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I 

FOREWORD 

The St ruc tures  and Materials Panel of t he  Advisory Group f o r  Aerospace 
Research and Development (AGARD) comprises s c i e n t i s t s ,  engineers  and technica l  
adminis t ra tors  from government, u n i v e r s i t i e s  and indus t ry ,  who are concerned 
wi th  the  advancement of aerospace research and development and with the 
provis ion of d a t a  necessary f o r  the design and f a b r i c a t i o n  of the vehic les  
and equipment which NATO requi res .  
the  exchange of information and f o r  conducting co-operat ive theo re t i ca l  and 
experimental s tud ie s  i n  se lec ted  areas. 

The Panel provides a mechanism f o r  discussion,  

This volume descr ibes  the  present  state of development of the we of 
mathematical programming techniques i n  the  optimum design of aerospace and 
s i m i l a r  s t ruc tu res .  Although opt imizat ion with respec t  t o  cos t  i s  considered 
when poss ib le ,  the main emphasis i s  on the minimization of weight, due to  the 
overwhelming importance of t h i s  parameter i n  aerospace appl ica t ions ,  and a l s o  due 
t o  the f a c t  t h a t  i t  i s  one of the few merit funct ions t h a t  can be defined with 
reasonable prec is ion .  
s e l e c t i o n  of materials is  a l so  discussed t o  the l imited ex ten t  meaningful a t  the 
present  time. 

The we of mathematical programming techniques i n  the 

The t e x t  i s  divided i n t o  four  main sec t ions ,  the  f i r s t  of which descr ibes  
b a s i c  i deas ,  reviews the l i t e r a t u r e ,  and i n d i c a t e s  the r e l a t i o n s h i p  of mathe- 
matical programming methods both to  p r a c t i c a l  opt imizat ion techniques of a wre 
t r a d i t i o n a l  kind, and to  re levant  aspec ts  of the c l a s s i c a l  theory of l e a s t  weight 
design. 
examples f o r  the b e n e f i t  of newcomers t o  the  f i e l d  and are subsequently 
re-expressed i n  a general  form. 

Fundamental concepts are introduced f i r s t  i n  the context  of simple 

The second sec t ion  c o n s i s t s  of t h ree  chapters  on the algori thmic methods 
ava i lab le  f o r  the s o l u t i o n  of mathematical programming problems, and the  t h i r d  
sec t ion  descr ibes  some of the  more ambitious appl ica t ions  t o  da te  of some of 
these  techniques i n  the s t r u c t u r a l  design context. 

The f o u r t h  and f i n a l  sec t ion  i s  devoted t o  c l a s ses  of appl ica t ion  which 

O p t i m u m  design 
are s t i l l  a t  a r e l a t i v e l y  e a r l y  s t age  of development but  which promise t o  be 
f r u i t f u l  i n  t he  fu tu re  i n  the design of p r a c t i c a l  s t ruc tu res .  
based on considerat ions of r e l i a b i l i t y  - a subjec t  of  g rea t  importance - i s  
considered i n  the  opening chapter .  
t i o n  i n  the  presence of aeroelastic c o n s t r a i n t s  which includes some mater ia l  
on classical v a r i a t i o n a l  methods t h a t  is  used i n  simple examples t o  i l l u s t r a t e  a 
number of s u b t l e t i e s  of  opt imizat ion i n  t h a t  f i e l d .  The volume concludes with a 
considerat ion of the  optimum design of aerospace vehic les  i n  a broader context  
t o  d e m n s t r a t e  t h a t  s t r u c t u r a l  opt imizat ion is but  one small sub-field of  the 
areas of aerospace design where mathematical programming techniques are 
p o t e n t i a l l y  useful .  

This is followed by a chapter  on optimiza- 

To assist the reader  the  e d i t o r s  have imposed a degree of uniformity on 
the  nota t ion  and conventions employed by the  v a r i o w  cont r ibu tors .  
however, re f ra ined  from enforcing s t r i c t  conformity when, i n  t h e i r  opinion, 
authors have introduced v a r i a t i o n s  which are unl ike ly  t o  cause d i f f i c u l t y .  
v a r i a t i o n s  are wst frequent  i n  Sect ion 4, which covers ground w e l l  ou ts ide  the  
confines of the  earlier chapters .  

They have, 

Such 

The AGARD St ruc tures  and Mater ia ls  Panel f i r s t  became ac t ive  i n  the  f i e l d  
of s t r u c t u r a l  opt imizat ion e a r l y  i n  1967 and i t s  work i n  t h i s  subjec t  w i l l  n o t  
be complete f o r  sane time ye t .  In addi t ion  t o  the  preparat ion of t h i s  volume, 
f o r  which the Panel was indeed for tuna te  t o  have the services of Prof .  Schmit 
and Dr .  Pope as e d i t o r s ,  a major symposium was held a t  I s tanbul  i n  the  f a l l  of 
1969 organised by D r .  R. A. Gel la t ly .  
t o  de lega te  the  management of i ts i n t e r e s t  i n  t h i s  subjec t  t o  an exper t  working 
group, chaired,  f i r s t  of  a l l ,  by M r .  A. N. Rhodes (UK) and a t  present  under the  
chairmanship of L t .  Col. C. K. Grimes (USA). 

The Panel i s  a l s o  for tuna te  i n  being ab le  

Anth lp y J. Barrett 

C h a i s  
AGARD, S t ruc tures  (L 
Mater ia l s  Panel 
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Chapter 1 

INTRODUCTION AND BASIC CONCEPTS 

by 

L. A. Schmit and G. G. Pope 

1.1 Introduction 

During the last decade, the use of large scale digital computing facilities for structural analysis 
has become commonplace. 
digital computers to other quantifiable portions of the structural design process. 
computer oriented structural analysis techniques with mathematical programming methods has played a 
central role in the development of automated procedures for directed redesign. 
procedures for structural design embrace some form of structural'analysis as a subroutine, they must be 
recognized as only a component part of the overall design process. 

It is useful to distinguish between conceptual design, computer aided design and automated 

This has led rather naturally to a growing interest in the application of 
The combining of 

While automated 

procedures for directed redesign. 
deals with the overall planning of a system to serve its functional purposes. 
involves man-machine interactions and it is characterized by qualitative judgments based on externally 
displayed quantitative information. 
design in a defined sense and they are characterized by preprogrammed logical decisions based upon 
internally stored quantitative information. In computer aided design, the use of graphical input-output 
devices such as oscilloscope display units and light-pens facilitate crossing the man-machine interface. 
Automated procedures for directed redesign are aimed at keeping the quantifiable portiod of the design 
procedure in the machine and thus avoiding the unnecessary crossing of this interface. These two 
approaches to the effective use of the large amount of information generated by modern qtructural. 
analysis methods are not mutually exclusive, but rather they complement and reinforce one another. 
portion of the structural design process that can be automated responsibly has moved forward rapidly 
during the past decade and continued advances are anticipated for the immediate future. 

Conceptual design is characterized by ingenuity and creativity and it 
Computer aided design 

Automated procedures for directed redesign seek a balanced optimum 

The 

1.2 Basic Concepts 

The basic ideas that are fundamental to understanding structural design applications of 
mathematical programming methods can be introduced by considering two elementary examples. 
illustrations will be employed to help fix ideas and mathematical abstraction and the associated 
generality will be avoided for the present. 

Graphical 

1.2.1 Simply Supported Column 

Consider a simply supported column with a uniform annular cross section (Fig.l.1) subject to a 
Let the length L - 100 in, the modulus of elasticity 

The mean diameter is denoted by D = (Do + D,i)/2 
compressive load of P - 5000 lb. 
E = 10 x 10 lb/in and the density p = 0.1 lb/in . 
where Do and Di ore respectively the external and internal diameter, and the wall thickness of the 
tube is denoted by T. Find D, T and the weight W of the minimum weight design such that 
D < 3.5 in, T 2 0.04 in; the compressive stress in the member is to be eaual to or less than 
20000 lb/in2, and the design must be such that neither Euler buckling nor local buckling can occur. 

6 2 3 

At the outset, note that the length of the column and the material have been preassigned and that 
only the mean diameter and the wall thickness are variables to be determined. 
load condition is given, namely P = 5000 lb. 
combination with P is ignored. The region of all possible positive values of D and T can 'be 
viewed geometrically as shown in Fig.l.2. Note that the region is immediately reduced by excluding 
values of D > 3.5 in (line a-a) and excluding values of T c0.04 in (line b-b). It should also be 
noted that the internal diameter Di = D - T,and since the minimum geometrically realizable value of 
is zero, the region to the left and above the line D = T (line c-c) is also excluded. 
that Euler buckling be precluded is stated as follows: 

Note also that only one 
Thus, the possibility of various lateral loads acting in 

D. 
The requirement 

where a denotes the stress caused by the applied load P, that is 

P 
n DT a - -  

and a represents the Euler buckling stress 

a = -  '2 E (D2 + T2) . 
8 2  
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Assuming T ( D  and s u b s t i t u t i n g  the  given numerical values 1 = 100 i n ,  P = 5000 lb ,  and 

E = 10 x 10 
stress is  defined by t h e  equation 

6 2 l b / i n  , t he  curve d-d i n  F ig . l .2  along which the  ac tua l  stress equals the  Euler buckling 
. 

I 

- -  5000 125 n2 D2 = 0 
n DT (1-4) 

2 where T2 i s  neglected a s  small compared with D . 
Fig.l .2 is  the re fo re  excluded i n  order  t o  avoid Euler buckling. 
t he  t h i n  walled tube be precluded i s  s t a t e d  as follows: 

The region t o  the  l e f t  and below the  curve d-d i n  
The requirement t h a t  l oca l  buckling of 

where a 
expression 

denotes the  loca l  buckling stress which i s  assumed to be  given by t h e  following simple 

0.4 ET 
(Ic = - D '  

6 Subs t i t u t ing  t h e  given numerical values P - 5000 l b  and E = 10 x 10 
ac tua l  s t r e s s  equals  t he  l o c a l  buckling stress as given by t h e  equation 

l b / i n 2  the  l i n e  along which the  

which i s  e s s e n t i a l l y  equiva len t  t o  
I 

T - 0.02 = 0 (1-8) . 

s ince  D and T a re  necessa r i ly  non-zero and pos i t i ve .  The region below the  s t r a i g h t  hor izonta l  
l i n e  e-e given by Eq. (1-8) i s  therefore  excluded i n  order  t o  avoid loca l  buckling. 
cons t r a in t  is  i n  f a c t  less r e s t r i c t i v e  than t h e  minimum gauge requirement t h a t  T 

requirement t h a t  t he  stress i n  the  member be equal t o  o r  less than 20000 l b / i n  

Note t h a t  t h i s  
0.04 in .  The 

2 is  s t a t e d  as fo l lous :  

0 - 2 0 0 0 0  G o  . (1-9) 

The curve f-f i n  F ig . l .2  along which t h e  member stress equals 20000 l b / i n 2  is  given by 

- -  5000 20000 - 0 . 
n DT (1-10) 

The region below and t o  the  l e f t  of t h e  curved l i n e  f-f , i n  Fig.l .2 is  excluded therefore ,  i n  order  t o  

prevent stress i n  excess of 20000 l b / i n  . 
Euler buckling cons t r a in t  i n  the  region of i n t e r e s t .  
expressed as follows: 

2 Note t h a t  t h i s  cons t r a in t  i s  l e s s  r e s t r i c t i v e  than t h e  
The weight of t he  tubular  column member i s  

W - p % n D T  = 1 0 n D T  . (1-11) 

The l i n e  g-g i n  F ig . l .2  along which the  weight equals 4 lb ,  is  given by the  equation 

4 - l O n D T  = 0 

and a second contour (h-h) along with t h e  weight equals 6 l b  i s  p lo t t ed  using the  expression 

(1-12) 

6 - l O n D T  0 . (1-13) 

It is  apparent from Fig.l .2 t h a t  t he  minimum weight design s a t i s f y i n g  the  various s t a t e d  l imi t a -  
t i o n s  lies a t  poin t  j (D = 3.2 i n ,  T = 0.04 in, U = 4.0 l b ) .  
of t h i s  simple two var i ab le  optimum design problem. 
weight we may scan the  e n t i r e  s e t  of poss ib le  designs,  po in ts  i n  the  (D, T) space, and immediately 

F ig . l .2  i s  a geometric representa t ion  
By p l o t t i n g  t h e  cons t r a in t s  and contours of constant 
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I 

seek out  t h e  minimum weight design a t  point  
Euler  buckl ing stress c o n s t r a i n t  
t h a t  i f  the  requirements D 
t he  minimum weight design would l i e  a t  point  k (D - 4 i n ,  T = 0.02 in ,  W 
the  optimum design happens t o  l i e  a t  the v e r t e x  formed by the  Euler buckling stress c o n s t r a i n t  and the  
loca l  buckling stress cons t r a in t .  

20000 l b l i n  i s  fo r tu i tous .  

a design problem involving N design v a r i a b l e s  such a space has N dimensions. 
t o  designs which s a t i s f y  a l l  the  c o n s t r a i n t s  is  known as  the  f eas ib l e  region and the  sur face  bounding 
it is r e f e r r e d  t o  a s  t h e  c o n s t r a i n t  surface;  
sur face  degenerates i n t o  a c o l l e c t i o n  of  l i n e s .  I n  a two-dimensional space a ver tex  is  formed by the 
i n t e r s e c t i o n  of two l i n e s  while i n  an N-dimensional space a ver tex  represents  t he  i n t e r s e c t i o n  of 
N sur faces .  

j .  This design happens to  l i e  a t  the  v e r t e x  formed by the  

3.5 i n  and T 2 0.04 i n  were changed t o  say D < 5 i n  and T 2 0.015 in ,  then 
and t h e  lower limit on the  tube w a l l  th ickness .  It should be noted 

2.52 l b ) .  In  t h i s  case, 

The f a c t  t h a t  both buckling stress limits are equal t o  
2 

Fig. l .2  i s  a two-dimensional i l l u s t r a t i o n  of what i s  known as a design space representa t ion ;  i n  
The reg ion  corresponding 

f o r  the  two-dimensional example shown i n  Fig. l .2  t h i s  

1.2.2 Two Bar Truss* 

In  the foregoing example, i t  was seen t h a t  var ious combinations of c o n s t r a i n t s  could be c r i t i c a l  
a t  t he  optimum design depending upon the  l i m i t a t i o n s  spec i f ied .  
point  j i n  Fig. l .2  ( f o r  t he  case when D G 3.5 i n  and T 2 0.04 in)  and a t  point  k ( f o r  the case when 
D G 5 i n  and T 2 0.015 in)  are both ve r t i ce s .  
design need not  necessar i ly  l i e  a t  a ver tex  point  i n  the  design space. 

However, the optimum designs a t  

The second simple example i l l u s t r a t e s  t h a t  an optimum 

Consider a synrmetric two member t r u s s  ( see  Fig. l .3)  subjec t  t o  a load 2P - 66000 lb .  
i d e n t i c a l  members have uniform annular c ross  s e c t i o n  with a preassigned ua l l  thickness  T - 0.1 i n .  
hor izonta l  d i s tance  between the support points  is 2B = 60 i n  and the  p e r t i n e n t  material p r o p e r t i e s  a re  

given as  follows; modulus of  e l a s t i c i t y  E = 30 x lo6 l b / in2 ,  dens i ty  p - 0.3  l b / i n  , and y ie ld  stress 
2 

U = 60000 l b l i n  . The problem i s  t o  f ind  the mean tube diameter D, t h e  he ight  H of the  t r u s s  and 

the minimum weight 
Euler  buckling stress ue and the  y i e l d  stress U I n  t h i s  example, the w a l l  th ickness  T, the  

support spacing B, 
of the  tubes and the height  of the t r u s s  
only one load condi t ion i s  considered. 

L e t  the two 
The 

3 

Y 
W such t h a t  the compressive stress i n  the  members i s  equal t o  o r  less than the  

Y '  
and the s t r u c t u r a l  mater ia l  have been preassigned and only the mean diameter D 

H are var iab les  t o  be determined. It should be noted t h a t  
The problem takes the  following a l g e b r a i c  form: 

Minimize w - 2 p  n DT (B2 + H ~ ) '  (1-14) 

subjec t  t o  the  i n e q u a l i t y  cons t ra in ts :  

(1) Euler buckling 

( 2 )  Yield stress 

(1-15) 

(1-16) 

In t roduct ion  of t he  given numerical values i n t o  Eq. (1-14) through (1-16) makes i t  poss ib le  t o  construct  
t he  design space representa t ion  of t h i s  example shown i n  Fig. l .4 .  

It i s  apparent from the  design space depicted i n  Fig. l .4  t h a t  the  minimum weight design s a t i s f y i n g  
I n  t h i s  case, t he  the  var ious s t a t ed  l i m i t a t i o n s  l ies  a t  point  p (D = 2.47 i n ,  H = 30 i n ,  W = 19.8 l b ) .  

optimum design does not  l i e  a t  the  ver tex ,  r a t h e r  i t  i s  seen t h a t  the  only c r i t i c a l  c o n s t r a i n t  a t  
point  p i n  Fig.1.4 is  the  y i e ld  s t r e s s  l imi t a t ion .  

y i e ld  stress l i m i t  i s  ra i sed  t o  U 

unchanged, then the  design space i s  modified t o  t h a t  shown i n  F ig . l .5 .  
it i s  apparent t h a t  t he  minimum weight design l i ee  a t  point  p (D = 1.87 i n ,  H = 20.2 in ,  W = 12.8 l b ) ;  
i n  t h i s  instance the  optimum design happens t o  l i e  a t  a ver tex  formed by the  i n t e r s e c t i o n  of t he  Euler  
buckling and t h e  y i e l d  stress cons t r a in t s .  

It i s  i n t e r e s t i n g  and important t o  note  t h a t  i f  the  

= 100 000 lb / in2 ,  and the  rest of t h e  problem statement  remains 
Y 

Examining the  design space shown 

1.2.3 Relat ionship t o  Tradi t iona l  Approaches 

Early cont r ibu tors  t o  the  l i t e r a t u r e  of the  least weight design of a i r c r a f t  s t ruc tu res  such as 
Far rar  b.21 , Shanley i1.31 and Gerard [1.4] almost always formulated the  s t r u c t u r a l  opt imizat ion problem 
i n  terms of equat ions.  That i s  t o  say, the  s o l u t i o n  of a given problem was sought by prese lec t ing  the  
set of c r i t i c a l  c o n s t r a i n t s  t h a t  were thought t o  charac te r ize  the  optimum design. 
least weight designs i n  c e r t a i n  usefu l  classes of appl ica t ion  where t h e  required number of cons t r a in t s  

This approach y i e lds  

*This example i s  due t o  R. L. FOX, seel1.11. 
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are c r i t i c a l  and where the  c r i t i c a l  cons t r a in t s  are e a s i l y  i d e n t i f i e d .  
cons t r a in t  can, however, lead t o  a wrong so lu t ion  which may v i o l a t e  a c o n s t r a i n t  t h a t  w a s  assumed not  t o  
be c r i t i c a l .  
s ec t ion  t h a t  l oca l  buckling and ove ra l l  buckling are both c r i t i c a l .  
these  two modes, a design would be obtained i n  which D = 4 in  and T - 0.02 in ;  
c o n s t r a i n t . t h a t  T = 0.04 i n  would thus be v io la ted .  
app l i ca t ions  where the optimum design involves less than the  necessary number of c r i t i c a l  cons t r a in t s  
and consequently does not l i e  a t  a ve r t ex  of t he  cons t r a in t  sur face  i n  design space. 

A wrong choice of c r i t i c a l  

For example, i t  might be assumed i n  the  column app l i ca t ion  described i n  the  preceding 
Equating t h e  f a i l u r e  stresses i n  

the  minimum gauge 
This approach a l s o  f a l l s  down, of course, i n  

A c o m n  va r i a t ion  of t h i s  t r a d i t i o n a l  approach i s  the reduct ion  of t he  ob jec t ive  func t ion  t o  a 
func t ion  of  a s i n g l e  va r i ab le  by p rese l ec t ing  an  appropr ia te  set of c r i t i c a l  cons t r a in t s .  
of the  two bar  t r u s s ,  i t  might be  assumed f o r  example t h a t  t he  y i e ld  stress cons t r a in t  is  c r i t i c a l  a t  
t he  optimum design, then i t  would follow from Eq. (1-16) t h a t  

I n  the case 

Using Eq. (1-19) t o  e l imina te  

S e t t i n g  t h e  de r iva t ive  of W 

which would ind ica t e  t h a t  W 

D from the  weight expression given by Eq. (1-14) would y i e ld  

2p P (B2 + H2) 
H U = -  

U 
Y 

with respec t  t o  H t o  zero gives 

(1-19) 

(1-20) 

(1-21) 

i s  a minimum a t  H * B - 30 in.  The corresponding va lues  of D and W 
could then be computed from Eq. (1-19) and (1-20) respec t ive ly ,  and they would be found t o  be 
D = 2.47 i n  and W = 19.8 l b  (see poin t  p, Fig.1.4). 

U 100 000 l b / i n  would lead  t o  the  design H = 30 i n ,  D = 1.48 i n ,  W = 11.9 l b  t h a t  is c l e a r l y  

i n  v i o l a t i o n  of the  Euler  buckling cons t r a in t  ( see  poin t  q, F ig . l . 5 ) .  

Using t h i s  approach f o r  the  case  where 
2 = 

Y 

The f ea tu re  t o  be emphasized here  is  t h a t ,  i n  general ,  i t  cannot be an t i c ipa t ed  how many o r  which 
cons t r a in t s  w i l l  be c r i t i c a l  a t  the  optimum design. 
e s s e n t i a l  t o  a proper treatment of t h e  s t r u c t u r a l  design optimization problem. 

Thus, the  use of i nequa l i ty  cons t r a in t s  becomes 

1.2.4 

The app l i ca t ion  of mathematical programming techniques t o  s t r u c t u r a l  design problems w i l l  be 

Terminology and General Problem Statement 

f a c i l i t a t e d  by introducing the  following terminology. 
by a f i n i t e  set of q u a n t i t i e s  that spec i fy  the  ma te r i a l s ,  t he  arrangement, and the  dimensions of the 
s t r u c t u r e .  
the  o u t s e t  of the  automated design procedure. 
Design va r i ab le s  a r e  those q u a n t i t i e s  def in ing  a s t r u c t u r a l  system t h a t  a r e  var ied  by t h e  automated 
design procedure. The term load condi t ion  r e f e r s  t o  one of severa l  d i s t i n c t  sets of mechanical and 
thermal loads  t h a t  approximately represent  t he  e f f e c t  on the  s t r u c t u r e  of t he  environment t o  which it 
is  exposed. A f a i l u r e  mode is  defined as any s t r u c t u r a l  behaviour c h a r a c t e r i s t i c  subjec t  t o  l i m i t a t i o n  
by the respons ib le  engineer.  
de f l ec t ion ,  buckling, na tu ra l  frequency, and o the r  behavioral  c h a r a c t e r i s t i c s  can be formulated using 
inequa l i ty  cons t r a in t s .  
value of which provides a b a s i s  f o r  choice between a l t e r n a t i v e  acceptable designs 

An idea l ized  s t r u c t u r a l  system can be described 

Preassigned parameters a r e  those q u a n t i t i e s  def in ing  a s t r u c t u r a l  system t h a t  are f ixed  a t  
They a r e  not  var ied  by t h e  d i r ec t ed  redesign algorithm. 

A r a the r  broad c l a s s  of f a i l u r e  modes which includes l imi t a t ions  on stress, 

An objec t ive  func t ion  is  defined as a func t ion  of the design va r i ab le s  the  

A r a t h e r  general  and very s i g n i f i c a n t  c l a s s  of s t r u c t u r a l  design problems can be s t a t e d  concisely 
as problems i n  mathematical programming us ing  t h e  foregoing terminology. Given t he  preagsigned 
parameters and a set of. d i g t i n c t  load condi t ions ,  find the  vec tor  of design va r i ab le s  
the  ob jec t ive  func t ion  M(D) i s  minimized (or  maximized) subjec t  t o  a co l l ec t ion  of  i nequa l i ty  
cons t r a in t s  on t h e  design va r i ab le s ,  

(D) such t h a t  

where the  func t ions  h.(6) a r e  such t h a t  
3 

(1) unsa t i s f ac to ry  behaviour with respec t  t o  each f a i l u r e  mode under each load condition i s  
, precluded and 

(2) t he  design va r i ab le s  a r e  subjec t  t o  f u r t h e r  r e s t r i c t i o n s  based upon cons idera t ions  such as  
f a b r i c a t i o n  l imi t a t ions ,  geometric r e a l i z a b i l i t y ,  and ana lys i s  v a l i d i t y .  
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Example 

The usefulness of t he  terminology and the  general  problem statement is  i l l u s t r a t e d  by d iscuss ing  
a simple example problem that is indeterminate and involves two d i s t i n c t  load condi t ions .  
t he  th ree  ba r  synrmetric p lanar  t r u s s  shown i n  Fig.l.6*. 

assumed t o  be f ixed ,  i.e. the  preassigned parameters are N = 10 i n ,  B1 = 13S0, B 2  = 90°, B3 

p - 0.1 l b / i n  , and E = 10 x lo6 l b / i n  . 
A1 - A3 and, therefore ,  t h e  two independent design va r i ab le s  a r e  A1 and A2. 

load conditions,  the  f i r s t  spec i f i ed  by P = 20000 l b  a c t i n g  a t  an angle of 45' t o  the  X a x i s  and the  

second spec i f i ed  by P2 = 20000 l b  a c t i n g  a t  an angle of 135' t o  the  X ax i s .  The f a i l u r e  modes t o  be 

guarded aga ins t  are simple upper and lower l i m i t s  on t he  stress in each member i n  each load  condition. 
Also, s ince  nega t ive  areas must obviously be excluded, t he  range of admissible values f o r  the  design 
va r i ab le s  A1 and A2 have lower limits, i.e. 2 0 and A2 2 0. Minimization of the  t o t a l  weight is  

the  goal of  the opt imiza t ion  and, therefore ,  t he  ob jec t ive  func t ion  can be expressed i n  term of the  
design va r i ab le s  as follows: 

Consider 
The conf igura t ion  and the  t r u s s  material are 

45'. 
3 2 Since the  t r u s s  i s  t o  be symmetric, it i s  requi red  t h a t  

There are two d i s t i n c t  

1 

U($ - p N [2fi% + A2] (1-22) 

+ 
where it is  understood t h a t  a poin t  i n  the  design space A1, A2 is  defined by the  vec tor  D, t h a t  i s  

dT = LA1, A2j . (1-23) 

L e t  a i j  

obvious t h a t  U 

and u ~ ~ .  

r e f e r  t o  the  stress i n  t h e  i t h  member i n  t h e  j t h  load condition. From symmetry, i t  is  

11 = u ~ ~ ,  u~~ u~~ and u31 = u12. Therefore, it is only necessary t o  consider Ull* O 2 1  
The t e n s i l e  stress l i m i t s  can be wr i t t en  i n  standard form a s  follows: 

hl($) = ull - 20000 G 0 (1-24a) 

h2(b) = u~~ - 20000 G 0 (1-24b) 

h3(8) = u~~ - 20000 G 0 (1-244 

2 
where the maximum permissible t e n s i l e  s t r e s s  i s  20000 l b / i n  . 
expressed i n  the  form, 

The compression stress limits a re  

where the  
a reas  can 

(1-25a) 

(1-25b) 

( 1 - 2 5 ~ )  

1 

maximum permissible,compressive s t r e s s  i s  15000 lblin ' .  
be put i n  the  standard form, 

The cons t r a in t s  precluding negat ive  

h7(8) - - A1 6 0 (1-26a) 

hg(8) - - A2 6 0 . (1 -26b) 

From elementary s t r u c t u r a l  ana lys i s  the  following expressions may be subs t i t u t ed  i n  Eq. (1-24) and 
(1-25) : 

(1-27a) 

2 0 0 0 0 r ~  

2A1 A2 + fiA: 
U21 - (1-27b) 

~ ~ ~~~ 

*This example was f i r s t  presented i n  [1.5J. 
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(1-27~) 

1 

I The significant portion of the design space for this example is shown in Fig.1.7. The constraints 
separating the region of acceptable designs from the unacceptable domain are hl(D) 4 0 (the tension 
stress limit in member 1 under load condition 1) and h (D) < 0 (the compressive stress limit in member 
3 under load condition 1). 
under load condition 1) is always satisfied for designs in the positive quadrant h7(D) < 0, ha($ < 01 
provided the tension stress limit in member 1 in load condition 1 is satisfied [i.e. hl(if) < 01 . 
Selected contours of constant weight 
Scanning this design space, it is apparent that the minimum weight design lies at point 1 
[i.e. A1 = A3 - 0.788 in2, A2 - 0.41 in2 and W = 2.64 lb]. It should be noted that this optimum design 
does not lie at a vertex and it represents an indeterminate structure in which member 2 is not fully 
stressed in either load condition. 
W - 2.83 lb] is not the minimum weight optimum design in this case even though it is (a) at a vertex, 
(b) determinate, and (c) fully stressed in the sense that each member is fully stressed in at least 
one load condition*. 
(a) at a vertex, (b) indeterminate, and (c) not fully stressed. This example illustrates again that the 
intuitive substitution of what is thought to be an equivalent problem for an inequality constrained 
minimum weight design problem can lead to incorrect results. 

-P 

6-P 
Note that the constraint h2(D) G O  (the tension stress limit in member 2 

-P 

= W since p N = 0.1 x 10 - 1 - are also shown in Fig.l.7. 1 (p I 
The design represented by point 2 [i.e. A1 = Ag = 1.0 and 

It may be observed that the design represented by point 3 in Fig.l.7 is 

1.2.5 Features of the Mathematical Programming Approach 

I The application of mathematical programming techniques to structural design problems may be 
viewed as a generalization of conventional methods for structural optimization based on the realization 

\ that inequality constraint concepts are, in general, essential to proper formulation of these problems. 
I 

When the structural design optimization problem is viewed as a mathematical programming problem: 

I 

(a) it is possible to consider the design of a structural system rather than the design of 
individual elements; 
structural connections using, perhaps, statistical information, 

allowance can be made where appropriate for quantities such as the weight Of 

(b) the behavioral characteristics of the optimum design need not be presumed, rather they 
emerge as a consequence of the design procedure, 

(c) 

(d) 

a variety of failure modes in each of several load conditions may be guarded against, 

restrictions on the design variables arising from fabrication considerations and limitations 
of the analysis employed can be treated, 

(e) a wide variety of restrictions on structural behavior including stress, displacement, 
buckling, dynamic and thermal response can be dealt with, 

(f) the approach is not inherently linked to weight minimization; that is to say, objective 
functions other than structural weight may be readily employed. 

While reviewing the potential of mathematical programming techniques in the structural design 
field, it is well to point out a fundamental property of these techniques which can sometimes be a 
cause of difficulty. 
mathematical programing methods will yield the optimum solution; 
convex problems. Many structural applications are, however, of a more general form as, for example, 
illustrated in Fig.l.8b where local optima exist as well as the global optimum which is sought. Now 
mathematical programming techniques look, in effect, for conditions which are satisfied by a local 
optimum, so the solution obtained is liable to depend on the initial design from which the search 
procedure is started. This difficulty can be alleviated by repeating computations from radically 
different starting points and comparing results until reasonable confidence is built up that the 
global optimum has been achieved. 
improving a design which is the best that can be achieved by traditional means; 
single applications of mathematical programming techniques have yielded significantly more efficient 
designs than can be achieved without their aid. 

In any optimization problem of the form illustrated in Fig.l.la, standard 
such problems are referred to as 

A single application remains a powerful tool, however, as a means of 
in many problems 

1.2.6 Relationship to Materials Selection 

The formulation of the structural design problems as a mathematical programming problem is in 
principle general enough to embrace both the design of the structural configuration and the 
structural material. 
design variables are continuous variables. 
characterized by a discrete set of available materials from which a choice is to be made. 

*The assumption that a fully utilized design is equivalent to a minimum weight design is frequently 
but not always valid. 
referred to l1.61, 11.71 and f1.81. 

Most applications of mathematical programming techniques have assumed that the 
However, the materials selection problem is usually 

Such discrete 

This topic has been examined in some depth and the interested reader is 
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var i ab le s  might i n  theory be incorporated i n  the  opt imiza t ion  process a t  t h e  expense of a considerable 
increase  i n  complexity and computational t i m e ,  but when the re  are only  two o r  t h r e e  candidate ma te r i a l s  
and when the  same mate r i a l  is  t o  be used throughout the  s t r u c t u r e ,  it would probably be more e f f i c i e n t  
t o  perform the  opt imiza t ion  on t h e  b a s i s  of each material i n  t u r n  and t o  compare t h e  r e s u l t s  a t  t he  end. 
Even i f  i t  i s  hypothesized t h a t  material va r i ab le s  can be t r ea t ed  a s  continuous, s e r ious  p r a c t i c a l  
problems arise because most of t he  engineering mater ia l  p rope r t i e s  t h a t  are important i n  s t r u c t u r a l  
design depend upon experimental cha rac t e r i za t ion .  
p rope r t i e s ,  including cos t ,  upon processing, f a b r i c a t i o n  and composition va r i ab le s  cu r ren t ly  de f i e s  
desc r ip t ion .  

Furthermore, t h e  dependence of engineering mater ia l  

The idea  of applying mathematical programming techniques t o  simultaneous s e l e c t i o n  of a 
s t r u c t u r a l  conf igura t ion  and ma te r i a l s  can be i l l u s t r a t e d  by the  following simple but admittedly 
r a t h e r  imprac t ica l  example i1.91. 
p lanar  t r u s s  t o  t ransmi t  t o  a f ixed  support l i n e  represented by r-r i n  Fig.l .9,  var ious  concentrated 
loads  (P,) applied a t  poin t  ( 8 )  and or ien ted  a t  angles 

buckling f a i l u r e  modes are t o  be guarded aga ins t  i n  each of  severa l  d i s t i n c t  loading  condi t ions  
(mechanical and thermal).  
expressed as continuous func t ions  of t h e  dens i ty .  
thermal expansion c o e f f i c i e n t  and the  y i e ld  s t r e s s  of  a r ep resen ta t ive  c l a s s  of s t r u c t u r a l  a l loys  were 
p lo t t ed  versus dens i ty  and then curve- f i t t ed ,  see 11.91 f o r  d e t a i l s .  The c ross  sec t ion  of each 
t r u s s  member is  asslrmed t o  be annular,  with a preassigned mean-diameter t o  w a l l  thickness r a t i o  
se l ec t ed  t o  preclude l o c a l  buckling. The preassigned parameters f o r  t h i s  example are: N ,  t he  n o m 1  
d i s t ance  from poin t  s t o  the support  l i n e  r-r in Fig.l .9,  t h e  mean diameter t o  thickness r a t i o  (:), f o r  each t h i n  walled tubular  member, t he  modulus of e l a s t i c i t y  as a func t ion  of dens i ty  E(p),  

t he  c o e f f i c i e n t  of thermal expansion as a func t ion  of dens i ty  
func t ion  of dens i ty  Oy(p). The design va r i ab le s  a r e  the  dens i ty  (pp),  the  o r i en ta t ion  angle (ep) 

and t h e  c ross  sec t iona l  area (A ) f o r  each of the  members (p - 1, 2, 3).  

Consider t he  problem of designing the  l i g h t e s t  weight t h ree  bar  

uk t o  the  X ax i s .  S t r e s s ,  displacement, and 

It is  assumed t h a t  t h e  pe r t inen t  engineering material p rope r t i e s  may be 
For t h i s  example the  modulus of e l a s t i c i t y ,  

% 
u(p), and the  y i e ld  s t r e s s  as a 

P 
Cons t ra in ts  a r e  placed on the  range of values t h a t  can be assumed by the  var ious  design va r i ab le s  

a s  follows:- 

0.05 < p 4 0.32 ; p = 1, 2, 3 (1-28) 
P 

B2 B1 '< II (1-29a) 

(1-29b) 

0 < B3 Q B2 ( 1 -29~)  

and 

(1-30) 

where the  (A ) 

Fig . l .9  it can be seen t h a t  t he  cons t r a in t s  s t a t ed  i n  Eq. (1-29) serve t o  preclude the  p o s s i b i l i t y  of 
members of i n f i n i t e  length  and they a l s o  order  the  pos i t i on  of the  members. 
spec i f i ed  by giving t h e  magnitude Pk and the  o r i e n t a t i o n  g, of the  mechanical load appl ied  a t  

j o i n t  8 f o r  each load condition k a s  w e l l  as the corresponding temperature changes AT Inequal i ty  

cons t r a in t s  are e a s i l y  generated t o  guard aga ins t  unsa t i s fac tory  behavior with respec t  t o  the  severa l  
f a i l u r e  modes. The stress i n  each member p i n  each load condi t ion  k i s  required t o  be equal t o  o r  
less than t h e  t e n s i l e  y i e ld  stress and equal t o  o r  g rea t e r  than the  compressive y i e l d  s t r e s s  o r  buckling 
stress whichever is  c r i t i c a l  (assuming t e n s i l e  s t r e s s  is  pos i t i ve  and compressive s t r e s s  i s  nega t ive) .  
The x and y displacement components of t he  poin t  8 are subjec t  t o  upper and lower limits i n  each 
load condition. 
va r i ab le s ,  

r ep resen t  upper l i m i t s  on the  c ross  sec t iona l  areas. From an  examination of 
P max 

The load conditions a r e  

Pk' 

The s t r u c t u r a l  weight which is  seen t o  be the  non-linear func t ion  of the  n ine  design 

(1-31) 

i s  taken as t h e  ob jec t ive  func t ion .  

The ana lys i s  used t o  p red ic t  t h e  behavior of any p a r t i c u l a r  t r i a l  design follows from a s t r a i g h t  
forward app l i ca t ion  of elementary s t r u c t u r a l  mechanics. The d i r ec t ed  redesign procedure used t o  ob ta in  
numerical r e s u l t s  i s  described i n  [1.91. 
i t  is shown t h a t  mathematical programming techniques can be used t o  ca r ry  out  simultaneous s e l e c t i o n  of 
s t r u c t u r a l  ma te r i a l  and conf igura t ion  wi th in  the  context of t h i s  r a t h e r  highly idea l i zed  example. 

Results f o r  s eve ra l  numerical examples* a r e  given the re  and 

*Another i n t e r e s t i n g  aspec t  of these  r e s u l t s  was t h a t  when displacement cons t r a in t s  governed t h e  
design, it was o f t e n  found t h a t  many optimum designs a l l  having t h e  same minimum weight ex i s t ed .  
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While this example is admittedly impractical, the basic approach it illustrates may have long range 
potential. 

The emergence of high performance composite materials has encouraged some further consideration of 
the idea of simultaneous design of structural configuration and structural material. 
fiber composites the volume fraction of fibers could be considered as a design variable. 
fibers the modulus of elasticity in the longitudinal direction may be treated in principle as a 
continuous design variable over a very wide range. 

For example, in 
With carbon 

It should be noted that ply orientation angles are M t  viewed here as material design variables 
but rather they are thought of as laminate configuration design variables. 
materials and particulate composites, it is possible in principle to represent both the composition 
and the density of the material using continuous design variables. 
experienced due to the dependence of engineering material properties, including cost, on the material 
design variables which can in general only be obtained by an extensive experimental characterization 
program. 
values, there is no assurance that interpolation between such data points is valid. 

In the area of ceramic 

Here again difficulties are 

Even if one imagines carrying out such a program for a sample set of material design variable 

For the foregoing reasons, the materials selection problem even for composite materials tends in 
practice to be discrete. While the simultaneous design of materials and structures remains a 
desirable long range goal, major advances are needed in the prediction of engineering material 
properties from material design variables to make this possible. 
mathematical programming techniques in structural design can aid in the materials selection process by 
making it possible to compare optimum designs based upon alternative discrete materials. 
noted that these existing methods can also be used to generate optimum designs based on hypothetical 
material properties that are judged to be realizable in the future. 
optimum structural designs for alternative hypothetical and existing materials can be used to help 
guide materials development effort into areas of high payoff. 

For the present, the application of 

It may be 

In this way, methods for seeking 
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Chapter 2 

A BASIS FOR ASSESSING THE STATE-OF-THE-ART 

by 

L.  A. Schmit 

2 .1  In t roduct ion  

The growing awareness t h a t  a s i g n i f i c a n t  c l a s s  of s t r u c t u r a l  design problems may be a t tacked  by 
combining computer or ien ted  s t r u c t u r a l  ana lys i s  with mathematical programming methods t o  generate 
automated d i r ec t ed  redesign procedures has l ed  t o  a d ive r se  and increas ing  body of knowledge. 
t o  provide a b a s i s  f o r  reviewing some of the  recent  l i t e r a t u r e  and t o  he lp  achieve an organized and 
coordinated overview of t he  subjec t ,  t h e  following philosophical framework is  set f o r t h .  
successfu l  s t r u c t u r a l  design app l i ca t ions  of  mathematical programming techniques deal with the  problem 
i n  design va r i ab le  space. 
examples of Chapter 1 (see Sections1.2.1,  1 . 2 . 2 ,  1 .2 .4) .  
be concisely s t a t e d  as follows: 

I n  order  

Most of t he  

The method of a t t a c k  corresponds t o  t h a t  i l l u s t r a t e d  by the  various simple 
This general  c l a s s  of problems can 

Find d such t h a t  

and 

The vec tor  of  N design va r i ab le s  
cons t r a in t s  (2-la) must be s a t i s f i e d  

d 

hz(3 )  0 ; 
J 

M(3) + Min 

loca te s  a po in t  
f o r  a desiun t o  

j = 1 , 2 ,  ... J (2-la) 

(2-lb) 

i n  an N-dimensiona space,  while t he  J inequa l i ty  
be acceptable;  M( i s  t h e  ob jec t ive  function. - 

St ruc tu ra l  design problems of t h i s  form a r e  f i n i t e  i n  the sense t h a t  t h e  design vec tor  
f i n i t e  number of components. 
s p e c i f i e s  a unique s t r u c t u r e .  
and in tegra ted  analysis-design may be viewed as mathematical programming problems. 
be discussed b r i e f l y  i n  Section 2.7. 
Eq. (2-1) are of primary i n t e r e s t  i n  t h i s  volume. 

fi contuins a 
It i s  assumed t h a t  t he  assignment of. numerical values t o  these  components 
It should be noted i n  passing t h a t  many problems i n  s t r u c t u r a l  ana lys i s  

Some of  these  w i l l  
However, s t r u c t u r a l  design app l i ca t ions  having t h e  form of 

2.2 F i n i t e  o r  Analytic 

It w i l l  be usefu l  t o  d i s t ingu i sh  f i n i t e  op t imiza t ion  problems, t o  which mathematical programming 
techniques may be appl ied  d i r e c t l y ,  from a n a l y t i c  op t imiza t ion  problems i n  which the  goal is  t o  f ind  
the  form of one o r  more func t ions .  In the  case of a n a l y t i c  op t imiza t ion  problems, t h e  s t r u c t u r a l  
design i s  represented by one o r  more unknown funct ions  and t h e  form of these func t ions  is  sought such 
t h a t  t he  ob jec t ive  func t iona l  i s  minimized subjec t  t o  various equa l i ty  and inequa l i ty  cons t r a in t s .  
Analytical  so lu t ions  of s t r u c t u r a l  design opt imiza t ion  problems* when they can be found, provide 
valuable i n s i g h t  and benchmark so lu t ions  aga ins t  which f i n i t e  so lu t ions  can be  evaluated. 
it i s  l i k e l y  t h a t  t he  design optimization of p r a c t i c a l  s t r u c t u r e s  exh ib i t i ng  realistic complexity w i l l  
continue to  be accomplished mainly by the  use of f i n i t e  formulations.  
t he  well  es tab l i shed  widespread use of f i n i t e  formulations i n  s t r u c t u r a l  ana lys i s .  It should be noted 
t h a t  e s s e n t i a l l y  t h i s  same opinion was expressed by Sheu and Prager i n  the concluding remarks 
sec t ion  of t h e i r  recent  l i t e r a t u r e  review 12.3). 

However, 

This viewpoint i s  supported by 

2.3 Design Philosophy 

Charac te r iza t ion  of a s t r u c t u r a l  design philosophy involves many cons idera t ions .  Three of t h e  
mre important bases f o r  cha rac t e r i za t ion  are:  

(a)  

(b) 

(c) 

c l a s s i f i c a t i o n  of t he  design philosophy as de te rmin i s t i c  o r  p robab i l i t y  based, 

i d e n t i f i c a t i o n  of the  kinds of f a i l u r e  modes to  be guarded aga ins t ,  

c l a s s i f i c a t i o n  with respec t  t o  cons idera t ion  of service l aad  condi t ions  and/or overload 
condi t ions .  

S t ruc tu ra l  systems a r e  usua l ly  subjected t o  environments that are complex and continuous'ly 
changing with time. 
d i s t i n c t  loading  condi t ions  and t h i s  i d e a l i z a t i o n  i s  a c r i t i c a l  s t e p  r equ i r ing  profess iona l  judgement 
and experience.  Both de t e rmin i s t i c  and p robab i l i t y  based design philosophies a r e  poss ib le  wi th in  the  
idea l ized  context i n  which a d i s c r e t e  s e t  of load condi t ions  i s  presumed t o  rep lace  t h e  a c t u a l  
environment. I f  any of t h e  q u a n t i t i e s  involved i n  a s t r u c t u r a l  design problem are t r e a t e d  as random 
va r i ab le s ,  t he  formulation w i l l  be c l a s s i f i e d  a s  p r o b a b i l i t y  based (PB). On t he  o the r  hand, i f  a l l  
of the  q u a n t i t i e s  involved i n  a s t r u c t u r a l  design problem are t r ea t ed  as de te rmin i s t i c  (DET), then  
the formulation w i l l  be so c l a s s i f i e d .  
s t i l l  commn p r a c t i c e  today, it can be argued t h a t  i n  view of unce r t a in t i e s  wi th  respec t  t o  load l e v e l s  
and s t r eng ths ,  it would be more r a t i o n a l  t o  t r e a t  these  q u a n t i t i e s  (and o the r s )  as random va r i ab le s ,  
see f o r  example (2.41, 12.51 and i2.61. Recent developments i n  the  area of p robab i l i t y  based 
s t r u c t u r a l  design opt imiza t ion  a r e  discussed i n  Chapter 10. 

I n  design p rac t i ce ,  the  environment is  usua l ly  replaced by a m u l t i p l i c i t y  of 

Although the  e l a s t i c  de t e rmin i s t i c  design philosophy i s  

*For some recent  examples, see i2.11 and i2.21. 
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There are var ious ways of seeking t o  assure  t h a t  a s t r u c t u r a l  system 
These cons i s t  of s t r i v i n g  t o  avoid the  occurrence of func t iona l  purposes. 

w i l l  perform i t s  spec i f ied  
var ious kinds of f a i l u r e  
expected t o  vary from one modes. 

design t a s k  t o  another. 
load condi t ions w i l l  usua l ly  d i f f e r  markedly from those considered under overload condi t ions.  
load condi t ions w i l l  be  defined as design load condi t ions representa t ive  of normal use. 
condi t ions w i l l  be defined as load condi t ions representa t ive  of c e r t a i n  a n t i c i p a t e d  ex t raord inary  o r  
emergency s i tua t ions .  
service load condi t ion  (by mult iplying by a ' s a fe ty  f ac to r ' )  from overload condi t ions,  such as earthquake 
and nuclear  weapons e f fec ts , '  t h a t  do not  correspond to  any s e r v i c e  load condi t ion.  
s t r u c t u r a l  engineer ing p r a c t i c e  s ta t ic  s e r v i c e  load condi t ions are genera l ly  c a l l e d  ' l i m i t  load' condi- 
t i ons  and overload condi t ions are genera l ly  c a l l e d  'u l t imate  load' condi t ions.  I n  c i v i l  engineering, 
however, overload condi t ions obtained by s c a l i n g  up service load condi t ions are o f t e n  ca l l ed  l i m i t  o r  
u l t imate  load condi t ions.  
f a i l u r e  modes such as i n i t i a l  y ie ld ing ,  excessive def lec t ion ,  and loca l  i n s t a b i l i t y  under se rv ice  load 
condi t ions and/or by s t r i v i n g  t o  prevent f a i l u r e  modes such as rupture ,  co l lapse ,  and general i n s t a b i l i t y  
under overload condi t ions.  

What c o n s t i t u t e s  f a i l u r e  m u s t  be c a r e f u l l y  defined and t h i s  can be 
Furthermore, t h e  kinds of f a i l u r e  modes t o  be  guarded aga ins t  under se rv ice  

S e r k c e  
Overload 

It i s  useful  t o  d i s t i n g u i s h  overload condi t ions t h a t  s t e m  from s c a l i n g  up a 

In  a i r c r a f t  

Adequate performance of a s t r u c t u r a l  system may be  sought by t ry ing  t o  avoid 

One w e l l  known approach i s  t o  design the  s t r u c t u r e  so t h a t  i n i t i a l  y ie ld ing  under se rv ice  load 
condi t ions i s  avoided. 
philosophy c o n s i s t s  of applying a ' s a fe ty  f ac to r '  t o  the  mater ia l  y i e l d  stress i n  order  t o  e s t a b l i s h  
allowable working stresses and then designing the  s t r u c t u r e  d e t e r m i n i s t i c a l l y  so t h a t  these  allowable 
working stresses are not  exceeded under serv ice  load condi t ions.  The objec t ive  of  t h i s  approach is t o  
make it  h ighly  unl ikely t h a t  the  y i e l d  stress w i l l  ever  be exceeded under serv ice  load condi t ions.  I n  
an elastic p r o b a b i l i t y  based design philosophy the s t r u c t u r e  is  designed so t h a t  the  p r o b a b i l i t y  of  
exceeding the  y i e l d  stress under serv ice  load condi t ions i s  less than a spec i f ied  minimum. 
words, f a i l u r e  i s  assumed t o  have taken place i f  the  y i e l d  stress i n  any member i s  exceeded i n  any 
s e r v i c e  load condi t ion,  and the  s t r u c t u r e  is  designed t o  insure  t h a t  the  p r o b a b i l i t y  of f a i l u r e  i s  less 
than a s p e c i f i e d  minimum. 

For example i n  c i v i l  engineering p r a c t i c e  the  e las t ic  de terminis t ic  design 

I n  o ther  

A second w e l l  known approach, which may be used as an a l t e rna t ive ,  o r  i n  addi t ion  t o  the fore-  
going, is  t o  design so as t o  prevent co l lapse  under se rv ice  load condi t ions.  
engineering p r a c t i c e  de te rminis t ic  l i m i t  design philosophy c o n s i s t s  of applying a ' s a fe ty  f ac to r '  t o  
t he  serv ice  load  condi t ions i n  order  t o  e s t a b l i s h  the  overload condi t ions and then designing the  
s t r u c t u r e  d e t e r m i n i s t i c a l l y  so as t o  preclude p l a s t i c  co l lapse  under the  overload condi t ions.  
ob jec t ive  of t h i s  approach is to  make i t  h ighly  unl ike ly  t h a t  p l a s t i c  co l lapse  w i l l  occur under 
se rv ice  load condi t ions.  
t h a t  t he  p r o b a b i l i t y  of p l a s t i c  co l lapse  is  less than a spec i f ied  minimum when the  s t r u c t u r e  i s  subjec t  
t o  a set of s e r v i c e  load condi t ions.  
design aga ins t  p l a s t i c  co l lapse  and design a g a i n s t  i n i t i a l  y i e l d  are both serv ice  load o r i e n t e d  design 
phi losophies .  
from serv ice  load condi t ions,  may be viewed as an a r t i f i c i a l  device f o r  t ry ing  t o  keep the  p r o b a b i l i t y  
of p l a s t i c  co l lapse  under s e r v i c e  load condi t ions small. 

For example, i n  c i v i l  

The 

I n  a p r o b a b i l i t y  based l i m i t  design philosophy the  s t r u c t u r e  i s  designed so 

It should be noted t h a t  from a p r o b a b i l i t y  based viewpoint, 

Determinis t ic  design t o  preclude p l a s t i c  co l lapse  under overload condi t ions scaled up 

Another approach t o  seeking assurance t h a t  a s t r u c t u r a l  design w i l l  perform i t s  Specif ied func- 
t i o n a l  purposes i s  to  design the  s t r u c t u r e  to  avoid permanent damage under serv ice  load condi t ions 
and ca tas t rophic  f a i l u r e  under overload condi t ions.  
p r a c t i c e  o f t e n  c o n s i s t s  of  designing the  s t r u c t u r e  d e t e r m i n i s t i c a l l y  so as t o  preclude damage under 
s t a t i c  se rv ice  load condi t ions ( l i m i t  loads)  as v e l 1  a s  prevent ca tas t rophic  f a i l u r e  under overload 
condi t ions (u l t imate  loads) .  
the p r o b a b i l i t y  of permanent damage under serv ice  load condi t ions as w e l l  as the  probabi l i ty  of 
ca tas t rophic  f a i l u r e  under overload condi t ions.  
a l s o  be appropriate  t o  s t r i c t l y  limit the p r o b a b i l i t y  of ca tas t rophic  f a i l u r e  under se rv ice  load 
condi t ions.  

For example, a i r c r a f t  s t r u c t u r a l  engineering 

The corresponding probabi l i ty  based design philosophy would seek to  l i m i t  

Within the s p i r i t  of t h i s  design philosophy i t  would 

In  examining a p a r t i c u l a r  a p p l i c a t i o n  of mathematical programming t o  s t r u c t u r a l  design, i t  w i l l  
be usefu l  t o  

(a )  

(b) 

(c )  

c l a s s i f y  the  design philosophy as de terminis t ic  o r  probabi l i ty  based, 

i d e n t i f y  the kinds of f a i l u r e  modes considered, 

know i f  s e r v i c e  load condi t ions and/or overload condi t ions are considered. 

2.4 Kinds of Design Variables 

The design v a r i a b l e s  used t o  descr ibe  s t r u c t u r a l  systems can be categorized from a mathematical 

I n  p r a c t i c a l  design problems, many of the  design var iab les  

However, i f  a l a rge  number of d i s c r e t e  values  e x i s t s  uniformly d i s t r i b u t e d  over a 

and physical  viewpoint. 
continuous and d i s c r e t e  design var iab les .  
are s t r i c t l y  speaking, d i sc re t e .  
a v a i l a b l e  gauges. 
l imi ted  in t e rva l .  use of a continuous var iab le  representa t ion  i s  o f t e n  sa t i s f ac to ry ,  followed by 
s e l e c t i o n  of the neares t  a v a i l a b l e  d i s c r e t e  value. 
handled i n  t h i s  way, i t  w i l l  be categorized as pseudo-discrete. 
s t r u c t u r a l  synthes is  problems can be adequately formulated using continuous o r  pseudo-discrete design 
var iab les ,  it should be recognized t h a t  s i t u a t i o n s  a r i s e  where it w i l l  be e s s e n t i a l  t o  employ d i s c r e t e  
o r  in teger  var iab les .  In teger  var iab les  can p lay  an important r o l e  i n  descr ib ing  a s t r u c t u r a l  system. 
The number of  major r ings  i n  a s t i f f e n e d  c y l i n d r i c a l  s h e l l ,  the  number of p l i e s  i n  a laminated p ly  
cons t ruc t ion ,  the number of f lange sp l i ces  i n  a continuous welded g i rde r  are a l l  examples of important 
i n t e g e r  var iab les .  
the  number of  continuous, pseudo-discrete, o r  d i s c r e t e  design var iab les  descr ib ing  the  s t ruc tu re  o f t e n  

From a mathematical po in t  of v i e w ,  it is  important t o  d i s t i n g u i s h  between . 
For example, sheet  thicknesses  may only be se lec ted  from comnercially 

When a s t r i c t l y  d i s c r e t e  design var iab le  i s  
While a s i g n i f i c a n t  class of 

Problems involving in teger  v a r i a b l e s  a re  o f t e n  f u r t h e r  complicated by the  f a c t  t h a t  
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depends upon the value of the integer variable(s). 
structural element, such as a truss member joining two nodes, may be thought of as an important special 
case of an integer variable limited to the values 0 and 1. 
optimization problems with inequality constraints can have singular global minima that cannot be 
reached from an arbitrary point through the continuous set of variables involved. 
point with a three bar truss example. 
variables Di as the product of a 0-1 integer 6i and a scalar ai [i.e. Di = 6i ail. 
exists which facilitates classification of the various quantities describing structural systems. 
section properties or cross sectional dimensions of structural elements are said to describe the sizing 
or proportioning of a structure. 
as configuration or geometric layout variables. 
can be thought of as configuration variables while the number of plies at each angle is an integer 
sizing variable. Furthenoore, in such materials the fiber volume fraction and the longitudinal modulus 
of elasticity of the fibers may in some cases, be viewed as a class of quantities that can be called 
material design variables. 
integer variables in a connectivity matrix to describe whether or not a member exists (1) or is 
absent (0). 

Declaration of the existence (1) or absence (0) of a 

Sved and Ginos i2.71 have pointed out that 

They illustrate this 
some design This suggests that it may be necessary to represent 

From a physical point of view, it may be helpful to consider that a design variable hierarchy 
Thus 

The coordinates locating joints in trusses and frames may be viewed 
In fiber composite materials ply orientation angles 

Another level in the hierarchy is represented by the possibility of using 

Design variables of this type will be referred to as topological variables. 

2.5 Objective Function 

When considering the application of mathematical programming to the structural design problem, it 
is necessary that a basis for choice between alternate acceptable design be selected. 
structural design problem is such that there will usually be many designs that perform the specified 
functional purposes adequately provided that limitations on weight andlor cost are ignored. 
objective of structural design optimization is frequently taken to be weight minimization. 
dften be argued that weight minimization tends toward an economical structure since cost is intimately 
related to the amount of material required. 
objective function in this field is because it is readily quantifiable. This is soon appreciated when 
one attempts to gather information for constructing a cost function including in addition to material 
cost, fabrication costs, tooling costs, etc. Indeed the cost of initially designing and constructing 
a structure is only a part of the overall cost picture which would usually include factors such as 
operating and/or maintenance costs, repair costs, insurance costs, etc. Ignoring the difficulties of 
quantification, an approach that appears rational would be to seek a structure of minimum total cost 
subject to constraints that limit the probability of failure during a specified lifetime. It is even 
possible to imagine carrying this thought one step further to minimization of total cost, including 
failure costs which depend upon the probabilities of failure. 
against failure, could be given by the damage cost associated with a particular failure multipled by 
its probability of occurrence. It is, however, recognized that answering the moral question of what 
constitutes an appropriate failure damage cost is likely to be as difficult as selecting an acceptable 
probability of failure. 

The nature of the 

The 
I t  can 

Perhaps another reason that weight is so often used as the 

Contributions to the total cost, charged 

The selection of an objective function that is quantifiable and which effectively relates a 
structural system (or subsystem) to the larger system of which it is a part calls for mature 
professional judgement, experience, and deep insight. 
may be stated as follows: 
property that con be 'meaningfully quantified' and that is not constrained in advance. In this 
connection it may be noted that if weight or cost are severely constrained in addition to the 
structural behavior, the set of acceptable designs may be extremely small or even null. 

It addition to being readily quantifiable, weight is often the most important design property in 

One guide to selecting an objective funktion 
the design should be optimized with respect to the 'most important' design 

aerospace applications as well as in other vehicle systems, including ships, trains and trucks. 
Structural weight saved can be converted directly into increased payload or indirectly into increased 
range, etc. The demand for high performance aerospace structures has provided a major impetus to the 
development of tools for minimum weight design. It must, however, be emphasized that the application 
of mathematical programming to the structural design problem is not inherently committed to the 
exclusive use of weight as the objective function. 

2.6 Formulations and Algorithmic Tools 

Once a structural design problem has been formulated and cast in the form of a mathematical 
The basic non-linear programing programing problem, selection of a solution procedure remains. 

problem of Eq. (2-1) may be attacked directly employing various feasible direction methods (see 
Chapter 7) or the problem may be transformed into an alternative form such as a sequence of linear 
programs (see Chapter 5) or a sequence of unconstrained minimizations (see Chapter 6).  
noted that the classical formulation of the inequality constrained minimization problem, using 
Lagrange multipliers and slack variables, may be viewed as a way of transforming the basic problem, 
Eq. (2-l), into a set of non-linear simultaneous equations. Replacement of the basic problem statement 
with an equivalent substitute problem is a formulative device leading to an alternative casting of the 
basic problem. 
is useful t o  distinguish between various alternative formulations because for each casting, a different 
collection of algorithmic tools may be drawn upon. 
formulations and the corresponding collection of algorithmic tools is summarized as follows: 

It should be 

This step precedes the selection of an algorithm for obtaining numerical results. It 

The relationship between the four alternate 

i 

I 
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Formulation 

Sequence of 
Linear Programs 
SLP 

Sequence of 
Unconstrained 
Minimizations 
Techniques 
SUMT 

Basic Non-linear 
Programming 
Approach 
NLP 

Algorithmic Tools 

Simplex and o ther  
LP Algorithms 

Unconstrained 
Minimization 
Algorithms 

Feas ib le  Direc t ion  
Methods 

C las s i ca l  Formulation Methods f o r  Solving 
wi th  Slack Variables Non-linear Simultaneous 
and Lagrange Equation 
Mul t ip l i e r s  

Relevant por t ion  
of  t h i s  Volume 

Section 2.6.1 and 
Chapter 5 

Section 2.6.2 and 
Chapter 6 

Section 2.6.3 and 
Chapter 7 

Section 2.6.4 

Note t h a t  a guide t o  por t ions  of t h i s  volume dea l ing  with each formulation and the  corresponding 
algorithms is  given i n  the  foregoing ou t l ine .  

. 2.6.1 Sequence of Linear Programs (SLP) Formulation 

Transformati n i n t o  a s quence of l i n e a r  programing problems can be accomplished by rep lac ing  
t h e  func t ions  h . (8 )  and M(8) 

expansions about a poin t  if L e t  if denote t h e  i n i t i a l  t r i a l  design, then the  sequence 

p = 1, 2, 3, ... represents  successive so lu t ions  of the  following l i n e a r  programing problem: 

( see  Eq. (2-1)) by l i n e a r  approximations obtained from Taylor s e r i e s  
3 

P'  

3 
Find D such that %(p)(s) 0 ; j = 1.2, ... (2-2) 

. j  

whet e 

This a l t e r n a t i v e  formulaKion, as a sequence of l i n e a r  programs, makes i t  poss ib le  t o  br ing  e x i s t i n g  
l i n e a r  p r o g r a h n g  algorithms t o  bear on the  bas i c  non-linear programing problem. The bas i c  ideas  
involved i n  t h i s  approach are i l l u s t r a t e d  graphica l ly  i n  Fig.2.1 which dep ic t s  a sequence of t h ree  
l i n e a r  programs f o r  t h e  two member t r u s s  problem previously discussed (see  F igs . l . 3  and 1 .5 ,  a l s o  
Sec t ion  1.2.2); 
introduced CO prevent undesirably l a r g e  changes i n  the va r i ab le s  i n  a given l i nea r i zed  problem. 

i t  w i l l  be seen t h a t  add i t iona l  cons t r a in t s  known as move l i m i t s  have been 

In t h i s  example (F ig .2 . l ) , the  ac tua l  so lu t ion  l ies  a t  a ver tex  poin t  i n  design space. I f  the 
so lu t ion  of t h e  o r i g i n a l  problem does not l i e  a t  a ver tex ,  add i t iona l  cons t r a in t s  have t o  be introduced 
t o  achieve convergence. 
t h i s  purpose. 
Cornel1 and Brotchie 12.81 and by Moses [2 .9]  and the  subjec t  i s  discussed mre f u l l y  i n  Chapter 5 
which is devoted t o  the  sequence of l i n e a r  programs formulation. 

It  is  bes t  i n  problems t h a t  a r e  not known t o  be convex t o  use move l i m i t s  f o r  
This and o ther  techniques f o r  achieving convergence have been s tudied  by Reinschmidt, 

2.6.2 Sequence of Unconstrained Minimizations Techniques (SUMT) 

There are severa l  a l t e r n a t i v e  cas t ings  of  t he  bas i c  problem (see  Eq. (2-1)) that can be c l a s s i f i e d  
Penal ty  func t ion  methods transform the  bas i c  problem i n t o  a l t e r n a t i v e  as penal ty  func t ion  formulations.  

formulations such t h a t  numerical so lu t ions  are sought by so lv ing  a sequence of unconstrained minimiza- 
t i o n  problems. 
follows: 

Given an i n i t i a l  value of t he  s c a l a r  r 

For example, t h e  Fiacco-McCormick formulation (2.101, r2.111, i2.121 can be s t a t e d  a s  

r1 and an  i n i t i a l  value of 6 = -6, such t h a t  
P 

hj(so) < 0 , j - 1,2,  ... J 

3 
generate a sequence of vec tors  Dp, p = 1,2, . .  . 
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such that 

and 

where 

and 

The firs 

< r  . 
rp+l P 

term on the right hand side of Eq. (2-8) i s  the objective function and th 

(2-8) 

(2-9) 

T second term is a 
constraint repulsion function that serves to keep D inside-the acceptable region defined by the J 
inequality constraints. For large values of r the penalty function 

P' 

+ 
interferes with the true minimum of M(D). lead to functions $(6,rp) 
that are difficult to minimize, so a sequence of tractable unconstrained minimization problems is 
generated by reducing r gradually. Considerable insight into the nature of the Fiacco-McCormick 
penalty function formulation can be gleaned from the sequence of three contour plots shown in Fig.2.2 
which are based on the two bar truss problem previously discussed (see Eq. (1-14) through (1-16) and 
Chapter 6). The unconstrained mini" of $(D,rl) shown in Fig.2.2a is at point 1. The second 
unconstrained minimization stage [i.e. find 6 such that $(& r2) .+ Min] terminates at point 2 in 
Fig.2.2b, and the third stage terminates at point 3 in Fig.2.2~. 
[rl > r > r 1 
of designs that approach the constraints gradually. 
minimization problem begins from a given starting design 
constraints, (2-7). 
point. However, it is possible, in many applications, to accelerate the overall procedure by employing 
extrapolation techniques to determine starting points for subsequent unconstrained minimization cycles 
(after two or more minimization stages have been completed). Starting points obtained by extrapolation 
must be checked to be sure that they satisfy the constraints, (2-71, because at each stage, it is 
necessary to start the unconstrained minimization of 

However, small values of r 
P 

P 

Note that as r decreases 
the function becomes more eccentric. It is seen that the method generates a sequence 

which satisfies the inequality 

2 3  
The solution of the initial unconstrained 

D 
Each subsequent stage can use the solution of the previous stage as a starting 

$(D,r ) from an acceptable design point. 
P 

Since each of the designs generated by the foregoing penalty function approach lies inside the 
acceptable region of the design space, the method is classified as an interior penalty function 
formulation. This constraint repulsion feature has important engineering implications. 
tends to generate a sequence of designs which decrease the value of the objective function such that 
none of the designs in the sequence is critical with respect to the set of inequality constraints, 
(2-7). Qualitatively speaking, it can be said that the method tends to 'funnel' the sequence of trial 
designs down the middle of the acceptable region. 
the use of approximate analysis methods during major portions of the optimization procedure, see 2.13) 
and i2.141. 
to embrace discrete variables. 

The method 

This characteristic makes it possible to consider 

Marcal and Gellatly [2.15] have suggested that this type of formulation can be extended 

As suggested by Zoutendijk 12.161, this formulation can also be extended to deal with parametric 
inequality constraints of the form 

h.(z,6) 4 0 ; z1 4 z 4 zz  ; j - 1,2 ,... J (2-10) 
J 

by redefining the function b(6,r ) in Eq. (2-8) as follows: 
P 

(2-11) 

The effect of this extension is to introduce into the penalty function the influence of each inequality 
constraint over the entire specified range of values for the parameter 
influence of each constraint at the z value for which it is most critical. 
penalty function formulation (Eq. (2-11)) care must be exercised to ensure that the parametric 
inequality constraints represented by Eq. (2-10) are not violated at any value of z in the range 
between zl and z2 during any stage of the solution process. This approach can be further extended 

z, rather than just the 
When using the integral 
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to deal with inequality constraints that are dependent on several parameters such as time and/or 
spatial parameters, see for example (2.171. It should also be noted that envelope type loadings 
(see Fig.2.3) or moving 
functions to introduce the influence of parametric inequality constraints. 

load situatisns (see Fig.2.4) can be dealt with using integral penalty 

As a second example of a penalty function formulation, consider the following transformation of 
the basic problem: 

Given asmall initial value of rp = T~ and an initial value of 5 - d 
6 

generate a sequence of vectors 
p = 1,2, ... such that 

P’ 

&,rp) + Min (2-12) 

where 

and > r  . 
rp+1 P 

(2-13) 

(2-14) 

(2-15) 

The first term on the right hand side of Eq. (2-13) is the objective function and the second term is 
the penalty function. 
zero in the acceptable region. Therefore, in this formulation there is no penalty for approaching the 
constraints from the acceptable region, rather a penalty is incurred only if an inequality constraint 
is violated. As the scalar r is increased (rp+l > rp) the sequence of solutions is driven toward 

P 
the acceptable region of the design space where the insquality constraints are satisfied. 
formulation, large values of r therefore, 

P P 
by increasing r gradually, a sequence of tractable unconstrained minimization problems is generated. 
The unconstrained minima in the sequence of designs generated lie outside the acceptable region of the 
design space and therefore this formulation may be classified as an exterior penalty function method. 
From an engineering design point of view, exterior penalty function methods have the disadvantage that 
intermediate designs obtained prior to the optimum design are not acceptable (i.e. they violate one or 
more of the inequality con traints). 
require a starting point that satisfies the inequality constraints, (2-la). 

Note that each contribution to this penalty function has the property that it is 

In this 
lead to functions $(D,r ) that are difficult to minimize; 

P 

On the other hand, exterior penalty function methods do not 

It should be pointed out that penalty function formulations can be subject to operational diffi- 
culties because the functions generated are sometimes difficult to minimize. Relative minima present 
in the baeic problem statement do not vanish and in some cases additional relative minima are created. 
by the formulation. 
cannot be assured and strict equivalenceof the substitute problem cannot be guaranteed. 
minimization algorithms and penalty function formulations are dealt with further in Chapter 6. 

Usually, the convexity of the functions involved in the basic problem statement 
Unconstrained 

2.6.3 Basic Non-linear Programming (NLP) Approach 

Most of the large scale applications of mathematical programing to structural design optimization 
problems have attacked the problem directly using one of the various feasible direction methods. 

that 

+ 
To begin, assume that an acceptable design D is available, .that is, let 6 be a design such 

9 9 

The next design in 

that is let d 
q+l 

the sequence dq+l can be generated by moving in the direction of steepest descent, 
be determined as follows: 

(2-17) 

where 

8 - VM(dq) 
q 

(2-18) 
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and a i s  t h e  s o l u t i o n  of a one-dimensional i nequa l i ty  constrained minimization problem. This one- 

dimensional problem is  depicted graphica l ly  i n  Fig.2.5 and it can be s t a t e d  concise ly  as follows: 
f i n d  a such t h a t  

q 

(2-19) h j ( sq  + a ifq) - h.(a) 6 0 ; j - 1,2, .  ..J 
3 

and 

M(Sq + a Sq) - M(a) + Min . (2-20) 

In almst a l l  s t r u c t u  a1 design opt imiza t ion  problems, modification i n  the d i r e c t i o n  of s t e e p e s t  f with one o r  more cons t r a in t s  c r i t i c a l ,  t h a t  is 
q+l  

descent leads  t o  a design 

hj(6q+1) = 0 fo r  j E Jc . 

The poin t  q+l i n  t h e  two-dimensional des ign  space shown i n  Fig.2.6 represents  such a design. 

The next des ign  i n  the  sequence is  determined from the  expression 

sq+l + a q+l  8 q+1 3q+2 

where t h e  d i r e c t i o n  of modi f ica t ion  ifq+l must s a t i s f y  the  following inequa l i ty  c o n s t r a i n t s  

and 

(2-21) 

(2-22) 

(2-23) 

(2-24) 

Direct ions ifq+l t h a t  s a t i s f y  Eq. (2-23) are f eae ib l e  i n  the  sense t h a t  design modification i n  such a 

d i r e c t i o n  is poss ib le  without v i o l a t i n g  the  cu r ren t ly  c r i t i c a l  cons t r a in t s .  Di rec t ions  S t h a t  

s a t i s f y  Eq. (2-24) are c a l l e d  usable because they ar 
reduced o r  a t  least held inva r i an t .  Any d i r e c t i o n  3 
ca l l ed  a usable-feasible d i r ec t ion .  
cons t r a in t s  and does not  i nc rease  the  va lue  of t he  o e c t i v e  func t ion  M(& l oca l ly .  Three p a r t i c u l a r  
methods f o r  determining usable-feasible d i r ec t ions  

q+ l  
design opt imiza t ion  are presented i n  d e t a i l  i n  Chaper 7. 

been determined the  s c a l a r  a 
as the  so lu t ion  of a one-dimensional i nequa l i ty  constrained minimization problem. 
one-dimensional minimization problem (a 

q+l  
s t r a ined  as depicted i n  Fig.2.7. 
another move i n  t h e  d i r e c t i o n  of s t eepes t  descent 

Fig.2.7 the  design procedure is continued by generating another usable-feasible d i r e c t i o n  considering the  
new set of c r i t i c a l  cons t r a in t s  a t  3q+2. 

+ 
q+l 

d i r ec t ions  such t h a t  t he  ob jec t ive  func t ion  is  
t h a t  s a t i s f i e s  Eq. (2-23) and (2-24) i s  

q+l 
Design modification i n  such a d i r e c t ' o n  does no t  v i o l a t e  the  a c t i v e  , 

t h a t  have found app l i ca t ion  i n  s t r u c t u r a l  

Once a usable-feasible d i r e c t i o n  

i n  Eq. (2-22) t h a t  determines how f a r  t o  go can again be determined 
q+l  

Note a l s o  t h a t  t h i s  
) may be unconstrained a s  shown i n  Fig.2.6 or  it may be con- 

while i n  the  case i l Jus t r a t ed  i n  
In t he  case shown+in Fig.2.6 he design procedure can continue by making 

S = - OM(8 ) 
q+2 q+2 

2.6.4 C las s i ca l  Formulation 

It is i n t e r e s t i n g  t o  observe t h a t  t he  c l a s s i c a l  formulation of t he  inequa l i ty  cons t ra ined  
minimization problem may be viewed a s  a device f o r  transforming the  bas i c  problem (Eq. (2-1)) i n t o  a 
s e t  of non-linear simultaneous equations.  Using s lack  va r i ab le s  B j  ( i . e .  va r i ab le s  t o  convert 
i n e q u a l i t i e s  i n t o  equations) and Lagrange m u l t i p l i e r s  

terms of  a set of non-linear simultaneous equations as follows: 

U the classical formulation can be  cast i n  
j 

Find (3,$,;) such t h a t  'n<if,8;;) i s  

where 

s t a t iona ry  

(2-25) 
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which implies 

an aM J ah 
C vj 4 = 0 ; i - 1,2. ... 1 - - - +  

aDi aDi j-1 

- E  ’* 82 + h.(d) = 0 ; j - 1,2,...j 
avj 3 3  

an - - 2v.8 = 0 ; j = 1,2,...~ as ~j 

(2-26) 

(2-27) 

(2-28) 

These simultaneous nqn-linear equations (Eq. (2-26), (2-27) and (2-28)) are only necessary conditions 
for a minimum of M(D) subject to the inequality constraints, (2-la), and in general they admit 
multiple solutions. 
(I+2J). 
of the basic problem is usually an exhaustive task. 
constrained minimization problems in the context of structural design by Klein l2.181. 
pointed out that while the classical formulation has serious practical limitations, it can be useful, 
particularly when some foreknowledge is available as to how many and which of the inequality constraints 
are critical. 

It is observed that this formulation increases the number of unknowns from I to 
Finding all of the solutions and then sorting out which of these represents the best solution 

The classical formulation was applied to inequality 
It should be 

Since so much of the structural optimization literature tends to assume that the responsible 
engineer can often anticipate how many and which inequality constraints will be active for the optimum 
design, it may be well to briefly elaborate on the relationship of this view to the classical formula- 
tion.of the inequality constrained minimization problem. 
constraints (J = 3). 
term of the set of integers denoted J null; (1); (2); (3); (1, 2); (2, 3); (3, 1); (1, 2, 3). 
The slack variables and the Lagrange multipliers for each of these eight combinations can be tabulated 
as follows: 

. 
Consider an example with 3 inequality 

The possible combinations of critical constraints can be listed as follows in 
C’ 

Comb ina t ion 
Number 

1 
2 
3 
4 .  
5 
6 
7 
8 

JC 

* 0 0 

* * 0 

* 0 * 
0 0 0 
* * * 
0 0 . *  
0 ’  * 0 
0 * * 

where * indicates an unknown to be determined from the solution of the equations 

ah 
j aDi. E+ 1 u i = o ; i = 1,2, ... I aDi 

jEJc 

2 
J J  

B .  + h.6) = 0 ; j E Jc 

which follow from Eq. (2-26), (2-27) and (2-28). Note that Eq. (2-29) can be written in an 
form as 

For any particular assumed combination of critical constraints (1 through 8), the value of 

(2-29) 

(2-30) 

alternative 

(2-31) 

uj obtained 
from the solution of Eq. (2-29) and (2-30) can be examined to determine whether or not the Kuhn-Tucker 
conditions (2.191 is satisfied. 
negative gradient (-OM) 
to the critical constraints 
are nonnegative the Kuhn-Tucker condition is satisfied. If the constraint functions are convex and 
the objective function is at least locally convex, then satisfaction of the khn-Tucker condition is 
sufficient to establish the constrained optimum under examination as a local opthu”mn 
constraint functions and the objective function are convex, then satisfaction of the foregoing condition 

This necessary condition for any constrained optimum is that the 
of the objective function be a non-negative linear combination of the gradients 

in Eq. (2-31) 
’j (Ohj; j Jc). Therefore, if the Lagrange multipliers 

If both the 
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is  s u f f i c i e n t  t o  e s t a b l i s h  the  constrained optimum being t e s t ed  as a global  optimum. 
apparent that f o r  problems where i n s i g h t  o r  p r io r  experience suggest which combination of c o n s t r a i n t s  
a r e  l i k e l y  to  be  cr i t ical  a t  the  optimum, it may not be necessary t o  solve Eq. (2-29) and (2-30) for. a l l  
poss ib le  combinations of c r i t i c a l  c o n s t r a i n t s .  
t r a d i t i o n a l  methods of s t r u c t u r a l  opt imizat ion may be viewed a s  spec ia l  cases  of t he  more general view- 
point  represented by the  appl ica t ion  of mathematical programming techniques. 
whenever design opt imizat ion is  sought by assuming t h a t  a c e r t a i n  set of c r i t i c a l  c o n s t r a i n t s  chaxac- 
terize the  optimum, an e f f o r t  should be made t o  determine whether o r  not  the  r e s u l t  obtained a t  least 
s a t i s f i e s  the necessary condi t ion represented by the Kuhn-Tucker test. 

2.7 A More General V i e w  

Thus, it becomes 

This discussion i s  of fered  t o  show t h a t  many of the  

It i s  suggested tha t  

While most appl ica t ions  of mathematical programming techniques t o  s t r u c t u r a l  design opt imizat ion 
have at tacked the  problem a s  an inequal i ty  constrained minimization problem having the  form of Eq. (2-1), 
i t  should be recognized t h a t  a more general  class of problems i n  s t r u c t u r a l  engineer ing can be viewed i n  
the  context  of mathematical programming. 
concisely as follows: 

The general mathematical programming problem can be s t a t e d  

+ 
Find % such t h a t  fk(X) - 0 ; k - 1 , 2 , . . . K  

and 

M(2) + Min . 

(2-32a) 

(2-32b) 

(2 -32~)  

+ 
It i s  understood t h a t  the  vector  X l oca t e s  a point  i n  an N-dimensional space, the func t ions  fk(%) = 0 

denote e q u a l i t y  cons t r a in t s ,  the  funct ions h.(X) < 0 represent  i n e q u a l i t y  c o n s t r a i n t s  and M(%) i s  an 

objec t ive  funct ion.  
(see Eq. (2-1)) are c l e a r l y  a spec ia l  case  of Eq. (2-32) i n  which X is  replaced by the  design 
var iab les  3 and e q u a l i t y  c o n s t r a i n t s  are not  present .  

+ 
J 

The previously discussed c l a s s  of s t r u c t u r a l  d r @ n  opt imizat ion problems 

The more general formulation given by Eq. (2-32) embraces a wide v a r i e t y  of s t r u c t u r a l  engineer ing 
problems including design opt imizat ion problems, ana lys i s  problems and in tegra ted  analysis-design 
opt imizat ion.  

Design problems involving e q u a l i t y  cons t r a in t s  between the  design var iab les  are e a s i l y  imagined. 
The three  bar  t r u s s  discussed i n  Sect ion 1.2.4 i s  a simple example. Synmtetry of t he  f i n a l  design can 
be imposed using an e q u a l i t y  cons t ra in t ,  namely as a th ree  

v a r i a b l e  problem (Al, A2, A3). Al te rna t ive ly ,  i n  the  case of simple e q u a l i t y  c o n s t r a i n t s  the  number of 

independent design var iab les  can be reduced. 
the  th ree  bar  t r u s s  example i s  reduced t o  two (A1 and A ) and the design problem i s  of t he  form given 2 
by Eq. (2-1). In s i t u a t i o n s  where the  e q u a l i t y  c o n s t r a i n t s  between design var iab les  are complicated, 
i t  may not  be poss ib le  t o  use e q u a l i t y  c o n s t r a i n t s  t o  reduce the  number of independent design var iab les .  
When t h i s  s i t u a t i o n  e x i s t s  the  s t r u c t u r a l  design opt imizat ion problem has the  form of a general 
mathematical programming problem ( i . e .  Eq. (2-32)). 

A1 = A3 and then dea l ing  with the problem 

When t h i s  approach i s  taken, t he  number of v a r i a b l e s  f o r  

S t ruc tu ra l  ana lys i s  problems can be viewed as spec ia l  cases of  the  formulation given by 
Eq. (2.32). 
energy may be viewed a s  an e q u a l i t y  constrained minimization problem. L e t  X $e replaced by U, the  
vecsor of general ized displacement var iab les  and l e t  the  objec t ive  funct ion M(X) 
np(u) 

For example, the  ana lys i s  of a s t r u c t u r a l  system based upon minimizing the t o t a l  p 3 t e n t i a l  

be replaced by 
Then the s t r u c t u r a l a n a l y s i s  problem can be  s t a t ed  as follows: the t o t a l  p o t e n t i a l  energy. 

Find f such that TI (d) + f i n  
P 

subjec t  t o  a set of e q u a l i t y  c o n s t r a i n t s  

f k &  = 0 ; k = 1,2 ,...K 

t h a t  impose the  geometric a d m i s s i b i l i t y  condi t ions on 
the  displacement var iab les .  

I 

(2-33) 

(2-34) 

+ 
The t o t a l  p o t e n t i a l  energy np(u) 

ana lys i s  problems. 
l i n e a r  s t ra in-displacement  r e l a t i o n s  represent ing  var ious l eve l s  of refinement. For ins tance ,  t he  use 
of S i n i t e  displacement theory strain-displacement r e l a t i o n s  leads  t o  a t o t a l  p o t e n t i a l  energy funct ion 
np(u) 
l i n e a r i t y  is a l s o  s t ra ightforward i n  pr inc ip le ,  provided the non-linear s t r e s s - s t r a i n  r e l a t i o n s  can be 
adequately represented by a s t r a i n  energy dens i ty  type of p o t e n t i a l  funct ion;  however, mst p l a s t i c  
s t r e s s - s t r a i n  r e l a t ions  do not  s a t i s f y  t h i s  requirement. 

i s  quadra t ic  i n  t h e  general ized displacement v a r i a b l e s  fo r  l i n e a r  

Extension t o  include geometric non- l inear i t ies  i s  e a s i l y  accomplished using non- 

t h a t  i s  q u a r t i c  i n  the  general ized displacement var iab les .  Extension t o  include material non- 
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If the geometric admissibility conditions (Eq. (2-34)) are used to reduce the number of displace- 
ment variables, then the structural analysis problem can be viewed as an unconstrainf;d minimization 
problem expressed in terms of the kinematically independent displacement variables U that is C’ 

Find 2 such that (2 ) + Min . (2-35) P C  

Some example applications of finite element structural analyses ‘based on this mathematical programming 
viewpoint will be found in 12.20 1 and 12,211. 

The analysis of a structure based upon minimizing the tosal complementary eqergy may also be 
viewed as an equality constrained minimization problem. Let X+be replaced by F, t$e vector of 
generalized force variables, and let the objective function M(X) be replaced by II (F) the total 
complementary energy. Then the structural analysis problem can be stated as follows? 

Find 3 such that ~~(8) + Min (2-36) 

subject to a set of equality constraints 

fk(& - 0 ; k = 1,2, ... K (2-37) 

thas impose the static admissibility conditions on the force variables. 
nc(F) 
material non-linearities is easily accomplished provided the non-linear strain-stress relations can be 
adequately represented by a complementary energy density type of potential function. Extensions to 
include geometric non-linearities are generally unsuccessful because the nonlinear force displacement 
relations are such that the total complementary energy cannot be expressed solely in terms of force 
variables. 

The total complementary energy 
is quadratic in the force variables for linear analysis problems. Extension to include 

If static admissibility conditions (Eq. (2-37)) are used to reduce the number of force variables, 
then the structural analysis problem can again be viewed as an unconstrained problem expressed in terms 
of the statically independent force variables R, that is 

Find 2 such that %c($) + Min . (2-38) 

Limit analysis offers another example of the applicability of the general mathematical programming 
formulation Eq. (2-32) in the context of structural analysis. The limit analysis of a structure, from 
the statical point of view, has as its goal determination of the maximum load carrying capacity of the 
structure subject to the requirements that the force distribution satisfies the equilibrium conditions 
and ’the yield conditions. In  thecase of a truss 12.221 the problem of the determination of the maximum 
load carrying capacity has the following form: 

Find 3 and X such that 

J ’  

and 

F - U < 0 ; j = 1,2, ... J 
j j  

(2-39) 

(2-40a) 

(2-40b) 

- A  + Min (2-41) 

where F represents the force in the jth member, 
j 
P. 
a 

L 
U 
X 

represents the contribution of the applied load condition to the ith equilibrium equation, 
represents the contribution to the ith equilibrium equation of a unit value of the force in ” the jth member, 
represents the force required to yield the jth member in compression, 
represents the force required to yield the jth member in tension, 
is a positive scalar factor which determines the magnitude of the applied load condition. 

j 
j 

The I equations embodied in Eq. (2-39) are the equilibrium equations, the 25 inequalities stated by 
Eq. (2-40a) and (2-40b) are the yield conditions, and the objective function (Eq. (2-41)) is - X since 
the maximum load carrying capacity is sought. 
the statical point of view has the form of a linear programming problem in terms of the force 

It is apparent that the limit analysis of trusses from 
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var i ab le s  (8) and the  load f a c t o r  (A). 
only be c a r r i e d  ou t  f o r  a s t r u c t u r e  of spec i f i ed  design, t h a t  is  the  geometric layout ,  the  member a reas  
and t h e  y i e l d  stresses of the  member materials must be given. 

It should be c l e a r l y  recognized t h a t  t h i s  limit ana lys i s  can 

The combined ana lys i s  and design optimization of a s t r u c t u r a l  system can o f t e n  be s t a t e d  as B 

general  mathematical programming problem having the  form of Eq. (2-32). 
ana lys i s  and des 'gn op t iy i za t ion ,  i n  Eq.+(2-32) as t h e  concatenation 
of two vec tors  and Y+ where i s  t h e  vec tor  o f  design va r i ab le s  and Y i s  the  vec tor  o f  ana lys i s  
va r i ab le s .  This vector Y should be understood t o  contain an independent component f o r  each ana lys i s  
unknown fo r  each load  condition. 
charac te r ize  the  displacement s t a t e ,  t he  force  d i s t r i b u t i o n  o r  a combination of both. 

In the  case of combined 
t i s  usefu l  t o  view t h e  vec tor  X 

Depending upon the  ana lys i s  method adopted, the  ana lys i s  unknowns may 

An i n t e r e s t i n g  example of a combined analysis-design optimization formulation can be generated by 
considering t h e  minimum weight s i z i n g  of  t ru s ses  based upon l i m i t  ana lys i s  a s  described i n  Chapter 3. 
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Chapter 3 

CLASSICAL OPTIMIZATION THEORY RELEVANT TO THE DESI(;N OF AEROSPACE STRUCTURES 

by 

G. G. Pope 

3.1 In t roduct ion  

Special  c l a s ses  of s t r u c t u r a l  design problems which can be solved advantageously by a n a l y t i c a l  as 
opposed t o  numerical techniques have been s tudied  widely, and comprehensive re ferences  on the  subjec t  
w i l l  be found i n  the  review papers by Sheu and Prager (3.11 and by Wasiutynski and Brandt [3.2].  
Since a t t e n t i o n  is  concentrated i n  t h i s  present  volume on t h e  use of mathematical programming techniques 
i n  the  design of aerospace s t ruc tu res ,  most of which must behave e l a s t i c a l l y  under se rv i ce  conditions,  
i t  is  appropr ia te  here  t o  r e s t r i c t  our  a t t e n t i o n  t o  those aspec ts  of  a n a l y t i c a l  work on s t r u c t u r a l  
optimization which a r e  re levant  i n  t h i s  narrower contex t .  

d i r e c t l y  t o  t h e  least weight design of h ighly  idea l i s ed  frameworks. 
t h i s  theorem i n  the  de r iva t ion  of exact so lu t ions  f o r  use as  yards t icks  i n  t h e  assessment of t h e  
e f f i c i ency  of p r a c t i c a l  s t r u c t u r e s ,  t he  general  r e s u l t s  which may be derived from i t  can a l s o  provide 
usefu l  guidance i n  the  choice of t he  layout no t  on ly  of  frameworks but a l s o  of s t ressed-sk in  and p l a t e  
type s t r u c t u r e s .  For example, an  apprec ia t ion  of t he  proper t ies  of t he  optimum types of s t r a i n  f i e l d  
derived by Michell can reduce s i g n i f i c a n t l y  the  range of geometries which need t o  be considered i n  t h e  
labor ious  numerical s tud ie s  t h a t  are o f t e n  necessary t o  ob ta in  an optimum s t r u c t u r a l  l ayout .  A usefu l  
i nd ica t ion  may, moreover, sometimes be obtained of circumstances where the  l e a s t  weight design i s  non- 
unique and where consequently the  designer may be ab le  t o  impose geometrical r e s t r i c t i o n s  t o  s u i t  
requirements no t  included i n  the  idea l i s ed  design problem, without increas ing  t h e  s t r u c t u r a l  weight. 

The ana lys i s  given i n  t h i s  Chapter starts from t h e  assumption t h a t  t he  s t r u c t u r e  i s  fabr ica ted  
from a mater ia l  with e l a s t i c / p e r f e c t l y  p l a s t i c  proper t ies .  It i s  demonstrated, however, t h a t  t he  
l e a s t  weight des ign  obtained on t h i s  b a s i s  when one load condition only i s  appl ied  i s  i d e n t i c a l  with 
the  l e a s t  weight design f o r  pure ly  e l a s t i c  deformation provided s t r e s s  limits only a r e  considered. 
Michell 's  theorem of minimum weight design i s  deduced f o r  a framework cons i s t ing  of a f i n i t e  number of 
members, by formulating the  search f o r  the  l e a s t  weight design a s  a problem i n  l i n e a r  programming, and 
by using the d u a l i t y  p rope r t i e s  of problems of t h i s  class, following arguments given previously by 
Hemp [3.3],  [3.4] who along with Pearson (3.51 and with Dorn, Gomry and Greenberg i3.61 has employed 
l i n e a r  programming techniques i n  the  least  weight design of i d e a l  frameworks of  t h i s  type. 

This Chapter i s  concerned mainly with the  c l a s s i c a l  theorem due t o  Michell which i s  appl icable  
Apart from the  obvious value of 

3.2 Basic Theory f o r  E l a s t i c / P e r f e c t l y  P l a s t i c  Frameworks 

3.2.1 S ingle  Load Condition 

Consider t h e  minimum weight design of a pin-jointed framework which i s  supported i n  such a way 
t h a t  a l l  t he  ex te rna l  r eac t ions  may be evaluated d i r e c t l y  from the  ove ra l l  equi l ibr ium conditions.  
r e s t r i c t i o n s  are imposed on t h e  permissible displacements and buckling e f f e c t s  a r e  neglected; t h e  
members a r e  a l l  fabr ica ted  from t h e  same material and the  weights of t he  connections between them a r e  
assumed neg l ig ib l e .  The bas i c  geometry i s  spec i f ied ,  and the  c ross -sec t iona l  a r eas  of t he  M memkers 
t h a t  c o n s t i t u t e  t h e  framework a r e  t r ea t ed  as design va r i ab le s  and are denoted by a column vec tor  
Loads a r e  applied a t  the  nodal po in ts  j o in ing  adjacent members and t h e  s i n g l e  load condi t ion  which i s  
considered i n i t i a l l y  i s  spec i f i ed  by a column vec tor  
t he  K equations required t o  e s t a b l i s h  equilibrium. These equations may be expressed i n  t h e  form 

No 

D. 

8; t h i s  has an element corresponding t o  each of 

-+ G 3  = P (3-1) 
+ 

where F is  a vec tor  of M terms def in ing  the  loads i n  the  members and G i s  an appropr ia te  
transformation matrix. 

I f  the  y i e l d  stresses i n  tens ion  and compression a r e  given by a+ and a- r e spec t ive ly  and a r e  
the  same f o r  t he  e n t i r e  framework, t he  loads i n  t h e  members must s a t i s f y  the  following conditions:  

Note t h a t  a- is  s o  defined t h a t  it w i l l  i n  p rac t i ce  have a negative value.  

The t o t a l  volume V of the members cons t i t u t ing  the  framework i s  given by 

+ 
where 
design reduces therefore  t o  minimizing V subjec t  t o  t h e  cons t r a in t s  (3-1) and (3-2). This i s  a l i n e a r  
p r o g r a d n g  problem which may be expressed purely i n  terms of pos i t i ve  va r i ab le s  by s u b s t i t u t i n g  

!Z is  a vec tor  containing the  lengths  of  the  members. The problem of f ind ing  t h e  l e a s t  weight 
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Expressing each of  
following form: 

minimize 

Eq. (3-1) a s  a p a i r  of i nequa l i t i e s ,  t h i s  problem may be expressed i n  the  

where 

$1 ifif 
and 

-I I U+I 

-I -u.-1 

0, 

-G 0 I: G 

if1 3 0 

The optimum s o l u t i o n  i s  necessar i ly  one i n  which a l l  t he  members are fu l ly-s t ressed ,  s ince  a reduct ion i n  
the  cross-sect ion of any member which is n o t  f u l l y s t r e s s e d  would reduce V without v i o l a t i n g  any of t he  
governing equations. 
vanish completely. 

It i s  however poss ib le  f o r  t he  cross-sect ional  area of  unnecessary members t o  

The dual  of t he  above problem may be expressed a s  follows: 

maximize 

w = -+ {if 6 d - $IT $1 ft 311 
U E  

I 

where 

and 

I 

(3-3) 

(3-4) 

+ -  
the product U E , where E- is the y i e ld  s t r a i n  i n  compression, i s  introduced so t h a t  the dual 
var iab les  may be in te rpre ted  as extensions and displacements. 

Since the  optimum framework i s  necessar i ly  fu l ly-s t ressed ,  ha l f  the  c o n s t r a i n t s  i n  the primal 
problem derived from the  i n e q u a l i t i e s  (3-2) must be s a t i s f i e d  as e q u a l i t i e s  i n  the optimum solu t ion ,  
i.e. one f o r  each member of t he  framework. It follows therefore  from the  stpond of she proper t ies  of 
dual  problem described i n  Chapter 5 tha t  t he  corresponding components of  y '  and y" m u s t  be zero 
i n  the  optimal s o l u t i o n  t o  the  dual  problem. Consequently the  la t ter  problem may be re-expressed as 
follows : 

maximize 

-+ 
w - + $ T U  U €  V 

where 
+ 
y - GT zv 

- +  € a G ; < € + f  

and where 

(3-5) 

-b 
E+ represents  the y i e ld  s t r a i n  i n  tension. I f  now the  var iab les  U a r e  in te rpre ted  as v i r t u a l  d i s -  

placements of  the  nodes of t he  framework, t he  r e s u l t i n g  work done by the appl ied forces  is  proport ional  
t o  the value of the merit funct ion W. Subs t i tu t ing  Eq. (3-1) and (3-6) i n  Eq. (3-5) we ob ta in  

V 

W O -  P f  . + -  
U €  



32 

+ 
Since ST 
it i s  c l e a r  t h a t  t he  va r i ab le s  represent  the  corresponding deformations of t h e  ind iv idua l  members. 
The dual problem seeks therefore  t o  maximize the  v i r t u a l  work done by the  ex te rna l  forces  when the 

s t r a i n s  i n  a l l  members are r e s t r i c t e d  t o  being less i n  absolu te  value than E+ i n  tens ion  and E- i n  
compression. 
be deduced t h a t  t he  following condi t ions  are necessary and s u f f i c i e n t  t o  ensure t h a t  a pin-jointed 
framework has the  l e a s t  poss ib le  weight: 

represents  t he  increment of s t r a i n  energy assoc ia ted  with t h e  v i r t u a l  displacements uv, 
-b 

y 

Using again the  second of t h e  d u a l i t y  p rope r t i e s  described i n  Chapter 5 ,  i t  may f u r t h e r  

(1) The stresses i n  a l l  the  members due t o  the  applied loading a r e  e i t h e r  (I+ ( tens ion)  OL' o- 
(compression). 

(2) The framework must permit a v i r t u a l  displacement of  a l l  i t s  poss ib le  nodes which produces a 
s t r a i n  of E+ i n  i t s  tension members, a s t r a i n  of E- i n  i t s  compression members and no t e n s i l e  

s t r a i n  g rea t e r  than E+ o r  compressive s t r a i n  g rea t e r  i n  absolu te  value than E i n  any segment 
along which a po ten t i a l  member could l i e .  

- 

In t he  spec ia l  case when E+ and -E- are equal,  the  above condi t ions  reduce t o  those shown by 

A. G. M. Michell f3.71 t o  be s u f f i c i e n t  t o  e s t a b l i s h  a least weight design; 

when E+ and -E- a r e  not  equal,  i t  may be demonstrated t h a t  these  condi t ions  are equiva len t  t o  
Michell 's  conditions by considering a v i r t u a l  d i l a t a t i o n a l  s t r a i n  i n  add i t ion  t o  t h e  s t r a i n  system 
considered i n  the  present  ana lys i s .  

i n  t he  more general  case 

The arguments, based on d u a l i t y  p rope r t i e s ,  which have been used here  t o  show t h a t  t he  above 
conditions are necessa r i ly  s a t i s f i e d  by a minimum weight design are due t o  Hemp [3.4]; 
on ly  s t r i c t l y  appl icable  when the  number of p o t e n t i a l  members is  f i n i t e .  

they are 

The v i r t u a l  s t r a i n  system defined i n  Eq. (3-6) becomes i d e n t i c a l  with the  ac tua l  s t r a i n s  
It follows t h a t  t h e  minimum weight design i s  necessa r i ly  an when a minimum weight des ign  i s  achieved. 

e l a s t i c  design and a150 t h a t  a s t a t i c a l l y  determinate l e a s t  weight design must always be poss ib le ,  
although there  may be o the r  designs of the  same weight. 

It should be noted t h a t  t he  l i n e a r  programming technique described here sometimes y i e lds  an a r r ay  
of  members which is  a mechanism r a t h e r  than a s t ruc tu re ;  
even the  most t r i v i a l  a l t e r n a t i v e  loading. 
when poss ib le  t o  deduce an a l t e r n a t i v e  minimum weight design. 

addi t iona l  members a r e  then necessary t o  car ry  
Under such circumstances it is ,  of course, advantageous 

It may r ead i ly  be shown t h a t  t he  least weight design f o r  a framework t o  ca r ry  a s i n g l e  load condi t ion  
is  a l s o  the  s t i f f e s t  framework which w i l l  c a r ry  the  loading a t  the  same l e v e l  of stress; a concise proof 
of t h i s  r e s u l t  is  given by Hegemier and Prager [3.8] i n  a paper which i s  concerned pr imar i ly  with the  
in t roduct ion  of cons t r a in t s  on n a t u r a l  frequency i n t o  t h e  design of i dea l i s ed  frameworks. 

3.2.2 Multiple Load Conditions 

I f  the equi l ibr ium equation (3-1) and the  i n e q u a l i t i e s  (3-2) a r e  increased i n  number t o  include 
severa l  load conditions appl ied  i n  tu rn  t o  the  framework, the  search f o r  a minimum weight design remains 
a problem i n  l i n e a r  programming. 
va l id  and consequently the  optimum design experiences,  i n  general ,  p l a s t i c  deformation under a t  least 
one of the  design load conditions.  

The s t r a i n  c r i t e r i a  deduced i n  Section 3 .2 .1  a re ,  however, no 1.onger 

Hemp [3 .4]  has shown, wi th  the  a id  of t he  dual problem, t h a t  i n  the spec ia l  case where two loadings 
only are considered, t he  l e a s t  weight design may be obtained by superposing the least weight designs f o r  

t he  s ing le  load conditions ICsl + s2) and 

systems. 
condi t ions  a r e  given by Shie ld  (3.9).  

+ - s2) where $l and P2 represent the appl ied  load 

Some general  r e s u l t s  f o r  least weight e l a s t i c / p e r f e c t l y  p l a s t i c  s t r u c t u r e s  under mul t ip le  load 

3.3 Optimum Layout of  E l a s t i c  Frameworks 

A. G. M. Michell used condi t ions  equivalent t o  those deduced i n  Section 3.2.1 t o  evolve, f o r  a 
s i n g l e  loading, l e a s t  weight frameworks in which no r e s t r i c t i o n s  a r e  imposed on t h e  number and pos i t i on  
of t h e  nodal po in ts .  
members so they are seldom s u i t a b l e  f o r  d i r e c t  use i n  engineering design; they are, never the less ,  of 
s i g n i f i c a n t  value f o r  the  reasons ind ica ted  i n  Section 3.1, and they have two general  p rope r t i e s  t h a t  
a r e  worthy of note:  

Such s t ruc tu res  usua l ly  involve an  i n d e f i n i t e l y  l a rge  number of i n f in i t e s ima l  

(1) Tension and compression members necessa r i ly  meet orthogonally t o  s a t i s f y  the  condi t ions  
imposed on the  s t r a i n s .  

(2) Any fu l ly-s t ressed  design in which a l l  the  member loads are of t he  same s ign  necessa r i ly  
an i n f i n i t e  number of optimum conf igura t ions  e x i s t s  therefore  s a t i s f i e s  the opt imal i ty  conditions;  

when such designs a r e  poss ib le .  

The l a t t e r  r e s u l t  may a l s o  be deduced d i r e c t l y  from a theorem due t o  Clark Maxwell 13.101 which 
preceded Michell 's  cont r ibu t ion  t o  t h i s  f i e l d .  

Least weight frameworks of the  type evolved by Michell are considered i n  d e t a i l  by Cox [3.11] and 
c lose  approximations t o  them have been obtained by H. S. Y. Chan 13.121 using the  l i n e a r  programing 
approach and assuming t h a t  member i n t e r s e c t i o n s  only occur a t  a f i n i t e  number of po in ts ;  members are 
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t 

permitted t o  run between any p a i r  of the assumed in t e r sec t ion  points .  
is  analogous to  the ana lys i s  of t he  s l i p  l i n e  f i e l d s  associated with the flow of r igid/perfe 'c t ly  p l a s t i c  
materials. 
A. S. L. Chan [3.131 t o  obtain framework designs of least weight. 

The design of Michell frameworks 

A graphical technique developed f o r  use i n  the la t ter  context has been employed by 

The optimum configuration of frameworks i n  which the layout is  more severely r e s t r i c t e d  may, of 
course, a l s o  be obtained,by specifying the points  a t  which member in t e r sec t ions  can OCCUK and, i f  
necessary, by r e s t r i c t i n g  the p a i r s  of i n t e r sec t ions  between which members may l ie .  
some of the possible  members w i l l  vanish completely in  the optimization process; t h i s  is  permissible 
because no compatibi l i ty  conditions are involved d i r e c t l y  in  the primal analysis .  It should be noted 
t h a t  it i s  much more d i f f i c u l t  t o  permit members to  vanish i n  the more complex problem, considered 
elsewhere i n  t h i s  volume, of t he  design of an optimum s t r u c t u r e  t o  ca r ry  several  load systems i n  tu rn  
without yielding,  s ince the analysis  equations would, there  impose a r t i f i c i a l  cons t r a in t s  on the  s t r a i n s  
i n  the non-existent members [3.14]. 

Achodedgement - This Chapter is Brit ish Cram Copyright, reproduced v i t h  the perntieaion of the 
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Chapter 4 

LITERATURE REVIEW AND ASSESSMENT OF THE PRESENT POSITION 

L. A. Schmit 

4.1 Introduction 

There are several valuable reviews and annotated bibliographies already available in the 
literature. 
for aerospace vehicles through 1966 will be found in [4.1] and 14.21. 
in [4.31 appeared in 1963 and the majority of the references cited deal with single load condition 
situations and assume a plastic collapse design philosophy; 
literature are included. A comprehensive review of -re recent developments in optimal structural 
design is given in i4.41. This review makes clear the distinction between 'single purpose' and 
'multipurpose structure' and it points out that currently research is proceeding on two fronts: 
(1) application of the numerical methods of mathematical programing to specific highly realistic 
problems and 
and simple structures. 
linear mathematical programming in structural design optimization through 1966. 

A rather comprehensive bibliography and assessment of optimum structural design concepts 
The literature review contained 

many references to the Russian and Polish 

(2) analytical treatment of a variety of optimal design problems for structural elements 
The review presented in [4.5] deals specifically with the application of non- 

The literature review to be presented in this Chapter will focus on applications of mathematical 
programming to structural design optimization and it will be limited to finite problems. In Section 4.2, 
an effort is made to trace the development of'mathematical programming applications in structural design, 
using the philosophical framework set forth in Chapter 2 to help keep the review organized. Since the 
papers selected for discussion in Section 4.2 are limited in number, a more comprehensive list of 
references is given in Appendix A. In Section 4.3 under the heading of future trends, brief reviews 
of (1) structural optimization in the dynamic response regime; and ( 2 )  reliability based structural 
optimization are offered. 
more detail. 
considering aeroelastic constraints is examined in greater depth in Chapter 11. 
overall configuration considerations and optimization methods in preliminary design are considered. 

In Chapter 10, reliability based structural optimization is discussed in 
The dynamic response regime and particularly the subject of structural optimization 

Finally in Chapter 12, 

I 

4.2 Selective Review 

It is to be understood that the literature survey given in this section is not intended to be 
exhaustive. Rather, it is a careful but probably somewhat subjective selection of a collection of 
papers that are thought to have strongly influenced the development of mathematical programming 
applications in structural design optimization during the last decade. 
discussed are summarized in Tables 4.1 and 4.2 using the framework set forth in Chapter 2. 

Several of the references 

In [4.6), published in 1955, Klein pointed out that an important set of minimum weight structural 
design problems could be viewed as non-linear mathematical programming problems. 
inequality constraints in properly stating structural design optimization problems was clearly 
recognized. 
in classical form using Lagrange multipliers and slack variables (see Section 2.6.4). The large 
number of unknowns and the need for finding all the solutions of the governing set of non-linear 
simultaneous equations were discouraging when larger problems were contemplated. 

The importance of 

The influence of this paper was probably limited by the fact that the problem was treated 

In [4.7], published in 1958, Pearson working within the plastic design philosophy treats the 
minimum weight design problem considering a multiplicity of overload conditions. 
under service load conditions are ignored and compatibility conditions can be neglected under overload 
conditions since the plastic collapse design philosophy is adopted. The problem is treated as a 
simultaneous analysis-design optimization problem. Dealing primarily with planar, trusses and frames, 
each redundant in each load condition is considered an independent variable. The equilibrium equations 
are used to determine all other member forces given a set of values for the redundant forces. 
member section properties are computed by requiring that the yield stress is not exceeded in any member 
in any load condition. 
the approach can be summarized for the case of a general truss structure as follows: 

Displacement constraints 

The 

The key idea is using the redundant6 as the design-variables. The essentials of 

Let Ai denote the cross-sectional area of the ith member, 

Fij 
R,j 

the force in the ith member under the jth load condition, 
the value of the kth redundant force under the jth load condition. 

Given the yield stresses a' and ai, 
- 

the geometric configuration and the load conditions, i 
find the %j such that 

a: A. < Fij d a; Ai 
1 1  

1 
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where 

J IF. . /  
A. .- Max 

j= l  i 

and 

I 

; ' i f  F~~ < O  . 

(4-3) 

(4-5) 

A method of  random s t e p s  is  employed t o  seek the  unconstrained minimum of  W(Sj>  

eva lua t ions  [no gradien ts  of W(Rkj) 

it simultaneously seeks an optimum design and t h e  cr i t ical  co l l apse  mechanisms f o r  each load condition. 
It should be noted t h a t  t h e  problem d e a l t  with i n  [4 .7]  can be a l t e r n a t i v e l y  c a s t  a s  a l i n e a r  programming 
problem i n  an extended space spanning the  A i ' s  and t h e  \ 'S. 

minimum weight design of p lanar  frames and emphasized the  importance of considering mul t ip le  loading 
conditions,  pos tu l a t ing  t h a t  a s t r u c t u r e  should be designed so t h a t  i t s  behavior will be s a t i s f a c t o r y  
f o r  any condi t ion  wi th in  a prescribed+loading envelope. 

fi, i .e.  

using only  func t ion  

a r e  ca l cu la t ed ] .  The f a sc ina t ing  aspec t  of t h i s  approach is  t h a t  

j 
In [4.8] published i n  1959, Livesley working within the  p l a s t i c  design philosophy s tudied  t h e  

Let every load condi t ion  wi th in  such an 
nvelope be represented by a vec tor  P t h a t  i s  a l i n e a r  combination of s eve ra l  component loading systems 

8 = ai ;hi 
1 

where the  loading envelope is  spec i f i ed  by def in ing  a region R i n  d space. A t yp ica l  component of 
a is  denoted by ai and each poin t  t i n  the  region R def ines  a poss ib le  load condition. The 

envelope idea  i s  i l l u s t r a t e d  by a simple example i n  Fig.4.1. 
conditions,  an approximation of t he  loading envelope can be obtained by considering a set  of po in t s  on 
t he  boundary of t he  region R. For example, one may e l e c t  to  consider a set of J d i s t i n c t  load 
condi t ions  defined by d i s t i n c t  po in ts  i n  the  

-+ 

Using a f i n i t e  number of d i s t i n c t  loading 

2 loading space, t h a t  is  

it = 1 a . .  ifi ; j = 1 , 2 ,  ... J . 
j 1~ 

(4-7) 

The not ion  of approximating a loading envelope with d i s t i n c t  load condi t ions  i s  i l l u s t r a t e d  i n  Fig.4.2. 

Ref. l4.91, published i n  1960, showed t h a t  working wi th in  the  e l a s t i c  design philosophy the  minimum 
weight design of  e l a s t i c  s t a t i c a l l y  indeterminate s t r u c t u r e s  could be c a s t  as a non-linear programming 
problem i n  design va r i ab le  space. 
load condi t ions  and a v a r i e t y  of i nequa l i t i e s ,  inc luding  stress, displacement and s i d e  cons t r a in t s .  It 
was pointed out t h a t  the  minimum weight des ign  f o r  a s t a t i c a l l y  indeterminate s t r u c t u r e  i s  not 
necessa r i ly  one i n  which each member i s  f u l l y  s t r e s sed  i n  a t  least one load condition. 
optimization problem formulated had the  form of a non-linear programming problem, i t  followed t h a t  the  
optimum design did not necessa r i ly  l i e  a t  a ve r t ex  i n  the design space. 
so lu t ions  f o r  severa l  simple th ree  bar  t r u s s  examples was a r a t h e r  pr imi t ive  vers ion  of a f eas ib l e  
d i r e c t i o n  method, t h a t  was ca l l ed  the  method of a l t e r n a t e  s teps .  

The formulation set f o r t h  the re  considered a m u l t i p l i c i t y  of d i s t i n c t  

Since the  design 

The algorithm used t o  generate 

Ref. 14.101, published i n  1963, reported an automated minimum weight optimum design capab i l i t y  f o r  
rec tangular  simply supported waff le  p l a t e s  (see Fig.4.3 i n  which the  7 design va r i ab le s  a r e  iden t i f i ed )  
subjec t  t o  a m u l t i p l i c i t y  of  load condi t ions  each of which was spec i f ied  by giving the  inplane force  
r e s u l t a n t s  Nx, N and N The f a i l u r e  mode concept was broadened and e l a s t i c  i n s t a b i l i t y  as well  a s  

combined stress y i e l d  cons t r a in t s  were included i n  addi t ion  t o  uniax ia l  y i e ld  s t r e s s  limits and s i d e  
cons t r a in t s .  The inf luence  of the  t o t a l  depth (H) ava i l ab le  and the  mater ia l  s e l ec t ed ,  on the  optimum 
design concept was i l l u s t r a t e d  by the  numerical examples reported i n  t h a t  paper. As  the t o t a l  depth 
ava i l ab le  was increased the  optimum design sh i f t ed  from a th i ck  shee t ,  t o  a t h i n  shee t  with heavy 
s t i f f e n e r s ,  t o  a t h i n  shee t  wi th  l i g h t  s t i f f e n e r s  and f i n a l l y ,  i f  enough depth was ava i l ab le ,  the  f u l f  
depth was not used, suggesting t h e  need f o r  flanged s t i f f e n e r s .  The r e s u l t s  reported exhib i ted  r e l a t i v e  
minima i n  the  design space and i t  was poss ib le  t o  a s soc ia t e  the  various major pockets with d i s t i n c t  
subconcepts embedded wi th in  the  statement of t he  mathematical prograu~ming problem. 
t h a t  the  minimum weight design w a s  o f t en  not unique. 
minimum weight wi th  d i f f e r e n t  values of bx, tw , b t but i nva r i an t  r a t i o s  bx/tw and b / t  

w e r e  found. 
t he re  a r e  many load conditions.  

Y Xy '  

It was a l s o  found 
In p a r t i c u l a r ,  many designs a l l  having the  same 

Y Y' wx Y "x 
It was a l s o  noted t h a t  the  payoff f o r  permi t t ing  unsymmetric designs tends t o  decrease when 
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In 14.111, published i n  1964, Moses introduced the  i d e a  of t r e a t i n g  t h e  s t r u c t u r a l  design 
opt imiza t ion  problem a s  a sequence of l i n e a r  programs. 
problem was s t a t e d  i n  an extended space where the  vec tor  of unknowns 
design and ana lys i s  va r i ab le s .  
w a s  confined t o  t h e  ana lys i s  equations.  
i l l u s t r a t e  the  method employed$ The p r inc ipa l  disadvantage of t h i s  formulation i s  t h a t  t he  
dimensionality of t he  vec tor  X grows rap id ly ,  p a r t i c u l a r l y  f o r  problems involping a l a rge  number of 
ana lys i s  va r i ab le s  and load conditions.  It should be noted i n  passing t h a t  the in t eg ra t ed  ana lys i s -  
design optimization approach has  a l s o  been explored using a pena l ty  func t ion  formulation to  transform 
the  problem i n t o  a sequence o f  unconstrained minimizations [ 4.12 1, [ 4.131. 

The integrated+analysis-design optimization 
X represents  a concatenation of 

A simple p lanar  t r u s s  and a p lanar  frame example were used t o  
The inequa l i ty  cons t r a in t s  were d r a s t i c a l l y  s impl i f ied  and non-linearity 

In  [4.14], published i n  1966, Reinschmidt, Cornell  and Brotchie appl ied  the  sequence of l i n e a r  
programs formulation t o  the  s t r u c t u r a l  design optimization problem s t a t e d  as an inequa l i ty  constrained 
minimization problem i n  design va r i ab le  space (see Section 2.6.1). 
t r u s s  and frame examples were studied and the  need f o r  convergence a i d s  was  revealed. 
f o r  coping with d i f f i c u l t i e s  encountered in  applying the  SLP formulation were suggested i n  (4.141 and 
a r e  discussed i n  Chapter 5 .  
made cont r ibu t ions  r ecen t ly  re levent  t o  the  minimum weight design of s t r u c t u r e s  having prescr ibed  
geometric conf igura t ion  using the  SLP approach. 

A subs t an t i a l  number of planar 
Several techniques 

It should be noted t h a t  Pope 14.151 and Romstad and Wang 14.161 have a l s o  

In 14.171, published i n  1966 by Brown and Ang, t he  inequa l i ty  constrained minimum weight 

The capab i l i t y  reported t r e a t s  p lanar  t ru s ses  and frames 
s t r u c t u r a l  design problem was d e a l t  with d i r e c t l y  i n  design va r i ab le  space employing a modified 
gradien t  p ro jec t ion  method (see  Chapter 7) .  
and includes stress and displacement limits based on t he  American I n s t i t u t e  of S t e e l  Construction (AISC) 
Code. Area and " e n t  of i n e r t i a  design va r i ab le s  a r e  
t r ea t ed  as continuous design var iab les  and then a spec ia l  program i s  used t o  transform the  continuous 
so lu t ion  i n t o  an optimum ava i l ab le  sec t ion  so lu t ion .  The main computer program (4.181 is modular and 
he9ce appl icable  t o  o the r  problems w e r e  user generated a u x i l i a r y  programs compute the  ob jec t ive  function 

Multiple s e rv i ce  load conditions a r e  considered. 

M(D) the cons t r a in t  functions h . (  8 ) and t h e  grad ien ts  of t he  c r i t i c a l  cons t r a in t  functions 
Vhj(if); j E Jc. J 

Dorn, Gomry and Greenberg 14.191, Hemp [4.20] and Fleron (4.211, a l l  published s tud ie s  i n  1964, on 
the  minimum weight design of p lanar  t ru s ses  including both member loca t ion  and s i z i n g  wi th in  the  p l a s t i c  
design philosophy. 
admissible members. 
noted t h a t  these  s tud ie s  were l imi ted  t o  s t ruc tu res  t h a t  were s t a t i c a l l y  determinate ex te rna l ly  and subjec t  
t o  a s i n g l e  load condition. 
determinate under a s ing le  load condition. 
i n t e r p r e t a t i o n  of the  dua l  LP problem t h a t  t he  minimization of weight is equivalent t o  the  maximization 
of work done by the  ex te rna l  loads on the j o i n t  displaceuents.  
i n  the  preceding Chapter. 
problem of t r u s s  member loca t ion  and s i z i n g  considering mul t ip le  load  conditions.  
philosophy is  adopted and a d i r e c t  s t i f f n e s s  method of ana lys i s  i s  employed; 
buckling cons t r a in t s  are considered. 

Var ia t ion  of topology was achieved by optimizing over a l a rge  prese lec ted  set of 
The formulations of (4.191 and I4.201 lead  t o  l a r n e  l i n e a r  programs. It should be 

Minimum weight p lanar  t r u s s  configurations were found t o  be  s t a t i c a l l y  
It was shown by Dom, Gomory and Greenberg through an 

Problems of t h i s  type were a l s o  discussed 
It should be  noted t h a t  Felton and Dobbs (4.221 have r ecen t ly  examined the  

An e l a s t i c  design 
both stress and member 

I n  (4.231, published i n  1966, Goble and DeSantis reported on an optimum design capab i l i t y  f o r  
continuous composite welded g i rde r s  using mixed s t e e l s .  
c o s t  function including both mater ia l  and f ab r i ca t ion  cos t s .  
s ec t iona l  dimensions of d i s c r e t e  segments along the  g i rde r  and steel type based on y i e l d  s t rength .  a s  
well  as the  loca t ion  and number of s p l i c e  points.  
cons t r a in t s  a r e  based on the  American Association of S t a t e  Highway O f f i c i a l s  (AASHO) Code. Optimum 
designs a r e  sought employing h e u r i s t i c  decomposition i n  conjunction with a dynamic programming technique. 
This work is  viewed as a pioneering e f f o r t  i n  t h a t  i t  tackles c o s t  as an ob jec t ive  function, d i s c r e t e  
va r i ab le s  and moving load conditions.  
Moe and h i s  coworkers [4.24], (4.251 i n  the  context of sh ip  s t ruc tu res .  

The ob jec t ive  func t ion  t o  be minimized is a 
The design var iab les  include c ross  

The formulation considers moving loads  and the  

Cost has a l s o  been used successfu l ly  a s  an ob jec t ive  function by 

The minimum weight design of s t i f f e n e d  cy l ind r i ca l  s h e l l s  represents  a recur r ing  problem o f  

A capab i l i t y  f o r  t he  automated minimum weight 
fundamental importance i n  aerospace appl ica t ions .  
t o  t h i s  problem was  f i r s t  s tud ied  by Kicher (4.261. 
design of s t i f f e n e d  cy l ind r i ca l  s h e l l s  representa t ive  of t he  state-of-the-art ( c i r c a  1968) was reported 
i n  (4.271. 
Section 2.6.2 and Chapter 6) and numerical r e s u l t s  a r e  obtained by executing a sequence of unconstrained 
minimizations using the  va r i ab le  met r ic  algorithm described i n  Chapter 6. 
c h a r a c t e r i s t i c  of t h i s  formulation made i t  poss ib le  t o  employ approximate buckling analyses during major 
por t ions  of the  optimization. The SUMT formulation has  
a l s o  been applied t o  the  minimum weight design of s t i f f e n e d  f i b e r  composite cy l inders  by Chao (4.281. 
In t h i s  s tudy  f i b e r  volume f r a c t i o n  and p ly  o r i en ta t ions  are added t o  the  co l l ec t ion  of design var iab les .  

The app l i ca t ion  o f  mathematical programming methods 

The problem i s  formulated using the  Fiacco-McCormirk i n t e r i o r  pena l ty  function (see 

The cons t r a in t  repuls ion  

This work is  discussed more f u l l y  i n  Chapter 9. 

I n  [4.29], published i n  1968, Thornton and Schmit reported on an app l i ca t ion  of mathematical 
programming t o  the automated minimum weight design of a thermo-structural panel. 
through the  thickness of t he  various layers  were t r ea t ed  parametrically.  This work which is  described 
i n  Chapter 9 i s  thought t o  have been t h e  f i r s t  s t r u c t u r a l  design app l i ca t ion  of t h e  in tegra ted  penal ty  
function formulation out l ined  by Eq. (2-10) and (2-11) i n  Section 2.6.2. 

Both time and d is tance  

Ge l l a t ly  reported i n  (4.301 on t he  development of a l a rge  s c a l e  automated minimum weight op thum 
design capab i l i t y  based on a displacement method f i n i t e  element ana lys i s  and a f e a s i b l e  d i r ec t ions  
search procedure. This cont r ibu t ion  is discussed i n  Chapter 8. 

Melosh and Luik pointed out  i n  14.311 t h a t  the  s t r u c t u r a l  ana lys i s  problem assoc ia ted  wi th  design 
optimization has the  spec ia l  c h a r a c t e r i s t i c  of r equ i r ing  the  ana lys i s  of a l a rge  number of s t ruc tu res  of 
similar form. 
s t r u c t u r e s  (multiple conf igura t ion  ana1ysis)used i n  conjunction wi th  a un iva r i a t e  a l l o c a t i o n  scheme. 

At ten t ion  i s  focused on methods f o r  the  e f f i c i e n t  ana lys i s  of a family of similar 
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It is  shown t h a t  t he  ana lys i s  scheme employed provides an e f f i c i e n t  method f o r  ob ta in ing  exce l l en t  
approximations t o  the s t r e s s  and displacement behavior as the design i s  modified. 
t o  t he  minimum weight design of indeterminate space t rus ses  considering stress cons t r a in t s  under mu1t:iple 
load condi t ions  a s  described fu r the r  i n  Chapter 8. The design va r i ab le s  a r e  c ross  sec t iona l  a reas  and 
se l ec t ion  from an ava i l ab le  set of d i s c r e t e  va lues  introduces no spec ia l  d i f f i c u l t i e s .  This capab i l i t y  
poin ts  up the  importance of considering the  r e l a t ionsh ips  between s t r u c t u r a l  ana lys i s  methods and design 
optimization techniques. 

The method is appl ied  

Karnes and Tocher (4.321 reported on a l a rge  sca l e  automated minimum weight s t r u c t u r a l  design 
capab i l i t y ,  f o r  s t r e s sed  sk in  s t r u c t u r e  using a f e a s i b l e  d i r ec t ion  method. 
Chapter 8. 

Their work is  described i n  

Having used the  framework presented i n  Chapter 2 t o  cons t ruc t  t he  summary review contained i n  
Table 4.1, it may be observed t h a t  advances i n  the  appl ica t ion  of mathematical p r o g r a d n g  techniques t o  
s t r u c t u r a l  design optimization have usua l ly  exhib i ted  one o r  more of  t he  following cha rac t e r i s t i c s :  

(1) 
f a i l u r e  modes , 

(2) 

(3) 

broadening of t he  design philosophy by considering a wider range of load condi t ions  and 

extending the  approach t o  more appropr ia te  and o f t en  more complex objec t ive  functions,  

cons idera t ion  of a widening c l a s s  of design va r i ab le s  from both a mathematical and a physical 
viewpoint, 

(4) app l i ca t ion  of more sophis t ica ted  mathematical programming techniques including formulatj.ve 
and a lgor i thmic  innovations o f t en  based on engineering i n s i g h t  and physical understanding of the  
s t r u c t u r a l  system, 

(5) app l i ca t ions  t o  l a r g e  systems o r  t o  spec ia l  problems with unusually complex loading 
environments and f a i l u r e  mode analyses.  

4.3 Future Trends 

The app l i ca t ion  of mathematical programing techniques t o  s t r u c t u r a l  design i s  s t i l l  a r e l a t i v e l y  
new and growing a rea  of  i n t e r e s t  and a c t i v i t y .  In t h i s  Section, some curren t  t rends  a r e  i d e n t i f i e d  and 
a few specula t ions  concerning fu tu re  research d i r ec t ions  are of fered .  In Section 4.3.1, a b r i e f  
review of some appl ica t ions  of mathematical programming t o  s t r u c t u r a l  systems subjec t  t o  dynamic 
response cons t r a in t s  is given. This subjec t  and i n  p a r t i c u l a r  the  optimum design of s t r u c t u r e s  subjec t  
t o  a e r o e l a s t i c  behavior cons t r a in t s  i s  t r ea t ed  f u r t h e r  i n  Chapter 11. 
survey of appl ica t ions  of mathematical p rograming t o  p robab i l i t y  based s t r u c t u r a l  design optimization 
problems i s  given. This top ic  i s  discussed i n  g rea t e r  d e t a i l  i n  Chapter 10. A few miscellaneous 
speculations about fu tu re  t rends ,  including t h e  an t i c ipa t ed  importance of various l e v e l s  of approximate 
ana lys i s ,  are discussed i n  Section 4.3.3. 

In Section 4.3.2, a b r i e f  

4.3.1 Dynamic Response Regime 

A n  area of i nves t iga t ion  t h a t  has r ecen t ly  s t a r t e d  t o  rece ive  considerable a t t e n t i o n  is s t r u c t u r a l  
optimization i n  the  dynamic response regime. 
optimization i s  p a r t i c u l a r l y  press ing  i n  l ightweight f l e x i b l e  s t r u c t u r e s  such as those t h a t  f i nd  
app l i ca t ion  i n  aeronaut ica l  engineering. 
m d e s  t h a t  requi re  dynamic ana lys i s  should be i n  addi t ion  t o  appropr ia te  s t a t i c  s t r e s s ,  displacement, 
and buckling l imi t a t ions .  
have been reported t h a t  deal with one p a r t i c u l a r l y  troublesome behavior cons t r a in t .  
14.331 and i4.341 a t t e n t i o n  has been focused on t he  f l u t t e r  cons t r a in t  while i n  (4.351 and (4.361, 
e f f o r t  was centered on the  n a t u r a l  frequency requirement. 
t h a t  considered a p l aus ib l e  mix of  cons t r a in t s  w a s  reported i n  t . 3 7 1 ;  these included l i m i t a t i o n s  on 
f l u t t e r ,  s ta t ic  stress, displacement, and angle of a t t ack .  
capab i l i t y  f o r  minimum weight optimum design of planar truss-frame s t r u c t u r e s  with d i s t r i b u t e d  and 
concentrated mass. 
and the  n a t u r a l  frequencies of the  s t r u c t u r e  are excluded from c e r t a i n  bands. 
s t r u c t u r e s  notwithstanding ( tubular  members, p lanar  truss-frames) , t h i s  work represents  one of the mst 
comprehensive s t r u c t u r a l  optimization inves t iga t ions  ca r r i ed  ou t  t o  da t e  i n  the  dynamic response regime. 

The need f o r  considering dynamic response i n  s t r u c t u r a l  

It i s  t o  be emphasized, however, t h a t  cons idera t ion  of f a i l u r e  

In t he  recent  l i t e r a t u r e ,  severa l  s t r u c t u r a l  optimization inves t iga t ions  
For example, i n  

A h i  l y  idea l ized  double wedge wing example 

Fox and Kapoor i4.381 have reported a 

Inequa l i ty  cons t r a in t s  a r e  placed on the  maximum dynamic displacements and stresses, 
The l imi t ed  c l a s s  of 

4.3.2 P robab i l i t y  Based Optimization 

A steady improvement i n  our t o o l s  f o r  achieving optimum designs may have a subs t an t i a l  in f luence  
upon design philosophy. In p a r t i c u l a r ,  our a b i l i t y  t o  generate designs t h a t  p re s s  r i g h t  up aga ins t  the  
limits of cur ren t  spec i f i ca t ions  may lead  t o  s t ruc tu res  with a lower p robab i l i t y  of su rv iva l  than those 
usua l ly  designed aga ins t  the same spec i f i ca t ions  usilfg conventional design procedures. Thus, a s  optimum 
designs are achieved more f requent ly ,  it may become necessary t o  re-examine e x i s t i n g  s t r u c t u r a l  design 
spec i f i ca t ions .  Recognition of the philosophical a t t r ac t iveness  of seeking to  design d i r e c t l y  aga ins t  a 
l imi ted  p robab i l i t y  of f a i l u r e  can be expected t o  grow, i n  s p i t e  of  t h e  formidable d i f f i c u l t i e s  inherent 
i n  implementing the p robab i l i t y  based approach. 

During the  las t  decade, t he  foundations of s t r u c t u r a l  design wi th in  a r e l i a b i l i t y  philosophy have 
been set f o r t h .  
of t he  problems t h a t  can be expected i n  both ana lys i s  of f a i l u r e  p r o b a b i l i t i e s  and design based on an 
allowable p robab i l i t y  of f a i l u r e .  
replaced by a d i s c r e t e  set of load condi t ions ;  however, t he  loading  magnitude and . the  s t r eng ths  of t he  
s t r u c t u r a l  elements have been t r ea t ed  as random va r i ab le s  with a spec i f i ed  s t a t i s t i c a l  descr ip t ion .  
Using mathematical programming methods, i t  has been poss ib le  t o  proportion member s i z e s  of simple t ru s ses  

The design problems s tudied  t o  da te  are pr imar i ly  i l l u s t r a t i v e  and they ind ica t e  some 

By and l a rge ,  these  s tud ie s  have assumed t h a t  t h e  environment can be 
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and frames f o r  minimum weight sub jec t  t o  a c o n s t r a i n t  on t he  o v e r a l l  p robab i l i t y  of  f a i l u r e .  
f i r s t  papers t o  r epor t  on s t r u c t u r a l  opt imizat ion with r e l i a b i l i t y  cons t r a in t s  was presented by Hil ton 
and Feigen (4.391. 
minimize weight sub jec t  t o  a p robab i l i t y  of  f a i l u r e  cons t r a in t ,  based on t h e  assumption t h a t  the con t r i -  
but ions o f  individual  member f a i l u r e  p r o b a b i l i t i e s  t o  the  o v e r a l l  p robab i l i t y  of  f a i l u r e  are independent. 
S ign i f i can t  weight savings compared with t h a t  obtained using a design r u l e  based on an equal f a i l u r e  
p r o b a b i l i t y  i n  each member r e su l t ed  because lower f a i l u r e  p r o b a b i l i t i e s  were a l loca ted  t o  lighter members 
than the  heavier  members. 
optimum member proportions more e f f i c i e n t l y  than t h e  Lagrange mul t ip l e r  technique. A necessary condi t ion 
f o r  t he  dynamic programming method t o  be appl icable  i s  t h a t  t he  con t r ibu t ions  of t he  member f a i l u r e  
p r o b a b i l i t i e s  t o  t h e  o v e r a l l  p r o b a b i l i t y  of f a i l u r e  are independent. 
and Feigen's Lagrange m u l t i p l i e r  formulation and showed t h a t  s eve ra l  add i t iona l  bu t  reasonable assump- 
t i o n s  lead t o  a simple scheme f o r  proportioning members so as t o  achieve minimum weight and s p e c i f i c  
o v e r a l l  f a i l u r e  p robab i l i t y .  
member i 
t h e  ove ra l l  al lowable p robab i l i t y  of f a i l u r e .  

One of  the 

Considering a s i n g l e  load condi t ion,  they used a Lagrange m u l t i p l i e r  formulation t o  

Kalaba i4.401 showed t h a t  a dynamic programming formulation would give the 

Switsky 14.411 , followed Hi l ton  

In p a r t i c u l a r ,  Switsky showed t h a t  a t  t h e  optimum, t h e  weight of  
divided by t h e  t o t a l  weight equals t he  p robab i l i t y  of  f a i l u r e  of t h e  i t h  member divided by 

Moses and Kinser (4.421 r epor t  the minimum weight optimum design of  multi-element s t a t i c a l l y  

By consider ing system i n t e r a c t i o n  i n  the  f a i l u r e  p robab i l i t y  ana lys i s ,  it w a s  shown t h a t  
indeterminate s t r u c t u r e s  sub jec t  t o  mult iple  load conditions and an allowable o v e r a l l  p robab i l i t y  of 
f a i l u r e .  
s i g n i f i c a n t  weight reductions could be  achieved p a r t i c u l a r l y  f o r  systems with l a r g e  numbers of members 
and f a i l u r e  modes. 
f a i l u r e  modes and an order ing method was developed t o  f ind  p r o b a b i l i t i e s  of  f a i l u r e  of  a mode 
condi t ional  upon su rv iva l  i n  t h e  o t h e r  modes. 
app l i cab le  t o  any e l a s t i c a l l y  designed s t r u c t u r e  and i t  can treat  any frequency d i s t r i b u t i o n  f o r  each 
loading and element s t r eng th .  
appear t o  have lower s a f e t y  f a c t o r s  than l i g h t  members when t h e  s t r u c t u r e  is viewed de te rmin i s t i ca l ly .  
Recently, Shinozuka and Yang (4.431 extended t h e  model of  Kinser and Moses t o  an aerospace app l i ca t ion  
i n  which proof-loading could be used. 
proof-loading became the  ob jec t ive  function. 
minimum weight design of  planar  frames based on p l a s t i c  co l l apse  ana lys i s .  
however, app l i cab le  t o  any redundant s t r u c t u r e '  f o r  which t h e  co l l apse  mode equations can be  w r i t t e n  
as a combination of  load and s t r eng th  random va r i ab le s .  
Zoutendijk (see Chapter 7)  was introduced a s  an e f f i c i e n t  method f o r  r e l i a b i l i t y  based opt imizat ion 
i n  which weight was t h e  ob jec t ive  funct ion and o v e r a l l  p robab i l i t y  of f a i l u r e  t h e  only behavior 
cons t r a in t .  In frames it was found t h a t  t r a d i t i o n a l  s a f e t y  f a c t o r s  were a poor guide i n  ind ica t ing  
f a i l u r e  p r o b a b i l i t i e s ,  p a r t i c u l a r l y  near  a minimum weight design. 
frequency d i s t r i b u t i o n  f o r  independent load and s t r eng th  va r i ab le s  can be handled by t h e  method 
employed. 

The p robab i l i t y  of f a i l u r e  ana lys i s  computes the  s t a t i s t i c a l  c o r r e l a t i o n  between 

The p robab i l i t y  of f a i l u r e  ana lys i s  presented i s  

Minimum weight r e s u l t s  e x h i b i t  t he  c h a r a c t e r i s t i c  t h a t  heavy members 

Minimum cos t ,  including c o s t s  of members, of  f a i l u r e  and of  
Moses and Stevenson [ 4.441 r epor t  t h e  r e l i a b i l i t y  based 

The method presented i s ,  

The f e a s i b l e  d i r e c t i o n  method of 

It should be noted t h a t  any 

Chapter 10 contains  a r a t h e r  comprehensive review of approaches t o  s t r u c t u r a l  r e l i a b i l i t y  and 
opt imizat ion.  
mathematical opt imizat ion problem by replacing t h e  numerous behavior l i m i t a t i o n s  of de t e rmin i s t i c  
design by a s i n g l e  c o n s t r a i n t  on o v e r a l l  p robab i l i t y  of  f a i l u r e .  
d i f f i c u l t y  p r i n c i p l e  app l i e s  s ince  the  mathematical and computational complexities have been t r ans fe r r ed  
from t h e  design opt imizat ion aspect  t o  the  ana lys i s  of  t he  p robab i l i t y  of  f a i l u r e .  

It would appear t h a t  r e l i a b i l i t y  based optimum design f a c i l i t a t e s  so lu t ion  of  t h e  

However, t h e  conservation of 

I 
4.3.3 Project ions and Speculations 

I n  t h i s  Sect ion,  some unsolved problems a r e  i d e n t i f i e d  and the  importance of consider ing 
var ious l e v e l s  of approximation i n  s t r u c t u r a l  ana lys i s  i s  discussed. 

4.3.3.1 Relat ive Minima 

The exis tence of  r e l a t i v e  minima i n  many s t r u c t u r a l  design opt imizat ion problems represents  a 
bas i c  d i f f i c u l t y .  
minima are o f t e n  associated with subconcepts present  w i th in  t h e  problem statement.  The s e l e c t i o n  of  
i n i t i a l  t r i a l  designs,  s i d e  constraint$, design va r i ab le  l i nk ing  options,  and t h e  op t ion  t o  preassign 
any subset  of  t he  design va r i ab le s  can a l l  be used t o  guide automated optimum design c a p a b i l i t i e s  i n t o  
var ious an t i c ipa t ed  subconcept regions.  In t h i s  connection, t he  complementary r e l a t ionsh ip  between 
automated s t r u c t u r a l  design and computer aided design employing man machine i n t e r a c t i o n s  should be  
emphasized. The r e l a t i v e  minima problem must be recognized as one of  t h e  longstanding fundamental 
problems of design opt imizat ion and the  view t h a t  it is i n  some sense a mathematical manifestat ion of  
t h e  design c r e a t i v i t y  problem mer i t s  continuing re-examination. 

There is  evidence, see f o r  example (4.101 and (4.271, which suggests t h a t  r e l a t i v e  

4.3.3.2 In t ege r  Variables 

The problems associated with in t ege r  and s t r i c t l y  d i s c r e t e  va r i ab le s  are important and d i f f i c u l t .  
Techniques f o r  dea l ing  with mathematical programming problems with i n t e g e r  o r  mixed i n t e g e r  and 
continuous va r i ab le s  should be s tud ied  within the  context of  s t r u c t u r a l  design appl icat ions.  
of using 0-1 i n t e g e r  va r i ab le s  t o  dec la re  the  absence o r  presence of members i n  a s t r u c t u r a l  system 
should be s tudied fu r the r .  S t r u c t u r a l  opt imizat ion of rectangular  mul t i s to ry  steel frames with 
r e spec t  t o  0-1 topological  va r i ab le s  and geometric layout  has  been s tudied by Soosaar and Cornel1 i4.451. 
Toakley (4.461 has  inves t iga t ed  t h e  app l i ca t ion  of d i s c r e t e  programming techniques t o  the  optimum design 
of planar  frames and t r u s s e s  using ava i l ab le  sect ions.  
dynamic programming t o  ob ta in  minimum weight layouts  f o r  c a n t i l e v e r  t ru s ses .  

The idea 

Por t e r  Goff 14.471 has reported on t h e  use of 

4.3.3.3 Parametric Constraints  

The common occurrence of parametric i nequa l i ty  cons t r a in t s  (see Eq. (2-10) and (2-11)) i n  
s t r u c t u r a l  design problems suggests t h a t  f u r t h e r  a t t e n t i o n  should be given to  f ind ing  e f f i c i e n t  schemes 
f o r  deal ing with such cons t r a in t s .  Parametric cons t r a in t s  can arise i n  a v a r i e t y  of ways. For example, 
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the  t ransverse  displacement of a p l a t e  w(x, y, t )  may be l imi t ed  over some time period of  i n t e r e s t  
and over a spec i f i ed  two-dimensional region. Moving load condi t ions  and loading envelopes represent  
o the r  sources t h a t  can generate parametric cons t r a in t s .  

4.3.3.4 Decomposition 

The study of  formalized schemes f o r  t h e  decomposition of s t r u c t u r a l  design-analysis p rob lem i n t o  
manageable subproblems which can be l inked  together and t r ea t ed  i t e r a t i v e l y ,  warrants a t t e n t i o n .  The 
conventional s epa ra t ion  of s t r u c t u r a l  ana lys i s  and design procedures may be viewed as a tradit ional1.y 
accepted decomposition scheme. Note t h a t  subs t ruc tur ing  concepts may be viewed as a form of decomposi- 
t i o n  i n  s t r u c t u r a l  ana lys i s .  
weight and balance,  aerodynamics, power p l an t ,  e t c . ,  while i t e r a t i n g  through the  o v e r a l l  systems design 
problem, may be thought of as an i n t u i t i v e  decomposition scheme. 
decomposition of l a r g e  s t r u c t u r a l  systems poses a formidable challenge. 

The separa te  cons idera t ion  i n  aeronaut ica l  engineering of s t r u c t u r e ,  

Formalizing t h e  ana lys i s  and design 

4.3.3.5 Approximate Methods of Analysis 

The use of various l e v e l s  of approximation as  wel l  as i t e r a t i v e  so lu t ion  methods are time honored 
p rac t i ces  i n  s t r u c t u r a l  ana lys i s  and design. 
a p lace  i n  the  app l i ca t ion  of mathematical p rograming methods i n  t h i s  f i e l d .  
t i o n  ana lys i s  employed by Melosh and Luik i4.311, is an example of an i t e r a t i v e  method i n  which 
approximations of t he  s t r u c t u r a l  behavior are used t o  guide t h e  opt imiza t ion  procedure. I t e r a t i v e  
methods of t h i s  type together wi th  those based on energy search methods i4.481 make it poss ib le  t o  
guide a design optimizatioh procedure using ana lys i s  information t h a t  is  subjec t  t o  gradual refinement 
as the  design evolves. 
reported on an i t e r a t i v e  method f o r  f ind ing  eigenvalues and eigenvectors based upon minimization of: the  
Rayleigh quot ien t .  
normal mode ana lys i s  t h a t  is  c e n t r a l  t o  s t r u c t u r a l  op t imiza t ion  i n  the dynamic response regime. 

It is  thus only reasonable t o  expect t h a t  these ideas  have 
The mul t ip le  configura- 

It should-be noted a l s o  i n  t h i s  connection t h a t  Fox and Kapoor l4.491, have 

This method appears t o  be  p a r t i c u l a r l y  w e l l  su i t ed  t o  dea l ing  wi th  t h e  problem of  

In  i4.271, approximate s h e l l  buckling analyses were used during major por t ions  of the  s t r u c t u r a l  
I n  t h i s  ins tance ,  the  s h e l l  buckling analyses were approximate i n  the  sense t h a t  synthes is  procedure. 

only a small number of poss ib le  buckling mode shapes were examined. 
repuls ion  c h a r a c t e r i s t i c  of the i n t e r i o r  pena l ty  func t ion  formulations (such as  t h e  Fiacco-McCormick 
method, see Section 2.6.2 and Chapter 6) o f t en  make i t  poss ib le  t o  use approximate analyses during 
major por t ions  of t h e  optimization process while s t i l l  generating a sequence of s t e a d i l y  improving 
designs each of which is acceptable (even with respec t  t o  more re f ined  ana lyses) .  

It i s  emphasized t h a t  the  cons t r a in t  

Exploration of t he  p o t e n t i a l  bene f i t s  t o  be gained from using i t e r a t i v e  methods of ana lys i s  and 
various l eve l s  of ana lys i s  approximation i n  s t r u c t u r a l  synthes is  has j u s t  begun. 
e x i s t  f o r  exp lo i t i ng  the  idea  of using approximate analyses during major por t ions  of  a s t r u c t u r a l  
optimization procedure. For example, consider t he  problem of l i m i t i n g  the  maximum t ransverse  d isp lace-  
ment of a p l a t e  when the  loca t ion  a t  which the  maximum occurs i s  not known. A coarse mesh of loca t ions  
could be used f o r  t he  approximate ana lys i s  while a f i n e  mesh could be used t o  loca t e  the  maximum 
de f l ec t ion  more p rec i se ly  a t  t he  end of each unconstrained minimization s tage .  

Numerous oppor tuni t ies  

Useful approximations+of s t r u c t u r a l  behavior can o f t e n  be obta'ned using Taylor series exparisions 
of t he  ana lys i s  va r i ab le s  (Y) a s  functions of  t he  design va r i ab le s  ( 2 ). Assume t h a t  a s ta t ic  l i n e a r  
s t r u c t u r a l  ana lys i s  of t he  form 

(4-8) 

governs the behavior of a s t r u c t u r a l  system under inves t iga t ion .  
gtatic displacement method of s t r u c t u r a l  ana lys i s ,  
Y would become the vec tor  of independen generalized displacements 6) and B would become the  load 

i.e. $(ifq) and a f i r s t  o rder  s e n s r t i v i t y  analysis*,  

For example, i n  t he  case of a l i n e a r  
A would become the  sys t ey  s t i f f n e s s  matrix (K), 

vector f o r  a p a r t i c u l a r  load condition ( $ ). Given the  r e s u l t s  of an ana lys i s  f o r  a design 

I 

a t  - (if ; i - 1,2,  ... I 
a D i  q , _  

f o r  a design if 
wr i t t en  as follows: 

a f i r s t  o rde r  Taylor series expansion f o r  each ana lys i s  va r i ab le  Yk can be 
4' 

where it i s  understood t h a t  the  elements of t he  vec tor  VY (if ) are 
k q  

*This r e f e r s  to  the  s e n s i t i v i t y  of the  ana lys i s  va r i ab le s  t o  changes i n  the  design va r i ab le s  a s  
d i s t inguished  from the  s e n s i t i v i t y  of the  optimum design t o  changes i n  the l i m i t a t i o n s  imposed by the  
inequa l i ty  cons t r a in t s .  
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i.e. the  p a r t i a l  der iva t ives  of the  k t h  ana lys i s  v a r i a b l e  with respec t  t o  the i t h  design v a r i a b l e  
evaluated a t  D I f  a second order  s e n s i t i v i t y  ana lys i s  i s  ava i lab le ,  then a second order  Taylor 

series approximation can be formed by adding the following term t o  the r i g h t  hand s ide  of Eq.  (3-9) 
9' 

(4-10) 

It i s  i n t e r e s t i n g  to  note  t h a t  i f  A depends on the  Di l i n e a r l y  and B i s  independent of the  Di, 

then i t  can be shown t h a t  

- I  
a 'k 

j 
aDi a D  (4-11) 

Thus i t  is  seen t h a t  f i r s t  o r  second order  Taylor series expansions can be used t o  generate  approximations 
of the  ana lys i s  v a r i a b l e s  Yk t h a t  a re .usefu1  over a m  region of t he  design space i n  the neighborhood 

Another powerful c o l l e c t i o n  of approximate ana lys i s  methods i s  based upon the idea  of using a 
l imi ted  bas i s  t o  represent  the s o l u t i o n  vec tor  of a set of simultaneous equat ions or  an eigenproblem. 
It has o f t e n  been observed t h a t  the nuinber of  degrees of freedom required t o  adequately represent  the 
behavior of a s t r u c t u r e  is  f requent ly  f a r  less than t h a t  d i c t a t e d  by i t s  geomtry  and the  i d e a l i z a t i o n  
techniques ava i lab le .  Thus, i n  dynamic ana lys i s ,  i t  i s  comwn p r a c t i c e  t o  express the  displacement 
behavior i n  terma of a reduced set of general ized coordinates  and normel modes. 
note t h a t  Turner [4.331 works with a f ixed  set of normal modes t o  seek a f i r s t  approximation to  the  
optimum design. When the  f i r s t  s tage  of the opt imizat ion is  completed, a new set  of normal modes ( for  
the  f i r s t  approximation optimum design) is  calculated and used t o  obta in  a second approximation of  the 
optimum design. 

It i s  i n t e r e s t i n g  to  

The idea of expressing the  approximate s o l u t i o n  of the ana lys i s  as a l i n e a r  combination of a few 
vectors  containing information about t he  behavior of the  s t r u c t u r a l  system can be used i n  a v a r i e t y  of  

ways. 
combination of  

(a) 

(b) 

-h 
For example*, t he  ana lys i s  v a r i a b l e s  Y f o r  the  design bq" can be approximated by the  l i n e a r  

the  a n a l y s i s  var iab les  f o r  the  i n i t i a l  t r i a l  design ?(D(l)) 

the  ana lys i s  v a r i a b l e s  f o r  t h e  cur ren t  o r  q th  t r ia l  design ?(if(q)) 

and (c) the  d i r e c t i o n a l  d e r i v a t i v e  of the ana lys i s  vec tor  along the design modif icat ion vec tor  8(q)  

(4-12) 

where the 8's are undetermined c o e f f i c i e n t s .  Another v a r i a t i o n  of  the l imi ted  bas i s  idea t h a t  has been 
explored by Fox and Muira [4.K)], i s  t o  approximate the  ana lys i s  vector  as a l i n e a r  c o d i n a t i o n  of t h e  
r e s u l t s  from r previously analyzed designs, t ha t  i s  l e t  

Subs t i tu t ing  e i t h e r  Eq. (4-12) o r  Eq. (4-13) i n t o  the  appropr ia te  energy s ta tement ,  the  s t a t i o n a r y  
condi t ion w i l l  y i e ld  a set of simultaneous equations t o  be solved f o r  the 6's. 

4.3.4 Concluding Remarks 

(4-13) 

Current t rends i n  the  appl ica t ion  of  mathematical programming methods t o  s t r u c t u r a l  design 
opt imizat ion seem t o  be character ized by: (a)  e f f o r t s  t o  generate l a rge  scale s t r u c t u r a l  c a p a b i l i t i e s  
involving d r a s t i c  i d e a l i z a t i o n  and considerat ion of a l imi ted  c l a s s  of f a i l u r e  modes (see Chapter 8 ) ;  
(b) e f f o r t s  t o  generate s t r u c t u r a l  opt imizat ion c a p a b i l i t i e s  f o r  r e l a t i v e l y  small spec ia l  problems 
consider ing complex f a i l u r e  mode analyses  involving l e s s  i d e a l i z a t i o n  (see Chapter 9) and (c) applica- 
t ions  i n  prel iminary design of vehic le  configurat ion (see Chapter 12) .  In deal ing adequately with a 
small subsystem type problem, the  engineer runs the  r i s k  of deal ing adequately with the  wrong problem. 
On the  o t h e r  hand, in seeking t o  deal  with the  l a rge  system, i t  is  inev i t ab le  t h a t  i d e a l i z a t i o n s  and 
s i m p l i f i c a t i o n s  w i l l  be  found necessary and, therefore ,  the engineer runs the  r i s k  of  t r ea t ing  an 
inadequate representa t ion  of the r i g h t  problem. 

~ ~~~ -~~ ~ ~ 

*This suggestion can be viewed as a genera l iza t ion  of the approach taken by Melosh and Luik L4.311. 
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Kinds of 
Fa i lure  Modes 

Kind of 
Load Conditions 

Kind of 
Design Variables 

3bj e c t  i v e  
Function 

Fo mu1  a t ion 
and 
A 1  go r i  thm 

Type of 
S t ruc ture  

Kinds of 
Fa i lu re  Modes 

Kind of 
Load Conditions 

Kind of 
Design Variables 

, ' ,: ' 

Objective 
Function 

F o p u l  a t  ion 
and 
Algorithm 

Type of 
S t ruc tu re  

Table 4.1 

SUMMARY OF SELECTED REFERENCES (Deterministic) 

Ref. f4.61 
Klein 

1955 

0 s  U 

Service 
Single 

Continuous 
S iz ing  

Weight 
Non-linear 

C las s i ca l  

--- 

Beam 

:ef. (4.141 
Leinschmidt 
Cornel1 , 
Bro t c h i e  

1966 

a 

Service 
Multiple 

:ontinuous 
S iz ing  

I .  

Weight 
Linear 

SLP 
Simplex 

Planar  
Trusses 
Frames 

Ref. i4.71 
Pearson 

1958 

OYld 
P l a s t i c  
Collapse 

Overload 
Mu1 t i p l e  

Continuous 
S iz ing  

Weight 
Linear 

---- 
Random 
Steps 

Planar 
Trusses + 

Frames 

lef .  (4.171 
Brown 

and Ang 
1966 

0, U 
AISC 

Service 
Mu1 t i p l e  

:ontinuous 
S iz ing  

Weight 
{on-linear 

NLP 
:rad. Pro j .  

Planar 
Trusses 
Frames 

Ref .  f4.81 
Livesley 

1959 

OYld 
P l a s t i c  
Co 1 1 ap s e 

Overload 
Multiple 

Continuous 
S iz ing  

Weight 
Linear 

Linear 
Program 

Planar 
Frame 

l e f .  (4.191 
lorn, Gomory 
Greenberg 

1964 

Yld 
a 

P l a s t i c  
Collapse 

Overload 
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Continuous 
S iz ing  

and Location 

Weight 
Linear 

Linear 
Program 

Planar 
Trusses 

Ref. (4.91 
Schmit 
1960 

0 s  U 

Service 
Multiple 

Continuous 
S iz ing  

Weight 
Linear 

NLP 

Al te rna te  
Step 

Simple 
Planar 
Truss 

Ref. (4.23 
Goble and 
DeSant i s  

1966 

U 
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Service 
Moving 

Discre te  
S iz ing  
Conf i g  , 

Material  

Cost 
Non-linear 

Heur i s t i c  
Decompo s i t  it 
Dynam. Prog 

Continuous 
Welded 

Girders 

k f .  (4.101 
:hmit, Kicher 

Morrow 
1963 

Late Buckling 
,mbined a 

Service 
Mu1 t i p  1 e 

Continuous 
S iz ing  
Conf i g  . 
Weight 

Non-linear 

NLP 

A 1  t e r n a t e  
Step 

Waffle 
P l a t e  

Ref. (4.271 
Morrow, Schmit 

1968 

She l l  Buckling 
Combined a 

Service 
N, P, T 
Mu1 t i p  l e  

Continuous 
Sizing, 
Conf i g  . 

Weight 
Non-linear 

SUMT 
Fletcher- 
Powel 1 

In teg ra l ly  
S t i f f ened  
Cyl indr ica l  

She l l  

Ref. (4.111 
Moses 

1964 

a 

Service 
Mu1 t i p l e  

Continuous 
S iz ing  

Weight 
Linear 

SLP 
extended space) 

Simp1e.x , 

. .  

Planar 
Truss and 

Frame 

- 
Ref. 14.291 

Thornton and 
Schmi t 

1968 

Temp., E 
Combinod a 

Service  
Parametric 
(Re-entry) 

Continuous 
S iz ing  
Conf ig .  

deight o r  Depth 
Non-linear 

o r  Linear 

SUW 
Fletcher- 
Powel 1 

Thermo- 
S t ruc tu ra l  

Panel 
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Table 4.1 

SUMMARY OF SELECTED REFERENCES (Deterministic) (Contd) 

Kinds of 
F a i l u r e  Modes 

Kind of 
Load Conditions 

Kind of 
Design Variables 

Objective 
Function 

Formulation 
and 
A1 got  i thm 

Type of 
S t r u c t u r e  

Kinds of  
Fa i lu re  Modes 

Kind of  
Load Conditions 

Kind of  
Design Variables 

Objective 
Function 

Formulat ion 
and 
Ugor i thm 

Type of  
S t r u c t u r e  

Ref. 14.301 
G e l l a t l y  

1966 

a, U 

Service 
Mu1 t i p l e  

Continuous 
Sizing 

Weight 
Linear  

NLP 

Al t e rna te  
Step 

Bars, Shear 
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Membrane 
P l a t e s  ' 

Ref. [4.311 
Melosh and 

Luik 
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a 
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s i z i n g  

Weight 
Linear 

NLP 
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Search 

Planar  and 
Space 

Trusses 

Ref. 14.321 
Tocher and 

Karnes 
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0, U 
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Mu1 t i p l e  

Continuous 
Sizing 

Weight 
Linear  

NLP 
Feasible  
Direct ion 
Zoutendijk 

Bars and 
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Membrane s 

Table 4.2 

SUMMARY OF SELECTED REFERENCES (Probab i l i t y  Based) 
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i i l t on  and Feigen 

1960 

a 

Service 
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Continuous 
S iz ing  
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Linear 
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S t ruc tu re  

Ref. i4.421 
Moses and Kinser 
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a 

Service 
Mu1 t i p l e  

Continuous 
Sizing 
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Linear 

NLP 
A1 t e r d a t e  

Step 

Indeterminate 
Trusses 
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Fox and 
Kapoor 

1969 

a, U 
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Service 
Single  

Continuous 
S iz ing  

Weight 
Linear  

NLP 
Feasible  
Direct ion  
Zoutendijk 

Tubular 
Planar  

Truss-Frames 

Ref. l4.441 
{oses and Stevenson 
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P la s  t i c  
Collapse 

a 

Service 
Mult iple  

Continuous 
Sizing 

Weight 
Non-Linear 

NLP 
Feasible  
Direct ion 
Zoutendijk 

Planar 
Frames 

Ref. i4.431 
Shinozuka and Yan 
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a 

Service and 
Proof Loading 

Mu1 t i p  le  

Continuous 
S iz ing  

c o s t  
Non-linear 

NLP 
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Direct ion 
Zoutendijk 

Determinate 
Trusses 
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Chapter 5 

SEQUENCE OF LINEAR PROGRAMS 

by 

G. C. Pope 

5.1 Introduction 

Linear programming problems are of importance in their own right in many commercial and techno- 
logical fields and consequently their mathematical properties have been studied in depth and efficient 
computer programs have been developed for their solution. This available expertise can be utilised in 
two distinct ways in the solution of non-linear programming problems. 
direction in which to search for a lighter feasible solution, starting from a feasible solution in which 
one constraint at least is active, may be expressed as a problem in linear programming, following the 
procedure due to Zoutendijk which is described in Chapter 7. 
may itself be replaced by a sequence of linear programming problems. The latter approach which has the 
attraction of simplicity but which also contains some pitfalls for the unwary, is discussed in this 
Chapter. 
gramming problems themselves. 

5.2 Linear Programming 

Firstly the choice of an efficient 

Secondly the non-linear programming problem 

First, however, a brief description is given of the more important properties.of linear pro- 

In order to demonstrate clearly the duality properties of linear programming problems, it is con- 
venient in this section to depart slightly from the vectorial notation used in the preceding text and to 
employ instead the well-known convention in which repeated suffices are used to denote summations, i.e. 

The fundamental theory of linear programming is developed rigorously in the texts by Hadley [!i.l] 
and by Dantzig f5.21. 
Find a vector di of I terms which satisfies the equations 

A completely general problem of this class may be expressed in the following form. 

f..d. a ; j-1.2 ,... J , 
13 1 j 

and the inequalities 

di 2 0 ; i - 1,2,...I 

(5-1) 

(5-3) 

and which minimizes a merit function defined by 

M - ei di . (5-4) 

Extra positive variables, known as slack variables, may always be added so that the inequalities (.5-2) 
may be incorporated in Eq. (5-1); conversely the latter may be expressed as the inequalities 

j 
f.. d. a 
13 1 

- fij di - a 
(5-5) 

Thus either Eq. (5-1) or the inequalities (5-2) may be omitted from the formulation without loss 
in generality. 

5.2.1 

Consider now a typical linear programming problem which is so formulated that the inequality con- 

Terminology and Method of Solution 

straints (5-2) do not appear explicitly. 
both Eq. (5-1) and the necessary condition (5-3) that the variables are positive. 
is defined as a solution consisting of J non-zero variables and (I - J) zero variables. Degenerate 
solutions in which there are more than 
It may readily be demonstrated that, if a feasible solution exists at all, there must necessarily be a 
basic feasible solution which minimizes the merit function, although there may sometimes be other feasible 
solutions which reduce this function to the same value. 

A feasible solution is defined as any solution which satisfies 
A basic solution 

(I - J) zero variables can be ignored in practical computations. 
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Linear programing problems are usually solved by the Simplex method developed by Dantzig or by 
methods closely related to it. 
and progress successively to solutions of the same type closer to the optimum until the latter is reached. 
Provided degenerate solutions do not occur this procedure necessarily converges in a finite number of 
operations. 
solution is known initially and can be used as a starting point. 
able the linear programming problem may be enlarged artificially to a problem with an obvious basic 
feasible solution. using the following technique which is due to Zoutendijk, (5 .31.  
first arranged in such a way that the constants a 
is then added to each of the equations that do not include a slack variable preceded by a positive sign, 
and the merit function is modified to become 

Applications of these methods start from a &own basic feasible solution 

In many applications a combination of non-zero unknowns which will yield a basic feasible 
When no such prior information is avail- 

Eq. (5-1) are 
are all positive. A different additional variable 

j 

M' - e. di + P(x 1 + x 2 + x3 a . .  XJ) (5-6) 

where xl to xJ are the additional variables and the slack variables of this type, and P is a large 
positive constant. 
variables x to xJ to be non-zero. The optimum solutions to the original and enlarged problems will 
obviously be the same provided, of course, that fhe former has a basic feasible solution and that the 
constant P is sufficiently large. 

A basic feasible solution to this enlarged problem is obtained by selecting the 

5.2.2 Duality 

Consider a typical linear programming problem expressed for convenience in the form: 

minimize 

where 

and 

M m  

di 3 

3 hik di 

This is closely related to another linear programming 
and hik which may be expressed as follows: 

e d. i i  

0 

bk ; k = 1,2,...K . 
(5-7) 

problem 'involving the same coefficients ei, bk 

maximize 

where 

and 

N -  bk 'k 1 
2 0  'k 

hik yk g ei ; i = 1.2, ... I . 

Whichever of the above problems is of primary interest in a particular application is referred to as the 
primal problem and the related problem is referred to as the dual problem. 

The following duality properties are useful in the present context: 

(1) The optimum solution of one problem may be deduced directly from the optimum solution of the 
other, and the merit function in both problems has the same optimum value. 

(2) Consider the optimum solution of both problems when every constraint in each problem involves 
a slack variable. 
variable in the other problem vanishes; conversely, if the kth variable is non-zero in one problem, the 
slack variable in the kth constraint in the other problem is zero. 

When the slack variable in the kth constraint in one problem is non-zero, the kth 

It sometimes proves more economical from the computational viewpoint to solve the dual problem 
rather than the primal problem, especially when a basic feasible solution is known initially to the 
former but not to the latter (see, for example,Paragraph 5.3.4). More general conditions under which it 
is preferable to solve the dual problem vary to some extent with the algorithm used in the solution and 
depend on the number of equality constraints in the primal problem that do not involve slack variables 
and on the ratio of the number of constraints to the number of variables. 

5.3 The Reduction of Non-Linear Programming Problems to a 'Sequence of Problems in Linear Programming 

The properties of non-linear programming problems may most readily be described by considering 
first problems in which all the constraints are expressed as inequalities and in which only two 
variables are involved. Consider the following linear programming problem: 
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\ 

\ 

\B 
I 2 dl \ 

Fig5.1 Linear Problem 

1 

- dl 

Fig.S.3 Convex Problem 

Fig.5.2 General Non-linear Problem 

Fig.5.4 Additional Constraints in the Move Limit Method 
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minimize 

M - el dl + e2 d2 

subject to the constraints 

hlk dl + h2k d2 2 bk ; k - l,Z,...K 
where 

d l > 0 , d 2 > 0  . 

(5-9) 

This problem is presented in graphical form in Fig.5.1. 
secting straight lines where the hatching indicates the edges of the region in which feasible solutions 
are obtained. The line AB indicates the locus of points along which the merit function M has a 
constant value and the corresponding loci for other values of M are lines parallel to AB; the problem 
of minimizing M reduces therefore to that of finding a line parallel to AB which passes through the 
extreme vertex C of the feasible region. Consider now the non-linear programming problem: 

The constraints consist of a number of inter- 

minimize 

M(dl, d2) 

subject to the constraints 

h(dl, d2) 2 bk ; k = 1,2, ... K 
where again 

dl 2 0 d2 > o  . 

(5-10) 

In general, neither the boundaries of the feasible region nor the contours of equal values of the merit 
function are straight lines, and they may take such complex forms as are illustrated in Fig.5.2. It is 
imediately obvibus therefore that the optimum solution need not necessarily be at an intersection of 
constraints, and also that local optima may occur in addition to the global optimum which is sought. 
This latter difficulty does not arise in problems where the constraints and merit function have the forms 
illustrated in Fig.5.3; such problems, which are usually referred to as convex problems, are difficult 
to identify when the number of unknowns is large. 
techniques search in effect for local optima, it is strictly necessary to repeat solution procedures from 
several unrelated starting points before a calculated optimum can be treated with confidence as a global 
optimum. 

Consequently, since all deterministic solution 

If more general problems are now considered which are expressed purely in terms of inequality con- 
straints and which involve N variables d the (dl, d ) plane may be generalised into an 
N-dimensional space so that the constraint intersections on the edges of the feasible region in the plane 
become vertices on the boundaries of a corresponding region in the N-dimensional space. 
notation of the preceding Chapters such problems may be expressed in the following form: 

n’ 2 

Using the 

minimize 

(5-11) 
M 6) 

subject to the constraints 

$(b) 2 0 ; k 1,2,. ..K 

-f 
where the column vector D corresponds to the variables dl ... dN but is not necessarily expressed in 
terms of components which are constrained to be positive. 

5.3.1 The Simplest Approach 

The following procedure, which has been employed in the structural design context by Moses l5.41 
and by Karihaloo et al. (5.51 is the simplest possible for replacing a typical non-linear programing 
problem by a sequence of problems in linear programing: 

~ 

Do 
(1) Linearise the constraints and the merit function in the neighbourhood of an arbitrary point 

and solve the resulting linear programming problem which is given by 
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minimize 

M(ifo) + VM(bo) . [if - if2 
subject to the constraints 

\(so) + Vhk(ifo) . [if - 32 0 

(2) Repeat the process until the optimum solutions of succ 

; k 1,2, ... K . 

ssive linearised problems re 
each time as the optimum solution to the preceding problem. 

+ 
virtually identical, redefining Do 

(5-12) 

This procedure will only converge if the optimum solution happens to be at a vertex of the feasible 
If the curvature of the constraints or of the merit region in the N-dimensional space referred to above. 

function is such that the optimum solution does not correspond to a vertex, the numerical results will 
oscillate indefinitely between adjacent vertices; such a situation is illustrated in Fig.5.3. 
difficulty may be overcome in convex problems by the use of the procedures described in Sections 5.3.2 
and 5.3.3; in m r e  general applications the procedure described in Section 5.3.3 may be employed. 

This 

5.3.2 The Cutting Plane Method 

The cutting plane method, which was developed independently by Cheney and Goldstein 15.61 and by 
Kelly b.71, employs the useful property that linearised constraints in convex problems necessarily lie 
entirely outside the feasible region. 
represent the critical non-linear constraints to any required degree of accuracy. A typical version of 
the method proceeds as follows when the objective function is linear: 

Consequently an envelope of such constraints may be used to 

-b 
(1) Linearise the constraints in the neighbourhood of an arbitrary point Do and solve the 

resulting linear programming problem. 

(2) Substitute the results of the linearised computation in the non-linear constraint equations 
and find which of the latter is most seriously violated. 

+ 
(3) Linearise this constraint about the optimum solution D to the preceding linear programming 

P 
problem and find the modified optimum solution when this additional linearised constraint is added. 

( 4 )  Repeat steps (2) and (3). adding an extra linearised constraint each time, until all non- 
linear constraints are satisfied to an acceptable standard of accuracy. 

Cornell, Reinschmidt and Brotchie [5.81 , 15.91 have studied the possibility of disgarding inactive 
constraints to reduce the size of the linear programming problems involved in the application of this 
method. 
rigorously be omitted are too lengthy in general to be of practical value. 
suggested by these authors for the elimination of such constraints are unlikely to be suitable for general 
application. 

They have found, however, that the computations required to identify the constraints that can 
Simple semi-empirical rules 

Difficulties of this kind are also discussed by Moses [5.101, [5.111. 

The cutting plane method has two very undesirable features: 

(1) When the optimum solution does not coincide with a vertex of the feasible region, the angle 
between the active linearised constraints is small; consequently round-off errors can sometimes debase 
numerical accuracy to an unacceptable extent. 

(2) The method cannot be employed satisfactorily in problems which are not strictly convex since 
the linearised constrai.nts may then exclude legitimate parts of the feasible region. 

Thig second feature, in particular, makes the cutting plane method unacceptable in practical pro- 
blems where convexity cannot be demonstrated. 

5.3.3 The Move Limit Method 

An alternative approach due to Griffiths and Stewart [5.12], which does not suffer the above 
deficiencies, makes use of artificial limits on the variation of the design variables in a typical 
linearised computation; it has been used successfully by several workers in the structural design 
field [5.81, i5.91, [5.131, [5.141, [5.16] and proceeds as follows: 

-b 

Do 
(1) Linearise the constraints and the merit function in the neighbourhood of an arbitrary point 

and impose additional constraints of the form 

bo-;: G if G b o + $  (5-13) 

+ + 
as illustrated in Fig.S.4, where a and 6 are suitably chosen vectors of positive constants. 

(2) Repeat the process, redefining if as the optimum solution to the preceding linear pro- 
gramming problem, until either no significant change occurs in the solution, or successive solutions 
start to oscillate between the vertices of the feasible region; in the latter event continue 
computations using suitably redqced values of and if. 
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Diszretion nd experience must be employed in the choice of values for the components of the 
vectors a and 8. For computational efficiency it is desirable to choose relatively large values 
initially so that the imposed limits do not impede rapid convergence to the immediate vicinity of the 
optimum solution. 
values when oscillation occurs; the author has, however, obtained satisfactory convergence by 
repeatedly halving the amplitude in structural applications in which equal values were employed for all 
the components of these vectors associated with the design variables. 
it may, of course, be desirable to impose severe limits only on those variables which are immediately 
associated with oscillatory behaviour; this aspect has not yet been studied in depth. 

The above method, which is known either as the 'move limit method' or as the 'method of approxi- 

Insufficient evidence is yet available to indicate the best way to reduce these 

For computational efficiency 

mation programming', involves a complete relinearisation of the non-linear problem before each linear 
sub-problem. Consequently, in structural problems where the constraints consist only of lower bounds 
on the design variables and upper bounds on the displacements and stresses, negligible additional effort 
is involved in factoring each linearised solution so that it is just a feasible solution of the relevant 
non-linear problem. Any increase in the value of the factored merit function after successive 
linearised computations may then be taken as an adequate indication that a reduction in the move limits 
is necessary. 

It has been assumed in the foregoing discussion that each non-linear constraint has been 
represented by a single linear constraint in the individual sub-problems of the move limit method. 
Better approximations may, however, be incorporated by retaining appropriate non-linear terms in a 
Taylor's series expansion of the constraint about the starting point if 
series expansion approximately between the move limits by a series of tangent planes in the 
N-dimensional space referred to above. Such techniques are discussed by Cornell, Reinschmidt and 
Brotchie (5.81, 15.91 and by Moses (5.101 , but little experience has yet been obtained in their use. 

and by representing this power 
0' 

5.3.4 

A useful property of any of the above methods when applied to structural problems is that the 

Use of the Dual Problem in the Structural Optimization Field 

coefficients of the design variables in the objective function of the primal problem are nearly always 
all positive. 
choosing the slack variables to be the non-zero variables (5.141. The Simplex method may then be used 
to find the optimum solution of the dual problem and consequently of the primal problem as well. 
is, in theory, a possibility that no feasible solution exists to the primal problem; the objective 
function of the dual problem can then take an indefinitely large value. Difficulties of this kind 
cannot, of course, occur if the linearisation process starts from a feasible solution of the non-linear 
problem; they are only likely in practice when upper limits are imposed on the permissible values of 
the design parameters in the non-linear problem, or when lower limits are placed on the absolute values 
of the displacements. 
the difficulty is due to linearisation about an inappropriate point or whether the non-linear problem 
itself has no feasible solution. 

Thus a basic feasible solution to the dual of this problem may be obtained directly by 

There 

Under these circumstances a detailed investigation may be required to show whether 

5.3.5 Discrete Variables 

Variables that can only take discrete values introduce major complications whatever solution pro- 
cedure is employed. 
gramming with the aid of the integer-programming techniques developed by Gomory and by Beale, see 
Dantzig (5.21 . Convergence difficulties were, however, experienced by Toakley (5.151 when he employed 
Gomory's algorithm in the structural optimization field. 

Acknowledgement - This Chapter is British Crown Copgright, reproduced with the pernrission of the 
Controller, Her Majesw's Stationery Office. 

Such variables may in theory be incorporated in procedures based on linear pro- 
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Chapter 6 

UNCONSTRAINED MINIMIZATION APPROACHES 

by 

R. L. Fox 

6.1 Introduction 

TO CONSTRAINED PROBLEMS 

There are many approaches to the constrained minimization problem. Methods which have developed a 
great deal of currency are the unconstrained minimization formulations of the constrained problem. 
basic idea of these methods is to convert the constrained problem, with its objective function and 
equality and inequality constraints, into a problem in which some new function is minimized without 
regard for constraints. 
through a sequence of unconstrained minimizations. 

The 

The solution to the original constrained minimization problem is then developed 

There are several reasons for the appeal of the unconstrained minimization formulations and it is 
useful to examine some of these briefly even before looking at the structure of the methods themselves. 
One is that algorithms for the unconstrained minimization of rather arbitrary functions are well studied 
and generally are quite reliable. 
numerical analysis spectrum and they have a considerable and sophisticated literature. 
for the appeal of the unconstrained formulation of the constrained problems is that the sequential nature 
of the methods allows, in some cases, a gradual or sequential approach to criticality of the constraints. 
In addition, the sequential process permits a graded approximation to be used in the analysis of the 
system. This latter allows coarse approximations to be used during early stages of the optimization pro- 
cedure and finer or more detailed analysis approximations to be used during the later stages. 
reason for the appeal of the methods is that for some types of problems, the formulation and implementation 
using available computer programs is quite straightforward. 
of capabilities for solving the constrained optimization problem with a minimum of programming time. 
This is in contrast with the direct methods, discussed elsewhere in this volume, which may require 
extensive computer programming for their implementation. 

These methods are establishing a solid place for themselves in the 
A second reason 

A final 

This characteristic permits the generation 

A brief introduction to the basic structure of unconstrained formulations should help to provide an 
orientation for what follows. 
the problem with inequality constraints only, of the form: 

First of all, to restate the basic optimization problem we first examine 

-+ 
Find D such that M(3) -P minimum and 

h.(;) < 0 ; j = 1,2 ,... J . 
1 

This problem is converted to an unconstrained minimization problem by constructing a function of the 
form; 

where P is some function, which will be discussed later, of the constraints and of a parameter r 
such that violations of the constraints produce a penalty to be appended to the objective function in such 
a way that unconstrained minimization of $ tends, in a variety of ways for different methods, to the 
solution of the constrained minimization problem given by Eq. (6-1). There are a variety of P functions 
and strategies for applying the method and the most applicable of these will be discussed in later 
sections of this Chapter. 
also be expressed in an unconstrained form. 
including the effects of the equality constraints. 

Optimization problems involving both equality and inequality constraints may 
This is done through functions similar to (6-2), but 

In any event, the ultimate goal of the formulation is to convert the original problem into an 
unconstrained problem in which the function 
which the minimum tends, in some sequential way, to the solution of the original problem. Therefore, the 
second aspect of these approaches is the utilization of an unconstrained minimization algorithm. 
Techniques for unconstrained minimization usually take the form of an iteration: 

0 can be minimized without regard for constraints and for 

. .  
. .  

-h 
where in a is a 'step-length' in some direction given by S , This iteration is applied to the 
$-function until a point is reached which is determined to be its minimum. 
their particular characteristics to the rationale used to determine a and f 
of the unconstrained minimization algorithm is crucial to the operation of the overall method and there- 
fore a detailed discussion of some of these procedures will be taken up before their application to the 
constrained problem is considered. 

9 
M st of these methods owe 

The effectiveness 
9' 
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6.2 Unconstrained Minimization Methods 

6.2.1 Some Early Methods 

In this section, we will examine the methods of solving the problem: 

+ 
(6-4) Find X such that F(b) + Min 

+ 
where there are no restrictions on the choice of X. 
problem is that which goes under the various names gridding, exhaustive enumeration or exhaustive search. 
This approach is simply to select for each of the variables a range and an increment or spacing within 
this range and then to examine all possible combinations of the variables selecting that combination 
which produces the least value of the F-function. 
any reasonable accuracy for even a modest number of variables, an enormous computational effort is 
involved in obtaining a solution. 
sear ch. 

The earliest and most primitive approach to the 

Simple arithmetic will reveal that in order to ohtain 

An alternative which is only slightly more effective is the random 

The random search is nearly as simple as the grid search, but it has the advantage that on each 
successive sample, every point in the space is equally likely to be tested. 
set of X's each component of which is a random number in some preselected range. 
libraries have random number generators and usually this can be done quite conveniently. 

It consists of generating a 
Most computer + 

Comparison between the two methods (grid and random) is probably fruitless inasmuch as the results 
will depend heavily upon the function being searched and also because the methods would be used only 
when efficiency is really no object. 

A random-based method which is somewhat more sophisticated is the random walk. The version which we 
will discuss is based upon the idea of a sequence of improved approximations to the minimum, each of 
which is derived from the preceding approximation. The sequence is determined from the prescription: 

+ + 
where X is the 'old' approximation to the minimum and X is the 'new' approximation, p is a 
scalar step length and i 

9 q+l 
is a unit random vector. The algorithm is based upon the following steps: 

(i) Choose a starting point Xo and a step length p which is large in relation to the final 
+ 

accuracy desired. 

(ii) Generate . 
+ 

(iii) Calculate 3 c F(X~ + p ir). 
+ 

(iv) If the result of (iii) is less than F(Xq), them set 3 = 2 + p er and repeat (iii) 
q+l 9 

and (iv); otherwioe, just repeat (ii), (iii) and (iv). 
+ 

(v) If a oufficient number of trials produces no acceptable Xq+l, reduce p and continue (ii), 

(iii), (iv). 

(vi) When p has been reduced to within the accuracy desired, terminate. 

This method, while slightly more efficient than the grid or pure random search, is still quite 
inefficient except on very small problems and is recommended only in cases where programming ease is 
the principal objective. 

Further methods which should be mentioned are the gradient or steepest descent methods of uncon- 
strained minimization. 
gradient direction is the direction in which the function decreases at the greatest possible rate. These 
methods all utilize the iteration of Eq. (6-3). with S equal to -VF evaluated at X . The different 
steepest descent methods are based upon different strategies and techniques for choosing 
drawback of the gradient methods is that for functions with any degree of ill-conditioning. the iteration 
usually settles into a steady N-dimensional zig-zag and convergence becomes very slow. 
noted that the 
nature to be ill-conditioned. 

These methods are based upon the well-known property that the negative of the 

4 9 
a. The basic 

It should be 
$-functions used in the methods discussed subsequently in this Chapter tend by their 

6.2.2 One-Dimensional Minimization 

One form of steepest descent method, while not notably effective as an overall method is baoed 
upon a strategy for picking a in Eq. (6-3) which has important implications or other+more practical 
methods. The idea is to choose the a which minimizes F in the direction d 
advantage of thio approach is that each step will produce the greatest possible reduction in 
hence one might expect the process t o  converge faster than if the minimum were not sought. 
more important, advantage, which will be discussed subsequently, is that by taking the minimizing step 
at each iteration of Eq. (6-3), certain very valuable properties will pertain. 

-VF(X 1. An ohvious 
q 9 

F and 
Another, 

I 
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Consider 9 vector 3 and the move prescription:. 
4 

+ + x 0 x q + a 3  9 

+ where, if a is thought of as a variable, then the+locus of X for a range of values of a is a 
straight line. Substituting this formally into F(X) we obtain 

since F can be considered a function of a alone, (%q and 3 
of a which minimizes F(a) is sought. Note that+thiz value denoted a*, does not produce the 
global minimum of F unless, of course, the line X - X + a ' contains the global minimum point. 

are considered fixed). Here the value 
9 

4 9 + 
With this concept, the problem of minimizing F(X) can be reduced to a succession of one- + dimensional minimization problems regardless of the dimensionality of X. In practice, a* can rarely 

be obtained explicitly and generally we must resort to a numerical means for finding a*. 

Consider approximating the function F(a)  by a function h(a) which has an easily determined 
minimum point. The simplest one variable function possessing a minimum is,the quadratic 

the minimum of which occurs where 

or 

(6-10) b :  
2c * 

a* I - -  

The constants b and c for the approximating quadratic (a is not needed) can be determined by 
sampling the function at three different a values, al, a2, a3 and solving the equations 

1 + 

F, - a + ba 

F3 = a + 2bt + 4ct 2 J  

(6-11) 

where F1 denotes the value F(al), etc. A choice of al, a2 and a3 for which Eq. (6-11) are 
particularly easy to solve and which can save one function evaluation is 0, t, 2t where t is a 
preselected trial step. Note that if F at a - 0 is presumed known from the previous iteration 
only two new function evaluations are required. With this choice, Eq. (6-11) become 

. (6-12) 

from which 
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a =  F1 

b -  

c -  

and 

4F2 - 3F1 - F3 
2t 

1 - 2F2 F3 + F 
2t 

4F2 - 3F1 .- F3 
4F2 - 2F3 - t .  

2F 1 

(6-13) 

(6-14) 

For a* to correspond to a minimum and not a maximum of h(a), a* must satisfy 

(6-15) 

For the case where h is quadratic, this requires c > 0 or 

F3 + F > 2F2 . 36-16) 1 

A scheme for insuring that the condition Eq. (6-16) is satisfied and further that the minimum lies 
in the interval 0 < a  < 2t is as follows: 

(i) Choose an initial value for t = to based upon previous iterations or other information 
regarding a reasonable value for the step length. Ideally, to would be of the order of a*. 

(ii) Compute F(t). 

(iii) If F(t) >F(O) I F1 then set F3 - F(t) and cut t in half and repeat (ii); otherwise, 
set F2 - F(t), double t, and repeat (ii). 

(iv) When a value of t has been obtained such that F2 < F1 and F3 > F29 Compute a* 

according to Eq. (6-14). 
+ 

It should be noted that even a function possessing a single minimum in the space of 
If a test is made to insure that 

X may have 
multiple minima along a line. 
diverge or cycle; however, it is a good rule to try to select 
X is included in the interval 0 < a < 2t if possible. This precaution is wise because some o f  the 
methods to be discussed later depend for their efficiency upon a smooth progression along the contours 
of the function. 

F(a*) <F1, the process will not 
t so that only the nearest min~mum to + 

4 

A variety of tests are possible to ascertain if the approximation to the minimum (call it :*) is 
a sufficiently good approxima’tion to the exact a*. A sort of ultimate criterion is 

F(;* + E) E F+ 

and 

F(:* - E) E F- 

(6-17) 

where E is the minimum significant change of the variable in the direction under consideration. 
Computationally, this criterion has two main disadvantages: first, it requires two extra function 
evaluations and secondly, it is not really as certain as it seems since the values F+ and F‘ inay be 
contaminated by roundoff noise rendering the results of the test inconclusive. 
compute an approximation to dF/da at :* as 

An alternative is to 

$, ~ F(:* + A) - F(:* - A) 
2A (6-18) 

where A is a numerically significant, but still small, change in a, and compare this with zero. 
The range of the absolute value of the derivative of h in the interval 0 to 2t can be used as a 
basis of comparison; in other words, the maximum value of Idh/da( is either b (at a - 0 )  or 
b + 4ct (at a - 2t) and these can be used to determine if 9’ is sufficiently small. For example 
we might require 
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(6-19) 

which is 1/100th of the average of Ih'(0) I and Ih'(2t) 1 .  This sort of criterion still requires two 
additional function evaluations and it is not foolproof. 

An alternative criterion which is practically 'free' from the computational point of view is the 
following: compare F(Z*) and h(;*) and consider h(a*) a sufficiently good approximation if they 
differ by a small amount. 

5 

It can be shown that 
2 (4F2 -3F1 - F3) 
I a - -  b2 

F1 8(F1 - 2F2 + F3) 4c - h(Z*) - 
For example, we might require 

(6-20) 

(6-21) 

where E is a small fraction. say 0.01. 

If the criterion chosen for the accuracy of the minimum is not satisfied, the original algorithm 
5 

can be reapplied at a* or t, whichever is a better approximation, or a general quadratic fit can be 
made using the 'best' 3 of the points 0 ,  t, 2t and a*. 

% 

It is easy to ConCOCtnumerous function interpolation schemes based on higher order polynomials 
using more sample points or finite approximations to derivatives. 
in certain problems, but in giving the rein to one's imagination, care should be exercised to avoid 
excessive function calculation and algorithmic complication. 
in ill-behaved problems, it is generally better to apply the same simple algorithm repeatedly in 
successive approximations than to attempt to construct an air-tight technique to secure the minimum in 
one trial. 

Such algorithms may have advantages 

If refinement of the minimum is necessary 

In some cases, a higher order interpolation for the one-dimensional minimization is appropriate. 

If the gradient of the function being minimized is easily obtained, it is reasonable to 

In 
particular, if the function has continuous first partial derivatives, a 2-point cubic fit can be used 
economically. 
consider a minimization algorithm based upon derivatives of the function. 
dF/da is 

Note that the derivative 

aF axi I: -- 
N 

da iol axi aa 
dF 
- I  

In a move of the form of Eq. (6-6) axi/aa - sp'. Therefore 

(6-22) 

(6-23) 

where VF is evaluated at the point along 8 where the slope is to be determined. As with the previous 
method this method hinges on approximating F(S + a81 s . F ( a )  by a function h(a). However, in this case 

9 

rather than a quadratic, h is 

Values of F(A), (dF/da)A, P(B)  

determined from the solution of 

a 

taken to be the cubic 

(6-24) 3 h(a) - a + ba + ca2 + da 

and .(dF/da)B are available and thus the parameters of h(a) can be 

2 3  + bA + CA + dA I FA I F(A) 

+ bB + cB + dB - FB : F(B) 2 3  

b + 2cA + 3dA2 I Fi E (dF/da)A 

b + 2cB + 3dB2 - FA 1 (dF/da)B 

the two points where 

a 

(6-25) 

and the minimum would be one of 
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Fig.6.1 Flow Diagram for Cubic Interpolation 
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I 

(8-26) 

or where 

b + Zca + 3da2 .D 0 . 

Defining the quantities 

and 

the solution of Eq. (6-27) can be expressed as l6.71 

F;)+Q-Z 
F;( - Fh a* = B -  (B - A) . 

(6-27) 

(6-28) 

(6-29) 

(6-30) 

The conditions Fi < 0 ,  F' > O  insure that the estimated minimum point, a*, will lie between A and B. 

The flow diagram shown in Fig.6.1 is the logic for a basic algorithm using cubic interpolation. 
The two items left undetermined in this flow diagram, and the contents of block A. are somewhat' 
related and will be discussed together. 
of the loop containing block A adds significantly to the labor involved in making the step. 
most problems the major effort of making an iteration is that expended in block B and ideally it would be 
done only once. The conflict is this: if to is chosen comfortably large so that Fi is certain to be 
positive in the first pass through test C, the interpolation may take place over so large an interval as 
to produce a poor approximation. On the other hand, if t is too small, numerous increases in t may 
be necessary before test C is satisfied. 

B 

to 
The choice of to is crucial to efficiency since each traverse 

Indeed, in 

A number of techniques have been used to attempt to establish a proper range for to. Perhaps the 
most widely used a priori method is to assume initially that c n be approximated by a quadratic and 
use F(O), F'(0) and a guess at the minimum value of the function, $, along t, as the data for inter- 

polation. Of course, this still leaves F to be estimated. A low estimate of the minimum of F(a) 
may often be obtained easily and the use of this will generally result in overestimating 
approach is to estimate the expected reduction in F 

F(a) 

% 

to. Another 
based upon preceding iterations, 

The possibilities for estimating to are endless and what is efficient in one problem may be 
A careful eye should be kept on this aspect of the minimization routine, inappropriate in another. 

however, since this is usually where the time consuming computation is generated. 
+ 

Once an estimate of a* has been obtained the F* E F(X + a* 8 )  
than both FA and FB, then at least X, is a candidate for a minimum point. If this is indeed the 

case, the goodness of fit can be checked by calculating 
direction S and the gradient at a*, which is given by 

can be computed. If F, is less 
+ 

c ,  a measure of the orthogonality between the 
-+ 

(6-31) 

The test I C (  < E  may be used as the final criterion for acceptance of a*. Values for E of from 

loq2 down to lo-, 
however, these lower values can be very difficult to satisfy especially if there are many variables in 
the problem. 
method in which the minimizing step routine is embedded and even at this level it cannot be stated with 
certainty what the best strategy is. 

where m is the number of working digits in the computer, have been used; 

The stringency of this orthogonality requirement should bear a relationship to the overall 

If the test for a minimum fails, then block D of Fig.6.1 may be re-entered and a new interpolation 
T-+ attempted. Before entering, it is merely necessary to test the sign of 8 G,, if it is positive then set 
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B + a* 

(6-32) 

otherwise set 

A + a* 

(6-33) 

Since the formula for a* is arranged so that A < a* 4 B, each refit will narrow the gap B-A, the 
size of which can also be tested as a precaution against pathological functions or overly zealous 
criteria for the minimum, and in principle the minimum can be located to within the desired accuracy by 
successive refits. 

There are several types of schemes for one-dimensional minimization which have been omitted in this 
discussion and the reader is referred to the literature. 
schemes with elegant logic behind them; however, their usefulness is generally limited to problems where 
the interpolation methods fail, for example in some of the discontinuous derivative cases. 
particular deserves mention; the Fibonacci search which is based upon the fascinating Fibonacci numhers. 
This is a sampling method which traps the minimum in successively smaller intervals. 
explanation of this and some related techniques, see Wilde and Beightler 16.11. 

Most of these are highly organized hunt and peck 

One method in 

For a lucid 

6.2.3 Quadratically Convergent Methods 

Because most of the functions we will be minimizing have a convergent Taylor series at and near the 
minimum4 it is useful to consider a quadratic approximation to the function. 
point Xo is of the form, 

A Taylor series about any 

1 

(6-34) 

where J is the matrix 

-[-I (6-35) 

and hence in the vicinity of the minimum we may think of F as approximated by 

+I + +T+ F c. X A X + X B + c  5 Q (6-36) 

+ 
for some matrix A, vector B and scalar c. A minimization method is said to converge quadratically 
if it will minimize a general quadratic in a finite and predetermined number of steps. 

It is found that in practice a surprising number of functions are well approximated by a quadratic 
even at points moderately distant from ?t 
are usually far more efficient for general applications than those lacking this property. 

the context of the minimization of a quadratic function a set of N directions d 
or more accurately A-conjugate if 

(the minhun point) and hence quadratically convergent methods 
m 

Most quadratic methods are based, in one way or another, on the concept o conjugate directions. In 
is said to be conjugate 

9 

F A  ?ij - ' 0  , for all i z j (6-37) 

where A is an N x N symmetric matrix. 

A set of such directions possesses an extremely powerful property: 

If a quadratic function Q 
independent, A-conjugate directions, the global minimum of 
step regardless of the starting point. 
Note that the order in which the directions are used is immaterial to this property. 

is minimized sequentially, once along each direction of a set of N linearly 
Q will be located at or before the Nth 
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There is an interesting geometrical interpretation of this property. Starting from the point 
-b + + 
X1, if we minimize Q along dl, and then from the resulting point X2 minimize along S2 
A-conj ugate to 
and passing through X1. 

(which is 
and d2 Zl) :hen the resulting point is the minimum of Q in the plane containing 1 

In other words, it is the minimum in the plane 

+ x = ali51 + a2d2 + 3, (6-38) 

where a1 and a2 are variables. 

Thiz result generalizes to the jth cycle in that the sequential minimization along the covjugate 
vectors S. i = 1,2, ...j produces the minimum point of Q in the subspace spanned by the vectors 
;fl9...,S 

It should be noted that these results require that each step must terminate at a minimum in the 
given direction. 
exactly the minimizing steps at each iteration which causes most of the practical problems with these 
methods. 

+ 1, 

j' Thus, at or before the Nth step, the global minimum point of Q will be reached. 

This point is emphasized because it is precisely the numerical difficulty of computing 

The conjugacy relations do not define a unique set of directions, but any set of N independent, 
mutually A-conjugate directions will suffice. 
knowing A form the basis for different methods which are quadratically convergent. 

The various ways for generating such directions without 

6.2.4 Powell's Method 

A quadratically convergent method 16.21 which does not require the evaluation of the gradient of 
the function or any other derivatives will now be discussed. 
d , q = 1,2,...N which are initially set equal to the coordinate vectors. 
the ith component of S 

Consider a set of directions 
That is, if we denote 

by siq then 
9 + 

9 

s -  6iq ; i,q - 1,2,...N 
iq 

where 6 is the usual Kronecker delta. 

The method may be concisely outlined as follows: 
iq 

(i) ? + 2 arbitrary , 

+ +  + 
(ii) X + X + a t  S .  ; i - 1,2,...N, 

1 1  

+ +  (iii) f+l + x - Y , 

+ + +  
(iv) x + Y + x + ai+l dN+l , 

(v) bi + 8i+l 9 i - 1,2. ... N, 
(vi) return to (ii) . 

Thus, the method involves minimizing first once in each of the coordinate directions (actually any set of 
independent directions will do) and then in the direction defined by a vector from the starting point of 
the cycle to the ending point of the cycle. 
trend of the collective minimizations in the coordinate directions. After this minimization is carried 
out, d, is dropped and replaced by d2, 8, is replaced by d3 and so on until dN is replaced by the 
pattern direction. 

This so-called, 'pattern move' is in the direction of the 

The process is then repeated with the new set of directions. 

Theoretically, more is required to make the method truly efficient on general functions, but the 
idea is contained in the above. 
version of the method. 
minimization step (blocks B and- C) and then it is stored in XN 
up-numbered and d, discarded. The direction SN will then be used for a step to a minimum just prior 
to the construction of the next pattern direction. 
X and Y in block A are points which are minima along $, 
sequence will impart special properties to 
of the method. 

The flow diagram shown in Fig.6.2 is a codification of the simplest 
Note that a pattern direction is constructed (block A ) ,  then used for a 

(block D) as all of the directions are 
+ 

As a consequence of this for the second cycle both + + the last pattern direction. This 
-b + +  
SN+l - X - Y which are the source of the rapid convergence 
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INITIALIZE $q 
TO BE COORDINATE 
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sq - x - Y  FALSE 

v 
A 

SELECTCZ* TO SELECT Q *  TO 
MINIMIZE MINIMIZE 
FG * a& - F ( h &  

B 

I 

Fig.6.2 Flow Diagram for Powell's Method 
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We 
Xa and 
from 3,, 
+ will now show that Powell's mzthod generates conjugate direztions. 

?,, and a direction d; 
Given two vectors -+ i'f Ya is a minimum of Q from X along d and Yb is a minimum a + 

along S ,  i.e. if 

+ + 
ya = X, + a; d (6-39) 

+ iib = $ + a i s  (6-40) 

then Ya - Yb and S are A-conjugate. This fact is easily demonstrated starting with the definition of 
a*. By definition 

+ +  + 

and 

d - IQ(?~ + ad)) = o , at a - o . da 

(6-41) 

(6-42) 

Therefore, by substituting the above expressions into the equations of the quadratic, differentiating 
and then setting a = 0, we obtain 

+T S (2A?a+5) = 0 

and 

+T S (2Aiib +t )  = 0 

and subtracting Eq. (6-44) from Eq. (6-43), we find 

2dT A (ga - jib) - 0 

(6-43) 

(6-44) 

(6-45) 

+ +  which demonstrates the conjugacy of 8 and (Ya - Yb). 
+ 

Returning now tg the flow diagram f Fig.6.2, we see that in block A, both 3 and Y are mini 3 is conjugate to $. Thus, after N cycles, all of the 
N+l 9 along the direction SN and therefore 

are mutually conjugate and a quadratic will theoretically be minimized in 
minimizations. 

N2 one-dimensional 

As is so often the case in these matters, things are not as good as they first seem. To begin with, 
the functions to be dealt with are not usually quadratics, and thus the number of iterations will 
ordinarily be greater than N. However, consider the least possible computational effort for N2 
minimizing steps. 
it requires 7500 function evaluations to achieve minimization. 
that even with luck, this can skyrocket to 
each. 

Suppose it requires at least three function evaluations per step, then for 50 variables 
In practice, moreover, it is found 

or more minimizations with 5 to 7 function evaluations N3 
This brings the number for 50 variables to around 700 000 evaluations! 

In addition to the possibility of requiring a large number of function evaluations, the basic 
version of Powell's method described above can come to a halt before the minimum is reached. Both this 
complete failure and the previously described inefficiency are due to the fact that the 8 may become 
dependent or 'almost' dependent. The original set of d 
each of the succeeding directions which are generated should be linear combinations of &of the 
preceding dj unless some ab - 0 during the cycle. It has been found, however, that the basic method 
has a tendency to choose nearly dependent directions in ill-conditioned problems and for more than 5 
variables the method can break down, One simple remedy is to reset the directions to the original 
coordinate vectors periodically andlor whenever there is some indication that the directions are no 
longer productive. This technique is sometimes useful but a procedure recomended by Powell 16.21 
while somewhat more complicated, is very effective. 

j 
are, of course, independent and. in theory 

j 

3 

Powell recommends a termination criterion for ordinary use such that when a cycle produces a 
change in all variables of less than one-tenth of the required accuracy, the process is stopped. 
(i.e. less likely to stop prematurely), but much more time consuming criterion also given by Powell is: 

(i) Apply the normal procedure until a cycle causes a change of less than one-tenth of the 

A safer 

desired accuracy. Call the resultant point ]i. 
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(ii) Increase every variable by ten times the desired accuracy. 

(iii) Apply the normal procedure until a cycle again causes a change of less than one-tenth of the 

(iv) Find the minimum on the line through 1 and if; call it 3. 
(v) Assume ultimate convergence if the components of ( A  - if) and (% - E )  are less than one- 

(vi) include the direction (2 - 3) in place of 8, (i.e. the x1 direction) and restart the 

It should be mentioned that one of the most confounding problems in minimization, indeed of most ' 

desired accuracy. Call the resultant point if. 

tenth of the desired accuracy in the corresponding variables, otherwise 

procedure from (i). 

iterative procedures, is that of termination. 
expensive, (the problem must essentially be solved at least twice); in some problems, a more lax 
criterion may be appropriate and even other kinds of criteria may be reasonable. 
difficult to set down general rules for termination with anything approaching confidence. 

The preceding is a relatively safe rule, but it is 

It is, however, 

6.2.5 

As has been mentioned already, the gradient, or steepest descent method when used with a 

The Method of Conjugate Gradients 

minimizing step algorithm is not particularly efficient. 
called zigzagging. Note that in the iteration of Eq. (6-6) if the minimizing a (i.e. a*) has been 
chosen, then the gradient at the new point, 
that at a*, dF/da = 0 and that dF/da - xT VF(? ). This latter, of course, implies that 3 is 
orthogonal to OF(% ). For eccentric functions, the process settles into an N-dimensional oscillation 
and convergence is often painfully slow. 
can be greatly reduced by a very simple modification which converts it to the conjugate gradient 
method f6.31, [6.41. This consists of using an 8 in Eq. (6-7) defined by 

The cause of inefficiency is a phenomenon: 

VF(? ) is perpendicular to $. To see this, observe 
q+l 

9 q+l 9 

9+1 
The convergence difficulties of the steepest descent method 

q 

where 

(6-46) 

(6-47) 

or, writing the entire algorithm out, 

-+ 
(i) Xo + arbitrary , 

-+ -+ 
(ii) Go + VF(Xo) , 

-+ 
(iii) so + -Zo , 

(iv) xi+l + xi + a* 1 'i ' 

(v) ifi+l * VF(Xi+l) , 

(vi> Bi * IGi+l( /IGil , 

-+ -+ 

-+ 

2 2  

. (vii) si+l * -Zi+l + B~ xi . 

(6-48) 

. +  -+ 
Clearly from this definition Si+l is a linear combination of Gi+l and xo,g l,...,8i and 

hence, it is a linear combidation of 80,Zl,.,.,Zi+l. ' Returning to the minimization of the quadratic 
?Td + zT$ + c, we have seen that if the di are A-conjugate, the minimum is attained in N or 
fewer steps. 
condition SiAZ. = 0,' i # j. This particular algorithm is derived from a Gram-Schmidt orthogonalization 
of the Zi 
originally proposed as a technique for solving any system of linear algebraic equations derived from the 
stationary conditions of a quadratic i6.41. 

The process described by Eq. (6-48) is so constituted that the di satisfy the 
-+T 

I 
i6.51; for a different view see (6.31. The conjugate gradient method was, in fact, 
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Theoretically, because the directions are A-conjugate, the process should converge in N or fewer 
cycles for a quadratic; however, for very badly conditioned quadratics, i.e. those with highly eccentric 
contours, it can take considerably more than N cycles. This phenomenon is due fundamentally to the 
finite digit arithmetic in which all actual calculations must be carried out. It manifests itself as 
a progressive contamination of Si, the only quantity carried over from iteration to iteration. All 
of the errors resulting from inaccuracies in the determination of 
the successive 8i3i 
occasionally 'restarting' the process, that is for setting S -VF(X ) and then continuing the 
standard process as before. 
be obtained by scaling the variables to reduce the eccentricity of the function. 
are discussed in Fletcher and Reeves l6.31 and Fox and Stanton [ 6 . 6 1 .  

+ 

a! 
and the roundoff in accumulating 

terms are carried forward in this vector. These difficulties lead to the need for 
+ + 
9 P 

In addition to a strategy for restarting, a great deal of improvement can 
These and other topics 

Essentially the conjugate gradient method is a good, efficient minimization technique which comes 

On the other hand, few design problems have this many design variables, and 
into its own for very large problems (say 150 variables and up) because of its modest storage and 
manipulative requirements. 
a more stable and reliable method, described in the next section, is more appropriate for the intermediate 
sized problem (10-50 variables). 

6 . 2 . 6  The Daddon-Fletcher-Powell Variable Metric Method* 

The conjugate gradient method is a quadratically convergent method but it suffers from a lack of 
In this section, we will describe a method which has much stability when used on eccentric functions. 

stronger stability although it involves a more elaborate computation to generate the steps of the 
iteration, which proceeds as follows: 

+ 
(i) Start with an initial and an initial positive definite symmetric matrix, Hop (for 

(ii) Compute 

xo + example, the identity matrix) and set So + -HoVFo. 

where a* minimizes F(Zq + axq). 
q 

(iii) Compute 

and 

(iv) Compute 

and repeat from (ii). 

8 +-H 8 q+1 q+l q+l 

The basic algorithm is extremely powerful for a first order method, i.e. one using only first 
derivatives of F, converging quadratically and possessing very good stability. By stability, we mean 
here that even in highly distorted and eccentric functions it continues to progress and needs little of 
the sort of special attention required by the conjugate gradient method. There is a plausible argument 
for this increase in stability in that with the conjugate gradient method, the entire history of the 
path is carried to Sq+l in the intelligence of BqZq, a single vector. In the variable metric method, 
on the other hand, we carry the data in a full matrix which we carefully upgrade at each step. 
point of view is that the carryover term Bqzq is only good if applied to VP(X ) and produces nonsense 
if applied to the gradient at some other point. 
positive definite approximation to the matrix of second partial derivatives, the Hessian, and is 
applicable anywhere in the space. 

*The method was essentially invented by Davidon, 
Fletcher and Powell [ 6 . 8 1 .  

+ 

Another + 
9 

On the other hand, it can be shown that H is a 
9 

6.71 and was further described and sharpened by 

(6-49) 
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As will be seen, the positive definiteness is preserved in theory only if a* is the true 
+ 9 

minimum point, i.e. if -&:+lSq = 0, and furthermore, roundoff error may again dog our steps so that 
even this process can occasionally get into trouble. Before discussing modifications of the, iteration 
to protect against this possible breakdown, we will state without proof (see Fletcher and Powell i6.81 
some important results concerning the theory of the method. 

Again, returning to consideration of the quadratic 

we state that for the iteration given by (i) through (iv): 
+T + (a) .SiASj - 0; i # j, 

(d) H is positive definite. 
4 

Thus (a) indicates that this is a conjugate direction method and hence is quadratically convergent 
while (b) and (c) show that 
and (c) have no exact meaning because there is no single A-matrix, but as the iteration nears the 
solution, Xm, it is expected that H will tend to J;', where 

- A-l regardless of Ho. For the general nonquadratic problem (a), (b) 

+ 
4 

Jm (6-50) 

It may be shown that the matrix 
that the method is stable. Moreover, this matrix does not depend upon the form of F and its positive 
definiteness is influenced only by the accuracy with which a* is determined. In applying the met:hod, 

therefore, care must be exercised to insure that the 
poor approximations to a*. 

9 
First, the algorithm used for computing a* may be reapplied until 3Fq+1 is sufficiently small; 
another alternative is simply to skip the 'update' cycle [step (iii)] when xT8 
words, if a* is not close enough to the minimum along 2 set H - H and S - H G 

and continue a8 before. As long as F < F  the method will contlnue to progress towards the 

H is always positive definite even in the general problem and hence 
9 

4 
H matrix is not updated with data arising from 

There are a number of approaches to this problem: 

9 
is too large. 111 other 

q q  + + 
9 q 8  4'1 9 q+l q+l q+l 

minimum. q+l 9' 

It is difficult to choose between these approaches; the first may require excessive computation 
at points far from Xm while on the other hand, the second approach may miss valuable 

+ 
to refine 
opportunities to improve the H-matrix. 
x:!q+l, limit the number of refits to 1 or 2 and then skip the update if the criterion is not met after 
this. 

a* 
A reasonable compromise is to set a moderate criterion for 

Another area of numerical difficulty with the method has been identified [ 6 . 9 1 .  This is a classical 
roundoff error problem. Suppose Ho = I; the elements of H are of the order of 1 and so are those 

of No but MO is another matter. The elements of the latter matrix will be of order 
which may be anything, depending upon the scale factors on F and X. Consider minimizing bF where b 
is some positive scalar; MO will be scaled by b but No will be unchanged. On the other hand, 
consider working in the space aX where a is a positive scalar; MO will be scaled by a . The 

numerical significance of these relationships is that if the scaling turns out to be bad then in 
finite arithmetic, either 

+ +  
la2Sol/lYoI 

+ 

+ 2 

(a) H1 Ho + No 

or (b) H1 MO 

and the latter form is singular. 
this problem by either increasing the precision of the arithmetic or scaling the variable appropriately. 
The initial scaling should, for these purposes, be such that the diagonal elements of 

approximately 1. 
down or if it is observed that the magnitude of the elements of 

There is then little hope of recovery. Bard [(6.91 recommends overcoming 

MO are 
The scaling should be rechecked and revised as necessary either if the method bogs 

H, M and N are consistently disparate. 
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In practice, the method is so powerful that difficulties seldom arise except on very badly 
distorted or eccentric functions. 

+T+ .+ indisposed in spite of all precautions and it will occur that G S is positive, indicating that S 

is not a direction of descent. H 
back to Ho, 
again. 
Of course, if this has to be done repeatedly and in many fewer cycles than 
be expected to work well. 

In such problems, however, the H-matrix will occasionally become 

9 4  q 
When this happens, the most efficacious remedy seems to be to set 

or some other predetermined positive definite matrix, and proceed as if starting over 
The previously mentioned rescaling would have to be done in conjunction with a resetting of H. 

N, the method would not 

Finally, we note that as with any gradient method, the computation of VF by finite difference 

2 -1 
can be considered for the variable metric method. Stewart [6.101 develops some special techniques for 
this purpose. Briefly. these involve the fact that since H is an approximation to [ a  F/axiax.] , 
we can extract an approximation to a Flax: from it. With this and an a priori estimate of the accuracy 
with which 
increment to produce maximum accuracy. 
with Powell's method for situations where formulas for the gradient components are not easily obtained. 

6.3 Penalty Functions 

2 P J 

+ 
F(X)  itself can be computed, Stewart develops a solid estimate for the finite difference 

With Stewart's modifications, this method becomes competitive 

The unconstrained minimization methods of the previous section are quite general and reliable for 
finding the unconstrained minimum of a function but are not usable for constrained problems without 
modification. 
formulations for solving the constrained problem. 
formulations employing interior penalty functions, but first we note briefly the nature of the other 
main subclass,which employs exterior penalty functions. 
[p(hl,h2, ... r) in Eq. (6-2)l 
then P 
feasible region. 

Their reliability has, however, prompted the use of a variety of so-called penalty function 
In this section, we will discuss a subclass of these 

In this latter, the penalty term + is constructed so that when D is a point not satisfying the constraints, 

takes on some positive value which increases as the constraints are approached from outside the 

Usually at points inside the feasible region, P is zero. In the most common form of exterior 
penalty function, the parameter r is a simple multiplier of the penalty so that as r is increased P 
changes proportionally. The operation of the method is to choose a value of r, minimize $ and then 
check the constraints. 
otherwise increase r and minimize $ again. This sequence of unconstrained minimizations is 
continued until an optimum is found. 

If the constraints are sufficiently well satisfied, then terminate the method; 

Some advantages of the method are that it allows the solution sequence to be started from an 
infeasible point, eliminating the need for a preliminary procedure to find an initial acceptable design 
as do most other methods. It provides a reasonably well-conditioned function to minimize, and the 
sequential nature of the method yields a set of starting points for the individual minimizations which 
are good initial approximations to the minima if r is changed a moderate amount each time. 

The most serious disadvantage of the method is a need €or careful weighting of the component parts 
of P for each h. and no general procedure is available to select a satisfactory weighting. This 
failing can, in m a y  problems, cause the method to be inoperable. 
function method see Zangwill [6.111. 

For details of the exterior penalty 

6.3.1 An Interior Penalty Function 

The exterior penalty method seeks to obtain an optimum feasible point by minimizing a penalty 
function for an increasing sequence of values of the penalty parameter. 
point of $(D,r) toward the feasible region from the outside. 
function, also for inequality constraints, which always has its minimum inside the feasible region and 
which, for a decreasing sequence of values of the penalty parameter 

Dmin(ri) 
as well as engineering advantages which will be discussed. 

This technique forces the minimum 
-+ 

In this section, we discuss a penalty 

r. forces the minimum point 
+ 

towards the constrained optimum from the interior. This approach has a number of computational, 

As with the exterior penalty function, the idea here is quite simple. The objective function is 
augmented with a penalty term which is small at points away from the constraints in the feasible region, 
but which 'blows up' as the constraints are approached. The most conrmonly used such function is: 

(6-51) 1 +(s,r) - M(lj) - r - 
j=1 hj(8) 

-+ 
where M is to be minimized over all D satisfying hj (5) 
Note that if r 
the effect is to add a positive penalty to M(3). As a boundary is approached, some h will approach 
zero and the penalty will 'explode'. The penalty parameter, r, will be made successively smaller in 
order to obtain the constrained minimum of M. 

0, j = 1,2,.. .J. 
is positive, then since at any interior point all of the terms in the sum are negative, 

j 

To show how such a function looks, we consider the two bar truss optimization problem shown in 
Fig.6.3. The members are of tubular steel and the yield stress constraint is represented by 
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for a material with a strength of' 100 000 psi: The Euler buckling constraint is 

. .  

The volume, which is to be minimized, is given by . 

2 2 4  M = 2ntd (B + H )  . 
The penalty function plotted in Figs.6.4, 6.5 and 6.6 for this problem is thus 

: (6-52) 
.. . 

r .  

. ,  

,The interior minima, indicated by '+' in the figures, for.successively smaller values of, r tend 
towards the constrained optimum of the original problem. It is also observed that the closer to the 
constrained optimum of M the minimum of $ is forced, the more eccentric the function becomes. .This 
again leads to the necessity for sequential minimization of $. 

. .. . . .  . .  
&I algorithm which possesses .the steps most complonly .used is as follows: . . : .  

".' (i) Given a starting point if satisfying all h. (if) < 0 and. an initial value,.for' ' r, 
. .  J 

minimize $. 
. .  ' .  . . .  + '  * I  

. . I .  . . .  . .. 
, (ii) Check for convergence of D to the optimum. 

(iii) If the convergence criterion is not.satisfied, reduce r by r.+.rc where. ..c < 1. ; 

(iv) Compute a new starting point for the minimization; initialize the minimization algorithm 

' I .  8 6 :  . , I  I . 
/ .  . 

and repeat from (ii). 

,There are a number.'of points to be constdered in applying the method; I > ' $  

. .  . .  
-+ 

(a) The starting design, Do required by.(i) is usually available in engineering.problems, but 

sometimes. finding such a point,may cause difficulty. . . . .  . 
. . I t _  '. . 

(b) A proper initial value for r must be selected. 

(c) The possibilities for the convergence criteria of (ii) are numerous and there are choices 
to be made. 

(d) Because of the sequential nature of the process, it~is possible to improve the starting 
points for the third and subsequent minimizations. 

(e) In some cases, considerable improvement in efficiency of the minimization'method itself is- 
possible by taking advantage of the special nature of the process. 

6.3.1.1 Starting point 

Starting with the first of these, we note that in many engineering situations, particularly in the 
at. the expense 

+ 
structural'. and mechanical design areas , it is easy to find a ,point. satisfying ' h. (D) < 0 
of large values of M. 
ignored, it is usually easy to propose many designs which fulfill the basic requirements of strength 
,and rigidity for the particular application. 
what the acceptable designs are. In these situations, the initial acceptable design required by the 
interior penalty function method can be obtained as follows. 

. .. 3 
For example,' in structural.design if cost or weight of the structure is ' . 

I n  other design situations, it .may not be at all obvious 

.. Suppose an'ehgineering assessment of the situation has produced the design $ - .  which satisfies 
, . '  0 

h.(if ) < O s  j - 1,2, ... m, but has h.(d ) > O s  j - m+l,. ..J where the expressions have been 

renumbered so that the last J-m inequalities are the unsatisfied ones. Select k for which 

\(do) 
the problem: " 

3 0  J O  

-+ 
is a maximum where k - m+l,. ..J and temporarily define %(D) .to be the objective function for 

~ - .  . .  . .  . ,  I ,  

' ' .  , . .. . .  . .  ~ 

_ ,  . . . . , .  . , . . ,  . . . .  . .  
: .. 1 .  

. .  . . . .  . 
. . .  
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Find 3 such that $6) + Min and 

(i) hj(b) G 0 , 
(ii) hj(b) - hj(ifo) 6 0 , 

j - l,Z,...m 
j - m+l,m+Z,...J 

Whenever, during the process of solving this problem by the penalty function method, the value of tt,(3) 
drops below zero, the procedure is halted. The point so obtained satisfies at least one more constraint 
than the original so. 

2 if one exists, although there are circumstances where it will converge to a constrained or 
unconstrained local minimum of some $(D) which is positive. Some ingenuity is required in such 
situations to select new starting points from which to repeat the sequence. 

The procedure can be repeated until all the constraints have been satisfied and a 
+ is obtained for which h. (8 ) < 0, j - 1,2,.. .J. Ordinarily this approach should yield a point 

1 0  

+ 0' 

6.3.1.2 An Initial Value for r 

The matter of selecting an initial value of the penalty parameter r has been the subject of 
discussion in the literature i6.121, but while there is some theory available, the task is still mainly an 
art. The problem is similar to one encountered with exterior penalty functions. If r is large, the 
function is easy to minimize, but the minimum may lie far from the desired solution to the original 
constrained minimization problem. On the other hand, if r is small the function will be hard to 
minimize. 

A feeling for the problem can be developed by considering a few simple ideas. If the initial design 

ought to be chosen 
is conservative. i.e. not near any constraints, one would like to pick the initial r - r so that 

Mmin(r ) would not increase drastically over the original design. 
small enough so that in the neighborhood of the initial design the -r 1 l/hj 
dominate 4. A rule which might follow from this observation is that if Do is a conservative deaign, 
pick r 
reasonable initial values for r. 

0 
In other words, r 

terms do not completely 
+ 

+ 
so that -r 1 l/h(Do) approximately equals M(ijo). In practice, this approach usually yields 

j 
If 8o happens to be a near-critical but nonoptimal design, i.e. such that one or more of the h 

are small but negative quantities, the situation becomes more complicated because the 
by the above rule might be too small to allow the first minimization to be carried out. 
proper value of r 
its value at ;6,. 'While this is distressing, it probably cannot be helped with this form of penalty 
function without a good deal of complex logic. 
little is lost since r 

r value dictated 
In this case, a 

will probably be large enough so that in minimizing @(if,ro), M will increaoe from 

Furthermore, unless something really drastic happens, very 
can be reduced quite quickly in this method. 

Another approach to this latter problem which seems appealing in some cases, is to pick a 
relatively large value of r but t o  temporarily add a new constraint to the problem in the form of 

or, to make it easier to get a starting point 

hJ+l = M(3) - [ M ( i j o )  + E] 6 0 (6-54) 

where E is some small amount of increase which will theoretically be permitted in M during tho first 
minimization. The penalty function for this revised problem is then 

(6-55) 

The minhnm for large values of 
minimum. 
it will ultimately vanish. 

r is approximately the point where the term in brackets alone is a 
As r is decreased, the fictitious constraint term can be removed or left in as desired since 

6.3.1.3 Convergence Criterion 

As the +-function is minimized for various decreasing values of r, the sequence of minima, 
+ 
Dmin(ri), should converge to the solution of the constrained minimization problem and s 
means is needed to ascertain this convergence without an unnecessarily large number of minimizations. 
One simple criterion is to compute the relative difference 

i - 1,2,. . . 
(6-56) 
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and stop when 6 drops below a specified value. 
premature termination in situations where the process temporarily bogs down. 
of 6 must bear some relation to c, the fraction by which r is reduced each cycle. In general, 
however, this concept can form the basis for a useful convergence criterion. 

It can require clever logic in some cases to prevent 
Furthermore, the magnitude 

An equally appealing group of convergence test numbers are contained in various norm of the vector 

For example, we could impose as a test for convergence 

1a.I G cj j = ~,z$...N 
J 

or 

max(lAj)) E 

or 

(6-57) 

(6-58) 

(6-59) 

(6-60) 

and all of these have been used to advantage in various problems. 
value for E depend upon the problem. 

The choice of norm and the proper 

Another level of sophistication in methods of termination follows from the observation that 
is merely a point on what one would expect to be a continuous function of r, namely, Mmin(r). This 
function can be approximated by a function 
then g(o) will serve as an approximation to the true solution Mmin(0) Mopt. If this approximation 
appears to be reliable and if the latest solution is acceptably close to the latest approxi- 
mation gi(o), then the process is terminated. 

Mmin(ri) 

g(r) from data accumulated in two or more minimizations and 

Mmin(ri) 

Computational experience and some theoretical support [ 6.121 suggest the use of an extrapolation 
function in the form of a polynomial in r 1 . In particular, the most commonly [6.12] used form is 

Mmin(r) a + br' f gk) (6-61) 

where the ith approximation is determined from interpolating . . I  

which leads to 

(6-62) 

(6-63) 

(6-64) 

(6-65) 

This approximation scheme essentially fits a parabola to the data. 

6.3.1.4 Improving the Starting Points, Extrapolation 

The sequential process which converges the point 
+ + is Dopt Dmin(ri) toward the solution, 

essentially a means for finding a sequence of good starting points for an ever more difficult sequence 
of minimization problems. 
similar to that given by Eq. (6-61) for extrapolating 

Writing a vector extrapolation for Dmin(r) as 

It is possible to improve these further by using an extrapolation scheme 
Mmin(ri). 

+ 

+ + 
~ ~ ~ ~ ( r )  it + r' ij 3 z(r) (6-66) 
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+ + 
we can interpolate two known points Dmin(ri-l) and Dmin(ri) from 

and 

which lead to 

(cj - 1) 
and 

fi-1 

From these, an improved starting point for the next value of r can be estimated: 

or 

(6-67) 

(6-68) 

(6-69) 

(6-70) 

(6-71) 

(6-72) 

It is, of course, necessary to check the extrapolated point 3(ri+l) against the constraints. 
If the constraints are satisfied, the vector may be used as a starting point. 
guarantee that it will be, it must be abandoned. 
extrapolation in these cases by taking a minimizing step in either the direction 

If not, and there is no 
We can, however, attempt to salvage something of the 

+ +  + + 2 E $min(ri) - dmin(ri.+) or the direction S E Dmin(ri) - Z(ri+l) from Dmin(ri). This will certainly 
produce a feasible point and will generally yield a good, starting point for minimizing + 

$(D,ri+l). 

6.3.1.5 Minimizing-Step Difficulties 
+ 

The function defined by Eq. (6-51) cannot be minimized over the whole D-space. but only in the 

J 
interior of the feasible region 
negative directions on the boundary of the feasible region and special steps must be taken to keep the 
minimization process in the proper portion of the space. An effective strategy for accomplishing this 
requires some ingenuity and it is not always clear what the best approach is. 

h. < O .  The $-function is actually unbounded in both the positive and 

The problem centers about finding the minimum when taking the step d = 5 + a 2 . In applying 
interpolation methods, the sample points should all be in the domain of definition and+should preferably 
bracket the minimum. Fig.6.7 illustrates a hypothetical plot of 4 vs a along some S From this 
figure it can be seen that the task involves two difficulties: 
in Zone "A", and (2) getting a reasonable interpolation of this perverse function. 

!+) 4 9 

4' 
(1) finding at least one sample point 

Approaches to the first part of the problem must take into account the nature of the search 
problem at hand: we seek a point in the narrow region, 
unacceptable region, C, and on the other by the negative slope region, B. Simple interval splitting 
schemes may be appropriate for this problem. That is, given a point in B and a point in C, take a 
point midway between them; if this point is in B, use it to replace the current B point and repeat, 
and similarly if the point falls in C use it to replace the current C point. This technique is 
hampered because zone B is distinguished from zone A by a difference in the sign of the slope of $. 
When $ 
a crude finite difference scheme t o  locate the point. 

A, which is bordered on one side by the 

is of a nature where its derivatives are too difficult to compute, it may be necessary to use 

Moe [6.13] has suggested some efficient approaches for coping with the difficulties in the one- 
These techniques dimensional minimization problem associated with interior penalty function methods. 

are based upon employing interpolated approximations for the 
working with their reciprocals. 

h functions themselves rather than 
j 

6.3.1.6 Engineering Implications of the Interior Penalty Function Method 

An appealing feature of the interior penalty function method is the fact that, given an initial 
acceptable design, an improving sequence of acceptable designs is produced. 
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Moreover, the constraints are approached in this sequence in such a way that they become critical 
only near the very end of the procedure. This is a desirable feature in a structural design process 
because instead of taking the optimum design, a suboptimal but less critical design can be chosen if 
desired. Such designs are often said to have 'reserve capacity' to absorb overload or abuse and are 
prepared in advance for the performance upgrading processes which so often occur. 
function method is said to 'funnel the optimum design process down the middle', keeping the designs away 
from the constraint surfaces until final convergence. 

The interior penalty 

In spite of the appeal of its simplicity, this approach to true safety is not endorsed here and 
the more direct methods of reliability based optimum design (see Chapter 10) should be used if these 
considerations are a factor. 
intelligently and with a proper recognition of their true nature. 

On the other hand, these ideas can sometimes be useful if applied 

6.3.2 Penalty Functions for Equality Constraints 

In many engineering design problems, a complicated or at least time consuming analysis must be 
performed to relate A set of values for the h 
D. 

to a particular set of values of the design variables 
+ j 

Often this analysis involves the solution of a system of algebraic equations of the form 

(6-73) 

+ -+ 
for the analysis variables Y for a given D and then computing the h from their explicit 
dependence upon Y. If the penalty function method is applied to the direct formulation, each 
computation of the $-function would require a new solution of the equations. 
considered practical from the analysis point of view in the aerospace industries, a large number of 
repetitions of such simultaneous equation solutions is expensive. 
of situations, the simultaneous equations are non-linear in the analysis variables 
the application of iterative solution methods. 

-+ j 

For problems of the size 

Furthermore, in an increasing number 
3 and they require 

The fact that iterative solution methods can or must be used has motivated the development: of 
penalty functions which include equality constraints. 
that one way of solving the equations 

Almost all such methods are based upon the idea 

ai(?> o ; i = 1,2, ... I 
+ for Y is to solve a minimization problem: 

(6-74) 

2 Find ? such that: ai -+ Min . 
in1 

-+ 
If the above minimum is zero, then the corresponding Y is a solution to Eq. (6-74). The term to be 
minimized is sometimes referred to as the residual of those equations and is expressed as- 

- 
(6-75) 

-+ where the de endence of R upon X, i.e. ($,?), reflects that it is a function of both the design 
variables, D, and the analysis variables, Y. 

s + 

+ 
It should be noted that solving the equation for Y by minimizing R is not generally the 

most efficient approach if the only purpose is to obtain a solution. 
often a poorly conditioned function in Y-space [ 6.61. 
or measure of difficulty in obtaining accurate solutions is ordinarily related to the ratio of largest 
to smallest eigenvalue of the matrix of coefficients 
related to the ratio of largest to smallest eigenvalues of ATA, assuming A is symmetric. Thus, if 
A 

This is because the residual is 
+ 

In linear problems, A? = 8 ,  the 'condi.tioning' 

A. However, in residual minimization, it: is 

has a conditioning number of 100, then the residual has one of 10000 which is much worse. 

A number of penalty functions for equality constraints have been described in the literature 
and some of these will be briefly presented here. 

Fiacco and McCormick [ 6.131 report some success with the formulation 

(6-76) 

where @ is minimized for a sequence of decreasing values of r. As r is made small, the second 
term does its familiar job of allowing the minimum to approach the constraints from the inside and the 
third term successively forces a satisfaction of. R = 0. The reasons for the -4 power on r in the 
third term are given in [ 6.141. 
on a number of problems. 
problem and scale disparities between the terms M - r 1 l/hj, and r-' 1 

The method works in principle and it has been used successfully 
However, in many cases it presents an extremely difficult minimization 

are hard to resolve. 



An exterior penalty function of the same type has been proposed as 

I1 

(6-77) 

where 

which would be minimized for a sequence of increasing values of r. 
suffer from the same scaling problem as the interior function. 

This formulation would doubtless 

A different approach to the problem is to consider the residual as the function to be minimized 
j = 1,2,...J plus a new constraint M - M < 0 where MO subject to the usual constraints 

is a constant selected as a goal for the objective function in a particular cycle of minimization. 
Thus, the problem is posed as: 

h. Q 0, 
3 

I Find s’x such that: R(3) + Min subject to: 

(i) hj(x) 6 o j = 1.2, ... J 
(ii) M - MO 6 0 . 

(6-79) 

If an 3 for which R(2) - 0 
design and its correct analysis and one which has a value of the objective function which is less than 
MO. Optimization is carried out by solving the problem for a succession of decreasing values of 
until one is chosen for which R 
and if the steps taken in 
reasonable approximation to the optimum. 

is obtained as a solution to this problem, then we have an acceptable 

MO 

MO 
(8) > 0. 

are small enough, the last successful design can be taken as a 
The optimum design lies between the last two values of min 

MO 

The alternative formulation given by Eq. (6-79) which treats the residual of the analysis 
as an objective function can be attacked using either external (6.151, (6.161 or -+ 

equations R(X) 
internal [6.17] penalty function methods. 

There are many possibilities for the different segments of a program for the unconstrained 
minimization approach to equality and inequality constrained problems. 
where the algorithm must be tailored to the problem in order to be successful. 
general equality constrained problem represent a state-of-the-art situation; the problem is not really 
solved, but some useful approaches are available. 

It is definitely a situat .on 
These approaches for the 
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Chapter 7 

FEASIELE DIRECTION METHODS 

by 

J. S. Kowalik 

7.'1 Introduction 

The methods which are designed to solve a general non-linear program+ng problem 

minimize M(3) subject to 

fall into the following two categories: methods which handle side constraints explicitly and those where 
formulation (7-1) is transformed to a sequence of unconstrained optimizations. Within the first 
category we can distinguish between 
linear approximation and solved in the repetitive manner by the simplex method, 
directions methods which are discussed in this Chapter and 
nature, such as: separable programming, geometric progrFing, etc. We focus our, attention on the 
second group and, in particular, the following three algorithh are presented cere which have .proved"to 
be successful and applicable to structural optimization problems: the methods of Zoutendijk [ 7.11, 
Rosen [ 7.21 and Gellatly 17.3) . 

(a) the method's where the non-linear problem is replaced by its 
(b) the feasible 

(c) methods handling problems of a.specia1 

As far as theoretical validation is concerned the first two algorithms have been shown to converge 
to the global optimum for convex.prob,lems. 
convexity, ve expect that these methods will find local 'solutions. 

In the general case where we cannot test our probley.on 

The question as to which of these three methods is preferable is difficult to answer without con- 
sidering various aspects in conjunction with the problems which are being solved; Some. of the most 
important aspects are: restrictions imposed on problems which the methods can handle, speed of con- 
vergence, ability to solve. nonconvex or highly non-linear problems, ability to' solve large scale 
problems. simplicity of code, etc. 
emphasize the,ir advantages and disadvantages, ,from the theoretica1,and cpmputational point of view. 

the.computationa1 aspects of several methods tested on a few selected problems, is referred to a recent 

7.2 . Zoutendijk's ,Usable Feasible Directions .Method 1 . 

, ,., 

Wewill attempt to compare some of the merits of these methods and. 
I . .  

% I  

I. . 
I .  

Ttie reader interested in" a coinparative numerical study of non-linear~-pro&r~~n&,i res'tric;;?h to 

paper of .Colville [ 7.41. . I  . .  . .  
: r . : .  . .  . .  '. . .  I .  

, . "  3 . . . . * .  
, . *  , :  I '  . .  

. .  
' .  . .  

. . .  ," . . . .  '..7.2.1. Preliminary Considerations . - . .  
. :- # - . .  

The feasible directions method of Zoutendijk [ 7.11, [ 7.51 s arts and operates inside the feasible 
region. It generates a sequence of feasible. points If,, If2, .. . iq+l,: . . . such that for all q .  . 

where 

and 

.I . '  (7-2) 

. I, . 

a > O ' .  
q 

, .  . .  . . .  -c 
The move from D to 5 
problem is solved, i.e., the vector 8" ' is computed.. In the second stage the step lgngth , ' a .  is found. 

is accomplished, in tyo stages. I In the first stage the direction finding 9 ' q+l . .  

* 9  . .  9 
Assuming that the current approximation to the solution 8 is a feasible point (interior or 

9 
located at the boundary) we say that a direction vector d is feasible if we do not illrmediately violate 
any constraint when making a sufficiently small step along this direction. 
feasible if 3 is an internal feasible point. If, however, D is a boundary point, then some vectors 
are directed to the outside of the feasible region and we cannot take a step of any length in these 
directions without violating some constraints. 

P 
Clearly, any direction d is 

+ (I 

9 9 

+ 
We say that hj(8) is a critical constraint with respect to D if h.(ifq) 0 0 and denote a set 

is assured if ;5' satisfies the inequality 
q 

of all the critical constraints by Jc. Feasibility of d 
4 9 

,-, 



80 

and all critical constraints are linear. 
will not be, in general, sufficient, and we have to require that for the non-linear hj(if) 

If, however, some of the constraints are non-linear then (7-4) 

Introducing a slack variable and individuai scaling coefficients we get from (7-51, 

where 

a > O ,  C j > O .  

Furthermore, we want the direction x 
function value in the vicinity of D This requirement is: for a - 0, to be usable, i.e., to be able to yield a reduced objective 

+ q  
9' ' Q 

Any direction vector 3 
purposes. 

satisfying the last two relations is usable-feasible and could serve our 
4 

Once we have obtained the direction 8 we have to find a step length a* > O  which minimizes 
9 *q M(Sq + aq ;fq) and at the same time gives a new approximation to the solution D 

region. 
search techniques. In some special cases, for example, when the objective function is quadratic and the 
constraints are linear then a* 

9 
this problem has to be solved by iterative techniques. 
golden section method and interpolation by larorder polynomials. 
bracketed in an interval which is then systematically narrowed by comparing function values computed 
at the optimally chosen points inside the interval. The golden section method has a guaranteed con- 
vergence to the minimum but its rate of convergence is very slow if the minimum has to be found with high 
precision. In the second type of method the function is evaluated at several points and a low-order 
polynomial (typically quadratic or cubic) is fitted to it and the minimum of this interpolant is sought 
(see Chapter 6). 
stationary points. 
found in (7.61. 

in the feasible 
q+1 

The problem of finding a* 
4 

is a one-dimensional optimization problem and is solved by various 

can be found easily from explicit formulas. In more general cases 
The two methods most frequently used are; the 

In the first method the minimum is 

Certain precautions are necessary to avoid divergence or convergence to unwanted 
A comparison of these two approaches to the one-dimensional optimization can be 

7.2.2 Determination of Usable, Feasible Directions 

To take into account two different feasibility requirements (7-5) and (7-6) we define our 
optimization problem as follows: 

+ 
minimize M(D) subject to 

I 

+ T +  where h.6) 6 0 and a. D 6 bj are the non-linear and linear constraints respectively. Let UB also 
denote by J and JcL the sets of indices of the non-linear and linear critical constraints. The 
direction finding problem can now be formulated in the following manner: 

J J 
CN 
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+ 
given D , find 8 and U > 0 such that 

4 q 

Any solu 

(i) (zq)T Vhj(ia) + C. U < 0 , j E JCN , 
J 

(ii) GqlT f < o , j E J~~ , 
j 

(iii) ( Z q P  VM($) + (J < 0 , 

2 
one of the following: 

is normalized by an additional requirement such as 
9 

(a) (dqP Zq - 1 9 

- 1 6 s  6 1 ,  a l l i ,  

( ~ ~ ( i i g ) ) ~  Zq < 1 , 

qi 

etc. , 

U is maximum . 
-+ 

ion of (i)-(v) with > O  gives a usable-feasible direction S n .  If we select a 

(7-9) 

(7-10) 

(7-11) 

(7-12) 

(7-13) 

(7-14) 

(7-15) 

1 c - 1  
S 

1 j - +  
then we can interpret our auxiliary optimization problem (i)-(v) as an attempt to find a direction 
in which the constraint functions 
vicinity of D 

9 
h.(if) decrease about the same amount as the objective function in the + J 

It is desirable that this decrease be maximal. 
9' 

In the case when only linear constraints are critical the auxiliary optimization problem reduces 
to: 

-+ 
given D find d such that 

9' 9 

(7-16) 

, .  

(ii) an d normalization condition is satisfied and 

(iii) (dqlT OM(; ) is minimized . (7-17) 

9 

P 

Both auxiliary problems are linear provided that a linear S-normalization is selected. 
this condition is chosen to be -1 6 S 6 1 ,  which can be transformed to 0 6 S < 2, then both 
auxiliary problems are linear prograumung problem with upper bounded variables. 
an efficient, special simplex method subroutine without the necessity of storing these normalization 
constraints. If the auxiliary problem leads to U > 0 then M(8) 
region. If, however, we obtain a - 0 then it can be demonstrated that D is the optimal solution. 

Furthermore, if 

They can be solved by 

can be+improved within the feasible 

4i qi 

P 
7.2.3 Special Acceleration Techniques 

Special precautions are necessary to guarantee and speed up the convergence of the feasible 
direction method. 
may be very slow or nonconvergent due to so-called jamming which occurs when the algorithm generates a 
sequence of (8 ) which converge to a non-solution point. This happens when the sequence (Dq) 

becomes caught in a corner of the feasible region'and is unable to leave it. This phenomenon was first 
observed by Zoutendijk 17.11 and numerical examples of the feasible direction procedures which lead to 
jamming when used to solve certain sample problems can be found in papers by Wolfe 17.71 and 
zangwill [ 7.81 . 

Careful investigation shows that the process described in Sections 7.2.1 and 7.2.2 

+ 
9 

Another common feature of all gradient methods is that sometimes a large number of very short 
steps are taken in strongly alternating directions. This is caused by a rapid change of the gradient 
vector in the direction of the feasible region (zigzagging). Small steps may also occur when the 
algorithm progresses along the boundaries. 
try to stabilize the search directions and keep an iterative solution away from the boundaries by 
including in the set of 'critical' constraints those nearly critical constraints which are likely to be 
approached. Let J (D,E) denote the set of integers identifying those non-linear constraints for 
which the h. (3) are within E of zero, i.e. - E 4 h. (8) G 0. 

of integers identifying those linear constraints for which 

To prevent these inefficiences and secure convergence we can 

-+ 

CN 
Similarly let Jm(8,c) denote the set 

J J 
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+ 
Then J(D,E) 
case the  s e t s  of c r i t i c a l  cons t r a in t s ,  JcN - JCN(d,O) and JcL JcL(d,O). Since we want t o  avoid the  

phenomenon of slow creeping along the  boundaries we may so lve  a modified d i r ec t ion  f ind ing  problem where 
Jm(5,c) and J (D,E) rep lace  JcN and JcL respec t ive ly .  The parameter E should be reduced when 

small values of a i n  the  d i r e c t i o n  f ind ing  problem ind ica t e  t h a t  D approaches the  optimal so lu t ion .  

i s  the  concatenation of these  two s e t s  of i n t ege r s .  These s e t s  include as a p a r t i c u l a r  

+ 
+ CL 

4 
In  a more re f ined  procedure the  cons t r a in t s  which have been encountered twice during the  

optimization process a r e  kept  i n  the  c r i t i c a l  set f o r  a c e r t a i n  number of i t e r a t i o n s .  
s t r a t egy  has been successfu l ly  used i n  p r a c t i c e  [7.9]:  

The following 

+ 
(a) I f  a t  the cu r ren t  s t e p  of the  i t e r a t i v e  process the  approximate so lu t ion  D i s  on the  

9 
boundary of a l i n e a r  cons t r a in t  ( j )  which has been met a t  l e a s t  twice before ,  then the  condi t ion  

(7-18) 

+ ,  
i s  added i n  the  determination of S i n  subsequent problems. I f ,  however, the  va r i ab le  U has not 

improved by a s i g n i f i c a n t  amount from the  previous s t e p  then only c r i t i c a l  cons t r a in t s  are en tered  and 
the  antijamming e n t r i e s  a r e  de le ted .  

9 .  

+ 
(b) I f  a t  t he  cu r ren t  s t e p  of the  i t e r a t i v e  process the  poin t  D i s  on the  non-linear boundary j 

q 
which has been approached previously then we r equ i r e  

in a l l  aux i l i a ry  problems following the f i r s t  one i n  which 

(ZqlT Vhj(dq) + a 4 0 

(7-19) 

(7-20) 

has t o  be required.  We d e l e t e  t h i s  requirement a s  soon a s  we a r r i v e  again a t  t h i s  cons t r a in t .  

(c)  
wi th in  the f e a s i b l e  region o r  i f  
reduced). 

The danger of zigzagging in s ide  the  f e a s i b l e  region can be avoided by introducing the  p r i n c i p l e  of 
'conjugate d i r ec t ions  as an add i t iona l  requirement i n  the  d i r e c t i o n  finding,subproblem, which may be 
expressed i n  the  form 

In  both cases (a)  and (b) ,  the  antijamming i n e q u a l i t i e s  are de le ted  i f  the cu r ren t  po in t  i s  
a is  less than some predetermined number (which can be gradually 

(7-21) 

+ 
where 9, - r ,  r+ l , . . .q -1  and Dr is  the  l a s t  s t ep  located on the  boundary. A l l  the  subsequent po in ts  

sr+l,. . . ,D  

search d i r ec t ions  gives a computational procedure with a f i n i t e  number of s teps .  
problem i t  may be expected t h a t  the  app l i ca t ion  of t h i s  p r inc ip l e  improves the  convergence p rope r t i e s  of 
the  algorithm. 

+ 
are in t e r io r - f eas ib l e .  

9 
The condition (7-21) i s  taken from the  quadra t ic  programing problems where the  conjugacy of the  

I n  a more general  

7.2.4 Algorithm 

This sample algorithm shows the  e s s e n t i a l  computations which are executed t o  perform a s ing le  
+ + 

i t e r a t i o n  s t e p  from D t o  Dq+l, using the  Zoutendijk method of f e a s i b l e  d i r ec t ions .  
9 

( i )  If 8q is  a f e a s i b l e  i n t e r i o r  po in t  then 

i s  used as a usable-feasible d i r ec t ion .  

A super ior  s t r a t egy  would be t o  generate a conjugate d i r ec t ion  using equations (7-21). 

( i i )  Otherwise the  aux i l i a ry  subproblem (7-9)-(7-15) o r  (7-16)-(7-17), which can a l s o  inc lude  
the  antijamming precautions,  is  solved as described i n  Section 7.2.3. 
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+ 

D is assumed to be the optimum. 
(iii) If the auxiliary subproblem leads to a solution with U - 0 
(iv) If U > 0 then d 

to the required accuracy then 

. .  . .  . .. 9 
is usable-feasible and the objective function will decrease in this, 

9 
direction. 

: .+ 
(v) Determine the best step size a* in the direction .S i.e. 

9 9, 

t 

and set 

(vi) If 

+ 
a* = Min M(6 + a S ) 
P (I 9 9  

. _  . .  . 

. .  

(7-22) 

where 17 is a preset small po-sitive number, then the computations are terminated. Otherwise repeat 
from (i). 

7.2.5 Summary of the Zoutendijk Method of Feasible Directions 

Zoutendijk's method offers an efficient way of reducing the non-linear programming problem t o  a 
sequence of linear programming problems if a linear normalization of 3 is used. Furthermore, the 
method is finite for quadratic programming problems and can handle nonconvex problems. 
point of view, it offers an additional advantage of generating feasible intermediate approximations to 
the solution. The method has been used successfully to solve realistic problems (7.101. 
Zoutendijk's critique 

9 
From the practical 

Following 
7.5 1 we indicate the following disadvantages of this method: 

. .  . .  
(a) The determination of the steplength a* i s  a time consuming pr'ocess which t y s  to.be 

' 9  
performed in every step. 

. .. 
(b) The computer program is rather complicated and has' to include antijamming precautions. 

There are several questions which can be investigated and answered only on the basis of extensive 
computational experience, such as: 

(a) What is an appropriate choice of the parameters C .  > O  and of antijamming devices (both 
. .  

3 
are probably heavily formulation and problem dependent). 

(c) To, achieve 
a* = Min M(6 + a 3 ) 
' a '  9 

4 

(b) What type of - bounding gives the most ,efficiently solvable subproblems. 
the best overall efficiency should we take the optimal steps 
or just try to satisfy relation: 

a* i.e. 
9' , 

1 .  

. . .  i . ' .  . 

. .  a '  

. .  
7.2.6 Modified Feasible Directions Method 

It is worthwhile to sketch briefly a recent version of the feasible directions method suggested 
by Zoutendijk [ 7.51 .and referred to by him as MFD (Modified Feasible Directions). 
linear programming problem (7-8) is converted to a form with a linear objective function by adding 

The original non- 

hO' M(5) + ho < 0 
extensively and generates three sequences of points: 

(a) Interior feasible points D such that 

(b) Infeasible points A with nondecreasing 

to the constraints and maximizing 

+ 
q 9  

+ 
9 

minimum. 

The method uses 

. .  

values of ~(jt 
9 

the linearization technique ' 
I _  

_. 
which converge to the solution. 

giving a lower bound for a ,  

. .  . .  . ,  + 
(c) Boundary points B giving at each step an upper bound. for the minim";'. .. . -. 

. .  + 8. 
. .. 9 

Do ,,is needed: .,The algorithm c,oneisFs of two 1. . .  To start, the computation ,a feasible initial point 
phases. 

. .  
r .  . . ,  I .  . .  . .  . .  

. 1. 
. _ a  . .  . : . ' ' .  

. .  .... , . - .  , .  . .  
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Initial Phase 
+ 

(i) Solve the linear auxiliary problem L which is minimize M(D), or -h if M($) is non- 
0 

linear, subject to the linear constraints of the problem 

and the additional restriction 

where a is a sufficiently large posi 

Iteration Phase 

lDil G a 

ive number. Cal the solution io an proceed to (iii). 

+ (ii) Solve the subsequent auxiliary linear problem L (q > 1) and call the solution A . 
(iii) Find the boundary point B which is located on the line joining A and D i.e. 

P 9 + + + 
9 P 9’ 

(7-23) 

(7-24) 

with the maximum a for which 5 is feasible. 
9 9 

+ 
9’  

(iv) All constraints for which h.(% ) - 0 are linearized with respect to B 
3 9  

Vhj(ifq) (8 - Sq) < 0 (7-25) 

and these linear inequalities are added to the constraints of the current linear problem L 
enlarged set of constraints will be used in the auxiliary problem Lq+l. 

that is 

This 
9‘ 

+ + 
9’ 

(v) A new point D is computed which is interior feasible and is located between D and % 
q+l 4 

(7-26) 

(vi) If M($ ) - M(Z ) < E then stop. Otherwise, q + q+l and the process is repeated from (ii). 

7.2.7 
9 9 

Summary of the Modified Feasible Directions Method 

(a) The modified Zoutendijk algorithm utilizes some of the ideas of the cutting plane method of 
Kelly [7.111. However, in contrast to that method which produces infeasible points, the MPD method 
generates the feasible sequence fiq). 

(b) Computational performance of the method is not known to the author of this paper, but the 
method should be efficient for problems with nearly linear constraints. 

(c) It is possible to foresee some computational problems similar to those encountered in the 
We may have bad conditioning of linear problems due to near-dependency of con- cutting plane method. 

straints, which occurs close to the solution. 
linearizations from the linear subproblems. 

This may probably be prevented by removing nonactive 

(d) In the problems where the feasible region defined by the constraints is nonconvex there is 

From time to time all the constraints are checked and if 
a possibility that some portions of the feasible region can be cut off by the tangential planes. 
simple rule enables us to avoid this danger. 
for some of them h. (i < 0 then the linearizations of h. (5) which determine the solution A 
are taken out in the next auxiliary linear problem. 

A 

-b 

J P  3 9 

(e) The method can be speeded up by using the principle of conjugate directions. 

7.3 The Gradient Projection Method 

7.3.1 Preliminary Considerations 

The gradient projection method of Rosen [ 7.21 in contrast to Zoutendijk’s method does not require 
the solution of auxiliary linear optimization problems. 
gradient into the manifold defined by constraints which are currently active. 
S zT Vh - 0. 

It uses projections of the objective function 
The method works withvectors 

+ which are feasible and usable, that is vectors which satisfy the relationships P VM < 0 and 

The latter is required for all active constraints. We assume here, that all the 
j 
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constraints are linear hj (8) - zT d - b. < 0, and the critical constraints have indices 

j = jl,j2, ...jk. 
j 3 

It is convenient to introduce the matrix of constraint gradients 

so that the feasibility condition can be stated concisely by 

N t F  = 0 . 
+ + In the iterative process we move from D 
'9 

to Dq+l using the relationship 

+ + 
D 
q+l 9 9  

- D - a P V M ( ~ ~ )  

(7-27) 

(7-28) 

(7-29) 

+ 
where the matrix P projects OM(D) into the manifold formed by the active constraints. The projected 
vector P OM(;) can be obtained from VM(D) by subtracting from it the vector Nk V, where V is such 
that 

+ + + 

which leads to 

(7-31) 

and 

P = I - N ~ ( N ~  ~ ~ 1 - l  N; . (7-32) 

Matrix P 
k n hyperplanes (linear critical constraints). It is assumed that all columns of Nk are linearly 

T independent from which it follows that (N N ) is nonsingular and can be inverted. k k  

is called a projection matrix and it projects every vector into the intersection of the 

The normalized directions f can be found from 
9 

d 9 0 - P V M(dq)/lPVM(dq)I . (7-33) 

If 3 # 0 then it is possible to find d 
however, 3 = 0 then from (7-30) we have , 

such that d is feasible and M(d ) <M(Sq). If, 
9 9+ 1 q+l 9+1 

4 

I 

+ - m(dq) = - Nk V , (7-34) 

i.e., the negative gradient of the objective function can be expressed as a linear combination of the 
gradients of the active constraints. 
necessary conditions of Kuhn-Tucker for 
terminated. 
projection matrix is modified by deleting from N 
component of - V. By releasing a critical constraint which correspond3 to the negative component of 
- V ,  a lower value of M(D) can be obtained. It may also occur that D which gives the manifold 
optimal value of M(D) is located at a new constraint (hyperplane). We then have to form a new manifold 
by adding this constraint to the set of critical constraints. 
putational effort is involved in the periodical updating of the projection matrix P. This problem will 
be discussed in Section 7.3.3. 

If all components of - V  are nonnegative then the first order 

In the case when this condition does not hold, then the computation is continued after the 
if to be the minimum are satisfied and the computation is 
9 

the column which corresponds to the most negative 

+ 9+1 

In consequence, a considerable com- 

7.3.2 Algorithm 
+ + 

The following are the steps to compute D from D using the.gradient projection,method: 
9+1 9 

+ 
(i) Compute s = - P v M(~~)/~PVM(~~)I, 

9 
T -1' T 
k k Nk where P I - Nk (N N ) 

and Nk includes all currently critical (linearly independentjconstraints. 

I 
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+ 
(ii) If S # 0 the one-dimensional minimization problem is stated as follows: . .  

+ 
a* = Min M($ + a S ) ,  0 < a Q amax 

9 P q q .  9 

+ + 
where amax is the largest step which may be taken from D along S without violating any 
constraints. 

9 9 
This value is computed from 

p(6 + amax f ) - b - 0 
J S ~  q j 

+T -t ' 
for those j for which a. S > O  

3 9  
. constraints. We have to accept the 

and j E J where Jn denotes the current set of noncritical 

smallest a, from the set of all these values, i.e., max 

. .  
clearly amax > 0 since ZT $ - b. < 0 ($ is feasible) and - ZT < 0. 

3 9  J q j q  
Two cases should now be considered: 

! >  

max (a) If a* = a then some new constraints (one or more) become active Ih.6 ) = 01 and 
The projection matrix is modified and the computation returns to 

9 1 
should be added to the matrix 
(i). Nk. 

(b) If a* < amax then matrix .P' remains unaltered and the computation returns to (i). 
9 

-t 
(iii) If = 0 then we compute vector - V from (7-31) 

+ -1 T - V * - (Nl Nk) . Nk . 

Two cases are possible: 
+ '  .I 8 

(a) All components of - V are nonnegative, which indicates that a minimum has been found 
and the computation i's terminated. 

-t 
(b) If some components of - V are negative then the column Vh corr,esponding to the most 

negative component is deleted from Nk, matrix P is modified and the computation returnn to (i). 
. . j  

Remark .. \ 

The method can easily handle linear equality constraints. Suppose our constraints are 
b = 0, ,j = m+l,. . . ,J. We reduce 'the -tT + uy i; _ '  hj(b) = a D - bj < 0, j'= 1, ...; m and h.d) = aj 

N-dimensional space E 
J-m hyperplanes 

j J j 
of the original problem to the manifold determined by the intersection of the 

hj(6) = 0 , j =  mil,..'.,^ . 
+ 

That means' that all the:feasibl'e, points D must lie in the manifold deffned above. With this " , , 

restriction.the problem with equality and hequality constraints can be treated as one having 
inequa1,ities only. 
where Nk = [ Vhm+l, . . . , VhJl , .,.k = J m  . and keeping vectors 
whole computing process. , 

. %  q 

Computationally this can be accomplished by forming initially the matrix (Nr .N )-l 
I .  . . .  k k .  

in .Nk throughout the 
. .  

Vhm+l, . . . , VhJ 
. .  - .  

7 . 3 . 3  Computational Aspects of the Gradient Projection Method 

A considerable, computational :problem is introduced .by the periodical .updating of the projection . 
' ,  . . "  . ' , 2 .  

' 

matrix. Fortunately the subsequent matrices N differ usually by only one column, Vh which is either 
dropped from the set of active constraints or is added to it. 
recomputation of 
efficient recursive procedure which generates the new inverse in only 
technique is based on the partitioned form of an inverse. Suppose .that the inverse (Nt Nk.)-l i,s known 

j 
It is possible to avoid the complete 

3 (NE Nk)-' from its definition, which takes O(k ) multiplications, and use a'more 
O(k2). multiplications. The 

and that Vh 

(Nk-l Nkml)-l 

is to be deleted from Nk = [Vhj , Vh 

k- 1 

, ..., Oh. 1 
jk 1 j z  Jk 

and the new inverse 

T is sought where N - [Vhj , Vh , ..., Oh. 1. 
1 j2 k-1 



Let 

where 

I 

The desired inverse of A can be computed from the  a v a i l a b l e  submatrices of 

The r e l a t i o n s h i p  

gives  

-+ -+T B A + u z  = I 

3 -+ -+ 
B z + a u  0 

z T A + b p  = 6 

z T z + a b  - 1 . 
From Eq. (7-39) and (7-41) w e  g e t  

and 

This  procedure can be general ized i n  t h e  case 

s u f f i c i e n t  t o  interchange the  Lth and k t h  row 

- b-l -+ +T u u  

when a Vh 

and column of 
j k  
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(7-35) 

(7-36) 

(7-37) 

(7-38) 

(7-39) 

(7-40) 

(7-41) 

(7-42) 

(7-43) 

(7-44) 

o the r  than Vh. i s  dropped from N .  It i s  
3 lr ( N i  Nk)-l b e f i r e  r e l a t i o n s h i p  (7-44) is 

appl ied.  

Nk-l. We assume t h e  inverse (Nk-l Nk-l)-l and Vh 

I n  a s imi l a r  way we can ob ta in  a procedure f o r  computing (NE Nk)-' when a column i s  added t o  
T are known. We have 

j k  

where 

(7-45) 

(7-46) 

(7-47) 

(7-48) 
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From Eq. (7-39) and (7-41) we get 

-1 + +T A-l + ; 2 B P A-l-Z%A-l = A m l + b A  z z  

where 

+ w = A-l t 
+ + 
U = -bA-'t = - b w  , 

Scalar b can be found from Eq. (7-42). i.e. 

+T -1 + b = 8-l (1 - 2 t )  - (1 + b z A z) 

and 

The last :quality holds because 

which is an obvious property of the projection matrix. 

The computational procedure can be summarized as follows, 

(i) An auxiliary vector is computed, 

together with the scalar 

(ii) The segments of the matrix 

are given by the relations 

-1 b = c  . 
+ -1 ; 
U = - c  , 

(7-49) 

~ 

I I (7-50) 

(7-51) 

(7-52) 

(7-53) 

This procedure can also be used recursively to obtain the initial inversion of (Nt Nk)-' and Pk from 
the set of active constraints. An additional advantage of using this recursion is its ability to select 
the largest set of linearly independent critical constraints from the set of all critical constraints. 

I 
I t  is clear from Eq. (7-55) that (NT N )-l cannot be obtained if Pk,l Oh k k  - 0 .  This equation 

jk ... Oh , and should be I 
m jk-1 i reveals that Vh is linearly dependent on the set of the vectors Vh 

j k  
ignored. Unfortunately the matrix (N; Nk) is frequently very ill-conditioned (with respect to the I 

I 
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inverse problem) and, if (NE Nk)-' .is computed without special precautions, it may be greatly influenced 
by round-off errors. 

problems. 
(Nk N). To do this, the matrix N is decomposed in the following manner, 

This is a well known numerical difficulty which appears in linear least squares 

It is therefore desirable to compute (NE Nk)-l without forming the numerical product matrix 
T 

k 

where Q is an orthogonal matrix (product of unitary elementary matrices), 

and i(kxk) is upper triangular. Thus, we have 

NE Nk = RT QT Q R = RT R = f;r i 

(7-57) 

(7-58) 

which is the Choleski decomposition of Ni Nk. Now it is easy to compute (Ni Nk)-' since i is 
triangular and this inverse can be computed directly from 

T with (N N ) but with which is better conditioned. There are a number of ways to achieve the k k  
decomposition Eq. (7-56) and a very effective one is by using the Householder transformation 17.121, 17.131. 
This type of inversion procedure is very important because it usually secures numerical stability (accuracy) 
in computations, and is highly reconrmended. Kalfon et al. ,[7.141 , 17.151 implemented such techniques in 
their version of the gradient projection method and achieved a very stable inversion process. 

R. An essential gain is that we do not work 

7.3.4 Problems with Special and Non-linear Constraints 

Further simplifications in computing the projection matrix P can be achieved if some of the 
constraints have a special form D. Q constant 17.161. Let us assume that, for example, 
h = D GO, and let er be a unit vector which has all components equal to zero except component 

number r which is 1. If this constraint is critical then 

+ 

jP 

and the projection matrix P has the null row and column number r. This property of P follows from 
the observation that the projected vector S - PV must have Sr - 0 for all possible vectors V and 
that P is symmetric. It can also be shown that the reduced matrix 5 (which is the P matrix without 
the null row and column) is ? = I - i(iT i)-' iT where i 'is obtained from N by deleting column p 
and row r from N. This simplification reduces the size of P thus reducing computer storage required 
and decreases the computational effort. 

In general, the gradient projection method has been found efficient if used for solving problems 
with linear constraints. 
linear constraints. 
constraints are absorbed by the redefined objective function and the linear constraints remain as side 
restrictions. This transformation reduces the original problem with non-linear constraints to the 
formulation with linear constraints. 

There are, however, at least two.ways in which this method can handle non- 
One possibility is via the Fiacco and McCormick transformation where the non-linear 

Another technique is to linearize locally the critical non-linear constraints and consider a 
sequence of approximate problems with the linearized constraints. 
reasons why this last technique is not as efficient as it is in cases where all the constraints are 
linear. A major computational problem is introduced by the fact that we cannot in general, use the 

T -b 
recurrence formulas which relate (Ni Nk)-' and (Nk-l Nkm1)-'. When the new solution D 
obtained it is very likely that several columns of Nk 
approximation to the constraints. 
has to be computed. This is true even when the new set of critical constraints remains unchanged or 
differs only by one constraint from the last one. 
returning back to the convex constraints after a move has been performed along the projected gradient on 
the intersection of the hypersurfaces tangential to the critical set of constraints. Such a correction 
move (iterative) to the feasible region may be relatively easy if the steps performed in the infeasible 
region are short enough. 
which are necessary to obtain the solution of the problem. 
between the length of step in each iteration and the effort of returning to the feasible region. 

There are unfortunately at least two 

has been 
q+l 

will have to be replaced by the new linear 
Thus, the old inverse becomes almost useless and a completely new one 

Another difficulty is introduced by the problem of 

On the other hand this would cause the growth of the total number of steps 
There is therefore an obvious trade-off 
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7.3.5 Conjugate Gradient Version of the Method for Problems with Linear Constraints 

The Rosen projection method can be viewed as the steepest descent method with the ability to handle 
It is therefore reasonable to expect that the method may be improved by using the conjugate constraints. 

gradient vectors instead of gradients. 
Lapidus [ 7.171 and their method has proved to be quite successful. 
limited to cases with linear constraints and its derivation is based on the quadratic objective function 

Design of such a refinement has been attempted by Goldfarb and 
The capability of the method is 

M(8) = MO + sT 8 + 4 8T A 8 . 
It follows from E q .  (7-60) that 

(7-60) 

(7-61) 

+ 
and, if 8 gives a minimum of M(D) on the cross-section of the hyperplanes h ; p = 1.2, ... k then 

q+l jP 

+ 
where Nk is defined as in Section 7.3.1, and y is a vector to be 'hetermined. 

From E q .  (7-611, (7-62) and the condition that Nk(Sq+l - Dq) = 0 we get 
-+ 

where 

P = I - A-l Nk (NE A-l Nk)-' Ni . 

(7-62) 

(7-63) 

(7-64) 

Formula (7-63) is an extension of the Newton method, where by using matrix 6 the search for the 
minimum is restricted to the feasible region defined by the linear constraints of the problem. Due to 
the well known disadvantages of the Newton method it is preferred to implement the conjugate directions 
method of Davidon. This idea leads to a version of the variable metric method (Davidon) which is capable 
of optimizing a non-linear function subject to the linear constraints. The method uses positive definite 
matrices H which approximate -6 A'l and are updated whenever a hyperplane is added or dropped from 
the constraints. In addition the matrices H are modified as in the unconstrained version of Davidon's 
method and this modification is applied if the minimum of M(S) is found along S = - H VM(5 ) before 
a new constraining hyperplane is reached. 

The same method can be used if the objective function is non-linear and non-quadratic. 

9 

q + 
4 ( I Q  

This is 
motivated by the assumption that in the neighborhood of the solution the non-linear function can be 
adequately approximated by a positive definite quadratic form. 

7.3.6 

In the gradient projection method, the linear optimization subproblems are replaced by matrix 

The method is computationally efficient if all the constraints in the 

Sunrmary of the Gradient Projection Method 

inversion schemes. These schemes have to be able to handle the ill-conditioned matrices Nk via 
special decomposition techniques. 
problem are linear and becomes less practical if non-linear constraints are involved. 
however, reported successful applications of the method to structural optimization problems with non- 
linear constraints [ 7.181. 

There have been, 

The method has the advantage of being able to deal with nonconvex constraints. The disadvantages 
include: rather complex computer code, computational difficulties in inverting (Nl Nk) and the expensive 
process of correcting iterations back to the feasible region if problems involve non-linear constraints. 

7.4 Gellatly's Optimum Vector Method 

7.4.1 Concept of the Method 

Gellatly 7.31 has suggested a feasible direction method where the direction of search is determined 
First note that the direction vector from a set of simultaneous linear equations. 

by a linear combination of the gradients of the objective function and critical constraints at the 
current iteration point D 

3 can be expressed 
9 

-+ 

q' 

(7-65) 
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where Jc is the set of critical constraints. Gellatly distinguishes between the two coqonents of 

Eq. ( 7 - 6 5 )  which correspond to the two types of travel modes; the steepest descent and side-step mode. 
In the first case we have all 6 E 0 and 3 E - erOM(cq). In the second we demand that 

j 4 

where the E; are 

(3 )T Vh.(s ) +'E - 0 , j E Jc q J P  j 

ome preset positive constants. If ~ ( 6 )  is a linear func 

( 7 - 6 6 )  

( 7 - 6 7 )  

ion then any vector 
J + 

satisfying Eq. ( 7 - 6 6 ) .  ( 7 - 6 7 )  is feasible and a step can be taken along S which holds the value of the 
objective function constant. 
when a more uniform notation is introduced. Let a - 
j E Jc 
follows that 

9 
System ( 7 - 6 6 ) ,  ( 7 - 6 7 )  is symmetric, posi$ive definite as iseasily demonstrated 

VM - Vho, t = [0, - E ~ ,  - E ~  ,..., -tmI and 
60 * 

if j - 1,2 ,... m. , We also define the matrix H [Oho, Vhl ,..., Vhm] . From Eq. ( 7 - 6 6 ) ,  ( 7 - 6 7 )  it 

j - 0,1,2,. ..m (i!o Bi Vh:) Vhj - - E j '  
(7 -68 )  

and in matrix form 

( 7 - 6 9 )  + H ~ H Z  = - E  . 
Linear set (7 -68 )  can be considered as being a side condition of an optimization subproblem (as in 
Zoutendijk's method) or it can be solved for some fixed values of 
and selects arbitrarily the unit values for E ~ ,  j > 0. In the more general case when M($) is a 

non-linear function, conditions ( 7 - 6 6 ) ,  ( 7 - 6 7 )  are not sufficient for determining a usable-feasible 
direction and the problem has to be reformulated if the same method is to be used. 

In order to obtain an equivalent problem with a linear objective function an additional variable is 

E Gellatly takes the latter approach 
j' 

introduced which replaces the objective function. The modified optimization problem becomes: 

Min Dn+l 

subject to the original constraints and in addition 

M(5) - Dn+l < 0 . ( 7 - 7 0 )  

With this modification the method of Gellatly can be used without any substantial changes except that 
the first equation of the set ( 7 - 6 6 ) ,  ( 7 - 6 7 )  drops out from the set. Due'to the particular formulation 
of the new objective function, the steepest descent step can be obtained simply by reducing 
the side-step the variable Dn+l is kept constant but the non-linear weight function M(8) may change. 

Dn+l. In 

7 . 4 . 2  Computational Problems 

Some comments should be made on the solvability of the linear set of equations ( 7 - 6 6 ) ,  ( 7 - 6 7 )  which 
determines the direction 3. There are three cases where the coefficient matrix of this set becomes 
singular (or nearly singular) and special actions muat be taken to circumvent this difficulty. 

The most obvious case of singularity occurs when the number of vectors VM, Vh j E Jc exceeds 
j' 

the dimension of the multivariable space n, 
consequently a ,  Bj 
dependence between some of the vectors OM, Ohj, j E Jc 
Finally, the system matrix also becomes singular when the optimum solution is reached where 
a nonnegative linear combination of the gradients to the active constraints (Kuhn-Tucker optimum 
condition). 

so that these vectors cannot be linearly independent and 
are not uniquely defined. A similar difficulty occurs when there is a linear 

(whose total number can be less than n). 
-VM becomes 

A straightforward procedure can be used to remove any linearly dependent equation from the system, 
Eq. ( 7 - 6 9 ) ,  which is solved by Cholesky decomposition. 
zero on the main diagonal of the triangular matrix due to the dependence of the linear equations. 
first zero appears in the row corresponding to the first dependent equation. 
the complete row and corresponding column is set to zero (including 
diagonal element where the unit value is inserted. 
corresponding linearly dependent vector which eliminates this vector from Eq. ( 7 - 6 5 ) .  It is, furthermore, 

During the decomposition process we obtain a 
The 

To remove this equation 
with the exception of the main 

This operation results in computing Bi 0 0 for the 
oi) 
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necessary to detect the case when the linear dependence is caused by optimality. 
the vector products, Eq. ( 7 - 6 7 ) .  after determining the solution. 

a feasible S 
we assume that the optimal solution has been reached and the computation is terminated. 

To do this we chec.k 
If the products are negative we have 

If, however, some of them do not satisfy this condition + and optimization is continued. 
q 

7 . 4 . 3  

In the Optimum Vector Method the feasible direction finding problem is reduced to the solution of 

Summary of the Optimum Vector Method 

T linear equations. Since these equations involve the positive definite matrix H H the efficient and 
stable Choleski decomposition method can be used to solve them. 
difficulties if H is not well-conditioned unless special techniques are used to decompose H H {see 
Section 7 . 3 . 3 ) .  
is the arbitrary choice of the E-vector. 

7.5 Conclusion 

We may, however, expect numer’cal 

Another feature of the method which we should consider as being disadvantageous 
+ 

+ This method has the ability to handle nonconvex problems. 

Table 1 summarizes briefly some of the important features of the methods discussed in this Chapter. 
It has to be pointed out that the methods have not yet been compared by numerical experimentation. 

Table 1 

Feasible direction subproblem 

Efficient for problems with 
non-linear constraints 

Ability to handle nonconvex 
problems 

Unstable numerical process 
involved 

Generates strictly feasible 
directions 

Simplicity of computer code 

Successful applications to 
structural optimization 
problems 

Feasible 
Direction 
Method 

Linear 
or quad- 
ratic 
program- 
ming 

no 

no 

Yes 
large 
size 

~ 

Gradient 
Projection 
Method 

Matrix 
inversion 
and up- 
dating 

no 

Yes 

Yes 

no 
(nonlin. 
constr.) 

no 

Yes 
small 
size 

Optimum 
Vector 
Method 

Solution 
of 
linear 
equations 

Yes 

Yes 

Yes 

Yes 

no 

Yes 
large 
size 
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Chapter 8 

COMPUTER PROGRAMS FOR THE OPTIMUM DESIGN OF COMPLEX ELASTIC STRUCTURES 

by 

G. G.  Pope 

8.1 Introduction 

of 
but 

This Chapter describes a number of computer programs which have been developed for the optimum design 
idealised aerospace structures of arbitrary geometry, and which include not only optimization algorithms 
also segments for the efficient finite element analysis of structures of this class. These programs 

are concerned mainly with the choice of member cross-sectional areas and thicknesses, but some of them 
include facilities which, in principle, permit the lengths and spacings of members to be varied within a 
prescribed topology. 

Early direct applications of finite element methods to the design of efficient structures concentrated 
on the generation of fully-stressed designs in which every member is either fully-stressed under at least 
one of the applied loadings or has a minimum permissible cross-section or thickness. Such designs, which 
usually approximate to or coincide with a least weight design in applications where no constraints are 
imposed on the displacements, can normally be deduced iteratively by repeatedly modifying members on the 
basis of the local stress level, and by re-analysing the resulting structures. The computations involved 
in this process are relatively short compared with those usually associated with a rigorous search for a 
least weight design, although the efficiency of techniques for the computation of the latter is continually 
being improved (see, for example, Section 8.4). The fully-stressed design approach continues to find use- 
ful applications and some relevant recent developments are described in Section 8.5. 
means of generating useful initial trial designs for a more general class of optimization problems. 

It also provides a 

The main portion of this Chapter is concerned with more rigorous optimization procedures. 
Section 8 . 2  describes computer programs developed at the Bell Aerosystems Company as the culmination of 
the first major exercise in the application of mathematical programming techniques to the design of 
complex structural components, and Sections 8 . 3  and 8.4 describe major subsequent contributions from the 
Boeing Company and the Philco-Ford Corporation. 

8 . 2  BellfAFFDL Programs for the Least Weight Design of Stressed-Skin Structures 

The Bell Aerosystems Company, working under contract to the U.S. Air Force Flight Dynamics 
Laboratory, has developed several computer programs [ 8.11, [ 8 .21 ,  [ 8.31 for the least weight design of 
stressed-skin structures of arbitrary geometry. Two of these programs are described ip this Section. 
Both are written for use on IBM 709017094 computers or equivalent machines with a core store of 32K words. 
The first is directly applicable only in situations where the basic configuration of the structure is 
fixed, where the design variables consist solely of skin thicknesses and member cross-sectional areas, and 
where consequently the merit function is linear. Structural dimensions within a prescribed topology may 
be treated as variables in the second program described, which also permits the study of larger problems 
of fixed geometry; this more powerful program is, however, less efficient in applications where either 
program could be used. 

8.2.1 Analysis Procedure 

Both programs employ the finite element displacement method for analysis purposes and include as a 
basic facility the following types of element: axially-loaded bar, shear web, quadrilateral shear panel, 
triangular region in plane stress, quadrilateral panel in plane stress. 
vary linearly along the edges of all these elements. 
and the plane elements are of uniform thickness. 
elements to be added with a minimum of modification. 
symmetry of lifting surfaces of symmetric cross-section. Several independent load conditions may be 
considered and temperature variations may be prescribed over the structure to correspond to the load 
conditions. 
displacement components and on the minimum permissible values of the design variables. The analysis 
segments have a nominal capacity of 200 discrete elements and 170 degrees of freedom in the fixed geometry 
program; the nominal capacity of the corresponding segments in the larger varying geometry program is 
600 discrete elements and 450 degrees of freedom. 
practice by either program depends on the detailed specification of the problem under consideration and 
is influenced by such factors as the bandwidth of the non-zero terms in the stiffness matrix. 
Choleski method is used to solve the analysis equations, storing the intermediate triangular matrix in 
the computer core locations previously occupied by the stiffness matrix. 

Displacements are assumed to 
The bar elements have uniform cross-sectional areas 

The modular form of the programs enables additional 
An option is included to take account of the 

Buckling effects are not included but restraints may be imposed on the amplitudes of the 

The size of idealisation which can be handled in 

The 

8 . 2 . 2  

In the fixed geometry program where the weight is, by definition, a linear function of the design 

Optimization Procedure employed in the Fixed Geometry Program 

variables, the optimum design is sought by a direct application of Gellatly's optimum vector method which 
is described in detail in Chapter 7. Starting from a known feasible design, a search is first made along 
a 'steepest descent' path in design space, normal to the planes representing structures of equa'l weight, 
to find a design in which one constraint at least is active. At this constrained design a direction of 
search is selected within the relevant constant weight plane, pointing into the feasible region and away 
from the current critical constraints. 
of search, and a design midway between the two constrained designs of the same weight is used as a start- 
ing point for a repetition of the whole process. 

A further constrained design is found following this direction 

The following procedure is adopted in this program to find the appropriate distance of travel along 
each path in design space. First the structure is re-analysed after the design has been modified by a 
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specified amount. 
necessary to achieve a design which is not feasible. 
is half that used in the final step of the preceding process but which is of opposite sign. 
length between successive designs is then halved repeatedly, the sign of each step being always chosen 
to be such that the direction of travel is towards the edge of the feasible region. 
continued until a constrained design is obtained to the required accuracy. 

The step length between successive designs is then doubled as many times as is 
This design is then modified by an increment which 

The step 

The process is 

, 
In order to select a suitable direction of search in a typical constant weight plane it is 

1 necessary to evaluate at the relevant starting point the partial derivatives with respect to each of the 
design variables of the stress and displacement components which are subject to active constraints. 
These derivatives are calculated directly from an analytical expression with significantly less effort 
than would be involved in the application of first order difference techniques in which the structure is 
re-analysed for small changes in each of the design variables in turn (see also Fox [ 8.41 ). 

' 

I 

Large savings in computing time can often be achieved by generating iteratively a design which is 
approximately fully stressed, before entering the above search procedure. 
facilities for the automatic generation of such designs. 

The program includes 
t 

8.2.3 Optimization Procedure employed in the Varying Geometry Program 
I 
I 

In this more powerful program where the weight is a non-linear function of the design variables, 
the optimization problem is reformulated in terma of a linear merit function by introducing an additional 
variable and an additional constraint, i.e. the basic problem 

I 
I 

I 
I minimize M(6) subject to 

hj(6) G 0 j - 1.2,. ..J 

is replaced by 

minimize A subject to 

h.6) < 0 I 

and 

M(6) - A G 0 . 

With this reformulation the steepest descent searches in the Gellatly optimum vector method become 
trivial and the computational task is then concentrated in the searches conducted at constant values of 
A; it should be noted that a constant value of this variable does not correspond to a constant 
structural weight. 
variables and of the weight function M with respect to the.design variables are calculated by a first 
order difference procedure, as it did not prove practicable to adapt the analytical procedure used in the 
fixed geometry program. 
structural geometry is specified. 

The required partial derivatives of the actively constrained stress and displacement 

Facilities are included for the generation of fully-stressed designs when the 

8 . 2 . 4  Applications 

A number of applications of the fixed geometry program have been reported. These include a 
re-sizing of the members of the idealised fin of the Bell X-22A ducted fan VTOL aircraft [ 8.31 , [ 8.51 . 
This application involved 141 degrees of freedom and 136 design variables; multiple load conditions were 
specified and both strength and stiffness requirements had to be satisfied. 
of 35% relative to the idealised structure of the actual fin was obtained at a computing cost of less than 
500 dollars. 
supersonic aircraft [ 8.61 . 
was represented approximately by a limitation on the ratio of the overall flexural and torsional 
rigidities; the program was modified to incorporate constraints of this type. 
geometry program reported so far have been limited in the main to pin-jointed trusses of relatively 
simple geometry. 

A weight saving of the order 

Another interesting application has been to the design of the horizontal stabiliser of a 
Here the avoidance of binary flutter contributed an active constraint which 

Applications of the varying 

8.3 Boeing Program for the Least Weight Design of Stressed-Skin Structures 

Karnes and Tocher [ 8.71 describe a computer program which they have developed at the Boeing Company 
to search for the least weight design of stressed-skin structures, with emphasis on regions containing 
holes and cut-outs, in circumstances where buckling effects can be neglected. The program permits the 
design to be influenced by a number of independent load conditions and also enables the user to specify 
limitations on the maximum and minimum permissible thicknesses. 

8.3.1 Analysis Procedure 

The sheet is idealised as an assembly of triangular membrane elements, each of which is assumed to be 
in a state of uniform strain, and corresponding flanges which can carry axial loads only. 
of the individual membrane elements and the cross-sectional areas of the individual flange elements are 

The thicknesses 
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prescribed uniform. An efficient routine, in which all the non-zero elements required to specify the 
stiffness matrix are carried simultaneously in the core store, is used to analyse the idealised 
structure by the direct stiffness (displacement) method. 
iteratively using block over-relaxation. 
optimization problems since the changes in the design parameters between analyses are usually relatively 
small; thus the displacements before a typical redesign are usually a good first approximation to those 
after the redesign has taken place. 

The equilibrium equations are solved 
Such iterative techniques often prove very efficient in 

The number of design variables can easily become very large when finite element idealisations are 
used in optimization studies. Karnes and Tocher therefore express the distribution of sheet thickness in 
tenus of the thicknesses of a limited number of elements only; the program defines the thicknesses of the 
remaining elements automatically by a linear interpolation technique. 
intelligent use of this approach leads to a dramatic reduction in problem size without materially 
influencing the optimum design. 

It has been demonstrated that the 

8.3.2 Optimization Procedure 

The optimization problem is solved by a version of Zoutendijk's method of feasible directions, 
following the procedure outlined in Section 7.2.4. A known feasible design is used as a starting point 
and a single search is made in a direction of steepest descent to find a feasible design in which at 
least one constraint is active; this procedure is of course unnecessary if the initial design is itself 
of this type. The constrained design is used as a starting point in a search for a lighter constrained 
design in a direction established by solving the linear sub-problem which is formulated in Eq. 
(7-9) to (7-15). The latter process is then repeated starting each time from the lighter constrained 
design obtained in the preceding application, until the least weight design has been found to an 
acceptable standard of accuracy. 
the basis of experience of a set of constants denoted by 
formulation, Karnes and Tocher choose these constants, in effect, to be equal; the actual value is 
selected on a basis o f  experience to prevent rapid changes in the direction of search (zigzagging) and 
excessively small steps along the boundary of the feasible region. The following procedure is adopted 
to establish the distance of travel along each search path: 

The setting up of each ancilliary sub-problem involves the choice on 
in Chapter 7. C Using a slightly different 

j 

(1) Assuming that the partial derivatives of the design variables with respect to relevant stress 
and displacement components are constant, an estimate is made of the changes in the design variables 
necessary to reach a lighter constrained design. 

( 2 )  The modified design is analysed and the lighter constrained design is computed more accurately 
by linear interpolation (or extrapolation) between the modified design and the previous critical design. 

(3) Thio interpolated design is analysed and if it does not represent the critical design to an 
acceptable standard of accuracy it is used together with the two preceding designs to obtain a batter 
approximation by parabolic interpolation. 

(4) The parabolic interpolation procedure is repeated if necessary, using each time the three most 
recently analysed designs, until a constrained design is obtained t o  a specified standard of accuracy. 

The same interpolation technique is employed in obtaining the initial critical design along a steepest 
descent path, once a design outside the feasible region has been obtained by a simple step-doubling process. 

The partial derivatives of the design variables with respect to the stress and displacement 
components subject to active constraints are calculated in this program by a first order difference pro- 
cedure which involves re-analysis of the structure for small changes in each of the design variables in 
turn. The user specifies the amplitude of design modification which is likely to lead to a significant 
variation in these derivatives; when the design modifications are below this level the derivatives are 
assumed constant in the interest of computational efficiency. 

8.3.3 Application 

The Boeing program is written for the CDC 6600 computer and permits the employment of up to 100 
design variables and 700 degrees of freedom. 
design of a window panel for the 747 aircraft. 
three windows, employed a finite element idealisation involving 600 elements and 300 nodes, under 
five independent loadings. 
than any that had previously been generated by hand. 
made to the local region between adjacent windows; a finer grid was employed involving 144 nodeo and 
267 finite elements. 
the CDC 6600 was 45 minutes. 
generated design based on the first stage of the bptimization study. 

It has been used to study possible improvements in the 
An initial application to the whole panel, which includes 

A design was produced after a computing time of 34 hours which was lighter 
In a second stage a more detailed application was 

It only proved necessary to consider two load conditions, and the running time on 
The configuration obtained in this way was 10% lighter than the best hand- 

8.4 Approximate Multiple Configuration Analysis and Allocation Procedure (Philco-Ford/AFFDL) 

Melosh and Luik [ 8.81 , [ 8.91 , working at the Philco-Ford Corporation under a contract from the 
U.S .  Air Force Flight Dynamics Laboratory, have developed a technique for the design of least weight 
structures which has proved very efficient in a number of trial examples and which is particularly well 
suited to applications where the design variables can take a series of discrete values only. 
implementation is limited to pin-jointed trusses, but stressed-skin structures have been optimized with 
its aid, using the Hrennikoff analogy [8.10] to deduce an equivalent framework. Stress limitations are 
the only constraints considered, and the design variables consist solely of the cross-sectional areas of 
the members; variations in geometry have, however, been included in one application where it proved 
possible, without imposing specious strain restraints, to incorporate a sufficient number of members in 
the initial idealisation to include to an adequate degree of accuracy, any member which might be present 

The current 



99 

in the optimum design. The computer program, which is written for the Philco 212 computer, is capable 
of handling a maximum of 1000 truss elements, 1000 sizing variables, 450 degrees of freedom, and up to 
five independent load conditions. 

8.4.1 Analysis Procedure 

The search technique is made practicable by the use of an efficient approximate procedure to 
estimate, without repeating the analysis of the entire structure, the influence on the internal force 
system of a change in a single design variable. 
complementary energy analysis in which three force systems only are considered, namely: 

The effect of such a modification is estimated by a 

(1) 

(2) 

the internal forces in the structure before any modifications were incorporated, 

the self-equilibrating system obtained by subtracting the above system from the internal 
force system immediately prior to the modification under consideration, 

(3) 

If the abbve procedure is applied repeatedly with self-straining of each of the members in turn, 
but without any design modifications, it can easily be seen that an exact analysis will be obtained of 
the idealised structure. 

a self-equilibrating system corresponding to a self-straining of the member to be modified. 

8.4.2 Optimization Procedure 

A series of permissible discrete values is assigned to each design variable. A typical variable 
is then decreased tentatively from its value in an initial feasible design to the next permissible 
smaller value, and the structure is re-analysed approximately by the above technique to see whether any 
stress constraints are violated. The design change is rejected immediately if the modified member is 
over-stressed; if the stress in this member remains within the permitted range but the stress limit is 
exceeded in another member or members, a trade-off calculation is performed to see whether any weight 
saving is achieved if the critical members are appropriately re-sized. 
all the design variables in turn, and the procedure is repeated until no significant modification results 
from a cycle involving attempted changes in all the design variables. 

Tentative decreases are made in 

8.4.3 Applications 

Melosh and Luik [ 8.81 , [ 8.91 describe the application of the above procedure to a number of design 
problems and show that it is comparable in efficiency with an iteration to a fully-stressed design when 
the latter is relevant. 
favourably in several applications with existing programs based on more conventional non-linear program- 
ming techniques. 

They also show that the efficiency of their computer program compares 

8.5 Application of Iterative Procedures for the Generation of Fully-Stressed and Similar Designs 

8.5.1 Contributions of the Grunrman Aircraft Corporation 

Some investigations have been conducted at the Grumman Aircraft Corporation into practical 
techniques for the generation of fully-stressed designs in the airframe context [ 8.111 , [ 8.121 . 
number of structural configurations typical of aircraft lifting surfaces have been studied and fully- 
stressed designs have been obtained. 
purposes and the average equivalent stress in each structural panel was used in the initial study as a 
basis for factoring the thickness after each iteration. 
from an analysis viewpoint, individual panels sometimes included significant variations in stress. 
Consequently it was found that designs evolved by straightforward iteration sometimes involved erratic 
thickness variations between individual elements which no designer would accept. 

A 

The conventional displacement method was employed for analysis 

Since many of the panels were relatively large 

Recognising that this difficulty arose because average panel stresses were employed in the iteration 
rather than the peak stresses which are likely to occur, for example, in regions of load diffusion, the 
Grumman investigators re-interpreted the results of the individual displacement method analyses in a 
format typical of the force method, by re-idealising the structure as an assembly of flange elements 
with linearly varying end load, and panels in a state of pure shear. 
re-sized using the results in this form, direct stresses at the panel corners being deduced from the 
loads in the adjacent flanges. It was found that more satisfactory fully-stressed designs were 
obtained in this manner which were of virtually the same weight as those derived by the more direct 
approach. This reintroduction of a force method idealisation does, of course, complicate the pro- 
gramming of the redesign procedure and simpler techniques might produce an equivalent improvement. This 
idealisation is, however, valued in its own right by designers who need to interpret the results of 
overall structural analyses in the context of the design of structural details and an automated sequence 
of computer programs has been developed for its use in this way in the generation of fully-stressed 
designs. 

Members were subsequently 

Lansing et al. t8.121 have recently adapted this kind of approach to the design of structures in 
Such structures are usually fabricated from layers of fibre-reinforced composite materials. 

unidirectionally-reinforced material which each have a prescribed thickness and volume fraction in their 
cured state. 
therefore by the numbers of layers of composite with fibres orientated in each of the prescribed 
directions; a free variation of fibre direction is usually impracticable from the fabrication viewpoint. 
In this Grumman procedure the structure is first analysed with assumed values for the design variables 
and the results are interpreted using a force method idealisation as described above. 
which may be critical are identified in each composite panel, and with the aid of these a rigorous 
optimum lay-up is calculated for the panel, allowing for practical restrictions on thickness and fibre 
orientation; elements in converitional materials are re-sized in the customary manner. The structure is 

Each skin thickness parameter associated with design in isotropic materials is replaced 

Stress fields 
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then re-analysed and the process is repeated iteratively until no significant change in weight occurs 
between successive cycles. 

A successful trial application t o  composite construction has been made in the design of a 
horizontal stabiliser for a supersonic aircraft. 
supported by full-depth aluminium alloy honeycomb; other internal structure and attachments were 
designed in titanium alloy. The boron fibres were permitted to lie in four directions, i.e. at Oo,  90' 

and ?45O to a datum direction. The structural idealisation which took account of the symmetry of the 
structure and of the loading about the mid surface, employed approximately 1000 structural elements and 
1100 degrees of freedom; four independent load conditions were considered. Starting from arbitrary but 
intelligently chosen member sizes, the structure was redesigned five times by an automated version of 
the above procedure; it was found that the structure weight was sensibly constant after the second 
redesign. 

Boron epoxy composite was selected as the skin material, 

8.5.2 Generation of Structures with Uniform Strain Energy Density 

An alternative semi-intuitive method for the generation of near optimum designs, which has been 
developed by Venkayya et al. i8.131, 
some applications is, in effect, identical to it. 
energy density is uniform throughout a least weight structure designed to withstand a single load 
system when instability constraints are inactive and displacements are unrestrained. 
loading is involved, the strain energy due to each is evaluated in turn and the maximum value of the 
strain energy density is found at every point in the structure. 
weight design is one in which the maximum strain energy density is uniform. 

is closely related to the fully-stressed design procedure and in 
This method is based on the hypothesis that the strain 

If more than one 

It is then postulated that the least 

When displacement constraints are active, a uniform maximum strain energy design is obtained first 
by the above procedure and the member sizes (e.g. cross-sections in the case of a pin-jointed truss) are 
factored up, if necessary, so that none of the critical displacement components exceed their permissible 
amplitudes by more than about 20%. The first order sensitivity of the various restrained displacements to 
unit changes in the volumes of the individual members is then calculated and the increases in member sizes 
proportional to these sensitivities are derived which would be necessary to satisfy each displacement 
constraint in turn; whenever an individual sensitivity is such that an increase in volume results in an 
increase in the critical displacement, the size of the member concerned is held constant. 
in the individual member sizes required to satisfy the various displacement constraints are compared, and 
the structure is modified on the basis of the largest values, resulting in a feasible design in which the 
displacement constraints are not necessarily critical. The re-sizing procedures are repeated using 
starting points each time based on the results of the proceding applications, as described in 
Venkayya et al. [8.131, 

The increases 

until no further reduction occurs in the structure weight. 

A computer program for an IBM 7094-11-7044 DCS has been prepared for the implementation of the above 
process in the context of pin-jointed trusses. 
dome (61 nodes, 132 bars, 4 load conditions) and a plane truss involving 77 nodes, 200 bars and 5 load 
conditions; active displacement constraints were present in both these examples. 
is an application to the design of a ten node twenty-five bar transmission tower under two independent 
loadings, with upper bounds imposed on all the displacements. 
viously by Fox and Schmit i8.141 Venkayya et al. obtained, after a computing 
time of 24 seconds, a structure of virtually identical weight to the least weight design obtained by 
Gellatly; the latter employed the fixed geometry program described in Section 8.2 with a computing time of 
20 minutes on an IBM 7090. Both Vankayya et al. and Gellatly have indicated improvements that might be 
incorporated in their programs to improve efficiency; the above computing times are, however, convincing 
evidence of the effectiveness of the Venkayya approach in this application. 

AcknowLedgement - This Chapter i s  Bri t ish Cram Copyright reproduced with the p e d s s i o n  of the ControZZer, 
Her Mqjeety ' 8  Stationerg Office. 

The largest applications reported have been to a geodesic 

Of particular interest 

This design problem had been studied pre- 
and by Gellatly [8.31. 
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Chapter 9 

SPECIAL PURPOSE APPLICATIONS 

by 

L. A. Schmit 

9.1 Introduction 

The previous Chapter describes some general purpose structural optimization capabilities for 
relatively large scale systems. 
to specific structural design problems are described. 

In this Chapter, a few examples of mathematical programming applications 

It is suggested that the cost of developing a special purpose structural optimization capability 

When developing a special 
may be justified when a particular design problem can be identified as fundamental and recurring. 
Problems in this category often require complicated failure mode analyses. 
purpose structural optimization capability, it is possible to carefully tailor the analysis and 
optimization scheme together. 
familiarity with the characteristics of the various mathematical programming formulations and the 
associated algorithmic tools, facilitate 
upon careful and detailed failure mode analyses. The examples to be discussed point up the important 
role structural optimization can play in evaluating alternative design concepts and materials based 
upon a comparison of optima. In Section 9.2, the stiffened cylindrical shell optimization capability 
reported in (9.11 is reviewed in some detail. The extension of this capability to shells with slight 
meridional curvature (9.21 is briefly discussed and two recently reported special purpose applications 
to fiber composite structures are noted l9.31, 19.41. 
penalty function approach (see Figs.2.l.Q and 2.11) to the optimum design of an ablating composite 
type heat shield [9.51 is described. 

9.2 

Exploitation Of physical insight with respect to the analysis and 

the development of tractable optimization capabilities based 

In Section 9.3 application of an integrated 

Integrally Stiffened Cylindrical Shell Example 

The frequent occurrence of stiffened cylindrical shell configurations in aerospace structural 
applications is well known. 
mathematical programming in structural design optimization a s  of 1968. 

This example represents a state-of-the-art special purpose application of 

9.2.1 Problem Statement 

Consider anintegrallystiffened cylindrical shell of radius R and length L such as that shown 
There are two in Fig.9.1. 

sets of stiffeners, one in the longitudinal direction and one in the circumferential direction. 
set of stiffeners may be entirely inside or entirely outside the shell. 
wall middle surface, the total length L, 
preassigned parameters. 
temperature (in each of several load conditions) can be introduced by preassigning different values to 
the material properties in each load condition. 

The stiffeners are assumed to be integral and of rectangular cross section. 
Each 

and the material properties of the skin and stiffeners are 
The radius R of the shell 

It should be noted that the infiluence of a different but uniform structural 

Seven design variables (see Fig.9.2) are dealt with by the optimization procedure namely: 
(1) the skin thickness ts, (2) the thickness of the longitudinal stiffeners (tx), (3) the thickness 
of the circumferential stiffeners (tO)’ (4) the depth of the longitudinal stiffeners (dx)*, (5) the 
depth of the circumferential stiffeners (dg), ( 6 )  spacing of the circumferential stiffeners (Ix) and 

(7 )  spacing of the longitudinal stiffeners 
the design space located by a vector 6 such that 

( “ 0 ) .  Any particular design is represented by a point in 

The option to preassign any subset of design variables is available and the stiffener depths may 
optionally be linked as follows 

dx = db 

(9-1) 

which in effect requires that the stiffeners be flush and on the same side of the shell wall. 

Side constraints on the design variables limiting the range of admissible values and insuring 
geometric realizability are considered. The upper bounds on the design variables D. U * j = 1.2, ... 7 

are expressed in the following normalized form 
J j’ 

hj(6 = , .  
D - U  

< o ; j * 1.2 .... 7 
U. - Li  (9-3) 

*Note that the stiffener depth is taken positive for internal stiffening and negative values of 
d0 denote external stiffening. 

dx and 



. Fig.9.1 Integrally Stiffened Cylindrical Shell 

Fig.9.2 An Element of the Stiffened Cylinder 
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where U and L denote the upper and lower limits on the value of the jth design variable (Dj) 
for j = 1,2,. ..7. 
in normalized form as follows 

j j 
The lower bounds on the design variables Lj-7 Q Dj-7; j * 8,9. ... 14 are expressed 

Lj-7 - Dj-7 
uj-7 - Lj-7 Q 0 ; j = 8,9,. ..14 . hj(ih = (9-4) 

The geometric requirements that the stiffener thicknesses must not exceed the corresponding stiffener 
spacings, are expressed as follows: 

tx S f i b  , that is D2 Q D7 (.9-5) 

or in normalized form 

and 

t Q Lx , that is Q 

or in normalized form 

; j - 1 5  

(9-7) 

; j = l 6  . 

Note that all the side constraints represented by Eq. (9-3), (9-4), (9-6) and (9-8) #are normalized so 
that for acceptable designs 

(9-9) 

The stiffened cylinder is subject to a multiplicity of K distinct load conditions and the 
maximum number of load conditions that can be handled by the program reported in [9.11 is ten 
(i.e. KmX = 10). Each load condition (k) is specified by giving the applied uniform axial load 

per unit length of circumference (Nk, 
pressure (pk, 
corresponding to a given uniform temperature (Tk). 

structural behavior by considering eleven independent failure modes as follows: 

compression positive, tension negative), the net uniform radial 
inward positive, outward negative), and material properties for the shell and stiffeners 

The automated minimum weight optimization procedure reported in (9.11 guards against unsatisfactory 

(1) 

(2) 

buckling of the entire stiffened cylinder (Gross Buckling - G.B.) 
buckling of the stiffened cylinder between the circumferential stiffeners 

(Panel Buckling - P.B.) 
(3) buckling of the cylindrical skin between longitudinal and circumferential stiffeners 

(Skin Buckling - S.B.) 
(4) 

(5) 

buckling of the longitudinal stiffeners (Longitudinal Stiffener Buckling - L.S.B.) 

buckling of the circumferential stiffeners due to contraction of the cylinder 
(Circumferential Stiffener Buckling Contraction - C.S.B.C.) 

( 6 )  buckling of the circumferential stiffeners due to expansion of the cylinder 
(Circumferential Stiffener Buckling Expansion - C.S.B.E.) 

(7) 

(8) 

yield failure under biaxial stress in the skin (Skin Yield - S.Y.) 
.yield failure in the longitudinal stiffeners under uniaxial tensile stress (Longitudinal 

Stiffener Yield Tension - L.S.Y.T.) 
(9) yield failure in the longitudinal stiffeners under uniaxial compressive stress 

(Longitudinal Stiffener Yield Compression - L.S.Y.C.) 
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(10) y i e l d  f a i l u r e  i n  the  c i rcumferent ia l  s t i f f e n e r s  under uniax ia l  t e n s i l e  stress 
(Circumferential  S t i f f e n e r  Yield Tension - C.S.Y.T.) 

(11) y i e l d  f a i l u r e  i n  the  c i rcumferent ia l  s t i f f e n e r s  under uniaxia1,compressive s t r e s s  (Circum- 
f e r e n t i a l  S t i f f ene r  Yield Compression - C.S.Y.C.). 

Let t h e  index i r e f e r  t o  the  i t h  f a i l u r e  mode where i = 1 ,2 ,  ... 11 and le t  the  index k r e f e r  t o  
the  k t h  load condi t ion  where 
of a behavior va r i ab le  Yik 

i n  each load condition 

or not the s t r u c t u r a l  behavior i s  acceptable.  The f a i l u r e  mode cons t r a in t s  may be expressed as  follows 

k = 1 , 2 , . . . K  G 10. Each o f .  the  f a i l u r e  modes is  charac te r ized  i n  terms 
Each behavior va r i ab le  

is checked aga ins t  i t s  c r i t i c a l  o r  l i m i t i n g  value t o  determine whether 

such as a fo rce  r e s u l t a n t ,  a stress, o r  a s t r a i n .  

(Yik) 

K Q 10 (9-10) 

Note t h a t  the  behavior va r i ab le s  (Yik) and t h e i r  l i m i t i n g  values (Yik)cr may i n  general  depend upon 

both the  design (6) and the load condi t ion  (k ) .  The behavior cons t r a in t s  of Eq. (9-10) c a i  be w r i t t e n  i n  
the  following a l t e r n a t i v e  form 

h.($) < 0 (9-11) 
J 

where 

j = 16 + k + ( i  - 1)  K ; i = 1 , 2 ,  ... 11 
k = 1,2, ... K 

so t h a t  t he  behavior cons t r a in t s  a r e  represented by 

j = 17,18, ... 5 

(9-12) 

(9-13) 

where 

J” = 1 6 + 1 1 K  . (9-14) 

Note t h a t  t h e  behavior cons t r a in t s  have a l s o  been normalized (Eq. (9-10)) so t h a t  f o r  acceptable designs 

The ob jec t ive  of the opt imiza t ion  procedure is  taken t o  be minimization of the  t o t a l  weight of t he  
cy l inder .  The ob jec t ive  func t ion  (M) i n  terms of t he  design va r i ab le s  and preassigned parameters is  

M(6) = 2 n R L  tS y, 

- Min (Idx 

where 

2 nR 

‘d 
nx  = - , 

L - ax 
n = - ,  

,$ ‘X 

0 s t i f f e n e r  sets on opposite s i d e s  of sk in  

1 s t i f f e n e r  sets on same s ide  of sk in  , 

(9-16) 

(9-17) 

(9-18) 

(9-19) 
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dx 
a N X  

ax 
+ -  

dx 
a M X  +- 
ax 

Fig.9.3 Force and Moment Resultants 

Kssl 
'4 

Fig.9.4 Circumferential Stiffener 
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0 longi tudina l  s t i f f e n e r s  continuous 

1 Circumferential  s t i f f e n e r s  continuous , 

and 

c i rcumferent ia l  s t i f f e n e r s  continuous 

longi tudina l  s t i f f e n r s  continuous 

(9-20) 

(9-21) 

The f i r s t  term i n  Eq. (9-16) represents  t he  weight of the  s h e l l  sk in ,  the  second term adds the  weight 
of t he  longi tudina l  s t i f f e n e r s ,  t he  t h i r d  term introduces the  weight of t h e  c i rcumferent ia l  s t i f f e n e r s ,  
and the  fou r th  term accounts f o r  t he  f a c t  t h a t  t he  s t i f f e n e r s  may cross  when they are on the  same s i d e  
of the cy l inder  and the  mater ia l  a t  t h i s  i n t e r sec t ion  must no t  be counted twice. 

The problem statement can be summarized a s  follows : 

Find 6 
such t h a t  h.(6) < 0 ; j = 1,2 ,  ... J 
and ~ ( 5 )  + Min 

and M($ i s  given by Eq. (9-16) 3 

2r 

J 

where if is  defined by Eq. (9-l) ,  the  h . ( s )  are given by Eq. (9-3), (9-4), (9-61, (9-8) and (9-11) 

9.2.2 Features of the  ana lys i s  

The f i r s t  t h ree  f a i l u r e  modes involve determining t h e  buckling load values f o r  a cy l ind r i ca l  s h e l l  
and comparing these with the  corresponding applied load. 
determine the  c r i t i c a l  loads f o r  gross (G.B.) panel (P.B.) , and sk in  (S.B.) buckling provided appro- 
p r i a t e  s h e l l  s t i f f n e s s  p rope r t i e s  and buckling mode displacement pa t t e rns  are employed. 
displacement buckling ana lys i s  i s  used and a uniform prebuckled membrane force  d i s t r i b u t i o n  as w e l l  as 
simply supported boundary conditions are assumed. Bending and to r s iona l  s t i f f n e s s  of the  s t i f f e n e r s  
i s  taken i n t o  account a s  wel l  as s t i f f e n e r  eccen t r i c i ty ;  however i n i t i a l  imperfection s e n s i t i v i t y  i s  
neglected. In both the gross (G.B.) and panel (P.B.) buckling analyses the  e f f e c t s  o f  the  s t i f f e n e r s  
a r e  averaged over s t i f f e n e r  spacing (smeared). 

The same bas i c  ana lys i s  can be used t o  

A l i n e a r  small 

The uniform prebuckled membrane force  d i s t r i b u t i o n  is  given by the  following expressions 

Nx - N  (9-22) 

and 

N b  - pR . (9-23) 

The pos i t i ve  s ign  convention for force  and moment r e s u l t a n t s  is  ind ica ted  i n  Fig.9.3. 
equilibrium equations a r e  those given by FlUgge [9.6] bu t  they contain only the  buckling fo rce  terms 
recommended by Hedgepeth and H a l l  [9 .7]  and they a re  

The buckling 

a N  a N  
X + l >  P 0 
ax R a+ (9-24) 

(9-25) 

(9-26) 

The buckling equlibrium equations (Eq. (9-24), (9-25) and (9-26)) can be expressed i n  terms o f  displace- 
ments U ,  v and w using the  force-displacement r e l a t i o n s  given by Eq. (A-2) and (A-3) o f  (9.11. 
The force-displacement r e l a t i o n s  a r e  obtained from the  force  r e s u l t a n t  d e f i n i t i o n s  i n  terms of t he  
stresses by r e l a t i n g  t h e  s t r e s s e s  t o  the  displacements using the  elastic s t r e s s - s t r a in  law and t h e  
strain-displacement r e l a t i o n s .  Thus f o r  example, the  force  r e s u l t a n t  Nx may be expressed as a 

func t ion  of t he  displacements (U,  v and w) ,  the  design va r i ab le s  (5) and the  material proper t ies .  
The three  buckling equilibrium equations i n  terms of the  displacements U, v and w are homogeneous 
l i n e a r  coupled p a r t i a l  d i f f e r e n t i a l  equations [ s e e  Eq. (A-16) o f  [9.111. 
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Subs t i t u t ing  the  following displacement functions 

U = A s i n  rlt$ cos Ax (9-27) 

(9-28) v = B cos n6 s i n  Xx 

w = c s i n  n e  s i n  Ax (9-29) 

i n t o  the th ree  buckling equi l ibr ium equations i n  terms of the  displacements l eads  t o  a 3 x 3 
determinant. Note t h a t  the  assumed displacements given by Eq. (9-27), (9-28) and (9-29) s a t i s f y  the  
simply supported boundary conditions assumed. 
gross buckling (G.B.), panel buckling (P.B.) and sk in  buckling (S.B.) analyses provided appropr ia te  wave 
length  parameters rl and X a r e  chosen f o r  each of t he  th ree  f a i l u r e  modes as follows: 

s t a b i l . i t y  

The same bas i c  buckling ana lys i s  may be  used f o r  the  

i - 1 gross buckling (G.B.) 

A - ; m =  1,2 , . . ,  

n = n ; n = 0,1,2, ... 
i = 2 panel buckling (P.B.) 

X = E  ; m = 1,2 ,  ... 
rl = n ; n = 0,1,2,  ... 

IlX 

, 

i - 3 s k i n  buckling (S.B.) 

A P E  ; m = 1,2,  ... 
ax 

(9-30) 

(9-31) 

(9-32) 

(9-33) 

(9-34) 

(9-35) 

In  each case,  s e t t i n g  the  3 x 3 s t a b i l i t y  determinant t o  zero  g ives  an expression f o r  t he  buckling load  
of the  form 

+ 
Nik = f(D, PP, i, k, m, n) . (9-36) 

+ 
Thus given a design D and the preassigned parameters PP (R, L and the mafer ia l  p rope r t i e s ) ,  buckling 
loads  f o r  t he  i t h  f a i l u r e  mode i = 1,2,3 i n  the k th  load condition (NikIcr can be obtained by 

seeking the  minimum of (Nik) over a range of i n t ege r  values f o r  m and n; t h a t  is 

+ 
( Y i k l c r  = (Nik)cr - M e  Min (N i k  ) - f(D, PP,  i, k, n*, m*) 

where nPr and n* denote the  in t ege r  values of m and n t h a t  make Nik a minimum. 

It is usefu l  t o  s o r t  ou t ,  o rder  and s t o r e  the  f i r s t  M most nea r ly  c r i t i c a l  combinations of m 
and n. The f i r s t  M mst near ly  c r i t i c a l  combinations of m and n provide a b a s i s  f o r  conducting 
approximate buckling analyses i n  f a i l u r e  modes i = 1,2,3,  t h a t  i s  i n  gross (G.B.), panel (P.B.) and 
sk in  buckling (S.B.). As modest changes i n  the design a r e  made during the  opt imiza t ion  procedure 
s h i f t i n g  of the c r i t i c a l  buckling node shape is  t o  be expected, bu t  i t  is very l i k e l y  t h a t  the  new 
cr i t ical  mode shape w i l l  be amongst the  previously i d e n t i f i e d  M most nea r ly  c r i t i c a l  modes. This 
c h a r a c t e r i s t i c  
( see  Section 9.2.3). 

i s  used t o  advantage subsequently i n  cons t ruc t ing  the  optimization procedure 

The buckling of t h e  longi tudina l  s t i f f e n e r s  i s  guarded aga ins t  using a f a i l u r e  ana lys i s  t h a t  
t r e a t s  t he  s t i f f e n e r s  a s  a long p l a t e  simply supported on three  edges and f r e e  on the  four th .  
t he  longi tudina l  and c i rcumferent ia l  s t i f f e n e r s  can have d i f f e r e n t  depths and because they may indeed 
not  even be on the  same s i d e  of the  s h e l l ,  p rovis ion  i s  made f o r  using various combinations of p l a t e  
planform dimensions i n  t h i s  ana lys i s .  
by the  following inequa l i ty  

Because 

The longi tudina l  s t i f f e n e r  buckling f a i l u r e  mode i s  represented 

(9-38) 

I 
I 
I 
{ 

1 

i 

I 

I 

I 

I 



I09 

where 

and 

(9-39) 

(9-40) 

In E q .  (9-39) the H ' s  are sec t ion  p rope r t i e s  t h a t  depend upon the  design va r i ab le s  and the  mater ia l  
p rope r t i e s ,  pk and Nk are mechanical loads f o r  t h e  k t h  load condition, R is  the  s h e l l  rad ius ,  

and E i s  t h e  modulus of e l a s t i c i t y  of t he  long i tud ina l  s t i f f e n e r s .  I n  Eq. (9-40) uxs represents  

the Poisson's r a t i o  and t is the  thickness of the  longi tudina l  s t i f f e n e r s .  Se lec t ion  of the  length 

(E) and the  depth (d) t o  be used i n  computing the  longi tudina l  s t i f f e n e r  buckling stress is ca r r i ed  
out  according t o  the  following prescr ip t ion :  

xs 

(1) s t i f f e n e r s  on oppos i te  s i d e s  of t h e  s h e l l  

d = ldxl , E - L 
(2) s t i f f e n e r s  on the  same s ide  of t he  s h e l l  and 

ld,l < Id6) , then l e t  

d - ldxl , a - ax 

(3) s t i f f e n e r s  on the  same s i d e  of t he  s h e l l  but 

Idx( > ( d e (  , then (ucIk i s  given by Eq. (9-40) With 

e i t h e r  

It should be noted t h a t  analogous s i t u a t i o n s  are encountered wi th  respec t  t o  the  determination of 
the  cr i t ical  buckling s t r a i n  i n  the  f a i l u r e  mode ana lys i s  o f . t h e  c i rcumferent ia l  s t i f f e n e r s .  

The c i rcumferent ia l  s t i f f e n e r  f a i l u r e  mode ana lys i s  treats the  s t i f f e n e r  as a c i r c u l a r  p l a t e  with 
a concent r ic  c i r c u l a r  hole i n  the  oLddle,simply supported along t h e  edge t h a t  forms t h e  s h e l l  ( s ee  
Fig.9.4). Due to  t h e i r  curvature ex te rna l  c i rcumferent ia l  s t i f f e n e r s  can buckle when the  cy l inder  
expands. Two separa te  f a i l u r e  modes a r e  considered: one assoc ia ted  with con t r ac t ion  of the  cy l inder  
E < 0 ( C . S . B . C . )  the o ther  assoc ia ted  With expansion > 0 ( C . S . B . E . ) .  I n  t h e  case of 
con t rac t ion  ( C . S . B . C . )  t he re  are s i x  p o s s i b i l i t i e s  t h a t  must be considered: 
0 ftJ 

c i rcumferent ia l  (1) longi tudina l  s t i f f e n e r  ou t s ide  
s t i f f e n e r  i n s ide  
d$ > O  (2) i n s i d e  and ldxl 2 lde1 

(3) i n s i d e  and ld,l < (d@p( 

c i rcumferent ia l  (1) longi tudina l  s t i f f e n e r  i n s ide  
s t i f f e n e r  ou t s ide  
dg < O  (2) ou ts ide  and Idxl 2 ldQl 

(3) ou ts ide  and ldxl < ldgl . 
In the  case of expansion ( C . S . B . E . )  of the  s h e l l ,  c i rcumferent ia l  s t i f f e n e r  buckling can only  occur 
when it is on the ou t s ide  of  the s h e l l  and only th ree  p o s s i b i l i t i e s  need t o  be considered: 
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circumferential 
stiffener outside 
dO < 0 

(1) longitudinal stiffener inside 

(2) outside and ldxl IdO! 

(3) outside and Idx( < Id+l . 
The remaining failure modes i = 7,8,9,10,11 deal with yield stress constraints and they need 

not be elaborated on here. 
the biaxial stress condition. 
barrel shells i9.21. 

It may be noted, however, that the yield constraint for the skin considers 
This failuremode was found to be of particular importance in the case of 

9.2.3 Features of the optimization procedure 

The problem is formulated using the Fiacco-McCormick interior penalty function approach (see 
Sections 2.6.2 and 6.3.1). This formulation transforms the basic inequality constrained minimization 
problem into a eequence of unconstrained minimizations that are carried out using the variable metric 
algorithm described in Section 6.2.6. 
interior penalty function facilitate the use of approximate analyses. 
cylindrical shell buckling analyses (G.B., P.B. and S.B.) are carried out using a drastically reduced 
number of possible buckling mode shapes 
stage a full buckling analysis is executed and the 
are ordered and stored. Then, within that unconstrained minimization stage, the shell buckling 
analyses are approximate in the sense that the search for the critical buckling mode shape is carried 
out over only the M combinations of (m,n) identified at the beginning of the stage. 

The constraint repulsion characteristics of the Fiacco-McCormick 
In particular the three 

(m,n). At the beginning of each unconstrained minimization 
M most nearly critical combinations of (m,n) 

The Fiacco-McCormick penalty function formulation for this problem can be expressed as follows 

where 

and 

5 1  
Pb(% = c 7 

j=17 h. (D) 
J 

side 
constraints, 

behavior 
constraints . 

(9-42) 

(9-43) 

The gradient to the function $(if, r ) has the following form 
P 

04 = OM - r [VP + VP,] (9-44) 
P S  

and the gradients OM and VPs are determined from analytic expressions for the partial derivatives 
while the gradient VPb 
the partial derivatives, i.e. 

is obtained using first order forward finite difference approximations for 

(9-45) 

In Eq. (9-45) it is assumed that the critical buckling mode shape is the same at 
The selection of the finite difference increment sizes 
gross proportions of the design. 

if and 6 + Aif. 
ADi can be guided by some foreknowledge of the 

-+ 
The unconstrained minimization of the function +(D, r ) for each stage is carried out using the 

P 
variable metric algorithm. 
modification defined by a direction d and a magnitude U i.e. 

The (q + 1)th design is obtained from the qth design through a design 

q q' 

where 

(9-46) 

(9-47) 



+ + 
and a i s  t h e  d i s t ance  t o  the  minimum of $(D + ax  ) - f (u )  along S . The matrix H i s  i n i t i a l l y  

taken a s  the  i d e n t i t y  mat r ix  and i s  then sys temat ica l ly  updated according t o  the p re sc r ip t ion  given i n  
Section 6.2.6. 

9 9 q  9 P 

+ 
For a spec i f i ed  d i r e c t i o n  S with in  an r s tage  the  problem reduces t o  a one-dimensional 

minimization problem. 
s lope  a s  a test, i s  used t o  l o c a t e  two poin ts  such t h a t  the  minimum l ies  between them. 
the  func t ion  value and slope a t  these  two po in t s ,  a cubic in t e rpo la t ion  is  made t o  es t imate  the  loca t ion  
of the  minimum. It should be noted t h a t  t h e  H matrix ( see  Eq. (9-47)) is  not updated unless t he  one- 

dimensional minimum has been found within a prescribed to le rance ;  Also the  H matrix i s  r e s e t  t o  I 

whenever the  number of one-dimensional minimizations equals t he  number of independent design var iab les .  

q P 
To f ind  t h e  minimum of f ( a )  along a l i n e ,  an incrementation scheme, with the 

Then, using 

9 

q 

A maximum of f i v e  cubic in t e rpo la t ions  is made i n  order  t o  ob ta in  convergence of t he  one-dimensional 
minimization. Convergence i s  sa id  t o  have occurred i f  e i t h e r  t h e  dot product test  is s a t i s f i e d ,  i .e .  

-$ -& . lfql G 0.005 (9-48) 

o r  t he  d is tance  between the  two poin ts  s t r add l ing  the  minimum i s  l e s s  than a spec i f i ed  minimum. 

Three a l t e r n a t i v e  c r i t e r i a  a r e  used t o  t e s t  fo r  convergence of  each n dimensional unconstrained 
minimization s t age  i n  the  sequence. 
following th ree  c r i t e r i a  is s a t i s f i e d :  

Convergence of t he  pth s t age  i s  assumed when any one of t he  

and n = 3 o r  4 I v$ I i n i t i a l  (1) absolu te  va lue  of t he  gradient IV$( < E where E = 
10" 

(2) estimated amount by which $ exceeds i t s  minimum i s  less than 2% ( a f t e r  n one-dimensional 
m 

04' H V$ 
minimizations, j u s t  p r i o r  t o  r e s e t t i n g  H matrix t o  I ) ,  i . e .  4 4 < 0.02 

9 $" 
7 

(3) minimum move d i s t ance  t e s t  converged i f  a move i n  the  negative grad ien t  d i r ec t ion  (Qq = - b q )  
which i s  twice the  minimum move d i s t ance  causes v io l a t ion  of any cons t r a in t  [hj(ifq + 2Tmin ;"9) 

Wi fq )  . i5q. 

01 

or i f  the s ign  of the  s lope  i s  reversed, i .e .  i f  V$dq + 2Tmin ) . -$ 
9 4  

has i t s  s ign  oppos i te  t o  

Convergence of the  sequence of n dimensional unconstrained minimization s tages  i s  usua l ly  based 
It i s  noted 
An opt ion  t o  

bounds can be placed 

upon a c r i t e r i o n  t h a t  depends upon t h e  primal-dual na ture  of the  Fiacco-McCormick method. 
t h a t  t h i s  c r i t e r i o n  given i n  19.81 depends upon the  convexity of t he  programing problem. 
terminate the SUMT procedure a f t e r  converging a user prescribed number of s tages  i s  a l s o  provided i n  the  
computer program. Once a minimum i s  obtained f o r  one value of t he  parameter rg, 
on the  value of the  minimum weight. 
ob jec t ive  func t ion  and above by the cur ren t  value of t he  weight. 
c r i t e r i o n  19.81 

The minimum weight value i s  bounded below by the  value of t he  dual 
This leads  to  the  following convergence 

M - 6  
-BGE (9-49) 

where E i s  a small number t o  be assigned and @ is the  value of the  dual ob jec t ive  func t ion  given by 
% 

J 1  06, rp)  = ~ 6 )  + 1 - - 
j=1 h.  (if) 

J 

(9-50) 

There are severa l  cont ro l  parameters, i n  addi t ion  t o  the  convergence c r i t e r i a ,  t h a t  influence the  
opera t iona l  e f f i c i ency  of t h k d e s i g n  optimization procedure i n  appl ica t ion .  
s e l ec t ion  of these parameters based upon opera t iona l  experience with the  program are: 

Some suggestions f o r  the  

(1) s e l e c t  the  i n i t i a l  value of r such t h a t  
P 

~ ( 5 ~ )  - r 5 1  1 - 
j=1 h.(ifo) 

J 

(9-51) 

(2)  set the  cu t  f a c t o r  applied t o  r a f t e r  each s tage  equal t o  4 ( i . e .  l e t  c = 1 so t h a t  
P 

rp+1 = 1 r p ) ,  
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N - 1  l b / i n  
Load condi t ion  + compressive 

(3)  le! the  number of  near c r i t i c a l  ordered modes saved f o r  the  approximate s h e l l  buckling 
analyses be  

(a) gross buckling, 40 modes (except f o r  cases with ex terna l  pressure ,  then  10 modes), 

(b) panel buckling, 20 modes, 

(c)  sk in  buckling, 10 modes, 

(4) le t  the number of modes examined i n  the  'complete' s h e l l  buckling analyses be 

max = 309 
(a) gross buckl ing , longi tudina l  m = U) + 50, c i rcumferent ia l  n 

(b) panel buckling, longi tudina l  mmX = 10 + 20, c i rcumferent ia l  n = 50 + 150, 

(c)  sk in  buckling, longi tudina l  m = 20 + 30, c i rcumferent ia l  n = 15 + 20. 

m a X  

m a X  

I M X  m a X  

P 
l b / i n 2  

+ ex te rna l  pressure 

9.2.4 Sample Results 

1 

2 

3 

A s u b s t a n t i a l  body of experience has been gained with t h i s  capab i l i t y  and r e s u l t s  f o r  over 30 
cases were reported i n  [ g e l ) .  These numerical results i l l u s t r a t e d  the  following poin ts :  

(1) 
approximations, 

(2) 

(3)  

the  e f f ec t iveness  of the  pena l ty  func t ion  approach when used i n  conjunction with ana lys i s  

the  inf luence  of various combinations of i n t e r n a l  and ex te rna l  s t i f f e n i n g ,  

the s e n s i t i v i t y  of t he  minimum welght design t o  loading  i n t e n s i t y  and minimum gage 
l imi t a t ions ,  

(4) 

(5) 

t he  importance of considering mul t ip le  load condi t ions ,  

the ex is tence  of r e l a t i v e  minima i n  the  design space assoc ia ted  with design subconcepts and 
embedded wi th in  the  b a s i c  problem statement.  

Consider t he  following example, Case 1-1' taken from [9.1].  The preassigned parameters are 
R = 60 i n ,  L - 165 in;  the mater ia l  i s  aluminium with the  following proper t ies :  

700 0 

940 -2 .o 
212' M . 4  

i 

E = 10 x lo6 l b / i n  2 , 

v - 0 .333  9 

p = 0.101 lb l in '  9 

a = 50000 l b / i n  
Y 

2 

The i n i t i a l  t r i a l  design has  a l l  i n t e r n a l  s t i f f e n i n g  and the  following minimum gage requirements a r e  
s t i pu la t ed ;  

The s t i f f e n e d  s h e l l  

ts 2 0.19 i n  , 
t 2 0.050 i n  , 

X 

t 2 0.050 i n  . 6 

is subjec t  t o  a set of t h ree  d i s t i n c t  load condi t ions  summarized as follows: 

The i n i t i a l  t r i a l  design and the  f i n a l  proposed optimum design are depicted graphica l ly  i n  Fig.9.5. 
The weight is  reduced from 715 l b  t o  293 l b .  
e s s e n t i a l l y  minimum gage. There a re  f i v e  o the r  cons t r a in t s  t h a t  are c r i t i c a l  o r  near  c r i t i c a l  f o r  
the  f i n a l  design shown i n  Fig.9.5 and they are 

It may be  noted t h a t  t he  s t i f f e n e r  th icknesses  a r e  

I 

i 



1 1.3 

60" R 
INITIAL DESIGN 
W = 715LBS 

LENGTH : 165 IN. 
MATERIAL: ALUMINUM 

60"R 

FINAL REDESIGN 
W = 293 LBS 

Fig.9.S Initial and Final Design (Case 1-1') 
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(1) gross buckling i n  load condition 2 ,  

y12 = 0.999 , 
12 c r  

(2) sk in  buckling i n  load condi t ion  2 ,  

(3) panel buckling i n  load condition 2, 
. -  

" 
I22 .- = 0.975 , 
22 c r  

( 4 )  sk in  y i e ld  i n  load condition 3 ,  

" 
'73 .(y = 0.968 , 
73 cr 

(5) sk in  buckling i n  load condition 1, 

. The design improvement depicted i n  Fig.9.5 was achieved i n  twelve unconstrained minimization 
s t ages  i n  which r was reduced by a f a c t o r  of 4 f o r  each subsequent s tage  i . e .  [ r  - 4 rp, 
p = 1 , 2 ,  ... 121. 
mately 15 minutes. 
compvter-with run times l e s s  than 5 minutes. 
load condition example, Case 1-1' 
was 2% seconds while an approximate ana lys i s  required 0.5 second. 
using approximate analyses f o r  t h e  cy l ind r i ca l  s h e l l  buckling mode analyses i s  very s i g n i f i c a n t .  

P P+l 
The t o t a l  run time f o r  t h e  For t ran  I V  program on t h e  Univac 1107 computer was approxi- 

Essen t i a l ly  the  same r e s u l t s  have been obtained on a Univac 1108 and a CDC 6600 
It is  i n t e r e s t i n g  t o  note t h a t  f o r  t h i s  p a r t i c u l a r  t h ree  

from (9.11, the 1107 machine time requi red  for. a complete ana lys i s  
The e f f i c i ency  gained as a r e s u l t  of 

A co l l ec t ion  of  twelve examples based on t h i s  one bas i c  problem was s tudied  and repor ted  in (9.11. 
The twelve cases examined can be generated by considering a l l  combinations of four  s t r u c t u r a l  concepts 
and three  load l e v e l s .  The s t r u c t u r a l  concepts are: 

(1) a l l  i n s ide  s t i f f e n i n g ,  no minimum gage r e s t r i c t i o n s ,  

(2) c i rcumferent ia l  s t i f f e n i n g  i n s i d e  and longi tudina l  s t i f f e n i n g  outs ide ,  no minimum gage 
r e s t r i c t i o n s ,  

(3) a l l  ou t s ide  s t i f f e n i n g ,  no minimum gage r e s t r i c t i o n s ,  

(4) and 

The increas ing  l eve l s  of load i n t e n s i t y  a r e  given by ONk, 8pk where 8 = 1, 2,  and 3. The minimum 

weights obtained i n  pounds f o r  each of the  twelve cases are summarized as follows: 

a l l  i n s ide  s t i f f e n i n g ,  with minimum gage r e s t r i c t i o n s  as discussed previously.  

The minimum weight f o r  Case 1-1' previously discussed i n  some d e t a i l  i s  underlined. The foregoing 
summary of r e s u l t s  show the  s t rong  influence on t h e  optimum weight of minimum gage l imi t a t ions .  
can a l s o  be observed t h a t  t he re  is  a higher percentage penal ty  f o r  imposing minimum gage l imi t a t ions  
on l i g h t l y  loaded s t r u c t u r e s  than on more heavi ly  loaded s t ruc tu res .  
r e s u l t s ,  t h a t  t he re  i s  only a moderate weight reduction assoc ia ted  with the various combinations of 
i n t e r n a l  and ex terna l  s t i f f e n i n g  examined, i n  t h i s  ins tance .  
means of eva lua t ing  a l t e r n a t i v e  s t i f f e n i n g  concepts based on a comparison of optima. 

It 

It is  a l s o  apparent,  from t:hese 

The optimization capab i l i t y  provides a 
While the  b e s t  
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concept was found t o  be load condi t ion  dependent i n  l9.11, i t  should be noted t h a t  the  maximum weight 
reduction assoc ia ted  wi th  a l t e r n a t i v e  s t i f f e n e r  l oca t ions  ( in s ide -ou t s ide )  d id  not  exceed 12% f o r  any 
of t he  examples studied. 

The r e s u l t s  reported i n  [ 9.1 1 r e in fo rce  the  conten t ion  t h a t  subconcepts contained wi th in  the bas i c  
problem statement are o f t en  assoc ia ted  with r e l a t i v e  minima pockets i n  the design space. 
wi th  a l l  i n t e r n a l  s t i f f e n i n g  l ed  t o  f i n a l  designs wi th  a l l  i n t e r n a l  s t i f f e n i n g .  
can be made wi th  regard t o  a l l  ex te rna l  s t i f f e n i n g  and mixed i n t e r n a l  ex te rna l  s t i f f e n i n g .  
noted t h a t  t he  options provided i n  the  program, t o  preassign any subset of design va r i ab le s  and t o  f i x  
s i d e  cons t r a in t  limits can be used as a c rea t ive  cont ro l  device. The user  of t h e  program, therefore ,  
can force  the  opt imiza t ion  procedure t o  search  f o r  t he  bes t  design wi th in  various subconcept regions i n  
the design space. This s i t u a t i o n  i l l u s t r a t e s  the  complementary r e l a t ionsh ip  t h a t  e x i s t s  between 
automated opt imiza t ion  procedures and man-machine communication. 
suggests t h a t  t he  successfu l  app l i ca t ion  of mathematical programming techniques t o  s t r u c t u r a l  design 
opt imiza t ion  f o r  complex spec ia l  purpose appl ica t ions  requi res  t a i l o r i n g  the  ana lys i s  and optimization 
procedures together.  

I n i t i a l  'designs 

It should be 
The same observation 

The experience reported i n  (9 . l ]  

9.2.5 Recent Further Developments 

An extension t o  b a r r e l  s h e l l s  by Stroud and Sykes [9.2] of t he  s t i f f e n e d  c y l i n d r i c a l  s h e l l  
optimization program reported i n  19.11 should be noted. 
s t r u c t u r a l  op t imiza t ion  c a p a b i l i t i e s  can p lay  i n  eva lua t ing  design concepts the  following quota t ion  from 
[9.2] i s  c i t ed :  "For s h e l l s  designed t o  support  a x i a l  compressive loads,  t h e  r e s u l t s  show t h a t  important 
weight savings can be provided by s l i g h t  meridional curvature.  For t h e  p a r t i c u l a r  s h e l l  examined here in ,  
the  maximum weight saving is  about 30%. 
a t t r i b u t e d  t o  b a r r e l i n g  cannot be d i r e c t l y  t r ans l a t ed  i n t o  weight savings when comparisons a r e  made 
between minimum-weight designs.  
bar re led  s h e l l s  than f o r  cy l ind r i ca l  she l l s . "  

As an  i l l u s t r a t i o n  of t h e  important r o l e  

The l a r g e  increases  ( f a c t o r s  of  5 t o  9 i n  s t r eng th )  r ecen t ly  

Yielding becomes an important f a i l u r e  c o n s t r a i n t  a t  lower loads f o r  

Kicher and Chao (9.31 have r ecen t ly  repor ted  the  development of  a s t r u c t u r a l  op t imiza t ion  
capab i l i t y  f o r  s t i f f e n e d  f i b e r  composite cy l inders .  
preassigned and both longi tudina l  and c i rcumferent ia l  h a t  c ross  sec t ion  s t i f f e n e r s  a r e  considered. 
design va r i ab le s  include the  depth and width of the  h a t  s t i f f e n e r s ,  the  s t i f f e n e r  spacings, t he  f i b e r  
volume content ,  and the  p ly  o r i en ta t ion  angles.  Multiple load condi t ions  are considered and each load 
condition is  described i n  terms of  a combination of a x i a l ,  r a d i a l ,  and to r s iona l  load. 
t o  cons t r a in t s  on t h e  range of the  design va r i ab le s ,  geometric r e a l i z a b i l i t y  cons t r a in t s  and behavior 
cons t r a in t s  a r e  considered. The behavior cons t r a in t s  a r e  formulated i n  terms of c r i t i c a l  stresses and 
s t r a i n s ,  and they guard aga ins t  unsa t i s f ac to ry  behavior i n  each f a i l u r e  mode i n  each load condition. 
The following e i g h t  f a i l u r e  modes a r e  considered i n  [9.31: 
(3) sk in  buckling, (4) longi tudina l  s t i f f e n e r  buckling, (5) c i rcumferent ia l  s t i f f e n e r  buckling, 
( 6 )  mater ia l  f a i l u r e  i n  the sk in ,  (7)  material f a i l u r e  i n  the  longi tudina l  s t i f f e n e r s ,  and (8) material 
f a i l u r e  i n  the c i rcumferent ia l  s t i f f e n e r s .  The l i n e a r  eigenvalue ana lys i s  f o r  gross and panel buckling 
i s  based upon a method similar t o  t h a t  of Cheng and Ho 19.91. 
buckle i n t o  a to r s iona l  waveform. Eight sets of boundary conditions are provided, and the  d e t a i l e d  
development of t he  buckling ana lys i s  used is given i n  (9.101. 
s t i f f e n e d  cy l inder  i s  taken to  be the  ob jec t ive  function. 

The o v e r a l l  l ength  and r ad ius  of the  cy l inder  a r e  
The 

In addi t ion  

(1) gross buckling, (2) panel buckling, 

The cy l ind r i ca l  s h e l l  i s  assumed t o  

The weight of t he  f i b e r  composite 

The design optimization problem is  formulated i n  design space using the  Fiacco-McCormick 
i n t e r i o r  penalty func t ion  and t h e  sequence of unconstrained minimizations i s  ca r r i ed  out  using t h e  
v a r i a b l e  met r ic  method. 
and hence t h e  inf luence  of changing the  p ly  angles is  present  on ly  i n  the  penalty term of the  
Fiacco-McCodck func t ion  $(a, rp ) .  

func t ion  t o  changes i n  p ly  angle  as r decreases leads t o  computational i ne f f i c i ency .  A device which 

a r t i f i c i a l l y  increases  the  inf luence  of the p ly  angles on t he  penalty func t ion  i s  introduced. Numerical 
r e s u l t s  f o r  severa l  example problems a r e  presented i n  [9.31 and [9.10] and the  e f f ec t iveness  of  the  
a lgor i thmic  modification is  i l l u s t r a t e d .  
op t imiza t ion  procedure i n  the  design of s t i f f e n e d  f i b e r  composite cy l inders .  
a l t e r n a t i v e  optima are c o r "  f o r  t h e  type of s t r u c t u r e  considered; 
values which y i e lds  the  minimum weight i s  not unique. 
extend the  app l i ca t ion  of mathematical programming t o  include p ly  angles and f i b e r  volume f r a c t i o n  as 
design va r i ab le s  i n  the  minimum weight design of s t i f f e n e d  f i b e r  composite s h e l l s .  

It is pointed out  t h a t  the  weight func t ion  is  independent of  the  p ly  angles 
~ 

It i s  observed t h a t  t h e  decreasing s e n s i t i v i t y  of t he  

P 

$(D, r ) 
P 

These r e s u l t s  a l s o  d e m n e t r a t e  t h e  c a p a b i l i t i e s  of t he  
It is shown t h a t  

i .e.  t he  set of design va r i ab le  
The research  r e s u l t s  reported i n  19.31 and [9.10] 

Waddoups, McCullers, Olsen, and Ashton l9.41 have r ecen t ly  reported a minimum weight s t r u c t u r a l  
optimization capab i l i t y  f o r  a class of an i so t rop ic  p l a t e  s t ruc tu res .  This development includes 
c a p a b i l i t i e s  t o  design: (1) a uniform p l a t e  wi th  complex membrane load condi t ions ,  (2) a uniform p l a t e  
with combined bending and membrane load condi t ions ,  and, (3) a simple m u l t i c e l l  wing box with a re f ined  
design of the  compression cover. 
cons t ruc t ion  i s  ava i l ab le .  
cons t ruc t ion ,  and the design va r i ab le s  include the thickness and f i b e r  o r i e n t a t i o n  f o r  each lamina. 
The most general  problem formulated i n  19.4) involves 2 1  design va r i ab le s  (12 f o r  the  cover p l a t e  and 
9 f o r  the  wing box), 45 d i s t i n c t  f a i l u r e  modes, and a maximum of 3 independent load conditions.  
program repor ted  permits op t iona l  preass igning  of a subse t  of design va r i ab le s ,  and it provides f o r  
l i nk ing  of f i b e r  o r i en ta t ion  and lamina thickness design va r i ab le s .  
pena l ty  func t ion  formulation with a va r i ab le  met r ic  (Davidon-Fletcher-Powell) unconstrained minimization 
algorithm was employed. 
optimization procedure was the key t o  achieving the  low machine running times reported.  
c a p a b i l i t y  descr ibed  i n  19.4) i s  or ien ted  toward a spec ia l  c l a s s  of s t r u c t u r e s  ( an i so t rop ic  f i b e r  
composite p l a t e s )  , it is  viewed as an  important p r a c t i c a l  app l i ca t ion  of mathematical programming 
techniques t o  s t r u c t u r a l  design wi th in  the  context of aerospace engine%ering p rac t i ce .  

A choice of th ick  p l a t e ,  r i g i d  core sandwich, o r  s t i f f e n e d  p l a t e  
In  each case the  sk ins  are assumed t o  be of laminated f i b e r  composite 

The 

The Fiacco-McCormick i n t e r i o r  

The use of various ana lys i s  approximations during major por t ions  of the  
While the  
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9.3 Ablating Thermostructural Panel Example 

This example, reported i n  19 .SI, i l l u s t r a t e s  the  appl ica t ion  of mathematical programming techniques 
t o  the  design optimization of  a re furb ishable  composite type ab la t ing  hea t  sh i e ld .  
shown i n  Fig.9.6 is drawn from [9.11]. The func t ions  of the  major panel components i n  t h i s  concept. are 
q u a l i t a t i v e l y  descr ibes  as follows: 

The design concept 

(1) 
re-entry,  

t he  a b l a t o r  p ro tec t s  the  subs t ruc ture  from the  severe thermal environment assoc ia ted  wi th  

(2) t h e  subs t ruc ture  t r a n s f e r s  t he  pressure  loading through supporting s t r u c t u r e  t o  the  primary 
s t r u c t u r e  ( i t  must be s t i f f  enough and thermally compatible with the  a b l a t o r  ma te r i a l  so as t o  avoid 
cracking of the  charred a b l a t o r ) ,  

(3) the  in su la t ion ,  which i s  assumed t o  be nons t ruc tura l ,  keeps the  primary s t r u c t u r e  and the  
vehic le  i n t e r i o r  a t  an acceptably low temperature. 

9.3.1 Problem Statement , I  

The i d e a l i z a t i o n  on which the  problem formulation rests i s  depicted i n  Fig.9.7. The non-linear 
t r a n s i e n t  thermal ana lys i s  is  t r ea t ed  one-dimensionally, considering only temperature grad ien ts  through 
the  thickness of t he  panel. 
t r ea t ed  as a s t r i p  exh ib i t i ng  curva ture  i n  the 

The s t r u c t u r a l  ana lys i s  assumes t h a t  the  f l a t  rec tangular  panel can be 
x d i r e c t i o n  only (see Fig.9.7). 

The a b l a t o r ,  subs t ruc ture ,  and i n s u l a t o r  materials and t h e i r  temperature dependent mechanical and 

1 thermal p rope r t i e s  a r e  preassigned parameters. 

through x5 shown i n  Fig.9.7, and the  planform dimensions of the  panel, x6 and x7. The loading  

environment i s  described by the  h e a t  f l ux  input  a s  a func t ion  of time 
as a func t ion  of  t i m e  

The design va r i ab le s  are t h e  various thicknesses x 

qc ( t )  and the  pressure  loading 

p ( t ) .  These depend upon the r e -en t ry  t r a j e c t o r y  and the  atmosphere. 

Nine f a i l u r e  rmdes are guarded aga ins t  by l imi t ing :  

(1) the  temperature a t  the  a b l a t o r  subs t ruc ture  in t e r f ace ,  

(2) 

(3) t he  panel midpoint de f l ec t ion ,  

the  temperature a t  the  back of t he  in su la t ion ,  

(4) ab la to r  stress l e v e l ,  

(5) 

(6) i n t e r c e l l  face  buckling stress, 

(7) 

(8) t e n s i l e  s t r a i n  i n  the  ab la to r ,  and 

(9) compressive s t r a i n  i n  the  ab la to r .  

ou te r  sandwich face  stress l e v e l ,  

inner sandwich face  s t r e s s  l e v e l ,  

Two a l t e r n a t i v e  ob jec t ive  func t ions  are considered. Minimization of the weight per u n i t  a r ea  of 
sur face  pro tec ted  may be taken as the  goal of the  optimization procedure. 
des i r ab le  t o  impose a cons t r a in t  on the  maximum t o t a l  depth of the  sh i e ld .  
of the  t o t a l  depth of t he  sh i e ld  may be taken as  the  ob jec t ive  func t ion  sub jec t  t o  a cons t r a in t  on the  
maximum weight per u n i t  sur face  a rea  pro tec ted .  

I n  t h i s  case i t  may be 
Al te rna t ive ly ,  minimization 

9.3.2 Features of the Thermal Analysis 

A s impl i f ied  one-dimensional ab la t ion  ana lys i s  due’ t o  Swann and Pittman was used t o  p red ic t  the 
t r ans i en t  temperature d i s t r i b u t i o n  [see Appendix A of [9.5]1. 
sur face  recess ion  as w e l l  as the  t r a n s i e n t  convective hea t ing  and r e rad ia t ive  e f f e c t s .  
a b l a t o r  is t r ea t ed  as though it were a subliming ab la tor ;  
blocking e f f e c t  of pyro lys i s  gases on convective hea t ing  rate and t h e  oxida t ion  of t he  char  res idue  
a t  t h e  receding ab la to r  surface.  The mater ia l  p rope r t i e s  of a l l  l aye r s  are taken t o  be temperature 
dependent. 

This ana lys i s  takes i n t o  account the  
The char r ing  

however, t he  ana lys i s  considers t he  

Referring t o  Fig.9.7 the  hea t  conduction equation f o r  t he  ab la to r  can be w r i t t e n  as 

(9-52) 
. .  

It proves convenient t o  in t roduce  the  following coordinate transformation 

(9-53) 
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Making t h i s  change of va r i ab le  i n  Eq. (9-52) y i e lds  

The boundary condi t ion  a t  the receding su r face  is 

(9-55) 

o r  making the  change of va r i ab le  ind ica ted  i n  Eq. (9-53) 

(9-56) 

where 

q ( t )  + (fonvective heating) +(combustive hea t ing)  
-(blocking) - ( r e rad ia t ion ) .  (9-57) 

In the t r a n s i e n t  temperature d i s t r i b u t i o n  ana lys i s  i t  is  assumed t h a t  the face shee t s  of the sandwich 
subs t ruc ture  a re  th in ,  so t h a t  no temperature gradient e x i s t s  through t h e  thickness of a face  shee t .  
However, the face  shee t s  a r e  assumed t o  have s i g n i f i c a n t  hea t  capacity.  The core  of t h e  sandwich i s  
assumed t o  have neg l ig ib l e  h e a t  capac i ty  and a l i n e a r  temperature grad ien t  i s  assumed t o  e x i s t  through 
the core (between the two sandwich face shee t s ) .  
sandwich faces (see Fig.9.7) are 

On t h i s  bas i s ,  t he  hea t  balance r e l a t i o n s  f o r  t he  

aTm k l  a T  
x2 p 2  cp2 at = -  (xl - 8 )  - Qm,mcl (9-58) 

and 

(9-59) 
+ Qm,m+l 

wheye. 

) ,  
ke Qm,m+l = - x3 (Tm - Tm+l (9-60) 

(9-61) 

and ke denotes the e f f e c t i v e  thermal conductivity of the  sandwich core.  Referring t o  Fig.9.7 the  

heat conduction equation governing the  t r a n s i e n t  temperature d i s t r i b u t i o n  i n  the  i n s u l a t o r  i s  

(9-62) 

It is assumed t h a t  no hea t  flows from the  in su la t ion  i n t o  the primary s t r u c t u r e  and hence the  appropr ia te  
boundary condi t ion  a t  the in t e r f ace  between the in su la t ion  and the  primary s t r u c t u r e  is  

(9-63) 
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The thermal response is governed by the  f i e l d  equations (Eq. (9-54) and (9-62)), the  hea t  
balance r e l a t i o n s  (Eq. (9-58) and (9-5911, and the  boundary condi t ions  (Eq. (9-56) and (9-63)). 

These governing r e l a t ionsh ip  can be cas t  i n  imp l i c i t  f i n i t e  d i f fe rence  form (see  Appendix C of 
[9.51),  so t h a t  

(9-64) 

where the  matrix [C] i s  t r i d i agona l  and i t s  elements depend upon the  temperature a t  t i m e  
Given the  time increments k and kj-l 

l i n e a r  ex t rapola t ion  i s  used t o  compute the  estimated temperature d i s t r i b u t i o n  a t  t i m e  

i . e .  y;+k . 
-' 

d i s t r i b u t i o n  I f  the  agreement i s  c lose  enough t h e  i t e r a t i v e  process terminates,  i f  not the 

temperature d i s t r i b u t i o n  obtained by so lv ing  Eq. (9-64) is  used as an improved estimate 

( t  + k.). 

j -1 

- 3 
as well  as the  temperature d i s t r i b u t i o n  Tt and 't-k / \ j 

( t + k j ) ,  
The elements of the matrix [C] i n  Eq. (9-64) a r e  then evaluated using the  estimate 

j 
and Eq. (9-64) is then solved f o r  ?;t+k . This r e s u l t  i s  compared with the  estimated temperature 

j 
t+k - 

( i . e .  T;+kj + Tt+k ) and t h e  elements of t he  matrix, [C] a r e  re-evaluated. This i t e r a t i v e  process L. 

j - 
i s  continued u n t i l  t he  agreement between the estimated temperature d i s t r i b u t i o n  

so lu t ion  obtained from Eq. (9-64) ( i . e .  Tt+kj ) agree wi th in  a preassigned to le rance .  I f  f i v e  cycles 

of  t h i s  i t e r a t i o n  do not  y i e l d  convergence the t i m e  increment k i s  reduced. The t i m e  increment t o  

be used i n  each successive s t ep  i s  made to  depend upon the  number of i t e r a t i o n s  required t o  achieve 
convergence of the p r i o r  s t ep .  In  p a r t i c u l a r ,  i f  convergence occurs i n  3 o r  less i t e r a t i o n s  then the  
t i m e  increment is  increased; i f  convergence occurs i n  4 i t e r a t i o n s ,  t he  t i m e  increment i s  not  changed; 
and i f  convergence r equ i r e s  f i v e  i t e r a t i o n s  the  t ime increment is decreased. The use of an  i m p l i c i t  
f i n i t e  d i f f e rence  formulation makes i t  poss ib le  t o  ass ign  the  time increment s i z e  dynamically. This 
allows the  use of l a rge  t i m e  increments when q ( t )  
increments when q ( t )  i s  high. When an e x p l i c i t  f i n i t e  d i f f e rence  formulation of t he  equations 
governing the  t r a n s i e n t  hea t  flow problem is  employed, the  s t a b i l i t y  c r i t e r i o n  limits the  s i z e  of t h e  
t i m e  increments r a the r  severe ly .  
panels were found t o  be about t h ree  times a s  long as  the  corresponding run  times based on an implicit 
formulation. 
ana lys i s  e f f i c i e n c y  t h a t  was e s s e n t i a l  t o  successfu l  development of t h e  opt imiza t ion  procedure. 

and the  
- j 

j 

i s  low and only requi res  the  use of smell time 

Exp l i c i t  formulation run times f o r  analyses of typ ica l  t h e r m s t r u c t u r a l  

The use of an impl i c i t  formulation and dynamic assignment of t i m e  increment s i z e  led t o  

9.3.3 

The s t r u c t u r a l  ana lys i s  i s  a l i n e a r  e l a s t i c  ana lys i s  employing temperature dependent material 

Features of  t he  S t ruc tu ra l  Analysis 

p rope r t i e s .  
func t ion  s t r u c t u r a l l y  with the  top face  shee t  of t he  sandwich. 
a b l a t o r  is  t r ea t ed  as a sandwich with unsymmetrical face shee t s .  

That por t ion  of t he  a b l a t o r  i n  which the  temperature i s  less than 4WoF i s  assumed t o  
The subs t ruc tu re  supporting the 

The bending s t i f f n e s s  of t he  face  shee ts  i s  taken i n t o  account and t ransverse  shear deformation 
It is of the  core i s  considered. It  is assumed that only  an t ip l ane  s t r e s s  is sus ta ined  by the  core.  

fu r the r  assumed t h a t  x7 x6 (see  Fig.9.7) and t h a t  s ince  the  aspec t  r a t i o  - 2 3 t h e  f l a t  

rec tangular  panel can be t r ea t ed  as a s t r i p  wi th  zero curvature i n  the  

see  Fig.9.7). 

x7 

2 a w  x6 

7-  y d i r e c t i o n  ( i . e .  

It should be noted t h a t  t he  face shee t s  a r e  b i a x i a l l y  s t r e s sed  under t h i s  assumption. 

The boundary conditions a r e  assumed t o  be simple support  i n  bending - 0 a t  x - f :) 
and f r e e  t o  expand i n  plane membrane behavior. 
Appendix B of [9.51. 

The s t r u c t u r a l  ana lys i s  is  described i n  d e t a i l  i n  

9.3.4 Features of the  optimization procedure 

The n ine  f a i l u r e  modes guarded aga ins t  ( see  Section 9.3.1) are a l l  parametric i n  t i m e  o r  i n  t i m e  
and space ( i . e .  through so? por t ion  of the  thickness of the. ' shield) .  
are represented by inequa l i ty  cons t r a in t s  t h a t  are parametric with t i m e  as follows: 

The f i r s t  t h ree  f a i l u r e  modes 

(1) T a t  ab la tor -subs t ruc ture  i n t e r f a c e  

(9-65) 
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(2) T a t  back of i n su la t ion  

(3) panel midpoint de f l ec t ion  

(9-66) 

f: 9 -6 7) 

+ 
where D represents  t he  vector of design va r i ab le s  and t h e  reent ry  time period i s  denoted t f .  These 
th ree  cons t r a in t s  a r e  of t he  following form 

(9-68) 

and i t  should be  noted t h a t  i n  general t h e  behavior var iab le  

depend upon t h e  design D and the  parameter t .  The re'maining f a i l u r e  modes (4 through 9 i n  Sec t ion  9.3.1) 
a r e  parametric with respec t  t o  both time and space. 

Y and i ts  allowable value may both 
+ j j 

These s i x  cons t r a in t s  are of t h e  general  form. 

(9-69) 

where j = 4 r e f e r s  t o  stress i n  t h e  ab la to r ,  
j = 5 r e f e r s  t o  stress i n  the  ou te r  sandwich face,  
j = 6 
j 7 r e f e r s  t o  stress i n  the  inner  sandwich face,  
j = 8 r e f e r s  t o  t e n s i l e  s t r a i n  i n  the  ab la to r ,  

j = 9 r e f e r s  t o  compressive s t r a i n  i n  the  ab la to r .  

refers t o  i n t e r c e l l  face  buckling stress* 

and 

z 
It i s  noted t h a t  i n  general  the  behavior va r i ab le  Y and i t s  allowable value Y may both depend 

upon the  design D a s  w e l l  a s  t he  parameters t and z .  It i s  a l s o  pointed out  t h a t  t h e  range of 
values over  time t Q t t and space 

general  d i f f e r  f o r  each f a i l u r e  mode ( j ) .  
i n t e r e s t  was  t h e  same f o r  a l l  f a i l u r e  modes, namely the  r een t ry  time period from 

However, the  various cons t r a in t s  ( j  = 4 + 9) were paramet r ica l ly  appl icable  t o  d i f f e r e n t  regions 
through t h e  thickness of t he  sh ie ld .  

+ j j 

(z l j  < z 
In  the  thermostructural  panel example, the  time period of 

z ) t o  which cons t r a in t  i s  appl ied  may i n  
2 j  1j 2 j  

t = 0 t o  t = t f .  

The thermostructural  panel optimization problem was formulated using the  in tegra ted  penal ty  
func t ion  scheme previously mentioned i n  Section 2.6.2. 
penalty function formulation t o  parametric inequal i ty  cons t r a in t s  has the  following form a s  applied t o  
the  thermostructural  panel problem i n  [ 9.51 : 

This extension of t he  Fiacco-McCormick i n t e r i o r  

r t -  

The b a s i c  idea  of t h i s  formulation i s  t h a t  t he  penalty func t ion  i s  influenced by the  behavior cons t r a in t s  
a t  a l l  times (0 t Q t,) and a t  a l l  loca t ions  of i n t e r e s t  ( z  z Q z ). Thus, the  parameters t 

and z a r e  accounted f o r  i n  a na tu ra l  way, and the  e n t i r e  response, r a t h e r  than j u s t  the c r i t i c a l  
response, in f luences  the  sequence of designs generated. 
cons t r a in t s  

1 j  2 j  

It should be  noted t h a t  t he  parametric i nequa l i ty  

and 

*not s t r i c t l y  parametric i n  z. 
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(9-72) 

must be s t r i c t l y  s a t i s f i e d  a t  a l l  times and loca t ions  of i n t e r e s t  i f  t h e  i n t e g r a l s  i n  Eq.  (9-70) a r e  to  
tie proper i n t e g r a l s .  

The i n t e g r a l s  i n  Eq. (9-70) a r e  evaluated numerically using t h e  information ava i l ab le  from t h e  
thermal and s t r u c t u r a l  analyses of a p a r t i c u l a r  design 

are c a r r i e d  o u t  using . t he  va r i ab le  met r ic  method of Davidon-Fletcher-Powell and f i n i t e  d i f f e rence  
approximations a r e  used t o  eva lua te  the  grad ien t  

$(D, r ) over the  acceptab le . reg ion  i n  the  design space, s ince  +(if, rp )  i s  not defined f o r  

unacceptable designs.  
example changing the  support spacing (x6 

repeated. 
thicknesses (X and x ) do not r equ i r e  r e p e t i t i o n  Of the  thermal ana lys i s .  

b. The unconstrained minimizations of +(it, r ) 
P 

V+(b, r ) a s  needed. Care i s  taken t o  minimize 

. 

For 

+ P 

P 
The idea  of  using approximate o r  abbreviated analyses i s  a l s o  employed. 

see Fig.9.7) does not requi re  t h a t  the thermal ana lys i s  be 

Also, i f  the  a b l a t o r  i s  th ick  (xl  > 2.25 i n )  then small changes i n  the  sandwich face  sheet 

2 4 
9.3.5 Sample Result 

A sample r e s u l t  taken from l9.51 is  b r i e f l y  described i n  t h i s  Section. The t r a j e c t o r y  considered 
used i s  f o r  a s tagnat ion  po in t  

The a l t i t u d e ,  ve loc i ty  and cold wall  

2 

i n  t h i s  example i s  of t h e  b a l l i s t i c  en t ry  type,  the  thermal input  

l oca t ion ,  and t h e  time per iod  of i n t e r e s t  i s  
convective hea t ing  r a t e  a r e  p l o t t e d  versus time i n  Fig.9.8. Note t h a t  t he  maximum q is  500 BTU/ft s ec  

a t  t 100 sec  while the maximum dynamic pressure i s  found t o  be 1700 l b / f t  a t  t 850 seconds. The 
materials employed in  t h i s  example problem are:  

q 
tf = 900 seconds. 

2 

(1) 

(2) sandwich - f ibe rg la s s ,  

(3) i n su la t ion  - microquartz. 

ab l a to r  - low dens i ty  phenolic nylon, 

The i n i t i a l  design and the  f i n a l  r e s u l t  obtained are shown schematically i n  Fig.9.9. 
sur face  area pro tec ted  ( the  objec t ive  func t ion  i n  t h i s  example) is  reduced from 18.2 l b / f t 2  t o  8.56 l b / f t 2  
and the  t o t a l  th ickness  of t he  sh i e ld  is reduced from 7.92 i n  t o  3.41 in .  The near c r i t i c a l  cons t r a in t s  
f o r  t he  terminal design are: 

The weight per un i t  

(1) temperature a t  back face  of i n su la t ion  ( l i m i t  660°R) 

Min h2(SOpt, t )  - -0.043 a t  t 

panel midpoint de f l ec t ion  ( l i m i t  0.24 i n )  

Min h3(Sopt, t )  - -0.116 a t  t 

900 seconds, 
t 

(2) 
851 seconds, 

t 

(3) temperature a t  the  ablator-sandwich i n t e r f a c e  ( l i m i t  1200'R) 

Min hl(ifopt, t )  - -0.131 a t  t = 900 seconds, 
t 

and (4) ab la to r  stress l eve l  

Min Min (Sopt, t ,  z) -0.368 a t  t = 370 seconds. 
t z  

The design improvement depicted i n  Fig.9.9 was achieved i n  6 unconstrained minimization s tages  using a 
FORTRAN IV program on a Univac 1107 machine. It is  
i n t e r e s t i n g  t o  note  t h a t  a typ ica l  thermal ana lys i s  of a t r ia l  design required approximately U) seconds 
while a s t r u c t u r a l  ana lys i s  given the  temperature d i s t r i b u t i o n  requi red  approximately 5 seconds. 

The run time was approximately 120 minutes. 

The capab i l i t y  reported in  [9.5] i s  thought t o  be t h e  f irst  app l i ca t ion  of t h e  in t eg ra t ed  penalty 
function approach t o  a s t r u c t u r a l  design problem involving complex parametric f a i l u r e  mdes  representa t ive  
of p r a c t i c a l  appl ica t ion .  
minimization subjec t  t o  maximum depth cons t r a in t s  and t o t a l  depth minimization subjec t  t o  maximum weight 
cons t r a in t s .  
combinations of candidate mater ia l s ,  based upon a comparison of optima. 
(9.51 a l s o  i l l u s t r a t e s  the importance of  t a i l o r i n g  the  ana lys i s  and the  design opt imiza t ion  procedure 
toge ther .  

The capab i l i t y  makes i t  poss ib l e  t o  ca r ry  out  t rade-of f  s t u d i e s  between weight 

It is  a l s o  poss ib le  t o  use t h i s  capab i l i t y  t o  eva lua te  t h e  r e l a t i v e  merits of various 
This spec ia l  purpose app l i ca t ion  
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SECTION I V  

FUTURE TRENDS AND RESEARCH NEEDS 
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Chapter 10 

OPTIMIZATION OF STRUCTURES WITH RELIABILITY CONSTRAINTS 

by 

F. Moses 

10.4 Introduction 

The aim of this work is to explore the relationship between optimum design of structures as it 
is now formulated in almost 'Classical' terms and reliability or safety of structures. The discussion 
will focus on the kinds of structures for which reliability or failure probability can reasonably be 
analyzed and have been presented particularly in a redesign or optimization procedure. As the topic 
concerns safety in a probabilistic framework some attention must be given to relevant questions of 
probability sensitivity, failure costs, limited empirical information, analysis errors, and safety 
philosophy. 
be presented. 

Several examples of optimization with reliability or failure probability constraints will 

By this time it has become classical on the part of researchers to formulate a structural 
optimization problem in the following format [ 10.11 : 

+ 
Minimize M(D) (10-1) 

such that h.($) < 0 ; j = 1,2,. ..J . (10-2) 
J 

+ + 
The D are design variables that must be determined. M(D) is an objective function usually weight 
or cost although some performance criterion may be introduced. The h.(D) are constraints which should 
also insure the safety of the structure as well as impose fabrication or construction requirements. 
or any other design rules which the engineer wishes to maintain. 
in the literature the h.(D) constraints include fixed and predetermined safety factors which limit the 
stresses, deflections and stability coefficients to allowable values. In the best of situations the 
safety factors have been arrived at in a manner consistent with probabilistic and statistical analyses. 
This would be done by accumulating data on loads and strength. 
that it is not exceeded by any of the measured loads except say once in a hundred times. 
way a strength %IN 
safety factor or ignorance factor is introduced which in ultimate strength design is multiplied by 
to give PULT or in working stress analysis is divided into %IN to give Rdesign. The safety factor 
expresses the ignorance or uncertainty regarding the stress analysis, fabrication details and other 
factors. Bouton has pointed out the difficulties in choosing the proper safety factor which has varied 
for missile and spacecraft from 1.25 to 1.35 to 1.5 as judgement dictated 
that the safety factor values may have more of an effect on structural cost or weight than accurate 
analysis and optimization procedures. 
some recent American and European design codes 110.31. 
developed in an evolutionary way giving values which work for existing structures. 
however, is introduced by an optimization approach. This is illustrated in Fig.lO.1 which shows a 
design space with linear constraints and a linear objective function. It can be proven for such a 
problem as in Fig.lO.1 that: 

+ 
J 

In most optimization studies reported 
+ 

3 

A load value Pw could be chosen such 
In a similar 

Then a is chosen such that it is exceeded by say 99.9% of all strength data. 

pm 

10.21. It should be noted 

The trend to more rational choice of safety factors is seen in 
In many cases, however, the safety factors have 

An important factor, 

design variables 1 . 
number of 

(10-3) 

A similar conclusion results for fully stressed elastic designs in which the number of active 
stress constraints at the termination of the design iteration equals the number of design variables. 
From a safety viewpoint the optimization technique has introduced a factor which may be detrimental. 
It has been pointed out that optimization methods for aircraft and aerospace structures push the design 
so that 'structural systems' are just barely on the high side of the minimum [ 10.41. In the present 
approach safety will be viewed in a probabilistic sense such that the criterion for safety is the 
probability of failure, [ 10.51, [ 10.61, [ 10.71 , [ 10.81. 
and strength are random phenomena defined by frequency distributions. 
occurs when loads exceed strengths so that the overall safety or failure probability can be expressed as: 

This must recognize that the load environment 
For a structural system,fai.lure 

F 1 

Probability of Failure = Probability member Or mode 1 its capacity (10-4) 

By using conventional non-probability based optimization procedures more members or failure modes 
will be designed against the limit than if redesign were not done. 
constraints this procedure from a probabilistic viewpoint reduces the safety of the structure below 
that of an unoptimized design. 
failure in the optimization process have been based mostly on previous experience and practice usually 
with nonfully-stressed and non-optimized designs. 

In the absence of any other 

Furthermore the safety factors used to protect various elements against 

Also, the safety factors may be based on a sinl:le 
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element and single load condition combination without regard to system interaction. A severe case of 
such system interaction would be brittle composite elements of a wing all subjected to the same aero- 
dynamic environmental loading. The greater the number of elements the more likely failure is,unless the 
safety levels of all members are increased. The optimum way to apportion the increased safety levels is 
an example of the problems to be considered. Because a clear relationship exists between the safety of 
structures and a design process incorporating optimization this requires the development of both methods 
of mathematical programming to do optimum design 10.91 and mathematical methods to compute the expected 
safety or probability of survival [ 10.101, [ 10.111. 

There are several problems that must be considered in the context of reliability or probability of 
failure based design. 
assumed probability distributions for the various random variables including load and strength [ 10.121 
but which also may include expansion coefficients and moduli of elasticity. 
evaluating computational models which account for factors such as indeterminacy, types of failure modes 
including elastic, brittle, and collapse modes and the numbers of load conditions and failure modes and 
the system interaction. 
design or proportion the members of the structure within the reliability context, This could be the 
minimum cost or weight design for a specified allowable failure probability [ 10.131, [ 10.141, [ 10.151 
or the fixed cost design which minimizes the probability of failure. In a more elaborate framework, it 
has been proposed to include the cost of failure directly and to find a design which minimizes total 
overall cost [ 10.161 . Some of the examples to be presented include multilnember elastic designs (weakest- 
link structures) and systems designed according to limit design theory ('fail-safe'structures) [10.17]. 
The approach generally presented herein is to design for a specified allowable overall probability of 
failure in which the failure probability constraint is evaluated from a sequence of numerical integrations. 

The first problem is the reliability analysis of structures with derived or 

This involves developing and 

A second problem is given a reliability or failure probability analysis to 

In view of the computational and philosophical questions raised by a probability of failure analysis 
and reliability based design some further attention should be given to the reasons for considering its 
use. This includes some of the disadvantages of current deterministic approaches and some of the benefits 
to be realized by incorporating some features of a probabilistic approach to safety and design. 
of course, recognized that a total attitude and approach to design cannot be put completely on a pro- 
babilistic basis since some 
not fully described by probabilistic distribution [ 10.41, 
probability constraints rather than deterministic constraints will help insure a more balanced and rational 
design. Other aspects of the problem will now be considered. 

1. 
optimized structures of different configuration, material and geometry. 
rational comparison is possible only if the structures have the same level of safety as expressed in terms 
of probability of failure. This, of course, presumes that the same level of knowledge or data exists for 
each proposed configuration or system regarding mean levels and variability of loadings and element strengths, 
Otherwise a Bayesian or subjective approach to be discussed subsequently must be applied. 

2. 
replacing the numerous limitations (on member stress and deflections) in a deterministic design by a 
single constraint on overall structural failure. 
has been transformed from the design optimization aspect to the analysis of failure probability. 

3.  
beryllium and molybdenum and the use of thin shell structures leads to improved strength and stiffness 
characteristics in the mean; however, these materials and structures often exhibit increased strength 
variability compared with conventional structures [ 10.41, [ 10,181. 
often involving fatigue, creep and thermal considerations. 
necessitate such high safety factors that the benefits of the improved material properties will be 
unrealized unless a direct probabilistic approach is taken. 
also increased the complexity and the extremes of the structural loading environment. 
deep submergence vehicles, space vehicles and high speed aircraft, for example, are often subject to such 
broad load spectrums that the picking of a 'worst' possible load condition 
meaningless. 

4. 
overall system, which can include electrical, fire control and navigational systems. 
additional costs or weights to various components including the structure to improve overall safety 
including trade-off between systems can be made economical when reliability including structural 
reliability is directly expressed as a function of design parameters 110-161, [ 10-191. 

5. 
be applied to those phenomena that can be quantified; namely the treatment of high load and understrength 
values as random variables. 
consider a particular load condition which turns out to be critical cannot be covered by any design format 
code - deterministic or probabilistic. 
of structural behavior both with regard to verifying the structural analysis and also determining if the 
failure mode phenomena were properly identified. 
additional modes of failure are not introduced during the fabrication and assembly process. 
reliability approach, further, does not eliminate the possibility of limitations on the operation of the 
structure such as maximum wind velocity during launch of a space vehicle or maneuver operations of an 
aircraft. In such cases the frequency distribution of the loads must be based on proper compliance with 
the operational limitations. 
not be an obstacle to the rational use of the probabilistic approach. 
be undertaken to determine the percentage of failures or accidents in structures which have been due 
either to overload or understrength factors occurring. An acceptable allowable failure probability due to 
these factors under control of the structural engineering design code might be established as being of the 
order 1-10% of the total number of failures including those of construction, fire, blast, etc. beyond the 

It is, 

factors such as expected analysis, panufacturing and fabrication errors are 
Nevertheless, in an optimization application 

In order to reach more significant levels of structural optimization it is necessary to compare 
Within this decision context a 

Reliability based optimum design may actually facilitate the mathematical optimization problem by 

The mathematical and computational complexity, however, 

The application of new aerospace oriented materials such as ceramic composites, carbon composites, 

Failure modes are also more complex 
This greater strength variability may 

Some current structural applications have 
Nuclear reactors, 

PElAx is economically 

Another factor is the need to balance the economy of a structure which is only one component of an 
The allotment of 

In considering a probabilistic approach it should be clarified that this approach to safety can only 

Design, calculation and erection errors or in particular the failure to 

This should emphasize the continuing need for full scale evaluation 

Quality control standards are also needed to insure that 
A 

The establishment of an acceptable allowable failure probability should also 
A study of existing structures can 
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control of structural designers. A similar approach for ships has proposed that structural failure 
probability should be based on about 10% of the total number of failures expected, the remainder of 
failures being due to fire, navigation and human errors. 

10.2 Reliability Analysis 

In formulating a reliability analysis for a structure the first consideration is the structural 
analysis or failure modes applicable to the design. 
of failure to be guarded against. 
and ultimate collapse. 
would be used whether linear or non-linear. 
failure criterion would bedefined on the basis of the yielding of any member under any load condition 
(Weakest-Link Design). This criterion in the case of indeterminate structures ignores the reserve strength 
that may exist after the yielding of a member. 
include all levels of failure and their associated probabilities of occurrence. 

This means identifying the failure modes and levels 
There can be reliability values against yielding, excessive deflections 

In each case, an appropriate type of structural analysis and failure criterion 
For example, with a linear elastic structural analysis the 

A total reliability analysis of a structural system would 

The development of reliability analysis usually begins with what is sometimes called the funda- 
mental case. It consists of a single member of strength R subjected to a load P as shown in Fig.10.2 
along with the frequency distributions of R and P. This problem has many of the elements that dis- 
tinguish structural reliability from other reliability problems in electrical networks and systems. 
Namely, that both the strength inherent in the design and the load environment are random variables. 

Several mathematical and statistical techniques have been used to evaluate failure probability 
including Monte Carlo, perturbation, and evaluation of integral equations. The Monte Carlo or simulation 
method involves constructing on a computer trial structures according to generated random numbers and 
determining the percentage of structures which fail. A large number of trial structures is needed if high 
confidence is wanted at small failure probability levels. Many investigations have used these methods for 
such problems as the reliability of rocket engines i10.161 and random vibration [10.20]. The Monte Carlo 
approach requires considerable calculation but it is useful for complex interelated structural systems or 
for verification of approximate reliability analyses [10.21]. 

The perturbation method linearizes the reliability expression and then usually uses a normal 
distribution approximation. 
or thermal expansion are also random variables. 
Diederich, et a1 [ 10.61 as in the following example of the reliability of a flat plate buckling under 
compressive load. Letting P be the applied load, f the critical stress, and n the safety factor, 
then 

It is especially applicable for problems in which the modulii of elasticity 
Linear perturbation has been applied extensively by 

3 n - f bt K E L  
2 bP * 1-v P (10-5) 

Linearizing about the arbitrary values, n*, E*, .t*, P* gives [lo-61, 

Thus the distribution of n can be constructed from the linear combination of distributions of t, E, 
and P. 
discussed subsequently could also be used [10.21]. 
the distribution of strength phenomena which can then be incorporated into finding system reliability. 

Assuming normal distributions greatly simplifies the problem although the Pearson distribution 
The linear perturbation method is best used to find 

The third technique of reliability analysis developed extensively by Freudenthal and others [lo.lO] 
attacks the reliability evaluation directly by constructing integral equations which must then be 
evaluated numerically. 
bability that the load variable exceeds the strength and may be computed from either of the two integrals: 

For example, the probability of failure for the fundamental case is the pro- 

m 

(10-7) 
0 0 

where F(t) denotes the probability distribution and f(t) the density or frequency distribution. The 
reliability Ro is always determined from the failure probability as 1-Pf. 

A plot of Pf vs. n is shown in Fig.lO.3 for a typical case where P and R follow the normal 
distribution with 20% coefficient of variation of load and a 10% on strength. Analysis by Freudenthal 
and others has shown the effects on of changes in coefficient of variation, central safety factor 

and the form of the frequency distributions including normal, log normal and extrema1 functions [ 10.71. 
The results are usually lotted in terms of the safety factor needed to achieve a specific failure pro- 
bability [ 10.101, [ 10.17f. 

Pf 

The fundamental case is useful in clarifying the numerical aspects of reliability by indicating the 
sensitivity of failure probability to input statistical parameters. 
only a single element of a complex structure with multi-member multiple load conditions and, therefore, 
numerous potential failure modes. 
member one load case will now be considered using the integral equation approach. 

'Weakest-Link Structures'. 
is useful for truss or framework like structures in which many elements or members are subjected to 

The fundamental case, however, is 

Some examples of structures more complex than the fundamental one 

These structures fail if any single critical member fails. Such a model 
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a loading of a single origin such as aerodynamic gusts. 
shield problem in which aerodynamic heatiw load causes thermal stresses in a vehicle which can cause 
failure at n points sufficiently separated so material strengths are independent [ 10.61. A 
statistical correlation exists between failure modes because different members may simultaneously fail 
under the same load condition and the same member may fail under different load conditions. Fig.lO.4a 
shows a single member subject to several load conditions or independent repetitions of a single load. 
It is easy to verify in this case that the failure probability is: 

The model has also been proposed for a heat 

(10-8) 

If there is only one loading but n members as in Fig.lO.lb, Pf can be determined from the 
following equation: 

This result is often approximated in the form [ 10.131, [ 10.151, [ 10.221, [ 10.231, [ 10.241 

where Pfi is the failure probability of the ith element. The objection to Eq. (10-10) 

(10-9) 

10.251 : 

(10-10) 

s not with regard 

to the fact that Pfi 
the assumption in the product term that the failure modes are independent. Bouton has pointed out that 
this approximation may have arisen by analogy with certain electrical components in which failure modes 
are independent [ 10.41 . Failure modes are not statistically independent for structural systems because 
the element stresses are completely correlated if they arise from the same load condition. This factor 
has been shown by several investigations and some results to be presented will show its effect on the 
optimization process and the minimum weight value. 

is usually small which permits replacing the product term by a sum term but rather 

Eq. (10-9) must be used to give the correct value of the reliability. The constant a relates the 
force or stress level, whichever is appropriate, in member i to the load value P, where t is used as 
a variable of integration. 
methods. For indeterminate structures, as in Fig.l0.4c, Eq. (10-9) would still be applicable if the 
'Weakest Link' criterion of first member yielding is taken to be overall failure. 
deemed too conservative then a reliability analysis must include the 'fail safe' probability that the 
structure survives even if some members have failed or yielded. 
indeterminate structure is complicated because of the numerous alternate load paths and yielding of 
combinations of members to produce failure [ 10.261. 
coefficient of variation of the load is greater than that of the strength, there is little fail ssfe 
reserve probability. 
the probability of collapse. 
between mean load and mean strength. 
and if there is small strength variability there is a high probability that other members yield and 
collapse ensues. 
large compared to the variability of the load. In addition to the ease of computing 'weakest-link' 
failure probabilities as compared to 'fail safe' values there is an added factor that most statically 
indeterminate trusses have many determinate members in addition to indeterminate members so that overall 
failure occurs if any of the determinate members yield. Thus it is concluded that the reliability for 
most indeterminate elastic structures can be analyzed by finding the overall probability of any member 
failing under any load condition. 
approach. 

then Pf could only be determined from multiple integrals 10.111, 
approximations using only single integrals that include most of the statistical dependence between failure 
modes due to a single load on many members or a single member under several load conditions [ 10.111. 
useful bounds on Pf, 

on the reliability for 'weakest link' structures which fail if any member fails. 
failure is computed from a sequence of single integrals and any form of frequency distribution for load 
and strength can be used. 
of ultimate collapse criteria makes it necessary to extend to looking at 'fail-safe' methods of 
reliability analysis. 

'Fail-safe' or Redundant Structures - (Ductile Materials). In structures designed by limit or ultimate 
design methods or in statically indeterminate structures several members or elements must simultnneously 
reach their capacity before failure is reached. 
corresponds to the sum of the independent load contributions exceeding the strength terms. 
terms are linear thio leads to an equation for the random variable of reserve strength, 2 
j of: 

i 

The a. can be found from structural analysis methods such as the finite element 

If this criterion is 

The computational model for an 

One factor, however, is that if the variability or 

That is,the probability of yielding of any single member is only slightly less than 
This is because proportioning of members is based on a linear relati.onship 

If one member yields then it means a high load value has berm reached 

Fail safe reserve strength is only expected when the strength variability is relatively 

This greatly simplifies the analysis and is also a conservature 

If all loads are not independent repetitions of the same load but rather independent load conditions, 
Some work has been presented with 

Some 
however, have been presented [ 10.271. 

These works indicate the feasibility of obtaining exact values or when necessary reasonable bounds 
The probability of 

While 'weakest link' analysis is reasonable for most structures the introduction 

Some examples are shown in Fig.lO.5. A failure mode 
If all the 
in a mode 

j' 
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WEAKEST- L I N K A 7" 
MODEL 

(b) 

I 

Fig. 10.4 Examples of System Reliability Problems 

(a) One Member, m Loads 

(b) One Load, n Members 

(c) Indeterminate System, One Load 

(d) Indeterminate System, m Loads 
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I 

n L i=1.. .n - critical elements 
k=l...L - loads aji Ri - bjk 'k j=l...m - collapse modes j io1 1=1 (10- 11) 

where R represents the strength contributions and Pk the load terms. The overall failure probability 
is the probability that any collapse mode has been reached. 

j 
Thus: 

pf 
= Pr [z, G 01 + er [z2 6 0, z1 > 01 + Pr [z, Q o ,  z2 > 0, z1 > 01 + ... . (10-12) 

Two methods of numerical analysis other than Monte Carlo simulation have been used to compute the 
probability of a single failure mode occurring [ 10.211, [ 10.281. 
directly using recursive integrations the frequency distribution of the reserve strength variable 
Eq. (10-11). Since the terms in this equation are assumed,the distribution of 2 can be found by 
successively evaluating the convolution integral numerically. In the specific case where all the R's 
and P ' s  are normal then 2 is also normal. For non-normal distributions a second method for finding the 
distribution for 2 uses the Pearson family of distribution functions. This requires the first four 
statistical moments of the random variables. 
conclusive and showed good agreement with the recursive integration procedure and Monte Carlo simulation. 
Normal, log normal and Weibull frequency distribution were studied. 
distribution system is that it can incorporate both the correlation between load terms and strength of 
element combinations. The load correlation would arise, for example, when an entire structural system is 
subject to pressure or thermal variation with a known correlation function. 
reflect the fact that elements may come from the same manufacturer or be subject to the same fabrication 
tolerances. 

The first approach was to evaluate 
2 in 
j 

j 

j 
The results with the Pearson frequency distributions were 

A further advantage of the Pearson 

Strength correlation could 

It should also be noted that the computation of collapse mode failure probability could also be 
Another done in the case where the terms in Eq. (10-11) are nonlinear as long as they are separable. 

factor to be noted about the collapse mode failure probability is the applicability of the central 
limit theorem. 
This fact tends to make the choice of frequency distribution for load and strength less important 
than in the 'weakest-link' analysis, 
the load and strength terms decreases as compared to the value of an individual term as the number of 
terms increases. 

Fail-safe - (Brittle Material). 
could be achieved by using brittle materials such as ceramics or carbon composites. 
designs with brittle materials another factor enters the reliability analysis which makes Eq. (10-11) 
inapplicable. 
all. This is also the case with elements that fail through fatigue cracks or exhibit unstable buckling 
modes. 
which elements fail. Shinozuka has given for the case of m brittle members and one load condition an 
expression for 

This is also based on the assumption that all elements have the same strength distribution R. 
apparent from the multiple integrals that an exact reliability analysis for brittle members is limited to at 
most several members especially when it must be incorporated into an optimization routine. Several factors, 
however, suggest that statically indeterminate structures with brittle members or unstable elements which 
cannot maintain their load after reaching a critical value could be incorporated into the weakest-link 
analysis. 
failure of one member and the redistribution of its load into adjacent members will almost certainly 
'trigger' consecutive failures. 
others [ 10.261. 
the failure of a member implies that a high load value has been reached. 
relationship between load and stresses the high load reached, indicated by the failure of a member, will 
cause other members to be highly stressed and fail. 
only be expected when the strength variability is relatively large compared to the variability of the 
load. 
also been used for elements which exhibit fatigue failure. This is particularly true if there is not 
constant inspection to check crack growth. Furthermore many statically indeterminate structures also 
have some important critical members which are determinate and thus belong in a 'weakest-link' analysis. 
If there are a large number of redundant brittle elements in an ultimate failure mode then the methods 
developed for fiber glass and other yarn materials may be applicable [ 10.291. 

Time Dependent Problems and Random Vibration. 
static approach to loads and strength. 
stresses or fatigue strength which may be stochastic or time dependent. 
structural mechanics as in phenomena such as wind, earthquake, vehicle loads, aerodynamic gusts and 
turbulences and ocean waves,in which the loads and stresses vary with time. When the time variation of 
loads is significant with respect to the natural period of the structure under investigation this gives 
rise to random vibration. Also the magnitude of the underlying load carrying phenomena may change over 
the life of the structure. As an example a structure may be subject to dynamic stresses and vibration 
due to wind gusting and also during the life of the structure the mean wind may be changing, causing 
variation in mean response. 

The sum of independent random variables approaches in the limit a normal distribution. 

A further point is that the coefficient of variation of the sum of 

In many aerospace structures it has been found that increasing economy 
In such redundant 

That is the fact that when a brittle member reaches its capacity it ceases to take any load at 

Thus the evaluation of failure probability must consider the order and various combinations in 

Pf which requires evaluating an (m-1)th order integral by numerical integration [ 10.261 . 
It is 

One factor is that unless the strength coefficient of variation is relatively large the 

This has been borne out in some of the computations by Shinozuka and 
Another factor is if the load variability exceeds that of strength as is often the case, 

Since there is a linear 

In general significant,fail safe reserve strength can 

The approximation of the reliability analysis of a redundant system by a weakest-link model has 

Most structural reliability analyses have been based on a 
An overall viewpoint cannot neglect, however, such factors as 

Numerous cases arise in 

Studies of random vibration and stochastic processes involve problems which are directly applicable 
to the safety and reliability question [ 10.121, [ 10.201, [ 10.301. Among the results needed are two in 
particular: 
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(a) The frequency of occurrence of stress levels. These rates are used to compute the expec.ted 
fatigue life based on experimental analysis of fatigue specimens along with extrapolation to a1 
load spectrum [ 10.311. 

(b) 
structure. 
ing or collapse [ 10.201, [ 10.301. 

The probability of reaching a critical response level at any time during the life of a 
A solution to this first passage problem is needed to predict the failure due to yield- 

The typical recent results of these investigations have produced curves showing 
required. 
optimum design procedure with element strength distributions. 
loading represents an important area of future investigation. 

Pf VS. safety factor 
These results can be used to construct frequency distributions for loads to be used in an 

The subject of optimum design with random 

10.3 Reliability Based Optimization 

Optimizing element sizes in a design raises questions as to the meaning of an optimum in the 
context of a probabilistic model. One alternative minimizes the total cost of the structures, where 

C(tota1 cost) C.I.(initial cost) + P x C.F.(cost of failure) . ( 10- 13) f 

Letting the failure cost consist of two parts including the cost of reconstruction assumed to be 
the same as the initial cost and another factor C' which expresses the consequence of failure, leads 
to the result that the minimum cost Pf allowable should be [ 10.151 : 

C c 1  C 
2 7  

Pf,allowable a (C.1.) + C' = - d T  l+C.I. 
C' 

( :L0-14 ) 

Eq. (10-14) shows the approximation if the initial cost is small compared to the consequence of failure 
as is sometimes the case in aircraft transport and certain other structural vehicle systems. 

An alternative approach minimizes Pf subject to an allowable structural weight, so that given 
of the an allowable weight the optimum design distributes it to the various elements to minimize 

structure. 
must be re-evaluated. The approach generally adopted, however, is to minimize the total structural 
weight subject to an allowable value of 
suggests that 
problem. 
trade off studies between different parts of the entire system [ 10.161, [ 10.191. 

Pf 
If the optimum Pf is too large, then either the structure's feasibility or assigned weight 

The present state-of-the-art in estimating failure costs Pf. 
be assigned and not determined by the designer as part of the optimization 

are, of course, useful and should be considered in 
'f ,allowable 

'f ,a1 lowable Curves of minimum weight vs. 

In mathematical programming terminology, the optimization problem is a constrained minimization 
of the following form: 

minimize the weight, W = W 6 )  

subject to the inequality constraint 

'f") 'f ,allowable 

(10-15) 

(10-16) 

-+ where D 
variables. 

are the design variables, and pf (5) is the failure probability as a function of the design 

If there are other constraints based on deterministic factors such as fabrication or construction 
rules, these may be written as: 

Eq. (10-15) to (10-17) are similar to the class of structural synthesis problems formulated by Schmit and 
others but differ in that a single constraint on 
deflections, and buckling in the usual structural optimization problem [ 10.11. The use of the constraint 

equally to all critical in Eq. (10-16) without regard to optimum weight would apportion 
failure modes. If there are n failure modes, then each mode i would be designed for an individual 
failure probability of: 

Pf replaces the numerous constraints on stresses, 

'f ,allowable 

< L  
'fi n 'f ,allowable (10-18) 
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An optimization approach will achieve greater economy and also provide a better basis of comparing 
alternative design schemes. +A design space concept suggests itself consisting of a multi-dimensional 
space with a design point 
must be determined. These design variables may be, for example, element areas or beam sizes. A two- 
dimensional illustration is shown in Fig.lO.6 with a constraint curve such that all points on the curve 
have a reliability value equal to the allowable value and designs lying to one side of the curve have 
unacceptable failure probabilities. 
be weight, cost or some other criterion, and it is also a function of 
should be a simple mathematical programming problem involving only one behavior constraint which is 
failure probability. 
P,(d) 
redesign points at which Pf 

(D) in the space corresponding to the values of the design variables that 

There is also shown an objective function to be minimized which may 
d. Eq. (10-15) to (10-17) 

A good minimization procedure is needed, however, because no explicit function for 

is evaluated should be kept to a minimum. 
exists without evaluating integral expressions such as Eq. (10-9). so the total number of 

A review of the available inequality constrained minimization methods suggests either a gradient 
method based on usable feasible directions or a technique which successively linearizes the reliability 
and weight functions and minimizes using linear programming The problems considered thus far 
by this author have shown no examples of relative minima. 

[ 10.321. 

Ex amp 1 e s 

'Weakest-Link' Structures. Most investigations of reliability based optimization have used Eq. (10-10) 
to form the design constraint [ 16.131, [ 10.151, [ 10.221, [ 10.241, 
equation neglects the statistical correlation between failure modes due to their being acted on by the 
same load conditions. 
Pf 
bability for each mode rule, as in Eq. (10-18), resulted because higher failure probabilities 
allotted toheavier members than lighter members. 
could give the optimum member proportions more efficiently than the Lagrange multiplier technique 
A necessary condition for the dynamic programming method is that the contributions of member failure 
probability to the overall Pf dre independent as in Eq. (10-10). 
Hilton's approach showed that at the optimum a linear relationship exists [ 10.151 , 

10.251. As discussed above, this 

Hilton used a Lagrange multiplier technique to minimize the weight subject to the 

Pfi were 
constraint based on Eq. (10-lo), (10-13). Significant weight saving over an equal failure pro- 

Kalaba showed that a dynamic programming formuPation 
10.231 . 

Switzky in an important elaboration of 

W. (weight (member i)) Pf (member i) 

'f ,allowable 
= (10-19) 

The development of Eq. (10-19) was based on several assumptions including static determinacy and 
linear dependence of the weight function on the design variables, namely, 

w = mi (10-20) 

Using a Lagrange multiplier, A ,  on the constraint equation and taking the partial derivatives, gives 

aPfi - ZPfi)l = 1 - A - - 0 . a - awi + ('f,allowable awi (10-21) 

Thus at the optimum design point, 

(10-22) 

If it is also further assumed,that a small change in the allowable failure probability does not 
affect the ratio of member sizes or weight, namely; 

W. 
'f ,allowable 2 = constant , independent of ZWi 

then Eq. (10-19) follows directly from Eq. (10-22). 

form 

Using a different Pf 

biDi 
Pfi = a.e 

8 (10-23) 

weight relationship of the 

(10-24) 

instead of the assumption in Eq. (10-22), Murthy gave the following relationship at the optimum 10.331 : 

(10-2.5) 

A similar result to Eq. (10-19) was found recently by Shinozuka for cases where proof-loading is 
incorporated in the design process [ 10.331 
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Fig. 10.7 Optimum Weight using Exact Pf (Eq. ( I  0-9)) Divided by Design Weight Neglecting 
Failure Mode Correlation (Eq. (10- 19)) vs. Number of Members. Weakest-Link Structure 

ai 
pf = 0.01 

MEMBER NUMBER. I 

Fig. 10.8 Member Influence Coefficient vs. Member Number, Illustrating Failure Mode 
Correlation (see Eq. (10-28)) 
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(10-26) 

where Ci 
a factor which reflects the ratio of cost of element to cost of failure. 
Eq. (10-21) assumes that the structure is statically determinate in-which case: 

includes the failure probability term and the probability of failing under the proof-load times 

It should be emphasized that 

(10-27) 

This is not true for statically indeterminate structures since a change in one design element changes the 
force distribution and therefore the mean load levels and failure probability in other members, 

To apply Eq. (10-19) for finding a minimum weight design or either of the other results in 
Eq. (10-25) and (10-26), a trial and error procedure can be used. For example, assumed ratios of member 
sizes can be made so that Eq. (10-19) gives 
relationship between element safety factor and failure probability such as determined in the fundamental 
case of structural reliability,a member weight 
ratios of member sizes are compared to the assumed values. 
process is terminated. 
frequency distributions being the same as in Fig.lO.3. 
design based on the values of mean load and equal safety factor in each member. 
this example can be done quickly with slide rule calculations for this case since Fig.lO.3 is available. 
For other distribution functions the curves such as those prepared by Freudenthal for the fundamental 
reliability cases are needed. 
design for ordinary design practice at least within the assumptions of Eq. (10-19). 
the design over a uniform safety factor for all members as illustrated in Table 10.2 is obtained by 
arriving at a design such that heavier members have higher failure probabilities than lighter members. 

Pfi for each member. Using this probability value and a 

The new computed 
When these ratios converge for all members the 

It converges in 2 cycles starting from an initial 

Wi is found from the safety factor. 

Table 10.1 shows the procedure for a 10 member truss example with load and strength 

The design process for 

This example illustrates the feasibility of doing reliability analysis and 
The weight saved in 

An investigation is needed, however, of the assumptions in Eq. (10-19) and the possibility of 
Recent applications of dynamic programing to several examples indicate further weight reductions. 

that the assumption of Eq. (10-23) is reasonable and that the ratio of member weights is independent of 
allowable failure probability [ 10.241. 
namely in Eq. (10-lo), neglect the correlation between failure modes which invalidates Eq. (10-19). Some 
results will be subsequently shown which allow further weight reductions by including this correlation in 
the computation of the overall failure probability. 

However, both this latter study [ 10.241 and the constraint used, 

The effect of failure mode correlation on the weight has been studied independently by considering 
a special example [ 10.141. 
The consideration of the correlation -this is done by using Eq. (10-9) to compute the system failure prob- 
ability rather than Eq. (IO-10) -allows each member to be designed f o r  a higher individual failure 
probability than if the correlation were ignored. The higher individual failure probability, of course, 
means a lower weight and the ratio of the optimum weight including the correlation factor (O.W.) to the 
weight assuming independence of failure modes (I.W.) is plotted in Fig.lO.7. For the frequency 
distribution of load and strength shown the maximum weight reduction reaches 7.3X for case 1 in a 50 
element structure. Fig.lO.8 shows the effect of correlation when the overall failure probability is 
written as: 

All members have equal mean loads and, therefore, the same optimum area. 

+ an 'fn Pf 
= a1 Pfl + a2 Pf2 + ... + ai Pfi + ... (10-28) 

where Pfi If there were no 
correlation, and we would have Eq. (10-lo), all a's would equal 1.0. If there was complete correlation 
and the elements were numbered so that the element with the highest individual failure probability were 
first, then al 
primarily on the ratio of the load's coefficient of variation to that of the strength and secondarily on 
the value of the allowable overall failure probability [ 10.111. 
for Pf = 0.0001. The decrease of a. vs. n shown indicates the important general conclusion that 
failure probability allotted per member need not be reduced proportionately for an increase in the number 
of members or failure modes in a structure as in Eq. (10-18). This would only be correct if the load had 
negligible variability compared to member strength. 
applicable to some aircraft under extreme gust or impact conditions, the conclusion is that if each member 

of the structure then the overall Pf will still be P 'f ,allowable be designed for 
a given shape of the curve of ai VS. n the amount of total weight saved by incorporating the correlation 
factor and using Eq. (10-9) as the constraint depends on the number of members and the member's failure 
probability as a function of its weight. 
discussed above in the fundamental one member one load case illustrated in Fig.lO.3. 

is the probability of failure of the ith member under the single loading. 

equals 1.0 and all other a's equal zero. The shapes of the curves in Fig.lO.8 depend 

Similar results were shown in [ 10.111 

To consider an extreme case which may in fact be 

For f,allowable' 

This is affected by frequency distributions and variance as 

An example showing the effect of correlation for structures with unequal mean loads is given in 
Table 10.2. It is the same example discussed above presented in Table 10.1 based on Eq. (10-10) 
neglecting correlation. Table 10.2 shows the optimum design including the correlation effect (Eq. (10-9)) 
compared to designs in which a constant safety factor is used for each member and the design based on 
Eq. (10-10). The difference between the weights of the optimum design and the equal safety factor design, 
2.8X,shown in Table 10.2 is due to both the correlation factor and the unequal proportioning of failure 
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0.297 
0.554 
0.818 
1.09 
1.35 
1.61 
1.86 

2.35 
2.59 

248.6 

' 2.11  

- 

Table 10.1 

OPTIMUM D E S I a  USING FAILURE PROBABILITY APPROXIMATION - *WEAKEST-LINK' STRUCTURE 

0.287 
0.562 
0.833 
1.101 
1.367 
1.630 
1.893 ' 2.153 
2.413 
2.672 

, ,253.2 
l -  

-- 
OPTIMUM( I 

AREA 

r 
TRIAL 1 TRIAL 2 

WEIGHT(a) n AREA 

~~ ~ 

0.1 
.o. 2 
0.3 
0.4 

0.6 
0.7 
0.8 
0.9 
1 .o 

0.5 . 

~~ 

0.182 
0.364 
0.516 
0.728 
0.910 
1.09 
1.27 
1.45 
1.63 
1.82 

0.280 
0.562 
0.835 
1 .loo 
1.365 
1.630 
.l .890 
2.150 
2.410 
2.670 

1.915 
1.87 
1.85 
1.835 
1.82 
1.81 
1.80 
1.79 
1.785 
1.78 

0.287 
0.561 
0.832. 
1.100' 
1.365 
1,630 
1.89 
2.158' 
2.410 
2.670 

253.2 
- 

0 . 2 ~ 7  

0. a33 
.,O. 562 

1 .lo1 
1.367 
1.630 
1.8!33 
2.153 
2.413 
2.6'72 

253.2 
-- 

0.193 
0.377 
0.561 
0.735 

1.095 
1.27 
1.45 
1.63 
1.79 

0.917 

1.92 
1.875 
1 .855 
1.835 
1.82 
1.81 
1.80 
1.79 
1.785 
1.78 

0.5P 

7 0.7P 
0.8P 
0.9P 

10 1.OP 

WEIGHT(e) : 

(a) The weight f o r  Trial  1 i s  assumed proportional t o  mean load. ' 
Weight. 

I - 1  (Eq. (10-19)): Pf,allowable = 0.001 1 P f i  (Eq. (10-10):). 
(b) ' f i  E Total. Weight 'f,allowable 

(c )  Safety f ac to r  based on fundamental one member-one load case. See Fig.10.3 fo r  these  values.  

(d) Areai = ni(mean load i ) / o  * Mean P = 60000 lb;  = 40000 ps i ;  Length = 60 i n .  

(e) Weight: W - 1 0.283 Di x 60. 
10 Y' Y 

i=1 

( f )  See l10.331. 

Table 10.2 

OPTIMUM DESIGN USING EXACT FAILURE PROBABILITY EXPRESSION INCLUDING CORRELATION - 
' WEAKE ST-LINK * STRUCTURES 

I EQUAL SAFETY FACTORS OPTIMUM 
NEGLECTIN( 

DE s I a (b) 
CORRELATION 

OPTIMUM  DESIGN(^) 
INCLUDING CORRELATION 

MEMBER 

1 
2 
3 
4 
5 
6 
7 

9 
10 

WEIGHT: 

a 

AREA 

I N 2  

AREA 

I N  

0.1P 
0.2P 
0.3P 
0.4P 
0.5P 
0.6P 
0.7P 
0.8P 
0.9P 
1 .OP 

0.274 
0.547 
0.817 
1.09 
1.37 
1.64 
1.92 
2.19 
2.46 
2.74 

255.6 
- 

1 .o 
1.0 
1 .o 
1 .o 
1 .o 
1 .o 
1.0 
1 .o 
1 .o 
1 .o 

0.193 
0.377 
0.561 
0.735 
0.917 
1.095 
1 .271  
1.45 
1.63 

I 1.79 

0.0519 
0.604 
0.958 
0.991 
1.23 
1.61 
2.08 
2.65 
3.25 
3.91 

I 

= 0.001. 'f ,allowable See Table 10.1 fo r  Parameters of Example; 

Results from Table 10.1. 

Pf computed from Eq. (10-9). 

of Eq. (10-15) and (10-16). 

I 

I Optimum proportioning found from mathematical programming so lu t ion  
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1 

1 
2 
3 
4 
5 
6 
7 

9 
10 

WEIGHT : 

a 

Table 10.3 

OPTIMUM DESIGN - WEAKEST-LINK STRUCTURE INCLUDING PROOF-MADING 

0.1P 
0.2P 
0.3P 
0.4P 
0.5P 
0.6P 
0.7P 

0.9P 
1 .OP 

0 . m  

MEMBER 

~ 7.78(-2)(a) 

17.80(-2) 

7.59 (-2) 

7.72 (-2) 

7.16(-2) 

7.52(-2) 

7.50( -2) 

OPTIMUM DESIGN 
NO PROOF- 

LOADING! b, 
AREA 

FUNCTION DISTRIBUTION I I 

OPTIMUM DESIGN(') 

p )  P 10-6 
AREA 

0.287 

0. a33 
0.562 

1 .lo1 
1.367 
1.630 

2.153 
2.413 
2.672 

1. a93 

253.2 

0.257 

0.734 
0.966 
1.196 
1.424 
1.65 

0.498 

1.875 
2.098 
2.320 

221 .o 
- 

AREA 

0.283 

0.812 
0.550 

1.060 
1.322 
1.573 
1. a21 
2 .OM 
2.313 
2.556 

243.9 
- 

0.625 x 

(a> 

(b) See Table 10.2. 

p f  completely based on neglec t ing  c o r r e l a t i o n  i n  a l l  cases.  

(c) See i10.331. 

(d) y is the r a t i o  of c o s t  of element t o  cos t  of f a i l u r e .  
Ref. i10.331 a l s o  shows optimum l e v e l s  of proof-load testing. 

Example 

3 

4 

5 

- 

MONTE CARLO VALUE OF Pf 
(9500 TRIALS) 

MINTE CARLO VALUE OF Pf 
(7000 TRIALS) 

69.4 

65.1 

68 .O 

- 

74.9 
74.9 

74.1 

- 

0.20 

0.20 

0.15 

LOAD 

0.20 

0.20 

0.10 

0.10 

0.15 

f , a1 lowable 

312.47 

312 .a9 

297.26 

293.53 

300.56 

~~ 

NORMAL 

LOG NORMAL 

NORMAL 

LOG NORMAL 

N O W  

(a) Exponents of f a i l u r e  p r o b a b i l i t y  a r e  shown i n  parenthesis  (m) and should be read a s  lo-, 
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probabilities to the elements as a result of the optimization and mathematical programming solution of 
the design problem. 
ratio of load to strength variance, the number of members and independent failure modes, the allowable 
failure probability and the frequency distributions used. 

The additional weight saved by including the correlation factor depends on the 

Another factor has been introduced into the 'weakest-link' design recently by Shinozuka who 
This means that a truncated frequency included a proof-load testing to sort out weak members [ 10.331. 

distribution must be used with a lower bound value corresponding to the level reached by the proof load 
stress. 
Optimum design results for the same example discussed in Table 10.2 are shown in Table 10.3 for various 
ratios of the cost of an element to the cost of failure. It should be noted, however, that the results 
in Table 10.3 neglect the correlation factor discussed above and express the 
Eq. (10-10). 
expression. 

A cost is also introduced to cover the proof-testing which depends on maximum proof-load stress. 

Pf constraint using 
Further weight reduction would be shown if the correlation were included in the constraint 

A recent study considered reliability based optimum design for redundant structures using Eq. (10-11) 
as the basis of the reliability analysis [ 10.211, [ 10.281. 
of frames although the methods are applicable to any redundant structure such as in Fig.lO.5 for which 
the collapse mode equation can be written as a linear combination of load and strength random variables. 
This includes redundant trusses, grillages and perhaps even plates using yield line analysis, or effective 
width concepts. 
variables can be handled. 
strength following the normal distribution laws [ 10.341. 
Fig.lO.9 for a single story portal frame. 
moment capacities of the columns MC and beam MB which give their respective mean strength values. The 
examples show optimum material cost or weight with reliability constraints for the single story frame of 
a unique geometry and loading. 

The specific application was for limit design 

It should be noted that any frequency distribution for independent load and strength 
A similar study showed optimum design results for frames using loads and 

Some examples of the results are shown in 
There are two design variables corresponding to the plastic 

Fig.lO.9 also illustrates sensitivity studies which show the effect on the optimum cost due to changes 
in frequency distributions and their parameters and in the overall specified probability of failure. Cost 
increases with both allowable overall failure probability and increase in coefficients of variation. To 
illustrate the application of the reliability based design method for larger structures, the two story two 
bay frame shown in Fig.lO.10 was optimized with a failure probability constraint. 
variables including 3 beams and 3 columns. 
collapse modes. Table 10.4 shows some reliability based optima for this case. An interesting observation 
on some of these results is that the safety factor against collapse in a particular mode is often not a 
good indication of its probability of occurrence [ 10.151. That is, collapse modes compared in the same 
structure might have higher safety factors based on their mean values but also have higher failure pro- 
babilities. This is due to the combination and interaction between random loads and element strengths in a 
specific collapse mode. 

There are six design 
A deterministic optimum design must have at least 6 active 

The results further show that the optimum proportioning of structural elements in a large system, 
with many potential collapse modes, for an allowable failure probability involves a complex interplay of 
members participating in different collapse modes. 
analysis of failure probability and the mathematical programming optimization methods for finding the 
minimum weight design [ 10. 2d , [ 10.281. 
'weakest-link' design for which in 
sometimes be found witn slide rule calculations as in Table 10.1. 

The computer is needed for both the reliability 

The 'fail-safe' design problem contrasts with some aspects of 
some particular cases a solution near to the optimum design can 

10.4 Future of Reliability Based Optimum Design 

In the light of these discussions and the results obtained and other studies underway it may be 
possible to consider the future of reliability based design. 
are mostly illustrative they do indicate the problems expected in both analysis of failure probabilities 
and design based on an allowable probability value. 
with particular reference to optimization may be based on the theory and results presented in this paper. 

1. The results presented indicate the feasibility of using reliability or probability of failure 
constraints in solving for optimum multi-member structural designs. By using mathematical programming 
methods to proportion member sizes a design is obtained which has an overall failure probability equal to 
an allowable value. Examples presented include 'weakest-link' structures for which any member failure 
constitutes failure of the structure and 'redundant' (fail-safe) structures which fail by forming collapse 
mechanisms after several members have simultaneously yielded. 

2.  
equal safety factors for all elements. In a 'weakest-link' structure the heavier members have higher 
failure probability values than lighter members. 
correlation between member failures which depends on the ratio of the variability or coefficient of 
variation of the load to the strength. 
found for each collapse mode at the optimum design. Rather the mathematical programming method pro- 
portions each member to achieve minimum weight within the constraint of overall failure probability. 

3. An important factor influencing the magnitude of the optimum design as well as its member sizes 
will be the choice of load and strength frequency distributions and their parameters particularly the 
coefficients of variation. 
the strength frequency distribution. Proof-loading actually occurs in all structures since very low 
strength levels will be detected by inspections or failure under dead weight. 
is the choice of an allowable failure probability. This should depend on the function of the structure as, 
well as the failure consequences in social and economic terms. The fact that many, if not most, 
structural failures occur because of designer judgements, analysis errors or fabrication oversights 

Although the designs thus far studied 

Some specific comments on reliability based design 

It is seen from the examples presentedthat areliability based optimum design does not end up with 

This factor is influenced by the degree of statistical 

In optimum 'redundant' structures the same safety factor was not 

This includes the effect of proof-loading which has the effect of truncating 

Another important factor 
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300 

I 28 0 

I 0 
0 
220 

200 
I 

~ I80 I l l 1  I I I 1 I l l l l l l  I I I 1 1 1 1 1  r l  I I l l l l l l  I I I I 
0.08 0.008 0.0008 0.00008 
OVERALL PROBABILITY OF F A I L U R E  

Fig.lO.9 Optimum Structural Costs vs. Pf allowable for Limit Design of Single Story 
Portal Frame (Ref. [ 10.281) 
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3.6 K t 

25' 30' 

MEAN LOADS ARE SHOWN 

I -MEMBER NUMBER 

0- CRITICAL JOINT NUMBER 

Fig. 10. IO Two Story Bay Frame Example. Optimum Design Results in Table 10.4 
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introduces some artificiality 
optimization approach is a rational way of distributing the unreliability of members consistent with the 
information available. 

4. 
operations as well as possible strength deteriorations. 
should be found which considers all levels of failure including yielding, formation of cracks, large 
deflections, fatigue, instability and collapse. Although for some 'weakest-link' structures yielding and 
collapse occur simultaneously, this is not true for all structures. 
be to assign allowable failure probabilities for each failure type and to seek an optimum design which 
satisfies all such constraints. 
constraint which would contain the probability of a level of failure occurring multiplied by a factor 
which includes the associated damage. 

5. 
element strengths there will still remain design uncertainties. 
ledge or alternatively low statistical confidence in the frequency parameters used in computing Pf. In 
most cases, there are only estimates of statistical parameters and the final design may require intuitive, 
subjective, or Bayesian averaging of values by taking groups of applicable data from different sources and 
noting their coefficients of variation and their associated probability of occurrence. For example, data 
on buckling coefficients of axially loaded cylinders may show approximately 30% of investigations have 5% 
coefficient of variation,,40% of investigations, 10% C.V., and 30% of investigations,15% C.V.. An 
optimum design can be found for each C.V. value and the weight of the structure determined from weighted 
averages according to the probability of a C.V. value being encountered. A reliability design procedure 
described herein, can indi~cate the savings if more effort and cost is spent to accumulate data to either 
reduce the uncertainty about the actual variability to be encountered or by controlling the fabrication, 
and perhaps the bperating limitations of the structure so as to reduce the variability itself. 
other approaches have been made to the problem posed by lack of sufficient data, 
to classical statistical analysis have been proposed for aeronautical structures [ 10.61 , 
effect of full-scale tests [ 10.41, [ 10.351 and proof-load tests have also been considered [ 10.331. 

into a reliability based optimization. Nevertheless the reliability 

A truly optimum design should consider the behavior of the structure over various types of loading 
In a more extensive approach an optimum design 

One approach to this problem would 

Another approach is to combine the constraints into one reliability 

Despite any forseeable advances in reliability analysis and frequency descriptions of loads and 
This arises because of imprecise know- 

Several 
Confidence level13 similar 

10.81 while the 
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Chapter 11 

OPTIMIZATION UNDER AEROELASTIC CONSTRAINTS 

by 

H. Ashley, S. C. McIntosh, Jr., and W. H. Weatherill 

11.1 Introduction 

In the structural design of large, high-performance aircraft, considerations of stiffness and aero- 
elasticity often play nearly as prominent a role as does static strength. 
phenomena which may influence the sizes of both lifting-surface and fuselage members are the following: 
primary wing, empennage or control-surface flutter; effectiveness of controls on a flexible wing; 
influence of elastic deformations on static stability and trim; loads or response in turbulent air; and 
ride qualities at locations near the extremities of an elongated body. 
the required margins on flutter speed could be met only through the addition of several thousand pounds of 
material to a wing which had already met all static-loading design conditions. 

Important examples of 

Indeed, cases can be cited where 

In these circumstances, any monograph dealing with the search for optimal airframe configurations 
should address the question of aeroelastic and structural dynamic constraints. 
to the degree that such constraints impose uniquely different features on the optimization process. 
Although techniques for the analytical prediction of aeroelastic properties of a given structure are 
highly developed i11.11 , [11.2], the introduction of such features into formal structural optimization 
has lagged by several years the use of more conventional conditions of strength, stiffness and stability. 
Hence the literature is smaller by a substantial factor. To date this literature has tended to remain 
rather distinct and to focus on simplified one-dimensional problems aimed at revealing what potential 
improvements mCght accrue to more realistic structure if practical methods of aeroelastic optimization 
could be developed. The future will see these constraints appearing more routinely in the'mainst.ream' 
of structural design, but, as of the time of writing, only rather modest published progress in this 
direction can be reported. 

At least this must be done 

At the outset of this Chapter, one point must be emphasized. It is that, given suitable com- 
putational routines for performing the required analysis, the imposition of such a condition as* 

VF 2 Vo , a prescribed minimum allowable maximum speed, (11-1) 

during the optimal selection of a finite vector of design variables, should be a routine matter. 
instance, in an application like that described by Morrow and Schmit i11.31 , the inverse of 
would be added to the penalty portion of their composite function F, 
needed for the unconstrained minimization process employed in [ 11.31 , the flutter contribution would be 
calculated by forward differencing as with their other 'behavior constraints'. 
can imagine, beyond those already overcome in [ 11.31 , might arise either while seeking an initial design 
that meets (11-1) or from the sheer volume of computation inherent in three-dimensional flutter 
prediction. 
permissible as with some of the buckling conditions in [ 11.31. 

For 
[V, - Vo1 

F. When finding the gradient of 

The only difficulties one 

When well away from the flutter constraint boundary, simplifying approximations might be 

Despite these observations, the nearest thing t o  such an application so far published appears to be 
the wing design described by Schmit and Thornton i11.41. In their paper, the 'criterion function' chosen 
for minimization consists of the total propulsive work required to be done against the drag of a 
rectangular wing, while the wing supports a given payload and flies a series of mission segments at fixed 
speeds and altitudes. The design is constrained through bounds on airfoil thickness and chord, as well 
as by limiting values, over each mission segment, for four 'behavior functions': angle of attack at the 
wing centerline; elastic deflection at the leading edge of the wingtip; principal stress in the skin at 
the wing root; and Mach number of bending-torsion flutter. 
design variables, the authors employ a method called the gradient-steep descent, alternate step method 
to calculate the opth"um 
parallel to the (numerically differentiated) gradient of the criterion function. 
continued until a constraining boundary is encountered, whereupon the procedure moves parallel to this 
boundary until no further reductions in the criterion can be achieved. 
quite reasonable double-wedge airfoil shapes are produced. 
strongly on the maximum allowable structural weight of the wing. 
rather elementary, 

Adopting thickness and chord as their two 

The variables are adjusted during each step in such a way as to move anti- 
This process is 

In the examples presented i11.41, 
The propulsive work is also found to depend 

Although these examples tend to be 
it is clear that the method is capable of considerable generalization. 

With regard to the history of the subject, probably the earliest published accountt of anything 
approaching aeroelastic optimization is to be found in a 1953 note of MacDonough [11.5]. Later 

*Important symbols are defined in Appendix 11A. 
and VF is the critical speed of flutter. 

tsee, however, the remark about rib structures of a fighter airplane in the first paragraph, page 2 ,  
of Turner (11.131. 
initial impetus from the work of S. J. Loring. 
in which a condition of minimum deflection, for given weight, is found to involve uniform strain energy 
density for axially loaded members, shear panels and bending elements composed of similar material. 

Here V represents flight speed at an assigned altitude, 

It is believed that the developments reported by MacDonough and Turner recei.ved their 
In 1942, an internal company report l11.281 was prepared 
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Head (11.61 explained how the ideas of i11.51 had been used for some years at intermediate stages of the 
design of high-performance aircraft. The problem addressed in (11.51 is to minimize the structural mass 
of a single-box shell wing while holding constant the fundamental frequency of torsional vibration. The 
point is made that the critical speed ,of primary lifting-surface flutter is rather closely determined by 
this torsional frequency, so that making it the object of optimization tends simultaneously to optimize 
the structure for flutter. MacDonough states, [11.5], "it can also be shown that the minimum weight of 
structure to attain a given frequency is approached when the energy per unit volume is constant under the 
loading associated with the primary mode". Although no proof is given, this is an observation of great 
insight and agrees closely with certain static and dynamic energy conditions discussed in 111.71 and other 
references cited therein. 

A series of internal reports from North American Aviation, (11.81, (11.91, (11.101 and (11.111 
treat the utilization and extension of MacDonough's ideas. 
strain energy density at the torsional divergence speed as another criterion of optimal aeroelastic 
performance. 
since 1964. 

They also invoke a condition of uniform shear 

It is surprising that more complicated and realistic applications have not been undertaken 

In the evolution of more recent literature on aeroelastic optimization, two fairly distinct points 

(1) 

of view are emerging: 

The structure is idealized and its degrees of freedom limited by the use of assumed-mode or 
finite-element techniques. 
function, by the choice of a finite vector of design variables under algebraic constraints. 
Refs. (11.31, (11.41 and (11.81 through [11.111 are rqresentative of this approach, as are the more 
practical examples of Turner, [11.121, [11.131. Their motivation is to achieve the capability of treating 
complex built-up structures of the sort encountered in actual flight-vehicle design. 
in this area is described in Section 11.3 below. 

One is thus led to the minimization of an algebraic or transcendental 

Some current work 

(2) Simplified, and therefore less realistic, structures are optimized, so that solutions can be 
found by exact or numerical integration of sets of differential equations. 
been limited to one-dimensional configurations such as rods, beams and bars. 
in function space will hopefully make it possible to explore, to the fullest, the potential savings to be 
gained from formal optimization. There are, as yet, several important theoretical questions (e.g., 
uniqueness in problems with dynamic aeroelastic constraints) that remain unanswered. They deserve further 
study in connection with cases whose mathematical description is not too complicated. 
discussed first in the following paragraphs and in Section 11.2. 

Results published to date have 
This search for solutions 

This approach is 

The lead-in to research under the second category may be said to have occurred through analyses of 
minimum-mass structures with constraints of fixed fundamental natural frequency of vibration. 
Niordson's paper (11.141 on the simple beam was apparently the first published on such a problem. 
approach was continued in the work of Taylor bl.151 and Prager and Taylor (11.161. These latter 
articles concern a variety of both static and dynamic problems and contain important proofs of uniqueness 
and optimality in certain cases. Taylor also suggested i11.151 that in some instances it may be profitable 
to interchange the roles of the constrained eigenvalue and the merit function. 
minimum mass for a fixed fundamental frequency of axial vibration can be found in two ways: one can 
directly minimize mass for fixed frequency [11.121, or one can maximize the frequency for fixed total mass. 
Solutions in these cases can be proved to be equivalent (11.151. 

This 

For example, the bar of 

Section 11.2 begins with a general discussion of how such problems in a single independent space 
variable can be identified with the variational problems of Bolza or Lagrange and thus reduced to systems 
of first-order ordinary differential equations. The merit function in these, as well as more complicated 
situations is usually chosen to be total system mass or structurally-effective mass. 
as minimum mass moment of inertia, may be more suitable in some instances, but little of value will be 
accomplished here by including such generalizations. 
optimal designs are subject to unstated constraints, which are really a matter of comon sense. 
normally have to do with a limitation on the total volume or cross-sectional area that can be occupied by 
the structure. 
mass to sustain a given Euler buckling load, a zero-mass solution is possible through the application of 
internal pressure or by allowing the radius to become infinite (i.e., the mass is proportional to the 
product tR whereas the area moment of inertia grows with tR3 for a thin shell). Obviously the outer 
radius must be bounded before the design becomes physically meaningful. 

Other criteria, such 

One observation worth noting is that all of these 
They 

To illustrate, if one seeks the circular cylindrical column of fixed length and minimum 

A final observation to be made in this introduction is that energy considerations can often be used 
for the direct construction of an equation which is, in actuality, the Euler-Lagrange minimizing equation 
associated with a control or design variable. 
Prager and Taylor (11.161 gave the first theorems of this type. They studied such extrema1 problems as the 
bar with maximum buckling load or maximum fundamental vibration frequency, wherein the control variable 
enters linearly both the integrand of the merit function and the differential equation of equilibrium. 
Their theorems are based on the variational principle underlying the latter equation and result in non- 
linear control equations expressed entirely in terms of the displacement function. 

Relative to the subject of aeroelastic optimization, 

In Table 1 of (11.71 some of these control equations are listed, and it is remarked that these are 
theorems of 'constant specific Lagrangian density'. 
an optimal single-box wing, the control equation reads 

For instance, in the case of torsional divergence of 

(11-2) 

in terms of the spanwise derivative of the elastic twist 8(x). Eq. (11-2) is precisely the afore- 
mentioned condition of uniform specific torsional strain energy. 



146 

As an illustration of these energy theorems i11.71 , consider a three-dimensional elastic solid 
occupying a volume 
conservative. The density of structurally-effective material is p ,  the elastic displacement vector 
from the unstrained state is q, and the externally applied force per unit volume is y R. Here y is 
some parameter, such as the dynamic pressure of an airstream impinging on a diverging wing, which is held 
constant during optimization. R may involve contributions both dependent on and independent of the 
state of (small) deformation. Surface forces like aerodynamic pressure can be included in H through 
terms containing a Dirac delta function of distance from the bounding surface All integrals are 
taken over the unstrained positions of mass elements, in the customary manner of the theory of 
elasticity. 

U and acted upon statically by a system of external forces which are not necessarily 

+ 3 

-+ 

S. 

Hamilton's principle of static equilibrium is 

61 P e& dU = I y g.6; dU (11-3) 

U U 
for any small variation 6q satisfying the displacement boundary conditions. e(<) is independent of P 
and is the quantity called 'specific elastic strain energy' by Prager and Taylor i11.161. 
this independence, there is a limitation to structures whose stiffness is directly proportional to 
structurally effective mass. 
examples of such structures would then be (1) the thin shell in torsion and (2) the sandwich beam or 
plate, with thin face sheets relative to core depth, in flexure. 

+ 

Because of 

The reduction to one- and two-dimensional situations is. self-evident., and 

Let subscript zero identify a solution optimal in the sense that, for all neighboring density 
distributions corresponding to the same y ,  

-P , ]  dU 2 0 . 
U 

Hamilton's principle, for the optimal structure under the load system 3 reads 
0' 

(11-4) 

61 po e(<;) dU - . I  y dU . (11-5) 

U U 
It is also a well-known consequence of this principle that, if the structure is strained into the 
kinematically-admissible deformation shape Go , 
Eq. (11-5) as a lower bound: 

the energy variation will have the right-hand side of 

61 P 
dU 2 I Y 80.6Go dU . 

U U 
Subtracting Eq. (11-5) from (11-6), one obtains 

(11-6) 

(11-7) 

+ 
The meaning of ae/aqo will become evident from what follows. 

For general forms of the energy function e(:), no obvious conclusion can apparently be drawn from 
Eq. (11-7). If e is a symmetrical homogeneous quadratic form, however, a useful result is deducible. 
The quadratic form is the general rule for linear elastic structures. 
choose a particular variation 6qo % qo 

It then follows that one can 
+ +  in Eq. (11-7) and employ the familiar relation 

- ae . + qo - 2e(qo) + . (11-8) 
a;;o 

Eq. (11-8) and (11-7) yield 

The only way that Eq. (11-9) and (11-4) can be made consistent for all p neighboring the optimum is to 
require 

+ e(qo) = const. . (11-10) 

This result encompasses the torsional divergence problem, Eq. (11-Z), and a variety of other static 
aeroelastic cases. 
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An even more general theorem relating to optimally stiff structures was recently suggested by 
Taylor i11.171. 
below suggest the probable existence of generalizations covering cases of simple harmonic motion, e.g., 
free vibration and flutter. 

11.2 

The forms of control equations like those appearing in many examples of Section 11.2 

Cases Governed by Ordinary Differential Equations 

When the system constraints can all be written as ordinary differential equations, the optimization 
can be identified as a variational problem of Bolza or Lagrange (e.g., Halfman [11.18]). 
however, the only possible formulation. In some instances, it may be more fruitful to pose a variational 
statement in isoperimetric form (cf. the approach of Taylor i11.151). As mentioned above, it is assumed 
that mass will always serve as a suitable figure of merit. It is further assumed that a relation is 
known between the distributions of structural thickness and stiffness, so that the thickness appears 
explicitly in the constraint equations. 

This is not, 

Reference quantities for the corresponding uniform-thickness system with the same aeroelastic eigen- 
value will be used where convenient to render all variables dimensionless. Thus if T(X) is the optimum 
thickness or running mass distribution and 
optimized mass to the reference mass is given simply by 

To the thickness Df the reference system, then the ratio of 

L 1 

m = I [T(X)/LTo] dX = I t(x) dx . (11-1 1) 

0 0 

Here X = Lx, and L is the length of linear structure under study. 

Only one-dimensional configurations will be considered in this section. The dependence of the 
equations of motion on time is eliminated, if appropriate, by the assumption of simple harmonic motion. 
The constraint equations are then obtained from the aeroelastic equations of equilibrium by rewriting the 
latter into an equivalent system of first-order ordinary differential equations: 

qf - fi(ql, ...,qN, t) = 0 , i = 1,2, ..., N . (11-12) 

The q. (x) represent the N dependent variables, some of which may be artificially-introduced 
derivatives of system properties, along with the unknown thickness distribution 
is formed [11.18] , consisting of the thickness distribution to be optimized, augmented by Lagrange 
multipliers X.(x) factoring in the constraint equations: 

t(x). A functional 

N 
F 0 t + j Xi(fi - q;) . 

in1 

Conditions for a stationary value, or extremum, of this functional are 
equations [11.181 

given by the Euler-Lagrange 

(11-13) 

(1 1;14 ) 

This formulation results in 2N + 1 unknowns - the N pi, the N Xi, and t - with 2N + 1 equations - 
the N + 1 Euler-Lagrange equations plus the N constraint equations. 

Boundary conditions are provided for the physical variables qi by the restraint conditions at the 
extremities of the structure and for the 'adjoint variables' A .  by the transversality conditions 
[ 11.181. The equations are non-linear, involving products or quotients of t(x) with certain of the 
pi or A . .  Typically, boundary conditions for the q (and the Xi) are given at both ends of the 
structure, so the problem is a two-point boundary-value problem. It is usually too complicated to be 
solved analytically, except in certain simple cases, so a numerical iteration scheme must be employed. 
Furthermore, there is in general no a prior! guarantee that a physically meaningful solution exists, nor 
is there any assurance that a stationary point, once found, represents an absolute optimum. 
certain types of constraints, however, such as those on buckling load or on a frequency of free 
vibration, proofs of optimality can be stated h1.161. 

i 

For 

One of the first problems to be solved analytically under what is essentially the formulation 
described above was that of determining the minimum-weight non-uniform bar with tip mass for fixed 
fundamental frequency of longitudinal vibration [ 11.121 . 
When the motion is simple harmonic with frequency U, the axial displacement U(X) e must satisfy 
the differential equation 

The arrangement is illustrated in Fig.ll.1. 
iwr 

-&(Mg)+(>.. - 0 . (11-15) 
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Length variables are divided by L and mass per unit length M(X) = pA(x) by the reference quantity 
pL . Eq. (11-15) then becomes 2 

(11-16) 2 (mu')' + B mu = 0 . 
- 

The boundary conditions for the restrained root and free end carrying mass Ml are 

, I  u(0) = 0 , u(1) = 1 

(11-17) 

(Although not required, the deflection amplitude has been normalized to unity at the tip.) 
quency parameter appearing in Eq. (11-16) and (11-17) is 

The fre- 

6 - wL(p/E) 1 . (11-18) 

Here the dimensionless mss per unit length plays the role of the thickness in the general 
formulation discussed above. The objective therefore is to minimize 

9 = f m d x  , (11-19) 
0 

subject to fixed 6 and other physical conditions as stated. 
obtained by setting m constant in Eq. (11-16) and (11-17). 

Note also that the reference system is 

The Euler-Lagrange differential equations (11-14) are applied to the functional 

(11-20) 2 F = m(x) + Xy(x)(- 6 mu - y') + Xu(x) (y/m - U') , 

where y is an auxi 
following equations: 

iary variable proportional to axial force in the bar. This gives rise to the 

(11-21) 

B 2 u xY + xu y/m2 = 1 . J 

Y: The constraint equations bring the total to five, for the five unknowns u,y.m,XU, and X 

2 y ' + 6  mu = 0 

U' - y/m = 0 . 
L (1 1-22 ) 

The physical boundary conditions are given by Eq. (11-17). with y replacing mu', and the 
transversality condition gives one boundary condition for an adjoint variable: 

Xy(0) = 0 . (11-23) 

In accordance with the terminology of optimal-control theory, the third of Eq. (11-211, which 
relates m algebraically to the other variables, is called the control equation, since m here 
corresponds to the aforementioned design or control variable. 
(11-22) , with boundary conditions (11-17) and (11-23), are in a form amenable to numerical solution 
by one of several techniques developed in connection with optimal control [11.23]. 
of these techniques will be deferred, since an analytical solution can easily be found. 

The differential equations (11-21') and 

However, a discussion 

The number of unknowns is reduced to three by some elementary manipulations, so that Eq. (11-21) 
and (11-22) become 
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Fig. 1 1.1 Non-uniform Elastic Bar with Tip Mass 

Fig.ll.2 Ratio of Structural Mass of Optimum Bar to that Fig. 1 1.3 Ratio of Mass of Optimum Cantilever 
of a Uniform Bar with the same Value of for the Rectangular Wing to that of a Uniform Wing 

with the same Fundamental Torsional 
Frequency, Plotted Versus the Fraction 61 

of Total Mass Devoted to Skin Material 
Effective in Torsion 

I 
i Fundamental Frequency of Longitudinal Vibration 
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(11-24) 

As observed by Turner [11.121, A and U must satisfy the same differential equation and are governed 
by the same boundary condition at the origin 

Y 
x = 0. Hence they are related by a proportionality factor, 

A = - u/K . (11-25) 
Y 

Therefore the control equation, the second of Eq. (11-24), becomes 

(u')~ - B2 u2 = K . (11-26) 

Differentiating Eq. (11-26) and dividing by U' produces a linear differential equation whose solution 
is a linear combination of sinh Bx and cosh Bx. Clearly a hyperbolic sine is indicated, and the! form 
satisfying u(1) = 1 is 

~(x) = sinh Bx/sinh 6 . 
The third of Eq. (11-24) can be integrated to get the mass distribution 

(11-27) 

(11-28) 

The final boundary condition contributes 

It should be noted that a condition u'(x) + 0 
the fixed-frequency constraint to the fundamental vibration mode. 
as m(x) is varied. 

is assumed during the solution of (11-26), which restricts 
Higher harmonics do not remain Eixed 

2 The total mass fi sinh B of the elastic structure can turn out substantially less than the mass 1 
of other bars that would ensure the same fundamental frequency. 
optimized structure is simply sinh &while the corresponding ratio relative to a uniform bar is 
The latter ratio can be interpreted as a measure of the weight saving in the optimized bar, as compared 
to a uniform bar with the same density, length, tip mass, and fundamental frequency. 
plotted versus 6 in Fig.ll.2. As B increases, the weight saving becomes quite significant, although 
the comparison is not strictly valid as 6 approaches n/2. 

The ratio of bar mass to tip mass for the 
2 E tan 6. 

This quantity is 

The value n/2 of the frequency parameter corresponds to a uniform bar with zero tip mass, for 
This situation comes about because the which case the optimum solution is the degenerate one m E 0. 

frequency of a uniform bar without a tip mass does not really depend on 
quantities that are both linearly proportional to m. This example is but one of many similar ones that 
could be cited to illustrate how seemingly well-posed optimization problems do not always yield meaning- 
ful results. 

m, but only on a ratio of two 

In the foregoing analysis it was assumed that all of the mass in the bar itself was available for 
From a practical standpoint this is not a very useful assumption, since certain portions optimization. 

of the total mass of a structure do not contribute t o  rigidity. 
way of allowing for nonstructural mass, consider a wing of rectangular planform and span 
torsionally effective material is concentrated in a single box of fixed cross-sectional shape and 
size[ll.71. The box thickness T ( X )  is small compared with its depth; Bredt's formula then shown that 
the torsional rigidity G J ( X )  is proportional to T. Let the uniform reference wing have constant 
rigidity G J o ,  thickness To, and mass moment of inertia Io (per unit span about the elastic axis). 
The dimensionless differential equation for the torsional vibration amplitude 

To illustrate an approximate anal~tical 
L, whose 

e(x) is 

e** + n2 e o (11-30) 

where 

n - WL(I~/GJ~) 1 . (11-31) 
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With cantilever.boundary conditions 

e(o) = el(i) - o , (11-32) 

one determines for a uniform bar the familiar quarter-sine-wave fundamental mode corresponding to 
n = n/2. 

For the optimization problem, note that 

GJ(x)/GJo = T(x)/To E t(x) . (11-33) 

Let a fraction 61 of the running moment of inertia Ie(x) be contained in the skin; let the remaining 
inertia, which is assumed for convenience to have the same radius of gyration as the skin box, be equal 
to that of the reference wing. It follows that 

Ie(x)/Io - 61 t(x) + 62  (1 1-34 ) 

where 61 + 62 = 1. The dimensionless differential equation and boundary conditions read 

L (11-35) 

with $2 n / 2  held constant. Note that if all of the mass were assumed concentrated in the skin and 
therefore torsionally effective, 62 would be zero, 61 would be unity, and Eq. (11-35) would be 
directly analogous t o  Eq. (11-16) and (11-17) with M1 equal to zero. 
some nonstructural mass is sufficient to ensure a nontrivial optimal solution even when there is no tip 

It will be seen that the provision of 

mass. 

Solution for a minimum value of 

8 = (.t dx 
0 

(11-36) 

proceeds in the same manner as for the bar. 
give 

Thus the control equation for the wing can be manipulated to 

(11-37) 

The optimum vibration mode becomes cf. Eq. (11-2711 

(11-38) 

The thickness distribution is slightly different from that of the bar, because of the difference in 
boundary conditions: 

(11-39) 

/- 

Recalling that masses and moments of inertia have been arranged to be in proportion, one finds for the 
overall mass ratio 

1 

61 t dx + = [l +binh ~ ( 6 ~ )  1 )/n(61) 1 1 (1 - 61)/2 . (11-40) 

0 

This expression is plotted versus 61 in Fig.ll.3. The uniform-wing limit of unity when 61 approaches 
zero is self-evident, whereas the limiting case of 61 
t 5 0 discussed earlier. 

approaching unity is the unrealistic solution 

There is yet another unrealistic aspect of the solution (11-39). This involves the fact that at 
the free end of the wing t goes to zero. 
where one end of the structure is either free or simply supported and the thickness distribution is 

The same behavior has been 0bserved.h a number of instances 
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unbounded. An obvious means of avoiding this situation is to impose an inequality constraint that forces 
the thickness to be greater than some specified minimum value. 
constraint, which could readily have been specified in either of the foregoing examples, consider instead 
the (relatively rare) occurrepce of pure-torsional flutter [ 11.201 . The differential equation of motion 
for the torsional amplitude e ( X )  

To illustrate the application of this 

(with simple harmonic motion assumed) reads 

( 11-41 ) 

Here % 
and 1, both assumed to be proportional to the skin thickness T(X), as in Eq. (11-331, and with 
incompressible unsteady strip theory used for %, 

is the amplitude of the section aerodynamic pitching moment about the elastic axis. With GJ 

Eq. (11-41) can be written in dimensionless form as 

(tii')' + (61 t + Z2) ii = 0 . (11-42) 

Here 

(11-43) 

The terms 
say, by Scanlan and Rosenbaum i11.191. 
(e.g., [11.191). The cantilever boundary conditions are as given in the second of Eq. (11-35). 

La, $, Ea, M,, are dimensionless functions of reduced frequency k = wC/2V, as tabuluted, 
The other quantities are defined in any text on aeroelasticity 

The reference solution for t - 1 has the normalized mode shape 

- 
Moreover, the zero-torque condition at the tip requires that 
eigenvalue 

62 be real and establishes the fundamental 

61 + 6 = n2/4 . (11-45) 2 

Smilg's solution [11.201 furnishes information on elastic-axis locations and other wing properties that 
can satisfy Eq. (11-43) and (11-45). In particular, the imaginary part of 8,, which is the component 
of aerodynamic moment out of phase with respect to the torsional displacement, may vanish only when the 
elastic axis is ahead of the quarter-chord line. 

First, the case of unconstrained thickness is examined. By imediate analogy with the torsional- . 
vibration problem, the optimal solution for real 
of Eq. (11-39): 

8 leads to a thickness distribution similar to that 2 

( 11-46) 

In its present form, is proportional to the aerodynamic moment in phase with '8; Smilg's 
calculations show this always to be negative. 
'optimal' t(x) is negative over the whole wing! 

Thus one arrives at the meaningless result that the 

It is evident that to produce a viable result requires somehow changing the sign of 62. One way 
of doing this is to allocate a certain portion of the total mass to nonstructural purposes, as was 
described in the problem of free torsional vibration. 
mass to be effective structurally, then Eq. (11-42) is altered simply by redefining 

If n is the fraction of total cross-sectional 

61 and 62: 

6; - rl 61 , 6; = (1 - n) 61 + 62 (11-47) 

Radii of gyration are taken equal, as before. 
produce a positive 6;. 
leading edge and the flutter 
in the skin of the reference wing (n = 0 . 5 ) ,  6; and 6; are calculated to be 2.04 and 0.43 
respectively. A computation similar to that indicated in Eq. (11-40) then shows a 39% saving in total 
mass and a 78% saving in skin weight achieved by going from the uniform wing to the optimum wing with the 
same flutter speed. 

A number of parameter combinations can be found which 
One case was studied from Smilg [11.201 in which the rotational axis was at the 

With 50% of the mass k (defined in Appendix 11A) was approximately 0.04. 
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The unrealism of t going to zero at the tip still remains. As suggested above, one can introduce 
a constraint to keep the thickness greater than or equal to some minimum value. 
ways of accomplishing this; a convenient one that will be followed here was employed by Taylor [11.21]. 
The constraint is stated 

There are a number of 

t(x) - to - a2(x) 2 O (11-48) 

where to is an arbitrary minimum thickness and a(x) is a real function to be determined. Since the 
reference wing is given by t f 1, it follows that to must lie between zero and unity. 

- 
The functional for this problem becomes (for real 62) 

(11-49) F P t + he(s/t - e')  + xs I- (fil t + 62) e - 8'1 + xt(t - to - a 2 . 
The Euler-Lagrange differential equations are as before, except for the addition of new variables 

A t  and a': 

(1 1-50) 

xe sit 2 + ti1 xs e - X t 4 .  J 
The system of differential equations is completed by the constraint equations 

(11-51) 

From the third of Eq. (11-50), it is seen that either At or a2 must be zero. Choosing zero A t  leaves 
the thickness unconstrained, whereas choosing zero a* requires the thickness to be a constant, to. 
One supposes that outboard of some station x 0 < x o  <1, one can choose zero a , or t - to. 
Inboard of xo one sets At 0 0 and allows the thickness to vary. 

2 
0' 

Physical boundary conditions plus transversality at the wing root are 

(11-52) 

while at the tip 

s(1) - 0 , e(1) - 1 (11-53) 

At xo, the Weierstrass-Erdmann corner conditions bl.181 require continuity of all variables. In part, 
these requirements can be manipulated to give 

e(xo) , el(xo) , t(x ) continuous . 
0 ,  

The solution for the inboard section x C X  proceeds as before, giving for e and t 

x < x o  . I 0 = A sinh{(fjl) 1 x} 

t 0 to + a2 = B [cosh{(bl) 1 - 62/261 

(11-54) 

01-55] 

Here A and B are arbitrary constants yet to be determined. The solution for the outboard strip, 
x 2 xo, 
result for 8 reads 

is found from Eq. (11-50) and (11-51) with t = to = const. In particular, the normalized 
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Optimum Dimensionless Skin Thickness Distributions for Pure Torsional Flutter of a Rectangular Fig.] 1.4 
Cantilever Wing, with 61 = 0.5 and Various Minimum Values of Skin Thickness 
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Fig.11.5 Mass Ratio Versus Minimum Skin Gauge to for the Wings of Fig.] 1.4. The same Ratio is also 
Plotted Versus xo , the Point where Minimum Thickness begins 



with 

e = sin y sin yx + cos y COS yx , x a x o  

y2 - 61 + 62/to > o . 
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(11-56) 

(11-57) 

Note here that, if 6 2  is negative, the requirement for positive y2 puts a constraint on the minimum 

thickness: 

to > - 62/61 . (11-58) 

There are now four unknown constants - to, xo, A and 

to relate them to each other. The simplest way to proceed is to eliminate A and B and arrive at a 
transcendental relationship between x and to, which is 

B - and three continuity conditions (11-54) 

0 

(1 1-59 1 y tan{y(l - x,)} = (a,)* coth{(bl) 1 xo' . 

Once x or to is chosen, the other is found from Eq. (11-59). A simple integration of the optimal t 
over the span then yields the ratio of the mass of the optimized wing to that of the uniform reference 
Wing. 
answer. When d 2  <0, 
mass of the uniform reference wing. 
solution. 

It turns out that the constraint on Eq. (11-58), is not enough to produce a reasonable 
the thickness is no longer negative, but the optimal mass is greater than the 

Only for positive 62 is a saving in mass realized by the optimal 

It is still necessary, therefore, to allow some of the mass to be nonstructural. 

Numerical results for the case discussed above, where 50% of the mass was assumed nonstructural, 
are shown in Figs.ll.4 and 11.5, adapted from i11.71. 

It should be evident from the foregoing that only rather simple optimization problems can be solved 
analytically. 
framework to which this section is devoted, of necessity implies that numerical solution techniques have 
to be used. One of the first examples which served to validate a particular numerical procedure for 
integrating the optimizing equations was that of minimizing the skin weight of a constant-chord unswept 
wing of fixed torsional divergence speed (Fig.ll.6; (11.221 and [ 11.71). The constraint differential 
equations and boundary conditions for the problem are (with aerodynamic induction neglected) 

The introduction of more complicated aeroelastic constraints, even in the function-space 

2 s * + n  e = 0 

2 2  p VD CEL 
0 n2/4 . 

The Euler-Lagrange equations for the function 

are found to read 

(11-60) 

(11-61) 

(11-62) 

(11-63) 
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Transversality produces two further boundary conditions, 

y o )  = A$) = 0 . (11-64) 

An exact solution to this problem is easily discovered by following the same reasoning that led to 
solutions of the previous examples. 
as was done for the torsional flutter problem, leading to a transcendental relation between 
as follows: 

Furthermore, a minimum-thickness constraint can be introduced just 
xo and to 

(1 1 - 6 5) 

As an aside, it is remarked that an interesting aspect of Eq. (11-65) is the possibility of multiple 
solutions. That is, for a small enough value of to (or a value of x close enough to unity), 11 

second branch of the cotangent curve, the branch for arguments between n/2 and 3n/2, also yields an 
x t combination. As to becomes still smaller, at some point a third branch, for arguments greater 
than 3n/2, comes into play, and so on. It therefore appears that an infinite number of optimal 
solutions can be found. 
small as desired by selecting the proper branch. 
however, that solutions associated with the second cotangent branch have their fundamental characteristic 
speed of divergence below that corresponding to the eigenvalue of 
fact, the number of =values below 
branches, of the cotangent curve in Eq. (11-65), taken beyond the fundamental. 
minimunrmass solutions are those found with arguments of the cotangent less than 
obvious conclusion that every solution of this sort should be carefully examined, before it.is accepted, 
to ensure that & constraints on the optimization have been satisfied. 

0 

0' 0 

Furthermore, the corresponding thickness distributions can be made virtually as 
An eigenvalue analysis of these 'optimal' wings reveals, 

n/2 held fixed in the analysis. In 
n/2 in any given solution turns out to equal the number of 

Hence the only truly 
n/2. There is an 

As mentioned above, a computational check on the solution of the system of equations and boundary 

In this 

Essentially exact agreement with the known 

conditions (11-60), (11-63) and (11-64) was carried out by Ashley and McIntosh i11.71. 
matrix algorithm was adapted from Bryson and Ho r11.231 for purposes of numerical integration. 
relatively simple case, direct numerical differentiation was successfully carried out for the purpose of 
determining the required elements of the transition matrix. 
solution was attained after about half-a-dozen iterations. 

A transition 

Unfortunately, the rather attractive transition-matrix scheme has proved too inaccurate, in the 
absence of special refinements, for more complicated problems. 
of 'unit solutions' i11.231 turns out to yield much more precise transition matrices, although con- 
siderably more computer programming is needed. 

A procedure involving the determination 

It operates as follows: 

The above differential equations are all seen to be in the form [cf. Eq. (11-12)1 

dY 

= lSN 1 _.P f (Yj , t) dx 
/ (11-66) 

where the y.'s and y ' 8  are either the physical variables (such as 8) or their adjoints, . A e  If 
these differential equations are perturbed by means of small changes 
new set is created. 

j 
6yi to all dependent variables, a 

These additional equations may be written as 

1 N afi af . 
jpl ayj I at 

d - dx (6YQ * 1 - 6y. + 2 6t 

(11-67) 

The cambined equations (11-66)-(11-67) can be solved simultaneously, using appropriate boimdary 
conditions, to produce the transition matrix for the eystem. For instance, if the boundary conditions 

J 
are chosen for the perturbation equations, while the usual specified and 'guessed' boundary conditions 
for yi(0) are used, the two sets of equations may be numerically integrated from x = 0 to 1. The 

I 
I 

I 
I 
I 
I 

I 

I 

i 

I 
I 

I 
I 

i 
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values of 6yi(l) are equal to the changes in the variables y. at x = 1 caused by a unit change in 
the variable y1 at zero, with all other changes at x - 0 held equal to zero. This is precisely the 
definition of a column of elements in a transition matrix. 
N times to obtain successive columns of the transition matrix. 

Thus, this procedure would be carried out 

It should be noted that, although the original system of differential equations is non-linear, the 
perturbed equations (11-67) are linear in the perturbation variables. If the system (11-66)-(11-67) is 
not too large, the entire transition matrix may be generated in one cycle of a typical numerical- 
integration program. The drawback of this scheme is that there are N governing equations and N 
perturbation equations, so that the computer must handle 2N simultaneous differential equations. As 
pointed out, however, the perturbation equations are essentially linear with variable coefficients, and 
the computer can integrate them with little additional effort relative to the non-linear system of total 
order N. 

A particularly valuable dividend obtained by using the foregoing method occurs when a minimunr 
thickness bound is included in the problem. 
requires the addition of a single decision statemefit. 
computed value of the.thickness is greater than or less than the specified minimum 
the computed thickness, the computational scheme sets t P to and 6t = 0. These values are then 
assumed in the succeeding steps. 
in a variety of optimization problems. 

Imposing this additional constraint on a numerical scheme 
This statement determines whether or not the 

If to exceeds 

This method of constraining the thickness has been employed successfully 

The method described above has proved to be quite accurate, and analytical solutions, when available, 
can be reproduced with great precision. 
distributions and weight savings for various values of minimum thickness 

Figs.ll.7 and 11.8 present the resulting optimal thickness 

As a final numerical example, minimizing the weight of a cantilever-free sandwich beam, of constant 
core height but variable face-sheet thickness (Fig.ll.9). is considered. 
frequency is held constant. 
the optimization problem, based on a functional called the Hamiltonian [ 11.231 . 
to minimize 

Again the fundamental bending 
This case will also serve to illustrate an alternative scheme for formulating 

Once again it is desired 

1 

19 = I t d x  , (11-69) 
0 

where t - T(x)/To(x) and x = X/L, subject to the constraints 

w' = p 

P' = q/t 

4' - r 

(q - tw") 
(11-70) 

These constraint equations are adjoined to the function to be minimized, t, to form the Hamiltonian 

H = t + A w p + A  q / t + A  r + A r [ ( a t + B ) w l  . (11-71) P 9 

A necessary condition for a minimum of 8 is that 

Other necessary conditions for the constrained minimum read 

\ 

aH - xw A' P - -  P 

P aP 

(11-72) 

(11-73) 
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Fig. 1 1.6 Rectangular Cantilever Wing used for Torsional Divergence Calculations 

Fig. 1 1.7 Optimum Dimensionless Skin Thickness 
Distributions for Torsional Divergence of a 
Rectangular Cantilever Wing with Various 

Minimum Values of Skin Thickness 

xo V’O 

Fig.1 1.8 Mass Ratio (Structural Mass Saving Relative 
to the Uniform Case) Plotted Versus xo and to 

for the Family of Wings in Fig.1 1.7 
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The system (11-70), (11-72) and (11-73) gives the d i f f e r e n t i a l  equations which govern the problem. 

The specif ied boundary conditions a re  

In addi t ion  to  the abwe  equations,  one can impose a minimum thickness cons t ra in t .  which may be 
expressed as 

t - t < O  . 
0 

I n  this case. an augmented Hamiltonian would be used: 

H* - H + U ( to  - t) 
where 

(11-74) 

(11-75) 

Note tha t  the cont ro l  equation (11-72) may then be expressed as  

(11-76) 

(11-77) 

An ana ly t i ca l  so lu t ion  t o  this problem ir not  I". The transi t ion-tr ix  algorithm. using 
determination of un i t  so lu t ions  t o  f ind  the t r ans i t i on  matrix,  converged readi ly  and produced thickness 
d i s t r ibu t ions  l i k e  those s h m  i n  Fig.ll.10, with the  associated weight aavinga. 

The limits of research i n  a e r o e l a s t i c  optimization, by d i r e c t  in tegra t ion  of d i f f e r e n t i a l  equations,  
nay be sa id  at the time of wr i t ing  to  be character ized by two problem - both cur ren t ly  d e r  inves t iga t ion  
but  without numerical r e s u l t s  ready f o r  presentat ion.  
hypersonic f l u t t e r  speed. of a th in  homogeneous ~r sandwich p l a t e  i n  WO dimnsions.  
of optimizing f o r  bending-torsion f l u t t e r  a cant i lever  b e m o d  wing, i n  which CMe the t rue  complex 
nature  of the aerodynamic forces  is accounted for .  
preceding examples. the a i r load  expressions cause the funct ional  F 
argument x. 

The f i r s t  involves minimising the mass, f o r  f ixed 
The sacond consints  

Although both of these c m  be set  up l i k e  other  
t o  be a cDnplax funct ion of the real 

Special  measures must be taken t o  ensure that the optimal thickuess t remains a real quant i ty .  
For this purpose, Turner L11.131 has Bham t h a t  it is  s u f f i c i e n t  t o  t r e a t  only the r e a l  p a r t  of F. 
of the d e t a i l s  of s e t t i n g  up these problem can be seen i n  t11.221. 
deal ing with the complex behavior is reviewed, i n  Section 11.3. i n  connection with d iscre te -e lmant  
Sy8tema. 

11.3 

Some 
Following Turner. the  manner of 

Discre t iza t ion  by Assumed-Mode aod Finite-Element Methods 

It i s  se l f -ev ident  t h a t  appl ica t ions  of a e r o a l a s t i c  opt imizat ion which are t o  have p o t e n t i a l  
p r a c t i c a l  value i n  *roved a i r c r a f t  s t r u c t u r a l  deaign must, i n  one way or another, involve the 
approximation of continuous s y s t e m  by means of d i sc re t e  elements. 
Section 11.2 a r e  then replaced with a f i n i t e  vector  of n adjustable  element propert ies .  Minimisation 
of the chosen meri t  funct ion mounts  t o  a search of n-vector space r a t h e r  than funct ion space. 

The design or  cont ro l  var iab les  of 

Schmit and Thornton's -le [11.41 of the rectangular  supersonic wing with mini- p r o p u l d v e  work, 
wherein n - 2. 
f l u t t e r  cons t ra in t  appl ied i n  combination with more conventional cons t ra in ts  of structural optimization. 
Section 11.1 a l s o  observed t h a t  t he re  i n  apparently 110 f d a m e n t a l  obs tac le  to  placing bounds on eero- 
e l u t i c  proper t ies  during m i h i g h t  design of eeronaut ical  s t ruc tures .  
h a a v e r ,  the process of merging such cons t ra in ts  i n t o  the msinatream has not  yet taken place. 
therefore  seem appropriate  t o  review the present  s t a tu8  of e f f o r t s  i n  this d i rec t ion ,  inasmuch u they 
a r e  compatible with the hoped-for fu ture  progress*. 

was deacribed i n  Section 11.1 and c i t ed  as the  only published instance t o  d a t e  of a 

In curren t  l i t e r a t u r e ,  
It 

Whether used separately or j o in t ly .  there  are two generml wags of d i s c r e t i z i n g  a s t r u c t u r a l - i n e r t i a l  
The f i r a t  cons is t s  of d iv is ion  i n t o  several  compatible f i n i t e  e l e m n u .  fo r  each of which the 

independent quan t i t i e s  a re  chosen (e.g., the normal displacements a t  an a r ray  of 'panel 

syetem. 
state of stress and deformation i s  spec i f ied  by a set of s ca l a r s .  
isolation, 

when t h i s  method is employed i n  
r 

mor i n t e re s t ing  e-les of recent  work on f ini te-element  optimization of various s t ruc tu res  with 
cons t ra in ts  on f r e e  v ibra t ion  o r  dynamic-response amplitudes, the reader  is r e f e r r e d  to  the second, t h i rd  
and four th  papers i n  the proceedings of the ADA St ruc tu ra l  M c s  and A e r o e l u t i c i t y  Spec ia l i s t  
Conference, Apr i l  1969. This voltme i s  c i t ed  i n  conasction with 111.131. 
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Fig1 1.10 Facesheet Thicknes Distributions for Optimum Cantilever Sandwich Beams, with Fixed Fundamental 
Bending Frequency and Two Different Thickness Constraints. Value of 6, = 0.5. Overall Mass Ratios Relative 

to Uniform Case: 67% for to = 0 and 78% for to = 0.20 
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points' over the surface of a thin wing) which completely specify the state, and they become the 
degrees of freedom for construction of equations of motion. 

Alternatively, all external forces can be removed from the system and the resulting homogeneous 
equations solved for up to r natural frequencies, and associated normal modes, of free vibration. 
This is one avenue leading into the second scheme for discretization, which is the superposition of 
finite numbers of normal or assumed modes of deformation. 
amplitudes then serve as degrees of freedom. Since the numerous variants of this scheme are amply 
described in any advanced text (e.g., Chapters 3-4 of Bisplinghoff, Ashley and Halfman i11.25)) on 
structural dynamics, they require no elaboration here. 

The (time-dependent or constant) modal 

It should be mentioned, however, that one way of discretizing is to apply Galerkin's procedure to 
the sort of differential-equation systems discussed in Section 11.2. 
rectangular wing for low-speed flexure-torsion flutter, wherein this procedure was applied to the span- 
wise distributions of skin thickness and bending and twisting amplitudes, is reported in l11.241. 
it is clear that the approximation has not converged with the rather limited number of degrees of 
freedom assumed in 111.241, and since there is a question whether the constrained flutter condition 
actually constitutes the minimum critical speed of the 'optimal' designs, it would be premature to 
reproduce those results here. 

A n  attempt to optimize a 

Since 

This is not to say that such an approach holds no promise for the future. 

Turner's procedure for discrete systems l11.131 starts from the following form of the equations of 
motion, describing a state of neutrally stable oscillation (flutter, free vibration, etc.): 

([Kl - w 2 [ M l  - u2 p c4 L[Al) {ql = {Ol . (11-78) 

Here Id, [MI and [A] are square matrices of stiffness elements, inertia elements, and dimensionless 
aerodynamic loads, respectively. The quantities in [AI are normally complex numbers, representing 
generalized forces, aerodynamic coupling and the like; they depend on reduced frequency k, flight Mach 
number, and the dimensionless manner in which the motion is approximated (mode shapes, panel-point 
locations on a given wing planform, etc.). There are r dimensionless coordinates qj in the column 
matrix. 
in this form. 

The system (11-78) has sufficient generality that virtually 3 discretized problem can be cast 

For definiteness, let it be assumed that the flutter speed is held fixed at a single flight 
condition. 
script (0). and let there be n adjustable mass elements m added to (or subtracted from, if 
negative) this structure. During this adjustment process, let the modal shapes on which Eq. (11-78) are 
based be held fixed. It will then be true, under rather broad conditions when the increments m are 
sufficiently small, that [A] remains unchanged and the alterations to [d and [MI are linear in 
the m.. For instance, this would be the case if the m. were associated with thickness modifications 

at a set of thin skin elements distributed over the area of a wing. It follows that, for any slightly 
altered structure, 

Let the equations of motion first be set up for a reference structure, identified by a super- 

j 

j 

J J 

(11-79) 

the normalized correction matrices [K(j)] and [M (j 1 1 being found by the same procedure that produced 
the original equations. 

Turner introduces the shorthand definitions 

- w2 p C4 L[A] f [Cl , (known function of k) (1 1-80) 

(11-81) 

For an assigned value of airspeed 
one's objective is to minimize the structural mass, subject to the 

V - VF, but possibly allowing for variations in flutter frequency 
r algebraic constraint equations 

w, 

A normalizing condition, such as is introduced to make the solution of Eq. (11-82) unique for 
the prescribed eigenvalues. Turner also defines a similarly-normalized row matrix 1 pl by means of 

q: = 1, 
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All the complex quantities pi,q as well as the complex elements of C, are separated into 
j9 

real and imaginary parts according to the generic notation 

pi = pf + i p" . (11-84) i 

Since the m. are obviously real, as are all other elements of [B], rationalization of (11-82) produces 
J 

(11-as) 

A set of r Lagrange multipliers X = A' + i A'' is used to associate the constraints (11-85) with the 
merit function 

(11-86) 

which is to be minimized. 
found by defining the Euler-Lagrange function 

According to the algebraic theory of extremals, the desired result can be 

F must be stationary for independent variations of all m. and the non-normalized values of 
3 

q;, qi. The former condition yields the n 'control equations' 

(11-88) 

where the forms of the derivative matrices are obvious from Eq. (11-81) and (11-79). The latter 
condition can easily be ohown to be equivalent to the 2r real and imaginary parts of 

L h J  ([BJ + [C*]) - L O J  , (11-89) 

where the asterisk denotes complex conjugate. It follows from Eq. (11-89) and the definition (11-83) 
of the row LpJ that X and p* are proportional, a relationship which Turner writes 

1 ( :L1-90) 

Here A '  and (- A") are the real and imaginary parts of a constant A ,  to be determined in the 
solution process. Eq. (11-90) permit the A to be eliminated in favor of the p. The resulting final 
forms of the optimizing equations and constraints (11-88), (11-82) and (11-83) become 

Re (AuJ[B(j)l {ql) = - 1 , j = 1,2, ... n , (11-91) 

(11-92) 

(11-93) 

In principle, Eq. (11-91)-(11-93) constitute a system of 4r + n real, non-linear, algebraic 
equations in the optimal n masses, the (4r - 2) undetermined parts of {q) and {p), and the two 
parts of A. Variations in frequency must be handled by tryin a set of values of w until an absolute 
minimum merit function is discovered. In Section IV of [ 11.138,Turner discusses the practical process 
of separating Eq. (11-91)-(11-93) into reals and imaginaries , some details of solution, and limitations 
on allowable values of r and n. The algebraic system is solved by an iterative scheme, described 
as a generalization of the Newton-Raphson method. 
respect to the importance of finding a starting approximation that is close enough to the desired 
solution to ensure convergence. In this connection, however, it should be mentioned that considerable 
research is currently in progress on improvement of algebraic optimization procedures; once an 

The work of Freudenstein and Roth [11.261 is cited with 
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appropriate system of equations is established, the non-linearity may no longer constitute such an 
obstacle and many ways will soot be available for efficiently computing the desired solution. 

In [ 11.131 , Turner presents two examples. The first involves a three-segment finite-element 
approximation to a sandwich panel fluttering at Mach number 3 and standard sea level density. 
interesting that, for the system parameters selected, the panel of minimum face-sheet mass differs 
insignificantly from a uniform panel with the same critical speed. 
reference condition for optimization, convergence turned out to be very rapid. Since no proofs of 
uniqueness are available, however, an intriguing question concerns whether other, more substantially 
improved designs might be discovered which are remote from the reference case. The author remarks, 
"It is not known whether these findings would be altered significantly if the panel were divided into a 
greater number of segments or  if the effects of independent variation of core density and associated 
effects of shear deformation were included in the analysis." 

It is 

Because the latter was chosen as the 

Turner's second example deals with the cantilever wing, some of whose dimensions are illustrated 
in Fig.ll.11. 
displacement in each segment was represented by a cubic polynomial and twist by a linear polynomial. 
Thus the total of deflection, bending-slope and twist coordinates at Sections 1, 2 and 3 add to r = 9. 
Nonstructural mass was taken to be a uniform 0.0181 lb-sec /in 
found in the paper. 

Each of the three segments shown was assumed to have constant properties. Bending 

2 2  across the span; other details will be 

The reference case was established by finding the combination of "1, m2 and m3 which added to 
a minimum while holding the fundamental frequency of torsional vibration in vacuo at 15 Hz. 
analysis, based on incompressible aerodynamic strip theory, then gave a sea level 
frequency of 8.99 Hz. 
flutter frequency, is the succession of optimal states arrived at by the foregoing method and leading to 
the indicated minimum-mass system. The reference state was expected to be close to the desired solution 
(cf. f11.51 , [11.6]), so it is not surprising to obtain a final result only 2% lighter. 
estimates, however, that the optimized structure is 18% lighter than a uniform wing having the same 
flutter performance. 

A flutter 
VF = 675 knots at a 

Fig.ll.12 shows the properties of this initial approximation. Also plotted, vs. 

Turner 

In connection both with the cantilever wing example and with the foregoing quotation from Turner 

In view of the proof in [11.13] that the optimal panel has a thickness distribution 
regarding his three-segment panel, it is possible to speculate about the effects of the number 
design variables. 
symmetrical about its midchord, there are really only two independent variables: ml and m2. The 
relationship between these variables and the flutter eigenvalues VF and w may be likened to a 
transformation from an 5 - m2 - plane to a VF - w - plane, as in the sketch below: 

n of 

m2 \ 
\ 
\ 

1 I m 

optimal panel 
on C 

CuNe c 

V F 

If one assumes that the transformation between points like P and P' (or curves like C and C') is 
unique and one-to-one, it is clear that with ml - m3 
to a given flutter speed and frequency. 
optimal panel for on Fig.2 of [ 11.131. 
enconpassed by a pair of curves similar to C and C'. Should three independent variables be avail- 
able, as with the cantilever, then a curve in three-space corresponds to a point like 
seem to be considerably greater freedom available to the search for the best system. With the panel, 
this could be achieved by going to five or more segments. 
always seem to be necessary for the finite-element design to 'converge'. 

there is only a single design corresponding 

All other points on this figure would be 
This explains, for instance, why the uniform panel is also the 

w = 54.75 Hz 

P'; there would 

In general, an adequately large n would 

Another investigation will next be discussed which aims. by means of somewhat less sophisticated 
mathematical analysis, at the ultimate flutter optimization of very complicated airframe structures with 
many hundreds of finite-element degrees of freedom and dozens of design variables. 
representation similar to Turner's, Eq. (11-78), this work was conducted at The Boeing Company's 
Commercial Airplane Group. 

matrix [d, with which a set of normal mode shapes are calculated. These modes are then used as 
generalized distributed coordinates to formulate the flutter equations, also in the form of Eq. (11-78). 
In determining the sensitivity of flutter speeds to redistributions of structural stiffness, and the 
corresponding total structural mass, the most direct procedure is to recalculate new stiffness and lumped 

Based on a 

The rocedure starts by generating a full stiffness matrix [K] and a corresponding lumped mass 
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mass matrices at each step. 
ness matrix from the beginning was avoided by dividing the configuration into substructures. 
Rearrangement of the stiffness distribution was achieved by simply rescaling the stiffness matrix for 
one or more of the substructures and then forming the required full stiffness matrix by a straightforward 
matrix merge procedure. 
time on the CDC 6600, or well less than 1/30 of what would have been required if the actual finite 
elements had been rescaled and the new stiffness matrix generated in one pass. 
outlined in the following steps: 

In the example to be described below, the need for reformulating the stiff- 

New stiffness matrices could be obtained in less than a minute of computer 

The overall procedure is 

(1) 

(2) 
factors. ) 

(3) 

Generate basic substructure structural mass and stiffness data. 

Scale substructure structural mass and stiffness matrices. (Enter here with new scale 

Merge scaled stiffness matrices, reduce out those degrees of freedom needed for merging but 
not required for vibration solution. Merge structural mass matrices, combine with fixed mass matrix. 

(4) 

(5) 

Solve vibration problem for normal mode shapes and frequencies of modified structure. 

Interpolate modal data from structural control points to aerodynamic control points. 
Generate chordwise slope data for aerodynamic program. 
number. 

(Enter here with new speed regime, new Mach 
Advanced three-dimensional oscillatory lifting-surface theory is used; see, e.g., Vol.11 of 

[ 11.11 .) 

(6) Calculate generalized aerodynamic forces, generalized mass and stiffness matrices for the 
modes of the modified structure. 
employed.) 

(Enter here with new Mach number, if subsonic or piston theory being 

(7) Set-up and solve the flutter problem using the so-called 'V-g method' (see Section 9.5. of 
[ 11.251 ). 

For purposes of a sample problem, a low-aspect-ratio configuration of supersonic-transport type was 
divided into 13 substructures. These regions, shown in Fig.ll.13, were chosen to isolate logical 
structural regions such as the wheel well (panel 4) and the main wing spar (panels 5, 9, 11 and 12). 
should be considered a fairly gross representation. Once general sensitivities have been established, 
however, it would be simple to go back and sub-divide panels of particular interest for further study. 
Also there is no reason why specific structural members could not be broken out and considered as 
separate regions by themselves. 

This 

The results presented here are for two Mach numbers (one subsonic and one supersonic) and two air- 
craft weight conditions (one light-weight and one heavy, corresponding nearly to maximum gross weight). 
The aerodynamic generalized forces were calculated using either supersonic Mach-box or subsonic kernel- 
function theory as appropriate*. 
high-frequency wde, any one of which could prove the most critical at a given flight condition. 

The critical flutter modes included two low-frequency modes and one 

Table 11.1 shows the dependence of flutter speed on changes in panel stiffness and the corresponding 
(proportional) structural weight. 'Sensitivity' R relates to equivalent airspeeds and is defined below 
the table. Since weight is of primary interest, these sensitivities are given as the ratio of the 
change in flutter speed for 1000 lb change in structural weight to the flutter speed of the reference 
condition. Here the structural weight is assumed to vary in direct proportion to the stiffness. 
be justified by assuming that the increase in stiffness is achieved by increasing skin and spar thicknesses 
and spar cap widthst Table 1l.lwas obtained by increasing the stiffness and corresponding structural 
weight of each region in succession while holding the remaining panels at their reference level. 
these numbers are first-order forward-difference approximations to the derivatives of flutter speed with 
respect to structural weight. 

This may 

Thus, 

Changes in stiffness ranged from 10% to 20% of each panel. Changes in flutter speed were small, 
and care had to be taken in interpreting the V-g solutions to be sure of identifying the most critical 
condition. As the calculations progressed, larger changes were used. Some idea of the actual linearity 
of these derivatives with size of stiffness changes may be gained from Table 11.2. 
derivatives were fairly linear for +20% modifications in panel stiffness, and flutter speeds for 
distributions obtained by rescaling several panels within these limits could be adequately predicted. 

The data displayed in Table 11.1 have been used to generate two sets of redistributions of 

Generally, the 

structural stiffness. 
speed for that condition with no net increase in structural weight. 
or subtracted from the panelsweremade roughly proportional to the values of their derivatives**. 
redistribution is shown in Fig.ll.13and labeled A-lx in Table 11.3. 
of some 3000 lb per side of structural weight, but no net weight change. 
this redistribution are shown as A-2x and of tripling it as A-3x. 
as flutter speed divided by the flutter speed for the reference structure for each flight condition. 

The first, based on column 3 of Table 11.1, was designed to raise the flutter 
Here the amounts of weight added to 

It results in the rearrangement 
The consequences of doubling 

The numbers in Table 11.3 are given 

This 

*The reader is again referred to Vol.11 of 
dimensional aerodynamic theories. 

tInformal talks with weights engineers indicate that 0.75 for a value of the ratio of change in 
structural weight to change in stiffness would be more realistic. 

*wrhis procedure is obviously equivalent to one step in a gradient or steepest-ascent method [ 11.231 of 
optimal search. 

11.11, and citations made therein, for information on these three- 
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Supersonic 
light-weight 

For three of the four conditions this distribution is very beneficial. 
condition, however, the flutter speed decreases. The reason for this may be readily seen in Table 11.1, 
where for the heayy-weight subsonic condition the flutter performance is improved most by stiffening the 
wingtip and softening (probably lightening) the trailing edge. 
weight subsonic condition. ' 

For the light-weight, subsonic 

The exact opposite is true for the light- 

Table 11.1 

Subsonic 
light-weight 

Linear Derivatives of Change in Flutter with Respect to Change in Panel Stiffness 

Panel 

1 
2 
3 
4 
5 
6 
7 
a 
9 
10 
11 
12 
13 

R R 

-0.030 -0.007 
-0.027 -0.011 
0 0 
0 0.003 
0.037 0.022 
-0.008 -0.040 
0.033 0.011 
0.024 0.022 
0.052 0.044 
-0.015 0.014 
0.022 0.012 

' 0.016 -0.027 
-0.033 0.013 

13 

5 

9 

Sub s onic 
heavy-weigh t 

+10 0.007 
-10 -0.008 
-20 -0.018 

+10 0.024 
+30 0.075 
+50 ' 0.191 

10 0.029 
30 0.100 
50 0.143 

R 

0 
-0.001 
0 
0.002 
0.003 
0.003 
0.003 
0 * 009 
0.015 
0.013 
0.022 

-0.000 
0.028 

1 change in V 
R =  F -  

1000 lb X(VF)REF. 

Table 11.2 

Typical Non-Linearities in Derivatives of Change in Flutter Speed with Respect to Change in Panel Stiffness 

IlVF/(V 1 % change in 1 FREF. 

Subsonic 
light-weight 

Sup er sonic 
light-weight 

l2 I +50 
+loo 

If the purpose of the distribution were solely to improve the one condition (subsonic heavy- 
weight), when the improvement in flutter speed has fallen off significantly (say, after the 
rearrangement of some 6000 lb), a new set of derivatives should be calculated and used to form a new 
redistribution. 
then the sets of derivatives for all the critical conditions should be used in formulating the 
redistributions. 

In more realistic circumstances where the purpose is to clear all flight conditions, 

As a second example, a redistribution was designed to improve stability in the low frequency mode 
for the light-weight supersonic condition using the derivatives of column 1, Table 11.1, and Table 11.2. 
Here, the ground rule was to determine a distribution that would require a minimum additional amount of 
weight. 
consisted of increasing the stiffness in panel 5 by 18% and panel 9 by 25%, resulting in the addition 
of 2600 lb structural weight per side. 
from the derivatives. 
mode vanished and was replaced by a high frequency mode. 

No structural weight was to be removed. This distribution, identified as B-lx in Table 11.3, 

The gain in flutter speed is more than would have been predicted 
Also, in doubling this additional stiffness distribution, this particular critical 



168 

.. Table 11.3 

Dimensionless Effects on Flutter of Modifying Structural Mass of an Aircraft of Supersonic 
Tabulated Quantities represent Flutter Speeds divided by the Reference 
Flutter Velocity at the Corresponding Flight Altitude 

Transport Type. 

I I Supersonic, light-weight I 

I BASE Low frequency High frequency I l l  
I 1 B-lx 

2600 lb added 1 1.17 1 1.17 

I 1.17 I %% lb added I - *  I 
7800 lb added I - *  I '1.17 I I B-3x 

Distribution A, No net increase in weight - each increment represents rearrangement of 3000 lb of 
structural weight per side. 

Addition of 2600 lb of structural weight per side per increment. Distribution B, 

* Low frequency instability no longer exists. 
The foregoing obviously constitutes a very preliminary attempt at coping with many degrees of 

freedom and several flutter constraints on a given design. Following Taylor [11.151, however, one can 
hypothesize a relationship between a system of given mass and maximum flutter speed and one of minimum 
mass for given flutter speed. 
computations is to estimate sensitivities - derivatives of flutter eigenvalues with respect to changes in 
the physical system. 
determination of such derivatives from the properties of basic flutter equations like Eq. (11-78). 
work is expected to have special significance in aeroelastic optimization, because of its potentialities 
for simplifying the calculations. Ref. [11.27] also presents formulae for second- and third-order 
effects of system changes; although more involved, these hold out the possibility of accounting for the 
sort of non-linearity exposed in Table 11.2. 

As with other methods aimed at the same objective, a key step in the 

Many years ago, van de Vooren([ll.27], Section 9) investigated the analytical 
His 

The essence of van de Vooren's approach can be explained starting from Eq. (11-78). It is 
rewritten, in a form closer to the notation of l11.271, as follows: 

(1 1-94) 

Here [U] 
structure, reduced frequency, flight Mach number and altitude have been chosen. 
eigenvalue, which can be equated to the combination w /(a2 
The r eigenvalues, and associated complex eigenvectors, are computed for Eq. (11-94). The same is 
done for the transposed equation ([d is symmetrical): 

is a combined inertia-aerodynamic matrix - an array of complex numbers when a particular 
represents a complex 

2 
[ 1 + id when the V-g method is being used. REF. 
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(11-95) 

The r values of p c m  be proved equal for these two equations. 

Square matrices [Q] and [PI are constructed from the modal columns of Eq. (11-94) and (11-95), 
with the columns ordered on increasing frequency. 
one can show that the following matrices are diagonal: 

By the bi-orthogonality relation of matrix algebra, 

(11-96) 

Now suppose that incremental matrices [E ]  and [U] are added to [K] and [U], respectively, by a 
small system alteration of the sort envisioned in this section. 
then calculated: 

The following nondiagonal matrices are 

It is demonstrated 
pi of Eq. (11-94) 

quite straightforwardly in 11.271 that the 
is linearly estimated by 

- - 
E . .  - pi uii 
11 Api - 

u.. 
11 

Here the double-i subscripts designate the ith elements of the 
matrices. 

Each desired sensitivitv is determined from Ea. (11-98). 

(11-97 

resulting change in the ith eigenvalue 

(11-98) 

principal diagonals of the corresponding 

when [el and/or [U] are linearlv . -  _ _  
related to the unit change in*mass/stiffness, by factoring this change out of.Eq. (11-97) and (11-68) 
and dividing Eq. (11-98) by it. Usually only the eigenvalue p which is associated with the critical 
flutter condition will require this treatment. 
to Eq. (11-981, compared with complete flutter analyses of the reference and n modified systems, 
indicates a considerable saving of labor, which should increase with an increasing number of design 
variables. 
the complex eigenvalue solution (equivalent to a complete V-g determination) need be conducted only 
twice - for Eq. (11-94) and (11-95). 

A careful examination of the computational steps leading 

The important facts are that the aerodynamic matrix need be constructed only once and that 

11.4 Concluding Discussion 

The most obvious comment to be made about the subject of aeroelastic optimization, as comprehended 
in the foregoing sections, is that it is both presently incomplete and in a rapid state of evolution. 
It is clear that both continued research and practical applications will be necessary along the two major 
lines of development: discrete-element approximation of realistic light-weight structure; and the 
differential-equation idealization of simplified systems, which leads to a search of function space for 
optimal solutions by methods analogous to those used in modern control theory. 

The latter approach is important as a general guide to the potentialities of this branch of 
optimization, as a reference source for checking more approximate results, and as a possible avenue to 
the proof of theorems illuminating certain questions that arise from the non-linear mathematics. 
Assuming that correct and meaningful problem statements can be achieved, one faces the single over- 
riding difficulty of finding solutions by numerical integration of rather high-order differential- 
equation systems. Experience to date points to the transition-matrix scheme, together with the method of 
unit solutions for evaluating the required sensitivities, as most promising for this purpose. Very high- 
fidelity computer routines for matrix inversion are an essential ad'unct. There are other alternatives 
for numerical solution discussed in books like Bryson and Ho [ 11.233, however; several among them, such 
as the method of backward sweeping, deserve further investigation. 

In the area of discretization, the principal goal is to advance to very large numbers of degrees 
of freedom and design variables through the use of well-developed finite elements. There are many ways 
in which work done to date can be refined. 
encountered in the associated algebraic calculations, there remains a question whether better solutions 
far removed from the assumed initial design can be anticipated and/or realized. It is finally worth 
repeating that the imposition of aeroelastic inequality constraints should fit fairly routinely into 
several existing schemes for structural optimization under more conventional conditions on strength and 
stiff ness. 

Although it is not anticipated that extreme troubles will be 

One step in the direction of realism must be vigorously pursued in connection with both lines of 

Although there are' few general guideposts to determining when a problem is well-posed, it seems 
safe to conclude that any mathematically proper solution which also seems physically reasonable is an 
acceptable product of an optimal search. 

development. This is the simultaneous imposition of multiple constraints of different types. 

Two key and related questions stand unanswered, however, 
, 



170 

except in the most elementary cases. 
absolute optimum, if such exists, among all possible extrema obtainable from a given algebraic or 
analytic statement. In the authors' view, these matters represent vital unfinished business for the 
applied mathematicians. 

These concern when a result is unique and when it constitutes the 

The benefits inherent in future exploration of this field are certainly not less than those foreseen 
from conventional minimum-weight structural design. 
limited value.of experience and intuition in the face of complicated configurations many of whose members 
must be sized by aeroelastic considerations. 
produce results roughly comparable to the creations of an experienced designer confronted with the same 
requirements. There are few, if any, such designers in aeroelasticity. 

One important basis for this opinion is the rather 

It has been said that modern structural optimization can 

With respect to what savings may be hoped for, it is first necessary to ask what one will choose 
If the latter is (in some sense) a uniform structure with as a figure of merit or reference solution. 

the same aeroelastic behavior, then fairly realistic - if simplified - examples have already been found 
where reductions in structurally-effective mass are possible in the order of 15-3OX. (Those cases which 
save 70% to more than 9OX are regarded either as suspect or physically unrealizable.) 
improvements so far achieved by finite-element methods are due to the near-optimality of the correspond- 
ing reference designs. There are many respects wherein the crude attempts of the past can be 
substantially improved, and this new.too1 is believed to hold substantial promise for the refinement of 
future aerospace structures. 
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Appendix 11A - List of Principal Symbols 
a(x> 
A cross-sectional area of bar 
[AI dimensionless aerodynamic matrix 

2 [ Bl (= [K] - w [MI) combined stiffness-inertia matrix 
C chord of wing 

function used for applying minimum-thickness constraint 

averaged or two-dimensional lift-curve slope of wing or airfoil 

4 
cLa 
[ cl (= - w2 p C L[AI) abbreviated aerodynamic matrix 

e (6) 
E 

fi 
F Euler-Lagrange function 
g structural damping parameter 

GJ (XI 
H Hamiltonian function 
i (: G) the imaginary unit 

strain energy per unit volume 
Young's modulus; distance between wing aerodynamic center and elastic axis 
function appearing in ith constraint differential equation 

torsional rigidity of rod 

mass,moment of inertia per unit span (constant) 

optimum distribution of mass moment of inertia 

merit function (usually structural mass) 

IO 

I, (XI 

9 
k (E wC/2V) reduced frequency 
K a constant 
[Kl matrix of stiffness elements 
L 
m dimensionless mass or thickness of structure (figure of merit) 
m added element of mass 

length of bar or beam; wingspan 

j 
aerodynamic pitching moment about elastic axis (positive nose-up) % 

[MI matrix of inertia elements 
M mass per unit length of bar 

tip mass attached to bar 

order of vector of control or design variables 
order of state vector of a system (total order of governing differential equations) 

- 
M1 

n 
N 
p,q,r,s,y various auxiliary functions of x used in reducing a system to state-vector form 
LPJ row matrix adjoint to Iq) 
I PI 

qi 

qi Is) matrix of coordinates 

[Q] matrix of q.-eigenvectors 

r 
R 
t dimensionless thickness of structural material 

square matrix of adjoint eigenvectors 
discrete system coordinate or functional element of state vector 

number of degrees of freedom in a discretized system 
sensitivity of flutter speed to mass change 

specified minimum value of t 

T dimensional thickness 
[U1 increment to mass-aerodynamic matrix 
U volume of elastic body 

U (X) 
U1 

displacement of points along a bar in extensional motion 
masslaerodynamic matrix in theory of 1 11.271 

V airspeed or flight speed 
critical values of V associated with divergence, flutter, respectively 

(E Y/L) dimensionless bending deflection 
'D 9 'F 
W 

X dimensionless length coordinate in beam, bar, etc. 

I 
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X 

X 

Yi 

Y(X) 

6 

Y 
6 

&1 &2 

6 ;  6 i , n  

[El 

e 
x 
U 

P 
T 

w 

w e 
n 

List of Principal Symbols (Contd.) 

value of x at transition from varying thickness to minimum value 

dimensional length coordinate 
element of state vector 

bending deflection of beam or plate 

quantities proportional to 61 and 62 [see Eq. (2-6O)l 

( 5  wL m) 
used as a constant in Section 11.1; see also definition in (2-47) 
variation 
fractions of mass, in reference uniform system, which are for primary structure and 
nonstructural, respectively 
quantities related to 61 and 62 [see Eq. (2-37)] 

increment to stiffness matrix 
elastic twist in rod or wing 
(with various subscripts) Lagrange multiplier or adjoint variable 
complex flutter eigenvalue 
density of air or solid material 
time coordinate 
circular frequency of simple harmonic motion 
frequency of torsional vibration or flutter 

general dimensionless eigenvalue parameter 

dimensionless frequency parameter for vibrating bar 

Subscripts, superscripts, etc. 

,identifies reference system generally (uniform properties) 

superscript denoting reference system in theory of 

transpose of matrix 

derivative with respect to length coordinate 

real and imaginary parts of complex number 
complex conjugate 

[ 11.131 

complex number or complex amplitude of simple harmonic quantity 

vector 
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Chapter 12 

OPTIMIZATION TECHNIQUES IN AIRCRAFT CONFIGURATION DESIGN 

B. Silver and H. Ashley 

12.1 Introduction 

The present Chapter is a departure from the main theme of this book on structural optimization. 
The subject here is 'preliminary' or configuration design - and its optimization. Specifically, how is 
the 'best' combination of aircraft design parameters (such as wing loading, aspect ratio, tail area, 
etc.) to be selected in order to meet given system requirements? 
tion is interactive and complementary to structural optimization; 
the day when both will coexist within a single computer program. 

The study of configuration optimiza- 
indeed, it is not difficult to foresee 

The two areas, structural optimization and configuration optimization, can both be classified 
under the heading of 'parameter optimization of non-linear systems', a rapidly growing domain of 
optimization theory. Thus the discussion of one area has implications for the other - and in fact, for 
many other optimization problems as well. In a broad sense, every engineering design problem is one of 
parameter optimization. At therisk of duplicating other material .in this book, the present authors have 
sought to bring out the general nature of the design optimization problem, while still emphasizing the 
specific problem of aircraft configuration optimization. 
present-day methods of aircraft design optimization are a natural extension of past methods; that is, 
optimum-seeking computer programs have the same goal as the sliderule-wielding engineer of yore. Both 
want to find the 'best' airplane design. Both approaches rely on the designer's intuition for a first- 
guess, and both use iterative methods to improve this guess. The major advantage of optimization using 
the high-speed digital computer is that the space of design variables may be more exhaustively explored. 
The main disadvantage is that this space must be quantitatively defined - a process that de-emphasizes 
the roles of experience and intuition while inviting distortions and oversimplifications. 

Further, they take the point of view that 

The iterative nature of the engineering design process is indicated in Fig.lP.l. The 'search 
strategy' simply forms the feedback loop which attempts to improve the design. In the real-world 
('reality') the feedback may come from operational experience with the actual airplane. 
modeled, either with a physical model, such as a wind-tunnel model or a design mockup, or with a 
mathematical model ('quantitative abstraction') as shown. 
real world or from other models, and its results must be continuously compared With real-world results. 
This distinction between reality and abstraction should be kept in mind during computerized optimization 
for what is optimized is the model, not reality. 

Reality may be 

This abstraction requires inputs from the 

The 'model' involves the space of design variables which is searched. In Fig.12.1, the 'model' is 
comprised of (A') ('abstract domain of possible designs') and (B') (the value criterion: 'defined objec- 
tive function and constraints'), which are analogues of (A) ('actual domain of possible designs') and 
(B) ('measure of actual value'). 

(A') contains the underlying physics of aircraft design, including aerodynamics, structures, 
propulsion, etc. (B') estimates the value of the aircraft design specified by (A'). Conceptually the 
model defined by (A') and (B') is the same one used in parametric analyses or tradeoff studies. The 
difference is that this model is driven in a sequential manner by (C'), the search strategy. 
search uses the results of previous iterations to select each new design, whereas a nonsequential 
search, such as a typical parametric analysis, iterates over a predetermined array of values. 

Sequential 

12.1.1 A Comparison between 'Parametric Analysis' and Automated Search Methods 

Parametric analysis methods are firmly rooted in the thinking of m s t  aircraft designers. In this 
method a range of values of each of a number of parameters is analysed, the remaining parameters 
temporarily being held fixed. 
is the designer, whose judgmnt guides the selection of parameters.. Of course the judgment of the 
designer must also remain active when he interprets the results of an automated optimization. 
Table 12.1 has been prepared to summarize the authors' views on the relative merits ofthese complementary 
approaches. 

This is sometimes called a tradeoff study. The optimizer in this approach 

Selected references related to the use of parametric analysis in aircraft design are given in 
Reference Section 12A. 
propulsion, performance and design into one aircraft synthesis program is SYNAC i12A.11 developed by 
General Dynamics Corporation. 
an automated mode. 
conceptually simple to 'drive' it With an automated optimizer. Every major aerospace company has 11 
multiplicity of parametric computer programs. 
Gruunnan Aerospace i12F.21 believe that one of the major problems at present is obtaining a compatible 
integration of the various analysis and synthesis programs. 
computer programs within a company may not use a c o m n  data base. 
interface mismatches is one of the advantages of an integrated aerospace vehicle synthesis program. 

One of the early efforts that brought together aerodynamics, structures, 

Having started as a parametric analysis program, SYNAC is moving toward 
Of course, once an integrated mathematical mdel such as this is developed, it is 

Both Hornburg of Douglas Aircraft [12F.l] and Hedrick of 

A related problem is that the various 
A reduction of the discipline- 

Typical of present-day airplane parametric analysis programs is Boeing's 'Thumbprint' i12A.21. 
The output of this program is plotted on transparent overlays to give the engineer a better view of 
the multi-dimensional space made up of the following: wing loading, thrust loading, gross weight, 
approach speed, maximum lift-to-drag ratio, takeoff noise level, initial altitude capability, takeoff 
field length and direct operating cost. This program is a useful tool for selecting proper tradeoffs 
in the preliminary sizing of a commercial transport. 

! 

I 

I 
I 

I 

~ 

I 
i 

I 

I 
I 

I 
I 

I 

' I 

i 

I 

1 
i 

I 

I 



175 

CONFIGURATION 
PAR AM ET E R S ACTUAL DOMAIN 

OF PossieLE 
4 DESIGNS 
I 

A 
ACT U AL DES1GN MEASURE O F  

ACTUAL VALUE VALUE I e 
I 

t 

SOME 

ABSTRACT DOMAIN 
OF PossieLE 
DESlG N S 

COMPARISONS AND 
IMPROVEMENTS OF 
QUANTITATIVE MODEL 

WIND TUNNEL DATA, 
STRUCTURAL PROPERTIES, 
DESIGN MANUALS, etc. 

A ESTIMATED 
DESIGN DEFINED OBJECTIVE VALUE AND 

b FUNCTION AND b 

COEFFICIENTS 
CONSTRAINTS SENSlTl VI TY 

CONF I GU RATI o N 
PARA M ET ER S 

A 
SEARCH STRATEGY 

Fig.12.1 . The Aircraft Design Optimization Takes Place within a Quantitative Abstraction to Reality. I t  Contains 
Three Phases: (A') the Quantitative Model (Underlying Physical Laws); (B') a Definition of Value; and (C') 

a Search Strategy. Each Pkase must be Compared Against the Ideal of 'Reality' 
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Table 12.1 

Comparison between Parametric Analysis and Automated Search Methods 
~~ 

PARAMETRIC ANALYSIS 

1. -Easy t o  program. 

2. Tradi t iona l  approach, matched t o  
indus t ry  experience. 

3 .  Maintains designer 'in the loop ' ,  
thus exerc is ing  and strengthen- 
ing  h i s  judgment. 

Objective function does n o t  need 
t o  be pre-specified.  

4. 

5. Cons t ra in ts  do n o t  have t o  be 
pre-specified.  

Sens i t i v i ty  t o  change i n  the  
parameters i s  apparent from the  
r e s u l t s  ,('maps' t he  space).  

6 .  

1. Unwieldy and i n e f f i c i e n t  fo r  
higher-dimensional spaces.  

2. Requi res ' a  good nominal o r  
s t a r t i n g  poin t .  

3. Provides l e s s  c e r t a i n t y  of 
ob ta in ing  optimum. 

4. Must o f t e n  be  redone t o  extend 
the  se l ec t ed  range of parameters. 

Encourages t h e  use of a r e s t r i c t e d  
number of parameters. 

5. 

AUTOMATED SEARCH METHODS 

1. Poten t i a l ly  m r e  e f f i c i e n t  i n  loca t  
ing  optimum, p a r t i c u l a r l y  f o r  
higher-dimensional problems. 

2. P o t e n t i a l l y  b e t t e r  convergence. 

3. Applicable t o  a higher-dimensional 
space than man can manipulate. 

4. Minimizes human b ia s .  

5. Encourages mre rigorous ana lys i s .  

6.  Applicable t o  a wide c l a s s  of 
problems, including those  i n  which 
human i n t u i t i o n  i s  not  w e l l  
developed (e.g. s t r u c t u r a l  optimi- 
za t ion  with f l u t t e r  cons t r a in t s ) .  

1. Harder t o  program and debug. 

2. ' B e s t '  search  method depends on 
t he  charac te r  of t he  problem. 

3.  Generally f inds  loca l  r a the r  than 
global optimum. 

4. Can encounter convergence problems. 

5. Search o f t e n  tends to  be driven 
ou t s ide  the  range o f  the mathe- 
mat ica l  m d e l  which is  supported 
by physical da ta .  

6 .  May no t  challenge and s t rengthen  
: designer 's  i n t u i t i o n .  

7 .  S e n s i t i v i t y  genera l ly  ava i l ab le  
only over l i n e a r  range (does n o t  
'map' t he  space). 

The remainder of t h i s  Chapter w i l l  be devoted t o  methods of optimization t h a t  go beyond 
parametric ana lys i s .  
descr ibes  some d i r e c t  methods. 

so lves  an a u x i l i a r y  problem perhaps a generalized s e t  of equations l i k e  2 0 0) while the  d i r e c t  

method adopts a 'hil l-climbing'  s t r a t egy  on the  ob jec t ive  func t ion  y(X) d i r e c t l y .  Section 12.4 
gives some opera t iona l  r e s u l t s  of d i r e c t  search methods and Sec t ion  12.5 b r i e f l y  descr ibes  the rap id ly  
developing f i e l d  of man-computer i n t e r a c t i v e  design. 

12.2 Ind i r ec t  Methods of Optimization 

Section 12.2 b r i e f l y  discusses i n d i r e c t  methods of optimization and Section 12.3 
The d i f fe rence  between these two approaches i s  t h a t  the  i n d i r e c t  method 

( 

Typical of i n d i r e c t  methods is the  ca lcu lus  of va r i a t ions .  The r e s u l t s  of t h i s  approach can 
occasionally be e legant  closed-form expressions,  which represent  so lu t ions  t o  a general  c l a s s  of 
problems. Unfortunately i t  has proved d i f f i c u l t  t o  apply the  ca lcu lus  of va r i a t ions  to  the  0pt:imization 
of systems as complex a s  an a i r c r a f t  configuration. 
p r a c t i c a l  by any method u n t i l  the  advent o f  t he  modern computer and the  powerful i t e r a t i v e  methods 
typ ica l  of computer so lu t ions .  

In f a c t ,  formal optimization of systems was not 

Annotated references are included a t  the  end of t h i s  Chapter. These references  are divided i n t o  
Reference Section 12B l ists  a few recent  books seven groups, two of which relate t o  i n d i r e c t  methods. 

on t he  general  subjec t  of optimization (Ref. [12B.1] includes two in t roductory  chapters on t he  use of 
va r i a t iona l  ca lcu lus  i n  optimization);  
Ref. l12C.11 is p a r t i c u l a r l y  concerned with extrema1 problems i n  the  ex terna l  shaping of aerodynamic 
surfaces,  e.g. minimumdrag wings and bodies i n  supersonic and hypersonic flow. 
of va r i a t ions  is  used t o  obta in  subsonic a i r f o i l  p r o f i l e s  of maximum sec t ion  l i f t  coe f f i c i en t .  
drag is not constrained, t he  requirement of a f u l l y  a t tached  boundary l aye r  leads  a l s o  t o  high 
predicted maximum l i f t - to -drag  r a t i o s  (59 t o  352, corresponding t o  a Reynolds number range of 

6 7 10 t o  10 1. 

Reference Section 12C dea l s  s p e c i f i c a l l y  with i n d i r e c t  methods. 

In [12C.2] t he  ca lcu lus  
Although 

A r ecen t ly  developed i n d i r e c t  method i s  ca l l ed  'geometric programming' and i s  assoc ia ted  with 
the  names of Zener, Duffin and Peterson i12C.31. Wilde and Beight le r  [12B.2], comment: "Geometric 
programming can now be used wherever a system is  described by generalized polynomials. 
app l i ca t ions  abound because the  technique is  so new t h a t  only a few engineers have had t i m e  t o  put  it t o  

Po ten t i a l  
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work. For problems with few degrees of d i f f i c u l t y ,  geometric programing promises t o  y i e l d  f a s t ,  
accura te  so lu t ions  t o  ho r r ib ly  non-linear problems. 
t h e  method should produce rigorous ' r u l e s  of thumb' giving optimal component proportions t h a t  a r e  
completely independent of f l uc tua t ing  p r i ces  and u n i t  charges". 

And when there  a r e  no degrees of d i f f i c u l t y  a t  a l l ,  

Apparently l i t t l e  has been done with geometric programing i n  a i r c r a f t  optimization, although 
[12C.4] d iscusses  i t s  use i n  the design of V/STOL vehic les .  

12.3 Direct Methods of Optimization 

Methods of d i r e c t  search a r e  i t e r a t i v e  methods which sequen t i a l ly  attempt t o  improve the  defined 
A s  shown i n  Fig.12.1, the search s t r a t e g y  (C') ob jec t ive  func t ion  whi le  s a t i s f y i n g  given cons t r a in t s .  

a c t s  a s  a feedback loop dr iv ing  the  mathematical model made up of (A') and (B'). 
Chapter i s  mainly concerned wi th  (C ' ) ,  it i s  worth not ing  t h a t  t he  r e a l  processes (A) and (B) a r e  o f t en  
more d i f f i c u l t  t o  model than (C). 
through 112F.61) have s ingled  out  block (A') a s  present ing  p a r t i c u l a r  d i f f i c u l t i e s .  Among t h e  a reas  of 
d i f f i c u l t y  mentioned were the  following: 
a r b i t r a r y  three-dimensional body; 
and inaccura te  c o s t  es t imat ion  techniques. Regarding the  value c r i t e r i o n  (B') ,  i n  general  t h e  a i r c r a f t  
conf igura t ion  t h a t  i s  'optimum' is  very s e n s i t i v e  to  the  d e f i n i t i o n  of t h i s  value c r i t e r i o n .  
t h i s  behavior, t h e  value c r i t e r i o n  should cont inua l ly  be re-examined as  the  design evolves. This 
process forms an i n t e g r a l  pa r t  of design optimization. 

Although t h i s  

Various researchers  i n  the  f i e l d  of a i r c r a f t  design (e.g. 112F.11 

inadequate theory f o r  p red ic t ing  aerodynamic forces  on an 
i n s u f f i c i e n t l y  accura te ,  simple methods of  a i r c r a f t  weight es t imat ion;  

Because of 

The value c r i t e r i o n  i n  (B') i s  mathematically expressed a s  an 'ob jec t ive  func t ion ' ,  which is  t o  be 
optimized, a s  w e l l  as various cons t r a in t s  ( i nequa l i ty  and/or equa l i ty )  t h a t  a r e  simultaneously t o  be 
s a t i s f i e d .  
defined. In the  design of a commercial a i r  t r anspor t ,  f o r  example, t h i s  ob jec t ive  func t ion  might be 
d i r e c t  opera t ing  cos t  (DOC). 
parameters w i l l  be neglected f o r  s impl i c i ty  i n  t h i s  example.) 
independently would make no sense. How much MD are you w i l l i n g  t o  give up f o r  an improvement i n  DOC? 
A t  t h i s  po in t  the  des igner  has two a l t e r n a t i v e s :  
as  TOD 5000 f t ,  o r  he can multiply TOD by a se l ec t ed  constant (which implies the acceptable t radeoff  
between TOD and DOC) and add t h i s  quan t i ty  to  DOC t o  form a new ob jec t ive  function. 
requi res  a cons tan t  t o  be se l ec t ed  beforehand. 
s e n s i t i v i t y  ana lys i s .  
Fig. 12.1. 

A conceptual d i f f i c u l t y  with t h i s  formulation i s  t h a t  a s ing le  ob jec t ive  func t ion  must be 

(Other 
A reques t  t o  minimize both DOC and TOD 

The designer might a l s o  wish t o  minimize takeoff d i s t ance  (TOD) . 

he can spec i fy  TOD a s  an inequa l i ty  cons t r a in t ,  such 

E i the r  approach 
The impl ica t ions  of t h i s  s e l ec t ion  should be t e s t ed  by a 

This refinement introduces an ou t s ide  i t e r a t i o n  loop t o  the  process described b y ,  

Suppose t h a t  i n  the  above example t h e  designer chooses the  cons t r a in t ,  MD < 5000 f t .  Af te r  
minimizing DOC while s a t i s f y i n g  t h i s  cons t r a in t ,  a s e n s i t i v i t y  ana lys i s  would determine the  change i n  
optimized DOC implied by a small change i n  the  cons t r a in t .  
i nc rease  i n  DOC of only 0.001%. 

small s e n s i t i v i t y  would tempt the  designer t o  s e l e c t  a sho r t e r  takeoff d i s tance .  
t he  s e n s i t i v i t y  c o e f f i c i e n t  were -0.2 ins tead  of -0.001, the  designer might wish t o  r e l a x  the  TOD 
cons t r a in t .  
In  t h i s  case,  the  f i r s t  author suggests t h a t  the  cons t r a in t  be placed on the  s e n s i t i v i t y  coe f f i c i en t  
i t s e l f ,  r a t h e r  than on the parameter. 
cons t r a in t  on TOD with the cons t r a in t ,  SmClMD 2 - 0.05. 

l e v e l  goal,  say p r o f i t a b i l i t y  t o  the  manufacturer, were made the objec t ive  function, the cons t r a in t  
dea l ing  with TOD might be eliminated. Of course,  it would then be necessary g rea t ly  t o  expand the  
mathematical m d e l  t o  include a desc r ip t ion  of t h e  se l ec t ion  c r i t e r i a  employed by a i r l i n e s ,  whose 
representa t ives  would consider takeoff d i s tance .  However, t h i s  process of extending t h e  model t o  
e l imina te  cons t r a in t s  can cause se r ious  complications and increase  t h e  l ike l ihood of e r ro r .  
approach would be t o  s ta r t  wi th  simple models and proceed t o  g rea t e r  complexity a s  required.  

Suppose t h a t  a 1% decrease i n  TOD caused an 

On the  o the r  hand, i f  
In  t h i s  case the  s e n s i t i v i t y  coe f f i c i en t  i s  S DOCfTOD - - 0.001. Such a 

Obviously the  log ica l  s e l ec t ion  of the cons t r a in t  depends on the assoc ia ted  s e n s i t i v i t y .  

In  the present  example the  designer might t r y  rep lac ing  the  

Many cons t r a in t s  can arise from an incompleteness of the  model. I f  i n  the  above example a higher 

The na tu ra l  

This d iscuss ion  is intended as  an in t roduct ion  t o  the  problem of s e t t i n g  up a model t o  be optimized 
using a d i r e c t  search. Subsequent sub-sections w i l l  d i scuss  i n  more d e t a i l  the  problem formulation, 
s e l ec t ed  d i r e c t  search methods and convergence c r i t e r i a .  

12.3.1 The Selec t ion  of Design Variables f o r  Di rec t  Methods 

The e f f i c i ency  of an optimization search and i t s  chances of success depend s t rongly  on the manner 
i n  which the problem is, s t a t ed .  
c h a r a c t e r i s t i c s  on the se l ec t ion  of the  design va r i ab le s .  
ways of  descr ib ing  the design. 
o the r  two: span (b), mean chord ( E ) ,  area (S = bc) ,  and aspec t  r a t i o  (A = b/c).  Any two, such as  b 
and E ,  One would be i n s u f f i c i e n t ,  and th ree  ( o r  four )  would 
be too  many and would lead  t o  what i s  known as  ' i l l -condi t ion ing ' ,  i . e .  non-independence.of the  
va r i ab le s .  

This s ec t ion  w i l l  d i scuss  some impl ica t ions  of d i r e c t  search 
In every design problem the re  a r e  a l t e r n a t e  

For example, any two of t he  following four wing va r i ab le s  imply the  

could be se l ec t ed  as  design var iab les .  

The goal i n  s e l e c t i n g  design va r i ab le s  is  t o  reduce as much a s  poss ib le  the in t e rac t ion  between 
them. When a s t rong  i n t e r a c t i o n  e x i s t s  there  is a ' r idge '  (or i t s  inverse ,  a ' r av ine ' )  i n  t he  ob jec t ive  
function. 
p.268 and [12B.2], p.283). 
constant-value contours a r e  c i r c l e s .  
i t  i s  genera l ly  poss ib le  t o  make the  contours more near ly  c i r c u l a r  ( a t  l e a s t  l oca l ly )  by r e sca l ing  
(and perhaps ro t a t ing )  t h e  var iab les .  
s e l e c t i o n  and sca l ing  of design var iab les .  

It  has been found t h a t  mst d i r e c t  search methods encounter d i f f i c u l t y  with r idges  ([12B.11, 
For a l l  d i r e c t  methods the  e a s i e s t  func t ions  t o  optimize are those whose 

Of course t h i s  phenomenon r a r e l y  occurs i n  physical  systems, but 

The designer shoulduse h i s  understanding of  t h e  problem i n  h i s  
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For example, suppose the  designer must choose two o f  the  four  wing va r i ab le s  mentioned above 
(b, E ,  S and A ) .  Many de f in i t i ons  of ob jec t ive  func t ion  would lead  t o  a s t rong  dependence on wing 
loading and thus on wing area ,  S. Since S = b;, a s t rong  i n t e r a c t i o n  would e x i s t  between b and 5, 
and they would make a poor p a i r  of design var iab les .  
i n  t he  b - 
would be a b e t t e r  choice i n  t h i s  example. 

In  t h i s  case,  contours of the ob jec t ive  func t ion  
plane would d i sc lose  a diagonal r idge.  The se l ec t ion  of wing a rea  and aspec t  r a t i o  

Among the  various ways i n  which the  design var iab les  can be defined, i t  usua l ly  proves most 
( In  general ,  however, a t  l e a s t  one design va r i ab le  

The choice of dimensionless 
e f f i c i e n t  t o  make as many as poss ib le  dimensionless. 
with dimensions w i l l  be  required t o  spec i fy  the s i z e  of t h e  a i r c r a f t . )  
va r i ab le s  i s  particularly-advantageous when they have d i r e c t  physical  u t i l i t y ,  such as aspec t  r a t i o  o'c 
t a i l  volume c o e f f i c i e n t  [V = (StQt)/(SE), where St = t a i l  a rea  and Q 

worthwhile t o  order  these va r i ab le s  according t o  t h e i r  expected importance. Where computer t i m e  is  a 
cons idera t ion ,  one then has the opt ion  of searching over j u s t  the  wst important var iab les .  This i s  
ca l l ed  a 'reduced-space search'  and is useful e i t h e r  when the  soph i s t i ca t ion  of a full-space search is 
no t  required o r  a s  a s t a r t i n g  procedure f o r  a full-spacg search. 

= t a i l  length] .  t 

I n  a i r c r a f t  optimization some design va r i ab le s  a r e  more important than o thers .  It i s  o f t e n  

The non-dimensionalization of the problem can be ca r r i ed  fu r the r ,  a s  discussed i n  the  next  
sec t ion .  
decouple the search from the  dimensions of the  o r i g i n a l  problem. 
suggested i n  t h i s  sec t ion .  

One p o s s i b i l i t y  is  t h a t  a l l  terms i n  the problem statement may be  normalized, i n  order  t o  
This accomplishes the r e sca l ing  

12.3.2 Problem Statement and Constraint  Formulation 

The authors have attempted t o  limit the mathematical content of t h i s  Chapter, s ince  i t s  main 
purpose i s  to  d iscuss  concepts and r epor t  experience. 
here  i s  considered t o  be of p r a c t i c a l  value i n  s e t t i n g  up a design problem f o r  computer optimization. 
The reader unin te res ted  i n  mathematical d e t a i l s  may sk ip  t o  Section 12.3.3. 

However t h e  normalized formulation presented 

The general  problem of non-linear programming may be s t a t e d  as follows: Find the  vec tor  a of 
i = 1,2, ... n ( ca l l ed  the  'design var iab les '  i n  t h i s  Chapter) which n var iab les  ai, 

(1) minimizes the s c a l a r  ob jec t ive  func t ion  y (a ) ,  subjec t  t o  (12-1) 

(2) design va r i ab le  l i m i t s  (aLoi and aHIi represent  the  low and high l i m i t s ,  r espec t ive ly ,  

and w i l l  be used l a t e r  t o  normalize ai), 

(3) equa l i ty  cons t r a in t s ,  

e . ( a )  b j  , j = 1,2 ,  ... J ; 
J 

(4) and inequa l i ty  cons t r a in t s  (sometimes c a l l e d  ' r e s t r a i n t s ' ) ,  

fk (a)  2 % , k = 1 ,2  ,... K . ' 

(12-2) 

(12-3) 

(12-4) 

Here b and ck are se lec ted  constants with dimensions appropr ia te  t o  each cons t r a in t .  These 

cons tan ts  w i l l  be used t o  normalize the  cons t r a in t s ,  a technique which obvia tes  the  need f o r  ind iv idua l  
weighting constants i n  the development of the cons t r a in t  pena l ty  functions later i n  t h i s  sec t ion .  

j 

It is  convenient t o  develop optimization search rout ines  (block (C') i n  Fig.12.1) which do not 
have t o  consider dimensions and unequal orders  of magnitude i n  the  various design va r i ab le s .  For 
example, t he  l a rge  d i f fe rences  i n  magnitude between typ ica l  values of s t a t i c  longi tudina l  s t a b i l i t y  

margin (W.05). wing area  (*lOOO f t  ), and Reynolds number (-10 ) would lead  ( i f  these parameters 
were used as design var iab les )  t o  another form of i l l -condi t ion ing  i n  most search methods. 
the  search subroutine i t  is c leaner  t o  normalize the  problem statement i n  the following manner: 

2 7 

For use i n  

(1) def ine  normalized design variables*,  Xi, 

(12-2') 

*The symbol means 'equal by d e f i n i t i o n ' .  
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(2) def ine  normalized equa l i ty  cons t r a in t s ,  

1 

E .  A e . /b  - 1 , j = 1 , 2  ,... J ; 
J ~j 

(3) and de f ine  normalized inequa l i ty  cons t r a in t s ,  

(12-3') 

(12-4') 

F ina l ly  the objec t ive  func t ion  may be normalized wi th in  the  program by t h e  i n i t i a l  value of 
input  po in t  ( spec i f ied  by aINi, o r  equiva len t ly ,  XINi). Define the  normalized ob jec t ive  function, 

y a t  t he  

Y(X) Y(x)/Y(%N) . (12-11) 

By choosing the  normalizing cons tan ts  i n  a phys ica l ly  meaningful way, t he  designer accomplishes 
the  r e sca l ing  suggested i n  the  previous sec t ion .  
design va r i ab le  whose range was  l imi ted  by o the r  cons idera t ions  i n  the  problem. 
then a r b i t r a r i l y  select a normalizing range (aHI - to) which included the  ac tua l  range. 

knowing t h a t  Reynolds number wouldnever exceed 5 x lo7, he could use t h i s  value f o r  t he  upper l i m i t  
and zero f o r  the  lower l i m i t ,  thus r e sca l ing  t h i s  design va r i ab le  t o  the  range zero t o  one. 
i n  the  normalized formulation a l l  va r i ab le s  a r e  of order  un i ty .  Thus the  designer has a good ' f e e l '  
f o r  t h e  percentage change i n  each va r i ab le .  
design optimization problems. 
design engineer.  

For example, suppose t h a t  Reynolds number were a 

That is, 
The designer could 

Note t h a t  

The normalization may expose s i m i l a r i t i e s  between various 
These analogies might have the  e f f e c t  of improving the  judgment of t he  

12.3.2.1 Problem Statement Example 

An i n t e r e s t i n g  example of an a i r c r a f t  whose design problem might have been simply s t a t e d  f o r  
computer optimization i s  the  Lockheed U-2 high-a l t i tude  research and reconnaissance a i r c r a f t .  
designed long before non-linear optimization techniques were well developed ( the  U-2 was designed i n  
1954, with f i r s t  f l i g h t  i n  1955), t h e  U-2 design problem might have been formalized as something l i k e  
the following: 

Although 

Maximize the  se rv ice  ce i l i ng ,  hs, o r ,  equiva len t ly ,  minimize - hs, subjec t  t o  cons t r a in t s ,  

bl e A payload weight = 

f A range c1 

f 2  & - ( s t a t i c  s t a b i l i t y  margin) 

f 3  - C (d i r ec t iona l  s t a b i l i t y )  2 c 

1 -  

1 -  

2 c2 

3 nJ, 

The cons t r a in t  cons tan ts  might have been 

The number of  design va r i ab le s  i s  determined by the  soph i s t i ca t ion  of one's mathematical m d e l ,  but a 
few typ ica l  design va r i ab le s  are: 

bl - 2000 lb ,  c1 = 4000 miles,  c2 - M.05 and c3 +0.001. 

al  wing area,  s ( f t 2 )  -' 

a 

a3 :wing aspec t  r a t i o  

a 

A wing loading, W/S ( lb l f t ' )  ( impl ies  gross weight, W) 2 -  

A wing chord taper  r a t i o  4 -  

a5 

a6 (t/c)TZp/(t/c)RooT 

a A wing t w i s t  ( 'washout') 

Awing root  thickness r a t i o ,  ( t /c)RooT 

7 -  

a A r a t i o  of span to  t a i l  length 

a9 

al0 & r a t i o  of f i n  area t o  wing a rea  

8 -  

A r a t i o  of s t a b i l i z e r  area t o  wing area 

a A fue l  weight f r ac t ion ,  W"/W . 11 - 

Additional design va r i ab le s  which could be inves t iga ted  include d ihedra l ,  incidence,  sweep, design l i f t  
coe f f i c i en t  ( root  and t i p )  f o r  the  wing; aspec t  r a t i o ,  thickness r a t i o ,  t aper  r a t i o ,  sweep, cont ro l  
su r f ace  a rea  f o r  both s t a b i l i z e r  and f i n ;  f ineness  r a t i o ,  cross-sectional a r ea ,  camber f o r  the 
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fuse lage ;  t h r u s t  vector angle;  p lus  a number of o the r  va r i ab le s  descr ib ing  t h e  propulsion u n i t ,  t he  
i n l e t s ,  the cont ro l  system, etc.  When these  add i t iona l  parameters a r e  not  design va r i ab le s ,  t h e i r  
values would be assumed o r  determined by o ther  analyses.  

The appropr ia te  design va r i ab le  l i m i t s  might be: 

0 G a1 g 1000 ( f t 2 )  

0 G a2 < 50 ( l b / f t 2 )  

0 G a3 G 20 

e t c :  

Note t h a t  mst of t he  se l ec t ed  design va r i ab le s  a r e  dimensionless. This approach improves the  ease  
of s ca l ing  t h e  a i r c r a f t ,  bo th  wi th in  and without the computer program. 
program, the  e n t i r e  problem statement could be normalized a s  i n  Section 12.3.2. 

For use within an  opt imiza t ion  

No ac tua l  so lu t ions  can ye t  be reported on t h i s  p a r t i c u l a r  design. 

12.3.2.2 Cons t ra in t  Formulation 

There are two bas i c  cons t r a in t  formulations.  One changes the constrained problem i n t o  an 
unconstrained problem by adding a pena l ty  function, based on cons t r a in t  v io l a t ions ,  t o  t h e  o r i g i n a l  
ob jec t ive  function. The o the r  attempts t o  pick search d i r ec t ions  t h a t  both s a t i s f y  the c o n s t r a i n t s  and 
improve the  ob jec t ive  function. 
Examples of  the  second approach are described i n  Chapters 5 (sequence of  l i n e a r  programs) and 7 ( f e a s i b l e  
d i r ec t ions  methods) by Pope and Kowalik respec t ive ly .  

The penalty func t ion  approach i s  discussed by Fox i n  Chapter 6. 

The normalized form developed i n  Section 12.3.2 i s  convenient f o r  the  following penalty function 
formulations: 

' I n t e r i o r '  penalty function, PI: 

Fk 2 1 

'Ex ter ior '  pena l ty  function, PE: 

where 

(12-5) 

(1.2-6) 

(Ej and Fk are defined i n  (12-3') and (12-4'), r e spec t ive ly ) .  

A new objec t ive  func t ion  is  formed by adding the  weighted penalty function to  the o ld  ob jec t ive  function: 

' I n t e r i o r '  form: minimize Y I  = Y + WIPI (12-7a) 

'Ex te r io r '  form: minimize YE = Y + WEPE ' (12- 7b) 

The weighting f ac to r ,  WI o r  WE, must b e a d j u s t e d a s  the search progresses t o  in su re  tha t  the  constrained 

optimum i s  approached. Refer t o  P ie r r e  r12B.11, p.338, and t o  Chapter 6 f o r  d i scuss ions  of weighting 
f a c t o r  con t ro l .  E i the r  penalty formulation may be used, bu t  t he  ' i n t e r i o r '  form requi res  a f e a s i b l e  
s t a r t i n g  poin t  and i s  d i f f i c u l t  t o  use when equa l i ty  cons t r a in t s  a r e  present .  
i n t e r i o r  form, however, because so lu t ions  l i e  ins ide  t h e  cons t r a in t  boundaries (hence the  name, ' i n t e r i o r ' )  
and are thus  conservative.  

Some engineers preEer t h e  

The penalty func t ion  warps the ob jec t ive  func t ion  and creates a two-sided ' rav ine '  f o r  an equa l i ty  
cons t r a in t  and a one-sided ' c l i f f '  f o r  an inequa l i ty  cons t r a in t .  These imposed non- l inea r i t i e s  make 
t h e  search  more d i f f i c u l t .  
one of the  design va r i ab le s .  
constructed so t h a t  a l l  of the  cons t r a in t s  could be e a s i l y  eliminated. The payload weight and range 
cons t r a in t s  could be used i n  an i n t e r n a l  loop t o  sca l e  the  gross weight, thus e l imina t ing  a 2  
and the  s t a b i l i g y  cons t r a in t s  could be used d i r e c t l y  to  s i z e  the  t a i l  a reas ,  thus e l imina t ing  

alO. 
search d r i v e r  (although they a re  s t i l l  i m p l i c i t  i n  the mathematical model). 

F ina l ly  i t  is noted t h a t  an inequa l i ty  cons t r a in t  i s  preferab le  t o  an equa l i ty  cons t r a in t  i n  the  

In  many cases a cons t r a in t  may be incorporated i n t o  the  model t o  e l imina te  
I n  f a c t ,  t h e  U-2 design example of t he  previous subsection was a r t i f i c i a l l y  

11' and a 

ag and 

This approach i s  prefer red  s ince  it reduces both the  number of cons t r a in t s  and design va r i ab le s  i n  the  

pena l ty  formulation, because i t  reduces the  l i ke l ihood  of c rea t ing  cont rad ic tory  requirements (an 
equa l i ty  cons t r a in t  i s  always 'on') and because it forms only a one-sided warping of the space. 
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Most a i r c r a f t  design cons t r a in t s ,  such as take-off d i s tance ,  r a t e  of climb, s t a l l  speed, c ru i se  speed, 
etc., can be more s a t i s f a c t o r i l y  imposed as inequal i ty  cons t ra in ts ,  anyway. 

12.3.2.3 A Penal ty  Function f o r  In teger  Design Variables 

Cer ta in  meaningful design v a r i a b l e s  can only take on i n t eg ra l  values. 
number of engines, the crew s i ze ,  and the  number of windows, landing gears o r  wheels, hydraul ic  systems, 
etc. Many of these v a r i a b l e s  form an important pa r t  of a design ana lys i s ,  and two techniques are 
suggested here f o r  t h e i r  in t roduct ion .  

Such v a r i a b l e s  include the  

The f i r s t  and s implest  technique is  t o  a l low the i n t e g e r  v a r i a b l e s  t o  accept  non-integer values  

The l o g i c  f o r  t h i s  can be incorporated i n t o  the opt imizat ion program. 
during the f i r s t  opt imizat ion run and then to  f i x  t h e i r  values  a t  the  neares t  i n t e g e r  f o r  a subsequent 
opt imizat ion run. 

The second technique employs a penal ty  funct ion which dr ives  se lec ted  v a r i a b l e s  t o  in teger  
values. 
of the  form, 

As an example, the f irst  author suggests  a penal ty  ( t o  be added t o  the  o b j e c t i v e  funct ion)  

INT 

where WmT is  a weighting f ac to r ,  a i s  a se lec ted  constant ,  and ni i s  the f r ac t iona l  p a r t  of 

the  i t h  i n t e g e r  design v a r i a b l e ,  
INT 

( i n  For t ran  IV, IBM 360, - M O D  (Xi , 1 ) ) .  
INT %T INT xi 

As shown i n  Figs.12.2a and 12.2b, the exponent a can be used t o  smooth out  the  cusps a t  the 
in teger  values .  The f i rs t  order  d e r i v a t i v e s  a r e  continuous f o r  a > 1 and the second order  der iva t ives  
are continuous f o r  a > 2, etc. 

Because t h i s  penal ty  a c t s  t o  prevent the  n a t u r a l  migration of the  se lec ted  design var iab les  

are within tO.5 of t h e i r  es t imated converged va lues) ,  and 

during an opt imizat ion,  it i s  suggested t h a t  the weighting f ac to r ,  

'rough convergence' i s  obtained (X. 

then t h a t  WINT be sequent ia l ly  increased u n t i l  a l l  X.  f a l l  wi th in  a given E of being in t ege r s .  

WINT, be kept a t  zero u n t i l  

5" 
l I N T  

12.3.3 

It i s  the  i n t e n t  of  t h i s  sec t ion  t o  discuss  the i n t e r r e l a t i o n s h i p  between a i r c r a f t  design 
opt imizat ion problems and var ious d i r e c t  search methods which may be appl ied to  t h e i r  so lu t ion .  
Previous sec t ions  have s t r e s s e d  the  need t o  formulate the problem i n  a manner wel l  su i t ed  f o r  d i r e c t  
methods i n  general .  This s e c t i o n  b r i e f l y  descr ibes  s p e c i f i c  search methods and the types of problem 
fo r  which each is  su i ted .  
opera t iona l  experience using these  methods i s  reported.  

Summary of Selected Direct  Search Methods 

This descr ip t ion  a l so  l ays  the groundwork f o r  Section 12.4, i n  which 

The remainder of  t h i s  Sect ion attempts t o  develop the reader ' s  i n t u i t i v e  understanding of 
d i r e c t  methods; subsect ions 12.3.3.1 through 12.3.3.3 suuimarize s p e c i f i c  methods. 

Most d i r e c t  methods employ two d i s t i n c t  search s t r a t eg ie s :  one f o r  d i r e c t i o n  s e l e c t i o n  and one 
Direct ion s e l e c t i o n  s t r a t e g i e s  are discussed i n  subsect ions 12.3.3.1 fo r  search along the  d i r ec t ion .  

and 12.3.3.2. 
i n  subsect ion 12.3.3.3. 
i t e r a t i o n s ,  c a l l e d  ' s t eps '  and the  o v e r a l l  movements made i n  each d i r ec t ion ,  ca l l ed  ' m v e s ' .  
Fig.12.3a ind ica tes  t h i s  d i s t i nc t ion .  
plane of two design var iab les .  

maximum l i f t  t o  drag r a t i o  - f o r  a sa i lp l ane ,  and the two design var iab les  could be normalized wing 
loading and normalized aspec t  r a t i o .  
peaks, r idges ,  passes (saddle  po in t s ) ,  ravines ,  e t c .  Fig.12.3a was drawn with two peaks. Direct  
methods general ly  s top  a t  the f i r s t  l oca l  optimum encountered, a s  shown (poin t  5 ) .  

A search along a d i r e c t i o n  i s  a onedimensional  search;  techniques f o r  t h i s  a r e  l i s t e d  
A semantic d i s t i n c t i o n  is  made i n  t h i s  Chapter between the one-dimensional 

This f igu re  shows the contours of  the objec t ive  funct ion i n  the  
For example, the  objec t ive  funct ion could be (L/DIw - t h a t  i s ,  

This type of p l o t  suggests  the i n t u i t i v e  topographical images of 

Fig.12.3b i n d i c a t e s  the  dual-loop na ture  of d i r e c t  methods. The inner  loop i s  the  one-dimensional 
search ( ' s t e p s ' ) ,  and the o u t e r  loop 'moves' t o  the b e s t  point  thus found and then s e l e c t s  a new 
d i r ec t ion .  The number of s t eps  per  m v e  should be balanced aga ins t  the requirements, both i n  time and 
reso lu t ion ,  of the d i r e c t i o n  s t r a t egy .  

A numerical eva lua t ion  of the  grad ien t  a t  a poin t  requi res  n per turba t ions ,  each of which i s  as 

The 
time-consuming as one s t ep  s ince  each requi res  one objec t ive  funct ion evaluat ion.  
problems the number of func t ion  evaluat ions is general ly  a good measure of computer t i m e  expended. 
time-consuming na ture  of numerical p a r t i a l s  has encouraged the development of a number of search 
methods which do not  r e q u i r e  p a r t i a l s ;  these methods a r e  discussed i n  subsect ion 12.3.3.1. When 
a n a l y t i c a l  p a r t i a l  d e r i v a t i v e s  a r e  ava i lab le  - and o f t e n  when they are not  - methods employing the 
p a r t i a l s  may be used; these are discussed i n  subsect ion 12.3.3.2. 

For a i r c r a f t  design 

12.3.3.1 Direc t  Search Methods without Derivat ives  

Mathematical m d e l s  f o r  a i r c r a f t  configurat ion opt imizat ion o f t e n  requi re  many layers  of computa- 
t i on ,  many times with in t e rna l  loops. I n  addi t ion ,  t abular  input  d a t a  are general ly  used. These 
fac to r s  make it d i f f i c u l t  t o  ob ta in  a n a l y t i c  p a r t i a l  der iva t ives .  
which do not  requi re  d e r i v a t i v e s  are b r i e f l y  described. 

In  t h i s  sec t ion ,  seven d i r e c t  methods 
These sho r t  descr ip t ions  are intended f o r  
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STEP SIZE . DIRECTION SELECTION 
A SELECTION 3 (ONE - DIMENSIONAL 

SEARCH) 

w“Tc 1 2 3 

- 

, .  x i  INT 

t 

w”Tlzl!l!L I 2 3 

I Fig.12.2a 

Fig. 12.2b 

Penalty Function for Integer Programming (a = 1 

Penalty Function for Integer Programming (a > I 

Fig.12.3a ‘Steps’ and ‘Moves’ in a Two-Dimensional Search 

Fig12.3b Conceptual Flow Diagram for the Two Search Phases: ‘Steps’ and ‘Moves’ 
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identification of the methods (often, different names are used for the same method) without going into 
the mathematical details. The interested reader is referred to the references cited. 

Most of the direct methods discussed in this Chapter have been employed in a computer program called 
AESOP, 'Automated Engineering and Scientific Optimization Program'. 
described in i12D.11, [12E.1], 112F.71 and [12F.8]. It is the most extensive parameter optimization 
driver known to the authors. 
'Pattern') or in combination. 
constraints may be employed through a penalty function. 
problems including aircraft design, [12E.l], i12E.31, [12E.51, l12F.9). The results of some of these 
studies will be discussed in Section 12.4. 

This Boeing Company program is 

It has nine search strategies, which may be used singly (except for 

AESOP has been applied to many aerospace 
Storage is provided for 100 design variables, and an unlimited number of 

The names and descriptions for methods 1 through 6 below are taken 'from AESOP, [12D.1], p.3: 

(1) "SECTIONING - Succession of one-dimensional optimization calculations parallel to coordinate 
axes. Variables may be perturbed in random or natural order." 

(2) "ADAPTIVE CREEPING - Search in small incremental steps parallel to the coordinate axes. 
Step-size adjusted automatically in the algorithm. 
order. It 

Variables may be perturbed in random or natural 

(3) "PATTERN - A Ray Search in the gross direction defined by a previous search or search 
combination." This is the acceleration move originally suggested by Forsythe and Motzkin in f12D.61. 
Move 2-3 in Fig.12.3a is an acceleration move in the direction defined by the sum of the two previous 
moves, 

(4) 

(5) 

W&"MAFICATION - Straightforward magnification or diminution about the origin." 

"RANDOM POINT - Function to be optimized is evaluated at a set of uniformly distributed 
random points in a specified region." 

(6) "RANDOM RAY SEARCH - Function is optimized by search along a sequence of random rays having a 
uniformly distributed angular orientation in the multivariable parameter space." 

(7) BEST-TRIAL SEARCH (Rastrigin, [12D.41) - A cross between Random Ray and Statistical 
Gradient*, this method tests m random directions and then performs a one-dimensional search in the 
most promising direction. 

12.3.3.2 Direct Search Methods with Derivatives 

When analytic partial derivatives are available, the added computer time required for their 
calculation is generally small in comparison with the time required for the objective function 
evaluations alone (not to mention the time required for the 
The information contained in the partial derivatives can generally be used to improve the search 
procedure. 

n evaluations of numerical partials). 

Again, the following short descriptions are intended to identify the methods only. The names 
and descriptions of methods 8 through 10 are taken from AESOP, [12D.1], p.3: 

"STEEPEST DESCENT - Search along the weighted gradient-direction. ( 8 )  Several weighting options 
available .It 

(9) "DAVIWN'S METHOD' - An attempt to achieve the advantages of second-order search from an 
ordered succession of first-order searches." 
Powell [12D.8]; also [12B.1], p.320, and i12B.21, p.331. 

Refer to Chapter 6 and to Davidon [12D.7], Fletcher and 

(10) "QUADRATIC - Second-order multivariable curve fit to the function being optimized, followed 
by search in direction of second-order surface optimum." 

(11) PARTAN (from "PARallel TANgents") - Introduced by Shah, et al. 112D.121. This method 
selects directions which are parallel to tangent planes of previous moves; 
simple acceleration moves (Method 3). 
the objective function hyper-surface in n+l space. 
[12B .2 1. 

alternating moves are 

This method is illustrated in Section 7-12 of 
"Tangent plane" refers to the hyper-plane which is tangent to 

Some gradient methods, particularly Davidon and Partan, have proven quite powerful in certain 
applications, even when the partials were evaluated numerically. 

12.3.3.3 One-Dimensional Search Methods 

Most of the search methods discussed so far merely determine the direction to be searched without 
specifying how the one-dimensional search in this direction is to be conducted. 
few standard one-dimensional search methods will be described. 

In this subsection a 

If a slice is taken of the objective function in a selected direction it might look like 
Fig.12.4. 
determined bypreviously successful step sizes. 
In Fig.12.4 the steps are simply doubled until an improvement is no longer obtained. 

*The gradient is estimated as the scaled sum of m random perturbation vectors, where 

The starting point is the best point found on the previous move. The first step size may be 
Some strategy must be used to size subsequent steps. 

m < n. 
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Y 

r STARTING POINT 

Fig.12.4 One-Dimensional Search. The Simple Search Strategy used here is to keep Doubling the Step Size until 
the Function no Longer Improves. The Move is made to the Last Accepted Point 

Fig. 12.5 Separate Nature of Model and Optimizer 
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Since there may be many steps per move, the efficiency of the overall search is obviously 
dependent on the speed of the one-dimensional method employed. 

Some one-dimensional strategies are: 

(A) ONE-STEP - The simplest of all strategies; 
size of the step may be chosen on the basis of recent successes. 
success, the present step could be double the last step; 

only one step is taken in each direction. The 
For example, if the last move were a 

if a failure, one-half or one-fourth. 

(B) ONE-STEP PLUS REVERSAL - A modification of the one-step, this strategy tries a step in the 
reverse direction if the first step is a failure. This method is used in AESOP'S 'adaptive creeping'. 

(C) STEP UNTIL FAILURE - This method continues stepping until the function stops improving, then 
moves to the last accepted point. Generally each step size is selected as some multiple of the previous 
step; that is, Sj = KSj-l where S is the jth step size on this move, and K is a selected 
constant. In Fig.12.4, K - 2. A rapidly increasing step size, such as K = 10, can be used to bound 
the line optimum, a necessary requisite for interval elimination methods. 

j 

(D) INTERVAL ELIMINATION - Fibonacci search and golden-section search both attempt to reduce 
the interval in which the line optimum lies to be small as possible, il2B.11, p.280; 112B.21, p.236 
and 112B.31. The difference between the methods is that the number of steps is pre-specified for the 
Fibonacci search and not for the golden-section search. The Fibonacci search reduces the interval by 
a factor of FN. FN, the Fibonacci number comes from the series (N = number of steps = 1,2,3, 4...) : 
1,2,3,5,8,13,21, .... Note that FN - FN-l + FN-2 for N > 2. The golden-section search is slightly 

less efficient and reduces the interval by (0.618)N-1, the advantage being that the number of steps, 
N, is not pre-specified. For five steps the reduction ratio is 118 (0.125) for Fibonacci and 
0.145 for golden section. 

(E) CURVE FIT METHODS - A polynomial of degree N may be fitted to N points found in the 
one-dimensional search. 
first derivative equal to zero. 
within some E ,  the one-dimensional search is terminated; if not, this point is used to improve 
the polynomial, and a new optimum is estimated. 
number of points exceeds the degree of the polynomial. 
and also 112B.11, p.274. 

The location of the optimum on this line can then be estimated by setting the 
If the function evaluated at this point matches the predicted value 

A least-squares curve fit can be used where the ' 
. For further discussion see Chapter 6 (Fox), 

12.3.4 Convergence Criteria for Direct Methods 

As will be seen in Section 12.4 all direct methods do not converge on all problems. In fact, most 
comnly used stopping criteria do not guarantee convergence. 
determine how near his result is to the converged optimum. Strictly speaking a (local) optimum is 
assured only if necessary and sufficient conditions are fulfilled. 
the constrained partial derivatives of the objective function with respect to the design variables to 
be zero [12H.3], 112B.2). The sufficient condition, which examines the matrix of second order partials 
of the constrained objective function for positive definiteness (for a minimum), can generally be 
forgone for aircraft configuration optimizations because it is obvious whether a maximum or a minimum 
is obtained (generally only one makes any sense). 
partials, but even these are often not available. When they are available (subsection 12.3.3.2) the 
proper test is that all constrained partials be 'small', where 'small' is set by the engineer as 
a tradeoff between computer time and nearness of convergence. 

It is often up to the engineer to 

The necessary condition requires 

This leaves the requirement for only the first order 

When the test on partials can't be performed, some standard stopping criteria are: 

(A) 

(B) 

(C) 

(D) 

Two methods are available which often discriminate against a false optimum. One is to 'map' the 

Function evaluations exceed a specified number. 

Sequentia1,failures exceed a specified number. 

Step size drops below a given limit. 

Improvement in the objective function between iterations drops below a given level. 

region in the vicinity of the result; that can be done with a simple parametric analysis at the 
supposed optimum. Another method, which in the authors' experience is very effective, is to run the 
search again from a few different starting points (see for example, Table 12.2, Section 12.4.1). 

Examination of the region of the supposed optimum is valuable not only for testing convergence but 
for refining the value criterion. 
in Section 12.4.1. 
the optimum is rather flat with respect to wing loading. 
might cause one to select a lower wing loading without much degradation of the objective function, 
number of passengers. 

12.4 

For example, the design of a hypersonic cruise vehicle is discussed 
It appears from Table 12.2 that 

Other considerations, such as approach speed, 
The objective function is number of passengers. 

Operational Experience with Direct Methods 

The number of parameter optimization studies is growing rapidly. Applications in the field of 
Stepniewski and Kalmbach [12F.9] aircraft design, however, have lagged those in certain other fields. 

comment: 
astronautics, or even in chemical processes". 

' I . . .  there is much less optimization activity in the domain of aeronautics than in 
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It may be expected t h a t  t h i s  s i t u a t i o n  w i l l  change a s  more aeronaut ica l  engineers become aware of 
One r e a l i z a t i o n  t h a t  w i l l  a id  i n  t h i s  process i s  the  f a c t  t h a t  t he  power of optimization methods. 

e x i s t i n g  mathematical models present ly  med  i n  parametric analyses can be r a t h e r  simply modified t o  be 
dr iven  by separa te  opt imiza t ion  packages. I n  Fig.12.5, t he  'Optimizer' completes a feedback loop on 
the  mathematical 'Model' which previously may have been used open-loop f o r  a parametric study. 
General Dynamic's SYNAC, a l a rge  parametric a i r c r a f t  design program, i s  moving toward automated search 
c a p a b i l i t i e s .  

mentioned l a rge ,  general  purpose parameter op t imiza t ion  package ca l l ed  AESOP r12D.11, r12E.11, which has  
been applied t o  a va r i e ty  of optimization problems. 
i n  more d e t a i l  i n  Section 12.4.1. 

Boeing, recognizing the separa te  na ture  of t he  Model and t h e  Optimizer, has developed the  afore- 

This program and i t s  r e s u l t s  w i l l  be discussed 

Some fo res igh t  i n  the s t ruc tu r ing  of t he  mathematical model, as suggested i n  Section 12.3, can 
ease  the t r a n s i t i o n  t o  the opt imiza t ioo  mode. 
be ava i l ab le  f o r  ex te rna l  manipulation. 

I n  pa r t i cu la r ,  i t  i s  required t h a t  a l l  design va r i ab le s  

Before comparing r e s u l t s  of various d i r e c t  methods i t  i s  important t o  note  t h a t  more c r i t e r i a  than 
speed should be applied i n  comparing methods. 
cons idera t ions  are the  following: 

(1) Degree of convergence. 

(2) 

Speed of convergence i s  c e r t a i n l y  important bu t  o the r  

Robustness. 
and noise  i n  the  da ta .  

Convergence is  r e l i a b l y  obtained f o r  a v a r i e t y  of i n i t i a l  conditions,  cons t r a in t s  

(3) Computer memory requirements. 

(4) 

(5) Output c a p a b i l i t i e s .  Does the  method c a l c u l a t e  s e n s i t i v i t y  coe f f i c i en t s ,  p a r t i a l  

Ease of programming and debugging. 

de r iva t ives ,  e t c . ?  

12.4.1 Operational Experience with AESOP 

AESOP was developed by the  Boeing Company s t a r t i n g  i n  1965 under t h e  d i r e c t i o n  of 
D. S .  Hague [12D.1]. This general-purpose optimizer can d r ive  up t o  100 non-linear parameters, using 
requested combinations of n ine  search methods (described i n  Section 12.3.3 a s  Methods 1 through 6 
and 9 through 11). AESOP has been applied t o  severa l  aeronaut ica l  problems including 112D.11: 

(1) Two-dimensional minimum drag  supersonic a i r f o i l  shaping. 

(2) Minimum drag  supersonic bodies of revolu t ion .  

(3) Minimum drag  hypersonic bodies of revolu t ion .  

(4) Three-dimensional supersonic a i r f o i l  shaping. 

(5) STOL preliminary design 112F.91. 

(6) 

The hypersonic c ru i se  vehic le  optimization problem i s  reported i n  d e t a i l  i n  [12F.71. A nominal 
vehic le  was designed by Ames Research Center (NASA) using conventional preliminary design techniques. 
This veh ic l e ,  shown i n  Fig.12.6, had the  following spec i f i ca t ions :  500 000 l b  gross  weight, 5500 nm 
range and a speed of Mach 6.  Five design 
var iab les  ( 'parameters') had nominal values a s  l i s t e d  i n  Table 12.2. This t a b l e  a l s o  shows an  o f f -  
nominal s t a r t i n g  poin t  ( t o  check s e n s i t i v i t y  of t he  optimum t o  i n i t i a l  conditions) and the  f i n a l  design 
poin ts ,  obtained from each of these  s t a r t i n g  po in t s  by using an 'adaptive creeping'  search method 
(Method 2 of subsection 12.3.3.1). 
number of passengers, of 33 o r  15%. 
values fo r  the  two d i f f e r e n t  s t a r t i n g  poin ts  i nd ica t e s  e i t h e r  t h a t  t rue  convergence has not  been 
obtained o r  t h a t  the optimum i s  r e l a t i v e l y  f l a t  i n  some d i r e c t i o n  i n  the  design space. Since a number 
of o the r  optimization methods r e su l t ed  i n  almost the  same maximum number of passengers, i t  might 
appear t h a t  the  optimupl i s  indeed r a t h e r  f l a t .  Note t h a t  the  f i n a l  wing loading va r i e s  6% between 
the two cases.  

Hypersonic c r u i s e  vehicle preliminary design [12F. 71. 

The nominal payload turned out  t o  be 220.3 passengers*. 

The r e s u l t s  i nd ica t e  an improvement i n  the  objec t ive  function, 
The f a c t  t h a t  t he  design va r i ab le s  do not  converge t o  the  same 

The hypersonic c r u i s e  vehic le  optimization problem i s  probably representa t ive  of a i r c r a f t  
conf igura t ion  designs i n  regard t o  the  r e l a t i v e  success of various optimization methods. 
four  methods were used t o  optimize the  hypersonic vehic le .  
va r i ab le  is changed a t  a time) methods, ' sec t ion ing '  and 'adaptive creeping' were found t o  be super ior  
t o  two mre complicated methods, s t eepes t  descent and 'quadra t ic ' .  The r e s u l t s  o f  these  four methods 
a r e  shown i n  Table 12.3. 

I n  thi.s study 
Two simple un iva r i a t e  (only one design 

Although the  adaptive creeping technique worked bes t  on t h i s  example, it should be pointed out t h a t  
f i v e  of AESOP'S n ine  search  opt ions  were no t  t r i e d ,  and one of them might have proved b e t t e r .  'fie 
un iva r i a t e  methods which worked so w e l l  i n  t h i s  example cannot be expected t o  show s i m i l a r  success 
aga ins t  a coupled sur face ,  i.e. a ridge.  When a univar ia te  method encounters a r idge  it starts t o  

*Number of passengers i s  t r ea t ed  a s  a continuous function. 
rounded o f f  t o  an in teger .  

I n  the  f i n a l  design t h i s  number would be 



187 

'zig-zag' along the  r idge  and i s  very slow t o  reach convergence. 
optimum. 
the  hypersonic c r u i s e  veh ic l e  response sur face  i s  r e l a t i v e l y  uncoupled i s  pointed ou t  i n  
and (12F.91. 

I n  f a c t  i t  may s top  q u i t e  f a r  from the  
An example of t h i s  phenomenon f o r  t he  sec t ion ing  method i s  shown i n  Fig.12.7. The f a c t  t h a t  

(12F.71 

Table 12.3 shows t h a t  the  s t eepes t  descent method was much slower than e i t h e r  of t he  un iva r i a t e  
methods. 
develop a complete empirical  weighting matrix even t o  obta in  these  r e s u l t s .  
and s t eepes t  descent with a weighting matrix based on f i r s t  de r iva t ives  both f a i l e d  t o  converge. 
view of t he  f a c t  t h a t  s t eepes t  descent has been one of t he  most popular methods i n  parameter optimization, 
these r e s u l t s  a r e  a warning. 
Section 12.3.3, was not t r i e d  and might be expected t o  provide b e t t e r  r e s u l t s . )  

The ac tua l  performance was, i n  a sense,  worse than ind ica ted ,  because i t  was necessary t o  
Unweighted s t eepes t  descent 

I n  

(The acce lera ted  s t eepes t  descent,  t h a t  i s ,  Methods 8 and 3 of 

The quadra t ic  method, which requi res  second-order numerical per turba t ion  about a po in t  t o  f i t  a 
A c lue  as t o  why the  two sophis t ica ted  methods f a i l e d  quadra t ic  sur face ,  gave the  worst  performance. 

t o  perform wel l  on t h i s  problem is  provided i n  (12F.71, p.42: 
i s  q u i t e  i r regular" .  
r e s u l t s  a t  the  f i n e  scale.) 
o r  quadra t ic  searches could a l s o  be i n  se r ious  e r r o r  i f  the  cont ro l  parameter per turba t ions  used i n  
t h e i r  ca l cu la t ion  i s  too small ." 

' I . . .  a t  t h i s  s c a l e  the response sur face  

ca l cu la t ions  i n  the  s t eepes t  descent,  Davidon, 
(Numerical experiments had ind ica ted  t h a t  the  mathematical model gave noisy 

'I... numerical der iva t ive  

Additional parameters and cons t r a in t s  were introduced i n t o  the  hypersonic c ru i se  vehic le  
optimization. 
two la t ter  cases ,  c e r t a i n  'design var iab les '  were climb-trajectory parameters. 
t h a t  a continuous function, such a s  a t r a j ec to ry ,  can be optimized using d i s c r e t e  elements. 
i n t e r e s t i n g  r e s u l t s  of t h e  higher-dimension study was t h a t  t he  number of evaluations required f o r  t he  
11 var i ab le  optimization was only  s l i g h t l y  higher than t h a t  f o r  the  6 va r i ab le  optimization. 

The successive numbers of design va r i ab le s  used were 6,  11, 17 and 28. Actually,  i n  the  

One of t he  
This s e l ec t ion  ind ica t e s  

I 
Table 12.2 

Hypersonic Cruise Vehicle Optimization 
Using Adaptive Creeping Search [12F.7J 

Ames nominal 

S t a r t  I Finish 
Parameter 

2~ Wing loading ( l b / f t  ) 
Aspect r a t i o  
Fuselage f ineness  
Engine parameter 
Pressure l i m i t  

~~ ~ 

80 
1.455 

14  
4 

200 

~ 

108.5 

15.8 

150 .O 

1.499 

3.30 

S t a r t  
~ 

120 
2 
20 
5 

200 

Fin ish  

115.2 
1.563 

15.46 

150.4 
I I I I 

Number of passengers 220.3 253.3 192.8 253.4 

Table 12.3 

Hypersonic Cruise Vehicle Optimization 
Using Four Search Methods 112F.71 

Sectioning 253.1 
Adaptive creeping 253.3 
S teepes t  descent 252.0 
Quadratic 253.3 

Function Evaluations* 

70 
52 

150 
2 20 

*Measure of t o t a l  computer t i m e .  

An i n t e r e s t i n g  conclusion made by Hague and Gla t t  l12F.71, which supports t h e i r  multi lnethod 
approach,is 'I... the more ' sophis t ica ted '  searches typ i f i ed  by the  s t eepes t  descent ... the  second order  
searches,  converge less r ap id ly  and r e l i a b l y  than the s t ra ight forward  creeping search wherever compari- 
sons are made. 
[12D.1]. This emphasizes a poin t  long known t o  p rac t i c ing  optimization s p e c i a l i s t s ,  t h a t  no s ing le  
universa l  search technique is bes t  su i t ed  t o  so lu t ion  of a l l  conceivable optimization problems. 
Conversely, given a p a r t i c u l a r  search algorithm, one can almost always def ine  a sur face  on which the  
p a r t i c u l a r  search w i l l  appear super ior  t o  o ther  searches". 

This behavior i s  i n  cont rad ic t ion  t o  severa l  of the  numerical experiments performed i n  

I 

Other appl ica t ions  of AESOP are reported by Stepniewski and Kalmbach of Boeing's Vertol Division 
(12F.91. 
r o t o r ,  t h e  design va r i ab le s  being parameters descr ib ing  the  t w i s t  and chordlength d i s t r i b u t i o n s  along 
the  b lade  span. 
graphic d isp lay  scope),  i n  order t h a t  an engineer could monitor and cont ro l  t h e  optimization. The 
r e s u l t s  ind ica ted  a 46% improvement i n  the  ' s t a t i c  f igu re  of merit' of t he  r o t o r  i n  approximately 
15  minutes elapsed time (computer t i m e  was less). 

Other app l i ca t ions  reported i n  [12F.9 1 are: 

One optimization problem inves t iga ted  w a s  the maximization of t he  e f f i c i ency  o f  a hovering 

This problem was set up t o  provide a man-computer i n t e r f ace  (with an IBM 2250 

prop/ ro tor  design f o r  t i l t - w i n g  and t i l t - r o t o r  
a i r c r a f t ;  he l c iop te r  r o t o r  design; and the  design of an STOL t r anspor t .  
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Fig. 12.6 NASA Hypersonic Cruise Vehicle (Ref. [ 12F.71) 

POINT 

X I  

Fig.12.7 Search by"Sectioning" Note Premature Stopping due to Presence of a Ridge 
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Some r e s u l t s  of using various search methods a r e  presented f o r  t he  STOL t r anspor t  problem, which 
maximize t h e  payload weight f o r  a f ixed  takeoff gross weight (100 000 l b ) ,  may be s t a t e d  as follows: 

f ixed  fuselage and empennage, f ixed  takeoff d i s tance  (1000 f t  over a 5 0  f t o b s t a c l e ) ,  and f ixed  c r u i s e  
speed (400 k t  a t  30000 f t ) .  The design va r i ab le s  a r e  

2 a1 wing loading ( l b / f t  ) 

a2  

a3 wing thickness r a t i o  

a4 l i f t  engine th rus t /g ross  weight 

a5 l i f t  engine th rus t  angle 

a6 added l i f t  coe f f i c i en t  ACL due t o  h igh - l i f t  devices.  

aspec t  r a t i o  (upper l i m i t  of 12 from a e r o e l a s t i c  cons idera t ions)  

Another study added 30 f l i g h t  path angles ( a t  1000 f t  a l t i t u d e  increments) a s  'design va r i ab le s '  i n  
order a l s o  t o  optimize the  climb. 

It is obvious from the  formulation above t h a t  wing design is  one o f  the  most c r i t i c a l  f ac to r s .  
Wing weight was estimated by an  empirical  formula based on the  four wing parameters; 
w e i g h t  was predic ted  t o  increase  22X f o r  each un i t  increment i n  

Equivalent t o  maximizing the  payload is  minimizing the  sum of t h e  wing weight, engine weights and 

For t h i s  p a r t i c u l a r  s tudy  s ing le  search methods, 

f o r  example, wing 
ACL. 

mission fue l  weight; 
reproduced from 112F.91 i n  Figs.12.8, 12.9 and 12.10. 
such a s  s t eepes t  descent,  quadra t ic  and sec t ion ing ,  d id  not  perform w e l l .  Combinations of search  
methods, p a r t i c u l a r l y  those employing random ray, showed much b e t t e r  r e s u l t s .  The f a s t e s t  combination 
t r i e d  is  random po in t  + random ray  + quadra t ic  + pa t t e rn .  
s t r a t egy  i s  based on an observation of Wilde [12B.2], who compared opt imiza t ion  search with t h e  th ree  
phases of chess: opening game, middle game and end game. 

t h i s  sum i s  defined as y. The r e s u l t s  of t he  var ious  search techniques are 

The philosophy behind t h e  combination 

Each requi res  a d i f f e r e n t  s t r a t egy .  

The r e s u l t s  of t he  112F.91 s tudy  lead  Stepniewski and Kalmbach to  s t a t e  t h a t  "... i t  appears t h a t  
g rad ien t  procedures l i k e  s t eepes t  descent,  quadra t ic  and Davidon a r e  of l imi t ed  he lp  wi th  engineering 
problems of t he  c l a s s  being inves t iga ted  here". 
Ref. [12F.71. 

This experience c o r r e l a t e s  with the  conclusions of 

Other i nves t iga to r s  have reported s a t i s f a c t o r y  r e s u l t s  using a combination of j u s t  random ray  and 
p a t t e r n  from AESOP (12F.101, 112F.111. 
f o r  t he  present .  
memory (IBM 7094) i n  some app l i ca t ions  [12D.l], [12F.10]. 

I n  f a c t  they ind ica t e  they have standardized on t h i s  combination 
It should be added t h a t  AESOP is  q u i t e  a l a rge  computer program, almost f i l l i n g  core 

The somewhat su rp r i s ing  success evidenced by s t r a t e g i e s  employing the  random ray search ,  one of 
the  most unsophisticated of methods, may a r i s e  from i ts  very s impl ic i ty .  
no t  confined t o  predetermined d i r ec t ions ,  nor  can it be fooled by inaccura te  grad ien t  ca l cu la t ions  o r  
noisy data.  The method is  a l s o  of i n t e r e s t  f o r  con t ro l l i ng  noisy dynamic systems, Ras t r ig in  [12D.4]. 

It has no inna te  b i a s  and is  

12.4.2 Other Operational Experience 

The acce le ra t ion  move ( ca l l ed  ' pa t t e rn '  i n  AESOP) has proven usefu l  (i12B.11, p.309 and l12B.21, 

In  addi t ion  t o  i t s  a b i l i t y  t o  overcome a r idge ,  it should be noted t h a t  t he  
p.305) i n  overcoming the  'zig-zagging' tendency of c e r t a i n  methods, such a s  s t eepes t  descent,  
p a r t i c u l a r l y  on a r idge .  
acce le ra t ion  move does no t  requi re  eva lua t ion  of p a r t i a l  de r iva t ives .  

Other acce lera ted  searches are the  pa t t e rn  search of Hooke and Jeeves, l12D.91 and [12B.2] 
p.307, which is  not  the  same a s  AESOP'S p a t t e r n  search, and a l s o  Rosenbrock's 'method of r o t a t i n g  
coord ina tes ' ,  [12B.2], p.312. Rosenbrock's method has shown good r e s u l t s  i n  overcoming curved r idges .  
W. B. Herbst of McDonnell-Douglas A i r c r a f t  Corporation r epor t s  success with t h i s  method when applied 
t o  the  FX t a c t i c a l  f i g h t e r  development and a l s o  t o  the  follow-on F-15 design 112F.51. For the  l a t t e r  
app l i ca t ion  a s p e c i f i c  program ca l l ed  CASE ('computerized systems engineering')  was wr i t t en .  

The method of Davidon 112D.71, a s  extended by Fle tcher  and Powell 112D.81, has proven t o  be very 
powerful i n  so lv ing  problems with e i t h e r  a n a l y t i c  p a r t i a l s  o r  smooth da ta  from which numerical p a r t i a l s  
may be estimated (12B.11, p.320 o r  112B.21, p.331. Jameson of Grwman Aerospace Corporation 112F.131 
has  described e f f e c t i v e  app l i ca t ions  of t h i s  method. That Davidon f a i l e d  t o  provide good convergence 
i n  the AESOP r e s u l t s  reported i n  the  previous sec t ion  i s  probably due t o  noise  i n  the mathematical m d e l .  
Since Davidon obta ins  an es t imate  of the second-order de r iva t ives  from the  changes i n  the  f i r s t -o rde r  
de r iva t ives ,  it i s  obvious t h a t  any no i se  i n  the  d a t a  would create spurious r e s u l t s .  
Myers l12D.101 have discovered t h a t  t h i s  method i s  a l s o  sens i t i ve  t o  roundoff e r r o r s  i n  the  computer. 
They suggest e i t h e r  t he  use of double-precision a r i thmet ic  o r  a modified technique i n  which t h e  
procedure i s  r e s t a r t e d  every n moves. 
func t ions  wi th  up t o  100 va r i ab le s ,  l12B.11, p.349. Moreover, F le tcher  and Powell (12D.81 have 
demonstrated t h a t  t he  number o f  moves increases  only  l i n e a r l y  with the  number of va r i ab le s  when t h i s  
method is employed on a quadra t ic  function. 

Kelley and 

Davidon has demonstrated success on a h e l i c a l  r idge  and on 

Experience with various one-dimensional search  methods has no t  been f u l l y  reported.  The Fibonacci 
search has been c a l l e d  ' bes t '  a t  various times, and some have taken t h i s  a s  being l i t e r a l l y  t r u e  i12F.91. 
However, t he  only  claim made f o r  t h i s  method i s  t h a t  i t  i s  the  minimax i n t e r v a l  e l imina t ion  s t r a t egy ,  
t h a t  is, it guarantees the  b e s t  reduction f o r  t h e  worst poss ib le  outcomes. Moreover, i t  a s s m s  very 
l i t t l e  about t he  ob jec t ive  function except t h a t  i t  i s  unimodal, i .e.  has one optimum i n  the  in t e rva l .  
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For f a i r l y  well-behaved func t ions  i t  i s  obviously poss ib le  t o  improve over t h i s  method; 
quadra t ic  curve f i t  f i nds  the  optimum i n  th ree  s t e p s  f o r  a quadra t ic  func t ion .  
t r i v i a l ,  since many search  methods spend the  bulk of t h e i r  time i n  the  one-dimensional mode. 

i n  f a c t ,  t he  
This d i f fe rence  i s  not  

When using the  curve- f i t  method f o r  a one-dimensional search, i t  is  genera l ly  des i r ab le  t o  s e l e c t  
a low-degree polynomial, such a s  a quadra t ic  o r  a cubic.  
po in ts  ( t o  which the curve i s  f i t t e d )  contains the optimum. To t h i s  end, the  ' s t ep  unti l  f a i l u r e '  
method with K - 10 

This method works b e s t  when the  i n t e r v a l  of 

can be used t o  f i n d  the  proper s ca l e  before  the  curve- f i t  method i s  applied.  

12.5 Man-Computer I n t e r a c t i v e  Design 

There i s  a semantic problem i n  t i t l i n g  t h i s  sec t ion .  The area discussed here is conrmonly ca l l ed  
'computer aided design'  (CAD) o r  'computer graphics ' .  These terms do no t ,  i n  t h e  authors '  opinion, 
s u f f i c i e n t l y  de l inea te  the  concept which i s  the in t e rac t ion  o r  conversation between man and computer 
allawed by new techniques of time-sharing. The f i r s t -genera t ion  of d i g i t a l  computers were so slow and 
d i f f i c u l t  t o  program t h a t  a more-or-less continuous man-computer i n t e rac t ion  was required.  
generationcomputersemphasized t h e  'batch-process ' .  
f r u s t r a t i n g l y  c l e a r  t o  most engineers and programmers: 
returned. The t i m e  t h a t  t h i s  takes i s  ca l l ed  t h e  'turn-around t i m e ' ,  and i t  may be of the  order  of a 
day. However e f f i c i e n t  t h i s  appears t o  be from t h e  poin t  of view of  computer opera t ions ,  i t  is  o f t e n  
very wasteful of  t h e  engineer ' s  time. 
d i f f e rences  in  t h e i r  c a p a b i l i t i e s :  
but man does have more a d a p t a b i l i t y  and judgment. 

The second- 

con t ro l  of t he  program is l o s t  u n t i l  t he  run  i s  
The disadvantage of  t h i s  approach has been made 

The in t e r f ace  between the  man and the  computer shows up the b a s i c  
man i s  much slower and more prone t o  mistakes than i s  the  computer - 

Third-generation computers have the  capab i l i t y  of ' time-sharing', which allows many use r s  t o  be 
simultaneously serv iced  by a s ing le  data-processing center .  This f ea tu re  g rea t ly  improves the  man- 
computer i n t e r f ace ;  each opera tes  a t  h i s  ( i t s )  b e s t  speed. It a l so  enables the  engineer t o  r e t a i n  
cont ro l  of the  program. These advantages do not come without added cost:  quoting Narahara [12G.1], 
" I f  engineers were as rigorous as is  o f t en  claimed, batch processing would be good enough, and the  
l a r g e  investment i n  i n t e r a c t i v e  systems wouldn't be necessary o r  even worthwhile. 
r e a l l y  requi res  the  engineer t o  know what he wants (beforehand) .... 
the  poin t  t h a t  the problem-solving method can be spec i f i ed  i n  i n t r i c a t e  d e t a i l . "  
s i g n i f i c a n t  f o r  a i r c r a f t  design, which o f t en  includes considerations t h a t  a r e  d i f f i c u l t  t o  s t a t e  
a n a l y t i c a l l y  . 

But batch processing 
The program must be thought ou t  t o  

This i s  p a r t i c u l a r l y  

A terminal f o r  i n t e r a c t i v e  design may be simply a typewriter-  o r  te le type- l ike  terminal which 
allows the  engineer t o  converse with the  computer. A mre v e r s a t i l e  and commonly used device,  however, 
involves a graphic d isp lay ,  such a s  an I B M  2250 (12G.21, which can d isp lay  graphs, t h r e e v i e w  drawings, 
numerical r e s u l t s ,  e t c .  
f o r  t h e  engineer t o  cont ro l  the  opera t ion  of  h i s  program. 
arrangement gives i n s t a n t  turn-around t i m e .  Thus more e f f i c i e n t  use i s  made of the  engineer ' s  t i m e .  

This device a l so  has a light-pen and a keyboard, which provide i n  combination 
By con t r a s t  with batch processing, t h i s  

Since t i m e  is genera l ly  cr i t ical  i n  a i r c r a f t  design development, i n t e r a c t i v e  programming can he lp  
compress the design cyc le  - i f  t he  programming has been prepared beforehand. 
1126.31 suggests t h a t  t he  design process cons i s t s  of an i n t e r a c t i v e  sequence of events and dec is ions  
involving many s p e c i a l i s t s ,  say,  ind iv idua ls  A, B and C.  
where D is the  computer. It i s  obvious t h a t  t h i s  sequence would take many days i n  a batch-processing 
usage of the  computer. 
computer, however, t he  design cycle might be compressed g rea t ly .  

Chasen of Lockheed-Georgia 

A design sequence might be ADBACADCDCBD. .., 
I f  these th ree  s p e c i a l i s t s  can be brought together i n  a conversation wi th  the 

Rapid growth i s  predic ted  i n  i n t e r a c t i v e  design a c t i v i t i e s  by exper t s  i n  t h i s  f i e l d ,  [12F.2], 
i12F.4 1, i12F.61, [12F.14] and (12F.151. Among e x i s t i n g  app l i ca t ions  of i n t e r a c t i v e  design are: 

(1) 

(2) Wingfbody aerodynamic design, Lockheed-Georgia, [12G.71. 

(3) Ai rc ra f t  s i z ing ,  Douglas Ai rc ra f t  Company, 112G.81. 

(4) Helicopter v ib ra t ion  ana lys i s ,  Boeing Vertol Division, [12G. 9 1. 

(5) In tegra ted  wing design (ORACLE), The Boeing Company, (12G.101. 

( 6 )  A i r c r a f t  and mis s i l e  preliminary design, The Boeing Company, i12G.101. 

Many aerospace companies have developed c a p a b i l i t i e s  f o r  d ra f t ing ,  parts-design, and f ab r i ca t ion  

Ai rc ra f t  preliminary design, e spec ia l ly  of l a r g e  cargo types ,  Lockheed-Georgia, [12G.6]. 

by numerically-controlled too l s  using computer graphics l12G.31. 
f i e l d s  have been found f o r  computer graphics,  including in t eg ra t ed  c i r c u i t  design, automobile design, 
animated dynamics, curve f i t t i n g ,  e t c .  [12G.3]. A r ecen t  ins tance  of aeronaut ica l  i n t e r e s t  involves 
a i r c r a f t  f l igh t -pa th  optimization [12G.ll] .  

A number of o the r  app l i ca t ions  i n  many 
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