92, No.ST6, December 1966, pp.25~43

Kicher, T. P., '"Optimum Design - Minimum Weight Versus Fully Stress", Journal of the Structural
Division, ASCE, Vol.92, No.ST6, December 1966, pp.265-279

Young, J. W., Jr. and Christiansen, H. N., "Synthesis of a Space Truss Based on Dynamic
Criteria", Journal of the Structural Division, ASCE, Vol.92, No.ST6, December 1966, pp.425-442

Ghista, D. N., "Fully-Stress Design for Alternative Loads", Jourmal of the Structural Division,
ASCE, Vol.92, No.ST5, October 1966, pp.237-260

Ghista, D. N., "Optimum Frameworks Under Single Load System'", Journal of the Structural Divieion,
ASCE, Vol.92, No.ST5, October 1966, pp.261-286

Gellatly, R. A, and Gallagher, R. H., "A Procedure for Automated Minimum Weight Structural
Design, Part I - Theoretical Basis, Part II - Applications", Aeronautical Quarterly, Vol.l7,
No.3, August 1966, pp.216-230 and No.4, November 1966, pp.332-342

Fox, R. L. and Schmit, L. A., "Advances in the Integrated Approach to Structural Synthesis",
Journal of Spacecraft and Rockets, Vol.3, No.6, June 1966, pp.858-866

Razani, R. and Goble, G. G., "Optimum Design of Constant Depth Girders", Jowrnal of the
Structural Divieion, ASCE, Vol.92, No.ST2, April 1966, pp.253-281

Porter Goff, R. F. D., '"Decision Theory and the Shape of Structures", Journal of the Royal
Aeronautical Society, Vol.70, No.663, March 1966, pp.448-452

Razani, Reza, "The Behavior of.Fully—Stressed Design of Structures and its Relationship to
Minimum Weight Design', ATAA Journal, Vol.3, No.l2, December 1965, pp.2262-2268

Schmit, L. A. and Fox, R. L., “An Integrated Approach to Structural Synthesis and Analysis",
ATAA Journal, Vol.3, No.6, June 1965, pp.1104-1112

Schmit, L. A., "Comment on Completely Automatic Weight-Minimization Method for High-Speed
Digital Computers", Journal of Aireraft, Vol.l, No.6, November/December 1964, pp.375-377

Best, G. C., "Completely Automatic Weight-Minimization Method for High-Speed Digital Computers",
Journal of Aireraft, Vol.l No.3, May/June 1964, pp.129-133



198

Appendix A (Contd.)

35 Switsky, H., "Minimum Weight Design with Structural Reliability", ATAA Fifth Amual Structures
and Materialg Conference, April 1964, pp.316-322

36 Dorn, W. S., Gomory, R. E., and Greenberg, H. J., "Automatic Design of Optimal Structures",
Journal de Mechanique, Vol.3, No.l, March 1964, pp.25-52

37 Best, G. C., "A Method of Structural Weight Minimization Suitable for High Speed Digital
Computers', ATAA Journal, Vol.l, No.2, February 1963, pp.478-479

38 Kalaba, R., "Design of Minimal-Weight Structures for Given Reliability and Cost", Jourmal of
the Aerospace Sciences, Vol.29, No.3, March 1962, pp.355-356

39 Hilton, H. H. and Feigen, M., "Minimum Weight Analysis Based on Structural Reliability",
- Journal of the Aerospace Sciences, Vol.27, No.9, September 1960, pp.641-652 .

40 Schmidt, L. C., "Fuliy—Stressed Design of Elastic Redundant Trusses under Alternative Load
Systems", Australian Journal of Applied Science, Vol.9, No.4, December 1958, pp.337-348

41 Heyman, J. and Prager,.w., "Automatic Minimum Weight Design of Steel Frames", Journal of the
Franklin Institute, Vol.266, No.5, November 1958, pp.339-364

42 Livesley, R. K., "The Automatic Design of Structural Frames", Quarterly Jowrnal of Mechanics
: and Applied Mathematicd, Vol.9, Pt.3, September 1956, pp.257-278

43 Sved, G., "The Minimum Weight of Certain Redundant Structures", Australian Jowrnal of Applied
Setience, Vol.5, No.l, March 1954, pp.1-9

44 Foulkes, J. D., "Minimum Weight Design and the Theory of Plastic Collapse", Quarterly of
Applied Mathematics, Vol.10, No.4, January 1953, pp.347-358

45 Heyman, J., "Plastic Deéign of Beams and Frames for Minimum Material Consumption", Quarterly of
Applied Mathematics, Vol.8, No.4, January 1951, pp.373-381

Reports
1 Venkayya, V. B., Knot, N. S. and Reddy, V. S., "Energy Distribution in an Optimum Structural
Design', USAF, AFFDL-TR-68-156, March 1969
2 Kapoor, M. P., "Automated Optimum Design of Structures Under Dynamic Response Restrictions",
Thesis for Degree of Doctor of Philosophy, Thesis Advisor, R, L. Fox, Case Western Reserve
University, January 1969
3 Morrow, II, W. M., and Schmit, L. A., "Structural Synthesis of a Stiffened Cylinder",
NASA CR-1217, December 1968
4 Thornton, W. A. and Schmit, L. A., "The Structural Synthesis of an Ablating Thermostructural
Panel, NASA CR-1215, December 1968
5 Moses, F. and Stevenson, J. D., "Reliability based Structural Design", SMSMD Report No.l6,
January 1968, Case Western Reserve University, Cleveland, Ohio
6 Tocher, J. L. and Karnes, R. N., "Automatic Design of Optimum Hole Reinforcement", No.D6-23359,
May 21, 1968, The Boeing Company, Commercial Airplane Division, Renton, Washington
7 Melosh, R. J. and Luik, R., "Approximate Multiple Configuration Analysis and Allocation for
Least Weight Structural Design', USAF, AFFDL-TR-67-29, April 1967
8 Moses, F., "Some Notes and Ideas on Mathematical Programming Methods for Structural Optimization",
Meddelelse SKB II/M8, Januaty 1967, Norges Tekniske Hégskole, Trondheim, Norway
9 Toakley, A, R., "The Optimum Elastic-Plastic Design of Rigid Jointed Sway Frames", Fourth
Report, Study of Analytical and Design Procedures for Elastic and Elastic-Plastic Structures,
1967, Dept. of Civil Engineering, University of Manchester, England
10 Gellatly, R. A., "Development of Procedures for Large Scale Automated Minimum Weight
Structural Design'", USAF, AFFDL-TR-66-180, December 1966
11 Ghista, D. N., "Structural Optimization with Probability of Failure Constraints",
NASA TN D-3777, December 1966
12 Kavlie, D., Kowalik, J. and Moe, J., "Structural Optimization by Means of Non-linear Programming",
Meddelelse SKB II/M4, 1966, Norges Tekniske Hdgskole, Trondheim, Norway
13 Toakley, A. R., "Studies in Minimum Weight Rigid Plastic Design with Particular Reference to
Discrete Sections", Second Report, Study of Analytical and Design Procedures for Elastic and
Elastic-Plastic Structures, 1966, Dept. of Civil Engineering, University of Manchester, England
14 Brown, D. M. and Ang, A. H. S., "A Non-linear Programming Approach to the Minimum Weight Elastic

Design of Steel Structures”, Structural Research Series No.298, October 1965, Civil Engineering
Studies, University of Illinois, Urbana, Illinois



15

16

17

18

Appendix A (Contd.)

Cornell, C. A., Reinschmidt, K. F. and Brotchie, J. F., "Structural Optimization", Regearch
Report R65-26, Part 2, September 1965, Dept. of Civil Engineering, Mass. Inst, of Tech.,
Cambridge, Mass.

Schmit, L. A. and Thornton, W. A., "Synthesis of an Airfoil at Supersonic Mach Number",
NASA CR 144, January 1965

Gellatly, R. A., Gallagher, R. H. and Luberacki, W. A., '"Development of a Procedure for
Automated Synthesis of Minimum Weight Structures", USAF, FDL-TDR-64-141, October 1964

Schmit, L. A. and Kicher, T. P., "Structural.Synthesis of Symmetric Waffle Plate",
NASA TN D-1691, December 1962

Mathematical Methods

Books
1

Reviews
1

Papers
1

Kowalik, J. and Osborne, M. R., Methods for Uncomstrained Optzmzzatzon Problems, lst ed.,
American Elsevier, New York 1968

199

Fiacco, A. and McCormick, G. P., Non-linear Programming; Sequential Unconstrained Minimization

Techniques, lst ed., Wiley, New York, 1968

Wilde, D. J. and Beightler, C. S., Foundations of Optimization, lst ed., Prentice-Hall,
Englewood Cliffs, New Jersey, 1967

Lavi, A. and Vogl, T. P., eds., Recent Advances in Optimization Techniques, lst ed.,
Wiley, New York, 1966

Hadley, G., Non-linear and Dynamic Programming, lst ed., Addison-Wesley, Reading,
Massachusetts, 1964

Dantzig, G. B., Linear Programming and Extensions, lst ed.,Princeton University Press,
Princeton, New Jersey, 1963

Hadley, G., Linear Programming, lst ed., Addison-Wesley, Reading, Massachusetts, 1962
Zoutendijk, G., Methods of Feasible Directions, lst ed., Elsevier, Amsterdam, 1960

Bellman, R., Dynamic Programming, lst ed., Princeton University Press, Princeton, New Jersey,
1957

Zoutendijk, G., "Non-linear Programming: A Numerical Survey", SIAM Journal on Conmtrol, Vol.4,
No.l, February 1966, pp.194-210

Fletcher, R., "Function Minimization without Evaluating Derivatives -~ A Review",
The Computer Journal, Vol.8, No.l, April 1965, pp.33-41

Spang, H. A., "A Review of Minimization Techniques for Non-linear Functions", STAM Review,
Vol.4, No.4, October 1962, pp.343-365

Brooks, S. H. "A Comparison of Maximum Seeking Methods", Operations Research, Vol. 7, No.4,
July-August 1959, pp.4630-457

Bard, Y., "On A Numerical Instability of Davidon-Like Methods", Mathematics of Computation,
Vol1.22, No.103, July 1968, pp.665-666

Zangwill, W. I., "Minimizing a Function without Calculating Derivatives'", The Computer
Journal, Vol.10, No.3, November 1967, pp.293-296

Broyden, C. G., '"Quasi-Newton Methods and their Application to Function Minimization",
Mathematice of Computation, Vol.21, No.99, July 1967, pp.368-381

Daniel, J. W., "Convergence of the Conjugate Gradient Method with Computationally Convenient
Modifications", Numerische Mathematik, Vol.l0, No.2, July 1967, pp.125-131

Daniel, J. W., "The Conjugate Gradient Method for Linear and Non-linear Operator Equations",
SIAM Journal on Numerical Analysis, Vol.4, No.l, March 1967, pp.10-26

Stewart, III, G. W., "A Modification of Davidon's Minimization Method to Accept Difference
Approximations of Derivatives", Jourmal ACM, Vol.l4, No.l, January 1967, pp.72-83

Zangwill, W. I., "Non-linear Programming via Penalty Functions", Management Science, Series A,

Vol.13, No.5, January 1967, pp.344-358

Bradbury, W. W. and Fletcher, R., "New Iterative Methods for Solution of the Eigenproblem",.
Numerische Mathematik, Vol.9, No.3, December 1966, pp.259-267



200

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Reports
1

Appendix A (Contd.)

Wilde, D. J., "Objective Function Indistinguishability in Unimodal Optimization", Recent
Advances in Optimization Techniques, Lavi, A. and Vogl, T., eds., Wiley, New York, 1966,
Pp.341-349

Broyden, C. G., "A Class of Methods for Solving non-linear Simultaneous Equations",
Mathematics of Computation, Vol.19, No.92, October 1965, pp.577-593

Bauer, F. L., "Optimally Scaled Matrices', Numerische Mathematik, Vol.5, No.l, March 1963
pp.73-87

Mugele, R. A., "A Non-linear Digital Optimizing Program for Process Control Systems", Proceedings

of Spring Joint Computer Conference, National Press, Palo Alto, Calif., Vol.21, 1962, pp.15-31

Powell, M. J. D., "An Iterative Method for Finding Stationary Values of a Function of Several
Variables"”, The Computer Journal, Vol.5, No.2, July 1962, pp.147-151

Hooke, R. and Jeeves, T. A., "Direct Search Solution of Numerical and Statistical Problems”,
Journal Assoe. Comp. Mach., Vol.8, 1961, pp.212-229

Rosen, J. B., "The Gradient Projection Method for Non-linear Programming, Part II, Non-linear
Constraints", Journal SIAM, Vol.9, No.4, December 1961, pp.514-532

Rosenbrock, H. H.,"An Automatic Method for Finding the Greatest or Least Value of a Function",
The Computer Jouwrmal, Vol.3, No.3, October 1960, pp.175-184

Rosen, J. B., "The Gradient Projection Method for Non-linear Programming, Part I, Linear
Constraints", Jowrnal SIAM, Vol.8, No.l, March 1960, pp.181-217

Brooks, S. H., "A Discussion of Random Methods for Seeking Maxima', Operations Research,
Vol.6, No.2, April 1958, pp.244-251

Hestenes, M. R., "The Conjugate-Gradient Method for Solving Linear Systems", Proceedings of
Symposta in Applied Mathematics, McGraw-Hill, New York, Vol. VI, 1956, pp.83-102

Crocket, J. B. and Chernoff, Herman, "Gradient Methods of Maximization", Pacifie Journal of
Mathematics, Vol.5, 1955, pp.33-50

Hestenes, M. R. and Stiefel, E., "Methods of Conjugate Gradients for Solving Linear Systems",
Journal Res. Natl. Bureau Standards, Vol.49, No.6, December 1952, pp.409-436

Curry, H. B., "The Method of Steepest Descent for Non-linear Minimization Problems", Quarterly
of Applied Mathematics, Vol.2, No.3, October 1944, pp.258-261

Levenberg, K., ™A Method for the Solution of Certain Non-linear Problems in Least Squares',
Quarterly of Applied Mathematics, Vol.2, No.2, July 1944, pp.164-168

Pearson, J. D., "On Variable Metric Methods of Minimization", RAC-TP-302, February 1968,
Research Analysis Corporation, McLean, Virginia

Fiacco, A. V. and McCormick, G. P., "Programming under Non-linear Constraints by Unconstrained
Minimization: A Primal-Dual Method", RAC-TP-96, September 1963, Research Analysis Corporation,
Bethesda, Maryland

Gomory, R. E., "Large and Nonconvex Problems in Linear Programming', RC-765, 1962, IBM Research
Report, Yorktown Heights, New York ’

Davidon, W. C., "Variable Metric Method for Minimization'", ANL-5990 Rev., November 1959,
Argonne National Laboratory, University of Chicago, Lemont, Illinois




AGARDograph No.149

North Atlantic Treaty Organization, Advisory Group
for Aerospace Research and Development
STRUCTURAL DESIGN APPLICATIONS OF
MATHEMATICAL PROGRAMMING TECHNIQUES
G.G.Pope and L.A.Schmit

Published February 1971

208 pages, incl. figs

The application of mathematical programming tech-
niques in the optimum design of aerospace and similar
structures is described starting from basic concepts
and proceeding in a logical manner to derivations of
the most powerful techniques currently available,
and to descriptions of typical recent applications.

P.T.O.

624.07:681.3.06

AGARDograph No. 149

North Atlantic Treaty Organization, Advisory Group
for Aerospace Research and Development
STRUCTURAL DESIGN APPLICATIONS OF
MATHEMATICAL PROGRAMMING TECHNIQUES
G.G.Pope and L.A.Schmit

Published February 1971

208 pages, incl. figs

The application of mathematical programming tech-
niques in the optimum design of aerospace and similar
structures is described starting from basic concepts
and proceeding in a logical manner to derivations of
the most powerful techniques currently available,
and to descriptions of typical recent applications.

P.T.O.

624.07:681.3.06

AGARDograph No.149

North Atlantic Treaty Organization, Advisory Group
for Aerospace Research and Development
STRUCTURAL DESIGN APPLICATIONS OF
MATHEMATICAL PROGRAMMING TECHNIQUES
G.G.Pope and L.A.Schmit

Published February 1971

208 pages, incl. figs

The application of mathematical programming tech-
niques in the optimum design of aerospace and similar
structures is described starting from basic concepts
and proceeding in a logical manner to derivations of
the most powerful techniques currently available,
and to descriptions of typical recent applications.

~ P.T.O.

624.07:681.3.06

AGARDograph No.149

North Atlantic Treaty Organization, Advisory Group
for Aerospace Research and Development
STRUCTURAL DESIGN APPLICATIONS OF
MATHEMATICAL PROGRAMMING TECHNIQUES
G.G.Pope and L.A.Schmit

Published February 1971

208 pages, incl. figs

The application of mathematical programming tech-
niques in the optimum design of aerospace and similar
structures is described starting from basic concepts
and proceeding in a logical manner to derivations of
the most powerful techniques currently available,
and to descriptions of typical recent applications.

P.T.O.

624.07:681.3.06




‘'OLVN-Q4VvDV
Jo Joueqd [BLOJBR] pue saImnjonng aYy} Aq palosuods sem yderSoqyvov SIYL
‘ugisap uoneIndijuod 3jeIdire uo 193deyd B YIIM SIPNJOUOd YOIIYM UOIII3S [eulj ay)
ul PaIdpPISUOD JIB SIUTRIISUOD AJIIQRIdI PUB SJUTBIISUOD OIISE[O0IAY 'SPISU Ud1Basal
pue spuai) arning pue ‘suonjesrjdde oidung ‘sjoo] SMWYIIOB|Y ‘MIIAY 2INJeIdNIT
pue s1dseouo)) [ejusWEpUN,f :PI[IIIUS SUOI}OIS UTBWE INOJ OJUl PIPIAIP S1 1X3] Y],

"1X2)U09 1By} UT pajeljsuowap st sayoeordde Surwrurerfold [eonewayjeul pue [EIISSELO
usamyaq drysuonejol oy} pue JySrom wnumure 1oy uSisap uo paoeyd st siseydwg

"'OLYN- A4 VOV
JO [oued [eudjely pue saIimjonn§ ay) Aq parosuods sem yderSoyvov SIL

‘udisop uornjeingijuod jjeIdIe uo 1aydeyd e UM SIPN[OUOd YOTYM UOIJ09S [EUl) oY)
Ul Palapisuod dIe SJUTRIISUOD AJI[IRIjal PUB SJUTBIISUOD JIISE[90I3Y “SPIdU YOIBaSal
pue spuai; arning pue ‘suoneoijdde s[dwig ‘sjoo] STUNLIOS[Y ‘MIIAdY dINeIaIr]
pue s3dasuo)) [BlUSWEPUN,] :PI[IIIUS SUOIINAS UTBW INOJ OJUl PIPIAIP SI 31X} Y

*}X2]U09 1Y) Ul pajerjsuowap si sayoeordde Surwwerdord [BO1)BWAY)RW PUR [BOISSE[D
usamyeq diysuorje[al ay) pue JySiom wnunuiw Ioj uSisep uo paoerd st siseydwy

"'OLVN-Qd VOV
JO [sued [eUQ)B] pue sainjonng 9y Aq perosuods sem yYderBoqQyvov SIYL

-ugisop uoneInS[juod jjeioire uo Id9)deyd B Ym SOPAJOUOD YOTYM UOIIOLS [eulj Ay
uj paIapIsu0d dIe SIUTRIISUOD AIIQRI[a] PUB SJUTBIISUOD OIISE[30I3Y “SPIsu YdIBasal
pue spuaq) aining pue ‘suonjesijdde sjdung ‘sjoo] OTWYILOS[Y ‘MSIIAY 2InjeId)I|
pue s3doouo)) [ejuouwrepun, :pI[NIUd SUOIIDIS UIBW INOJ OJUI POPIAIP ST 1X3) YL

*1X9)U09 Jey) ul pajesjsuowsp st soyoeordde SurwwreiSolrd [BOTIBWAYIBW PUR [BOISSB[D
usamlaq drysuornjerar ayj pue jySiom wnunurw 1oj uSisop uo pooerd st siseydwrg

'OLVN-QUVOV
Jo [sueq [eURIBIA pue saImonng dy) Aq parosuods sem yderSoqQyvov SHL

‘ugisap uoneIndjuos jjeiolre uo 19)deyo e YIIM SOPNOUOD UYOIYym UOI)DAS [eulj o1f
Ul PaIopISUOD IB SJUIBIISUOD AJI[IQEI[2I PUB SIUIBIISUOD OI)SE[I0IdY "SPOaU YOIeasal
pue spuar} ainin, pue ‘suonesrjdde apdung ‘spoo] SIWILIOZY ‘MOIAdY SINJRIANI]
pue s3deouo)) [ejuswWEpUN,] :PI[IIIUS SUOIIDAS UTEUI INOJ OIUI PAPIAIP St }X3) Sy

*1X9)U02 1By} UI pajensucwsp st sayoeordde SuriiurerSold [BONBWAY)BW PUR [BIISSE[O
usom)aq diysuonelal oyl pue jydiom wnwiuiw 1oj ugisap uo padeld st siseydwyg




AGARDograph No.149

North Atlantic Treaty Organization, Advisory Group
for Aerospace Research and Development
STRUCTURAL DESIGN APPLICATIONS OF
MATHEMATICAL PROGRAMMING TECHNIQUES
G.G.Pope and L.A.Schmit

Published February 1971

208 pages, incl. figs

The application of mathematical programming tech-
niques in the optimum design of aerospace and similar
structures is described starting from basic concepts
and proceeding in a logical manner to derivations of
the most powerful techniques currently available,
and to descriptions of typical recent applications.

P.T.O.

624.07:681.3.06

AGARDograph No. 149

North Atlantic Treaty Organization, Advisory Group
for Aerospace Research and Development
STRUCTURAL DESIGN APPLICATIONS OF
MATHEMATICAL PROGRAMMING TECHNIQUES
G.G.Pope and L.A.Schmit

Published February 1971

208 pages, incl. figs

The application of mathematical programming tech-
niques in the optimum design of aerospace and similar
structures is described starting from basic concepts
and proceeding in a logical manner to derivations of
the most powerful techniques currently available,
and to descriptions of typical recent applications.

P.T.O.

624.07:681.3.06

AGARDograph No.149

North Atlantic Treaty Organization, Advisory Group
for Aerospace Research and Development
STRUCTURAL DESIGN APPLICATIONS OF
MATHEMATICAL PROGRAMMING TECHNIQUES
G.G.Pope and L.A.Schmit

Published February 1971

208 pages, incl. figs

The application of mathematical programming tech-
niques in the optimum design of aerospace and similar
structures is described starting from basic concepts
and proceeding in a logical manner to derivations of
the most powerful techniques currently available,
and to descriptions of typical recent applications.

P.T.O.

624.07:681.3.06

AGARDograph No.149

North Atlantic Treaty Organization, Advisory Group
for Aerospace Research and Development
STRUCTURAL DESIGN APPLICATIONS OF
MATHEMATICAL PROGRAMMING TECHNIQUES
G.G.Pope and L.A.Schmit

Published February 1971

208 pages, incl. figs

The application of mathematical programming tech-
niques in the optimum design of aerospace and similar
structures is described starting from basic concepts
and proceeding in a logical manner to derivations of
the most powerful techniques currently available,
and to descriptions of typical recent applications.

P.T.O.

624.07:681.3.06




‘OLVN-QYVOV
JO [Pued [BLIDJR] PUR Ssainonualg 9y} Aq palosuods sem yderSoQyvov SIYL

‘ugisap uoneIn3IJuod JJRIOIE UO I9)deyd B UM SIpN[OUOd YOIYm UOIID3S [eUl) o)
Ul PAISPISUOD ATk SIUTRIISUOD AJIfIQRBI[a] PUB SJUTBIISUOD OIJSB[A0I3Y 'SPIdu UOIBIsal
pue spuax} arninyg pue ‘suonesrdde ojdwig ‘Sjoo ] STWYILOS[Y ‘MITAY SINJBIANI]
pue s)dedouo)) Tejuswrepun,d :ps[pus SUOI)IAS UTRW INOJ OIUI PIPIAIP SI IX9) oYL

*1X91U02 JBY) Ul pajerjsuourap st sayoseordde Surwurerdord [eojewayjewl pue [BIISSE[O
uoamlaq drysuorje(al ayj pue JySrem wnuiuiw Joj ugisop uo paoed si siseydwyg

"'OLVN- Q4 VOV
JO [oueq [BUS)E PUB SAIN)ONIIS 9y} Aq porosuods sem ydeSoqyvov SIYL

‘ugisop uoreINSIJuUOd 1jeIore uo 13)deyd B UM SOPNOUOD YOTYm UOIII3S [BUL] oY}
Ul paIapISUOD QI SIUTRIISUOD AJIIQRI[Sl PUB SJUTBIISUOD OJJSB[A0ISY ‘SPIsu [OIBasal
pue spual} aining pue ‘suonesijdde s[dung ‘sjoo] orwyjLOS[Y ‘MoIASY IMIBISI]
pue s3doouo)) [BJUSWEPUN ] :PI[IIUI SUOTJOSS UTBUI INOJ OJUI PAPIAIP SI }X9) SYJ

“}X91U0D JBy} Ul pajensuowap st sayoeoidde SurururesSoid [eoljRWSYIR W PUE [EDISSE[D
u2amiaq drysuonjejal ay) pue JySiom winumuiw I10j uSisop uo paoeld si siseydwyg

‘OLVN-Qd VOV
Jo oued [euR)el pue saInjonng oy Aq parosuods sem ydeSoQYvoOv S

“ugrsap uorleIndryuod 3jerdie Uo 10)deyd B YIIm SOpn[Ouod yoIym UOI}3as [BUIj Y3
UF PaIapIsuod aIe SJUIBIISUOD AJI[IQRI[SI PUEB SJUTBIISUOD IIISB[O0I3Y 'SPasu UdIeasal
pue spuai} arnin pue ‘suonjeorjdde ojdung ‘sjoo] OTWYIIIOT[Y ‘MIMAIY 2INJBIANIT
pue s1daouo)) [ejusurepun, :pPo[IIUL SUOIIOAS UIBW INOJ OIUI PAPIAIP SI 1Xd) YL

"JX31U09 Je) UT pajerisuowsp st sayoeordde Furwwesdold [ed1)RWSYIBUW PUE [BIISSE[D
usamjaq drysuonje[ar ay} pue JySrom wnuwruiw I10j udisap uo paoerd sr siseyduryg

‘'OLVN-QIVOV
Jo [oueq [ELIRJE]N puR sarmjonal§ oy} Aq palosuods sem yderSoQyvoy SHL

‘ugisep uoneindjuod jjeldse uo 131deyd B UM SOpN[OU0d YdIYM UOIDAS [BUL) )
Ul PaIoPISUOD OIB SIUTRIISUOD AJI[IQRI[aI PUEB SJUTRIISUOD OIJSP[A0IIY “SPIau YOIeasal
pue spuax} armindg pue ‘suonesrjdde ajdung ‘sjoo] OTWYILIOZY ‘MIIASY SINJRISIIT
pue s)daouo)) [ejuswepuUn,{ :PI[}IUS SUOI)IAS UIEW INOJ OJUI PAPIAIP SI }X3} Sy,

"1X3)U0d 1BY] Ul pajensuocwap si soyoeordde Surtuwerford [ed1jewIay)BW PUB [BOISSE[D
uoom}oq drysuolje[al dy3 pue Jysrom wnwirurw 1oj udisap uo paoseyd st siseydwyg




I“"Uh"g"
" m‘h !
A

o

et

|‘," i
Hl_,ll M

e "
! :J "”” ‘.'-“;;Im‘ .

7 “ ;(!r;ﬁ u_::lﬁ;“
Py
g ‘

) i
LI I h L=
iyl "!;r‘fr,:i iy
Sl I, }lu[u 4

W A s
T &- o

uH'ﬁf',,\uJ “ i L:i’ |
i --f it 6"” :.'.L-!‘;‘Ilrr,‘.l‘l A e l
1 It R i S IR e

{ "'I‘:-fi-.‘l.i‘ u”n-I.E’.; | i

L 54!




-

NATIONAL DISTRIBUTION CENTRES FOR UNCLASSIFIED AGARD PUBLICATIONS

Unclassified AGARD publications are distributed to NATO Member Nations
through the unclassified National Distribution Centres listed below

BELGIUM
General J.DELHAYE
Coordinateur AGARD — V.S.L.
Etat Major Forces Aériennes
Caserne Prince Baudouin
Place Dailly, Bruxelles 3

CANADA
Director of Scientific Information Services
Defence Research Board
Department of National Defence — ‘A’ Building
Ottawa, Ontario

DENMARK
Danish Defence Research Board
(Qsterbrogades Kaserne
Copenhagen @

FRANCE
O.N.E.R.A. (Direction)
29, Avenue de la Division Leclerc
92, Chatillon-sous-Bagneaux

GERMANY
Zentralstelle fiir Liiftfahrtdokumentation
und Information
Maria-Theresia Str. 21 p
8 Miinchen 27 2
Attn: Dr Ing. HJ.RAUTENBERG

GREECE
Hellenic Armed Forces Command
D Branch, Athens

ICELAND
Director of Aviation
c¢/o Flugrad
Revkjavik
£ UNITED STATES

ITALY
Aeronautica Militare
Ufficio del Delegato Nazionale al’AGARD
3, Piazzale Adenauer
Roma/EUR

LUXEMBOURG
Obtainable through BELGIUM

NETHERLANDS
Netherlands Delegation to AGARD
National Aerospace Laboratory, NLR
Attn: Mr A.H.GEUDEKER
P.O. Box 126
Delft

NORWAY
Norwegian Defense Research Establishment
Main Library, c¢/o Mr P.L.EKERN
P.O. Box 25
N-2007 Kjeller

PORTUGAL
Direccao do Servico de Material
da Forca Aerea
Rua de Escola Politecnica 42
Lisboa
Attn: Brig. General Jose de Sousa OLIVEIRA

TURKEY
Turkish General Staff (ARGE)
Ankara

UNITED KINGDOM
Ministry of Technology Reports Centre
Station Square House
St. Mary Cray
Orpington, Kent BR5 3RE

National Aeronautics and Space Administration (NASA)
Langley Field, Virginia 23365
Attn: Report Distribution and Storage Unit

* * *

If copies of the original publication are not available at these centres, the following may be purchased from:

Microfiche

ESRO/ELDO Space
Documentation Service
European Space
Research Organization St. Mary Cray

114, Avenue de Neuilly Orpington, Kent BR5 3RE
92, Neuilly-sur-Seine, France England

Microfiche or Photocopy

National Technical
Information Service (NTIS)
5285 Port Royal Road
Springfield

Virginia 22151, USA

Microfiche

- Ministry of Technology
Reports Centre
Station Square House

. The request for microfiche or photocopy of an AGARD document should include the AGARD serial number,
title, author or editor, and publication date. Requests to NTIS should include the NASA accession report number.

Full bibliographical references and abstracts of the newly issued AGARD publications are given in the following
bi-monthly abstract journals with indexes:

United States Government Research and Development
Report Index (USGDRI), published by the
Clearinghouse for Federal Scientific and Technical
Information, Springfield, Virginia 22151, USA

Scientific and Technical Aerospace Reports (STAR)
published by NASA,

Scientific and Technical Information Facility,

P.O. Box 33, College Park,

Maryland 20740, USA

Printed by Technical Editing and Reproduction Ltd
Harford House, 7-9 Charlotte St, London. W1P 1HD






