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EFFECTS OF STREAMLINE CURVATURE ON TURBULENT FLOW 

by 

Peter Bradshaw 
Reader in Fluid Dynamics 

Department of Aeronautics 
Imperial College of Science and Technology 

London SW7 2BY, England 

SUMMARY 

Streamline curvature in the plane of the mean shear produces surprisingly large changes in the 
turbulence structure of shear layers. These changes are usually an order of magnitude more important than 
normal pressure gradients and other explicit terms appearing in the mean-motion equations for curved flows. 
The effects on momentum and heat transfer in boundary layers are noticeable on typical wing sections and 
are very important on highly-cambered turbomachine blades: turbulence may be nearly eliminated on highly-
convex surfaces, while on highly-concave surfaces momentum transfer by quasi-steady longitudinal vortices 
dominates the ordinary turbulence processes. The greatly enhanced mixing rates of swirling jets and the 
characteristic non-turbulent cores of trailing vortices are also consequences of the effects of streamline 
curvature on the turbulence structure. This AGARDograph is a progress report, comprising a review of 
current knowledge, a discussion of methods of predicting curvature effects in engineering calculation 
methods, and a presentation of principles for the guidance of future workers. 

LIST OF SYMBOLS 

Infrequently-used symbols are defined on use. The overbar (~) denotes an average, usually with respect to 
time. 

a factor of order unity in Eq(31); speed of sound 
C additive constant in logarithmic law, Eq(43) 
c_ pressure coefficient (defined on use), specific heat at constant pressure 
cf skin friction coefficient, xw/jpUe 
d diameter 
D/Dt substantial derivative, 3/3x+ 3/3y+3/3z 
e extra rate of strain 
F "F-factor", Eq(32,36) 
f "f-factor", Eq(31); function 
g gravitational acceleration; metric tensor (App.l) 
h duct height; scale factor 
K Karman's constant Eq(42) 
k wave number vector, components kj, k2, k3; thermal conductivity 

L dissipation length parameter, (-uv) ' /e 
Lmmr, Monin-Obukhov length Eq(70,81) 
t mixing length, (-uv)1'2/(3U/3y) 
M Mach number U/a 
n normal coordinate in (s,n) system. Fig.1(b) 
P total pressure 
Pr molecular Prandtl number, ycp/k 
p static pressure (mean and fluctuation distinguished by p, p') 
Q volume flow rate; heat transfer/unit area/unit time 
q2 u2 + v2 + w2 

R surface radius 
Ri gradient Richardson number i _ , . . 
R£ flux Richardson number 
r local radius 
S curvature parameter, Eq(86) 
s curvilinear coordinate in (s,n) system, Fig.1(b) 
T mean temperature 
U,V,W mean velocity components in (x,y,z), (s,n,z) and (x,r,e) coordinate systems (Fig.l) 
u,v,w fluctuating velocity components 
u friction velocity, x/(,tv /p) 
X "time constant" of energy-containing eddies, Eq(37) 
x,y,z rectangular cartesian coordinates 
x* cartesian tensor coordinates, Xi, x2, X3 

a factor of order 10 in Eq(32) 
6 factor in Monin-Obukhov formula, Eq(119) 
T circulation 
y ratio of specific heats 
6 boundary layer thickness: y • & when U - 0.995Ue 

* r°° 
5 displacement thickness J (1 - pU/(p_U„))dy 

0 e e 

6.5 wall jet thickness: y - 6>5 when U - 0.5U,,, 
e turbulent energy dissipation/unit mass/unit time 
6 angular coordinate in (x,r,e) coordinate system; temperature fluctuation 



K thermometric conductivity, k/(pcp) 

X m i c r o s c a l e , / [ u 2 / ( 3 u / 3 x ) 2 ] 
V viscosity 
v kinematic viscosity, y/p 
p density (mean and fluctuation distinguished by p ,p') 
T shear stress, -puv in fully-turbulent part of two-dimensional flow 
n angular velocity of rotating duct 
u circular frequency 
UBV Brunt-Vaisala frequency, Eq(5) 

Suffixes 
e external stream conditions 
i,j,f tensor indices 
T turbulent 
w wall (surface) 
o reference or initial value 
1,2,3 tensor indices for x, y, z 

1. INTRODUCTION 

The subject of this AGARDograph is the surprisingly large effect exerted on shear-flow turbulence by 
curvature of the streamlines in the plane of the mean shear (Fig.l). Significant effects on shear stress 
and heat transfer can occur even for radii of curvature more than a hundred times the shear layer thickness. 
The most common example of a turbulent flow influenced by streamline curvature is the boundary layer on a 
highly-cambered aerofoil or turbomachine blade; its rate of growth, compared with that of a boundary layer 
in the same pressure gradient on a flat surface, is decreased on the convex upper (suction) surface and 
increased on the concave lower (pressure) surface. The title is chosen to include other cases, such as 
deflected jets, vortices and other swirling flows, and flow in various types of rotating duct (Fig.l): 
there is no connection with the "streamline curvature" method of calculating essentially inviscid flow in 
turbomachines. 

The subject is discussed from the point of view of engineering calculation methods. However, 
attention to the physics of the curious phenomena involved is even more necessary than usual in turbulent 
flow, and it is helpful to recognise that streamline curvature is not an isolated pathological case but 
one of a group of distortions ("extra rates of strain") which produce unexpectedly large effects on 
turbulent shear layers. By the words "surprisingly" and "unexpectedly" we imply that the effects of extra 
rates of strain are an order of magnitude larger than would be predicted by straightforward extensions of 
calculation methods for simple shear layers. This suggests, and the discussion below tends to confirm, 
that recent progress in calculating simple shear layers does not guarantee the development, in the near 
future, of a calculation method suitable for all common types of turbulent flow. If this is true, or even 
if we merely acknowledge that there may be some truth in it, we need to classify the common types of 
turbulent flow and, without losing sight of possible unifying features, to develop calculation methods for 
one class at a time. The classification is better made by phenomena than by geometry or engineering 
applications. We start by distinguishing "simple" shear layers, with monotonic velocity profiles and 
nearly straight streamlines, from "complex" turbulent flows, comprising all other flows which are 
significantly affected by turbulent (Reynolds) stresses. We then find (1, 2) that nearly all complex flows 
are recognisable as perturbations of simple shear layers by interaction with other shear layers (3) or by 
the imposition of body forces or extra rates of strain (additional, that is, to the simple shear, 3U/3y 
in Fig.1(a)). Shear-layer interaction seems, at least in the two-dimensional case, to be a fairly 
innocuous phenomenon which does not result in spectacular changes in turbulence structure, but body forces 
and extra strain rates merit more respect. Fig.2 is a summary of the suggested classification. Where 
possible, we shall classify curved or rotating flows under the names of the shear layers of which they are 
perturbations. The classification of Fig.2 is not unique, and the figure itself may be more reminiscent 
of genealogy than engineering, but I regard classification of some sort as an essential aid to understand­
ing and a prerequisite of unification, especially in the case of flows with extra rates of strain. 

Streamline curvature in the plane of the mean shear is possibly the most common of the extra rates 
of strain, probably the most important and certainly the best documented. This AGARDograph has been 
written specifically as a summary of current knowledge of its effects and a discussion of desirable future 
work. However, it can be read as a general introduction to complex turbulent flows and the effects of 
extra strain rates and body forces, because the strategy of research described or advocated here should be 
applicable to other cases: moreover, the simplest way of modifying calculation methods to account for 
curvature effects is also valid for other types of extra strain rate. 

Fig.3, due to Thomann (4), shows the effect of longitudinal surface curvature on the Stanton number 
(dimensionless surface heat transfer coefficient) in a supersonic turbulent boundary layer. Reading from 
top to bottom, the curves show results for concave, plane and convex surfaces (see Fig.l for definitions), 
each preceded by a plane surface. The ratio of boundary layer thickness to radius of curvature was 
roughly 0.02. The inset sketch which defines the symbols shows the general arrangement — not to scale — 
and the deflectors used to maintain a near-constant external Mach number of about 2.5 over the test 
surface in each case. These, therefore, are boundary layers with negligible longitudinal pressure 
gradients, and any differences in behaviour between the plane and curved flows can be attributed to the 
effects of streamline curvature. These effects are clearly very large: the difference in heat transfer 
increases gradually from the start of the curved section (x/L - 1) and is still increasing at the end of 
the measurement section, where the concave-surface heat transfer is about 20 per cent greater than the 
plane value and the convex-surface heat transfer is about 20 per cent less. Surface shear stress was not 
measured in this experiment but other work suggests that it would have changed by about the same 
percentage as heat transfer: other work also makes it clear that the effects are not confined to super­
sonic flow, but Thomann's elegant set of measurements gives the clearest and most incontrovertible evidence 
in one graph. 



Now in a laminar boundary layer the fractional change in surface shear stress or heat transfer 
caused by longitudinal surface curvature is of order S/R. Van Dyke (5) gives a theoretical result for the 
skin-friction coefficient c^ in low-speed constant-pressure flow which can be rewritten as 

c fo(l - 1.24 6/R) (1) 

taking 6 as 5.0 /(\ix/Ue) . Thomann's results show that the effects of curvature in turbulent flow are 
roughly ten times greater than this. Both in laminar and in turbulent flow, the extra terms that appear 
in the equations of mean motion for a thin shear layer when streamline curvature is imposed are of order 
S/R times the largest existing terms. Evidently, streamline curvature changes the Reynolds stresses of 
turbulent flow by roughly ten times as much as it changes viscous stresses. However, if we look at the 
Reynolds-stress transport equations, which are exact equations expressing the conservation of Reynolds 
stress in the same way that the mean-motion equations express conservation of momentum, we find that the 
explicit extra terms appearing in curved flows are again only of order 5/R times the largest existing 
terms in a simple shear layer and therefore cannot explain the large effects observed. There is, of course, 
no reason to suppose that the instantaneous Navier-Stokes equations or the Reynolds stress transport 
equations are no longer valid in a curved flow, so we conclude that streamline curvature directly causes 
large changes in the higher-order parameters of the turbulence structure. 

Effects of this size and obscurity would demand attention from engineers and research workers even 
if they were confined to boundary layers, but numerous other experiments show that similar effects can 
occur in any shear layer whose streamlines have a component of curvature in the plane of the mean shear, 
whether the curvature is caused by surface curvature, swirl [helical streamlines: Fig.1(d)] or rotation of 
the whole flow system. Figure 4 shows the effect of surface curvature on the spreading rate of a two-
dimensional wall jet. In two cases (6, 7) logarithmic spiral surfaces were used so that 5/R was 
independent of distance along the surface, s: in the third case (8) a surface of constant radius was used, 
and the results have been plotted at a plausible average value of 6/R. In all cases large changes in 
growth rate occur even when the curvature is small enough for the extra terms in the equations of motion to 
be negligible to the thin-shear layer ("boundary layer") approximations. In the most extreme case, where 
the radius of curvature was equal to the distance from the orifice, the spreading rate is four times that 
on a plane surface. We note that in this case the Reynolds stresses are decreased on a concave surface and 
increased on a convex one. Since the mean shear 3U/3y is predominantly negative in a wall jet, except 
for a thin region near the surface, we can provisionally deduce that the effects change sign with the mean 
shear, and that Reynolds stresses increase when (3V/3x)/(3U/3y) —measured in Cartesian coordinates 
coincident with the local direction of the shear layer, as in Fig.1(a) — is positive. The increase of 
spreading rate in the wall jet on a convex surface is the phenomenon (strictly one of the phenomena) called 
the "Coanda effect". 

Even more spectacular and unexpected effects can occur. Figure 5 is a photograph of smoke 
entrained in the trailing vortex behind a C-47 aircraft (9). Despite the fact that this is a flow at high 
Reynolds number (r/v « 4 xlO6, where r is the circulation round the vortex), the inner core of the 
vortex is laminar, being stabilized by streamline curvature; a noteworthy result is that there is little 
resistance to axial motion in the core, and this seems to play a large part in the dynamics of the vortex 
as a whole. Outside the core there is a region of turbulence, but the overall growth rate depends strongly 
on Reynolds number because of the viscous effects in and near the core. Note that in this swirling flow 
the plane of the mean shear and the plane of curvature of the streamlines do not necessarily coincide. 
Figure 6 shows the destabilizing effects of streamline curvature in a straight duct rotating about a 
spanwise axis (10): see Fig.1(e), and note that the turbulence responds to streamline curvature as seen in 
an inertial frame of reference. On the side where the angular velocity of rotation is in the opposite 
sense to the rotational part of the mean shear (corresponding to positive (3V/3x)/(3U/3y) in inertial 
axes) the turbulent motion is strongly augmented and the large eddies develop into longitudinal vortices. 
In some curved or rotating turbulent flows these vortices have preferred spanwise positions and thus 
contribute to the mean vorticity, although of course turbulent fluctuations still occur. On the other side 
of the rotating duct the turbulent motion is almost completely damped out, except for incursions by the 
longitudinal vortices. Evidently streamline curvature can produce not only quantitative changes in mixing 
rate but also qualitative changes, leading on the one hand to an apparent instability of the mean flow and 
on the other to virtual elimination of the turbulence. We notice the difference between this behaviour and 
the effect of streamline curvature on laminar flow stability: laminar boundary layers become less stable 
on concave surfaces (the case in which turbulent motion is augmented) but do not become significantly more 
stable on convex surfaces, because the dominant mode of instability is different in the two cases. In what 
follows, the words "stable" and "unstable" will be used to describe turbulent flows whose intensity is 
respectively decreased and increased by the effects of streamline curvature: "stability" does not 
necessarily imply complete absence of turbulence or its irretrievable decay. 

Figure 7 shows another spectacular effect. The turbulent intensity in an impinging jet (11) 
decreases, because the curvature is in the same sense as in a wall jet on a concave surface: this is to be 
expected from the foregoing discussion, but, quite unexpectedly, the intensity downstream of the 
impingement region overshoots the plane-layer value before finally relaxing towards it. Again, 
modification of the large eddies seems to be responsible. 

Figures 3 to 7 are sufficient evidence that many flows of aeronautical or engineering interest will 
be significantly affected, or even dominated, by the direct effect of streamline curvature on the 
turbulence. For instance, Thomann's results (4) show that on a circular-arc turbomachine blade with a 
turning angle of the order of 60 degrees (giving 6/R «t0.02 near the trailing edge) heat transfer rates 
will be decreased by roughly 20 per cent on the top (suction) surface and increased by roughly 20 per cent 
on the bottom (pressure) surface, as compared with results for flat surfaces. This is a serious matter. 
Table 1 gives a list of some of the flows in which curvature effects can produce a change in Reynolds stress 
of 10 per cent or more. Unless some explicit empirical allowance is made, all calculation methods for 
turbulent shear layers known to me underpredict the effects by a factor of the order of 10, since at best 
they recognize only the explicit extra terms in the mean-motion equations and Reynolds-stress transport 
equations (Section 2). For example, thin shear layers are frequently predicted by "eddy viscosity" 
formulae of the type 



shear stress 

This would predict the effect of adding an extra rate of strain 
3U/3y to be an increase in shear stress by a factor 

(rate of shear strain) 

3V/3x to an existing "simple shear" 

(2) 

1 + 
3V/3x 
3U/3y 

obviously the same factor of increase as in a laminar flow where the molecular viscosity y replaces 
Thomann's results suggest that the real factor of increase after a prolonged region of streamline 
curvature is much larger, of the order of 

3V/3x 

'T-

1 + 10 

for small values of the "rate-of-strain ratio" 

3U/3y 

(3V/3x)/(3U/3y), However, the evidence of Figs 3 to 7 
makes it clear that a linearized empirical formula of this sort will not be reliable for large curvature 
effects. Also, since we attribute curvature effects to changes in the higher-order structure parameters, 
we cannot expect the full effects on the local Reynolds stress to appear as soon as the curvature is 
imposed. We shall, however, use linearized formulae for simple discussions, and at present little can be 
said about higher-order formulae. 

It is evident that streamline curvature has a large effect on the processes by which Reynolds 
stresses are generated and maintained, and that empirical modifications to calculation methods for simple 
shear layers are unlikely to be reliable unless they are based on some physical and mathematical understand­
ing of these processes. Therefore Section 2 of this AGARDograph includes a brief introduction to the exact 
Reynolds stress transport equations, partial differential equations whose terms represent different 
physical processes contributing to the maintenance of Reynolds stress. This is followed by a discussion of 
the strategy used to convert these and other exact transport equations into empirical, soluble equations 
for Reynolds stress. Nearly all existing calculation methods can be explained in terms of this strategy 
or simplifications of it. It is not necessarily implied that curved flows can be predicted only by 
calculation methods that use the most advanced form of this strategy, involving the solution of several 
transport equations: however we shculd base our initial discussion of these mysterious curvature effects 
on the most realistic models of turbulence processes and make simplifications later if we can justify them. 
Cartesian coordinates are not very convenient for a discussion of curved flows, so Section 2 begins with a 
description of two alternative systems, suitable for two-dimensional curved flow and axisymmetric swirling 
flow respectively. Extensions of the thin-shear-layer approximation to these systems are also discussed. 
In other cases of shear layers subjected to curvature or other extra rates of strain, more complicated 
coordinate systems may be needed for convenience of description or to assure stability and accuracy of 
numerical solutions, and Appendix 1 is an attempt to treat general, non-orthogonal coordinate systems with 
more rigour than is sometimes employed. 

Recently it has become clear that streamline curvature, 3V/3x, is only one of a number of extra 
rates of strain which, when applied to an initially simple shear layer, produce effects on Reynolds stress 
which are large compared to the explicit effects of the extra terms that appear in the equations of motion 
or the effects of the changes in coordinates needed to align the axes with the shear layer. Other examples 
include lateral divergence and bulk compression (in compressible flow). Pure rotation of the flow system, 
though not strictly a rate of strain, has much the same effect as streamline curvature, with the angular 
velocity f, taking the place of 3V/3x. Section 3 is an introduction to these effects: it seems to be 
almost a universal law that if a small extra rate of strain, e say, is added to a simple shear 3U/3y 
the Reynolds shear stress eventually changes by a factor of order 

1 ± 10 
3U/3y 

The number here written as 10 is most unlikely to be a universal constant, but while our ignorance of the 
effects of extra strain rates remains so extensive it is helpful to consider the effects together, without 
necessarily implying a direct qualitative connection between the phenomena or a quantitative connection 
between the various empirical constants. It is also helpful to regard the flows as perturbations of simple 
shear layers rather than as completely new flows. We therefore define a "simple shear layer" more 
precisely as one in which the simple shear 3U/3y is so much larger than any other rate of strain that the 
direct effect of the latter on the turbulence is negligible. Now the thin-shear-layer approximation is, 
roughly speaking, that the effect of extra rates of strain on the mean-motion equations is negligible: it 
follows by inspection of the Reynolds stress factor set out above that the requirement of a simple shear 
layer is about ten times stronger than the requirement of a thin shear layer. The simple shear layer 
provides a basis for comparison: it is rather rare in practice. Some curved flows violate even the thin-
shear-layer approximation, but it is shown in Section 2 that Reynolds stress gradients are significant 
only in fairly thin shear layers: and even a region of strong distortion in which pressure gradients 
greatly exceed Reynolds stress gradients is likely to be preceded or followed by a fairly thin shear layer. 
The following summary table may be helpful: the sign " » " can be read as a factor of inequality not much 
less than 100, and e is any one of the relevant extra strain rates. 

simple shear layer 
thin shear layer 
fairly thin shear layer 
strong distortion 

3U/3y » lOe 
3U/3y » e 
3U/3y > lOe 
3U/3y < lOe 

e does not affect turbulence 
e does not affect mean-flow equations 
Reynolds-stress gradients still significant 
Reynolds-stress gradients locally insignificant 

Classical "rapid distortion" theory requires 3U/3y « e 
turbulence timescale that appears in the theory). 

(3U/3y is a fair approximation to the 

At intervals over the last 40 years the large effects of streamline curvature on turbulent flow have 
been demonstrated by experiments on several different types of shear layer, but only in the last few years 
have these effects been allowed for in engineering calculation methods and even now they are frequently 
neglected. The history of research on the subject and its curious lack of impact is outlined in Section 4 



as an introduction to the phenomena of curvature effects: current knowledge of particular curved flows is 
reviewed in later sections. In view of the long neglect of the subject by research workers it is 
interesting to note that the late Henri Coanda not only demonstrated increased mixing in the wall jet on a 
convex surface in the early 1930s but made use of it in a variety of useful devices (for an affectionate 
obituary of M. Coanda see Ref.12). In contrast, half the references quoted below date from 1969 or later. 

The traditional qualitative explanation of the effect of streamline curvature on a fluid flow is 
based on the motion of a disturbed element of fluid (Fig.8). The argument first given by Von Karman (13) 
in 1934 is as follows. Suppose that an element of fluid in an axisymmetric rotating flow is displaced by 
some externally-applied force in a radial direction, and then released. If the fluid is frictionless we 
may assume that the displaced element conserves its angular momentum about the centre of curvature of the 
streamlines, distant r from the point considered. Therefore if the angular momentum of the steady flow, 
Ur per unit mass, numerically decreases outwards, the displaced element will have a larger circumferential 
velocity than its surroundings. In consequence, the radial pressure gradient pU2/r that maintains the 
mean flow in its circular path is too small to keep the displaced element in equilibrium, and it will 
therefore continue to move outwards. Conversely, if the angular momentum of the mean flow increases 
outwards, the mean pressure gradient will force the displaced element into a path of radius less than r, 
returning it towards its original radius, about which it will oscillate. 

Quantitatively, for the case of incompressible flow, if the radius and velocity of the fluid 
element before disturbance arc r and U its circumferential speed after displacement to radius 
r = r0 + dr is 

whereas the mean speed of the fluid, U, is 

dU . U„ + -r- dr o dr 

so that the difference between the mean pressure gradient pU2/r and the pressure gradient required to 
keep the displaced element in a path of radius r +dr is 

2 P 4 1 (Ur)dr = ± L (U2r2).dr (3) 
r2 dr r3 dr 

Consequently the radial acceleration of the particle is proportional to the displacement dr, and the 
displaced element executes simple harmonic motion at circular frequency 

f u d 1 1 / 2 

10 " I2 ? dT ( U r ) J (4a) 

if this number is real, and diverges if it is imaginary. Zero frequency implies neutral stability. 
Alternative expressions are 

where P is the total pressure p + JpU2 and we use the equation of radial equilibrium, dp/dr- pU2/r, or 

U 1 1 / 2 

2 — (mean vorticity) (4c) 

These expressions emphasize that the irrotational external stream adjoining a shear layer is neutrally 
stable. The above analysis applies in full only to flows whose velocity along the axis of rotation is zero. 

A closely similar analysis can be done for a displaced element in a stationary, stratified fluid in 
a gravitational field in the negative y direction: if the displaced element conserves its density (i.e. 
if we neglect the adiabatic lapse rate) the net buoyancy force after displacement dy produces a restoring 
force leading to oscillation at the Brunt-VSisaia frequency 

2. dp 1 
P <*y J 

1/2 
(5) 

In the meteorological literature the Brunt-Vaisala frequency is usually given symbol N, or sometimes oi0: 
we will use the symbol above as a reminder of the name and of the fact that Eq(5) gives the circular 
frequency in radians per second. In buoyant flows, the square of the ratio of the Brunt-Vaisala frequency 
to a typical time scale of the flow defines the well-known meteorological parameter, the Richardson number 
(see Section 5.1). 

Now these analyses totally neglect perturbations to the flow or the pressure gradient caused by the 
motion of the disturbed element, and therefore leave something to be desired even in a frictionless flow: 
the buoyancy analysis seems rather more plausible than that for curvature. Proofs based on energy 
considerations [the proof for curved flow being due to Rayleigh (14)] obscure, but do not entirely remove, 
the impossibility of the physical situation. If applied to turbulent flow, the arguments arc uncomfortably 
reminiscent of those of classical mixing-length theory, which at best can only reproduce results 
obtainable by dimensional analysis for the special case of flows in "local equilibrium" (see Section 2.4). 
However proofs for special cases have been obtained by rigorous use of hydrodynamic stability theory, the 
only arbitrary feature remaining being the choice of the disturbance mode. Moreover, the qualitative result 
that the sense of stability depends on the sense of the gradient of angular momentum or density is well 
established even for real flows, and in buoyant fluid, if not in curved flows, oscillations of a displaced 
element at very nearly the predicted frequency have actually been observed (15). 

Section 5 is based on a discussion of the analogy between buoyancy and curvature effects including 
further treatment of stability analyses, like that outlined above, which are applicable to both effects. 



It is shown that displaced-element arguments lead to dimensionless stability parameters similar to those 
inferred from the Reynolds-stress transport equations: each has some advantage. The qualitative phenomena 
of strongly-curved flows, including longitudinal vortices (or other convective instabilities), and 
possibly internal waves, are also most simply introduced by analogy with buoyant flows in which the 
phenomena are generally better documented. The quantitative analogy between the effects of buoyancy and of 
curvature on a given type of shear layer should be nearly as accurate as Reynolds' analogy between momentum 
transfer and heat transfer, being based on nearly the same arguments. Unfortunately a direct correspondence 
with meteorological flows is possible only in the inner layer of a turbulent wall layer, and a 
correspondence with buoyant flows in the laboratory is not likely to be a very useful way of obtaining data 
because it is generally easier to measure curved flows than buoyant ones. The analogy between buoyancy 
and curvature can be illustrated by comparing the gravitational body force with the "centrifugal" body 
force. Rotation of a shear layer, with mean shear 3U/3y, about the z axis produces an apparent 
Coriolis body force in the y direction, very closely analogous to the apparent centrifugal body force: 
this is an analogy parallel to that between a true angular velocity and the pseudo-angular-vclocity 
U/r 5 -3V/3x. 

Sections 6 to 10 are reviews of the basic flows in which streamline curvature (or bodily rotation of 
the flow) significantly affects turbulence. Since a quantitative discussion is possible only for fairly 
small curvature effects, classification under the names of classical thin shear layers begs no questions. 
Examples include boundary layers and wall jets on curved surfaces, curved duct flows, curved free jets and 
mixing layers, swirling jets, vortices and swirling flow in ducts. We distinguish between "rotating" 
ducts, rotating about an axis more or less normal to the plane of the mean shear 3U/3y, and "spinning" 
ducts, rotating about the general direction of the flow: in the first case only two-dimensional flows, 
and in the second case only axisymmetric ones, will be considered, because flows in rectangular spinning 
or rotating ducts of small aspect ratio are likely to be dominated by secondary flows driven by pressure 
gradient, and the direct effects of rotation on the turbulence cannot yet be distinguished. Sections 6 to 
10 are not general discussions of the title flows (background references are given) but concentrate on the 
changes in turbulence structure that result from curvature: where it has been possible to discuss the 
effect of these changes on the mean flow I have done so. I have concentrated on experiments which seemed 
to me likely to contribute to the understanding of curvature effects on turbulence: this by no means 
disqualifies careful mean-flow measurements without turbulence data, but in general I have passed over 
experiments whose results are insufficiently detailed for inferences to be drawn about turbulence 
behaviour. Unfortunately very few data are available on three-dimensional curved flows: at present one 
can only hope that rules derived for two-dimensional or axisymmetric flows can be applied locally; 
axisymmetric swirling flows are closely related geometrically to flows over developable surfaces such as 
infinite swept wings. In compressible flow, the picture is rather brighter: a number of experiments on 
supersonic boundary layers have been done on surfaces curved so as to induce the required pressure 
distribution. These boundary layers suffer from the effects of two extra strain rates, curvature and bulk 
compression, but some inferences can be drawn about the Mach-number dependence of curvature effects. 

The discontinuity between the general theoretical discussion of Sections 2 to 5 and the 
miscellaneous experimental results of Sections 6 to 10 is a consequence of the undeveloped nature of the 
subject. It is hoped that future work will benefit from the general discussion, and I have therefore 
included material that could be used in future as well as material that can be used at present, even though 
the foundations for a large structure are necessarily less tidy and less appealing than a small, complete 
edifice. Section 11 is a list of conclusions useful to design engineers and to experimental and theoretical 
research workers. It includes both a summary of the existing methods of allowing for curvature effects in 
calculation methods, principally for thin shear layers, and some suggestions for desirable future work. 
The main conclusion, foreshadowed above, is that there is no immediate prospect of a calculation method 
that will naturally predict all the effects of extra rates of strain, even in thin shear layers. Different 
empirical inputs are necessary for different strain fields: this implies that we are forced to regard each 
as a perturbation of a simple shear layer and that the reliability of the results will decrease with the 
strength of the perturbation. 

As mentioned above. Appendix 1 is an introduction to general coordinate systems and the need for 
them. Appendix 2 gives details of suitable test cases for calculation methods, together with a discussion 
of the performance of allowances for curvature effects in the method of Ref.16, which must now be regarded 
as a method of average complexity, intermediate between the most modern transport-equation methods and the 
older procedures still in use in industry. 

The purpose of this AGARDograph is to ensure the widest possible realization of the importance of 
curvature effects on turbulent flow and to point out the necessity — and difficulty — of predicting them. 
Because the subject has only recently become popular there is no consensus of opinion about it, and 
because I have been personally involved in its redevelopment I have naturally presented it from my own 
point of view, which I hope will not be found unduly contentious. (The last sentence may also be applied 
to the subject of calculation methods for turbulent shear layers in general, which necessarily recurs 
throughout the monograph.) I have included, with suitable warnings, some small pieces of unpublished 
original work. I have tried to present the subject in the way that will be found most useful by the 
developer of calculation methods for the turbulent flows that appear in engineering fluid dynamics. 
Fortunately, the point of view of the developer is nowadays fairly close to that of the experimental 
research worker on the one hand and the industrial userof calculation methods on the other, and I hope the 
review will be useful to them also. Streamline curvature is the only one of the extra rates of strain that 
is sufficiently well understood for a review monograph to be timely but — because of its recent rise to 
popularity — our knowledge is increasing so rapidly that any attempt at a definitive treatment would be 
futile. This is a progress report: I hope it will help to stimulate future progress. 

2. THE EQUATIONS OF MOTION: COORDINATE SYSTEMS, APPROXIMATIONS AND STRATEGY FOR SOLUTION 

2 . 1 CHOICES OF COORDINATE SYSTEMS 

The Navier-Stokes equations and the exact Reynolds-stress transport equations (Section 2.4) are given in 



general tensor notation in Appendix 1 (see the first paragraphs of that Appendix for an explanation of 
notation) with a summary of the steps needed to deduce the equations in any special coordinate system. 
This information is not easily accessible in the literature but will be needed in the analysis of three-
dimensional curved flows. For normal purposes the equations can be read as if they were written in 
ordinary tensor suffix notation, and in the main text we normally use (x, y, z) notation or variants 
thereof. We begin this section by discussing the types of flow in which Reynolds stress gradients are 
likely to be important, to limit the field of study: we then derive the equations of motion in coordinate 
systems to suit the most common types of curved flows, and discuss the validity of approximations to them 
as a generalization of the thin-shear-layer approximation (boundary-layer approximation) in plane flow. 
Finally we review the strategy of calculation methods for plane flows, with a view to the incorporation of 
allowances for curvature effects. 

It can be shown that the only flows in which Reynolds stress gradients significantly affect the mean 
motion are those containing fairly thin shear layers. Consider a flow with a typical velocity Ue and a 
typical length s in the general direction of flow. In general, mean pressure gradients in any direction 
will be of the order of pU2/s, while according to experiments Reynolds stresses are at most of order 
0.01 pUe/s. Therefore Reynolds stress gradients will be of the same order as pressure gradients only if 
Reynolds stresses change appreciably over distances of the order of 0.01 s. Examination of the Reynolds-
stress transport equations shows that the Reynolds stresses are unlikely to change so rapidly with distance 
along a mean streamline, and we conclude that Reynolds stress gradients will significantly affect the mean 
motion only if they change significantly in a distance of order 0.01s more or less normal to the mean 
streamline. This requires the existence of thin sheets or slender tubes of high Reynolds stress, and the 
only general mechanism by which such layers can maintain themselves is extraction of energy from the mean 
flow by working of a mean rate of strain against the Reynolds stresses. The rate of dissipation of 
turbulent energy per unit volume in a sheet or tube of width 0.01s carrying Reynolds stresses of order 
0.01U2 will be of order (0.01U2)3'2/0.01s, and if a roughly equal rate of turbulent energy production 
is to be maintained the rate of strain acting on Reynolds stresses of order 0.0iu| must be of order 
10Ue/s. Rates of normal (tensile or compressive) strain cannot for long exceed Ue/s without causing 
velocity changes of greater order than Ue, so that a rate of shear strain of order 10Ue/s must exist 
in the sheet or tube, which must therefore be a shear layer, with a velocity change of order Ue in a 
transverse distance of order 0.1s or a smaller velocity change across an even thinner layer, say of the 
order of 0.01 s as originally required. Note carefully that this argument has nothing to do with the 
mathematical thin-shear-layer approximation: in particular, it does not prove that the layers with high 
Reynolds stress gradients are thin enough for any version of that approximation to apply. Nor, of course, 
does it exclude the presence of some regions in which pressure gradients greatly exceed Reynolds stress 
gradients. Clearly, the most difficult flows to predict will be those in which a shear layer has its 
turbulence structure perturbed by a short region of strong pressure gradients and extra rates of strain, 
and then emerges into a longer region in which its Reynolds stress gradients are significant compared to 
smaller pressure gradients: an example of such a flow — and of the eccentric behaviour of perturbed 
turbulence — is the impinging jet of Fig.6. The argument does, however, justify an unrigorous version of 
the thin-shear-layer approximation, stating that the most important Reynolds stress gradients are almost 
always the shear stress gradients: the implication is that normal stresses need not be calculated as 
accurately as shear stresses, except perhaps in non-axisymmetric slender shear layers where normal-stress 
gradients drive secondary flows. Note that the division of the stress tensor into "shear stresses" and 
"normal stresses" depends on the axes: however in regions where Reynolds stresses are important the above 
argument shows that the direction of the shear layer can be located, to sufficient accuracy, and used as a 
coordinate axis. As pointed out in the discussion of coordinate systems in Appendix 1, it may be not only 
convenient but necessary to do this, to ensure accuracy and stability of numerical calculations. 

Nearly all the experimental information on curved flows refers to slender axisymmetric swirling 
flows or to thin two-dimensional shear layers: there is some information on non-slender swirling flows and 
on non-thin shear layers but no significant data on non-axisymmetric or three-dimensional flows. Clearly 
the latter flows may be more complicated than axisymmetric or two-dimensional flows, but there is no reason 
to suppose that the effects of curvature as such are much more complicated although some difficulties of 
interpretation arise. At all events there is no present need to consider the equations of motion for these 
cases, and we therefore discuss only Che equations for two-dimensional curved flows or axisymmetric swirling 
flows, both in general and with the approximation of thinness or slenderness. Either these or the plane-
flow equations can be extended to coordinates rotating at angular velocity it by adding the appropriate 
components of the Coriolis acceleration or body force 2 Q X U: in a constant-density fluid, the centripetal 
acceleration can be absorbed into the pressure gradient (10). It is important to distinguish between 
rotating flows (between coaxial rotating cylinders, say) and the rotating axes in which it may or may not 
be convenient to study them. 

The most appropriate coordinate systems for simple curved flows are as follow. 

1. Two-dimensional (s,n) coordinates, in which s is measured along a single curved reference line 
(usually a solid surface or other streamline) and n is measured along straight lines normal to the 
reference line [Fig.1(b)]. The third coordinate, measured along straight lines normal to the (s,n) plane, 
will be called z. Note the difference between this system and the more general orthogonal curvilinear 
system of Fig.1(c) in which the constant - n lines are all arbitrary and the constant - s lines are 
everywhere orthogonal to them. In our system the radius of curvature of the s-axis, R, may be a 
function of s, in which case the coordinates become non-unique on the locus of the centre of curvature; 
if R ia constant the locus shrinks to a point and the (s,n) system reduces to polar coordinates (r,9) 
with r 5 n + R, 9 = s/R, while if n is small compared with R (as in a thin shear layer) it reduces 
to rectangular Cartesian coordinates x I s, y = n. We shall use the (s,n) system only for fairly thin 
shear layers so that the centre of curvature lies outside the region of interest. It will sometimes be 
convenient to denote n + R by r and dn by dr. An axisymmetric (s,n) system can be used on fat 
bodies of resolution, and the appropriate modifications to the two-dimensional system will be indicated 
below. Although the point is not directly relevant to the present topic it is worth noting that the (s,n) 
system based on a reference streamline is particularly suitable for matching a free-shear-layer 
calculation to a calculation of the external flow because the s-axis streamline appears explicitly in both 
calculations. 
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2. Axisymmetric (x,r) coordinates in which x is measured along, and r normal to, a straight axis 
[Fig.1(d)]. The third (angular) coordinate will be called 9. The system will be used mainly for flows 
which are turbulent over most or all of the distance from the axis to radius r: if the turbulent layer is 
thin compared with r, as in thin boundary layers in pipes or annuli or on bodies of revolution, the 
system reduces to rectangular Cartesian coordinates with y = r, while not-so-thin axisymmetric layers 
can be analysed in the axisymmetric (s,n) system. 

Now we shall see that in the (s,n) system dR/ds appears explicitly only in the second 
derivatives in the viscous term, and even there it is nearly always negligible in practice, so that, for 
purposes of deriving the equations, (s,n) coordinates are locally equivalent to (r,9) coordinates, as 
when R is truly constant. Thus the equations of motion in our two coordinate systems are special cases 
of those that appear in cylindrical (x,r,9) coordinates; in the first case the x derivative, and in 
the second case the 9 derivative, is negligible. The mean-motion and Reynolds-stress transport 
equations in (x,r,9) coordinates are given by Rodi (17). 

The reduction of (s,n) coordinates and (x,r) coordinates to conventional (x,y) coordinates for 
small values of (shear layer thickness)/(radius) justifies the common pretence that aeroplane surfaces are 
flat for the purposes of deriving the boundary layer equations. However, the message of this AGARDograph 
is that aeroplane surfaces are not flat for the purpose of solving the boundary layer equations in 
turbulent flow — in other words the effects of streamline curvature on the turbulence are much larger than 
would be expected from the extra terms introduced into the mean-motion or Reynolds-stress-transport 
equations. In highly—curved flows (6/R of order 1) the extra terms become comparable with the existing 
terms, while the effects on the turbulence are necessarily limited in size by considerations like non-
negativity of turbulent energy or energy dissipation rate, so that in these cases the effects on the 
Reynolds stresses may be of no greater order than the extra terms: see, for example, the results for the 
impinging jet in Fig.7, where (3V/3x)/(3U/3y) — representative of the ratio of "extra terms" to plane-
layer terms — reached a maximum numerical value of about 0.2. In such a case all or nearly all of the 
extra terms introduced by curvature must be retained. In intermediate cases of moderate curvature some of 
the extra terms may be negligible and it is therefore advisable to put on record not only the exact forms 
of the equations of motion but also the hierarchy of consistent approximations to them. When we use plane 
boundary layer equations for curved flows we are using the lowest members of this hierarchy. 

2 . 2 THE ( s , n ) SYSTEM 

As a simple example of the extra terms introduced by the (s,n) system, we derive the continuity equation 
for incompressible two-dimensional flow, which specifies that the net rate of mass flow out of an elementary 
control volume, such as that shown in Fig,1(b), is zero. With symbols U, V and W for the mean velocity 
components in the s,n and z directions respectively, the net outward rate of mass flow through the 
faces seen in side view as AB and CD, supposed to be of unit depth in the z direction, is 

U + 
3U 
3s 

ds dn pU dn 

exactly as in rectangular Cartesian coordinates. The net outward rate of mass flow through the faces AD 
and BC is 

V + | dn 1 + - ^ | d M ds 
(remember that s is measured at height n 
we get 

3U_ 
3s 

0), 

Sr • 1 + 
n] sy_ 
Rj 3n 

Neglecting the term in (dn)2, and dividing by p ds dn 

' S * f»W**t)} " • 
where the second element implies the definition of a stream function. The term arising from flow in the 
z direction is (1 + n/R)3W/3z because the area of the face ABCD is (1 + n/R)ds dn. In axisymmetric 
flow (6) is valid if U and V are multiplied by the radius to the point (s,n). 

The Navier-Stokes equations can be derived by applying to the curvilinear control volume the arguments 
about conservation of momentum used to derive or explain the equations in rectangular Cartesian coordinates. 
Van Dyke (5) gives the equations for steady two—dimensional incompressible laminar flow: the mean-motion 
equations for turbulent flow can be deduced by inspection once the continuity equation, Eq(6), is used to 
put Van Dyke's equations into "divergence" form with the left hand side composed of pure spatial 
derivatives. Writing h for 1 + n/R in the viscous term for compactness (noting that both 3h/3s and 
3h/3n are non-zero in general) and adding U times the continuity equation to the s-component equation 
and V times the continuity equation to the n-component equation, we get 

s—component mean momentum 

u l + 1 + 2 v 2 2 + !2 
3s R 3n R 

* • ( -•iff"? 
_1 3p 3u^ [ nl 3uv 2 uv _3_ 
p 3s ~ 3s ~ [ Rj 3n R 3n 

3n 
(hU) _ 3V*, 

3 (7) 

n-component mean momentum 

U 3s Rj 3n R 

3UV jn 3Vf V--U 
3s ' I R) 3n R 

2_„2 fi S\ 1 11 H\HL f*i * °1 •** 
~ [ l +

 RJ p 3n " 3s [ l Rj 3n 
( v 2 - u 2 ) 

" v h - s 
>u> . IS 

(8) 



where the Reynolds-stress terms on the right have the same layout as the divergence forms on the left, the 
latter being obtained by adding U times the continuity equation to the original left-hand side of Eq(7), 
and similarly for Eq(8). Note that in Eqs (6) to (8) the n-derivative always appears as 
h 3/3n = (1 + n/R)3/3n. In axisymmetric (s,n) coordinates the main differences appear in the viscous 
terms which can almost always be drastically simplified; apart from this, the divergence forms of Eqs (7) 
and (8) are still valid if all velocity products and the pressure gradients are multiplied by the radius 
to the point (s,n). 

Van Dyke summarizes previous work and controversy on the application of the boundary-layer 
approximation (thin shear layer approximation) to the equations for laminar flow. In plane laminar flow 
(R • «>, h •> o) the ratio of the neglected viscous term in the s-component equation, v 32U/3s2, to the 
retained term v 32U/3n2 is of order (6/s)2, whereas in plane turbulent flow the ratio of the neglected 
term Bu^/Ss to the retained term 3uv/3n is only of order (6/s) because u2 and uv are of the same 
order in general. Therefore (i) the thin-shear-layer approximation is less accurate in turbulent flow than 
in laminar flow, quite apart from the fact that 5/s is generally larger, (ii) we cannot make direct use 
of the order-of-magnitude arguments developed for laminar curved flows. Furthermore the effect of 
turbulence on pitot and static tubes introduces uncertainties of order u2 into measurement of U2 so 
that the inaccuracy of measurement of 3U /3s is of the same order as the Reynolds-stress gradient 3u2/3s 
and attempts to use sets of equations more accurate than the boundary-layer equations may not be realistic. 
For a careful discussion see the 1951 paper by Newman (18), and for data on corrections to static-tube 
measurements in shear layers see Bradshaw and Goodman (19). Despite these sources of difficulty or 
inaccuracy we can still produce consistent approximations to the exact equations for curved turbulent flow: 
for clarity only the two-dimensional case will be treated. 

We consider the case where R/s and dR/ds are both of order unity, say R/6 of the order of 50 
in a boundary layer: if the curvature is sharper or changes more rapidly few simplifications can be made 
with any rigour. In virtually all turbulent flows the viscous term in Eq(8) will be negligible everywhere 
and the viscous term in Eq(7) will be negligible except in the viscous sublayer, n < 30V/(P/T ) say. If 
we take the surface as the s-axis h will be very close to unity in the sublayer and if, as assumed, 
dR/ds is not of greater order than unity the viscous term in Eq(7) becomes approximately 

fa2u + ̂ u 
V3n2 3s2 

3U 
3n 

_3V _U_] 
3s ' R2j 

Less rigorous, but entirely trustworthy, arguments based on the known properties of the viscous sublayer 
in plane flow suggest that all terms except the first will be negligible. Therefore the difficulties 
encountered in approximating the viscous terms in laminar flow do not appear in turbulent wall flows, nor 
of course in turbulent free shear layers. 

The largest of the Reynolds stress gradients in Eq(7) is 3uv/3n, the others being smaller by 
factors of 6/s or, equivalently, 6/R, since we have assumed s/R to be of order unity. Since n/R 
is clearly not much greater than 6/R, and since V is of order U6/s, the only consistent simplification 
of Eq(7), neglecting terms of order 6/s or 6/R, is 

• B + v-22 
3n 

i .I 
p 3s 

3uv 
3n 

3ZU 

3n2 
(9) 

identical with the familiar boundary-layer equation for a plane flow except that we have not yet proved 
that 3p/3s is independent of n. 

If we neglect the terms in Eq(8) which are of order 6/s or 6/R compared to U2/R, and also 
neglect (n/R)V 3V/3n which is of order (6/s)2, we get 

R 
- Uz i l l 

p 3n (n + R) 

Differentiating with respect to s and rearranging, we get 

3v£ 
3n 

(10) 

32 ,- A "J, 3 fu2 

371^ (p + pv > _ iS T 
R 3s 

U2 dR 
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(11) 

so that 

»• 

_ 3? /- 1 , o 
(p „ pv2) _ __ . 

n 

i' 
3U U2. dRl 
3s R dsj 

dn (12) 

/dn is of order 6 and where p 
U2/s is in general of the same order as 

is the pressure at n • o. Now dR/ds is of order 
U3U/3s so that the difference between the 

where the operator 
unity and U2/R or 
longitudinal pressure gradient at n • o and at n - 6 is of order 6/R times the first term in Eq(9) 
and we have_already neglected terms of this order in deriving Eq(9). Furthermore 3v2/3s is of the same 
order as 3u2/3s which has also been neglected in Eq(9). Therefore, for purposes of substitution in Eq(9), 
Eq(10) reduces to 

£ • o 
as in plane boundary layers: there is no rigorous approximation intermediate between Eq(7) and Eq(9) in 
which a higher approximation than Eq(13) could be used. We note that the terms neglected in passing from 
Eq(7) to Eq(9) (leaving aside the viscous term) are all of order 6/R or 6/s times those retained: 
there are no terms of order (6/R)2 in Eq(7). Now using Eq(10) to substitute for 3p/3s in Eq(7) would 
introduce more terms of order 6/R times the main terms in Eq(7); if, on the other hand, we substituted 
for 3p/3s in Eq(7) by manipulating the full n-component equation, Eq(8), in the same way as we 
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manipulated Eq(10) to get Eq(12), we should be introducing terms of order (5/R)2 into Eq(7). This 
suggests that a consistent set of equations, including terms of order 6/R but not smaller terms, is the 
(exact) Eq(7), with the viscous term simplified to taste, and the (approximate) Eq(10). In view of the 
experimental difficulties mentioned above, use of Eq(8) is probably never justifiable. 

It is popularly supposed that in numerical calculations we can substitute Eq(12) into Eq(9) and 
regard the resulting equation as parabolic, so that it can be solved by a marching method, given pQ(s). 
The integrals in Eq(12) are evaluated by using velocities calculated at the previous step or at the 
previous iteration. Now the fact remains that Eq(9) and Eqs (10) or (12) are elliptic; only if Eq(12) is 
replaced by Eq(13) with p known does the system become parabolic. Obviously the elliptic system is 
strongly constrained by the specification of P0(s), even if P„(s) is itself calculated in an outer 
iteration, but the popular procedure may be expected to fail when the pressure difference across the layer 
is large, or in other difficult cases. Baum (20) was unable to allow in this way for the pressure 
difference across the subsonic part of a curved compressible shear layer although his explanation of the 
reasons is mathematical rather than physical: in reality, the effect of small perturbations on a flow 
near M - l is to produce a "choking" phenomenon. The well-known non-uniqueness difficulties of the 
Crocco-Lees series of methods (21) also stem from attempts to march an elliptic problem but for slightly 
different reasons. There seems to have been no general investigation of the consequences of treating a 
slightly elliptic problem as parabolic for numerical purposes and so all one can do is to urge people who 
try it to apply careful checks for accuracy and stability. A useful and entirely acceptable application 
of Eq(5) is in the analysis of pitot-pressure profiles in curved shear layers. Substituting 2(P-p)/p 
for U and ignoring 3v2/3n as being of the same order as neglected terms in the pitot equation, we get 

3p 2p 2 P 

3n n +R 

solving for p in terms of P, we get 

p(n + R ) 2 - pQR
2 

n + R 

P(n'+ R)dn' 

(14) 

(15) 

or, a useful form in boundary layers due to Wilcken (22), 

*n 
p " p o " ( T 1 T ^ l ( p - p ° ) ( n ' + R)dn, (16) 

In the case where dR/ds is of greater order than unity, assuming that the viscous term is not 
significantly altered, we see that the only explicit alteration to the above analysis is that the last term 
in Eq(ll) is of larger order: in an engineering calculation method it would be easy enough to subtract a 
term 

1 dR 
R ds 

U2 ds 

from 3p/3s in Eq(7) or Eq(9), However if dR/ds remains large s/R becomes of greater or less order 
than unity and the whole analysis breaks down, as it obviously does if dR/ds becomes infinite (sudden 
change of surface curvature). It seems almost inevitable that "marching" solutions will fail in such 
cases. Furthermore, large values of dR/ds are likely to lead, via the integral correction term just 
derived, to large longitudinal accelerations and to modifications of the turbulence structure additional to 
those caused directly by the streamline curvature. 

We summarize the above analysis by the following table for 
not much larger than, unity. 

R/s not much smaller than, and dR/ds 

Exact 

Terms in 6/s or 
6/R retained 

Terms in 6/s or 
6/R neglected 

s-equation 

(7) 

(7) 

(9) 

n-equation 

(8) 

(10) 

(13) 

viscous term in s-equation 
simplified to v 32U/3n2, 

viscous term in n-equation 
neglected 

Now these are rigorous order-of-magnitude approximations valid for any flow: but there is no reason why we 
should not use our knowledge of a particular flow to do better than an order of magnitude, by ignoring 
terms which the rigorous analysis requires to be included but which we know are negligible in the flow 
concerned. For instance, in a shear layer which is sharply-curved but_slowly-growing we may be justified 
in using Eq(5) with the viscous term reduced to v 32U/3y2 and the 3u2/3s term neglected, and Eq(10) 
with the factors (1 + n/R) , present in Eq(8) , retained on the right hand side: the term (v2" - u2")/R on 
the right hand side of Eq(8) is likely to be fairly small compared with (1+n/R)3v2/3n in practical cases. 
Then U2/R in Eqs (10) and (11) is replaced by U2/(n + R), (n + R) being the local radius of curvature 
of the streamline, and the resulting set of equations satisfies the thin-shear-layer requirement 
3/3s « 3/3n but not the requirement 3p/3n - 0. 

2.3 THE (x , r l SYSTEM 

The exact equations for incompressible swirling flow in the axisymmetric (x,r) system, with symbols U, V 
and W for the mean velocity components in the x, r and 9 directions respectively and with 3/39 = 0, 
are 
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x-component mean momentum 

U 3U V 3U 
3x 3r 

1 3P 3u2 

"p 3x 3x 
3uv uv 
3r r 

+ viscous terms 
(17) 

r-component mean momentum 

U3V V3V W2^ _ i !!£ 
3x 3r r p 3r 

3uv 3v2 

3x 3r 

• viscous terms 
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(18) 

9-component mean momentum 

continuity 

D 3 » 4 V M I VW 
3x 3r r 

ffl 4 |I + V . 0 
3x 3T r 

3uw 3vw 
3x " 3r 

2vw 
r 

+ v i scous terms 
(19) 

(20) 

The equations can be derived by applying the principles of conservation of mass and momentum to the 
elementary control volume shown in Fig.1(d). Note that here r is an independent variable: in the (s,n) 
system n is an independent variable and R is a prescribed function of s. The viscous terms are given 
by Rodi (17). 

The approximations to this system have generated less controversy than approximations to the (s,n) 
system, partly because the (x,r) system is used for so many different flows that no one set of 
approximations ia generally valid. For instance, in a normally-impinging circular jet (whether swirling 
or not) we pass from a slendcr-shear-layer approximation, 3/3r » 3/3x, before impingement to a thin-
shear-layer approximation, 3/3x » 3/3r, in the radial wall jet after impingement; and the viscous 
terms are negligible except for 32V/3x2 and 32W/3x2 close to the solid surface. In axisymmetric 
swirling flows which change rapidly in the x direction, such as the impingement regions of the jet 
mentioned above, or a bursting vortex or the recirculating region of a swirl burner, the full equations 
must be used, except for some allowable simplifications in the viscous terms. 

The slender-shear-layer approximation applied to swirling jets, wakes, vortices and pipe flows 
allows us to ignore all x-derivatives in the Reynolds stress and viscous stress terms: generally terms 
in 1/r are of the same order as terms in 3/3r. The main difficulty occurs in dealing with the pressure 
terms: most of the remarks in Section 2.2 are relevant. Finally the special case of cylindrical flow 
(3/3x - 0) appears in some mathematical analyses: the only curved turbulent flow that qualifies exactly 
is that in a long spinning pipe. 

In a strongly-swirling slender flow (with the maximum value of W of the same order as the 
maximum value of U) the r-component mean momentum equation is approximately 

£ - iS (21) 
r p 3r 

since V and / v2 are both much less than W: we can without prejudice group v2 with p and argue 
that (v^-w^)/r will in practice be smaller than 3v2/3r, but this is not rigorously justifiable. 
Repeating the argument used to derive Eq(12) from Eq(10) we get 

3(p-p0) 
3x 

_9_ f w£ 
3x J r' 

dr' (22) 

where p0 is the pressure at some reference position r • r0 for substitution in Eq(17), If W is of 
the same order as U this is not negligible compared to U3U/3x and we therefore conclude that, almost 
by definition, the x-component and 9-component equations in a strongly-swirling flow interact via the 
pressure term in the r-component equation. An exception, of course, is the case where r/r0 is close to 
unity in the region of interest — the case of a thin annular shear layer — when the effects of the radial 
pressure gradient on the axial motion can be neglected and the equations reduce to 

U 3U V 3U 
3x 3r 

U 3W V 3W 
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3x 3r 
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_ i °JL 
p dx 
3vw 
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0 

3uv 
3r 

32W 

32U 

3r2 
(23) 

(24) 

(25) 

on noting that in a thin annular shear layer 3/3r » 1/r. These are identical with the boundary layer 
equations for an infinite swept wing with x measured in the surface, normal to the generators. The 
x-component equation depends on the r-component equation only via the Reynolds-stress transport equations: 
in laminar flow the x-componcnt equation would not depend on the r-component equation, according to the 
"independence principle" (Ref.23, p.468). 

In a weakly-swirling slender flow (W « U) we can neglect the effects of 3p/3r on the 
x-component equation, and therefore ignore the radial-component equation altogether. The equations 
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therefore become Eqs (23)-(25) again with the addition of the terms in 1/r from the original equations 
Eqs (17), (19) and (20), which are not negligible unless the shear layer is a thin annulus. 

In the present context we do not need to consider the equations for a swirling radial thin shear 
layer such as that on a rotating disc, because moderate streamline curvature in the plane of the layer has 
not yet been shown to have any significant effect on turbulence structure. 

2 ,4 THE REYNOLDS-STRESS TRANSPORT EQUATIONS 

These are exact equations, derived from the Navier Stokes equations (24, 25). They are the simplest 
equations to give us information about turbulence quantities (we define a "turbulence quantity" as the mean, 
usually with respect to time, of a function of fluctuating quantities; the mean of any one fluctuating 
quantity is zero by definition. There are six Reynolds-stress transport equations, one for each of the 
independent elements of the Reynolds-stress tensor (Appendix 1) 

-pu^ -puv -puw 

-pvu -pv% -pvw 

-pwu -pwv -pw2 

The element in the i-th row and j-th column is denoted by -pujju- = -puTuT: it represents an apparent 
stress acting in the x^-direction (where xj » x, x2 " y, x3 « z) on a plane normal to the x--direction, 
as a consequence of the mean rate of transfer of U£-component momentum in the UJ direction by the 
turbulence. Each Reynolds-stress transport equation can be arranged to give the mean rate at which that 
Reynolds stress increases along a mean streamline of the flow: the rate operator D/Dt is defined as 

U _3_ V _3_ W _3_ 
3x 3y 3z 

and is the rate of increase with respect to time as seen by an observer following the mean motion of the 
fluid. Thus the Reynolds-stress transport equation gives D u^uj/Dt just as the xj-component mean 
momentum equation gives DUj/Dt. If we rewrite D u^u./Dt in "divergence form" by adding u"j"in times the 
mean continuity equation, 

D u.u. becomes equal to div(U u.u.) or 3 (U]U.u.) + 3 (U?u.u.) + 3 (U^u.u.) 
Dt X J X J 3x* X J 3x2

 L J 3x"3 * J 

which is recognizable as the net rate at which u^uj is transported out of a unit control volume by the 
mean velocity U just as the continuity equation div(py) • 0 gives the net rate of transport of mass out 
of a unit control volume by U. In the case of U£Uj the net rate of transport by U is generally non­
zero. As shown in Fig.9(a) it is the sum of contributions from several processes 

(net rate of transport of u.u. out of control volume by mean flow) 

(mean rate of generation of u.u. within control volume) 

- (mean rate of destruction of u.u. within control volume) 
i J 

- (mean rate of transport of u.u. out of control volume by fluctuating velocity, 
pressure and viscous stresses) 

Reynolds stress is generated by interaction of the existing Reynolds stresses with the mean rates of strain 
or with body forces (Reynolds stress and vorticity fluctuations can appear in non-turbulent fluid only by 
the action of viscosity or unusual kinds of body forces). It can be destroyed by fluctuating viscous 
stresses. Any given component can be augmented or reduced by pressure-fluctuation terms which do not, 
however, change the sum of the principal stresses: therefore we sometimes call these "redistribution" 
rather than "destruction" terms. 

Minus one-half of the sum of the principal stresses, 5p(u2 + v2 + w 2 ) , is called the turbulent 
kinetic energy. Its transport equation [Fig.9(c)], obtained as half the sum of the separate equations for 
u 2, v2 and w 2, is strictly an energy-conservation equation, which the individual equations for u^u; 
are not, and is therefore easier to explain in physical terms. The generation term in the turbulent energy 
equation, called the "production" term, is equal to the rate at which the mean rates of strain do work 
against the Reynolds stresses, thus transferring mean-flow kinetic energy to turbulent kinetic energy; the 
destruction (viscous "dissipation") term is equal to the mean rate at which the fluctuating rates of strain 
in the turbulence do work against fluctuating viscous stresses, thus transferring turbulent kinetic energy 
to thermal internal energy. It is very important to remember that the eddies directly affected by 
viscosity are much smaller than those which make the main contribution to the turbulent kinetic energy and 
the Reynolds stresses. At all but the lowest local Reynolds numbers (based on intensity and eddy length 
scale) the energy-containing eddies are independent of viscosity: since the rate at which they transfer 
energy to smaller eddies is equal to the dissipation rate, the viscous dissipation rate is also independent 
of viscosity. Another consequence is that the viscous terms in the shear-stress equations (i )* j) are 
negligible except at low local Reynolds number. 

The net rate of spatial transport of u^uj by the fluctuations themselves ("turbulent transport" for 
short) is best thought of as a further example of the propensity of turbulence to transport or diffuse 
any quantity it carries, such as mass, momentum or energy. Transport by fluctuating viscous stresses is 
negligible except very close to a solid surface or in certain flows at low Reynolds number: transport by 
pressure fluctuations seems to be generally rather smaller than transport by velocity fluctuations, but 
this may not be the case in stably-stratified or stably-curved flows carrying internal waves. A simple 
example of transport by velocity fluctuations is the eruption of large eddies near the free edge of a 
turbulent flow: fluid that moves outwards near the edge is generally more intensely turbulent than the 
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fluid from beyond the edge that moves in to take its place. We can see that the net rate at which u.u; 
is deposited in (or removed from) a given control volume by this process depends on the rate at which the 
U£U- carried by the eddies decreases (or increases) as they move through the control volume. Therefore 
the turbulent transport terms in the equations, like the mean transport terms, can always be expressed as 
spatial gradients of turbulence quantities: being rates of transport from one place to another, their 
integrals over the whole volume of the flow are always zero. 

A special case of some importance is "local equilibrium" [Fig.9(b) and Ref.26] in which mean and 
turbulent transport terms are negligible so that the generation and destruction (or "redistribution") terms 
are equal. The implication is that the turbulence has adjusted itself so that the rate of increase of 
U£Uj due to interaction with the mean flow is in equilibrium with the rate of decrease due to the 
destruction terms, and further that the characteristic velocity and length scales of the turbulence must 
therefore have adjusted themselves to be proportional to the characteristic velocity and length scales of 
the mean flow. The only extended region in which transport terms are negligible is the inner layer of a 
turbulent wall flow, the region within roughly one-tenth of the flow width from the surface where eddy 
time scales are small enough for adjustment to occur quickly: transport terms do become significant once 
more in the viscous sublayer, uTy/v < 30 say, where they supply turbulent energy to the region of finite 
dissipation but negligible production close to the wall. In the outer layer of a slowly-changing boundary 
layer, the mean and turbulent transport terms, though not small, are roughly equal and opposite, so that 
"generation" - "destruction" is a fairly good empirical approximation; therefore local-equilibrium 
arguments give results acceptable for some engineering purposes although this cannot properly be called a 
local-equilibrium flow. For similar reasons, local-equilibrium results are usable in duct flows, not too 
close to the centre line where generation goes to zero and destruction is necessarily balanced by 
transport. Local equilibrium is not a good approximation in free shear layers: in a mixing layer, for 
instance, the dissipation of turbulent energy in the region of maximum intensity is only about half the 
production, the rest being transported to lower-intensity regions by the turbulence. A relative of local 
equilibrium is self-preservation, [(25), Sections 3.1 and 4,1], in which the length and velocity scales of 
the mean flow and turbulence have gradually become proportional over a long development length: this 
requires the free-stream velocity and other boundary conditions to be constant or to vary in certain 
restricted ways. In a self-preserving shear layer, the ratio of generation to destruction is a function 
only of y/6, independent of x but not closely equal to unity except in the inner layer of a wall flow. 
It can be seen that a local-equilibrium analysis leading to an empirical function of y/6 will apparently 
apply to all parts of a self-preserving flow if the (variable) ratio of generation to destruction is 
hidden in the empirical function: this does not imply that the flow is truly in local equilibrium. 

The local-equilibrium approximation to the turbulent energy equation in a simple shear layer [which 
is itself the approximation to Eq(A1.28) in the limit R • °°, with 3/3n » 3/3s] is 

-uv 3U j- • _• - - (-uv)3/2 ,,„ 
production - — - dissipation = e = *•—•—' (26) 

where the last identity sign defines the dissipation length parameter L. 
Hence . 

g . (=^)1/2 

Now the "mixing length" i. is defined in any simple shear layer by 

3U (-Uv)1/2 

3y I 
(28) 

and is therefore equal to L in a local-equilibrium region: in non-equilibrium regions L is still a 
meaningful length scale but I is not (it is somewhere between a length scale of the mean shear and a 
length scale of the turbulence, and the two are not directly related). The oft-quoted ambiguity of 
definition of the rate of strain to be used in the mixing length formula for curved flows will be briefly 
discussed in Section 4: the effects of the ambiguity are small compared to the direct effects of 
curvature on the turbulence. Formulae like Eq(27) could be derived from local-equilibrium approximations 
like Eq(26) to the other transport equations: even in the most advanced calculation methods it is 
assumed that one length scale is enough to specify the turbulence so that the other formulae would not at 
present be significantly more useful than Eq(27) alone. Conversely, what we say about the dissipation 
length parameter could equally well be said about other length scales defined by other types of destruction 
term. 

In the present monograph we shall often represent the effects of extra strain rates, particularly 
streamline curvature, as factors on L. The factors could equally well be applied directly to the 
destruction terms in the transport equations but using L allows us to apply the well-known local-
equilibrium approximation Eq(27) for the purpose of assessing the effects of extra strain rates. As long 
as the local-equilibrium approximation is fairly accurate the evaluation of the empirical factors on L 
can be fairly accurate. We can then invoke the fact that L is always a meaningful length scale of the 
turbulence to justify using the same empirical factors in flows where local equilibrium is no longer even 
fairly accurate: that is, having used the local equilibrium approximation to establish the correction to 
L, we use the corrected L in a calculation method which does not invoke local equilibrium. This, like 
most of the arguments used in treating the Reynolds-stress transport equations, is not exact but is the 
best way of extrapolating limited data and limited physical understanding. 

For the purposes of discussing the Reynolds-stress transport equations in the general, non-
equilibrium case, the physical processes summarized in Fig.9(a) are more important than their mathematical 
representation. The equation for D UjUj/Dt is obtained by multiplying the u^-component Navier Stokes 
equation (whose first term is 3u£/3t) by uj, and adding U£ times the uj-component Navier-Stokes 
equation to obtain u,3ujr/3t + u-3u;./3t ! 3u£U;/3t, This term vanishes on taking the mean with respect to 
time, but is a simple mnemonic for the derivation of this or any other transport equation; manipulate the 
Navier Stokes equations to form the time derivative, 3/3t, of the quantity whose substantial derivative. 
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D/Dt, is required. The equation for D u^uj/Dt is given in general tensor notation as Eq(A1.24). The 
Reynolds-stress transport equations in (s,n) and (x,r) coordinates can be deduced as explained in 
Appendix 1, Since Che coordinates are not isotropic each equation must be written out separately: the 
turbulent energy equation, the uv equation and — for (x,r) coordinates only — the vw equation, are 
given as Eqs (A1.28) to (A1.32) of Appendix 1. A qualitative guide to the effects of extra rates of strain 
in general and of streamline curvature in particular is given by the production terms in the turbulent 
energy equations, which we equate to the dissipation rate e in the local-equilibrium approximation. 
These are, roughly in order of importance in typical shear layers, 

f, nl _ 3U f_ U „_ Hi -J 3U f, . n] — 3V — 3V "o V . . . . 
p = - i + - uv -— - uv — - 2uv — - uz — - 1 + - v^ — - uv — - u z — (29) 
n RJ 3n [ R RJ 3s [ Rj 3n 3s R 

in two-dimensional (s,n,z) coordinates, where the two parts of the second term come from the u2 and v2 

equations respectively, and 

— 3U —f3W W) — 3V — V —5 3U — 3W — 3V ,,,,, 
P_ = -uv r- - vw r vz r- - Wz - - uz

 T— - UW r- - uv — (30) r 3r [3r rj 3r r 3x 3x 3x 

in axisymmetric (x,r,9) coordinates. Note the sign of W/r in the second term of the last expression: 
turbulent energy is not produced by pure rotation (3W/3r • W/r). In a simple shear layer the only term 
that remains is -uv 3U/3y, as in Eq.(26). 

The Reynolds-stress transport equations introduce further unknowns and therefore cannot be solved 
as they stand. We go on to discuss methods of replacing these unknown terms by empirical functions of 
known quantities. 

2.5 CALCULATION METHODS 

Many reviews of the strategy of calculating turbulent shear layers — that is, the process of inserting 
empirical information into a chosen set of exact equations to make them soluble — have been written in 
recent years. Digital computers enable quite complicated systems of partial differential equations to be 
solved. Even the earlier computer-oriented methods for thin shear layers, dating from the mid-1960s, 
performed at least as well as the most highly-developed of the traditional "integral" methods, based on 
ordinary differential equations for integral parameters and intended for solution on desk calculators. 
Therefore most of the basic research of the last few years has been devoted to methods based on partial 
differential equations, mostly recognizable as simulations or simplifications of the exact Reynolds-stress 
transport equations. Calculation methods developed by 1968 are nearly all described, and their performance 
analysed, in Ref.27. More recent reviews (25), (28-30) have tended to concentrate on methods based on 
explicit, term-by-term approximation of the Reynolds-stress transport equations. This reflects the state 
of current research but also the personal enthusiasms of the reviewers. The application of computers to 
the older mixing length and eddy viscosity formulae is described in the books by Patankar and Spalding (31) 
and Cebeci and Smith (32). The book by Nash and Patel (33) concentrates on three-dimensional thin shear 
layers. 

The strategy into which nearly all methods can be fitted is as follows, different types of method 
terminating in empirical formulae, or complete neglect of some terms, after different numbers of stages. 

(i.) Take the time mean of the Navier Stokes equations, obtaining the Reynolds equations for the rates of 
change, along a mean streamline, of the components of mean momentum or velocity. Unknown Reynolds stress 
gradients, depending on second-order mean products of fluctuating velocities, u.u., appear on the right 
hand side. 

(ii) Take the time mean of u; times the u.-component Navier Stokes equation plus U£ times the 
u:-component equation, obtaining the Reynolds stress transport equations for D u-u-/Dt, the rate of change, 
along a mean streamline, of the Reynolds stresses uTuT. Unknown mean triple products of velocity 
fluctuations, second-order mean products of fluctuating velocity gradients, and mean products of pressure 
fluctuations and fluctuating velocity gradients appear on the right hand side. 

Ciii) Manipulate the Navier Stokes equations to obtain exact differential equations for the unknown 
quantities on the right hand sides of the Reynolds stress transport equations. A simple mnemonic for the 
process is that the time derivative in the x--component Navier Stokes equation, 3uj;/3t, must be factored 
to give the time derivative of the required "unknown quantity" [e.g. 3u£Uj/3t = u-Su^/St + U£3uj/3t in 
the example in (ii) above]: the time mean then gives the transport equation for the unknown quantity 
(e.g. D "uTuT/Dt). Further unknown quantities appear on the right hand sides of these further transport 
equations. At any stage, ordinary differential equations can be derived by integrating partial differential 
equations across the thickness of the shear layer: to obtain a practicable system, several weighted 
integrations may be required for each partial differential equation. 

An infinite number of transport equations would be needed to recover all the information lost by 
time-averaging the Navier Stokes equations. To solve a large but finite number of transport equations 
might take longer than solving the time-dependent equations themselves, but the empirical information 
needed to close the system becomes too difficult to obtain or to handle long before this stage is reached. 
The "order" of closure is the highest order of equation considered. Mixing-length and eddy viscosity 
formulae, for insertion after stage 1 above, are examples of first-order closure; approximation of the 
terms on the right hand sides of the Reynolds stress transport equations constitutes second-order closure; 
and of the equations of third-order closure, only the transport equations for mean squares of fluctuating 
velocity gradients, related to the energy dissipation rate, have been treated quantitatively (34, 35). 
Equations of one order higher than those to be closed may give useful qualitative information about the 
quantities to be approximated: for example, the mixing-length formula can be justified by taking the 
local-equilibrium approximation to the Reynolds-stress transport equation; Hanjalic and Launder (34) 
support their treatment of the triple products in the Reynolds-stress transport equation by reference to 
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the exact transport equations for triple products; and it is scarcely possible to treat the fluctuating 
pressure correctly without reference to the exact equation which describes it. In some calculation methods 
transport equations are used only for the Reynolds stresses whose gradients actually appear in the problem: 
in more refined methods, some or all of the other Reynolds stresses may be left in exact form in a given 
transport equation, so that transport equations must be solved for these as well. 

Some work has been done on empirical transport equations for mixing length or eddy viscosity. 
However we have just seen that the mixing length formula can be justified, in the sense of relating the 
apparent "mixing length" to a true length scale of the turbulence, only by making the local equilibrium 
approximation: the same is true of eddy viscosity (whose relation to a definable turbulence property is 
even more distant). The use of second-order closure concepts on quantities which are physically 
meaningful only to first order is clearly not rigorous, even for simple shear layers. In complex flows it 
becomes necessary to admit that the eddy viscosity is anisotropic, so that separate equations are needed 
for its separate components. Also, the argument that the eddy viscosity generally varies less than the 
Reynolds stresses, and is therefore easier to correlate, fails in cases where the mean velocity gradient 
goes to zero while the shear stress does not, for the eddy viscosity then becomes infinite. Therefore my 
own opinion, disputed by some, is that wholly-empirical transport equations for eddy viscosity or mixing 
length are not to be preferred above term-by-term empirical approximation of the exact Reynolds-stress 
transport equations. 

At all levels of closure, some assumptions must be made about turbulence length scales or the 
equivalent. The mixing length is obviously a length scale, if not a physically meaningful one. All the 
terms in the Reynolds-stress transport equations have the dimensions of (velocity)3/(length) so that 
those which are pure turbulence quantities (i.e. not spatial gradients of mean properties or turbulence 
quantities) must each be represented as the cube of a typical turbulent velocity scale, such as (-uv)3'2, 
divided by a turbulence length scale. An example is the replacement of the dissipation rate e in Eq(26) 
by (-uv)3/2/L. It is of course possible to make empirical assumptions about the dissipation itself, 
rather than about the dissipation length parameter L, and then deduce a length scale for use in modelling 
other terms. In simple eddy-viscosity and mixing length treatments, and in some second-order closures, the 
length scale is related to the mean flow length scales and perhaps the details of the Reynolds-stress 
distribution. This is, at best, reasonable only for thin shear layers, perhaps with small extra rates of 
strain, where it can be argued that the largest eddies necessarily have a length scale nearly equal to the 
width of the shear layer: it is clearly not true if the shear layer is perturbed by large extra rates of 
strain. In methods intended for such complex flows, differential "transport" equations are needed for 
length scales as well as for the Reynolds stresses. We note in passing that the local-equilibrium 
approximation to a length-scale transport equation may never be acceptably accurate, even in a thin shear 
layer: the boundaries have a large influence on the flow, and turbulent transport of length scale normal 
to the boundaries is likely to be appreciable. It may, however, be permissible to neglect the mean 
transport terms in slowly-changing flows. Once the length scale is defined, an exact transport equation 
can be deduced from the Navier-Stokes equation. For instance, a transport equation for e •-« v(3u. /3x.)2 

can be obtained by differentiating the x^-component Navier-Stokes equation with respect to x-, -1 

multiplying by 2(3u£/3x;) so that the leading term becomes 3(3u£/3x-)2/3t and the time mean gives 
D(3u£/3x •)2/Dt. The transport equation for L = (-uv)3/2/c follows from the transport equations for e and 
for -uv: the terms on its right hand side can in principle be expressed as empirical functions of the 
Reynolds stresses and of L itself. The transport equation for the integral scale of the two-point space 
correlation 

uiuj ty 
u.(x)u.(x + r.)dr„ 
i - j - I 4 

(where r is the separation vector, not a radius o_f curvature) is a more complicated form of the Karman-
Howarth equation for isotropic turbulence (where u2 - v2 - w2, etc.): in isotropic turbulence all 
correlations are related by symmetry and other conditions, so one integral scale defines all, but in shear-
flow turbulence the 27 choices for the integral scale (3 choices each for i, j and S.) are not simply 
related to each other, to the dissipation length parameter L or to any other length scale. At present it 
is assumed, even in the most advanced calculation methods, that all relevant length scales are proportional, 
so that — say — L is used as a length scale in modelling the pressure-fluctuation "redistribution" terms 
as well as in modelling the dissipation term itself. Probably the errors or uncertainties introduced in 
thin or fairly thin shear layers are no worse than those already present in the modelling process, but one 
feels intuitively that more than one length scale will be needed to describe turbulence subjected to 
several roughly equal rate of strain components (36). Also, a solid boundary forces the turbulence to 
become anisotropic at distances from the boundary less than one or two eddy wavelengths, whatever its state 
elsewhere. Allowance for this effect in a single length-scale equation is necessarily somewhat arbitrary. 

Cebeci (private communication, February 1972) and Rotta (30) have both suggested that a distinction 
should be drawn between methods whose empirical content has to be adjusted for each species of shear layer 
(jets, boundary layers, ducts, etc.) and methods which are nominally capable of application to any shear 
layer without alteration, except to the boundary conditions. Rotta calls these "incomplete" and "complete" 
methods. The distinction is indeed a useful one, but it must be emphasized very strongly, especially to 
design engineers, that a calculation method which is nominally capable of treating a given case (in the 
sense that it will accept the required boundary conditions and complete the run without error messages from 
the computer) may not be actually capable of producing acceptably accurate results. Naturally the results 
are likely to be most inaccurate in complex cases where few data are available to test their acceptability I 
We shall see that in order to predict even the effects of small extra rates of strain on thin shear layers 
we have to abandon one of the necessary features of a "complete" method, namely invariance with respect to 
rotation of the coordinate axes. For example, the effects of streamline curvature on a shear layer flowing 
in the x direction can be represented by factors like 1 + 10(3V/3x)/(3U/3y); but if the flow were in 
the y direction the factor would become 1 + 10(3U/3y)/(3V/3x). For such reasons and for more important 
physical reasons, it is important to distinguish between "nominally complete" and "actually complete" 
methods, and to admit that at present no methods are "actually complete" (although some are more complete 
than others). 
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Analogous to the well-known procedure for (x,y) coordinates, weighted integrals —with respect to 
n — of the s-component momentum equation in (s,n) coordinates can be used to generate ordinary 
differential equations, expressing conservation of momentum, energy, etc., for the shear layer as a whole, 
for use in "integral" calculation methods. As well as the difficulties caused by the extra terms as such 
there are also conceptual difficulties, introduced by the presence of a finite velocity gradient 3U/3n 
even in the free stream and by ambiguities in definition of the displacement thickness and momentum-
deficit thickness: for instance if 3U/3n is non-zero outside the shear layer the displacement of the 
external streamlines by the shear layer — the displacement thickness — varies with n and any unique 
definition must therefore be an arbitrary one. The problems have been discussed by Patel (37), Myring (38) 
and others. However, it seems unlikely, to this author at least, that the simpler types of "integral" 
method, in which empirical information is introduced directly into ordinary differential equations, will 
be able to deal with turbulent shear layers so highly curved that quasi-rectangular coordinates are 
unacceptably inaccurate. The assumptions made about the turbulence in these methods are necessarily crude, 
since they refer only to weighted integrals of turbulence properties and do not consider conditions at 
each point across the shear layer. Therefore even the representation of the effects of small curvature 
on the turbulence may be difficult because the importance of these effects varies significantly across the 
shear layer, and larger curvature effects would probably cause even greater difficulties. These comments 
do not apply to the use of the generalized Galerkin method or "method of weighted residuals" (27, p.16) to 
convert partial differential equations with empirical information already inserted — such as closed 
versions of the mean-motion equations and the turbulent transport equations — into ordinary differential 
equations. As its use in the analysis of complex structures shows, the Galerkin method is easily 
applicable to complicated boundary conditions, and it is not necessary for each weighted integral equation 
to represent conservation of a physical property such as the momentum or energy integrals, because the 
method is simply a mathematical technique. Therefore the problem of generating physically-meaningful 
ordinary differential equations for curved shear layers does not seem to merit further attention. 

3. EFFECTS OF EXTRA STRAIN RATES ON TURBULENT SHEAR LAYERS 

3.1 A SIMPLE CORRELATION SCHEME FOR SMALL EXTRA STRAIN RATES 

We define an "extra" strain rate as any rate-of-strain component other than a simple shear 3U/3y: in 
general we denote it by symbol e. In a thin curved shear layer the extra rate of strain is e - 3V/3x 
in x,y coordinates, or e " -U/(n+R) in (s,n) coordinates. Other examples (with the signs of e 
chosen for later convenience) are 

— lateral divergence: e • 3W/3z 
— longitudinal extension! e • -3U/3x 

or normal divergence ' or 3V/3y 
— bulk compression: e = -div U = -(3U/3x + 3V/3y + 3W/3z) 
— rotation of whole flow system about z axis: e » n 

We do not regard 3W/3y as an extra rate of strain: with respect to axes in the direction of the 
resultant of 3U/3y and 3W/3y the fluid experiences a simple shear equal to that resultant. Moderate 
values of 3W/3x, or moderate spatial gradients of (3W/3y)/(3U/3y) in either the x or y directions, 
do not seem to have a significant effect on turbulence structure beyond that predicted by conventional 
calculation methods. 

If an extra strain rate is applied to a flow initially in simple shear, extra "generation" terms 
(see Section 2.4) appear in the Reynolds stress transport equations. For example, if e » 3V/3x 
(streamline curvature) the generation_ terms in the uv" transport equation in (x,y) coordinates change 
from the simple-shear contribution v23U/3y to v23U/3y + u23V/3x: the exact change depends on the 
coordinate axes used and it is simplest to keep to (x,y) axes for this discussion. Results for other 
extra strain rates are similar: in general the total generation terms are greater than the simple-shear 
terms by a factor 

f = 1 + a3u73y" (31) 

where a is numerically of order 1, its sign being immaterial at this stage. (The expression "of order 
x" means "between about x//lO and x/10".) Since none of the other terms in the exact transport 
equation explicitly contains the rate of strain, only the generation terms change their algebraic form. It 
follows that the change in Reynolds stress following the prolonged application of an extra rate of strain, 
as predicted by any of the empirical turbulence models discussed in Section 2.5, will again be a factor 
like f with roughly the same value of a. For instance, Eq(2) shows that a simple eddy viscosity formula 
applied to a curved shear layer predicts an increase in shear stress by a factor f with a •» 1 exactly. 

In fact, as mentioned in Section 1, the Reynolds stresses are observed to change, after prolonged 
application of a small extra rate of strain, by a factor much larger than f. The change is what would be 
predicted by a typical turbulence model if the generation terms had changed, not by a factor f but by a 
factor 

F " 1+a3u737 (32) 

where o varies from case to case but is always of the order of ten. The factor F can be regarded either 
as an empirical extension of f or as a simple, linear, dimensionally-correct correlating factor which 
defines an empirical coefficient a. The rate-of-strain ratio e/(3U/3y) is a general case of the curved-
flow analogue of the Richardson number (Section 5): strictly, 3U/3y represents the reciprocal of a 
typical time scale of the turbulence and it is sometimes better to use the latter explicitly in regions 

*For the qualitative part of the present discussion we ignore the separate contributions of deformation and 
rotation and refer to any departure from simple shear (even a pure rotation.') as an "extra rate of strain" 
for compactness of terminology. 
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which are far from local equilibrium, especially regions where 3U/3y •* 0. a is positive for the signs 
of e chosen in the first paragraph of this section: usually a has the same sign as a but even this 
is not always the case. 

Now of course the generation terms change only by a factor f, not F: the reason why the 
Reynolds stresses change so much is that the extra strain rate has a large direct effect on terms in the 
exact Reynolds-stress transport equations which do not explicitly contain the mean rate of strain. By a 
"direct effect" we mean that the changes are not simply those that result, according to conventional 
turbulence models, from changes in Reynolds stress: they are changes in the higher-order structural 
parameters, which cause the Reynolds stress to change*. We therefore need to insert empirical factors of 
the order of F in conventional turbulence models before they can predict the large effects of even small 
extra rates of strain. That is, F-factors are required in calculation methods developed for thin shear 
layers even if e/(3U/3y) is still small enough for the thin-shear-layer approximation to be valid — see 
the table on p.4. This conclusion seems to be valid for all turbulence models from the simplest local-
equilibrium formulae for eddy viscosity and mixing length up to the most advanced transport-equation 
methods. In the case of transport-equation models, we must expect changes of order F both in the 
destruction (and redistribution) terms and in the turbulent transport terms, in addition of course to the 
changes of order f in the generation terras. However a fair first approximation is to apply the correction 
for the effect of extra rate of strain to the destruction terms alone. This amounts to making the local-
equilibrium approximation (Section 2.4) solely for the purpose of analysing the effects of extra strain 
rate, and should be acceptable if the basic flow is not too far from local equilibrium and if the effects 
of the extra strain rate are themselves not too large. It has the advantage of applicability to local-
equilibrium methods as well as transport equations. However large extra rates of strain are likely to lead 
to gross modification of the large-eddy structure, which is responsible for most of the turbulent transport, 
and, particularly in "unstable" flows, it may be essential to use a transport-equation method, with 
empirical modifications to the transport terms, to represent this effect. 

Body forces, like extra strain rates, can produce unexpectedly large changes in Reynolds stresses. 
The consequence of uniform rotation of a complete flow system at angular velocity n [Fig.1(e)] can be 
regarded either as an extra mean rate of strain, equal to the component of Q normal to the plane of the 
shear, the (x,y) plane say, or as a mean Coriolis body force 2 n x U whose relevant component is in the 
y direction and therefore again depends on the component of n normal to the plane of the shear. The 
effects of buoyancy forces on turbulence in a gravitational field are well known: we shall draw an 
approximate analogy between the effects of buoyancy forces and the effects of "centrifugal force" in a 
curved shear layer, where the consequence of curvature can again be regarded either as an extra mean rate 
of strain or — at least for semi-quantitative purposes — as a body force. There is no evidence at present 
about the effect of the J B force in magnetohydrodynamic turbulence: the situation is obscured by the 
use of the word "turbulence "as a derogatory term for all types of plasma instabilities. For an Orr-
Sommerfeld analysis showing that in certain special cases of inviscid MHD flow the stability is governed 
by the analogue of a Richardson number and that the Richardson number analogues for MHD body force and for 
curvature are additive, see Howard and Gupta (39). We shall see in Section 5 that this is a general 
property of Richardson number analogues derived from displaced-element analyses or from Reynolds-stress 
transport equations. 

There is unlikely to be a common explanation for the surprisingly large effects of extra strain rates 
and body forces, although in addition to the buoyancy/curvature analogy, whose application to turbulence 
is due to Prandtl, we can draw an analogy between lateral divergence and bulk compression. If the effects 
of extra strain rate were always to decrease the Reynolds shear stress we could plausibly argue that a 
simple shear is bound to be the most efficient means of producing shear stress, but Figs 3 and 4 show that 
extra strain rates can produce large increases in shear stress and other turbulent transfer rates. The 
qualitative effects of body forces can be "explained" by the displaced-element arguments of Section 1, but 
if displaced-element or mixing-length arguments are taken far enough to deduce quantitative correction 
factors for body forces or extra strain rates these factors are invariably of the order of f and not F. 
Lateral divergence or bulk compression reduce the cross sections of fluid elements in the (x,y) plane and 
thus increase their z-component vorticity: again the factor predicted is of order f, not F, although 
z-component vorticity fluctuations play an important part in large-eddy dynamics and small changes may 
produce large effects. It seems wisest to admit that we do not yet know enough about turbulence to 
explain away an unexpected coefficient of order 10 in any of the cases mentioned, let alone produce a 
unified explanation. However, the phenomena are unified on the empirical level by the unexpected 
coefficient of order 10 itself, leading to the need to insert extra factors like F in our turbulence 
models, and in our present state of ignorance this justifies a common discussion and a common empirical 
treatment. In the study of non-Newtonian fluids, where analogous effects occur, it is common to correlate 
the response of the fluid in terms of the ratio of one component of the viscosity or elasticity tensor to 
another: for instance the ratio of the extensional viscosity to the shear viscosity y is called the 
Trouton ratio, which may or may not be a property of the fluid in the thermodynamic sense. Similarly, 
"eddy viscosity anisotropy factors" have sometimes been used in turbulent flow. They are certainly not 
properties of the fluid and we do not use the concept here: the F-factor analysis is related, but more 
flexible. 

The discussion below will be restricted mainly to the effects of small extra rates of strain on thin 
shear layers. We will arbitrarily define a rate of strain e as being "small" if e/(3U/3y) is 
numerically less than 0.05 so that, if a • 10, F is between 0.5 and 1.5 which are likely to be the 
largest departures from unity at which a linear correction factor like F can be trusted. We will call 
the explicit changes introduced into the equations of motion by extra strain rates the "f-factor effects" 
and the much larger direct effects of extra strain rate on turbulence structure the "F-factor effects", and 
note that in many previous discussions only the relatively small "f-factor effects" have been considered. 
The effects of a large extra rate of strain depend very much on the axes of the rate of strain and do not 

*In some turbulence models, the mean rate of strain appears in the empirical version of the pressure-strain 
"redistribution" terms (see Section 5.2 of Ref.25): however the effect of applying an extra rate of strain 
is to multiply these terms by a factor like f, not F. 
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throw much light on other cases: we discuss the effects of large streamline curvature in later Sections. 
We do not discuss the traditional shear-layer problem of response to changes in 3U/3y, nor the response 
of initially isotropic turbulence to any rate of strain, because these are described fairly well by 
existing models (40, 41): since the response is of the same order as the change in the generation terms, 
we can call these "little-f problems" as distinct from the "big-F problem" of response to extra strain 
rates. We note that the unsymmetrical response of a simple shear layer to changes in the two elements of 
the rate of shear strain 3U/3y + 3V/3x implies that experiments (42—44) on the (symmetrical) response of 
isotropic turbulence to an irrotational plane strain may not be as relevant to shear layers as is normally 
assumed: in an irrotational plane strain the mean vorticity is zero by definition, while in a simple shear 
layer the rate of plane strain 3U/3y + 3V/3x and the vorticity 3V/3x - 3U/3y are numerically equal, and 
small departures from equality [small values of (3V/3x)/(3U/3y)] have large effects. 

For a simplified discussion of the behaviour of the Reynolds-stress transport equations in a shear 
layer subjected to a small extra rate of strain we will use the local-equilibrium approximation to the 
turbulent energy equation, as in Section 2,4. The local-equilibrium approximation to any other transport 
equation merely defines another length scale and it is at present customary to assume that all such length 
scales are proportional. However it may become necessary to consider more than one independent length 
scale in flows subjected to large extra rates of strain. Combining Eq(27) and Eq(31) we have 

production - -uv 3U fl + a e 1 5 -uv 3U.f - dissipation I (-uv)3'2 (33) 

3y [ 3U/3yJ 3y L 

In a typical turbulence model for a simple shear layer the dissipation length parameter L is given by an 
equation or formula which at most contains a factor f: denote this value of L by LQ. Then observations 
of the effects of extra strain rate imply 

-uv.SU.F - (-uv)3'2 (34) 
3 y L 0 

— that is,"the change is what would be predicted by a typical turbulence model if the generation terms had 
changed not by a factor f but by a factor F". Simultaneous validity of the exact equation, Eq(33), and 
the empirical observation Eq(34) requires 

ft " I 
Since the coefficient a in F is empirical and an order of magnitude larger than the coefficient a in 
f, we can absorb f into F and represent the effect of extra rates of strain on the turbulence 
structure by 

where L0 is the value of L at the same point in the corresponding simple shear layer. In cases of 
small extra rate of strain the thin-shear-layer approximation itself requires us to ignore the factor f. 
Formally, Eq(36) defines a dimensionless quantity a: it is a useful definition only if o varies less, 
or is easier to correlate empirically, than L itself. 

Having chosen to apply the F-factor to the dissipation length parameter or other eddy length scale 
rather than the mixing length I , we need no longer make the local-equilibrium approximation: we can 
apply the F-factor to L0 or any other length scale appearing in a transport-equation calculation method. 
Nominally we correct only the destruction/redistribution terms, although in some calculation methods the 
length scale also appears in the modelling of the turbulent transport terms so that correcting the length 
scale also changes the transport terms (probably in the right direction.). In order to find the F-factor 
in the first place we must either measure the terms, in the transport equations in flows subjected to extra 
rates of strain or, more feasibly, adjust the coefficient a in the F-factor by trial and error, to 
optimise agreement between experiment and predictions by a calculation method whose unmodified version gives 
good results in simple shear layers. Examples of this procedure are given in the later parts of this 
Section and in Appendix 2: in later sections we shall refer to it as "numerical experiment". Note that 
using the procedure in this way simply gives the F-factor in the case considered: there is not necessarily 
any implication that the same calculation method with the same F-factor will give good results in other 
cases. 

We cannot expect a to be an absolute constant. 

(i) F will in general vary linearly with e only for very small rates of strain, 
(ii) The response of the shear layer is bound to depend on the axes of the extra rate of strain, 

(iii) The response to an extra rate of strain, like the response to the simple shear 3U/3y, will depend 
on the history of the rate of strain. 

In fact a linear correction factor applied to the eddy length scale is sufficient to correlate most of the 
rather small amount of accurate experimental information on extra strain rates, except that the analogy 
between buoyancy and curvature may be precise enough to authorize the use of non-linear factors developed 
by meteorologists. Furthermore, the data for prolonged extra rates of strain can be correlated almost to 
within their likely accuracy by a universal value of a of exactly 10: we review the data for each type 
of extra strain rate — other than curvature — in Sections 3.2 to 3.4. However even the available data 
clearly show that if e changes suddenly from zero to a constant value Che value of a required to 
optimise agreement with experiment rises rather slowly to its asymptotic value of order 10. Sudden changes 
in e (i.e. in surface curvature, pressure gradient or sidewall angle) are likely to be frequent in 
engineering situations and a full discussion of this lag effect is warranted. We note that there is no 
analogous effect in the response to the primary rate of strain 3U/3y because there is no F-factor effect 
in the first place: "history" effects in simple shear layers are tolerably well predicted by existing 
calculation methods. 

Now of the terms in the exact Reynolds-stress transport equations only the generation terms and the 
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terms involving the pressure fluctuation p' can change immediately the mean rate of strain changes (the 
pressure fluctuation can change because the mean rate of strain appears in the Poisson equation for p'). 
However, we have seen that the change in the generation terms is only of order f. It has been rigorously 
proved for initially isotropic turbulence (41) that the initial change in the pressure fluctuation 
"redistribution" terms is smaller than, and opposes, the change in the generation terms. It seems highly 
unlikely that the extra redistribution terms in a shear layer subjected to an extra rate of strain will 
initially augment, and be much larger than, the extra generation terms, so as immediately to produce the 
full value of a. Therefore even the shear stress, whose "destruction" term is in fact a pressure 
"redistribution" term, will not immediately experience the full value of a: the turbulent energy 
equation used in the discussion above has no pressure "redistribution" terms and the energy dissipation 
rate is highly unlikely to change immediately the mean rate of strain changes. Therefore, the effect of a 
suddenly-applied extra strain rate will be a small, sudden increase (say) in the generation terms, probably 
opposed by the "redistribution" terms and followed by an initially linear, but large, decrease in the 
"destruction" terms (including the redistribution terms), as shown in Fig,10. In the context of a 
calculation method in which the destruction terms are modelled as (velocity scale)3/(length scale) this 
implies an initially linear, but large, increase in length scale: this is the behaviour that results if 
the length scale itself is obtained from a transport equation with the full F-factor (with o of the order 
of 10) applied to the destruction terms of that equation. It therefore appears that in order to deal with 
rapid changes in e some form of transport equation for length scale is essential, perhaps even if the 
basic calculation method for simple shear layers invokes local equilibrium throughout. Figure 11 shows 
calculations for a case of sudden change of e: the three curves represent the basic method with no 
allowance for e, the method with a full F-factor applied, and the method with a simplified length-scale 
equation, and each improvement is significant, 

I do not know of any application of an F-factor to an existing length-scale transport equation. 
The demonstration calculation of Fig.11 and the further calculations to be described below were done with 
an empirical ordinary differential equation for the effective value of a, which could be inserted in any 
type of calculation method. Since some sort of length-scale equation seems to be necessary to deal with 
rapidly-changing extra strain rates and no alternative has been suggested, a short description of this 
simple equation will be given. The equation is 

* ± <ae>eff " ao e " (ae)eff ( 3 7 ) 

dx 

where the length X is a "time constant" representing the memory of the stress-containing eddies, (°*e)eff 
is the effective value of ae for insertion into the F-faccor and o0 is the full value of a (of order 
10). The equation can be solved for (ae)eff *r°r a given streamwise distribution of e: if e rises 
suddenly from zero to some constant value, '-ae)eff rises proportional to 1 - exp(-x/X). Now the obvious 
objection that e is in general a function of y can be dealt with in the cases of curvature, lateral 
divergence and bulk compression, where e « U, simply by writing Eq(37) in terms of e/U. A further 
objection, that X will in general be a function of y, is not so serious as might be supposed: X varies 
strongly only in the inner layer, and if e is small enough for the F-factor analysis to be plausible in 
the outer layer e/(3U/3y) is very small in the inner layer, so that we need not use an accurate value of 
X in the inner layer; it is simplest to use the outer-layer value but zero is a better estimate. A 
suitable estimate of the memory time of the stress-containing eddies is the ratio of the turbulent energy 
Jq2 to the rate of production of turbulent energy (if the production were suddenly shut off the turbulent 
energy would initially decay exponentially with this time constant). The length X can be taken as U 
times this memory time, namely 

x - — L 2 (38) 
-uv 3U/3y 

where we include only the mean-shear production rate for simplicity. In a boundary layer Jq2 is about 
3uv and a typical average value of U/(3U/3y) in the outer layer (y > 0.26 say) is 36, giving 

X sw 106 (39) 

In a jet or free mixing layer U/(3U/3y) is rather less than 6 so 

X % 26 (40) 

is a reasonable value to take: in a wake, U/(3U/3y) can be many times 6. However the local-equilibrium 
ideas implicit in this derivation of x are not good in free shear layers: Castro's attempt (11) to apply 
an equation like Eq (37) to his strongly-curved shear layer was not successful, although this was partly 
the result of the unique reversal of curvature effects in this experiment. 

An obvious property of the linear, first-order equation Eq(37) is that if the distance in the x 
on over which e is nor 

region of extra strain rate is 
direction over which e is non-zero is much smaller than x, the value of (ae) ,, at the end of the 

<ae)eff • T J e dX (A1) 

independent of the distribution of e. Je dx is closely related to the total extra strain on a fluid 
element, j e dt, where the latter integral is evaluated following the motion of the fluid and is therefore 
near to /Ue dx. If Eq(37) is at all realistic it implies that the response to a short region of extra 
strain rate (a "strain impulse") depends more on the total strain than the distribution of strain rate, 
and gives us some confidence in using the F-factor analysis, with Eq(37), in short regions of large strain 
rate such as sharp bends or Prandtl-Meyer expansions. Clearly (ae)eff/(3U/3y) must not exceed the 
maximum value permissible after a long region of small extra strain rate, which we arbitrarily took as 0.05 
to give 0.5 < F < 1.5. 

Figure 12 shows, qualitatively, the response to extra strain rate predicted by the F-factor, Eq(36) 
and the "lag equation", Eq(37). Eq(37) is not suggested as a permanent substitute for incorporation of 
extra-strain effects in a true transport equation for length scale, but merely as a vehicle for the present 
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sparse data. Discussion of possible refinements to a length-scale transport equation, by inclusion of an 
F-factor or otherwise, merely exposes our ignorance: are only the destruction terms affected or are the 
(rather large) turbulent transport terms altered enough to cause a significant change in the distribution 
of length scale across the shear layer as well as in its magnitude? Do the destruction terms in the length-
scale equation change to the full extent of the F-factor as soon as the extra strain rate is applied or 
(more probably) do we need a wholly-empirical lag equation to modify the F-factor? 

In the inner layer of a simple shear layer — but outside the viscous sublayer — we have L0 - Ky 
where K as 0.41. Since the response time is short we do not need the "lag equation" for a and can apply 
the full F-factor directly to Eq(36): we get 

, . 1/2 
3U (~uv) , . 

37 + ae ~HT (42) 

which can be integrated to give U if the variation of uv and e with y is known. In the simplest 
case of a constant-stress layer with -uv • u2, and with e independent of y, we get T' 

_y_ i log uTy + C - a ey 
u-

(43) 

which is the familiar logarithmic law with one extra term: in principle, the constant of integration C, 
representing the change in velocity across the viscous sublayer, is a function of the dimensionless 
quantity aev/u2, but it seems likely that the F-factor analysis will break down before e is so large 
as to change C significantly. In cases where e is proportional to U, taking e • -U/R without 
necessarily defining R as the radius of curvature, we get 

^[cir-'] 
and compatibility with the logarithmic law for small a (equivalent to large R since aU/R appears as 
one group) requires 

, . u(i - a t . c) . ,(.. as) 
where the last term again represents the effect of e on the viscous sublayer. In simple cases it is 
probably sufficient to use a rough representation of U as a function of y in the term ae in Eq(42), 
and integrate directly: if we take e • -U/R with U proportional to y1*'5, say, the extra term in 
Eq(43) changes to +5aUy/(6uTR) which can be grouped with U/uT on the left hand side. 

The demonstration calculations in the following Sections were done using the calculation method of 
Bradshaw et al. (16: see Ref.45 for the free-shear-layer version). In this method a transport equation 
for shear stress — puv is used, the destruction term being proportional to (-uv)3'2/L: in a simple 
shear layer, L is defined by an algebraic function, L0(y/6). In flows with extra rates of strain we use 
Eqs (36) and (37) to modify L, leaving the modelling of the turbulent transport terms unaltered. The 
solution of the partial differential equations for U and -uv is matched to Eq(43), using the 
approximation to U in the e term mentioned above. This calculation method was used solely for 
convenience: exactly the same technique could be used with any other field method involving a length scale, 
whether it is a structure parameter like L, a mixing length or a factor in an eddy viscosity. Green, 
Weeks and Brooman (46) have used F-factors in an integral method, albeit not a typical one because it 
depends on the solution, at one value of y only, of the shear-stress transport equation of Ref.16. 
Practical details of allowances for extra rates of strain will be discussed in Section 11. 

We now discuss the different cases of extra rates of strain, omitting the case of curvature which is 
treated in detail in later sections. In cases for which detailed calculations are not available the 
behaviour of F will be inferred from published measurements of eddy viscosity or entrainment rate, using 
sample calculations by the method of Ref(16) to relate changes in L to changes in eddy viscosity or 
entrainraent rate: the assumption that entrainment rate is proportional to maximum shear stress is built 
into the calculation method. We do not assume that a given percentage change in eddy viscosity implies 
half that percentage change in mixing length: this is true only if the velocity profile remains unchanged. 

3 .2 IATERAL CONVERGENCE OR DIVERGENCE (e - W / . z ) 

Keffer (47, 48) studied the response of a cylindrical wake to lateral divergence (extension) and convergence 
(compression): he found that lateral divergence greatly changed the turbulence structure, accentuating the 
large eddies and suppressing the smaller-scale motion. He compared the mechanism to the lateral stretching 
of line vortices with axes in the z direction, and presented photographs showing the strong circulation 
of the large-eddy motions in the x,y plane. The lateral velocity fluctuations were reduced and after the 
wake span had been increased by a factor of 4 it was found that w2 was less than a third of v?. The net 
rate of production of turbulent energy by the lateral rate of strain, (v2 - w2)3W/3z, was about as large 
as the shear production -uv 3U/3y, so that this is a very strongly-diverging flow indeed by boundary layer 
standards. In the case of an equally strong lateral convergence the processes of normal wake growth and 
geometrical distortion appeared to be additive, but no turbulence measurements were made: the mean 
velocity profile developed large regions of near-constant velocity near the centre line, implying near-zero 
shear production of turbulent energy, which one would expect to lead to significant changes in turbulence 
structure. 

Crabbe (49) performed an experiment on the boundary layer on the floor of a duct arranged to give 
U. - constant, 3We/3z = constant <*« 0.02 Ue/6. He found that the entrainment rate on the centre line was 
increased by about 0.5(6 - 6*) 3W/3z, the entrainment rate in a two-dimensional flow at the same Reg 
being about 0.010 Ug. If we take 6 - 6* - 65/7, and 3U/3y - 0,3 Ufi/6 as a typical value in the outer 
part of the boundary layer, we see that divergence increases the entrainment by a factor of about 
1 + 1 3 (3W/3z)/(3U/3y) so that the typical shear stress within the layer increases by about the same 
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factor. This implies Eq(36) with a » 6.5. Crabbe shows that the increased entrainment rate is quite 
well predicted by assuming that the turbulence structure depends on the effective total strain in the plane 
of the mean shear, following Townsend's (50) discussion of two-dimensional flows: of course positive 
3W/3z means negative 3V/3y but the structural changes observed by Keffer seem attributable to 3W/3z 
directly rather than to alterations in the shear strain rate. Crabbe states that the change of entrainment 
rate in the attachment line boundary layer on a swept-back wing is between 1.0 and 1.2 times that in the 
diverging duct flow. Note that both types of boundary layer have zero crossflow but that the flow a short 
distance from the plane of symmetry has a crossflow angle that varies through the layer: these are not 
collateral flows. 

Cham and Head (51) used Head's entrainment method to calculate the vortex diffuser flow of Gardow 
(52): the entrainment rate required for agreement with experiment was about twice that in a two-dimensional 
flow with the same profile shape. Attributing the increase entirely to divergence and not to crossflow, 
and carrying out an approximate analysis like that for Crabbe's flow, we find a Ri 10. Head and Patel (53) 
later allowed for the effect of convergence or divergence on the entrainment in nominally two-dimensional 
flows and reported very much better agreement. Strictly, the allowance is for perturbations in growth 
rate, whether caused by convergence/divergence or by longitudinal acceleration. As a correction for 
convergence/divergence it can be seen to imply a n̂ 10 for a boundary layer in zero pressure gradient and 
a t , 5 for a strongly-retarded self-preserving boundary layer (using plausible values for 3U/3y in each 
case). 

Winter, Rotta and Smith (54) studied the collaterally-diverging turbulent boundary layer on a 
slender waisted body in subsonic and supersonic flow: recent calculations by Green, Weeks and Brooman (46), 
using the lag-entrainment method but without further allowance for the lag in the F-factor, show that 
agreement with experiment in subsonic flow is greatly improved by an F-factor allowance for lateral 
divergence with a- 7 (longitudinal curvature also has some effect). It is noteworthy that the F-factor 
produced improved agreement with experiment over the converging part of the body as well as the diverging 
part, contradicting Keffer's provisional and dubious conclusion drawn from the strongly-converging wake. 

Patel, Nakayama and Damian (55) have recently studied the boundary layer over the rear of a body of 
revolution with a maximum diameter of one-sixth of its length and an included angle of about 46 deg. at 
the trailing edge. In this converging flow the shear stress falls very rapidly towards the trailing edge, 
and the mixing length J. increases much more slowly than 6: because of the uncertainty about the effects 
of the convex streamline curvature and of large ratios of boundary layer thickness to cross-sectional 
radius of curvature a reliable value of a in the F-factor cannot be inferred but the results can be 
taken as further evidence that convergence and divergence produce effects of the same order. 

Young (57) is studying a slightly simplified body of revolution consisting of a cylinder ahead of a 
cone: the fairing between the two has a small radius of curvature and therefore provides a curvature 
"impulse" whereas the subsequent divergence is prolonged with an equivalent value of 3W/3z of at least 
0.05 U /6. Making the best possible allowance for curvature effects a significant residual effect of 
divergence is found: a value of a of about 10 is indicated. 

McMillan and Johnston (56) present measurements in a laterally-diverging duct, with a virtual origin 
55 duct heights upstream of the start of the divergence. Taking a typical value of 3U/3y as 0.3U/(Jh) 
the maximum value of (3W/3z)/(3U/3y) is about 0.03: calculations by an extension (3) of the method 
of Ref(16) without any allowance for divergence showed no consistent disagreement with experiment. 

As shown by several experimenters, a radial wall jet grows at about the same rate as a plane wall 
jet. This implies that its entrainment rate — and therefore a typical value of shear stress — is double 
that of the plane flow. (3W/3z)/(3U/3y) is typically about 0,1 which leads to a nominal value of a of 
about 5. Heskestad's results (58, 59) for a free radial jet and a free plane jet again indicate equal 
growth rates which again leads nominally to a - 5 . However, the energy production in the high-intensity 
regions of a jet is about twice the dissipation so that if the turbulent transport terms are altered by 
divergence a value of a is difficult to evaluate: certainly 5 is a minimum estimate. Heskestad 
measured the shear stress in both flows but, especially for the radial jet, the values are much lower than 
those calculated from the mean-motion equations; the calculated maximum shear stress in the radial jet is 
about 1.7 times as large as in the plane jet which would imply a - 3.5, but Heskestad pointed out that the 
radial jet was not fully developed although full development was assumed in the shear stress calculations. 
Heskestad's measurements of turbulence intensity show comparatively little difference between the two 
flows (similar techniques were used in the two cases) but it is difficult to reconcile these results with 
the above deductions from mean-flow measurements: Heskestad felt that a better experimental arrangement 
was needed for the radial flow but unfortunately neither he nor any other worker seems to have produced 
any further data for this simple example of a diverging flow. It appears that values of a deduced 
indirectly from entrainment or growth rates in diverging flows are at least 5; direct use of a in 
Eq(36) suggests a " 7, and other experience suggests that if the lag in a were allowed for the 
asymptotic value would be close to 10. 

3 .3 LONGITUDINAL ACCELERATION (e - W/Sx o r -SV/dy) 

The continuity equation requires finite values of 3U/3x to be associated with finite val les of 3W/3z 
or 3V/3y: here we consider only the latter case, that of two-dimensional flow. Townsend (Ref.26, p.188) 
explained differences between jet and wake flows in terms of the negative values of 3V/3y found in the 
former, which, hc suggested, would tend to flatten the large eddies and reduce their contribution to the 
Reynolds stress. It is implied by Townsend's discussion that positive 3V/3y — found in retarded flows 
and significant in boundary layers near separation — should tend to increase the Reynolds stress, but 
Gartshore (60) has suggested that either sign of 9V/3y disturbs the large eddies from their preferred 
orientation and thus reduces the Reynolds stress, Gartshore's analysis is not rigorous, and his suggestion 
is certainly not valid for other types of extra strain rate, but it is supported by his experiments in 
retarded self-preserving wakes (3V/3y > 0) whose eddy viscosity, made dimensionless by the velocity 
deficit and the wake width, is significantly less than in a wake in a uniform stream. Gartshore correlated 
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the reciprocal of the eddy viscosity with — logically enough — the square of (3V/3y)/(3U/3y) but the 
results he presents are fitted quite well by 

J5. - 1-8.5 
vTo 

3V/3y 

3U/3y 
(46) 

implying |a| m 4. Morel's (45, 61) correlation of the differences in the optimum dissipation length 
parameter required to calculate jets and wakes implies |a| - 3.5 (for 3V/3y < 0). Neither author has 
really proved that the effects observed are directly attributable to 3V/3y: in Gartshore's case no 
account is taken of changes in advection in the retarded flows, and Morel's calculations were intended as 
a test of the superposition principle in interacting free shear layers. Morel's correlation of changes in 
optimum dissipation length parameter in mixing layers of differing stream velocity ratios (and therefore 
differing rates of growth) indicates a much smaller value of a than the jet-wake correlation, although in 
this case Morel made significant changes in the other terms in his empirical Reynolds-stress transport 
equation and a direct comparison with our standard F-factor is dubious. Gartshore himself points out that 
boundary layers appear to be little affected by longitudinal acceleration, even for a rate of strain ratio 
as large as 0.05. 

Reverse transition in strongly-accelerated boundary layers is unlikely to have any necessary 
connection with the results discussed above: obviously the ratio of root-mean-square intensity to mean 
velocity will decrease in any strongly-accelerated flow, except near a solid surface where 3U/3y is 
necessarily very large, and "reverse transition" is deemed to have started when the shear-stress gradient 
near the surface becomes so large that inner-layer similarity relations begin to break down. 

Strongly-retarded wall layers separate, and even retarded wakes can develop a region of reversed 
flow: these gross effects are likely to mask any direct effects of the retardation on the turbulence, 
particularly since a rapid increase in 3V/3y implies large 3V/3x — i.e. large streamline curvature. 

Wc must regard the influence of 3U/3x or 3V/3y on turbulent shear layers in general as not 
proven although physical reasoning strongly suggests that it is mainly responsible for the differences 
between jets and wakes. The "direct" deductions of a for the latter case suggest o ~ 4. 

3.4 COMPRESSION OR DILATATION (e = - d i v U) 

I mention this effect with some diffidence because it was discovered (a) very recently (b) by me. 
Nevertheless it seems very important in practice at Mach numbers above the transonic range, and grossly 
affects the behaviour of boundary layers at quite moderate values of the pressure-gradient parameter 
(5*/T W) dp/dx. For example, in three recent experiments on boundary layers decelerating from Me • 4 the 
skin friction coefficient, far from decreasing sharply as expected in low-speed flow, actually rose above 
the value found in constant-pressure flow at the same Mach number and Reynolds number. Now the principle 
that justifies the extension of low-speed calculation methods to compressible flow is Morkovin's hypothesis 
that turbulence is unaffected by random fluctuations in pressure or density as long as they are small 
compared to the mean pressure or density, a condition satisfied at all non-hypersonic speeds. The 
Reynolds stress transport equations for compressible flow, like those for incompressible flow, do not 
contain the mean pressure gradient: some of the equations contain components of the mean dilatation, 
expressing the interaction of Reynolds stresses with normal rates of strain, but as the boundary layer 
approximation requires div U to be small compared to 3U/3y these terms would normally be neglected. 

Until recently the only reliable experiments on strong but distributed pressure gradients (as 
opposed to flow through shocks, which most people would expect to produce strong effects on turbulence) had 
been done using curved surfaces to produce the pressure gradient. Many experiments done in the 1960s were 
therefore unusable as test cases for plane-flow calculation methods, or contained a built-in excuse for 
the manifest disagreements that existed between calculation and experiment. The good predictions of 
constant-pressure supersonic flows by extensions of low-speed methods, and the general assurance offered 
by Morkovin's hypothesis, led most people, including the present writer, to be cautiously optimistic about 
the performance of these methods in pressure gradients uncomplicated by the effects of curvature: the one 
clear case of disagreement available at the time of writing of Ref.62 was the experiment of Zwarts (63) on 
a boundary layer decelerating from Me *» 4 to Me - 3, in which the measured skin friction coefficient 
was markedly higher than predicted. However, Zwarts' flow suffered from fairly severe three-dimensional 
effects, possibly including secondary flows which could have produced anomalous results. Bushnell and 
Alston (64) later summarized possible reasons for disagreement between theory and experiment, tentatively 
concluding that curvature might not be wholly responsible. 

In 1971 Peake et al. (65) carried out experiments on a boundary layer decelerating from Me - 4 to 
M_ • 2, with results similar to those found by Zwarts. In this case three-dimensional effects were small 
but the results appeared to have suffered considerably from probe interference so that they were again not 
above suspicion. However a set of experiments by Lewis et al. (66), on a boundary layer decelerating from 
Mg " 4 to Mg • 2.5 and then accelerating again to Me » 3.5, appeared to be above reproach, and for a 
third time showed a much larger Cf in adverse pressure gradient than would have been expected from 
experience in low-speed flow (Fig.11). 

The most probable explanation is that dilatation or compression, like other extra rates of strain, 
produce a large direct effect on the turbulence, with compression increasing, and dilatation decreasing, 
the Reynolds stress. Insertion of an F-factor with a = 10, and e • - div U (U/yp)(dp/dx) in the method 
of Ref(62) gave improved agreement with the above-mentioned experiments: when a lag equation for o, with 
a "time constant" of 106, was used in the calculations, excellent agreement was obtained in all three 
retarded flows (67). The friction coefficient in the mildly accelerating flow of Pasiuk et al. (68) seems 
unnaturally low, and an empirical factor in the calculation method of Wilcox and Alber (69) (which with 
hindsight can be seen to be an unwitting allowance for dilatation) was chosen to have the same value in 
accelerating and retarded flow, although the accelerating flow on which they relied most was a highly-curved 
flow through a Prandtl-Meyer expansion. It is therefore probable that the optimum a is of the same order 
in retarded and accelerated flow. 
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After the F factor had been shown to improve agreement between calculation and experiment, 
Dr. J.E. Green of RAE Bedford realised that the most plausible physical mechanism of the dilatation effect 
is closely analogous to the effects of lateral divergence or convergence. Both positive 3W/3z and 
negative div U reduce the cross-sectional area of a fluid element in the (x,y) plane (note that in an 
accelerating supersonic flow 3V/3y is larger than 3U/3x by a factor M2) and thus increase the 
z-component vorticity: the z-component vorticity fluctuations in the larger eddies seem to play an 
important part in the entrainment process, and so it is plausible that enhancing them should increase the 
entrainment rate and the turbulence intensity, as in Keffer's diverging wake. 

Green has incorporated the F-factor into his own lag-entrainment method (46) and, using a - 7 
without allowance for lag in a, found improved agreement with the above-mentioned test cases and with the 
waisted-body experiment of Winter et al. (54): at M -« 2 the effects of dilatation and of lateral 
divergence on the waisted body are opposite, but so large that their resultant is quite significant. 
Ignoring the lag effect reduces the value of a required to optimise agreement. 

There is practically no direct evidence about the behaviour of turbulence in flows with dilatation 
or compression, but there seems little doubt that this is yet another example of the large effect of small 
extra rates of strain. It seems probable that dilatation effects are very important in hypersonic flow and 
in at least some cases of combustion, internal or external. The best guess for a is 10. 

4. INTRODUCTORY HISTORY OF RESEARCH ON CURVED TURBULENT FLOWS 

This Section is intended to introduce the phenomena of curved flows rather than to allot credit for 
advances in understanding them. It covers the period up to the revival of serious work on the subject in 
the mid-1960s: the more recent work and the present state of knowledge are discussed in Sections 6-11. 

Studies of the effect of streamline curvature on stability of laminar flow up to about 1962 are 
reviewed by Stuart (23, Chapter 9); for more recent work see Ref.70. In 1916 Rayleigh (14) proved by 
energy considerations that a steady inviscid, axisymmetric curved flow is unstable to infinitesimal 
axisymmetric disturbances if the angular momentum decreases with increasing distance from the centre of 
curvature, and vice versa. Use of this or Von Karman's alternative argument (Section 1) for any purpose 
other than the determination of the stability boundary for this inviscid flow requires careful consideration 
of the mode of disturbance and of the restoring forces set up by viscous or Reynolds stresses. As Coles 
(71) comments, it "throws only a very dim light" on the behaviour of real fluids. In 1923 Taylor (72) 
carried out a theoretical analysis of, and an experiment on, the stability of circumferential laminar flow 
between two coaxial rotating cylinders. The analysis showed that the equations governing the growth of 
small axisymmetric disturbances contained a parameter since called the Taylor number. For the simplest 
case, in which a cylinder of radius R rotates with angular velocity fi within a fixed cylinder of 
radius R + h with h « R, the Taylor number can be written as 

., _ (nR)2 h3 _ h fhflRl2 .,,, 

where (£JR)2/R is a typical "centrifugal" force per unit mass and hfiR/v is a typical Reynolds number. 
Now according to Rayleigh's arguments for inviscid flow, this flow would be unconditionally unstable, but 
Taylor found instability only for Ta > 1700 approximately: for given h/R, the Reynolds number hftR/v 
must exceed a certain value before disturbances can grow in the presence of viscous restoring forces. The 
mode of instability is a set of contra-rotating toroidal vortices (Fig.8: for a photograph see Fig IX.1 
of Ref.23, following p.496). As the Taylor number is increased above 1700 the disturbances become more 
complicated — a fascinating account of their complexity and non-uniqueness is given by Coles (71, 73) —but 
turbulence does not occur until a Taylor number of the order of ten times the critical is reached. Nagib 
(74) has shown that if an axial flow is superimposed on the fluid between rotating cylinders, two 
concentric sets of spiral vortices with equal and opposite pitch angles can appear: the sense of rotation 
is determined by the radial gradient of axial velocity, which changes sign part way across the gap. 

Rayleigh's 1916 paper (14) draws a qualitative analogy between the effects of buoyancy forces and 
of streamline curvature ("centrifugal" force). Taylor and A.R. Low suggested to Jeffreys that the analogy 
should be quantitatively correct as between buoyant convection between a pair of infinite parallel 
horizontal plates at different fixed temperatures and the rotating-cylinder flow described above (with 
h « R so that the centripetal acceleration, like the gravitational acceleration, should be constant across 
the flow). In 1928 Jeffreys (75) proved that the stability equations for these two cases were identical, 
the analogue of the Taylor number being the Rayleigh number 

Ra = 8 *£ . J6- (48) 
p K V 

where Ap is the density difference between the plates and K is the thermometric conductivity 
k/(pcp) B v/Pr. Taking the Prandtl number Pr to be unity for simplicity we see that Eq(48) is Eq(47) 
with the typical centrifugal force replaced by a typical buoyancy force. Recently Lezius and Johnston (76) 
have extended the analogy to plane flows analysed in rotating axes: an additional factor appears in Eq(47) 
because the Coriolis body force depends on the absolute, not relative, acceleration. In this type of 
buoyant convection with no mean horizontal flow there is no preferred direction in the horizontal plane and 
the mode of instability is a pattern of polygonal convection cells (see Fig.IX.5 of Ref.23, following p.512) 
rather than a row of parallel vortices: the latter are theoretically possible and sometimes appear when a 
horizontal flow is subjected to buoyancy effects. 

In 1940 Gortler (77) investigated the stability of a laminar boundary layer on a curved surface (a 
horizontal flow subjected to centrifugal effects) and predicted that the basic mode of instability on a 
concave surface was a row of parallel vortices with axes in the stream direction, since called Taylor-
Gortler vortices. These vortices were not actually observed until 1950 (78). The stability parameter is 
the Gortler number 
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U„9,2 
Go - m (49) 

or the square root of this, where 9, the momentum-deficit thickness, plays the role played by the gap h 
in the second form of the Taylor number in Eq(47) and the external-stream velocity Ue plays the same role 
as the circumferential velocity of the rotating cylinder, ftR. The critical value of Go in a constant-
pressure boundary layer is about 0.6 (it would be rather nearer the critical value of the Taylor number if 
6, rather than 9, were used as the length scale). In the boundary layer, the ordinary Tollmien-
Schlichting instability (Ref.23, Ch.IX), in which disturbances of the spanwise component of vorticity are 
driven by viscous forces, can also occur, at U 9/v « 160: if 6/R is small enough for the boundary layer 
approximation to be good, this instability is unaffected by surface curvature of either sign; in particular 
it is not damped by convex curvature, so that the stability characteristics of laminar boundary layers on 
plane and convex walls are identical. On a concave wall of constant radius, GtJrtler instability occurs 
before Tollmien-Schlichting instability if the Reynolds number UeR/v is less than 1.4 *107. Once the 
disturbances attain finite amplitude, non-linear interaction between the two modes could occur and once the 
Tollmien-Schlichting disturbances have become three-dimensional, with a streamwise component of vorticity, 
they will be affected by surface curvature. Johnston (79) discusses the instabilities in the case of plane 
rotating flow. 

The history of research on the effects of streamline curvature on turbulence is an object lesson in 
the effects of poor communication. In 1929 Prandtl (Ref.80, p.775) extended the analogy between buoyancy 
and curvature effects to turbulent flow, suggested that either effect could be represented by multiplying 
the mixing length by a function of a dimensionless buoyancy or curvature parameter, and used pure mixing-
length arguments to estimate the behaviour of the function in each case. It must be emphasized that the 
useful part of Prandtl's results could be derived by dimensional analysis. As usual, pure mixing-length 
arguments got the dimensional analysis right, but underestimated the importance of the effects by an order 
of magnitude: in the next few years four experiments (see table) in Prandtl's own laboratory in Gbttingen 
showed that streamline curvature could produce large effects on various kinds of turbulent shear flow. 
These experiments will be discussed below. 

Author 

Wilcken 
Wendt 
Wattendorf 
Schmidbauer 

Ref. 

22 
81 
82 
83 

Date 

1930 
1933 
1935 
1936 

Geometry 

Concave (also convex) boundary layer 
Coaxial rotating cylinders (stable and unstable) 
Curved duct (also rotating cylinder) 
Convex boundary layer 

Wilcken and Schmidbauer say that their experiments were suggested by Prandtl's colleague Betz rather than 
by Prandtl himself, and neither explicitly evaluated the F-factor although Wilcken showed that large 
changes in mixing length occurred. Wendt acknowledges neither Prandtl nor Betz and gives his address as 
Clausthal (a university town in the hills about 20 miles from Gbttingen) but Wattendorf says that Wendt's 
work was in fact done at GSttingen: Wendt evaluated the F-factor for stably-curved flow and showed much 
larger effects than predicted by Prandtl. Wattendorf began his experiments at Gbttingen with an adaptation 
of Wilcken's apparatus and finished them in a new test rig with Von Karman at Caltech: he showed that 
large changes in mixing length occurred but did not evaluate the F-factor. Wattendorf published his paper 
in Proc. Roy. Soc., thus providing a link to the Gbttingen work in the English literature. Also, Karman 
(13), in a congress held in Cambridge (England) in 1934 discussed several aspects of curvature and 
buoyancy effects as part of a general review of transition and turbulence and quoted Wattendorf's results. 
In 1935 Taylor (84) used the unstable flow between rotating cylinders as an experimentum crucis to 
distinguish between Prandtl's momentum-transport version of the mixing-length theory and his own "modified 
vorticity transport" version. Taylor's conclusion was that neither performed well but he did not quantify 
the errors nor discuss the physics of curvature effects on turbulence. He referred to Wattendorf's paper 
and to Prandtl's work. Schmidbauer (1936) in the last of the series of Gbttingen papers, discussed the 
(large) modifications needed to Gruschwitz's integral boundary-layer calculation method to produce 
agreement with his own experiments on convex surfaces. 

The position in about 1936, therefore, was that well-known English and German publications, 
including engineering journals, contained evidence of the very large effects of streamline curvature and of 
the large modifications needed if the mixing length formula or practical integral calculation methods were 
to be used to predict these effects. Even if one makes allowance for the political distractions of the 
next few years it is surprising that all this work virtually sank without trace (meteorologists were of 
course aware of the importance of buoyancy effects before Prandtl's paper: moreover the earliest 
meteorological version of the F-factor, the Monin-Obukhov formula, was apparently derived, in about 1950, 
without knowledge of Prandtl's work and I have never seen Prandtl's paper quoted in the meteorological 
literature). MacPhail (1941) quoted by Townsend (26), and Pai in 1943 (85) inspired respectively by Taylor 
and by Von Karman, made some further measurements in rotating-cylinder flows, but apart from these two 
experiments practically no attention was paid to the problem of curvature effects for nearly twenty years, 
and the subject was completely ignored by developers of boundary layer calculation methods in the 1940's 
and 1950's. An exception, of course, is the work of Coanda, whose 1932 patent (86) on improvements to 
various turbulent mixing devices relies on the increase in turbulence level in a wall jet on a convex 
surface. It was partly the relevance of the flow-deflection aspect of Coanda's work to schemes for 
boundary layer control by blowing, which became popular in the 1950's as jet-propelled aircraft were 
developed, that led to a revival of interest in the effects of curvature on turbulence structure. It is 
not very profitable to speculate on the reasons for the long neglect of the subject after the early 
GSttingen work had advanced it so far: perhaps an explanation, if not an excuse, for the lack of impact on 
boundary layer calculation methods is that solutions using the mixing length formula in non-self-preserving 
flows are practically impossible without a computer, while the integral methods of the 1940s and earlier 
1950s, intended for solution by mechanical desk calculators, were so calamitously inaccurate that further 
discrepancies caused by curvature effects would not have been noticed. However, there is little excuse 
for forgetting the phenomenon, particularly since it is mentioned, with references to the early Gbttingen 
work, in Prandtl's well-known student textbook "Essentials of Fluid Dynamics" (87) (p.132 of the 1952 
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edition). I confess that, though I acquired this book in my undergraduate days, I found the discussion 
only while writing this review. Moreover I rediscovered Prandtl's buoyancy-curvature analogy in complete 
ignorance of his 1929 paper, so that I have personally paid a penalty for ignoring the early literature. 

We now proceed to a detailed review of the early work, starting with Prandtl's buoyancy-curvature 
analogy of 1929. 

Prandtl considered the effect of buoyant or "centrifugal" body forces on the lumps of fluid 
hypothesized by the mixing-length theory, which in the absence of body forces are supposed to conserve their 
momentum or angular momentum between collisions. The argument is close to that of Karman quoted in Section 
1, and shows that the mixing length in the buoyant case will be a function of a dimensionless parameter 

g 3p / [3U 
P 3y/ lay. 

6 ' - f r y / 2 ^ (50) 

which is half the parameter now called the "gradient Richardson number" Ri [Prandtl refers to Richardson's 
work of 1920 (88)]. The factor of two arises from an apparently fallacious argument about the variation 
of buoyancy force on a displaced element of fluid (Ri, or the corresponding curved-flow parameter, is 
proportional to the square of the frequency of oscillation of a displaced element). Another difference in 
notation is that Prandtl represents the change in mixing length by 

.2 
- f(9) (51) fe) 

— it is not clear whether he contemplated the possibility of f becoming negative — so that his function 
equals the square of the local-equilibrium approximation to the factor F defined by Eq(36). Prandtl 
argued that turbulence could maintain itself only if the rate of production of turbulent energy by the mean 
shear, -uv 3U/3y per unit mass, was greater than the rate of reduction of turbulent energy by buoyancy 
forces (i.e. minus one times the buoyant production g p'v/p). The turbulent energy extracted by a stable 
density gradient (3p/3y < 0) eventually goes into potential energy by reducing the numerical value of 
3p/3y and thus raising the centre of gravity of the fluid: however the initial exchange may be largely 
from turbulent energy to internal gravity waves (15). Prandtl's argument, rephrased in modern terms, 
implies that the "flux Richardson number" 

-(buoyant production) -g p'v /^v 3U 
f (shear production) p" / 3y 

must be less than unity if the turbulence is not to decay. It can be seen that, if we replace density by 
temperature and change the sign accordingly, Ri/Rf is equal to the ratio of the turbulent diffusivity of 
heat to the turbulent diffusivity of momentum, called the turbulent Prandtl number Prt by engineers and 
JKJ-J/KJJ by meteorologists. The turbulent Prandtl number is near unity in neutrally-stable conditions, 
increasing in stable conditions (Ri > 0) and decreasing in unstable conditions (89). Classical mixing-
length arguments lead to Prt • 1 and therefore to Ri - R c , just as simple kinetic theory leads to a 
molecular Prandtl number Pr of unity. Therefore Prandtl's argument should lead to a critical Ri or 
Kc of 1 and a critical 9 of 1/2: however the factor 2 is introduced in part of the argument only 
and Prandtl actually arrives at 9cr:jt " **•« In practice Rf cri*; must certainly be less than unity in a 
local-equilibrium flow because energy production by the mean shear must supply viscous dissipation as well 
as a negative rate of buoyant production, and figures between 0.1 and 0.25 have been quoted in various 
theories and laboratory experiments. As it happens the critical values of Ri are much closer to unity 
but Ri - 1 has no particular physical significance. Karman (13) commented that the attempts of Richardson 
and Prandtl to establish stability limits for stratified turbulent flow from energy considerations evidently 
shared the defects of energy methods for laminar-flow stability problems, where they are well known to give 
far too low a critical Reynolds number (i.e. to overestimate the ability of disturbances to grow in the 
presence of restoring forces). We can now agree entirely with Karman's remark that the real merit of the 
work was to have brought out the significance of the Richardson number as the main parameter controlling 
turbulence in stratified flows. Prandtl chooses the variation of his mixing length correction factor f(9) 
between the extreme points 9 - 0, f - 1 and 9 • 1, f • 0 to be 

f(9) - (1 - 9 ) 1 / 2 (53) 

rather than a linear variation. This leads to 

F - (1 - jRi)17"4 (54) 

or, in the linear approximation valid for small Ri 

F =» 1 - jRi •* 1 - jRf (55) 

More recent meteorological data suggest F — 1 - 7Rf for small positive Rf in the inner layer of the 
Earth's boundary layer. Therefore the cumulative effect of the factor 2 in 9, the choice of a 
correction factor for I 2 rather than I and the choice of Eq(53) rather than a linear variation with Rf 
lead to an eightfold underestimate of the effects of small stable buoyancy on top of the customary factor 
of the order of 10 (7 here) by which mixing length theory underpredicts the effects of extra body forces 
or rates of strain. 

Prandtl carried out an analogous mixing-length analysis for two-dimensional curved flows. In this 
case the dimensionless parameter that emerges is 

* '* (56) 
3U/3r - U/r 

which, as we shall see in Section 5, is half the curved-flow analogue of R, rather than Ri. Prandtl 
again suggested 
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f(9j) - (1 - 9*.)1/2 (57) 

so for small 9j we get 

1 " i WIT. (58) 

roughly a 40-fold underestimate of the effects of curvature. 

Clearly, Prandtl's estimates of curvature effects would imply that they could be ignored in all but 
the most highly-curved shear layers, but, as mentioned above, experiments were started at Gbttingen, 
presumably with the object of checking the theory. Wilcken's report (22) on measurements of boundary 
layers on the walls of a curved duct is still a pleasure to read: the experimental techniques, the 
discussion of errors and the analysis of results are surprisingly modern, and the results seem reliable. 
The boundary layer on the convex wall was so thin that detailed measurements were difficult, but the 
unstable boundary layer on the concave wall grew rapidly and the velocity profiles were accurate enough for 
the shear-stress profile to be estimated from the mean-momentum equation. Wilcken carefully discussed 
three-dimensional effects in the duct corners, leading to possible crossflow and imbalance of the two-
dimensional momentum equation, but found no evidence of the spanwise periodicity that might be caused by 
steady longitudinal vortices. The mixing-length profiles deduced from the calculated shear stress seem 
trustworthy at least for qualitative purposes. As Wilcken comments, the effects of curvature were large, 
but although he must have been aware of Prandtl's 1929 analysis (his paper is dated 24 March 1930) he did 
not deduce a specific form for the mixing length correction factor. The mixing length in the mid-part of 
the layer was roughly quadrupled: the corresponding value of 9j was about 0.4 so that Prandtl's formula 
Eq(58) would have predicted only about ten per cent increase in mixing length. 

In 1933 Wendt (81) made measurements in stable and unstable rotating-cylinder flow, using water or 
a water/glycerine mixture with a free (and therefore paraboloidal) surface. He measured velocity profiles 
at one axial position, for a large number of combinations of radius ratio, inner cylinder speed and outer 
cylinder speed. Possibly because he covered a large number of cases rather than exploring one in depth, 
he did not notice the probe-interference difficulties which appeared in the later work of Taylor (84) or 
the random changes in profile shape caused by changes in toroidal vortex patterns that later gave so much 
trouble to Pai (85). Wendt deduced surface shear stress from the torque on the cylinder, derived the 
internal shear-stress profile from the mean-momentum equation and plotted values of the mixing length 
correction factor f(9i), assuming that the mixing length in the absence of dynamic effects of curvature 
would vary as Ky(l - y/h), which slightly overestimates the mixing length near the centre of a plane 
duct. Wendt's estimates of the stabilizing effect of curvature vary somewhat with position: the largest 
values of F (i.e. the smallest curvature effects) are fitted quite well by his curve 

giving 

f(9 ) . . 1 (59) 
(1 + 16.59j)3 

F - 1 - 259! aa I - 25 - $ L . ( 6 0 ) 

for small curvature effects, Wendt's values of f are for stable rotation only: he comments that Eq(59) 
will give impossible results for strongly unstable cases (large negative 9}). Prandtl presumably had 
Wilcken and Wendt's results in mind when he commented in later papers (e.g. Rcf.80, p.1084) that 
experimental and other theoretical values of critical Ri for buoyant flow were much smaller than his 
predicted value of 2. Also Schlichting (90: 1935) in a paper describing his work at Gbttingen on buoyant 
flows refers to the work of Taylor and others on the critical Richardson number, leading to much smaller 
values than suggested by Prandtl. Therefore the defects of his analysis for curved and buoyant flows must 
have been clear to Prandtl in the early 1930s: however, in spite of retaining an interest in the problem 
at least up to 1944 (Ref,80, p.1166), he did not publish any further original work on it. 

Wattendorf (82: 1934) presents measurements in another rotating cylinder rig (it is not clear whether 
these were made in Gbttingen or at Caltech): he found, and commented on, the phenomenon of near-constant 
angular momentum over a large part of the gap between the cylinders. The main part of Wattendorf's paper 
describes his measurements in a curved duct. He refers to an early analysis of Prandtl's, implying 
f at X *» 6] for small 6j, but his own results show much larger effects. Because the shear stress and 
3U/3y change sign, the sense of curvature effect also changes sign from one side of the duct to the other, 
in contrast to the caae of one fixed and one rotating cylinder. Wattendorf measured the surface shear 
stress with a small surface pitot tube, calibrated in turbulent flow in a plane duct: at this time, many 
users of small surface tubes assumed that the same calibration would hold in laminar and turbulent flow, 
which is unfortunately not true for practical sizes of tube. Wattendorf's duct had a plane initial 
section and his measurements show the gradual change from fully-developed plane flow to fully-developed 
curved flow, but he calculated the shear stress within the fluid only in the fully-developed curved flow. 
His mixing-length results near the duct walls are shown in Fig.13, the multiplying "constant" a in the 
F-factor being plotted at the top of the figure. There is a significant difference in the values of a 
on the two sides, in the same sense as the difference found between stable and unstable buoyant flows 
(Section 5.4). As in the rotating-cylinder flow, the angular momentum ia almost constant over the central 
part of the duct. The position of zero shear stress did not coincide with the position of zero velocity 
gradient 3H/3y or the position of zero rate of strain 3U/3y + 3V/3x = 3U/3r - U/r, or of course with 
the — indefinite — position of zero angular momentum gradient 3(Ur)/3r » 3U/3r + U/r. Wattendorf comments 
that it is not clear which of these three quantities should be used in the mixing length formula: the 
velocity gradient is used in plane flow but 'eddy viscosity' concepts suggest that the shear stress should 
depend on the rate of strain because it does so in laminar flow, while Prandtl argued that the mixing length 
concept of conservation of momentum of a fluid element between collisions indicates that angular momentum 
should be conserved in curved flows so that the shear stress should depend on the angular-momentum gradient. 
The same difficulties have since been encountered by many other authors who have tried to apply the older 
phenomenological theories to curved flows, but Wattendorf's discussion is one of the clearest. Today we 
can see that the ambiguity can account only for a factor of order f = 1 + e/(3U/3y) whereas direct effects 
of curvature on turbulence structure introduce a factor of order F = 1 + 10e/(3U/3y): however the more 
bizarre consequences of the ambiguity are avoided by relating shear stress to rate of strain. Wattendorf's 
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rejection of Prandtl's analysis of curved flows seems to be based more on the failure of the point of zero 
shear stress to coincide with the point of zero anything else than on any comparison between Prandtl's 
predictions for curvature effects and the measurement nearer the walls of the duct. Wattendorf did not 
seek or find any evidence of longitudinal vortices in his duct flow: Karman (13) comments that the 
curious result of negligible angular momentum gradient may be caused by secondary motions but, since he 
goes on to say that secondary motions would not be expected to be important in a duct with an aspect ratio 
of 18, he evidently had in mind corner flows rather than Taylor vortices. 

Taylor (84: 1935) in the rotating-cylinder experiments mentioned above, discussed the question of 
whether the fluid lumps hypothesized by the mixing length theory should conserve angular momentum, as 
Prandtl's original analysis implied, or the z-component of vorticity, as in Taylor's modified vorticity 
transport theory. The presence of finite shear stress with a negligible angular momentum gradient was held 
to disprove the first, but while the vorticity transport theory was in principle compatible with constant 
angular momentum in the central part of the flow it could not explain the results nearer the walls. The 
temperature distribution when one cylinder was heated was also incompatible with the predictions of mixing-
length theory. The demonstration by Wattendorf and Taylor of this qualitative implausibility of classical 
mixing-length theory was no more heeded by later workers than the demonstration of its quantitative 
underestimate of curvature effects, although Karman (1934) had pointed out one physical reason why the 
mixing length hypothesis could be no better than a first approximation (because the apparent mixing length 
is not small compared with the flow width). 

The experiments mentioned above all revolved about the behaviour of the mixing length. 
Schmidbauer (83: 1936) measured a number of boundary layers on convex surfaces (the one most frequently 
quoted in the recent literature being the retarded-accelerated flow in Fig.6 of his paper) and discussed 
the behaviour of the integral parameters used in Gruschwitz's boundary-layer calculation method, the 
prototype of the integral methods of the 1940's and 1950's based on an empirical ordinary differential 
equation for some shape parameter of the velocity profile. Schmidbauer presented a plot of skin friction 
coefficient against 9/R, where 9 is the momentum-deficit thickness and R the surface radius of 
curvature: variation with Reynolds number was ignored but was probably negligible compared to the effects 
of curvature. The ratio of skin friction at given 9/R to that on a flat surface can be approximated by 
1 - 2509/R for 9/R < 0.002: taking a representative value of 3U/3y to be 0.3 Ue/5 =» 0.03 Ue/9, and 
assuming the fractional change in surface shear stress to be about one-third of the fractional change in 
L in the outer layer (as found in typical calculations by the method of Ref.16) we find that 
Schmidbauer's results imply 

F ~ 1 - 22_U/R_ . . . . 
F m X 3U737 (61) 

but more detailed calculations originally published by Bradshaw (91) show that the skin friction in the 
boundary layer of Schmidbauer's Fig.6 is well predicted by taking the numerical factor to be 14 (Fig.14). 
Schmidbauer also produced a correction factor involving 9/R for Gruschwitz's shape-parameter equation: 
as far as I am aware this factor has never been used in boundary layer calculations or adapted to other 
shape-parameter equations although Thompson (92: 1965), who was aware of Schmidbauer's work, produced his 
own empirical modification of Head's entrainment equation to account for curvature effects, again using 
9/R as a parameter. 

After Schmidbauer's paper little more work appeared. Clauser and Clauser (93: 1937) investigated 
the effects of surface curvature on transition to turbulence in a boundary layer, finding that transition 
was delayed by convex curvature. Since, to the thin-shear-layer approximation, convex curvature does not 
affect two-dimensional Tollmien-Schlichting waves, the most obvious explanation is the effect of curvature 
on the three-dimensional disturbances occurring in the later stages of transition. However the pressure 
gradients in the experiment were not accurately zero and may have been at least partly responsible. The 
main interest in the experiment is that it was the first to include direct measurements of turbulence on 
curved surfaces by hot wire anemometers, showing that the intensity was greater on a concave surface than 
on a convex one (this does seem to be a valid conclusion despite the uncertainties about the transition 
behaviour). No quantitative deductions can be made. The work was done under Von Karman's guidance: 
however the only direct connection with the previous research was that the Clausers considered using 
Wattendorf's duct for their experiment but finally decided to build a larger rig. 

MacPhail (see Ref.24), working with Taylor, made what appear to have been rather unsatisfactory 
hot-wire measurements of turbulence in unstable rotating-cylinder flow: the experimental difficulties are 
of course considerable. Pai (85: report dated 1939, issued 1943) working with Von Karman, used hot wires 
to measure the mean velocity in unstable rotating-cylinder flow: Karman suggested that small hot-wire 
probes might be less sensitive than pitot probes to the interference effects found in Taylor's experiment. 
Pai says "At first it was thought that the flow.... would be two-dimensional except at the ends". 
However he found that two different velocity profiles could appear at a given axial position, depending on 
the starting sequence, and further investigation inferred, for the first time, the presence of patterns of 
streamwise (annular) vortices superimposed on the turbulent flow. It is still not entirely clear whether 
the existence of two alternative patterns of vortices was a fluke or whether the fully-turbulent cylinder 
flow invariably exhibits the multiple-state behaviour found in the laminar flow (71). Since the number of 
vortices is necessarily an integer, the flow between cylinders whose length is nearly (n + J) times the 
preferred width of a vortex may develop n vortices on one run and n + 1 on another. Pai also measured 
the root-mean-square intensity of the circumferential velocity fluctuations at different axial positions 
and the results help to confirm the presence of fixed large-scale circulations which transfer highly 
turbulent fluid from near the surfaces to the central part of the annulus. Pai did not analyse his results 
in sufficient detail to extract mixing-length behaviour or other quantitative information about the effect 
of curvature on the turbulence, and this work seems to be the end of the series of investigations inspired 
by Prandtl's 1929 paper. 

Darkness now descends, and the next explicit consideration of curvature effects that I have been 
able to find is Kreith's paper (94) of 1955 (following preliminary work reported at a conference in 1953) 
in which Wattendorf's results are used to estimate heat transfer in curved ducts. Kreith extracts the 
apparent eddy viscosity from Wattendorf's measurements and deduces the apparent eddy conductivity of heat 
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by using Reynolds'analogy, assuming that the turbulent Prandtl number is unaffected by curvature. Kreith 
extends Wattendorf's discussion of the choice of conserved quantity in the mixing length process and 
provisionally concludes that the "forced vortex parameter" U/R should be chosen. Authors still 
continued to engage in this discussion as late as 1969, but as it is now generally agreed that mixing 
length arguments are not quantitatively trustworthy I shall not reference the more recent discussions 
unless the paper has something else to offer. Kreith's measurements on a small duct with a height-to-
radius ratio of 1/12 show that the heat transfer through the concave wall was 1.4 times that through the 
convex wall, a slightly smaller factor than one would expect on the basis of Wattendorf's surface shear 
stress measurements, although it is unsafe to make a direct comparison of wall flux rates in a case like 
this. 

In the early 1950's interest in vortex flows arose. Einstein and Li (95: 1951) discussed vortex 
flows in general and Mabey (96: 1953) working with H.B, Squire, made measurements in a simulated trailing 
vortex in the prototype of the vortex tube used by many subsequent investigators: the swirl is introduced 
by vanes in a radial inlet followed by an axisymmetric flare with a short conical centrebody from which 
the vortex trails. The early work on vortices did not fully consider the direct effects of streamline 
curvature on turbulence and it was many years before a quantitative explanation for the observed Reynolds-
number dependence of this free turbulent flow was found, in terms of stabilization of a vortex core in 
solid-body rotation. The early work on confined vortex flows is briefly surveyed by Keyes (97) who 
performed some experiments at Oak Ridge National Laboratory, evidently with application to gas separation 
in nuclear fuel production. He produced an empirical correlation for eddy viscosity (assumed constant over 
the cross section) but again there was no consideration of curvature effects. Of course in such strongly 
rotating flows it is very difficult quantitatively to distinguish the stabilizing or destabilizing effects 
of curvature because there is no experimentally realizable comparison flow with the same rate of strain 
field but zero rotation. Therefore the early work on swirling flows will not be discussed in this section. 

In 1952 Wislicenus and Yeh of Johns Hopkins University proposed to the US Office of Naval Research 
a programme of work on flow in ducts and turbomachinery [l have not seen the contract proposal; it is 
referred to in Refs (98) and (99)]. The results included three of the first recognizably modern papers on 
curvature effects, based on hot-wire measurements and discussions of the Reynolds-stress transport 
equations — but none of the papers refers to Prandtl's work (although Eskinazi and Yeh compare Wattendorf's 
duct results with their own) and none yields any explicit formula for the change in Reynolds stress as a 
function of a curvature parameter. In an appendix to Traugott's paper (100) Yeh discusses the oscillation 
of a displaced element in a body of fluid in solid-body rotation and shows that its frequency is twice the 
rotational frequency (a result which we would now interpret as a value of 4 for the analogue of the 
gradient Richardson number): he refers to several previous papers on rotating flows but does not mention 
the connection with the Brunt-Vaisala frequency of a displaced element of fluid in a stratified field which 
is implicit in Prandtl's work. One can only speculate on the consequences if the Johns Hopkins group had 
made full use of the early work, especially the boundary-layer measurements of Wilcken and Schmidbauer: 
at the very least it would have become clear to them that the separating boundary layer measured in the 
late 1940s by Schubauer and Klebanoff (101) at the nearby National Bureau of Standards was greatly 
influenced by curvature effects, and in view of the popularity of this experiment as a foundation for 
calculation methods it is almost certain that the importance of curvature effects in typical boundary 
layers would have re-emerged at least ten years earlier than was in fact the case. 

Eskinazi and Yeh's measurements (98) were made in fully-developed flow in a duct with a straight 
entry section followed by a curved duct with a height of one-tenth of the outer radius. Intensities, 
spectra and microscales were measured. As in previous experiments on ducts and rotating cylinders the 
angular momentum was nearly constant over the central part of the flow, an infallible sign of vigorous 
mixing either by large eddies or by steady streamwise vortices, Eskinazi and Yeh, like Wattendorf (82) 
and Taylor (84) found no evidence of steady vortices, but their checks for three-dimensionality consisted 
simply of mean velocity traverses at three (unspecified) spanwise positions. It is of course inherently 
less likely that steady vortices will form in duct or boundary layer flow Chan in the rotating cylinder 
flow where any streamwise vorticity is fed back round the circumference, but the recent work of Johnston's 
group (10, 76, 79) has found near-steady vortices in a straight rotating duct at about the same curvature 
parameter as in Eskinazi and Yeh's experiment. We return to the question of longitudinal vortices in 
Section 5. Eskinazi and Yeh refer briefly to a possible collapse of their inner-layer velocity profiles 
on similarity axes and comment that "It is therefore to be expected that U/uT is a function not only of 
uTy/v but also of y/R or perhaps of some combinations of the two. Such functional relations are not 
however obvious at present." In fact, if inner layer similarity considerations are still valid in the 
presence of curvature the only possible form is 

JL . ffM.Sd], (62) 

and either Prandtl's mixing-length analysis or an alternative derivation of the curvature parameter would 
suggest that outside the viscous sublayer 
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The values of the function F (equal to S./Ky) derived from Eskinazi and Yeh's measurements by the 
present writer are plotted with Wattendorf's in Fig.13. Eskinazi and Yeh discuss the explicit extra terms 
in the Reynolds-stress transport equations. Unfortunately, as shown in Section 3, consideration only of 
the explicit extra terms leads to the same order-of-magnitude underestimate of curvature effects as 
classical mixing length theory. Traugott (100: 1958; unpublished report dated 1956) performed an 
interesting experiment on turbulence generated by a series of rotating grids. The grids, preceded by an 
impeller, also imposed solid-body rotation on the mean flow, confined in an annular duct whose walls also 
rotated (there is of course still a gradient of axial velocity near the walls). The radial component of 
velocity fluctuations in the central part of the annulus was significantly reduced by rotation, while the 
circumferential component was increased. Traugott discussed the extra 'Coriolis' production terms in the 
Reynolds-stress transport equations and measured the production and dissipation terms. The dissipation was 



deduced from measurements of the mean-square time derivatives of the three velocity components but the 
resulting values are too low by a factor of 2, presumably because of the usual deficiencies in spatial 
resolution or frequency response of the hot wj.re anemometer: Traugott blames the assumption of local 
isotropy — the microscale Reynolds number 7u 2 X/v was about 40 — but it seems unlikely that his limited 
use of the assumption could produce such large errors. The dissipation values were multiplied by the 
correction factor required to balance the turbulent energy equation in the non-rotating flow. It is 
probable that Eskinazi and Yeh's measured microscales were also in error but they did not deduce dissipation 
from them. In the rotating flow, the production terms act to reduce the difference between the radial and 
circumferential intensities u2 and ug in Traugott's notation so that the observed maintenance of a 
difference must be attributed to the effects of rotation on the pressure-strain terms or, less probably, 
on the anisotropy of the dissipating eddies. Traugott was not, of course, able to measure the pressure 
strain terms and he lumps them with the turbulent transport terms (also unmeasured, but probably small 
except near the walls) in his energy balances for each component. Traugott pointed out that the transport 
equations show that a shear stress in the plane of rotation, u u„, is produced if u2 i* u2.. This is 
unexpected_a priori, but simply results from rotation of the axes: if axes are rotated 45 deg, u u. 
becomes (u2 - u2)/2. 
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In the third of the Johns Hopkins experiments, Yeh (99: 1958) made measurements of the boundary 
layers on the walls of a stationary annular duct, fed with an axial "free-vortex" flow (negligible gradient 
of angular momentum outside the boundary layer) from a radial inlet like that used in Mabey's vortex tube. 
The helix angle near the outer wall was about 20 deg. Hot-wire measurements of turbulence intensity were 
made, and Yeh discussed the effect of the extra terms appearing in the Reynolds-stress transport equations 
in curvilinear coordinates. Yeh's turbulence measurements conclusively show an increase in intensity on 
the concave wall — twenty years after the Clausers' slightly dubious results — but changes in the Reynolds 
stress were not evaluated in terms of any curvature parameter. Yeh did not report any evidence for the 
presence of strearawise vortices. Longitudinal vortices were first found in boundary-layer flow by Tani 
(102) in 1962. 

Apparently the first attempt since Schmidbauer's to correct a complete shear-layer calculation 
method for the effects of curvature on the turbulence was the work of Thompson (92: 1965) mentioned above. 
The application was to aircraft wing sections so that only convex curvature was considered. Thompson 
reported improved agreement with experiments but at that date there were few suitable test cases in low-
speed flow. 

In the same year, a Euromech colloquium on the Coanda effect (103) considered not only the various 
Coanda phenomena but many other examples of laminar or turbulent curved shear layers. However, little 
mention was made of the direct effects of curvature on turbulence and no quantitative results were 
presented. There could be no better demonstration of the general unawareness of the importance of these 
effects. 

Another such demonstration, which this time caused considerable damage, was the series of 
experiments in the 1960's on supersonic boundary layers with a longitudinal pressure gradient induced by 
surface curvature. Neglecting the boundary layer displacement thickness we get 
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where the last approximation is based on typical values for a constant-pressure boundary layer at a free 
stream Mach number of 3. We can see that a pressure-gradient parameter of order unity implies a value of 
6/R of the order of 50, leading to changes in apparent mixing length of the order of 50 per cent in the 
outer layer. Clearly there will be large differences in the behaviour of a boundary layer with a pressure 
gradient induced by surface curvature and one with an equal pressure gradient induced by incoming Mach 
waves. Because it was generally more convenient, especially in small wind tunnels, to measure the boundary 
layer on a curved centrebody or on a curved ramp on the sidewall rather than insert a body in the tunnel 
to induce a pressure gradient on the sidewall, experiments were done in the former fashion and used, or 
intended for use, in development of calculation methods to be applied indiscriminately on curved or plane 
surfaces. It is of course true that most external flows occurring in aeronautics have pressure gradients 
induced by curvature but this is certainly not true of internal flows in intakes and turbomachines and in 
any case one ought to distinguish the two. However the main result of the experiments of the 1960s was to 
create confusion, which can now be seen to have been worse confounded by the direct effects of dilatation 
on the turbulence mentioned in Section 3 (which in the case of boundary layers with pressure gradients 
induced mainly by curvature tend to reinforce the direct effects of curvature). Supersonic boundary layers 
on curved surfaces will be discussed in Section 6. 

The "Coanda effect" [Coanda (1932) quoted by Newman (104) and Fernholz (105), but see also Reynolds 
(1870) quoted by Newman, and others quoted by Wille and Fernholz] is defined in different ways by different 
people (see Section 7). Here our interest is in the increased mixing rate in turbulent wall jets on 
convex surfaces. Most of M. Coanda's devices rely on this phenomenon, but he was an engineer rather than 
a research worker and therefore made use of it without expending his time on establishing its fundamental 
causes. It is interesting to note that the first basic research work on wall jets on plane surfaces by 
Fbrthmann (106) did not appear until 1934: evidently neither Coanda's invention nor Prandtl's analysis 
prompted Fbrthmann to extend his work to curved surfaces. Newman (104) and Bradshaw and Gee (107), 
reporting their own measurements on curved wall jets, found no earlier work to quote. Von Glahn (108) 
reporting applications to blown-flap schemes, refers only to a paper by Metral, which I have not seen but 
which appears to be a discussion of the principle of operation of Coanda's devices. Another paper by 
Metral (109) discusses the inviscid aspects, and a general discussion of the several Coanda phenomena and 
of the early work is given by Metral and Zerner (86). It is fair to say that practical applications and 
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basic research remained separate until aeronautical interest in blown flaps led to applications in a 
research-oriented industry. 

Bradshaw and Gee (107) briefly discussed the possibility of centrifugal instability of the 
turbulence leading to (supposedly unsteady) longitudinal vortex eddies in the convex wall jet, but 
measurements of spanwise correlations of the radial velocity fluctuation showed no trace of vortex eddies: 
it was not seriously supposed that steady longitudinal vortices would exist in such a highly-turbulent flow 
and indeed they have never yet been observed in jet flows. 

Sawyer (110) described work on curved free jets: here the practical applications are to jet-flap 
schemes and to various jet—reattachment situations, and of course the shear-layer curvature is not directly 
specified by a solid boundary. The convex side of a curved jet is unstable and the concave side stable: 
any net influence of curvature or growth rate is therefore the result of non-linear effects: Sawyer indeed 
observed a net increase in growth rate. In his analysis. Sawyer followed Prandtl's 1929 mixing length 
arguments — to which he refers — in spirit, but used 2(U/r)/(3U/3y) as a curvature parameter: to first 
order this is twice Prandtl's 9j and therefore the correct analogue of the Richardson number. Sawyer's 
final correction formula applies to the eddy viscosity rather than the mixing length but to first order it 
is equal to an F-factor correction to the mixing length 

F - l - o(U/r)/(3U/3y) (66) 

with a an empirical constant, chosen to fit experiments rather than derived from mixing length arguments. 
Giles, Hays and Sawyer (111: 1966) extended Sawyer's work to wall jets on concave and convex logarithmic 
spiral surfaces, chosen to obtain a constant value of 6/R and thus a closely self-preserving flow: most 
other investigators have used circular-arc surfaces from which the wall jet separates after a turning angle 
of the order of 180 deg. Very large decreases or increases in growth rate were observed, though increases 
in growth rate for very large positive 6/R may not be attributable solely to direct effects of curvature 
because the thin-shear-layer approximation is no longer valid and pressure gradients and normal-stress 
gradients may have some effect (Section 2.2). Giles et al. reported limited turbulence measurements but 
did not discuss the turbulence structure in detail. 

Stratford, Jawor and Golesworthy (112: 1962) also discussed curvature effects on mixing layers and 
independently derived the first-order analogue of the Richardson number by classical mixing length 
arguments. Insertion of plausible data for the velocity profile leads them to 
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where b is the width of the mixing layer. They comment that mixing length arguments cannot be trusted to 
predict curvature effects quantitatively so that the above formula "should really contain a coefficient of 
ignorance". However they found it to be in fair agreement with a number of experiments for b/R of the 
order of 0.25 (though the effects predicted are very much smaller than those found in wall jets by Giles 
et al. and other workers). In a later paper, Stratford, Jawor and Smith (113: 1964) extend the analysis to 
the mixing of streams of different density and obtain the Richardson number analogue with the total-
pressure gradient in the numerator, a form which applies (Section 5.1) to compressible or incompressible 
flows. They discuss mechanisms by which curvature could affect spreading rate even if the two streams had 
the same total pressure (but different density and velocity) but the arguments are not conclusive and even 
today there are no data on such flows. 

It is convenient to terminate this historical survey before the revival of widespread interest in 
curvature effects, so that most of the work that contributes to our current knowledge can be discussed 
separately for each type of shear layer. I have therefore omitted, or mentioned only briefly, the work 
done by the research groups Chat led the revival, notably at McGill and Cambridge. 

5. DESCRIPTION OF CURVATURE EFFECTS 

5 . 1 PARAMETERS FOR TWO-DIMENSIONAL FLOWS 

At least in simple cases, the rate-of-strain ratio, (3V/3x)/(3U/3y) in (x,y) coordinates, is an 
adequate parameter to describe curvature effects on the turbulence. However, it is restricted, in the form 
given here, to two-dimensional flow; like any parameter based solely on the mean strain field, it implies 
local equilibrium between the mean strain field and the turbulence; and the choice of the denominator, 
like the choice of the rate of strain to be used in the mixing length formula, is not unique. A discussion 
of alternative parameters, following the treatment by Prandtl mentioned in Section 4, is helpful in 
illuminating the phenomena, the behaviour of the extra terms in the Reynolds-stress transport equations, 
and the analogy between curvature and buoyancy effects. Much of the discussion is based on the analogy, 
which allows us to make use of half a century of meteorological experience (114, 115) and even to use 
meteorological data for quantitative prediction of curvature effects. We shall see that the various 
parameters defined by analogy with those used in meteorology become equal to twice the rate-of-strain ratio 
in the case of small curvature effects and approximate local equilibrium (the factor of two is a 
consequence of arbitrary definition and not an "analogy factor"). For purposes of deriving F-factors 
(Section 3) for flows with small curvature effects any parameter can therefore be used; the most convenient 
choice may differ between different flows and between different calculation methods. In cases of large 
curvature effects the more realistic parameters are linked by the Reynolds-stress transport equations so 
that if information about the terms in these equations is generated by the calculation method the choice of 
parameter ia still arbitrary, although a comparison is instructive. Certain difficulties arise in three-
dimensional flows and we postpone consideration of these until Section 5.2. 

Before discussing the parameters we must justify the analogy between the physical processes. As 
mentioned in Section 4 there is an exact correspondence between the equations of motion and stability for 
certain buoyant laminar flows and curved laminar flows, but this is no guarantee of a general correspondence 
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for turbulent flows. However, a more acceptable justification comes from considering the fluctuating body 
forces in the two cases. (i) An element of fluid in a buoyant flow which has a density higher by an amount 
p' than the mean density p experiences a force of -p'g/p per unit mass in the vertical direction, 
(ii) An element of fluid in a curved flow which has a velocity higher by u than the mean velocity U 
experiences an apparent "centrifugal" force (in excess of the mean "centrifugal" force balanced by the mean 
radial pressure gradient) of ((U • u ) 2 - U2)/R<5* 2 Uu/R in the outward direction. (iii) In a density-
stratified shear layer (whether in a gravitational field or not)_the coefficient of correlation between 
the density fluctuation and the velocity fluctuation, p'u/(p_i^ u2)*/ 2, is numerically as high as 0.9 
(116, 117). Statement (iii) justifies the Reynolds analogy between momentum transfer and heat transfer 
(density and temperature fluctuations being perfectly anticorrelated in a low-speed flow and very highly 
anticorrelated even in high-speed flow): the "Reynolds analogy factor" is not exactly unity, partly 
because the correlation coefficient in (iii) is not exactly unity. Statements (i)-(iii) together justify 
the analogy between curvature and buoyancy effects replacing the fluctuating gravitational force 
proportional to p' by a fluctuating centrifugal force proportional to u. Clearly we must again expect 
an "analogy factor" slightly different from unity although the accuracy of data for buoyant or curved 
flows is not high enough for the difference to appear at present. Note that the "mixing length" concepts 
implicit in the above analysis are used symmetrically for buoyancy and for curvature and their shortcomings 
should not seriously affect the argument. 

The dimensionless parameters used to describe buoyancy effects are of two types. One type uses the 
easy concept of oscillation of an element of fluid displaced in the direction of the buoyancy force and the 
other is based on the extra buoyancy terms in the Reynolds-stress transport equations. Analogies to both 
can be constructed in curved flows and in addition we have the rate-of-strain ratio, which has no exact 
equivalent in buoyant flows. 

The three common buoyancy parameters, appropriate to a simple shear layer in the x,y plane with the 
gravitational acceleration in the negative y direction, are 
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where the Brunt-VaisSla frequency uRV» the circular frequency of oscillation of a displaced element of 
fluid, was given in Eq(5), 
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v-component energy production due to body force 
Lmo I 

(70) 
L ( viscous dissipation ; 

where L is the dissipation length parameter, (-uv)3/2/(viscous dissipation), K is the von Karman 
constant, 0.41 approximately, and L is a length defined by Eq(70) itself. 

The definitions have been written in a form applicable to curved flows as well as buoyancy. They 
are to some extent arbitrary (we could have chosen total production for the denominator of Rf, and the 
factor of K in Eq(70) was introduced so that the parameter reduces, in the inner layer of a wall flow, 
to the familiar parameter y l \ , 0 used in studies of the atmospheric surface layer), Wc now derive each 
parameter, with its analogue for curved flow enclosed in quotation marks to prevent confusion. A suitable 
choice for a typical frequency of the turbulence in Eq(51) is the mean velocity gradient 3U/3y, equal in 
the local-equilibrium approximation for a non-buoyant thin shear layer to (-uv)*'2/L where L is the 
dissipation length parameter a typical length scale of the energy-containing eddies, (-uv)1'2/!, is 
certainly a typical frequency of the turbulence, and also a typical root-mean-square fluctuating strain 
rate: it is to be preferred to 3U/3y if the two are different. The gradient Richardson number is 

I L 2 , - I r ' 

•"BV g 3P /fsu Ri • ^ • -t*/i*s (71) 

This, like all the other parameters mentioned here, is positive in a stable flow, negative in an unstable 
flow. Ri - 0 implies neutral conditions. 

In curved flow the analogue of the Brunt-Vaisala frequency was derived in Eq(4), and the analogue of 
the gradient Richardson number, using (s,n) coordinates with n + R = r, is 

"Ri" * f, ( m ) / [W 
which for large radii of curvature becomes 

Ri - l|/g (73) 

or -2(3V/3x)/(3U/3y) in rectangular Cartesian coordinates, and is therefore just twice the rate of strain 
ratio; the difference can be absorbed in any empirical constant. Note that, just as Wattendorf (Section 
4) was uncertain whether to choose 3U/3r, 3U/3r + U/r or 3U/3r - U/r as the velocity gradient in the 
definition of mixing length I , there is a similar uncertainty in the choice of the denominator for the 
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gradient Richardson number, as can be seen if we equate it to (-uv)/J.2 as authorized by the local-
equilibrium approximation. Since the effects of curvature on the turbulence are large, the local-
equilibrium approach embodied in the derivation of Richardson number is likely to be valid only for fairly 
small Richardson number — that is, for U/r « 3U/3r — so that the differences between the three choices 
for the denominator is negligible. We need to be more careful about the numerator, whose sign indicates 
the sense of stability. 

The gradient Richardson number was historically the first parameter used to describe buoyant flow 
(88): a less obvious parameter, but one whose derivation is more relevant to the present approach based 
on the Reynolds-stress transport equations, and which is more convenient in three-dimensional flows where 
the evaluation of ujgy becomes complicated, is the flux Richardson number Rf. It is so called because 
it is based on the "buoyancy flux" g p'v instead of the buoyancy gradient g 3p/3y. From Eq(69) we 
derive 

Rf - ("g pTv/1*»)/(S» 3U/3y) (74) 

Ri and Rf become almost equal in local equilibrium and for small buoyancy effect, where we can use 
almost the same mixing length to describe p'v and uv. The curved-flow analogue of Rf requires a 
little thought because, as mentioned in Section 2.4, ̂ he extra rate of strain U/r contributes to the 
production terms in the equations for Du2/Dt and Dv2/Dt in (s,n) coordinates though in rectangular 
Cartesian coordinates it contributes only to Dv2/Dt: the difference comes from the rotation of axes seen 
by an observer moving with the mean flow. In (x,y) coordinates 

- -uv g + ... (75) 

3V 

- - S9 |1 • ... (76) 

H. — U 

• + uv — 
r 

while in (s,n) coordinates, writing dn - dr as well as r - n + R 

Dju2 — au — u ,,,, 
Dt " uv i7 " uv 7 (77) 

D3V2 _ u 
— - * 2 u v 7 (78) 

The ambiguity in the denominator of Eq(69), like the ambiguity in the denominator of "Ri", will simply 
introduce a factor of order f into the dimensionless parameter and can be disregarded. Likewise we 
disregard any higher-order production terms like v2 3V/3y: local parameters such as these will be valid 
only in fairly thin shear layers. However we must decide whether to class as "production" the rotation-
of-axis term -uv U/r which appears, with opposite signs, in Eq(77) and Eq(78), or to define "Rf" with 
reference to rectilinear (x,y) coordinates. We choose (s,n) coordinates, giving the form first 
suggested by Wyngaard (118) 

2-S. 
r 2 U 

"R," - - (79) 
f 3U U 3 , , 

^ + 7 te ( u r ) 

which has the advantages of reducing to "Ri" if U/r « 3U/3r and of referring to a system of coordinates 
in which a thin shear layer remains thin (this does not of course commit us to using (s,n) coordinates 
in a numerical calculation: we are discussing systems of axes only as an aid to deriving a physically 
meaningful parameter). Note that the alternative choice, (3V/3x)/(3U/3y), is just the rate-of-strain 
ratio, and that if we had chosen the denominator of "Ri" as (3U/3r + U/r)2, "Ri" and "Rf" would 
always be equal. With the present definitions Ri goes to zero and Rf goes to infinity if the angular 
momentum is constant or the mean vorticity is zero. If this condition occurs at the edge of a turbulent 
flow it presumably implies neutral stability, whereas if it occurs within the turbulence it implies 
vigorous large-scale mixing, so that the different behaviour of the parameters is at least mnemonic for 
these two different situations: analogous situations occur in meteorology: Ri - 0 in "free convection". 
Note that confusion exists in the literature (119, 120) about the phenomenon of "vorticity expulsion" — 
that is, the tendency to constant angular momentum: it certainly occurs in strongly unstable flows such 
as highly-curved ducts (82, 98) but published discussions appear to refer to stable flows, to confuse the 
radial and axial components of vorticity, and to draw no distinction between suppression of turbulence and 
expulsion of mean vorticity. Lezius and Johnston (76) suggest that the denominator of the Richardson 
numbers should be chosen as some average value of velocity gradient, rather than the local value, so as to 
avoid difficulties at velocity extrema within duct or wall jet flows. However, if one regards internal 
velocity extrema as associated with two interacting — and approximately superposable — shear layers it 
becomes clear that the free-edge problem and the internal-extremum problem are related, and that what is 
wanted is a better choice of "typical turbulence frequency" than 3U/3r. 

To the local-equilibrium approximation the turbulent energy equation for buoyant or curved flows 
can be written as 

(u2 production)(1 - Rf) » dissipation - e (80) 

so that 1 - Rf plays the role of an f-factor. Other types of Richardson number could be defined by 
reference to, say, the shear-stress transport equation (91); like the alternative definitions of length 
scale L mentioned in Section 2, they differ only by ratios of Reynolds stresses and add little to the 
definition based on the turbulent energy equation. 
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In buoyant flows the Monin-Obukhov length, sometimes called the "Lettau-Monin-Obukhov" length, can 
be seen from Eqs (69), (70) and (74) to be 

(-Cv)3/2 /g pM; 

and if the flow is in local equilibrium so that total production equals dissipation, Eqs (70) and (80) show 
that 

L/K Rf 

Lmo 1 " Rf 
(82) 

so that in local equilibrium and with small curvature effects the three buoyancy parameters Ri, R, and 
(L/KJ/LJJQ become equal. The curved-flow analogue of L-j.0 is 

(-uv)3/2 , t (-uv)1/2 

"Lmo" " - ^ T — (v2-production) - *£ C - ^ — (83) 

(which is of the order of 0.05r in the central part of a typical boundary layer) so that 

L/K 2 U /(-uv)1''2 

IIT II 
L'mo 

U /(-u\i 

r/ ~ 
(84) 

which once more becomes equal to "Ri" and "Rf" in local equilibrium and with small curvature effects 
because we can equate (-uv)1'2/L and 3U/3r by the mixing length formula Eq(27), It is not immediately 
obvious how (-uv)1/2/L behaves at the edge of a shear layer where the angular momentum gradient goes to 
zero so that Ri • 0 and Rf •* •». Since the flow is intermittently turbulent the most realistic measure 
of turbulence frequency is based on averages within the turbulent fluid only, but it turns out that the 
intermittency factor cancels out of (-uv)1/2/L so that its conventional average is the same as the 
average within the turbulent fluid. Arguments can be produced in favour of constancy near the edge of a 
shear layer or tendency to zero, but not for tendency to infinity. Therefore it seems that (L/KJ/L^Q 
will probably not tend to zero. 

Now in a curved layer the local-equilibrium version of the turbulent energy equation, divided by 
-uv, is 

[g . H) - t ^ 
To the local-equilibrium approximation we can therefore write all the curved-flow parameters in terms of 
the simple parameter 

_ f3V/3x] _ _UAr_ m _ U/r 

Uu/3yJ 3U/3r (-G7)1/2/L 
as 

Ri - 2S(1 + S) (87) 

L/K 
Rf - Y — - 2S/(1 + S) (88) 
i Hno 

so to first order all the parameters are equal to 2S. In a curved flow which is not in local equilibrium 
the error involved in using local-equilibrium formulae for curvature corrections is probably minimised by 
using Eq(84), in which the extra rate of strain is divided by a typical root-mean-square fluctuating rate 
of strain. Near the free edge of a shear layer none of these local-equilibrium parameters is completely 
satisfactory: this is a reminder, if not a consequence, of the fact that the flow in this region is 
controlled by turbulent transport from the interior rather than by local generation or destruction of 
Reynolds stress. 

The z-component mean vorticity, Z = -(3U/3r + U/r), and the total rate of shear strain in the 
(s,n) plane, A I (3U/3r - U/r), are equal and opposite in a simple shear layer. Therefore 1 + A/Z is 
a prima facie plausible curvature parameter: it is of course equal to Rf, Again, a plausible curvature 
parameter is the ratio of the static pressure gradient in the radial direction to the total pressure 
gradient in the radial direction: this is 

U2/r 

U2/r + U 3U/3r 
which is equal to Rf/2. Slightly different but equally plausible definitions would have given parameters 
equal to 2S and S respectively. These different derivations of essentially the same parameter are 
something more than an academic exercise: the different physical concepts may be separately useful and it 
is helpful to establish the mathematical relation between them. 

In flows analysed in rectangular Cartesian coordinates rotating at angular velocity Sl, the equations 
of motion contain an apparent body force, the Coriolis force 2 U x n. Note that we use the usual sign 
convention that positive Sl means anticlockwise rotation (the positive x axis follows the positive y 
axis): the opposite convention, adopted in the simple cases discussed in Rcf.(91) so that Sl should have 
the same sign as U2/r, is confusing in more complicated cases. In the present convention, positive Q 
destabilizes a shear layer with positive 3U/3y. Note also that the stability of the flow is not affected 
by the axes used to analyse it: it is merely a convenience to choose axes in which the flow is statistically 
steady or has one or more velocity components zero. The above analysis can be repeated with the following 
results, where Sl is the component of Sl normal to the (x,y) plane. 
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2 f3U 1 
Brunt-Vaisala frequency nly - -20 hj 20 

Gradient Richardson number Ri » -20 — - 20 / — 

u-component production term - uv(3U/3y - 20) 

v-component production term uv . 20 

Flux Richardson number -2uv0 /uv T 20 

Monin Obukhov length L ^ - -(-uv) 1'/2/2flK 

/(-uv)1/2 

(L/K)/!™ - - 20 / V — 

(89) 

The three dimensionless parameters become equal to -20/(3U/3y) or -20/((-uv)l/2/L) in the local-
equilibrium approximation when the speed of rotation is small. The analogue of buoyant convection occurs 
when the absolute vorticity 3U/3y - 20 is zero and Rf • «. Clearly there is a close relation between 
the parameters for curved flow analysed in fixed axes and rotating flows which are plane in rotating axes: 
to first order, 20 replaces 2U/r, and the higher-order differences are all extra terms with coefficients 
of order unity, not, for once, of order 10. 

In curved flow with radial density gradients the Brunt-ViisaiH frequency becomes more complicated. 
The general form can be deduced from the displaced-element arguments of Thomann (4): the motion of the 
displaced element is assumed to be adiabatic which adds a further implausibility to the original Von Karman 
analysis. We find 

2 
"BV •7K * ' ? (• • ^ - J " ?*S (90) 

where M is the Mach number, U/(speed of sound) = U//((Y-l)cpT), which is obviously negligible in low 
speed flow. Our sign convention for r is opposite to Thomann's. Eq(90) can be rearranged in terms of 
the density gradient using the gas law and the radial-equilibrium equation 3p/3r » pU2/r, to give 

2 
"BV r 3r Sl'-fl U2 -L ai 

p 3r 
(91) 

If the Mach number is low, we get 

2 
"BV r^ r" <P "2r2) 

pr* 3r 

(92) 

The stability criterion for inviscid variable-density flow originally due to Synge (121) is that this form of 
uigv shall be positive: we note that this criterion is valid only at low Mach numbers because density 
changes due to pressure changes are neglected. If the total temperature of the flow, 
T + U2/(2cp) = T(l + (y-l)M2/2), is constant, which is a good approximation in boundary layers on 
adiabatic walls, we get 

.J, - ' •) (i * - f *1 £ m 

the form given by Bradshaw (91). An equivalent expression is 

2 
"BV 

_2_ 3Pl 

,Pr 3rJ 
(94) 

where P is the total pressure, p(l + (y-l)M2/2) : compare Eq(4b). The gradient Richardson number 
can again be defined as u)|v/(au/3r)

2. The flux Richardson number can be deduced from the transport 
equations for u2 and v2 for compressible flow given by Rotta. A new production term p'v U2/r appears, 
where p' is the density fluctuation: it can be explained as the product of the radial turbulent mass 
flux and the mean radial acceleration, which is a rate of doing work. We obtain 

- (extra v2 -production) 

-i2 -, total u* -production 

r) (95) 

and the "strong Reynolds analogy" of Morkovin (122) allows us to write, approximately, for flows with 
constant total temperature (adiabatic flows) 

p_̂  (Y-l)M
2u_ 

? U 
(96) 

where M is the local Mach number, so that to a good approximation the compressibility factor in Eq(95) 
can be written as 1 + (y-l)M2/2 in agreement with Eq(93). Rotta's factor 1 *> (y-l)M2, which he did not 
specifically apply to a curvature parameter, is derived from the total production terms in the turbulent 
energy equation rather than from the separate contribution to v2". The present analysis seems preferable 
if only for reasons of consistency with the foregoing treatment in general and Eq(90) in particular, but 
one has to conclude that the effects of compressibility are not certain and must be elucidated by 
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experiment, even in adiabatic flows. In boundary layers with heat transfer the strong Reynolds analogy 
gives 

o' -, u f Pr Qw1 n u cn3T/3r 
•2- - (Y-DM 2 - i + — 2 - - (y-l)M2 - . _ E _ 
P " [ U TwJ U U3U/3r 

ij 3T/3r 

~ T 3U/3r 

(97) 

where 0^ is the rate of heat transfer from the surface to the fluid and Pr is the molecular Prandtl 
number,and for want of more reliable data this could be used in the compressibility factor in Eq(95). 
However the Crocco temperature profile, another consequence of Eq(96), is apparently not reliable for flows 
with heat transfer. It is interesting to note that 3U/3r times the numerator of Rf [using the last 
element of Eq(97)] is equal to OJJV in Eq(90) without the term in U2/r2. Once more, therefore, the 
gradient and flux Richardson numbers, obtained by different arguments, agree to the first order in 
curvature effects, being equal, to this order, to 

iL f-i 1 UST/arl / 
r I 2 T3U/3rJ/ 

In compressible flow, the parameter (L/K) /LQO becomes 

L/K extra v2 -production 
L,,,,-. dissipation 

2 £ 
R 

1 pT Ul /(-uv)1/2 
1 + 2 J m I / — ^8) 

where any of the elements of Eq(97) can be used to evaluate the compressibility factor in parentheses: it 
becomes (1 + (y-l)M2/2) on an adiabatic wall. (L/K)/!^. is again probably the most meaningful parameter 
if the local-equilibrium approximation fails. 

It is interesting to note that the contribution of the density gradient to uiBV in Eq(91) is equal 
to ugy in a buoyant flow with the gravitational acceleration g replaced by the centripetal acceleration 
U2/R (note change of sign). Beer et al. (123) used this as the only term in the numerator of a 
"Richardson number" for analysing the stability of swirling flames, but — taking the case of low-speed flow 
in solid-body rotation (U • r) for the sake of example — we find that its ratio to the sum of the other 
contributions to the Brunt-Vaisala frequency in Eq(91) is 

1 £ 3£ 
? P 3r ±4 

which will be less than unity unless p varies more rapidly than r . Fahlbusch (124) , discussing curved 
flows with density (temperature) differences, also uses a "Richardson number" based solely on the density 
gradient with g replaced by U2/r. We note the useful property of the displaced-element analysis: 
different contributions to the force on the element in the direction of its displacement can simply be 
summed, so that contributions to (u-,-, can also be summed. Correspondingly, of course, different 
contributions to the v^ production in the numerator of Rf, Eq(69), can also be summed. A common 
example of multiple contributions to the numerators of Ri or Rf is curved flow in rotating axes. If 
the mean shear, curvature and rotation lie in the same plane, as in the case of flow over the curved 
rotating blades of a radial-flow turbomachine, no difficulties arise, and we get, for example. 

(8 - H •4 • * 7 i T < M - ! 

and to first order all the parameters become 

• H 2ir 
Ri " Rf " 1 £ " "iuTir-

5 . 2 PARAMETERS FOR THREE-DIMENSIONAL FLOWS 

Flows in which the plane of the mean shear, the plane of curvature of the streamline and the plane of 
rotation of the axes (if any) do not all coincide present greater difficulties. As a general rule the 
displaced-element analysis is more complicated in such cases than the analysis based on Reynolds-stress 
transport equations, and its physical meaning is not always clear. For instance, if the plane of the mean 
shear does not coincide with the plane of curvature of the streamlines (which is also the nominal plane of 
oscillation of a displaced element) it is not immediately obvious whether the gradient Richardson number 
should be based entirely on velocity and curvature in the plane of curvature or whether the denominator 
should still contain the resultant mean shear. In cases such as linearly-growing axisymmetric swirling 
shear layers the plane of curvature of the streamline is still normal to the surfaces containing the shear 
layer [Fig.15(a)] so that the motion of a displaced element is still relevant to the transfer of momentum 
normal to the shear layer, but in more general three-dimensional flows such as those on swept wings the 
streamline curvature may have a component in the surfaces containing the shear layer and it is not obvious 
how the "centrifugal force" should be resolved. 

Therefore we will abandon the gradient Richardson number and analyse three-dimensional flows in 
terms of the flux Richardson number 
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v̂  production 

of u2 and w* production 
(101) 

where in all our systems of axes the v component is normal to the plane of the shear layer and the main 
Reynolds-stress gradients are the gradients of uv and vw in the direction of v. There remains the 
problem of partitioning the effects of curvature between uv and vw: virtually the only simple and 
plausible hypothesis (an echo of displaced-element ideas) is that the effect of curvature is to alter the 
mean product of v with the velocity component along the streamline, so that the effect on vw is to the 
effect on uv as W is to U. Bradshaw (125) implied that the effect of curvature was a change in 
magnitude of the shear stress without change in direction, which is less plausible. The present hypothesis 
may provide a partial explanation of the measurements of Johnston (126) in the unstably-curved flow up a 
swept step: he found that the shear stress vector skewed in the same direction as the velocity, rather 
than in the same direction as the velocity gradient as would normally be expected. There are virtually no 
other data suitable for checking this hypothesis: note that the "effect on shear stress" may be an 
alteration to a term in the transport equation rather than a factor on the shear stress itself, depending 
on what calculation method is being used. 

In (x,r,6) coordinates (without the restriction of axisymmetry) the transport equations given by 
Rodi (17) lead to 

2U.0 a. 
r i 3x^ 

Rf " 3U , 3W -5 V W 
u.u + u.w + w*1 — + vw — 

(102) 

3x, ax-

where the terms in ujr are summed over all three values of i, and where as in two dimensions we have 
counted the "rotation-of-axis" terms as production. To the axisymmetric slender-shear-layer approximation, 
implying 3/3r » 3/3x and 3/39 - 0, this becomes 

2 -H. vw 
r 

2 H vw 
r 

f 3U 3W _ W — 3U vw 3 ,., . 
uv — + vw — +vw — uv — + — — (Wr) 

3r 3r r 3r r 3r 

(103) 

In local equilibrium Vw/uv 
to this approximation 

(3W/3r)/(3U/3r), and for small curvature effects W/r « 3W/3r, so that 

W 3W 
r 3r 

(If 
which is the first approximation to 

the gradient Richardson number 2*1 

(104) 

(Wr) 

Ri -

[if * isr 
(105) 

2 
with logy evaluated from the circumferential motion only and with the denominator put equal to the square 
of the resultant (not only circumferential) mean shear. This can be regarded as a justification for 
deriving Ri from a displaced-element analysis in the manner indicated, a derivation used on the basis of 
intuition by Bradshaw (125) for the boundary layer on an infinite swept wing and by Bradshaw (91) and Cham 
and Head (127) for the boundary layer on a rotating cylinder in an axial non-rotating stream. Another, 
less satisfactory, justification is that uniform translation in the axial direction obviously leaves the 
two-dimensional result for oigy unaltered since there is no component of curvature in the axial direction, 
and that radial variation of the axial velocity ought not to have much effect. Howard and Gupta (39) 
derive Ri for swirling flows from a rigorous consideration of the inviscid instability equations: for 
the case of axisymmetric disturbances the denominator of their version of Ri is (3W/3r)2 only, but it 
does not of course have the significance of the square of a turbulence frequency. 

The "three-dimensional" form of the mixing length formula [actually Eq(27) rewritten in oblique 
axes] is 

3£ -uv 
3r 

aw 
3r 

M 1 / ^ 
-vw 

M1/2!* 

(106) 

where I2 - (uv)2 + (vw); (107) 

and the magnitude sign on T will be omitted henceforth. Using this we can rewrite Eq(104) as 

2 I vw 

T3/2/L 
(108) 

which is probably the most convenient form for axisymmetric swirling flows. For flow over infinite swept 
wings and other cases in which the shear layer lies in a cylindrical surface [Fig,15(b)] we can rewrite 
Eq(108) in (s,n,z) coordinates with z measured along the straight generators and r 5 n + R; 
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-2-^uv 
Rf - ; (109) 
f T3/2/L 

Note that the formula does not contain dR/ds and is therefore nominally valid even when dR/ds is non­
zero. Note also that the denominator of Eq(108) (the energy dissipation) is probably a more meaningful 
quantity than the denominator of Eq(103) (the u^ and v? production) if the two differ greatly because 
of large departures from local equilibrium; in effect, Eq(108) is (L/K)/Lmo [compare Eq(84)], The 
"exact" form of Ri for a cylindrical surface is given on p.437 of Ref.125: it reduces to Eq(109) on using 
Eq(106); the approximation to Ri given in Ref.125 results from using Eq(27) directly and is accurate 
only when T is nearly normal to the generators. 

The case of a shear layer with compound curvature such as a boundary layer on a surface of general 
curvature [Fig.15(c)] presents a further difficulty of principle already encountered in two dimensions: 
what axes should we choose for evaluating R^? Note that we cannot simply choose arbitrary orthogonal 
coordinates in the surface, s and z say, and generalize the numerator of (109) to 

U uv + W 
*• Rs n + Rz 

where R_ and Rz are the "radii of curvature" of the s and z axes, because these radii are normal 
to the surface only if the surface is developable. The normal to the surface that passes through the 
streamline will clearly have different directions at different positions along the streamline: it will 
rotate in the plane containing itself and the streamline because of the curvature of the streamline, just 
as the n-axis rotates in two-dimensional (s,n) coordinates, but it will also rotate normal to this 
plane. We will call this the "torsion" effect: note that it is not exactly the torsion of the streamline. 
If the production term in the numerator of Rf refers to the fluctuating velocity component along the 
normal to the surface, the torsion will give rise to extra rotation-of-axis contributions of the type which 
we have hitherto grouped with the true production. These are not mere geometrical difficulties but 
reflect a real gap in our knowledge of turbulence: does streamline torsion, as well as streamline 
curvature, produce effects of order F on the turbulence? The problem can be disguised in the case of 
axisymmetric swirling flows and other shear layers lying in developable surfaces, because a system of axes 
in which the torsion is zero can be set up, as was done in the analysis leading to Eqs (108) and (109). 
However the torsion in the streamline axes discussed above is still finite, so that although R, can be 
satisfactorily defined for developable flows it is not certain that F-factors derived from experiments on 
the corresponding two-dimensional flows can be immediately applied. Most of the aeronautical flows whose 
response to streamline curvature we can reasonably hope to predict are nearly developable, so that a simple 
rule which has the advantage of consistency with the above analysis for developable flows is to evaluate 
Rf by using Eq(109) with s in the direction that makes U/R (strictly, U/r) a maximum, where R is 
the radius of curvature of the intersection of the surface and a plane normal to the surface and tangent 
to the streamline. In effect, since we seek a parameter to describe the effect of an extra rate of strain 
we choose the larger principal value of the extra rate of strain, at least in dealing with flows in which 
the smaller principal value is small. If x and z are arbitrary orthogonal coordinates in a developable 
surface, K^ and Rz the radii of curvature in these directions and U' and W' the mean velocity 
components, then the radius of curvature R and mean velocity U in any chosen s direction are related 
by 

U2 U'2 w'2 

3 - m 2— a 2L-. (no) 
R *x R

Z 

and if Rz » Rx the maximum value of U/R will usually occur when s is close to x unless U' happens 
to be small. Finally we note that if the directions of the shear stress, velocity and velocity gradient 
coincide any system of coordinates gives the same result in the simple formulae like Eq(104) and Eq(109), 
by virtue of Eq(110), so that in mildly three-dimensional flows the uncertainties discussed above are 
unimportant. 

In compressible flows, we can multiply the simple three-dimensional formulae by the compressibility 
factors used in two dimensions (e.g. Eq 95). Fresh agonies of indecision arise over the choice of axes 
but it is again unimportant in mildly three-dimensional flows so that the axes used for the main part of 
R, may be retained. Note that Eq(96) becomes 

B ! = ( r " 1 } ("u + **») (xii) 
P a2 

so that the final result for a three-dimensional, compressible, adiabatic flow, with the axes chosen to 

maximise U/R, is , , . , , 

Rf - — L _ i Lif! ~—^± (112) 
f T3/2/L 

where a is the local speed of sound and x2 • (uv)2 + (vw)2. Clearly, if the velocity and shear stress 
vectors are in the same direction the compressibility factor becomes 1 + (y-l)M2/2, where M is the 
resultant Mach number, as in two dimensions: this form will usually be accurate enough. 

A case of some practical importance in which the velocity, velocity gradient and shear stress 
directions unexpectedly coincide is the boundary layer between a circular cylinder of radius r0, 
rotating about its axis at angular velocity Sl, and a non-rotating axial stream of speed Ue. The 
following analysis applies either to external flow (flow over the rotating hub of an axial-flow turbo-
machine) or to internal flow (in a rotating machine casing). The boundary layer seen in coordinates 
rotating with the cylinder is found to be collinear: not only do the above-mentioned directions coincide 
but they are the same at all distances from the surface (to the approximation that the boundary layer 
thickness 6 is small compared to r Q). In (x,r,9) coordinates rotating with the cylinder, and 
denoting 0r0/Ue (the tangent of the constant helix angle of the streamlines) by X, the gradient 
Richardson number is 
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where the first term in the final numerator is the rotation contribution and the second the curvature 
contribution: here we have added the terms in the numerators and denominators of the versions of Rf 
Eq(103) (changing U to W) and Eq(89). A gradient Richardson number can be derived [a displaced element 
oscillates radially and UBV can be evaluated by considering only the circumferential curvature, as 
outlined following Eq(104)]. We get 
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given in more compact form by Cham and Head (127) and for 3W/3r large compared to W/r or 0 (requiring 
6/r , but not necessarily X, to be small) we get 

Ri 
- 2 X 0 ( 1 - U/Ue) 

(1 + X2) 3U/3r 

2 Ue X 2 ( l - U/Ug) 

r ( l + X 2 ) 3 U / 3 r 
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identical with the form given by Bradshaw (91) except for the incorrect sign of Ri in the latter. 

Now the above analyses, both for two-dimensional and for three-dimensional flow, simply define 
Richardson number analogues for the different cases: we cannot expect the quantitative effect of stream­
line curvature to be exactly the same function of Richardson number in all cases. In particular we cannot 
expect a universal critical Richardson number above which turbulence is suppressed. It is possible to 
evaluate sufficient (though perhaps not necessary) conditions for stability of complicated inviscid curved 
or buoyant flows against infinitesimal disturbances: these take the form Ri > n where the number n is 
frequently 1/4 as in the analysis of Howard and Gupta (39) who give a useful introduction to analyses for 
cylindrical swirling flows, including the early work of Ludwieg. In view of the marginal relevance of these 
analyses to turbulent flow a general review will not be given here. One of the latest studies, which will 
serve to indicate the state of the art, is that of Kurzweg (128). In an extension of Howard and Gupta's 
analysis for arbitrary disturbances (itself a development of Rayleigh's energy analysis and related to 
Ludwieg's less rigorous work) Kurzweg has obtained a sufficient condition for stability of variable-density 
low-speed cylindrical swirling flows, although it is not entirely clear how Kurzweg has overcome the 
limitations in Howard and Gupta's analysis pointed out by them. Kurzweg's sufficient condition is, in our 
notation with U, V, W the velocity components in the x,r,9 directions 
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The second clause of the condition is simply a requirement that the second factor in the first clause be 
positive: unfortunately it restricts the analysis to flows with significant stabilizing density gradients 
(such as swirling flames or jets of light gas) and no comparison can be made with stability conditions for 
constant-density flows except to note that the ratio of the two terms in the first factor of the first 
clause is four times a Richardson number based on the axial shear, corresponding to Ri > 1/4 for 
stability. Kurzweg's criterion, like Synge's, is restricted to low-Mach-number flows. Chigier (129) has 
given a graphical representation of the first clause of Kurzweg's condition but appears to have ignored the 
second clause. In addition to noting the particular limitations of Kurzweg's criterion (the most general 
of those proposed to date) we must remember that all criteria of this type refer to the stability of 
inviscid flows to infinitesimal wavelike disturbances and no rigorous deductions can be made about 
turbulent flow. We have already seen, for instance, that Howard and Gupta's Richardson number, whose 
denominator contains only the circumferential shear, disagrees with the flux Richardson number derived from 
the turbulent energy equations. At best, inviscid-flow criteria indicate dimensionless parameters of which 
the turbulent intensity is likely to be a (unique? monotonically-decreasing?) function. The value of such 
a parameter at which the intensity falls to zero may not be unique and will almost certainly be different 
from any critical value derived for inviscid flow, even if that critical value is necessary as well as 
sufficient. In view of the uncertainties outlined in the derivation of Rf for three-dimensional flow it 
would be unrealistic to use any very elaborate analysis for this case: we conclude that the quasi-two-
dimensional parameter Eq(112) is likely to suffice until our experimental knowledge of three-dimensional 
curved flows improves. 

A guide to the parameters derived in Sections 5.1 and 5.2, with recommended approximations for use 
in cases of small curvature effects, is given in Table 2. 

5.3 USE OF THE PARAMETERS 

To use the parameters such as Richardson number derived for turbulent flow wc define an F-factor by 
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[for Ri read Rf or (L/KJ/L,,,,-.] which in the simplest form becomes 
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or 1 + o(3V/3x)/(3U/3y) in rectangular Cartesian coordinates, a special case of Eq(32). In the present 
state of development of the subject it would be unwise to be dogmatic about the validity of non-linear F-
factors or the full, large-curvature versions of the parameters. One can be certain that in most cases the 
effects of flow history will be more important than these refinements to local formulae, which should 
therefore be made only in calculation methods based on transport equations, including a transport equation 
for length scale or at least a lag equation like Eq(37). One cannot expect a to be an absolute constant: 
it will vary to some extent from one part of a shear layer to another as well as from one type of shear 
layer to another, and, since the F-factor approach involves assumptions of local equilibrium for 
predicting the size of the F-factor, the variation of a will be greatest in flows far from local 
equilibrium. The effect of mean transport on the F-factor can be allowed for empirically by a lag 
equation, but the effect of turbulent transport on the F-factor is difficult to assess. Conversely the 
effect of the F-factor (i.e. the extra strain rate) on the turbulent transport is likely to be large in 
strongly-unstable flows. 

Both Prandtl (80, p.775) and Bradshaw (91) implied that meteorological data could be used to find 
a. A brief review of quantitative results for buoyant flows is given in the next sub-section, but we 
already know enough about curvature effects for the simpler meteorological formulae of the F-factor type 
to be of no further use, and the more refined meteorological results for the atmospheric inner layer are 
unlikely to be reliable quantitative guides to more refined formulae for curved flows in general. 
Qualitatively, there is still much to learn from buoyant flows and the next section consists mainly of a 
comparison of the phenomena of curved and buoyant flows. 

Quantitative results, for a and otherwise, obtained in curved shear layers are discussed in later 
Sections. Practical details of the incorporation of formulae like (117) in calculation methods are treated 
in Section 11. 

5. 4 QUANTITATIVE USE OF BUOYANT-FLOW DATA 

There are few laboratory data on buoyant shear layers, as opposed to free convection, and we therefore turn 
to meteorological data (89, 114, 115), These, while large in number, are limited in application because 
they nearly all refer to the traditional area of meteorological turbulence studies, the inner layer of the 
Earth's boundary layer. Strictly an "inner layer" must have a shear stress which is constant in 
magnitude and direction, and the Earth's inner layer, so defined, is only a few tens of metres thick. 
However, to the necessarily low standards of accuracy of atmospheric turbulence measurement the flow in the 
first few hundred metres often has a sufficiently small shear-stress gradient and crossflow angle to be 
analysed by using inner-layer variables. The actual height up to which inner-layer analysis is valid 
depends greatly on the stability [as defined by the Richardson number or by (L/K)/L,^ I y/!„.£,], and on the 
age of the inner layer. The age depends on the length of time for which the mean wind speed and direction 
have been constant at the point of observation and also on the upstream distance or "fetch" for which the 
surface is homogeneous. Usually, measurements are made — or trusted — only if the surface is homogeneous 
for an upstream distance of the order of 100 times the maximum height of observation, and if the wind has 
been constant for the time needed to cover this distance. In these conditions, and excluding cases of 
extreme stability or instability (very light winds), the inner layer is a local equilibrium region: 
horizontal transport of turbulent energy by the mean flow and vertical transport by the turbulence are 
found to be negligible. In strongly-stable flow transport by internal waves may be appreciable and in 
strongly unstable flow vertical transport by convection cells is observed. 

In nearly-neutral conditions the total thickness of the Earth's boundary layer (i.e. the region of 
significant Reynolds stress) is limited by the effects of the Earth's rotation (the flow is called the 
Ekman spiral). The external stream of this strongly three-dimensional boundary layer is called the 
geostrophic wind which — according to the equations of frictionless flow — blows along the isobars. In 
stable conditions the Richardson number increases with height, so that the turbulence dies out: on top of 
the turbulent region is a thin region of very strong stability, called the inversion layer. In unstable 
conditions the Richardson number becomes more negative with increasing height, in the absence of 
condensation of water vapour, and eventually convection cells become important: in extreme conditions 
cumulus clouds can reach heights near 20 km but these and the other spectacular atmospheric phenomena are 
greatly influenced by condensation of water vapour and are not relevant to the analogy with curvature. 
However there is already evidence that convection cells (longitudinal vortices) occur in unstable curved 
flows and that the boundary of the turbulent region in a stable curved flow can be rather sharp. There do 
not seem to be any useful data on the interaction of buoyancy and three-dimensionality in the Ekman spiral. 
This is particularly unfortunate because of the lack of information on three-dimensional boundary layers on 
curved surfaces. The paper by Tennekes (130) discusses free convection above the surface layer but three-
dimensional effects are barely mentioned. 

The standard method of correlating data for the atmospheric inner layer (89) is to plot quantities 
made dimensionless by the usual inner layer variables uT = (ty/p)1/2 and y against y/l^g or Rf. If 
the assumption of local equilibrium is valid the plot should be universal. The dimensionless velocity 
gradient (Ky/u )3U/3y, usually given symbol **., is the ratio of the mixing length in neutral conditions 
(t = Ky) to its value in buoyant conditions, I . Fig.16 shows a consensus of recent experimental results, 
favouring the measurements presented in (89). The scatter of the latter measurements is very small by 
meteorological standards, but the apparent value of K was 0.36, rather than the accepted laboratory 
value of 0.41, The simplest of the correlation formulae, the Monin-Obukhov formula (114) is 
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where 6 is about 4.5 for negative y/L-j,,-, (unstable conditions) and about 7 in stable conditions. This 
piecewise-linear formula is plotted on Fig.16: clearly it is at best a rough approximation for small 
buoyancy effects. The curved-flow version [retaining the standard definition of I , 3U/3y - (-uv)1/2/)!] 
can be rewritten to a first approximation as 

i/' j /(-uv)1/2 
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where in the inner layer the denominator of the right hand side is uT/Ky which is equal to 3U/3y in 
near-neutral conditions. Thus the analogue of the Monin-Obukhov formula for curved flow is an example of 
the linear F-factor correction formula for the effect of extra rate of strain, Eq(36): the use of 
different values of 26 • a according to the sign of rate of strain is a refinement which may be usable 
in other situations but cannot strictly be described as a linear correction formula. 

Results such as those in Fig.16 justify more refined analytical formulae in the Earth's inner layer. 
The two reasons why it is probably not worth relating them quantitatively to curved flows are that the 
buoyancy/curvature analogy is not exact and that inner-layer formulae are not enough. We are of course 
entitled to use meteorological data to suggest the general form of second-order correction formulae for 
curvature. 

We note that in buoyant flow and rotating flow L ^ is independent of y so that the Monin-Obukhov 
correction to the mixing length formula integrates to give, in the usual engineering form of the logarithmic 
law for the inner layer, 
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In curved flow L m o « U and the integral is of the form Eq(44), although the simplification suggested 
after Eq(44) is probably adequate. 

This is not the place for a general review of buoyancy effects. Refs 114 and 115 are general 
treatments and Ref.1 has a comprehensive list of references on complex turbulent flows, including buoyant 
flows with special reference to the atmospheric surface layer. For evidence of spectacular collapse of 
turbulence in a strongly-stable laboratory boundary layer see Ref.131 and for a general review of laboratory 
simulation of the atmospheric boundary layer see Ref,132. We pass on to qualitative consideration of 
curvature effects: the analogy with buoyancy will continue to be qualitatively helpful. 

5.5 LONGITUDINAL VORTICES 

One of the most striking phenomena of unstable curved or buoyant shear layers is the appearance of 
longitudinal (streamwise) vortices. They were found in unstable laminar flow between rotating cylinders by 
Taylor (72), and Tani (102) attributes their discovery in buoyant flows to Idrac, in a 1921 PhD thesis 
which I have not seen. Gbrtler (77) predicted their appearance in laminar boundary layers on curved 
surfaces in 1940 but they were not found until 1950 (78). The earlier workers on curved or rotating 
turbulent flows seem not to have expected to find steady vortices (i.e. spanwise periodicity of the mean 
flow) although it must have been fairly clear from Taylor's experiments that streamline curvature would 
favour unsteady longitudinal-roll eddies. Karman (13) suggests that Wattendorf's duct measurements may 
have been influenced by conventional secondary flows in the corners but did not consider the possibility of 
longitudinal vortices in the central part of the span. Even Pai (85: 1943) working under Karman on 
rotating cylinders, clearly took some time to realise that the anomalies in his velocity profiles were 
caused by vortices similar to those found by Taylor in laminar flow. Tani (102: 1962) who first found 
vortices in a curved boundary layer, seems to have argued from analogy with Gbrtler's treatment of laminar 
flow that vortices would be expected in turbulent flow. Johnston and his collaborators (10) found vortices 
in fully-developed flow in a rotating duct, whereas they were not noticed in the older curved duct 
experiments. (Johnston's elegant use of flow visualization was instrumental in the discovery.) Vortices 
have still not been observed in curved free jets or wall jets. 

Confusion can arise over the definition of a longitudinal vortex in turbulent flow: there is always 
some fluctuating longitudinal vorticity, even in a plane flow, while Johnston et al, (10) found that there 
was always some unsteadiness in the vortices visualized by dye. Their remarks bear quoting. "In the range 
of Ron [= 0 x duct height/U] where cells are first seen (0.02 < ROQ S 0.04) the flow is very unsteady and 
sometimes cells form, decay, wash—out and wave about in a very unsteady manner. Only at higher rates of 
rotation are 'steady' cell patterns observed. We call them 'steady' in the sense that the time period over 
which a given pattern persists is long relative to the turbulence time scales." Now even such "steady" 
vortices will contribute to the longitudinal mean vorticity only if their lateral positions are constrained 
within a range rather smaller than one spanwise wavelength. To take a simple case, if the pattern shown 
in Fig.6 alternated between the configuration shown and one shifted spanwise by half a wavelength the mean 
longitudinal vorticity would be zero. Let us call vortices that are sufficiently constrained to produce 
longitudinal mean vorticity (i.e. spanwise periodicity) steady (without quotation marks) reserving 
Johnston's term "steady" (with quotation marks) for vortices which are not necessarily weaker than steady 
ones but which happen not to be sufficiently constrained. The possibilities of constraint are 

1. The influence of lateral boundaries. The number of vortices must be an integer, so that lateral 
displacement implies distortion of the cross-section of one or more vortices, which one would expect to be 
resisted. This mechanism probably acts only if there is some strong tendency for vortices not to disappear, 
as in the case of the flow between rotating cylinders where the same fluid recirculates. However we know 
from Coles' experiments (71) that the number of vortices in laminar flow between rotating cylinders can 
change in quite a complicated way. Another case where disappearance is unlikely is a low-aspect-ratio flow 
where the number of vortices is so small that disappearance of one would change the wavelength by a large 
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fraction: the preferred wavelength of near-circular rolls occupying most of the shear layer is bound to 
be close to two shear-layer widths (wavelength is twice vortex diameter). 

2. The influence of upstream disturbances. Test-rig shear layers always have small spanwise 
inhomogeneities of the mean flow caused by imperfections in the upstream flow (notably disturbances, 
apparently longitudinal vortices, introduced by the anti-turbulence screens). These inhoraogeneities will 
probably have some influence on the mean spanwise positions of vortices arising in unstable curved flows: 
as usual in flows unstable to infinitesimal disturbances the instability pattern can be locked to the 
initial disturbances. However the amplitude of, say, the spanwise variation of mean velocity in the 
initial shear layer is likely to be quite small compared to the turbulent velocity fluctuations, so that 
the initial disturbances may locate only regions of higher-than-average probability of the occurrence of a 
'steady' vortex of given sign. It is significant that the most intense vortices (i.e. the largest 
spanwise variations in mean velocity) are those observed by Mackrodt (133) in the boundary layers in an 
annular duct, with swirling flow introduced by a row of blades like an axial turbomachine stator. Although 
the wakes of the blades were undetectable in the free stream or the stable hub boundary layer far downstream, 
it seems very likely that they located the position of the vortices. Notice that the vortices themselves 
act as upstream disturbances to the flow further downstream; as Tani showed, the number of vortices in a 
boundary layer can remain constant while the boundary layer thickness changes by a factor of 2:1 or more. 
The number of vortices must eventually change if the wavelength is not to become a small fraction of the 
boundary layer thickness: we do not yet know whether vortices would disappear one by one or whether there 
are intervals in x in which large changes occur before the vortex pattern settles down again. Indeed 
this question has not been answered even for laminar flow (mainly because transition occurs shortly after 
the vortices become distinguishable). 

If neither of these influences constrains the vortex position sufficiently, no spanwise periodicity 
will be found in the mean flow. However it is clear that the behaviour of flow properties averaged both 
in time and in spanwise distance will be virtually the same for a given strength of vortex whether the 
vortices are constrained or not: the distinction is man-made. We should therefore measure vortex 
'strength' in a way that will give the same answer whether the vortices are constrained or not: that is, 
we should measure fluctuations with respect to mean values averaged both in time and in spanwise distance, 
and ignore the distinction between spatial and temporal fluctuations. Therefore we define the mean of a 
quantity Q as , „ 
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the order of the limits being immaterial if the process is statistically stationary in z and t. 
Experimentally this could be done by traversing the measuring instruments slowly spanwise while taking 
time averages (the lower frequency limit being chosen much smaller than the apparent passing frequency of 
the vortices). Favre (134: 1960) has discussed double-averaging schemes with reference to boundary layers 
with steady spanwise periodicity: Gupta, Laufer and Kaplan (135) have discussed variable-time averaging 
with reference to flows with longitudinal streaks that are "steady" only in Johnston's sense. Vortex 
'strength' could be defined in terms of the mean—square circulation around — say — a square contour of 
side 6 in the yz plane (see Ref.26, 56.4 for a general discussion). It may be necessary to consider 
the structure of the vortices in detail for some practical purposes such as estimating the behaviour of 
separation lines, as well as for basic research purposes. 

Johnston's description makes it clear that there is a continuous sequence of events with increasing 
curvature parameter, corresponding to increasing vortex 'strength' as defined above. It seems very likely 
that there is no critical Richardson number or bulk rotation parameter at which vortices suddenly appear: 
our whole experience of turbulent flow suggests that unsteadiness of the flow ensures gradual changes, 
since if any velocity profile corresponds to the steady velocity profile assumed in hydrodynamic stability 
calculations it is the instantaneous profile and not the mean. However the change from the ordinary case 
of momentum transfer by conventional Reynolds stresses to momentum transfer principally by "steady" vortices 
may take place over a relatively small range of rotation number. In the atmospheric inner layer, data 
[see Zilitinkevich(136:1972] suggest that the change from forced convection to free convection (correspond­
ing roughly to the change from Reynolds stress dominance to "steady" vortex dominance) can occur within the 
range 0.02 < -Ri < 0.05, where Ri is evaluated at a representative height. If we take Ri • 20/(3U/3y) 
and 3U/3y • 0.3U/(Jh), h " duct height,in Johnston's experiments, this corresponds to 
0.007 < ROQ < 0.017, rather lower than the value of Ron at which vortices first appeared in Johnston's 
flow patterns and considerably less than the value of about 0.07 at which a significant region of constant 
angular momentum (the analogue of free convection) appeared in the duct. Let us merely register the 
possibility — not thoroughly explored in Johnston's experiments — that the change from conventional 
turbulence to vortex domination may take place fairly rapidly, but probably at a Richardson number or 
rotation parameter several times that at which the vortices are first seen in flow patterns. 

Tani (102) suggested that an estimate of the critical curvature parameter for the appearance of 
vortices (by which he meant spanwise periodicity of the mean flow) could be obtained by substituting an 
eddy viscosity for the molecular viscosity in the critical value of the Gortler number for a laminar 
boundary layer. Direct use of the value for a Blasius profile is not realistic but detailed analyses of 
the stability of curved turbulent flows to longitudinal vortex disturbances have been made by Sandmayr 
(137) and by Lezius and Johnston (76). In both cases an assumed distribution of eddy viscosity and an 
assumed shape of disturbance was used to convert the problem into a classical solution for the 
eigenvalues of the Orr-Sommerfeld stability equation for the turbulent mean velocity profile. Sandraayr 
used the eddy viscosity for a plane flow and deduced a preferred spanwise wavelength for the most unstable 
disturbance — the one that, according to the Orr-Sommerfeld equation, appears first as the curvature 
parameter increases. The results agree well with Tani's measurements although Smith (138) has pointed out 
the extreme difficulty of calculating accurate values for the wavelength of Taylor-Gortler vortices in 
laminar flow: these purely mathematical difficulties are additional to the practical difficulty that the 
wavelength may be constrained by the need for an integral number of vortices. Lezius and Johnston use an 
eddy viscosity for rotating duct flow that varies as an empirical F-function of the gradient Richardson 
number and a wall stress that varies as an empirical function of the bulk rotation number ROQ = Oh/U. In 
fact, the "critical" rotation number is little altered by this refinement, falling from about 0.03 to 0.022, 
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and the "critical" wavelength is almost constant at 1.4 times the duct height. The word "critical" is 
enclosed in quotation marks because it is rather difficult to be sure exactly what the values mean. There 
is obviously some change in turbulence structure, specifically in the longitudinal vorticity fluctuations, 
even for very small streamline curvature; and there is still some unsteadiness in the observed 
longitudinal vortices even for very large curvature. Despite the good agreement between the calculated 
critical rotation number and the value at which distinct longitudinal vortices were first seen in the 
flow-visualization experiments of Lezius and Johnston it seems to the present author that the stability 
analysis and the assumed eddy viscosity together introduce a spurious "trigger level", a rather arbitrary 
value of curvature parameter at which the tendency to spanwise periodicity becomes mathematically 
distinguishable from the spanwise-invariant turbulence model. Since the "trigger level" is not too 
sensitive to the turbulence model (i.e. the details of the eddy viscosity assumptions) the analysis may be 
very useful for comparative purposes, providing a quantitative measure of the likelihood of occurrence of 
longitudinal vortices (unsteady, "steady" or steady) in different flows. 

The remaining questions concern the presence of spanwise periodicity in curved duct flows — as 
opposed to rotating ones — and in free jets and wall jets. It seems very likely that "steady" vortex 
patterns may not exist in jets because the growth rate is so large that frequent readjustment of the 
spanwise wavelength would be needed to keep it near the preferred multiple of the shear-layer thickness. 
High-aspect ratio, fully-developed duct flows will not be significantly constrained by lateral boundaries, 
and the effect of disturbances in the intake flow will disappear at large distances downstream, so that 
there may be very little tendency for the vortex pattern to become "steady": however this argument applies 
almost as well to Johnston's rotating duct (aspect ratio 7) as to the curved ducts of Wattendorf (aspect 
ratio 18) and of Eskinazi and Yeh (aspect ratio 15.5) and is not a very convincing explanation of the 
presence of "steady" vortices in the first flow and their absence from the others, because the values of 
the curvature parameter in the curved ducts correspond to rotation numbers Ron of between 0.1 and 0.2. 
More work is clearly needed; careful searches for longitudinal vortices should be made in any experiments 
on unstable curved flows, and it would be interesting to have theoretical "critical" values of Ro or Ri 
for flows other than Sandmayr's boundary layer and Lezius and Johnston's rotating duct. 

The latest information about longitudinal vortices or "rolls" in the atmospheric boundary layer is 
given in Refs 139 and 140, There is as yet no evidence that vortices resulting from unstable stratification 
or curvature develop stable non-turbulent cores 

5 . 6 INTERNAL WAVES 

Stably-stratified buoyant flows can support internal waves. These are "transverse" waves with particle 
velocities substantially normal to the phase velocity, whose direction is that in which the crests and 
troughs propagate. "Longitudinal" waves, with particle velocities in the same direction as the phase 
velocity, necessarily involve compression and expansion of the fluid which we neglect. The propagation 
of energy, described by the terms in the Reynolds-stress transport equations which we have so far called 
the "turbulent transport" terms, may occur in a different direction to the propagation of crests and 
troughs. 

There is still some controversy about coexistent waves and turbulence, even in stratified flows. 
For instance Pao (141) speaking at a colloquium whose proceedings form an excellent introduction to 
meteorological turbulence, says "(i) internal waves and turbulence coexist in turbulent stratified flows 
with internal waves at the large scales [wavelengths] and turbulence at the small scales; (ii) turbulence 
decays [in a stratified wake] much more rapidly than internal waves; and (iii) the turbulent-nonturbulent 
interfaces are not necessarily sharp, and the transition region may consist of mostly internal waves". At 
the same colloquium, Stewart (142) takes the more cautious view that "I think it is extremely important to 
be aware that there is probably no really clear-cut distinction between turbulence and waves when 
energy is constantly flowing between the two kinds of motion by non-linear effects, the energy cannot be 
clearly identified as belonging to either kind." After this cautionary remark, he advises that experiments 
in stratified flows "should incorporate plans to try to distinguish between the waves and the turbulence" 
in cases where the two are reasonably distinct: clearly one would like to know whether what one is 
observing, or trying to predict, is waves or turbulence. 

Little evidence is available for the presence of waves in stably-curved flows but a casual 
application of the analogy between buoyancy and curvature strongly suggests that they do exist. The 
phenomena that constitute vortex breakdown are perhaps too controversial to cite as evidence for waves; 
about the only experiments on curved shear layers that could be expected to show up internal waves are 
Cannon and Kays' (143) measurements in a spinning pipe with fully-developed axial flow at entry, and 
Castro's experiment (11) on a highly-curved free shear layer, and both suggest wave-like effects. The 
experiments are described in Section 10 and Section 8 respectively. In the pipe experiment, helical 
instability waves appeared at the interface between the turbulent core and the outer, curvature-stabilized 
flow: this is a region of large velocity gradient, and the experimenters' description leads one to suspect 
that the mechanism could be the curved-flow analogue of the Kelvin-Helmholtz instability of a density 
interface in a gravitational field (144). Castro found a significant increase in the intensity of the 
irrotational fluctuations near the high-velocity side of his strongly-stabilized mixing layer, and the 
energy balance suggested that transport by pressure-velocity correlations (not measured) became significant 
whereas it was negligibly small in a plane mixing layer. 

At present, therefore, the presence of waves is little more than a plausible hypothesis. Moreover, 
it is likely that waves in curved shear layers are more complicated than those in buoyant shear layers 
because the body force varies in a more complicated way. However a short review of what is known about 
waves in buoyant flows should be of some help to workers seeking them in curved flows. Where possible the 
account is written in language and symbols that apply equally to buoyant flows and curved flows: this is 
not to be construed as a claim that the analogy between the two is exact. 

Waves can transfer momentum (though not heat): generally they do so less efficiently than 
turbulence so that in many cases we might be able to neglect their contribution to the Reynolds-stress 
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gradients, rather than try to model the wave behaviour as well as that of the true turbulence. However 
even if we adopt this view we are still faced with a problem in interpreting experimental results: if we 
seek empirical information to be inserted into transport equations for mean products of the truly 
turbulent velocity fluctuations (hereafter referred to as the vorticity-fluctuation mode) we have to 
distinguish between contribution to measured quantities from the vorticity-fluctuation mode and the 
internal-wave mode. Before discussing ways of making this distinction we consider the curious properties 
of two-dimensional internal waves in the simplest case of a stratified fluid: of waves in rotating fluids, 
we merely comment that their properties are even more curious (145). For a short general review of gravity 
waves in the atmosphere, see Ref.146: they may be rotational if density changes are significant (115), 

Let the wave-number vector, whose direction is the direction of propagation of the wave crests and 
whose magnitude is 2u/(wavelength), be k, with component kj in the x direction and k2 in the y 
(vertical) direction: k3 is zero if the disturbance is confined to the x,y plane. Let the frequency 
seen by a stationary observer be m. Suppose to begin with that the Brunt-Vaisala frequency uiBV is 
effectively constant (and positive) over the range of y that interests us, and — an equally strong 
assumption in practice — that the wavelength is small compared to the "scale height" p/(3p/3y). Then 
Mowbray and Rarity (147) and other previous and subsequent authors have shown that the "dispersion relation" 
between frequency u and wave number k is 

k l 
u i " "BV - 3 TTTT (123> 

(k? + k i ) 1 / 2 

where oi£ is the intrinsic circular frequency, to - U.k E oi - Ujkj - U2k2. The difference between u and 
di£ simply represents convection of waves by the mean flow. Writing the scale height as 
Wo2,/(body force per unit mass) we obtain its analogue for a slightly-curved flow as U/(23U/3y), whose 
average value in a shear layer will be at most one or two times the shear-layer thickness so that the 
condition for validity of Eq(123) is that the wavelength shall be rather smaller than the shear-layer 
thickness. Waves whose wave number lies in the energy-containing range of the turbulence spectrum will at 
best barely qualify. The behaviour of these short internal waves can now be summarized as follows (Fig.17) 

(i) The wavelength is determined by the length of the source region (e.g. the diameter of an 
oscillating-cylinder wave-maker or the wavelength of an eddy) and is usually almost equal to that length. 

(ii) The frequency seen by an observer moving at the same speed as the source is equal to the frequency 
of the source. 

(iii) The direction of propagation of the wave crests relative to the fluid (the direction of k or of 
the relative phase velocityu^/|k|) is by definition at tan-1(k2/ki) to the horizontal and Eq(123) 
shows that this angle is 

• -1 "l 
sin ' 

UBV 

so that while the wavelength is not determined by the frequency the wave direction is. If 
do not propagate, and the disturbance is confined to the neighbourhood of the source. 

(iv) The relative group velocity, which as always has components 3iD./3ki and 3ioj-/3k2 in the x 
and y direction, has a magnitude , 

" W *2 

k2
 + k

2 

and a direction tan-1(-kj/k2) to the horizontal: that is, the direction of propagation of the energy of 
the wave motion is perpendicular to k, the direction of propagation of the wave crests. The particle 
velocities, being necessarily transverse to k, are in the direction of the group velocity. Note that 
the motion is oscillatory and that the energy does not radiate laterally away from the wave train, whose 
width remains of the order of the width of the source. 

Figure 17 shows the wave configuration found in the experiments of Mowbray and Rarity in a 
stationary, stably-stratified fluid: the wave-maker was a horizontally-oscillating cylinder. In these 
experiments a w was nearly independent of y and the waves propagated in straight lines. If uigy varie 
with y the theory becomes more complicated but it is qualitatively clear that if iiijjy decreases the 
direction of propagation of the wave crests becomes more nearly vertical, and vice versa. If u B V 

decreases below the (constant) value of in, the waves are reflected as shown in Fig. 17. Waves are 
reflected as usual from a solid surface without the formation of a cusp in the envelope of the wave vector. 
Waves are as usual refracted by a velocity gradient: if V - 0, then replacing io. by in - Ukx in 
Eq(123) and differentiating gives 

3kj - kj 3U/3y 

U + (ID /k)(l - k2/k2) 
(124) 

assuming for simplicity that uigy remains constant and remembering that ID and, in this case, k2, will 
remain constant. Therefore kj decreases if U increases, but rather more slowly than if the waves were 
non-dispersive and kj U were constant. 

The behaviour of waves propagating from an impulsive source is discussed by Mowbray and Rarity: 
two families of waves appear. Possibly a more realistic situation, in view of our reliance on displaced-
element arguments, is that investigated experimentally by McLaren, Pierce, Fohl and Murphy (15), in which 
a displaced element of a large body of stably-stratified fluid is set free to execute decaying oscillations 
(the initial potential energy being converted into turbulent energy, thermal internal energy and radiated 
wave energy). About two complete oscillations are executed, after which the motion of the displaced 
element can no longer be distinguished from that of the shallow layer either side of it, which oscillates 
vertically at approximately the Brunt-VSisaia frequency. In the experiments of McLaren et al. both high-
frequency waves (propagating almost horizontally, with frequency up to 4oiBV) and non-periodic horizontal 
"displacement" motions were also observed. 
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In a curved turbulent shear layer the energy-containing eddies, which will presumably be the 
strongest generators of waves, are not all small compared with the layer thickness or the "scale height", 
or its analogue (U2/r)/uig\r, equal to U/(23U/3y) in the limit of small curvature. The effect described 
by Eq(124) also tends to increase the lengths of waves propagating towards the high-velocity edge of a 
shear layer. These medium-length waves (k6 *\< 1) are treated by Bretherton (148) by a "normal mode" 
analysis, using the wave propagation equation due to Scorer (149, 150) for the case of negligibly small 
V-component mean velocity. The analysis becomes easy to interpret if (32U/3y2)/(Uk,- uk,) is small. In 
the inner layer of a turbulent boundary layer 32U/3y2 » -u /(Ky2) and the intrinsic frequency u - Ukj 
will be of order u kj so that the above-mentioned parameter is of order -l/(Kk.y2) which is small for 
wavelengths of order y or greater, so that its neglect is permissible for all wavelengths likely to be 
important in practice. Then the wave motion can be regarded as propagating in the positive y direction 
with a y-component wave number given by Eq(123) (with V • 0). If ugy becomes small (as it always does 
near the free-stream edge of a stable shear layer whether buoyant or curved) the waves are reflected 
downwards again. Note that prolonged distortion of a train of short waves by a mean shear leads [Eq(124)] 
to waves with large kj which will then behave like normal-mode waves; however an order-of-magnitude 
change in U is not likely in practice except perhaps for propagation of waves across the thickness of a 
free shear layer. In the case of a stable boundary layer, the waves are trapped between the surface and 
the region where uigy decreases to the most important range of values of u. Bretherton points out that 
this happens in the case of lee waves downstream of a range of mountains: it is known that extremely strong 
waves can occur in this case. This "waveguide" situation is probably the one that actually occurs in 
boundary layers on convex walls although it must be repeated that no experimental evidence exists. In 
curved duct or jet flows Ugy falls to zero at the boundary between the stable and unstable regions and 
the waveguide phenomenon should occur again: it would, however, be rather difficult to distinguish wave 
motion on the stable side from the irrotational fluctuations generated by the turbulence on the unstable 
side. 

Bretherton (148) also discusses the possibility of "critical layer absorption". Since both kj and 
the frequency seen by a fixed observer, u, are constant, the intrinsic frequency u - Uk (the frequency 
seen by an observer moving with the fluid) can fall to zero: roughly speaking this will occur when the 
velocity becomes double that at the value of y at which the waves were generated, since u fl* Ukj there 
if this happens the wave effectively ceases to propagate relative to the fluid and energy accumulates at 
this "critical layer". The phenomenon appears to be the converse of that occurring in hydrodynamically 
unstable (neutrally buoyant) flows in which disturbances are generated near the critical layer: Phillips 
(151) suggests that critical layers may play an important part in the maintenance of turbulence in 
neutrally buoyant turbulence. Phillips' theory is not uncontroversial but it is at least possible that 
strong interactions between waves and turbulence may occur at Bretherton's critical layer. 

In curved mixing layers uigy falls to zero at both edges, presumably again resulting in trapping 
of waves. However the normal mode analysis is valid only for wavelengths which are not too large compared 
with the stable layer thickness. Long two-dimensional waves (kj6 « 1) propagate as interfacial waves 
along the layer, with an amplitude that decays exponentially on either side, as would be the case for two-
dimensional irrotational motion generated by the turbulence in a non-stratified layer. The dispersion 
relation in this case depends, for buoyant flows, on the density difference across the layer: 

ui - U*k. • ("8 0 } (125) 

'where we can rewrite -g Ap/p as Jugv dy to apply the analogy between buoyancy and curvature. The phase 
velocity relative to the fluid, u/kx - U, is proportional to kj - 1/ 2 and the relative group velocity is 
half the relative phase velocity: in principle very long waves can propagate upstream. "Breaking" of 
interfacial waves [Kelvin-Helmholtz instability (144)] occurs only for small Richardson numbers 
(necessarily less than 1/4) but the Richardson number of a mixing layer of roughly constant curvature is 
roughly proportional to x so that a catastrophe could occur near the start of the mixing layer if 
upstream propagation did occur. Very long waves (kj6 « 1) generated by the turbulence will be rare 
since most eddies have kj6 *): 1; Pao's (152) shadowgraph pictures of wakes in a fluid with overall stable 
stratification do show a tendency for long waves to predominate but his situation is closer to that of 
McLaren et al. than to interfacial waves near a stable layer in an otherwise neutral fluid. 

These analyses of internal waves all neglect the scattering or dissipation of wave energy by 
turbulence. Scattering of waves by turbulence, studied mainly in the context of sound propagation, occurs 
because the random velocity fluctuations cause random refraction of the waves by the same mechanism that 
causes refraction by mean velocity gradients. If, as for example in Eq(125), 

in - U.K + .... = constant (126) 

then fluctuations in U cause fluctuations of K in magnitude and direction, and, although the time-mean 
of the velocity fluctuation at a point is zero by definition, successive wave fronts moving through the 
turbulence will emerge in slightly different directions so that there is a finite root-mean-square scatter 
of the direction of the phase velocity (and in general the group velocity) of the emerging waves. To a 
first (linearized) approximation the total wave energy is unchanged. Dissipation of wave energy by 
turbulence is essentially a non-linear process, in which the interaction between the turbulence and the 
fluctuating rate of strain imposed by the wave transfers energy from the waves to the turbulence, after 
which the energy is transferred by the ordinary vortex-stretching process to smaller wave-lengths and 
finally to the dissipating eddies. High rates of transfer from waves to turbulence occur when waves 
"break" but this is likely to be a rare phenomenon in curved flows. 

In practice scattering and dissipation take place simultaneously. Eq(123) shows that to first order 
the scatter in direction of the wave vector K is independent of its magnitude, while the root-mean-square 
fluctuating rate of strain in a wave system of given energy flux — and therefore the fraction of that 
energy transferred to the turbulence — is inversely proportional to the wavelength. Scattering of transverse 
waves will differ only in detail from scattering of longitudinal waves so that discussions and reviews by 
acousticians are relevant. The papers by W.C. Reynolds and Hussain (153) are a recent comprehensive account 
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of the behaviour of transverse (rotational) waves in turbulence, biased towards wavelengths of the order 
of the wavelengths of the energy-containing eddies. This is the range of wavelengths called the "buoyant 
subrange" in meteorology: energy is extracted from the turbulence by buoyancy effects; part of that 
energy goes into permanently raising the centre of gravity of the fluid and part into internal waves; the 
latter part is then returned gradually to the turbulence. The buoyant subrange is still a subject of 
controversy; the papers by Pao (141) and Stewart (142) summarize current views. Pao suggests that most of 
the internal wave energy in stable atmospheric layers is concentrated at wavelengths longer than the 
energy-containing range of the turbulence: this will certainly be the case for a given wave-packet after 
propagating through a large field of turbulence, but it is not obviously true of waves generated by the 
turbulence in a restricted shear layer because a given wave is created by an eddy of the same wavelength. 
However there seem to be no experiments in laboratory buoyant flows to prove the point. 

Four possible methods of distinguishing transverse internal waves from turbulence are 

flow visualization 
spectrum shape 
phase velocity 
heat-flux or vorticity spectra 

None can positively distinguish between waves and the irrotational (but non-propagating) fluctuations that 
exist even in neutrally-stratified flows as a result of pressure fluctuations produced by the turbulence. 
In a shear layer the irrotational fluctuations move not at the local speed of the fluid but at the speed 
of the eddies which generate them: the difference is of the order of 
(mean velocity gradient) * (large eddy size), which is itself the ratio of a typical turbulence frequency 
to a typical turbulence wave number and therefore a typical phase velocity of internal waves. It may 
scarcely be logical to seek a difference between irrotational fluctuations and waves propagating parallel 
or nearly parallel to the shear layer. 

Flow visualization relies on an observer who thinks he knows the difference between waves and 
turbulence on sight, and is therefore not universally applicable. It has been applied in elegant dye-trace 
experiments by Woods (144) and others in the surface layer of the ocean: the shadowgraph technique has 
been used in buoyant turbulent flows in the laboratory by Pao (152) and radar back-scatter has been used 
by Browning, Starr and Whyman (154) and others to plot cross-sections of cloud patterns in the atmosphere. 
In all these cases obvious wave patterns were observed only between, or at the edge of, turbulent regions, 
so it is not clear whether the technique is useful in the more difficult search for waves actually within 
the turbulence. 

Spectrum shape measurements are useful if the shape of the turbulence spectrum in the absence of 
waves is known, but since it cannot be known very accurately it is difficult to make quantitative 
deductions with any accuracy. Caldwell and Van Atta (155) discuss the extraction of the intensity of 
narrow-band viscous instability waves from background turbulence by spectrum measurements: this is a 
relatively easy case and one anticipates that waves interacting with Intense turbulence will have broader 
spectrum peaks. 

Phase velocity measurements involve space-time correlations or frequency-filtered space correlations, 
from which wave-number/frequency or wave-number/phase-velocity spectra can be deduced by two-dimensional or 
one-dimensional Fourier transformation respectively, Stegen and Van Atta (156) describe a simpler technique 
based on a frequency-filtered space correlation with a fixed spatial separation small compared to the size 
of the smallest eddies, but it is evidently not very accurate for wavelengths large compared to the spatial 
separation. The wave number direction is that of the spatial separation between the sensors so that in 
principle any component can be extracted. 

Waves — even short ones — have negligible vorticity. To distinguish waves from turbulence we need 
a criterion of comparison, such as the ratio of the vorticity spectrum to k2 times the velocity spectrum. 
This ratio is unity for the three-dimensional spectra in isotropic turbulence but not necessarily for the 
one-dimensional spectra measured in shear layers: we need data for turbulence without waves before we can 
identify waves by divergence from the norm. If only long waves are expected it is not necessary to build 
a vorticity probe (Ref.157, p.128) small enough to resolve the main, high-wave-number contributions to the 
mean-square vorticity: a larger probe would be adequate. Since waves and other irrotational fluctuations 
will not transfer heat, Stewart (142) and Pao (141) suggest isolating the irrotational contribution by 
measuring the "co-spectrum" and "quadrature spectrum" of the temperature fluctuations 9 and the_vertic*l-
component velocity fluctuation v. The co-spectrum Indicates contributions to the mean product 9v which 
is the rate of transfer of temperature in the y direction by the turbulence. In the quadrature spectrum, 
one of the signals has its phase changed by 90 deg. before processing in the same way as for the co-spectrum. 
Therefore if 9 and v are nearly uncorrelated — as in pure waves — the quadrature spectral density is 
much larger than the co-spectral density, whereas if they are well correlated — as in turbulence — the 
co-spectral density is the higher. The technique will not work in a curved flow unless it happens to be 
heated (note that temperature is used as a tracer and not as a measure of buoyancy so that we do not have 
to invoke any analogy between buoyancy and curvature) but it may be worth heating the flow slightly just 
to check for the presence of waves. Failure to benefit from meteorological experience and recognise that 
"turbulence" in a stably-curved flow is very likely to include contributions from transverse, propagating 
waves would lead to great possibilities of confusion. 

5.7 COLLAPSE OF TURBULENCE I N HIGHLY-STABLE FLOWS 

This is a common phenomenon in buoyant flows, well-known geophysical examples being the flow of a "wall 
jet" of salt water along the bed of a fresh-water lake or river and the night-time stabilization of the 
atmospheric inner layer (115): for a laboratory investigation see Ref.131. 

Coles and Van Atta (73) have described the mixed laminar-turbulent flow found between concentric 
rotating cylinders with a stable gradient of angular momentum, turbulence being confined to a rotating 
spiral region which continually exchanges fluid with the laminar region. The phenomena are probably mor« 
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closely allied to those occurring in the thermocline region of the oceanic surface layer, where thin 
laminar and thick turbulent layers coexist (144), than to the phenomena occurring in more conventional 
curved shear layers. 

Johnston (158) described in detail the results obtained in a rotating duct (Fig.6) where the flow 
was stable on one side and unstable on the other. Flow-visualization photographs showed that the 
characteristic "streaky" structure and "bursting" phenomena found in the viscous sublayer could be almost 
completely suppressed at rotation numbers Ro I nh/U greater than about 0.15, despite the presence of 
vigorous vortex motions (Section 5.5) on the unstable side of the duct. Mean velocity profiles in the 
inner layer showed gross departures from the logarithmic law for Ro > 0.1, reaching the parabolic shape 
of laminar Poiseuille flow for Ro > 0.15. It is noteworthy that when the ratio of the apparent mixing 
length i, to the mixing length at the same point in a non-rotating duct i 0 was plotted against local 
Richardson number (in the spirit of the F-factor analysis) a unique curve was not obtained. The ratio 
l / l 0 at given Ri decreased with increasing Ro. The plots at each rotation number could be fitted quite 
well by , 

t • TTTYi (127) 

with values of 6 ranging from 4 to 10 for 0.027 < Ro < 0.081. This 'Monin-Obukhov' form is a 
significantly better fit for Ri up to 0.25 than the F-factor form which is its first binomial 
approximation, although this might not be true if L/K/I^-JQ, rather than Ri, was used as a parameter. 
Clearly the bulk rotation number is an important parameter, implying large effects of rotation on the 
turbulent transport of Reynolds stress and consequent failure of local-equilibrium analyses. The duct, 
with adjacent stable and unstable regions, is probably more susceptible to domination by transport effects 
than a shear layer with the same sense of stability throughout. Johnston refers to the presence, at 
moderately high Ro, of "highly damped patches, or spots, of turbulence" in the inner layer on the 
stable side, and it seems probable that they were excursions from the unstable side rather than locally-
produced turbulence. Johnston applied a local Reynolds-number criterion for transition from turbulent to 
laminar flow (159) and obtained quite successful results, but the use of a local Reynolds number for 
correlating reverse transition must clearly be suspect if a local Richardson number is not an adequate 
parameter for correlating curvature effects in general. 

So and Mellor (160) measured a turbulent boundary layer which developed over a flat surface and then 
passed to a convex surface whose radius of curvature was about 12 times the boundary layer thickness. The 
turbulence in the outer layer virtually disappeared [see Fig.18(a): here "station 1" was in the straight 
entry section and stations 7, 9 and 11 were respectively about 12, 15 and 22 boundary layer thicknesses 
downstream of the start of the curved region]. As a result the boundary layer thickness changed very 
little over the curved region. Fig.18(b) shows velocity profiles near the start of the curvature and far 
downstream: the outer regions are almost identical while the inner region of the profile at the downstream 
station is effectively a sub-boundary-layer with its edge constrained by the stabilizing effects of 
curvature. The skin friction coefficient at station 11 was about 0.0024, compared with about 0.0035 at 
the same Reynolds number on a flat plate, and a significant part of this decrease is due to the smaller 
free stream velocity seen by the sub-boundary-layer. The parameter (U/r)/(3U/3r), called S in Eq(86), 
was about 0.25 or 0.4 at the edge of the turbulent region, depending on whether 3U/3r is evaluated just 
inside, or just outside, the turbulent region. Ri is rather more than, and Rf or (L/K)/!-^ rather less 
than, twice these values, but since the turbulence near the edge is presumably maintained at least partly 
by turbulent transport from below local-equilibrium parameters are .again of doubtful quantitative validity 
for discussing the collapse of the turbulence. 

In So and Mellor's boundary layer the flow near the surface is still decelerating under the influence 
of the shear stress gradient, and the edge of the turbulent region is still spreading outwards towards 
the original edge y • 6. This seems paradoxical: the explanation appears to be as follows. In the 
boundary layer at the start of the curved region, 3U/3y is small — and Che Richardson number or any other 
curvature parameter therefore large — except near the surface. Therefore the turbulence dies out, except 
near the surface. The Reynolds stress gradients near the surface continue to decelerate the flow (more 
rapidly, since 3uv/3y becomes numerically larger), 3U/3y becomes more nearly constant near the surface 
[Fig.18(b)], and the region of large 3U/3y gradually increases in thickness. If the surface curvature 
continued for a long enough distance downstream turbulence could spread beyond the original edge of the 
boundary layer. The velocity profile would probably still have a rapid decrease in gradient near the edge 
so that, except near the edge, generation of Reynolds stress by the mean shear would be as important as 
transport from below: the large-eddy structure in a layer that is stable everywhere is likely to be 
weaker than in neutral conditions, leading to a relative decrease in turbulent transport terms, so that 
the turbulence must be maintained largely by local generation. The eventual state of the boundary layer 
after 6 had increased significantly beyond its original value is a matter for speculation: possibly 
turbulence could gradually die out again throughout the layer, leaving a purely laminar flow, but this 
would require 6 "- R and turning angles exceeding 360° and is not likely to be encountered in practice. 

In the intermediate stage of recovery, the turbulence structure of the sub-boundary layer will be 
affected both by the curvature and by the presence of a rotational outer stream, the remains of the initial 
boundary layer. The problem of a boundary layer in a sheared stream appears in the "superposition" 
approach to the study of interacting shear layers (3) and it appears that the effects on the turbulence 
structure may be small. The problem appears in real life in the interaction of a sheared entropy layer 
with the boundary layer on a body carrying a detached shock wave, but few studies have been made in the 
turbulent case. 

6. BOUNDARY LAYERS AND DUCT FLOWS 

6 . 1 LOW-SPEED FLOW 

The boundary layer below an irrotational stream is probably the most important shear layer in aeronautical 
or mechanical engineering, and the most common examples of flows affected by streamline curvature are 
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aerofoil, blade or intake boundary layers with R/6 not much less than 100. We have already seen from 
Thomann's experiment with R/6 a- 50 (4: Fig.3) that fairly large effects occur even at these moderate 
curvatures, but the F-factor approach using Eq(36) , with Eq(37) if the curvature changes rapidly, should 
suffice for engineering calculations. 

Unfortunately most of the experimental data available at present were obtained in highly-curved 
flows. Table 3 lists the more detailed of the low-speed experiments on curved or rotating boundary layers 
and duct flows reported to date, while Table 4 lists the supersonic experiments. The low-speed experimenters 
deliberately chose large curvatures with the praiseworthy object of obtaining large and easily-measurable 
curvature effects, while the high-speed experimenters were mostly unaware of possible curvature effects on 
the turbulence and chose large curvatures to induce strong pressure gradients. It can now be seen that 
most of the stably-curved boundary-layer flows experienced collapse or incipient collapse of the turbulence 
in the outer layer, while the unstable flows contained strong longitudinal vortices. Unfortunately these 
gross non-linear effects generally went unnoticed because of the absence of turbulence measurements on the 
one hand and the absence of careful checks for three-dimensionality on the other (although, as mentioned in 
Section 5, it is still not certain whether even strong vortices are always "steady" enough to contribute to 
the mean vorticity so as to be detectable by mean-flow measurements). Almost the only experiment with R/6 
of the order of 100 is the current investigation by Meroney at Imperial College. Even at these large 
values of R/6 difficulties in the definition of integral thicknesses and of the shape parameter H are 
apparent, while at the higher curvatures used by some of the other experimenters these difficulties have 
tended to overshadow the effects of curvature on turbulence structure and to frustrate comparisons between 
calculation and experiment. In this chapter we review the experimental evidence in a semi-quantitative way: 
detailed comparisons with typical calculation methods are presented in Appendix 2 to which occasional 
reference will be made. A rough estimate of the importance of curvature effects can be obtained by taking 
0.3 Ue/6 as a typical value of 3U/3y or (-uv)'/2/L in the middle part of a boundary layer. Eq(36) 
with a - 10 then gives F as 1 + 306/R so that the self-imposed limits -0.5 < F < 1.5 for plausibility 
of the F-factor concepts imply |6/R| < 0.015. We shall see that quite good agreement is found between 
calculations using F-factors and experiments on boundary layers with |6/R| > 0.015, partly because in 
highly stabilized regions the shear stress is so small that it need not be predicted to good precentage 
accuracy while in a highly-unstable region the same argument applies to the velocity gradient instead. 

The early boundary-layer measurements by Wilcken (22), Schmidbauer (83) and Yeh (99) were mentioned 
in Section 4. Wilcken's mixing-length distributions on a concave (unstable) surface are reproduced in 
Fig.19. While one can never have complete confidence in shear stresses deduced from the mean-momentum 
equation, Wilcken's experimental techniques seem to have been good and the results are acceptable, with 
some reservations about the presence of longitudinal vortices leading to undetected spanwise variations of 
mean properties. We note again that vortices which are sufficiently unsteady not to produce spanwise 
variation of the mean flow simply contribute to the Reynolds stresses, and the flow can legitimately be 
regarded as two-dimensional. Values of a in the F-factor, Eq(26), applied to the apparent mixing lengths 
and ignoring lag effects, are shown on Fig.19. As remarked before, we expect the apparent value of a in 
the linear F-factor to be smaller for large values of e/(3U/3y): if e/(3U/3y) were very large so that 
e were the dominant strain rate a would necessarily be of order unity. This limiting effect is also 
noticeable on a convex surface, in Schmidbauer's (83) correlation (Fig.20) of skin friction coefficient Cf 
with 9/R where 9 is the momentum thickness (apparently defined with reference to the maximum velocity, 
ignoring the decrease of free stream velocity with distance from the surface). Schmidbauer realized that 
Cf also depended on Reynolds number and shape parameter but argued, not very convincingly, that their 
effects could be neglected in his case. Schmidbauer's results can now be qualitatively explained by the 
collapse of turbulence in the outer layer at large 9/R (say 5/R > 0.03) leaving a thin inner turbulent 
boundary layer with a smaller effective free stream velocity (Fig.18) and of course with smaller Richardson 
number so that the local Richardson number is not very large except near the edge. The quantitative effects 
shown in Fig.20 seem too large. For 6/R ss 0.01 (i.e. 9/R at 0.001) one expects a reduction in Cf of 
roughly 10 per cent while Schmidbauer's curve through his points implies 25 per cent. Fig.14 shows 
comparisons between the boundary layer in Schraidbauer's Fig.6 [using the data as re-analysed by Thompson 
(161)] and the calculation method of Ref.16, using an F-factor with the "meteorological" value of 14 for 
a and neglecting lag effects on this constant-radius surface: in this case 6/R was no more than 0.025 
(i.e. 9/R as 0.0025) and the reduction in cf due to direct effects of curvature was not more than 15 per 
cent compared to over 50 per cent from Schmidbauer's correlation. 

Yeh's measurements (99) in the boundary layer on the wall of a circular tube carrying a swirling 
flow are not detailed enough for convenient use as a quantitative test case but show qualitative evidence 
of curvature effects. The same remarks apply to the more recent measurements of Mackrodt (133) in a 
similar flow, although the latter may be usable as a test case for theories of "steady" vortex development 
and show undeniable qualitative evidence of "steady" vortices. 

Tani's pioneering study of longitudinal vortices (102) was followed independently by Patel's much more 
detailed measurements (37, 162). Patel used a rectangular tunnel (we reserve the word "duct" for flows 
turbulent throughout the cross section) which was 12 in. high and 48 in. wide between false walls, with a 
centre-line radius of curvature of 30 in.: the boundary layer thickness at entry to the curved portion 
was about 1.8 in. In Ref.37 Patel reduces his boundary layer profiles to quasi-plane form by plotting 
Ur/(Ur)e, the circulation ratio, rather than the velocity ratio. As noted in the derivation of Eq(4), 
Ur and the total pressure P are related by 

S - i £ (ur> • 2T2 & (u2r2) (128) 

so that P and U2r2 are equivalent over a small range of r. The circulation, for which Patel uses the 
unfortunate symbol co, seems to have no real advantage over the total pressure (referred to pw) for 
plotting data, and the total pressure is directly measurable. In Ref.162 Patel presents measurements in 
terms of velocity components made dimensionless by the maximum mean velocity at a given cross-section of 
the tunnel: this is actually the velocity just inside the boundary layer on the convex side of the tunnel. 
Even after fitting false walls to remove the end-wall boundary layers at the start of the curved portion, 
Patel found large secondary flows in the corners of the tunnel. The slow-moving fluid in the sidewall 
boundary layers is forced by the pressure gradient into a curved path of smaller radius than the path of 



48 

the external flow so that fluid migrates from the concave surface to the end walls and from the end walls 
to the convex surface. Consequently low-velocity regions appear near the corners of the convex surface, 
extending over a distance of about four times the end-wall boundary-layer thickness. The central part of 
the convex-wall boundary layer was fairly uniform in thickness although the spanwise variation of skin-
friction coefficient was almost as large as on the concave surface and the rate of growth of 5 suggests 
significant lateral convergence. Patel's detailed mapping of the longitudinal and crossflow velocities on 
the concave surface show the development of "steady" longitudinal vortices whose spanwise wavelength is 
about 10 in. or 3-4 boundary-layer thicknesses. It is noteworthy that the spanwise wavelength is the same 
at the two measurement cross-sections, after 135 deg. and 173.5 deg. turning respectively, the distance 
between the two stations measured around the concave surface being 24 in. or 8-10 boundary-layer thicknesses. 
The peak-to-peak amplitude of the spanwise Cf variation was nearly 30 per cent, the regions of low Cf 
being narrower than the regions of high Cf so that the graph of Cf against z looks rather like a 
rectified sine wave. Bearing in mind that the surface shear stress will be low beneath the outgoing parts 
of the vortex system and high beneath the ingoing parts, one can see that this is consistent with the flow 
patterns in Fig.6. 

Patel (37) also presented measurements in the very thin and highly-accelerated boundary layer on a 
circular cylinder. The ratio 6/R is 0.032 at the minimum pressure point, 80 deg. from the leading edge, 
and rises rapidly thereafter. Interpretation of the effects of convex curvature is complicated by the 
probable effects of low Reynolds number (Uge/v *• 800 at 80 deg.): the data analysis for plane-wall 
boundary layers by Coles (163) suggests significant increases in entrainment rate and skin-friction 
coefficient at such low Reynolds numbers, opposing the stabilizing effects of convex curvature. In 
addition, the streamline curvature in the outer part of the boundary layer near separation is likely to be 
greatly different from that of the surface. That some net curvature effects remained is implied by 
calculations by the method of Ref.16, using the surface curvature and pressure distribution, an F-factor 
with a = 14 and no allowance for lag: separation was predicted at about 105 deg, compared with the 
experimental value of 110 deg., whereas a calculation with a = 0 (still using the measured pressure 
distribution) showed no separation at all (Fig,21). The experimental values of cf shown in Fig.22 were 
obtained from semi-logarithmic plots of Patel's profiles taken from the published graphs and their 
generally closer correspondence with the a - 0 calculations is probably not significant. The cf 

calculations would have been almost unaffected by allowances for changes in pressure or streamline 
curvature across the layer although there would have been some reduction in H because of curvature effects. 

So and Mellor's (160) exploration of longitudinal vortices in a concave-surface boundary layer with 
6/R -i: 0.1 was less satisfactory than that of Patel in the sense that the measured changes in mean-flow 
properties were smaller, and indeed of no greater order than the spanwise variations commonly induced by 
non-uniformity of the entry flow due to irregularities in the screens or elsewhere. This is not necessarily 
a criticism of So and Mellor's experiment: the more uniform the entry flow, the less likely the vortices 
are to lock themselves into a "steady" position and thus produce effects on mean vorticity. A criticism 
that can be levelled is that their hypothesized co-rotating double vortex system is kinematically 
impossible: also. So and Mellor suffered, like Patel, from pronounced secondary flow in their tunnel, and 
this may have disturbed the natural vortex system despite attempts to re-energise the sidewall boundary 
layers by air jets. One fortunate consequence of the lack of strong spanwise variations is that the mean 
flow may be taken as two-dimensional for calculation purposes (except for the customary allowances for 
slight lateral convergence or divergence caused by excursions of the sidewall boundary layers). Naturally 
this highly unstable flow is expected to be beyond the range of validity of linear F-factors since 
unsteady longitudinal vortex motions were undoubtedly present, with consequent large effects on the 
turbulent transport terms (unfortunately not measured in this or any other boundary layer experiment). 
Comparisons between calculation and experiment for the convex and concave sides are shown in Fig.22 and 
discussed in Appendix 2. The F-factor approach gives tolerably good results, even when applied to the 
method of Ref.16 using an algebraic length scale, provided that the boundary layer thickness used as a 
scaling length for L is taken as the thickness of the shear stress profile (Fig.18) rather than the 
velocity profile: the latter has no relevance to the eddy scale of the sub-boundary layer on a convex 
surface beneath a stabilized outer layer. 

So and Mellor's measurements in adverse pressure gradient (on a convex surface only) do not add any 
new qualitative features to the data from the constant-pressure runs although the additional test data are 
useful: essentially one does not expect the mean pressure gradient to have great effects on the 
turbulence structure, except for the ill-documented effects of 3U/3x or 3V/3y (Section 3), and one 
does not expect curvature effects to be very important in the inner layer so that large changes in 
separation phenomena are unlikely. Any experiments on curved boundary layers planned in the near future 
should be done in nominally zero pressure gradient for simplicity, and So and Mellor's efforts to reduce 
the strong pressure gradients that necessarily occur where the curvature changes sharply were not really 
necessary. The only valid reason for applying a pressure gradient would be to increase the turbulence 
intensity in the outer layer so that turbulent transport became larger and its modifications by streamline 
curvature easier to study: here a self-preserving ("equilibrium") retarded boundary layer would be most 
suitable. 

So and Mellor measured the Reynolds shear stress (both the "two-dimensional" component -uv" and the 
lateral transport of longitudinal momentum -uw, which will be non-zero if "steady" vortices appear) and 
the components of turbulent intensity: all components changed in the expected sense and it is their ratios, 
rather than their absolute values, that provide useful evidence about detailed changes in turbulence 
structure. The ratio uv/q2, where q2 » u2 + v2 + w2, is a simple measure of the efficiency of the 
turbulence in producing shear stress: it is close to 0.15 over most of a plane boundary layer, falling 
near the surface and near the outerjadge where "inactive" motion and irrotational fluctuations are 
significant. On the convex side, uv/q2 is small in the outer region of the boundary layer and v2/q2 is 
also somewhat reduced, indicating that stable curvature preferentially suppresses radial motion. Velocity 
fluctuations in the stable outer layer may arise from several causes, not necessarily distinguishable in 
practice: 

(i) turbulence generated locally by interaction with the mean shear 
(ii) mean transport from the neutrally-stable boundary layer upstream 
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(iii) turbulent transport from the less-stable regions nearer the surface 
(iv) irrotational fluctuations arising as part of (ii) or (iii) 
(v) propagating waves (as opposed to irrotational fluctuations convected with their source) also 

arising as part of (ii) or (iii). 

In strongly-stable flow (i) is negligible and turbulent transport of rotational fluid by the large eddies 
is probably small also. The relative size of (iv) and (v) in So and Mellor's experiment cannot be deduced 
from the intensity measurements, but the Richardson number in the outer region was of the same order as in 
Castro's experiment (11), where oscilloscope traces showed very strong low-frequency fluctuations which 
were either waves or irrotational fluctuations of a strength not found in plane flows. 

Young (57) is making measurements on the flat surfaces of a 30 in. x 5 in. tunnel downstream of a 
30 deg. bend, whose radius is 10 in. on the concave side and 5 in. on the convex side, the boundary layer 
thickness at entry to the bend being about 1 in. in each case. The discussion of the lag equation, Eq(37), 
suggests that sharp bends can be regarded as "curvature impulses", the state of the turbulence at exit 
from the bend depending primarily on the total turning angle and only secondarily on 6/R. Young's 
measurements do not explicitly support this suggestion because they are restricted to one turning angle and 
one value of 6/R, but implicit support is provided by the fair agreement between experiment and 
calculations using Eq(3b) and the linear lag equation Eq(37) — see Fig.23 — although F-factors would not 
normally be expected to give realistic results with 6/R in the range 0.1 to 0.2, which is even higher 
than in So and Mellor's experiments. Spanwise periodicity suggests the presence of longitudinal vortices 
in the boundary layer downstream of the concave side of the bend, but perhaps the most interesting 
qualitative feature of the concave side is the variation of turbulent intensity with y (Fig.24). The 
explanation of the relatively greater rise in turbulence intensity in the outer layer, resulting in the 
trough near the surface, is that the Richardson number is numerically larger in the outer layer and the 
effects of curvature therefore more pronounced. Note that lag effects do not necessarily play a part, for 
one would expect the turbulence in the outer layer to respond more slowly than that near the wall. Fig.24 
is a satisfying confirmation of the physical ideas behind the local F-factor analysis, and reproduces a 
phenomenon often found in calculations using F-factors. 

Because the direct effects of curvature on the turbulence near the wall are fairly small, the 
evidence of Young's measurements about the lag-effect "time constant" X (Eq.37) is confined to the outer 
layer: the discrepancies between experiment and predictions using a linear lag equation are probably to 
be taken as evidence of the crudity of a linear F-factor and a linear lag equation rather than of a 
significant departure of the "time constant" of the outer layer from the value of 106 quoted for many years 
as typical of constant-pressure boundary layers. 

Meroney (164) is making measurements, with the same initial conditions as Young, in a prolonged 
bend whose radius of curvature is 100 in. on the concave side and 95 in. on the convex side, giving 
6/R as 0.01 at entry. Even with so small a value the growth of 6 over the 48 in. long convex side is 
almost halved and the skin friction coefficient falls to about 0.9 of the value expected on a plane surface, 
while the mixing rate on the concave side is increased, Cf is about 1.1 times the plane surface value, 
and the customary evidence for longitudinal vortices appears. As seen in Fig.25 calculations, using an 
F-factor with a • 14 on the convex side and 8 on the concave side, give fairly good agreement for Cf 
and 6: sample profiles are also shown in Fig.25. The experiment is still in progress and further details 
will be given in a forthcoming Imperial College report: it is hoped that values of a derived from this 
experiment can be taken as standard for calculations in boundary layers with moderate surface curvature. 
Another piece of work in progress at Imperial College (Mech. Engng. Dept.) is a study by Priddin of 
boundary layers on curved transpired surfaces of fairly large curvature: various methods of reducing 
migration of the side wall boundary layers on to the test surfaces are being explored. 

The characteristic problems of axial-flow turbomachines are boundary layers on highly-cambered 
blades (the "centrifugal force" if any being spanwise and therefore not responsible for any curvature 
effects) and boundary layers on the hub or casing, with a swirling free stream. If the total-pressure rise 
is independent of radius (the usual nominal design condition) the free stream is irrotational except for 
the blade wakes: therefore the boundary conditions on the boundary layer are similar to those in the 
ideal swirling flow studied by Yeh (99). Mackrodt's experiment (133), whose demonstration of the presence 
of streamwise (spiral) vortices was mentioned in Section 5, was carried out behind a swirl generator like 
a turbomachine stator. We note that in the absence of longitudinal pressure gradients these flows should 
approximate to unskewed two-dimensional boundary layers; the change of flow angle through the boundary 
layer is of order 6/R radians, which is small. Viewed in axes along the local flow direction a 
longitudinal pressure gradient has a cross-stream component and crossflow therefore results, although the 
simplification of axisymmetry is retained and the flow now approximates to a boundary layer on an infinite 
yawed wing. It should therefore be possible to use the same curvature corrections in hub or casing 
boundary layers as in the corresponding non-swirling curved flows. No quantitative data for curvature 
effects have been extracted from the (concave, unstable) "casing" boundary layers, but Hughes (165) has 
analysed his measurements of the boundary layer on a cylindrical non-rotating hub beneath a swirling flow 
(maximum swirl angle at 10 deg., maximum 6/R ff w 0.007) and deduced an optimum a of 13 for the F-factor 
applied to the mixing length (the usual tendency to decrease with increasing Ri was found). This 
compares with a value of 14 from the buoyancy analogy and compensates for the value of 15 found at small 
positive Ri in the above analysis of Eskinazi and Yeh's experiment (98). It need hardly be said that a 
difference of ±1 in a is not significant at present, and a reasonable conclusion from the data of 
Meroney and of Hughes is that a value of 14 [corresponding to 6 " 7 in the Monin-Obukhov law, Eq(119)] 
is adequate for small curvature effects (Ri < 0.1, say, giving 1 < F < 1.7). 

The thin boundary layer on a spinning cylinder in a purely axial stream is also effectively two-
dimensional, as found experimentally by Parr (166) and Furuya et al. (167) and proved by Cham and Head (127). 
Cham and Head analysed Parr's results by the indirect but legitimate method of comparing them with 
calculations by Head's entrainment method and inferred the behaviour of o in the F-factor applied to the 
mixing length [replacing e/(3U/3y) by jRi from Eq(115)]. They found that a rose monotonically 
from values of order unity near the surface to approximately 60 near the edge of the boundary layer. While 
some departures from normal behaviour may be expected, because Ri itself behaves in an unusual way (being 
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small near the outer edge as well as near the surface), it is difficult to accept that such a large 
variation is real. Parr did not measure shear stress, and derivation of shear stress from the mean 
velocity profiles would not be demonstrably more reliable than Cham and Head's own analysis invoking a 
well-tried empirical family of velocity profiles. 

Dean (168) has reviewed the general problems of boundary layers in centrifugal turbomachines. 
Pessimistic conclusions are drawn about the utility of current boundary layer methods in dealing with 
problems that, in the case of the impeller, "include boundary layer separation and free shear flow under 
the influence of Coriolis forces, separated flow in a rotating coordinate system, transonic flow over the 
blades, tip leakage and secondary flow" while the fixed radial diffuser suffers from shock/boundary-layer 
interaction, secondary flow in low-aspect-ratio passages, and sometimes significant curvature effects. 
The pessimism may well be justified, but a number of experiments have recently been made on rotating ducts 
or boundary layers with particular application to centrifugal turbomachines, and our knowledge of Coriolis 
effects rivals, and in some measure outstrips, our knowledge of the effects of streamline curvature in a 
stationary frame of reference. 

Johnston (79) reviews the earlier work on Coriolis (streamline curvature) effects in boundary layers 
and in ducts of large or small aspect ratio: he gives a full discussion of the problem of laminar flow 
stability as well as that of turbulent flow, and apart from references to a few recent measurements, 
notably Johnston's own, little need be added to his account. The work by J. Moore in the Gas Turbine Lab. 
at MIT, referred to in report form by Johnston, has now appeared as "A wake and an eddy in a rotating, 
radial-flow passage", parts 1 and 2, ASME papers 73-GT-57 and 73-GT-58, with the possibility of 
publication in J. Engg. for Power, It deals with experiments and calculations on the flow in short 
rotating ducts of low or moderate aspect ratio. Moore emphasizes the effects of secondary flow in the 
corners of his rectangular ducts but Johnston comments that the flow in the duct of highest aspect ratio 
(7-J) was probably dominated by Coriolis effects on the turbulence structure, which Moore does not explicitly 
discuss. 

Anders (169) made mean-flow measurements on the curved blades of a rotating centrifugal impeller: 
both circular-arc and logarithmic-spiral blades were tested. The experimental techniques included a hot­
wire pressure transducer which measured the velocity in a capillary tube induced by the pressure difference. 
Velocity measurements were made with conventional hot wires, and surface shear stress was deduced from a 
surface pitot-static tube, again using the hot-wire pressure transducer. The china-clay (Kaolin) method 
was used to indicate the flow direction by observing the wakes of small obstacles on the surface. Anders 
uses (6/Ug)(3U/3y) . as a stability parameter: since this is equal to 6/R the reason for the more 
complicated form is not apparent. Anders suggests that near the surface the mixing-length ratio t/Ky 
should be a function of this stability parameter but does not extract the function from his results. 
Judging from the development of the boundary layer thickness very large cross-flow must have occurred near 
the end walls of the low-aspect-ratio blade passage, so that the results are of doubtful quantitative value 
and it is not possible to assess the net effects of curvature and rotation in this very interesting flow. 

Litvai (170) has presented measurements and analysis of the boundary layers in a rotating rig 
simulating a centrifugal turbomachine. Unfottunately the results are not presented in sufficient detail 
for use as a test case, while the analysis is not conducted in terms of dimensionless parameters and is 
therefore inapplicable to other data. It is to be hoped that a more detailed presentation will appear. 

A number of experiments has been done on flow in curved (171-173) or radial rotating (174) circular 
pipes. The effects of secondary flow driven by pressure gradients (171) obscure any direct effects of 
streamline curvature on the turbulence: all that can be said at present is that the effects of curvature 
should not be forgotten when calculation methods capable of predicting the details of the secondary flow 
are being developed. 

Tillman (175) has studied transition to turbulence in the "spin-up" boundary layer on the inside of 
a cylinder impulsively set into rotation about its own axis. The transition process as viewed with 
increasing time is similar to the "transition by spectral evolution" (71) in steady flow between concentric 
cylinders as viewed with increasing Reynolds number. The Taylor-Gbrtler instability vortices that precede 
transition are still present at a late stage and it seems probable that, in some Reynolds number or 
curvature ranges at least, they would merge into the vortices found in fully-turbulent flow. Tillman 
makes the point that the necessarily discontinuous changes in number of vortices cause excursions in the 
ratio of spanwise wavelength to shear-layer thickness. 

Little work on fully-turbulent flow between rotating cylinders has been reported in recent years. 
The elegant experiments of Coles and Van Atta (73) on the partly-laminar, partly-turbulent flow that occurs 
in the stable case have been mentioned above: at present we cannot draw any quantitative inferences from 
this experiment about other types of partly-stabilized flow. Ustimenko and colleagues have published 
several papers on rotating cylinders and similar flows, of which Ref.176 is the most accessible. 

The rotating-duct experiments of Johnston and his collaborators (10, 76, 79, 158) have been 
discussed in Section 5 with reference to the gross effects of rotation, namely longitudinal vortices on 
the side where the relative mean vorticity is in the opposite sense to the bulk rotation and suppression 
of turbulence on the other side. Johnston refers to the unstable side as the "leading" side and the 
stable one as the "trailing" side, but these names apply only to his own apparatus. Bradshaw (91) found 
that departures from the logarithmic law in these experiments were quite well correlated by Eq(44) 
with a - 8 on the stable side and a = 4 on the unstable side, for uTy/v < 500. Such a correlation 
neglects the variation of shear stress with y: Johnston's more rigorous correlation of mixing length 
ratio H / l 0 with the local gradient Richardson number from Eq(89) was less successful, confirming the 
suspicions aroused by the surprisingly low values of a in the crude correlation, Johnston's correlation 
on the unstable side was moderately acceptable, most of the data indicating values of a between 8 and 12, 
with a roughly linear trend up to (-Ri) at 0.25 and with a significant decrease of a with increase in 
(-Ri): on the stable side, however, H./l0 attains constant values for Ri > 0.08, while both these_ 
constant values and the apparent values of a at lower Ri depend on the bulk rotation parameter Oh/U. 
A fair, though not necessarily general, correlation for large Ri (large y) on the stable side is 
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± - 1 - 6.5 0h/U (129) 
xo 

for 0.03 < Oh/U < 0.09. This may be regarded as an F-factor of sorts, but, as the local Reynolds numbers 
involved are rather low, viscous effects as well as curvature effects may be involved. 

The rotating duct experiments are a useful extension of the work done on curved ducts by Wattendorf 
(82) and by Eskinazi and Yeh (98). Eskinazi and Yeh's duct experiment is still the only one to include 
turbulence measurements, and they appear to be reliable except for the probable undetected presence of 
"steady" or unsteady longitudinal vortices. The flow at entry to the curved section was a fully-developed 
duct flow, and the results include mean velocity and u-component intensity profiles at several stations 
during the re-establishment of self-preservation in the curved flow: unfortunately shear stress 
measurements were not made in this region. In the fully-developed curved flow, surface shear stress values 
were obtained by assuming that the logarithmic law held near the surface: in these experiments, as in 
Wattendorf's, significant deviations from the logarithmic law are found at larger distances from the 
surface and the apparent mixing length is much larger on the concave side than the convex side. Although 
mean transport terms are zero in fully-developed flow, turbulent transport normal to the surface is 
important (especially in the presence of destabilizing curvature effects) leading to displacement of the 
point of zero shear stress from the point of zero rate of shear strain and thus to eccentric behaviour of 
the apparent mixing length. Large rates of turbulent transport — or the suspected longitudinal vortices — 
are probably responsible for the large differences in low-frequency spectrum shape between the two sides 
of the duct, although it could be argued that all turbulent length scales should increase when the mixing 
length or dissipation length parameter increase. Eskinazi and Yeh find that the longitudinal integral 
scale of the radial-component velocity fluctuation was about 5 times larger at 0.1 duct heights from the 
outer wall than at the same distance from the inner wall and comment that the effects of curvature on the 
integral scales is about the same as that on the microscales. Fig.13 shows the apparent mixing length, 
using the definition S, - |-uv| x/2/13U/3y | , and the effective value of a in Eq(36), writing the latter 
as i/Ky s fc/0.41 y - 1 + a(3V/3x)/(3U/3y). The effect of using second-order definitions of i. or of the 
Richardson-number analogue 2(3V/3x)/(3U/3y) would be fairly small at the smallest distances from the 
wall, and at larger distances from the wall the failure of the inner-layer local-equilibrium approximations 
would be at least as important. Values of i/Ky extrapolate plausibly to unity at the walls and the 
values of a at small y are quite close to the values of 14 and 8 or 9 deduced from the buoyancy 
analogy for stable and unstable flows respectively. As in the case of the integral length scale, the 
mixing length (roughly equal to the dissipation length parameter) at 0.1 duct heights from a wall is about 
five times larger on the unstable side than on the stable side. Values of mixing length derived by 
Wattendorf from his data, strictly, the mean of Wattendorf's two sets of values based on 3U/3y + U/R and 
3U/3y - U/R, are also shown in Fig.13 and agree very well with Eskinazi and Yeh's results except at the 
larger distances from the "unstable" wall where 3U/3y is difficult to measure from Eskinazi and Yeh's 
rather sparse profile. The apparent limiting value of H / l 0 at large r on the stable side agrees as 
well as one could ask with the prediction of Eq(129) derived from Johnston's rotating duct experiments, 
with Oh/U replaced by h/r: however the Richardson number at which the limiting value is attained [at 
(r - rp/h - 0.15, say] is about 0.16 as opposed to 0.08 in Johnston's experiment. On the unstable side 
the trend of a is similar to that in the rotating duct but the actual values of a are up to 20 per cent 
lower. The general similarity between the results for the curved and rotating ducts is a fair demonstration 
of the similarity of the two phenomena and the empirical validity of exchanging U/r and 0 even when 
curvature or rotation effects are fairly large. 

The remaining boundary layer measurements in Table 2 are either fragmentary, done without considera­
tion of curvature effects or mentioned elsewhere in this review. The most important of these studies is 
Schubauer and Klebanoff's carefully-planned experiment (101) on the separating boundary layer on an 
aerofoil-shaped body whose rear upper surface had a constant radius of curvature of 31 ft. from about 
x • 18 ft. (where 6 at 2.5 in.) to the separation point at x an 26 ft. (where 6 aj. 8 in.). Near the 
separation point d6/dx increases rapidly and the streamlines in the outer layer are concave, but over 
most of the flow curvature has a stabilizing effect. The authors did not anticipate or discuss curvature 
effects, and the importance of the latter in this experiment did not appear until some years later. In the 
interval, the results were used for determination of empirical constants in calculation methods intended 
for surfaces of small curvature: this is not an explanation of the poor performance of calculation methods 
of that vintage because Head's method is also based on the Schubauer and Klebanoff data and performs 
significantly better than the other 1950-1960 methods reviewed by Thompson (161). Schubauer and Klebanoff's 
boundary layer also suffers from strong lateral convergence and — naturally — large 3V/3y near the 
separation point, but the cumulative dynamic effects of these extra rates of strain do not seem to be as 
important as those of the relatively prolonged surface curvature. Allowing for 3W/3z only in the 
continuity equation and neglecting secondary strain effects other than curvature, the calculation method 
of Ref.16 using Eq(36) with a - 14 (from the buoyancy analogue), gives much improved predictions of Cf 
(Fig.26). The predictions of H are less improved but this is probably because of significant pressure 
differences across the layer, which are not allowed for even in the mean-flow equations. The conclusion is 
that the first-order F-factor correction is sufficiently accurate in view of the other uncertainties in 
the experiment, a conclusion which is likely to apply to other "dirty" flows, although the inclusion of a 
lag equation like Eq(37 ) may sometimes be justified. 

Most of the recent theoretical work on curved boundary layers has been on F-factor concepts or 
related empirical correlations for local properties or profile parameters. Examples include Refs 46, 50, 
79, 91, 92, 127, 160 and 177-181. The superiority of other linear analyses to the simple F-factor 
approach, and the justification for postulating non-linear correlations of local quantities in the present 
state of knowledge are not apparent to the present author. For example, the analysis given by So and 
Mellor (160) is to first order equal to an F-factor analysis, and their preferred empirical constant 
Jlj/X - 0.0417 (Ref. 160, p.86) corresponds to a - 8. Similar analyses applied to other shear layers are 
referenced below. It is of course rather difficult to compare correlations for different types of integral 
parameters without doing calculations by each of the methods for which the correlations are intended, and 
no attempt will be made to do this here. Green et al. (46) avoid the problem of converting a local F-
factor into an integral correlation by applying a transport equation at one point on the profile rather 
than as a weighted integral over the profile (strictly, it is an integral weighted by a delta function). 
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The most comprehensive curvature correction for an integral method is that developed by Fapailiou et al. 
(181), adding to the mean kinetic energy dissipation coefficient a quadratic function of (U R/v)-1 

whose coefficients are functions of H and Reg. Naturally the data available for establishing the 
functions are limited. The recent paper by Dvorak (182) includes a discussion of the extra (f-factor) 
terms in the equations of motion in (s,n) coordinates but makes virtually no mention of F-factor effects. 

Some apology is necessary for the neglect of heat transfer in this review. Quite simply, the 
uncertainty of the behaviour of the Reynolds analogy factor and the turbulent Prandtl number is so great 
even in plane flows that a discussion of the effect of streamline curvature on these quantities would be 
premature. Application of meteorological data for the variation of the diffusivity ratio K*J/KM (E 1/Prt) 
with stability parameter in buoyant flows would put rather too large a strain on the buoyancy/curvature 
analogy. At present the best advice is to apply the same F-factor analysis to the heat transfer equations 
as to the momentum transfer equations; this implies the assumption that the Reynolds analogy factor, the 
turbulent Prandtl number and the coefficient of correlation between velocity fluctuations and temperature 
fluctuation are unaltered by streamline curvature. 

6 .2 SUPERSONIC BOUNDARY LAYERS 

It is fair to say that the measurements of supersonic boundary layers in pressure gradients induced by 
surface curvature (Table 4) have not yet given value for money. According to the arguments of Section 3, 
a boundary layer on a curved compression surface suffers from the F-factor effects of compression and of 
curvature, which have the same sign and appear to increase rapidly with Mach number. This obscures the 
Mach-number independence of turbulence structure, hypothesized by Morkovin and apparent in constant-
pressure flows at all non-hypersonic Mach numbers. Even if one accepts the quantitative reliability of the 
F-factor analysis for small extra strain rates and the accuracy of the rather mechanical arguments used to 
derive the Mach-number dependence of Rf in Eq(95), much of the supersonic curved-surface data is still 
indigestible because of the large ratios of 6/R involved (recall that F as 1 ± 306/R in the central 
part of the boundary layer at low speeds). Experiments like those of Kepler and O'Brien (183), McLafferty 
and Barber (184) and Clutter and Kaups (185) are little different from shock-boundary layer interaction or 
sharp corner expansions as far as effects on the turbulence structure are concerned, and the total 
compressive strain rates involved are too large for the "strain impulse" extension of the F-factor 
analysis to be trustworthy: the static pressure in Kepler and O'Brien's experiment at M as 3, for 
instance, increased by a factor of 6 in a streamwise distance of ten initial boundary-layer thicknesses. 
The curvature effects as such (5/R «£ 0.05, turning angle «24 deg.) would in this case be small enough 
for the strain impulse analysis to be moderately trustworthy despite the threefold increase in Richardson 
number predicted by the Mach-number factor in Eq(95) but, as seen in Section 3, the effects of compression 
are greater, at supersonic Mach numbers, than the effects of curvature of the surface producing the 
compression, A further difficulty in most supersonic experiments is the lack of skin friction measurements 
and the consequent inability to check the two-dimensionality of the flow. The only exception is the 
experiment of Winter, Rotta and Smith (54) on a waisted body of revolution at 0.6 < H» < 2.8, and here 
the presence of skin friction measurements is counterbalanced by the presence of lateral convergence and 
divergence as well as streamline curvature and compression. As mentioned in Section 3, Green et al. (46) 
have secured good agreement between the waisted body results and unlagged F-factor allowances for the 
three extra strain effects with a - 7 in each case. At the higher Mach numbers the maximum value of 6/R 
was only about 0.025 and even this was reached only over a very short region, so that, as shown by Green, 
curvature was much the least important of the three effects. At M,,, • 0.6 the effects of curvature and 
lateral divergence were roughly equal and opposite and it is more logical to assume the curvature effects 
to be known and to infer the behaviour of the divergence effects — which are much less well documented — 
than the reverse. 

If one were concerned only with the extreme cases of a flat surface with an externally-induced 
pressure gradient and a curved surface generating the whole of the pressure gradient itself, one could 
treat them as distinct types of flow governed by distinct sets of empirical rules. However there are many 
intermediate cases in which the flow field of, say, a wing influences flow on a neighbouring curved surface 
(say an intake ramp) so that a unified treatment is desirable. 

Some demonstration calculations for supersonic boundary layers over curved surfaces are shown in 
Fig.27. They seem to be consistent with the proposition that a is independent of Mach number if the 
rate-of-strain ratio in Eq(36) is replaced by jRi defined by Eq(95), but it must be remembered that the 
two-dimensionality of the experiments is doubly under suspicion because of the lack of checks on spanwise 
convergence and the probable presence of longitudinal vortices. Moreover, with the exception of Thomann's 
constant-pressure flow (4), the ill-documented effects of bulk compression are considerable and could 
account for, or obscure, any error. The only data available for hypersonic flows refer to shock 
interactions in sharp corners or bends of very small radius, and no useful attempts at calculation can be 
made at present. Extrapolation of the trends at lower Mach numbers would suggest that almost any 
hypersonic boundary layer on a convex surface should be laminar, particularly if the surface generated a 
favourable pressure gradient, while boundary layers on concave surfaces should consist largely of 
longitudinal vortices. Refs 186 and 187, for instance, tend to support these suggestions. Doubtless, 
limiting effects occur: in particular, Green's analogy between the effects of compression and of lateral 
divergence suggests that the large eddies in a boundary layer under strong compression may degenerate into 
spanwise vortices like those observed by Keffer (47), with the probability of strong interaction with the 
supposed longitudinal vortices on a concave compression surface. The truth or falsity of these academic 
speculations corresponds to large changes in heat transfer to hypersonic vehicles, and a series of 
experiments deliberately intended to investigate the undoubted effects of curvature and the postulated 
effects of compression is badly needed. Simple but carefully-controlled experiments in the style of 
Thomann (4) would be as useful, at least in the short terra, as large-scale data-collection exercises. 



53 

7. THE COANDA EFFECT - WALL JETS ON CURVED SURFACES 

Three entirely different phenomena commemorate the name of Henri Coanda, who died last year at the age of 
86 (12), and this is perhaps a suitable opportunity to classify them. 

1. The effect originally publicised by Coanda is the tendency of a fluid jet, initially tangential to 
a curved surface, to remain attached to the surface. This is indeed an unusual effect but requires no 
unusual explanation. As shown by Lighthill (188) for instance, the effect occurs in an inviscid 
irrotational fluid: even the well-known experiment with a teapot or with a spoon and a water tap shows 
fairly conclusively that the jet does not suck itself on by entrainment since a water jet in air 
accomplishes no entrainment. However one still finds statements like that in a recent report "The physical 
effect is well known..."; followed by an explanation involving viscous effects. Fernholz (private 
communication) quotes unpublished work which shows that surface tension helps to promote attachment of a 
liquid jet in air. 

2. The effect whereby a jet whose initial axis does not intersect a solid surface can nevertheless 
attach itself to the surface (because of the low pressure region resulting from the acceleration of the 
fluid that supplies the entrainment) is called by Metral and Zerner (86) the "Chilowsky effect". 
Obviously this is a real-fluid phenomenon and easy to understand in principle; special effects of 
streamline curvature on turbulent mixing need not be involved. Young (1800) as quoted by Wille and 
Fernholz (103) observed — but confused — (i) and (ii). 

3. The effect whereby a jet attached to a convex surface grows more rapidly than the wall jet on a 
plane surface is much more obscure, and forms the main subject of this chapter. It ia essential to the 
operation of some of the devices invented by Coanda, notably his mixing nozzles, and I would like to suggest 
that the term 'Coanda effect' be reserved for this phenomenon. Effect No.2 could if necessary be called 
after Chilowsky, Young or another early investigator, Lafay (86) and No.l, being a simple consequence of 
the inviscid-flow equations, deserves no more august name than the 'teapot effect', although Wille and 
Fernholz (103) mention the august names of Reynolds and Ackeret as early students of this effect. 

In the two-dimensional wall jet 3U/3y is negative everywhere, except near the surface where it is 
positive and very large. Therefore the various curvature parameters related to (3V/3x)/(3U/3y) are 
almost everywhere positive on a convex wall and negative on a concave wall: near the surface the sign is 
opposite but the parameter is small. Since the work of Newman (104) and Bradshaw and Gee (107) in about 
1960, many basic research studies of wall jets on curved surfaces have been made, in addition to continuing 
work on blown flap schemes and other applications of the Coanda or teapot effects. Much work has also been 
done on the teapot effect for application to fluidic devices: little of this work is relevant to the 
present study because streamline curvature effects are not important in the teapot effect, and the 
complications of low Reynolds number and low aspect ratio make the interpretation of fluidic studies 
difficult. Wille and Fernholz (103), reporting on the first Euromech Colloquium on "The Coanda Effect", 
give 120 references to work up to 1965, but both the Colloquium and the report covered a wide range of 
work on curved laminar and turbulent shear layers in addition to the Coanda effect as defined above. 
Fernholz (189: 1965) reviews work on the Coanda effect proper. Newman's group at McGill University has 
made several contributions to knowledge of curved wall jets and free jets: Newman (190: 1969) reviews work 
up to that date, and the thesis by Guitton (7: 1970) contains an extensive review as well as original work, 
so that an exhaustive review is not necessary here. 

Much of the available information about wall jets on curved surfaces consists of mean-velocity 
profile measurements in wall jets blowing round circular cylinders. Fekete (191) reports a detailed study 
including the effects of roughness: see also Ref.7. The ratio of nozzle height to cylinder radius has a 
negligible effect on the flow many nozzle heights downstream and most basic experimenters have chosen a 
sufficiently small ratio that a good approximation to self-preserving flow was attained while 6/R was 
still small enough for streamline curvature effects to be fairly small. However, large nozzle heights may 
be necessary or desirable in blown flap schemes: Fernholz (189) plots data from several sources covering 
the range 4 < R/h < 500. Fernholz (192) has investigated the use of a spoiler in the outer part of the 
flow to achieve continued attachment at even smaller R/h, and Bradbury and Wood (193) have investigated 
the (unfavourable) effects of compressibility on the maximum deflection obtainable from a cylinder*-flap 
combination with R/h - 4. Although h/R can be neglected as a parameter if it is small, the aspect 
ratio, (width of flow)/(distance from slot), can have an important effect on the apparent spreading rate 
because of secondary flows at the edges. The usual practice is to fit plane sidewalls at each side of the 
jet, preferably of such a height that the entrainment flow, as well as the turbulent region, is tolerably 
two-dimensional. However, strong secondary flows still occur in the streamwise corners, and, even if the 
aspect ratio is high enough for the regions of longitudinal vorticity (the true secondary flows) to occupy 
only a small fraction of the span, significant lateral convergence can be caused by growths of the 
displacement thickness of the shear layers on the side walls. This lateral convergence affects the 
apparent growth rate and also the position of separation of the wall jet from the curved surface. In the 
case of a circular cylinder, the separation point is at 226 ± 3 deg. from the jet origin if the Reynolds 
number is large and h/R and the effects of three-dimensionality are small (190), but widely differing 
separation points have been reported in the literature. 

The growing wall jet on a cylindrical surface of constant curvature cannot be exactly self-
preserving even if one neglects the effects of Reynolds number, h/R and three-dimensionality. The 
grossest manifestation of this lack of self-preservation is separation, which is usually explained in 
terms of the self-induced adverse pressure gradient that manifests itself as soon as the lines of constant 
U/Umax in the outer part of the flow acquire a radius of curvature significantly greater than the 
surface radius R [previous to this, the surface pressure is less than that at infinity by the nearly 
constant quantity J" U2 dn/R, as follows approximately from Eq(10)]. The destabilizing effects of convex 
surface curvature lead to earlier separation because they reduce the velocity of the flow, by an Increasing 
amount as the distance from the origin increases, and thus reduce its ability to withstand the inevitable 
pressure rise. The existing measurements near separation do not contribute to our knowledge of curvature 
effects: quite apart from any difficulties of interpretation of the measurements, it appears from flow-
visualization studies like Fig.8 of Ref.190 that the streamlines near separation are almost straight except 
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close to the surface. Even far from separation the wall jet on a constant-radius surface is not a very 
convenient source of data for the effects of streamline curvature on the turbulence, because of departures 
from self—preservation. The history of the flow would affect the turbulence structure even in Che absence 
of curvature effects, and the latter will themselves depend on the history of the curvature parameter via 
the processes crudely represented by Eq(37). 

If the effects of Reynolds number on the surface shear stress are negligible, a self-preserving flow 
can be obtained if the surface radius of curvature is linearly proportional to distance from the origin: 
this gives constant 6/R. Giles, Hays and Sawyer (6, 111) and Guitton (7) have made measurements on 
logarithmic spiral surfaces (R « s, with s/R as large as unity) and despite difficulties with three-
dimensional effects, fully discussed by Guitton, the discrepancies between the two sets of experiments 
(Fig.4) are no greater than the general scatter of previous measurements on plane wall jets. Both 
experiments included turbulence measurements, those of Guitton being the more detailed although confined 
to only two values of s/R. 

by 
Guitton correlated his own spiral data, and by implication the convex-spiral data of Giles et al.. 

d|5.5 (• *5.5 1 

— - 0.07l[l + l l — J (130) 

for 5.5/R -S 0.3 
where 6.5 is the (larger) value of n at which U/U m a x - 0.5. Guitton's correlation for the wall jet on 
a convex circular cylinder at turning angles less than about 130 deg. (6.5/R < 0.17) is 
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which he regards as a more plausible fit to the data than the alternative straight-line fit 

0.069 1 + 8.7 - R- (132) 

Giles et al. (6) do not give an analytic fit to their results but their curve through their convex spiral 
data has a negative second derivative while Newman (190) draws a curve with a positive second derivative 
through the spiral data of Giles et al. and some provisional data of Guitton's on spirals and circular 
cylinders. On balance there seems no justification for anything other than a linear fit for the spiral 
data, extending to significantly higher 6.5/R than the quadratic fit to the circular cylinder data. Note 
that there is no inconsistency in correlating the growth rate on a circular cylinder as a function of 
6.5/R only; if h/R is small and the Reynolds number is large, the only length scales are R and s, 
so that *.5/R is a unique function of s/R. The difference between Eq(130) and Eq(131) is a measure of 
history effects both on the flow as a whole and on the curvature effects. Note that Newman's deduction 
(190) from his above-mentioned data fit common to spirals and cylinders, that history effects are 
negligible, is superseded by Guitton's later work. Sawyer (private communication) in work in progress on 
two-dimensional and axisymmetric wall jets over curved surfaces, including discontinuities in curvature, 
also finds significant history effects. 

On a concave spiral, the growth rates measured by Giles et al. are larger (smaller stabilizing 
effects) than predicted by Eq(130) but the difference is within the discrepancies between the convex-
surface data of Guitton and Giles et al., and may therefore be insignificant. However it should be 
emphasized that the data of Giles et al. seem to be of high quality (apart from three-dimensional effects 
in the downstream region of the most highly-curved spiral, pointed out by Guitton) so that they should be 
internally consistent to better accuracy than this. Straight-line fits to the concave-surface data of 
Giles et al. and to the data for the less highly curved surfaces are respectively 
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and the line 
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plotted on Fig.4 is the best compromise fit for mild concave or convex curvature. Guitton also found 
smaller curvature effects for given 6.5/R on a concave surface than on a convex surface but the difference 
is less than implied by Eqs (133) and (134). Spettel, Mathieu and Brison (8) reported measurements on a 
concave cylinder giving — to a linear approximation — 

0.076 1 + 9 
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in the region of 6.5/R - 0.05. This result agrees within likely experimental error with the concave-
cylinder data quoted by Guitton and is close to the spiral-surface result, Eq(133), history effects being 
small for small 6.5/R (strictly, for small 6.5d

26.5/ds
2). 

It seems clear from the data of various experimenters that the shape of the wall jet velocity profile 
is little affected by surface curvature, except for a slight increase in the maximum velocity gradient in 
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the outer layer measured as a multiple of L j
maK/&,c,, We can therefore use plane-wall profile data to 

discuss the growth-rate formulae and, for instance, Guitton's calculation that the flux Richardson number 
Rf at y - 6Q*5 is about 1.256.5/R should be valid over the whole range of 6.5/R for which a local 
parameter is useful and shows that values of Rf of roughly 0.4 were reached in the convex spiral 
experiments plotted in Fig.4. This of course is well beyond the likely range of applicability of a linear 
F-factor analysis. Rf is roughly constant over the part of the "jet" layer where the shear stress is 
largest: near the positions of maximum velocity and of zero shear stress (which do not as a rule coincide) 
the behaviour of local curvature parameters is meaningless because the turbulent energy is supplied mainly 
by turbulent transport ("diffusion") rather than by local production. Even in the region of maximum shear 
stress in the jet layer, turbulent transport (which here corresponds to a loss of turbulent energy) is a 
significant fraction of local production or dissipation, and if the effects of streamline curvature are 
correlated by F-factors applied to the dissipation term the optimum values of a will contain hidden 
allowances for the failure of local-equilibrium approximation on which the F-factor analysis is based. 
Therefore we cannot expect the optimum values of a to be the same for a wall jet as for a boundary layer 
(where local equilibrium is a fair approximation). The simple argument that entrainment or spreading rate 
is proportional to the maximum shear stress in the jet layer, coupled with the assumption that the profile 
shape (in particular, 3U/3y at the point of maximum shear stress) is independent of curvature, shows that 
to a linear approximation the F-factor applied to the apparent mixing length has a value of a roughly 
equal to the coefficient of 6.5/R in one of the linear growth-rate formulae. If we base the F-factor 
on jRf as parameter a is simply 1/1.25 times the above coefficient. Taking the coefficient as 12.5 
from Eq(135) we get a w 10, close to the "meteorological" value for an unstable flow. However, the 
mixing length is smaller than the dissipation length parameter L in the region of maximum shear stress 
because of the aforementioned losses by turbulent transport and the optimum value of a for use in a 
calculation method which applies the F-factor to L rather than i. will be different. The trial-and-
error adjustment of o to force the wall-jet versions of the method of Ref.16 (45, 61) to agree with the 
results of Fig.4 for small convex curvature suggests a as 6 (Appendix 2). However, this value depends 
significantly on the empirical modelling of the turbulent transport terms in the calculation method itself, 
which is uncertain even for a plane wall jet because of the lack of measurements of the triple velocity 
products that dominate the turbulent transport. Any improvement on the analysis, and of course any 
improvement on the F-factor concept, requires more turbulence measurements. Also, it must be remembered 
that the F-factor analysis is in spirit a small-perturbation analysis, restricted to say 0.5 < F < 1.5, 
and its validity in highly-curved flows is suspect. 

The most extensive turbulence measurements in a curved wall jet are Guitton's on convex spirals. 
He measured the shear stress, intensities and intermittency, the v-component flatness factor and the 
triple products uv2 and uw2 for the cases s/R • 0, 2/3 and 1, Giles et al. measured u2, v2, uv and 
the intermittency for s/R • 0 and 1, and in general their results agree well with Guitton's. Guitton 
allowed for the effects of high turbulence intensity on hot-wire response and his results seem internally 
consistent so that they can be taken as the best available. The trends of intensity and shear stress with 
curvature are in the expected sense. The trends of the intensity ratios and other structural parameters 
are interesting; v2/u2~ increases with increasing instability (increasing augmentation of radial motion) 
as is found in unstable buoyant flows, the value at y » 6Q.5 being 0.37 in a plane wall jet and 0.7 for 
the curved flows with very little further increase between s/R - 2/3 and s/R • 1. The ratios uv/q2 
and uv//(u2.v2) are virtually independent of curvature, and the variation of flatness factor v**/(v2)2 
simply reflects the behaviour of the interraittency, to be discussed below. The triple product uv2, 
plotted in the dimensionless form uv2//(u2 .v1*) , is significantly affected by curvature (Fig. 27), In the 
plane wall jet it is negative for y < 0.76.5 while at s/R • 1 the negative region has almost 
disappeared, implying much smaller turbulent transport of positive uv into the wall layer (or much 
smaller transport of negative uv out of it, either statement implying a smaller effect of the wall 
boundary condition on the jet layer). The positive values of dimensionless uv2 in the jet layer also 
increase with increasing curvature, and the increase would be larger still if the denominator contained 
v2 rather than /v*t. The triple product uw2 shows similar but less pronounced behaviour, so that 
Guitton's explanation of the behaviour of uv2 in terms of centrifugal "mixing length" arguments is 
evidently not the whole story. The main conclusion to be drawn from the measurements is that turbulent 
transport of uv is significantly but not grossly altered by curvature, except for the large effects 
near the surface. A correlation of the changes in terms of a bulk Richardson number (e.g. 6.5/R) should 
suffice for calculation methods: we return to this subject in Section 8. 

Guitton's measurements (7) are the most significant evidence for the absence of "steady" longitudinal 
vortices from unstably-curved jets: he measured the spanwise variation of surface shear stress, using a 
Preston tube, and achieved a fairly uniform distribution after attention to the initial conditions of the 
jet. The great sensitivity of the flow to imperfections of the nozzle lip reported by Guitton and by 
Fekete (191) — which caused large spanwise variations — might possibly imply a predisposition to "steady" 
vortices, but Bradshaw and Gee (107) and other experimenters have noticed a similar sensitivity in wall 
jets on plane surfaces. Unfortunately there are no velocity correlation measurements, other than the early 
attempts of Bradshaw and Gee, to establish whether the large eddies develop unsteady longitudinal 
circulations as found in Johnston's rotating duct experiments (10). Guitton's intermittency measurements 
show that the value of y/6.5 at which the intermittency is 0.5 moves towards the surface as the flow 
becomes more unstable. A plausible but not unique explanation is that (unsteady) large-eddy vortices exist 
and cause concentrated eruptions of turbulent fluid with a more widespread backflow [Fig.6 and the 
discussions of Patel's boundary layer measurements (Section 6) support this picture]. Caille (194) 
discussing bends in ventilation ducts, says that centrifugal instability in wall jets produces "high 
velocity gradients and longitudinal vortices", but offers no proof. 

Limited turbulence measurements in wall jets on concave surfaces have been made by Guitton and by 
Spettel et al, A moderate decrease in turbulent intensity is observed, and again the v-component seems 
to be affected more than the u-component. The largest value of Rf near y - 6.5 found in the concave 
spiral measurements of Giles et al. was only about 0.04, so that collapse of the turbulence would not be 
expected in any part of the layer: larger negative values of s/R or 6.5/R would be difficult to 
arrange in the laboratory and unlikely to occur in practice. 

A final question concerns the applicability of the logarithmic inner law to wall jets. Some doubts 
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have been expressed in the literature, even in the case of plane jets: certainly the region in which the 
velocity profile follows the logarithmic law found in constant-pressure boundary layers is small, 
particularly at low Reynolds numbers, but the reason why the profile is convex upwards on log-linear axes 
is chat the shear stress decreases rapidly with distance from the surface so that, according to the mixing 
length formula EqC28) with l - Ky, 3U/3y also decreases. According to Huffman and Bradshaw (195), K 
remains near 0,41 even in strong shear stress gradients, but if the dimensionless parameter 
-(v/pu^)(3x/3y)w is larger than about 0.001 the velocity jump across the viscous sublayer (which provides 
the constant of integration in the velocity profile obtained from the mixing length formula) is affected. 
In curved wall jets, as in boundary layers, Rf is very roughly 0.05 y/R near the surface and is 
therefore small throughout the inner part of the wall layer for all practicable values of 6.5/R with the 
possible exception of flows close to separation. Therefore the inner layer profile should be deducible 
from the mixing length formula in both plane and curved wall jets, and curvature effects are probably 
negligible. Of course, to deduce the surface shear stress from a measured velocity profile we need an 
estimate of 3t/3y because the law of the wall now becomes (26) 

U T I v 3 ay J pu. 

but a rough estimate should suffice except in extreme cases. Therefore the doubts expressed by Guitton 
about the validity of the law of the wall in curved wall jets are not well founded and it can be used — 
with caution — in calculation methods and in data analysis. 

Little basic information is available on three-dimensional curved wall jets (196) although more may 
become available as a result of work on the externally blown flap, in which the exhaust from an underwing 
engine is deflected by a trailing edge flap: heat transfer is of particular Interest in this configuration. 

Calculation methods for curved wall jets so far proposed in the literature (e.g. 6, 7, 111, 197, 
198) involve either F-factor corrections to local mixing length or eddy viscosity (6, 111), or correlations 
of spreading rate with 6.5/R. Kind (197) used Guitton's fit (7) to Fekete's cylinder data (192) to 
produce a complicated analytical formula for entrainment rate as a function of 6/R: the linear 
approximation to this can be converted, using the principles and approximations of Section 3, to an 
F-factor with a as 3, rather smaller than that deduced above from more recent data. As in the caae of 
boundary layers, none of the alternative schemes offers any obvious fundamental advantage over the 
F-factor analysis and non-linear formulae based on local parameters should be viewed with suspicion. As 
far as I am aware, the calculations, by Morel's extension of the method of Ref.16, presented in Appendix 2 
are the first application of a transport-equation method to curved wall jets, although the recent work of 
Sawyer involves an allowance for history effects. Hanjalic and Launder (34) have applied their transport-
equation methods to wall jets on plane surfaces only. 

8. CURVED FREE JETS AND MIXING LAYERS 

In fully-developed curved jets one side is stable and the other unstable, so that any net effects on the 
growth rate are, more or less by definition, strictly beyond the scope of a linear correction formula like 
Eq(36) for small extra strain rates. However a linear variation is possible if one accepts different values 
of a in Eq(36) for stable and unstable cases. Studies of curved circular jets in a crosswind have not 
been sufficiently detailed to distinguish curvature effects from turbulence changes caused by gross 
distortion of the cross-section and the presence of a pair of contra-rotating vortices within the jet. 
There seems to be no information about turbulence behaviour in two-dimensional curved jets with a stream of 
equal total pressure on either side, despite the large amount of work done on jet flaps, but several 
experiments and analyses (e.g. Ref.110) have been performed on two-dimensional turbulent jets emerging 
from, and reattaching to, a solid surface. The turbulent intensity measurements of Matthews and Whltelaw 
(198) unfortunately begin downstream of reattachment. Another recent experiment — confined to mean flow 
measurements — is Ref.199. Wygnanski and Newman (200) have studied the emerging two-dimensional jet in an 
external stream but reported no turbulence measurements. Many experiments have been reported on the 
reattachment of a mixing layer bounding a separation bubble or cavity flow (see Rcf.201 for a selective 
review) and several of these include turbulence measurements. Only recently have any serious turbulence 
measurements been made in a normally-impinging (circular) jet: Russell and Hatton's results (202) are 
reported as contour plots of turbulent energy 1(0% + v5 + w2") , and show that the turbulent energy on a 
streamline originating from the maximum-energy of the free jet decreases by 20-30 per cent through the 
impingement region. In view of the fact that the flow turns through 90 deg. in a distance of the order of 
the jet width, this is a surprisingly small difference: unfortunately the measurements extend only to 
about three jet half-widths from the centre and the maximum turbulent energy is still falling at the end 
of the survey region, so that any lag effect cannot be assessed. The maximum shear stress (referred to the 
jet axis) decreases in magnitude by about 50 per cent through the impingement region, but as it changes 
sign as the flow deflects through 90 deg. it is not a very suitable measure of turbulent activity. The 
circular impinging jet experiences strong lateral (i.e. circumferential) divergence effects (see Section 3) 
which oppose the stabilizing effects of curvature and may account for the smallness of the decrease in 
turbulent energy through the impingement region. 

The first extensive turbulence measurements in a curved mixing layer between two inviscid streams of 
unequal total pressure were made by Lumley and collaborators (see Ref.203 for a final report which refers 
to and corrects earlier publications). The flow developed in a tunnel of constant radius of curvature, 
the maximum ratio of shear-layer thickness to radius of curvature being about 0.2, about the same as in 
the spiral wall jet with s/R - +2/3 (Section 7), Both senses of curvature were investigated. Since 6/R 
varies with s this is not a self-preserving flow (the net advection of turbulent energy was positive in 
the unstable case but negative in the stable case) but detailed measurements were made at only one station 
in each case. The experiments were concentrated on the effects of curvature on the small-scale motion, 
seeking behaviour analogous to that of the "buoyant subrange" (the region of the wave-number spectrum of a 
buoyant flow in which shear production and dissipation of turbulent energy are negligible so that the 
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spectral density is determined by the energy transfer from lower wave numbers and the local transfer to or 
from potential energy). In fact, once difficulties in dissipation measurements had been overcome it was 
found that the spectrum followed the usual inertial subrange ("minus five-thirds") law in the relevant 
region: it is probably a general rule that the effects of streamline curvature are confined to the larger 
eddies, whose typical fluctuating rates of strain are of order 3U/3y and therefore not very large 
compared to the extra rate of strain U/R. The typical fluctuating rates of strain of smaller eddies 
increase steadily with increasing wave number, the root-mean-square rate-of-strain fluctuation of the 
turbulence as a whole being larger than 3U/3y by a factor roughly equal to the ratio of Reynolds shear 
stress to viscous shear stress, which is very large in all relevant cases. Lumley et al. (203) also 
measured overall energy balances: they differed significantly, but not spectacularly, between the stable 
and unstable cases. Turbulent transport ("diffusion") by triple velocity products was measured (204) and 
shows the expected transfer of energy from the high-intensity region towards the edges of the shear layer. 
The overall turbulent transport, obtained in Ref.203 as the difference of the measured advection, production 
and dissipation, purports to show a transfer of energy from the high-velocity edge of the shear layer to 
the low velocity edge in both the stable and unstable cases. Now this implies that the behaviour of the 
remaining contribution to the diffusion, namely that of the pressure-velocity correlation, is quite unlike 
that obtained by difference in a plane mixing layer (e.g. Ref.11). Curvature effects would be unlikely to 
produce changes in the same sense for stable and unstable curvature, and one is led to believe that even 
the revised dissipation measurements quoted in Ref.203 still contained some errors, specifically an 
underestimate of dissipation near the high-velocity edge. 

Castro's experiment (11) on a flow [Fig.7(a)] which amounts to a two-dimensional normally-impinging 
jet with a potential core — otherwise a mixing layer deflected through 90 deg. — was set up especially to 
examine the effects of strong streamline curvature. The configuration, similar in principle to Lumlcy's 
guided mixing layer, appears to be unique in allowing a large rapid deflection without immediate change of 
species (the full-developed impinging jet changes, nominally, to a wall jet, but Castro's flow continues 
as a mixing layer until it finally grows to meet the solid surface). Thus the shear layer relaxes back to 
its original self-preserving form. The most striking feature of the results is that the relaxation is not 
monotonic. As seen in Fig.7(b) the turbulent energy decreases in the region of strong curvature, as 
expected, but then overshoots the plane-layer values (the plane layer values shown in Fig.7 were obtained 
in the same test rig in the absence of the impingement surface, so that relative values may be relied on 
whatever the absolute errors of measurement). Castro made extensive measurements of the terms in the 
turbulent energy equation, and also the terms in the transport equation for shear stress referred to the 
local direction of the shear layer, neglecting spatial transport by pressure fluctuations and obtaining the 
pressure-strain redistribution term in the shear stress transport equation by difference. The results 
(Fig.28) showed that the destruction terms (viscous dissipation or pressure-strain redistribution) actually 
decrease in the region of strong curvature, rather than increasing as happens in the case of mild 
curvature. The reason is that the secondary strain rate is so large that the generation terms themselves 
decrease by a large fraction — Rf (Fig.28) reaches 0.4 — and so the turbulent energy decreases at once. 
The dissipation length parameter, L =(turbulent energy)3/2/(dissipation), does decrease in the region 
of strong curvature as in the case of small extra strain, but no simple combination of an F-factor and 
lag equation can fully explain the trajectory in the (Rf, L) plane. The reason for the overshoot 
phenomenon — found in all three normal stresses and the locally-oriented shear stress — is that the 
turbulent transport terms are greatly reduced in the regions of strong curvature, evidently because the 
large eddy structure collapses. A simple measure of the relative strength of the large eddies is shown in 
Fig.29. After the regions of strong curvature the turbulent transport terms increase rather slowly, 
evidently because the large eddy structure takes some time to renew itself; in some respects the 
turbulence downstream of the curved region resembles Chat in the later stages of transition, where 
intensities exceed those in the fully-developed flow, 

A full presentation of Castro's results would be out of place in a general review. Further analysis 
is in progress, with the particular object of deriving rules for the behaviour of the turbulent transport 
terms. Fig.28 shows the eddy diffusivity of turbulent energy (defined on the figure). Quite apart from 
the usual singularities near the separate points where the intensity gradient and the triple products change 
sign, it is clear that eddy diffusivity equal to the plane-layer value multiplied by an empirical function 
of the bulk Richardson number or 6/R can not reproduce the measurements. Evidently the turbulent transport 
depends on a mixture of local and bulk parameters, with the probability of significant history effects, and 
it seems very likely that transport equations for triple products will be needed to predict such flows. 

Two interesting qualitative features of Castro's results are (i) the intense irrotational motion near 
the high-velocity edge of the curved shear layer, for which the most obvious explanation is the presence of 
internal waves, and (ii) the finding that even in the region of maximum curvature the various possible 
definitions of the direction of the shear layer coincided within one or two degrees, the rate of change of 
total pressure along a streamline being determined mainly by the shear stress gradient normal to the 
shear-layer direction. 

9. CLASSICAL VORTICES 

We define a classical vortex as one formed by the complete or nearly-complete rolling up of a single vortex 
sheet or, exceptionally, two vortex sheets, in an otherwise uniform flow. The prototype is the trailing 
vortex behind one tip of a wing of high aspect ratio. We exclude vortices imbedded in flows with 
distributed axial vorticity (see Section 10) and, despite a good deal of experimental work, we have to 
exclude the early stages of rolling up of a vortex for lack of information about the turbulence. "Bathtub" 
vortices, formed by strong radial convergence of a weakly-swirling flow (95), necessarily have strong 
axial motion which may have large effects on the turbulence. 

It has recently become clear that classical turbulent vortices have some very curious features 
(i) A substantial fraction of the nominally-turbulent region is effectively laminar (Figs 5, 30). We 

shall refer to the quasi-laminar region as the "inner core" of the vortex, since the word "core" is used 
by some authors to describe the whole of the rolled-up region to distinguish it from the vortex sheet. 
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Many other types of swirling flow exhibit quasi-laminar inner cores. 
(ii) The rate of growth of the vortex depends on Reynolds number even at scales typical of full-size 

aircraft. 
(iii) According to an analysis by Govindaraju and Saffman (205) a turbulent vortex must develop a 

region in which the circulation is larger than at infinity, in order to conserve angular momentum despite 
the effects of viscous stresses in the irrotational (but not unstrained) flow outside the turbulent region, 
in which W « 1/r (Fig.31). 

The first feature is undoubtedly a result of the stabilizing effects of streamline curvature; the 
second is probably connected with the first and possibly with the third; and the third implies the 
existence of a region in which angular momentum decreases outwards, so that the effects of streamline 
curvature are expected to be destabilizing. We proceed to discuss these three features. 

The most notable feature of a classical turbulent vortex, as of many swirling flows, is an inner 
core stabilized by rotation. To a good approximation the flow is "strain free" or "in solid-body rotation" 
(circumferential velocity proportional to radius, the behaviour of the axial velocity being passed over) 
the gradient Richardson number is 4 if 3W/3r is used in the denominator or • if (3W/3r - W/r) is 
used, and the flux Richardson number is 1; we cannot calculate (L/K)/!,,^. a priori, but to the extent 
that we can trust the local-equilibrium parameters in a strongly-curved flow it may be assumed that the 
turbulence is highly stabilized. This is confirmed by flow-visualization pictures such as Figs 5 and 30 
which show an inner core for which "solid body" is almost a literal description, with a very sharp 
boundary between the outer turbulent flow and an apparently laminar region whose diameter is of the order 
of a tenth that of the vortex as a whole. Many other still photographs and movies (206-212) have been 
taken, notably during the current period of concern over the effect of trailing vortices on following 
aircraft, but it should'be pointed out that the vortices in the flight experiments are often only a few 
seconds old and sometimes demonstrably not completely rolled up. 

A noticeable feature of the inner cores is that smoke often collects near concentric cylindrical 
surfaces, molecular diffusion being small: these cylindrical striatlons probably arise from inhomogeneities 
in the vortex sheet feeding the vortex. It has occasionally been suggested that centrifugal effects on 
heavy smoke or dye particles distort the picture, but this is disproved by the experiments of White (213) 
and unpublished work by Dr. J.K. Harvey of Imperial College: they used dyes of various densities in water 
without apparent centrifugal effects. 

As seen in Fig.30, large longitudinal velocities can occur in the core, in conditions where the 
longitudinal velocity in the fully-turbulent flow is negligibly small. This strong axial motion is 
probably a feature only of young vortices, especially those produced by the "bathtub" (95 ) mechanism in 
the popular Mabey-Squire vortex tube with radial entry (Fig.31, Ref.96). Brown (214) has recently pointed 
out that the axial velocity in the vortex close behind an aircraft is directed downstream relative to the 
aircraft, as a consequence of the low static pressure generated by the circumferential motion, while at 
larger distances, when the wing wake has rolled up more completely, the axial velocity is upstream relative 
to the aircraft, as a consequence of the momentum defect in the wake. The behaviour of the axial velocity 
therefore depends on the ratio of induced drag to profile drag. Further complications ensue when the 
engine exhausts interact with the vortices, and Brown's analysis is probably not very realistic for an 
aircraft with four engines mounted on the wings: when descending to land the net momentum defect in the 
wake is much smaller than the "drag" as usually defined, because the lift/drag ratio of an aircraft in 
landing configuration is much smaller than the reciprocal of the glide path slope (20 for a 3 deg. approach), 
while when climbing after takeoff there is a significant net thrust. Batchelor (215) has shown that strong 
interactions can occur between the circumferential and axial motions via the low static pressure near the 
axis, which is produced by the former and drives the latter. Muirhead emphasizes the role of axial flow in 
"bathtub" vortices (212). Harvey (216) found that acceleration of the wing producing the vortex (or, 
presumably, other types of pressure disturbance) could affect the vortex for many wing chords downstream. 
Although pressure gradients are undoubtedly largest near the axis, the concentration of axial motion in the 
laminarized core is significant: the purely viscous forces resisting axial motion in the core are likely 
to be smaller than the Reynolds stresses set up in the turbulent flow, leading to a "waveguide" phenomenon. 
Vortex breakdown appears to involve interaction between axial and circumferential motion, although much of 
the discussion in the literature has centred on the broad conservation properties rather than the 
detailed mechanism. Ref.217 is a careful review of the contending theories: see also Ref.218, in which 
it is pointed out that breakdown at a given swirl angle is more likely at low Reynolds numbers, implying 
that processes in the highly-stabilized inner core play a significant part in breakdown. Some of the 
current attempts to reduce the core vorticity of trailing vortices involve the stimulation of vortex 
breakdown. 

A less spectacular feature of trailing vortices, which is almost certainly related to the behaviour 
of the inner core, and thus to the effects of streamline curvature, is the dependence of growth rate on 
Reynolds number even at Reynolds numbers typical of full-size aircraft (note that the Reynolds number r/v 
based on total circulation I" is constant for a given vortex, although the circulation at the edge of a 
young vortex may be much less than the circulation round the wing). As will be seen below there is as yet 
no fully satisfactory theory to describe this effect, but a cautious qualitative hypothesis is that the 
local Reynolds number of the turbulence, based on turbulence intensity and length scale, is low over a 
large part of the vortex and not merely in the inner core. Crow (209, p.578) goes so far as to say that 
"the question remains open whether a simple vortex can sustain turbulence at all", i.e. that it may be 
maintained almost wholly by advection from upstream. Ri and Rf are not very meaningful in highly-curved 
flows but it is interesting to note that they do not necessarily reach maximum values on the axis. If we 
assume that the circumferential velocity distribution is the same as in a laminar line vortex, 

W « i (1 - exp(-R2)) 

where R • r//4vt, we find that Rf, based solely on the circumferential motion, rises from unity on the 
axis to 1.7 at the point of maximum W and continues to rise to the customary value of infinity at the 
outer edge where the angular momentum becomes constant. Ri of course becomes equal to infinity at the 
point of maximum W but remains positive thereafter. The laminar distribution is certainly not applicable 
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in detail and there is evidence that the circulation 2nWr does not rise monotonically with radius but 
overshoots the final value and decreases, leading to negative Richardson numbers in the outer part of the 
vortex. However it is certain that the turbulence is stabilized by streamline curvature at least as far 
out as the point of maximum circumferential velocity; although only the innermost part of the vortex is 
non-turbulent, the turbulence Reynolds number is probably low in most of the stabilized region. In 
Poppleton's experiments (219) at V/\) 22 50,000, a typical laboratory value, the Reynolds number based on 
( w ) 1 / 2 and the radius of maximum W was only about 350. The result would be a significant interaction 
between Reynolds stresses and viscous forces, similar in principle to the surprisingly large effect of 
viscosity on the outer part of a turbulent boundary layer at low Reynolds number: taking (~uv)m^ 6/v as 
equivalent to the vortex Reynolds number just defined we infer U 9/v s» 600, where significant viscous 
effects are found. 

The discussion above certainly demonstrates the dominant influence of streamline curvature on the 
behaviour of a turbulent vortex. It also nearly exhausts the consensus on the subject, because the 
phenomena mentioned have been elucidated only in the last few years (see Section 4). 

The first theory of trailing vortex behaviour to agree with the main features of laboratory and 
flight experiments was that of Owen (220), who summarizes the experimental data available in 1970. The 
theory is based on a highly simplified model, with an annulus of fluid with significant Reynolds stress 
gradients separating the strain-free inner core from the irrotational induced velocity field. The inner 
core is not assumed to be truly laminar — this is a recent discovery — but the algebraic results are the 
same as if it were. Owen's detailed assumptions are heuristic and have been criticized by Saffman (221), 
but lead — with the insertion of two disposable constants — to good agreement with experiments over a wide 
range of Reynolds number. A detailed criticism of Saffman's, that Eq(4) of Owen's paper does not follow 
from Eq(l), is incorrect: the integration in question must be taken over a region that just includes the 
discontinuity in 3W/3r in Owen's simplified velocity profile. The most significant feature, missing 
from the earlier theory of Squire (222) and from some of the more elaborate models proposed recently, is 
that the vortex properties depend significantly on Reynolds number: Owen recognized that, because of the 
stabilizing effects of streamline curvature, the turbulence in the annular region is likely to be weak 
enough for viscous effects to be important. The final result of Owen's theory is a formula for the ratio 
of the "eddy viscosity" v~ to the molecular viscosity v 

T " A 2 ( v ) l / 2 <138> 
where r is the circulation at large radius and A is a constant of order unity which can absorb the 
effects of crudely assuming an eddy viscosity independent of radius. vT/v varies from 10-100 in 
laboratory experiments to several thousand in flight tests: Owen's simplified theory does not explain why 
viscous effects are still important if vT/v is very large and it seems unlikely that Eq(138) can hold 
for indefinitely large Reynolds numbers. The theory predicts that the ratio of annulus thickness to core 
diameter varies as (P/v)1/1*, but one cannot be certain of the identity or proportionality of Owen's core 
to the laminarized inner core of the flow-visualization photographs. More generally, the "cores" defined 
by different authors may not be simply related, and workers concerned mainly with the irrotational external 
flow or the vortex sheet behaviour tend to refer to the whole of the rolled-up region, laminarized and 
turbulent, as the "core". Definitions used include, in order of increasing radius, 

— the laminarized region as seen in smoke photographs 
— the region of substantially solid-body rotation 
— the region between the surface and the point of maximum W 
— the whole rolled-up region 

Owen's analysis reveals another feature of vortices that is highly relevant to laboratory 
experiments and their interpretation. It is obvious — once pointed out — that the turbulence structure will 
not reach its final self-preserving state until the outer part of the turbulent region has made several 
revolutions at least. Owen showed that the age of the vortex in the flight experiments of Ref.223 was only 
about twenty times the current rotational period of the vortex core (the latter does of course increase 
with age, roughly as t1/2) and the age of most of the laboratory vortices reviewed by Owen was less than 
one current period. The result is that the eddy-viscosity constant A in Owen's theory depends quite 
strongly on age and has barely reached its asymptotic value of 1.2 even in the flight experiments. This 
implies that a transport-equation calculation method is needed for complete vortex calculations: Owen's 
correlation for A is probably restricted to vortices from high-aspect-ratio wings. 

Saffman (221) has recently produced an analysis which is totally different from Owen's but which 
also leads to a strong dependence on viscosity. He uses an adaptation of classical inner-and-outer 
similarity assumptions to derive a logarithmic law for the circulation at radii small compared to the 
overall radius of the vortex but large enough to include the region of maximum circumferential velocity. 
Rather different "mixing length" arguments, due to Hoffman and Joubert (224), can also be used to derive 
this logarithmic law. When the self-preserving forms for circulation and shear stress are substituted 
into the circumferential equation of motion with the viscous terms neglected, integration gives the 
circulation on the axis as a weighted integral of the shear stress distribution. Now the circulation on 
the axis is of course zero, and Saffman explains the observed dependence of vortex growth on viscosity by 
saying "... the fluid can always use viscous effects to reduce the circulation to zero, and the 
experimental results indicate that this in fact happens. It appears that the fluid prefers to use viscous 
forces rather than constrain the inviscid dynamics to [make the above-mentioned weighted integral zero] 
exactly". The argument, if not the mathematics, is closely parallel to the invocation of viscous forces 
to prevent the energy spectrum of turbulence extending to infinite wave number (the equivalent of the 
weighted integral being the energy transfer). Now although viscous forces undoubtedly damp out the 
spectrum at high wave number, the spectral density at lower wave numbers does not depend on the actual 
value of the viscosity: it is at least possible that the circulation at the centre of a vortex could 
analogously be reduced to zero by viscous forces without dependence of the outer part of the circulation 
distribution on the actual value of the viscosity. Therefore although Saffman's argument is attractive 
and although a core dominated by viscous forces undoubtedly exists, the mechanism by which viscosity 
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affects Che vortex development as a whole is still not clear. 

Donaldson (225, 226) has extended his transport-equation calculation method to the case of trailing 
vortices. The empirical information used is very simple: various length scales are taken proportional to 
the vortex radius. The effects of streamline curvature are not explicitly allowed for except by the extra 
generation terms in the Reynolds-stress transport equations, so that the effect appears only as an 
f-factor and not an P-factor. However the general features of vortex behaviour are well predicted. The 
phenomenon of small growth rate in young vortices is if anything over-predicted. The growth rate is 
negligible for times less than 50 rmax/Wmax where W^x is the maximum circumferential velocity in the 
initial vortex and r the radius at which it occurs: this corresponds to a value of 100 for Owen's age 
parameter t/x, a value reached only in flight experiments. It seems probable that Donaldson's chosen 
initial conditions were even further removed from self-preservation than those of real-life trailing 
vortices. Donaldson presents calculations at only one Reynolds number, r/v •*» 6 x 101* where P is the 
circulation, so that the size of viscous effects is not clear. An interesting feature of the calculations 
is the prediction of an overshoot in circulation, which increases with the age of the vortex to a final 
value about 7 per cent of the nominal circulation; the radius of maximum circulation is about 3 r^.^. 

The overshoot in circulation — the third feature mentioned at the start of this Section — is 
important in determining curvature effects. The experimental evidence is scanty — it is very difficult to 
measure the circulation in the outer regions of the vortex because the circumferential velocity becomes 
very small —but the theoretical evidence provided by Donaldson's numerical calculations and Govindaraju 
and Saffman's analysis (205) is strong. 

Govindaraju and Saffman's proof of the existence of an overshoot is simple mathematically but not 
very clear physically, and a commentary may be helpful. The proof rests on the fact that the viscous 
shear stress in the cross-sectional plane, 

faw wl 
1 a 7 " 7j 

goes to zero at large distances only as 1/r2 (since the circulation P H 2irWr is constant) while the 
Reynolds shear stress vw is assumed to go to zero much faster than this, as in non-swirling flows. The 
result is that while the Reynolds stress term disappears from the equation for the circulation defect 
integral ?"> 
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derived from the exact equation of motion, the viscous term does not. It follows that the dimensionless 
version of this integral, 
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where rj is a typical radius of the vortex core at distance x from the origin, varies as 
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where A is a constant of integration and x/Ue is the age of the vortex. In laminar flow, rf is of 
order vx/Ue and J remains of order unity; but in turbulent flow rj is larger (though still 
proportional to x* ) , the second term is small, and therefore J tends to a small constant value as 
A/r? decreases to zero with increasing x. Thus even if the initial distribution of circulation is 
monotonic like that in a laminar vortex, an overshoot must develop in the self-preserving profile far 
downstream so that the circulation-defect integral shall become small. (The paradox that a turbulent 
vortex with constant eddy viscosity would be effectively laminar for the purposes of the above analysis, 
and therefore would not develop an overshoot, is resolved by noting that in this case the Reynolds 
stresses would also go to zero as 1/r2 for large r, contrary to hypothesis.) Physically, the viscous 
stresses continue to reduce the circulation in the region outside the turbulence, which has a rate of 
shear strain equal to 2W/r I P/(nr2). Although the presence of a finite rate of shear strain doubtless 
encourages the growth of the turbulent regions and may lead to a less rapid decrease of Reynolds stress 
with Increasing r than found in a non-swirling flow, the turbulent region does seem to be sharply bounded 
as usual (Fig.5) and the basic qualitative assumption of the analysis is plausible. The only reservations 
are that in real life the inhomogeneity of the outer boundary conditions (behind a wing of finite span or 
in a vortex tube of finite radius) may make the analysis less relevant. 

According to Govindaraju and Saffman's theory and Donaldson's calculations the overshoot is 
noticeable only in fairly old vortices (even if the whole of the wing circulation has already rolled up 
into the vortex). Note that Owen's comment about the finite time needed to strain the turbulence into a 
self-preserving state is still applicable and may further delay the arrival at the asymptotic state. The 
youth and uncertain circulation of laboratory vortices add to the difficulty of detecting an overshoot 
experimentally; in the detailed experiments of Poppleton (219) there was certainly no overshoot at any 
radius less than 5 rmax. A very clear piece of evidence, which, however, raises more questions than it 
settles, is the overshoot in total pressure found by Earnshaw (227) in the incompletely rolled up vortex 
above a slender wing. An overshoot in circulation is implied, unless the overshoot is caused mainly by 
axial stresses, but the various explanations for the Earnshaw effect offered at the time were mostly 
applicable only to a vortex in process of rolling up (essentially a highly-curved mixing layer). One 
universally valid explanation was experimental error, but the only source of error that could not be 
checked was the effect of turbulence on the pitot tube and if this were the explanation it would imply very 
unusual behaviour of the turbulence. An overshoot in circulation generated in the rolling-up process 
would persist for some distance downstream and might be taken as evidence of overshoot in a fully rolled-
up vortex. If the theoretical conclusion, that overshoot develops in rolled-up vortices only at rather 
large times, is correct, laboratory evidence for overshoot should be regarded with suspicion. To quote 
one example, perhaps unfairly, the measurements of Mason and Marchman (228), made at distances up to 30 
chords behind a wing in a tunnel at V c/\> a» 5 x 105, show an overshoot in circulation even though the 
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vortex is so young that its core has scarcely grown at all. Flight measurements merit caution for the 
rather different reason that the circulation distribution on an aircraft in approach configuration is far 
from smooth: the consequences for the initial rolling up of the vortex sheet are illustrated by Fig.8 of 
Ref.229, which shows hideous distortions with at least three incipient vortices on each side of the aircraft. 
Vortices from slender wings probably interact strongly because the ratio of core diameter to vortex 
spacing is not large, even close to the trailing edge. Therefore although the presence of an overshoot in 
circulation has been fairly convincingly demonstrated theoretically, it may be some time before we have 
experimental data reliable enough to serve as a basis for discussion of the quantitative effects of 
streamline curvature in the region of "unstable" angular momentum gradient. 

The results of the earlier experiments on vortices in the laboratory and in flight are summarized 
by Owen (220). Recent experiments, mostly on vortices behind aircraft models in wind tunnels, include 
Refs 230-235. Apart from the fairly restricted measurements made by Chigier and Corsiglia (232) the main 
source of turbulence data is the work of Poppleton (219). He describes the work as "preliminary", saying 
that "the accuracy of some of the results was not as high as might be desired", but the general standards 
appear to compare very favourably with other recent work undertaken as part of the aircraft vortex wake 
programme. The most striking feature of the results is that all three components of turbulence intensity 
reach maximum values on the axis, and that the shear stresses appear to vary linearly across the axis with 
no trace of a stress-free laminarized core. A peak in u-component intensity on the axis was found in the 
1957 experiment of Titchener and Taylor-Russell (236), and in the 1972 experiment of Chigier and Corsiglia 
(232). The only way of reconciling this result with the evidence of the smoke pictures is to suppose that 
the vortex core wanders about randomly, as has indeed been found in several experiments. Even a non-
turbulent vortex would then show a maximum velocity fluctuation on or near the axis where the radial 
gradients of the velocity components are largest. The amplitude of distrubance of the core axis would 
have to be of the order of r to get a linear distribution of apparent shear stress if, as expected, 
the true shear stress is very small in a significant region of the core. In Poppleton's experiments r 
was about 0.01 x, so that long-wavelength v-component fluctuations of at least 0.01 Ue, or stronger 
fluctuations at shorter wavelength, would be needed to produce an amplitude roughly equal to rmax. 
Similar amplitudes would be needed to produce a displacement of the vortex by altering the lift of the 
aerofoil. It is probably unfair to blame wind tunnel turbulence entirely although it is reported (235) to 
have been responsible for some shortcomings of the results of Ref.232 and perhaps of other experiments: 
Poppleton (219) measured a v component r.ra.s. level of about 0.01 Ue with the wing set at zero 
incidence, but the typical wavelengths were presumably small compared with the wing chord rather than of 
order x. However the maximum r.m.s. turbulence intensity in the vortex itself was as high as 0.025 U 
and it is plausible that the larger eddies in the truly-turbulent part of the vortex could cause large 
enough displacements of the core to produce the observed effects: the irrotational fluctuations generated 
by the annular regions of turbulence are likely to be a maximum on the axis. In addition, long-wavelength 
fluctuations in the axial velocity in the laminarized core, caused by disturbances at other positions on 
the axis, would be registered as "turbulence" by a hot wire: axial fluctuations of moderate wavelength 
might interact significantly with the mean circumferential motion in the manner described by Batchelor (215). 
Finally, mild precession of the vortex core may occasionally be induced. Judging by visual observations 
of delta-wing vortices in a smoke tunnel at Imperial College, quite strong precessional disturbances of the 
laminarized core can travel down the vortex, at roughly the free stream speed, maintaining their intensity 
for many core diameters. We can conclude that there are enough possible sources of disturbance to 
reconcile Poppleton's measurements with the flow-visualization pictures. 

Unfortunately the key part of Poppleton's data, the measurement of vw, exhibits considerable 
scatter. Pratte and Keffer (237) also found large scatter in vw measurements in a swirling jet: the 
extraction of w from hot-wire readings is essentially ill-conditioned. Therefore, in the vortex as in 
the swirling jet, we have no shear-stress measurements reliable enough to indicate the effects of streamline 
curvature. Several authors (228, 230, 231, 238) have calculated Che apparent eddy viscosity vrg, in the 
cross-sectional plane, from mean-flow measurements but the confusion over validity of the mean-flow results 
makes it difficult to draw any general conclusion: Owen's theory is still the best correlation of results 
but the apparent eddy viscosity of the theory is not directly comparable with vrg, and a more satisfactory 
theory, based on a detailed turbulence model such as Donaldson's must await better understanding of 
streamline curvature effects and of the behaviour of turbulence at low local Reynolds number. 

This is not the place for a general discussion of trailing vortices. Ref.239 (186 pages, 124 
references) is described by the author as "an initial step towards a more critical review". An entry to 
current research work, with emphasis on prediction, detection or reduction of aircraft trailing vortices, 
is given by Ref.209. Ref.240 is a collection of papers on all aspects of vortices but with very little 
attention to turbulence, and Ref.241 is a report on a specialist symposium. 

10. SWIRLING SHEAR LAYERS 

1 0 . 1 INTRODUCTION 

This is a large category, including all flows whose mean streamlines are roughly helical [Fig.1(d)]: some 
have been discussed in previous sections. We start by establishing clear sub-categories ( a precaution not 
always observed in previous discussions of swirling flows). In all cases we assume that W [the mean 
velocity component in the circumferential (9) direction] is of the same order as U: if it is much smaller, 
the flow is only weakly swirling and any results for strongly-swirling flows will be applicable, while if 
W is much smaller than U the flow is better regarded as a slightly three-dimensional version of a curved 
flow in the r,9 plane. For a discussion of valid approximations, see Ref.242. We also assume that the 
resultant mean shear, ((3U/3r)2 + (3W/3r)2)J/2, is of the same order as 3U/3r so that we can refer to 
the latter as the "mean shear" in qualitative discussion. In effect we regard swirling flows as simple 
shear layers, with a simple shear of order 3U/3y, perturbed by an extra rate of strain e H W/r 
analogous to the extra rate of strain e • 3V/3x - -U/r that appears in two-dimensional curved flows. 
Finally we call the thickness of the shear layer 6 as usual, and distinguish the main types of swirling 
flow as 
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(i) thin annular swirling shear layers (6 « r)• As in two-dimensional curved thin shear layers 
with 6 « r, the direct effects of swirl on the turbulence will be small enough to represent by 
F-factors although three-dimensionality may introduce explicit extra terms in the equations of motion and 
thus complicate the calculations. The thin-shear-layer condition 3/3r » 3/3x is obeyed but the radial 
pressure gradient may be significant (see Sections 2.2 and 2.3) for values of 6/r near the likely upper 
limits of validity of the F-factor approach. For purposes of analysing curvature effects these flows can 
be grouped with three-dimensional boundary layers (Section 5.3: note that axisymmetric flows of this 
type are analogous to flows over infinite swept wings). Experiments (133, 165-167) were discussed in 
Section 6 and will not be discussed further in this section. 

(ii) slender swirling shear layers (6 ij r), This section includes annular shear layers too thick to 
qualify for class (i), and also the large number of axisymmetric or near-axisymmetric flows which are 
nominally turbulent on the axis. We call the simplification of the equations of motion that results from 
assuming 3/3r » 3/3x (or more generally 3/3y, 3/3z » 3/3x) the "slender-shear-layer" approximation. 
Isolated trailing vortices have already been discussed in Section 9, with particular reference to 
stabilization of the flow near the axis. The phenomenon of virtually complete suppression of turbulence 
near the axis necessarily appears in most of the slender flows to be discussed in the present section, 
because W • r near the axis, leading to Ri • 4 (Section 9): in general the direct effects of streamline 
curvature will be too large to represent by simple F-factors. Moreover, in unstable swirling flows the 
large-eddy structure may be significantly modified by streamline curvature, leading to changes in 
turbulent transport that cannot easily be represented by local parameters. Therefore the Reynolds stress 
distribution will depend in a rather complicated way on the swirl velocity distribution and, in default of 
a unified treatment, different empirical information may be needed to describe different kinds of swirl 
distribution. 

(iii) non-slender swirling shear layers (3/3r >\> 3/3x). In swirling flows that are changing rapidly 
in the axial direction no simplification of the equations of motion is permissible, except, where 
appropriate, the simplification of axisymmetry, 3/39 • 0 (precession of the central core has been 
observed in some nominally axisymmetric flows). In such flows, as in previous examples of strongly-curved 
flows, no quantitative analysis of direct curvature effects is possible at present because large changes 
in turbulence structure are implied, even by explicit terms introduced into the equations of motion by the 
various extra strain rates that occur. However it is qualitatively clear that curvature effects on the 
turbulence structure may play an important part in the flow development, especially by permitting easy 
axial motion of the fluid within a curvature-stabilized core. Fig.32 is a summary of the types of 
swirling flow to be discussed. It is customary to measure the strength of the swirl by the "swirl number", 
the ratio of the angular momentum integrated over the cross section to R times the axial momentum 
integrated over the cross section, where R is a typical radius of the flow. In jets the momentum 
integrals are conserved while R increases with x, whereas in pipes the angular momentum decreases while 
R remains constant: therefore the swirl number decreases with increasing x unless external forces are 
applied to maintain it. The swirl number gives no information about the distribution of W and is a far 
from adequate description of the swirl for present purposes. 

The most popular type of swirl generator, whose most advanced version seems to be the "movable block" 
generator of BetSr and Leuchel (243), is a fixed pipe with tangential injection of part or all of the mass 
flow. The swirl intensity and distribution depends on the ratio of the tangentially-injected flow to the 
total flow, the ratio of injection slot area to pipe diameter, the proximity of the end wall and the 
length-to-diameter ratio of the pipe: if the pipe is very long the swirl decays completely, and if it is 
short minor changes in geometry may have a large effect on the mean flow and turbulence at the exit. 
Precession of Che core may occur at high swirl angles. Another type of swirl generator, capable of 
producing a fair approximation to solid-body rotation with uniform axial flow, is a rotating honeycomb or 
thick perforated disc, which may be regarded as a crude axial-flow turbomachine rotor. Traugott (100) 
obtained a low-turbulence flow close to solid-body rotation by using a well-designed rotor followed by 
several rotating screens: in Traugott's configuration the pressure drop through the screens was 
insufficient to remove the wakes of the rotor blades (coarse grids were inserted to do this at the cost 
of raising the turbulence level) but this is not a criticism of the basic idea. Solid-body rotation 
(W <r r) can also be obtained at the exit of a long spinning pipe but the axial flow approximates to fully-
developed pipe flow. A swirling flow with a nearly irrotational region (W <* 1/r) surrounding a slender 
core can be produced by vanes in a radial contraction (Fig.31) but is less representative of real-life 
swirling flows. "Bathtub" vortices can be produced by radial inflow through a cylindrical rotating screen, 
which also gives W « 1/r except near the axis where the core forms. 

Current discussions of swirling flows and methods of calculating them (244-246) usually treat the 
effects of swirl in terms of the "anisotropy of eddy viscosity" or, in our present notation, differences 
between the quantities v and v „ defined by 

- Z X 7 -VW 

and v . H ..... . •„ (141) rx " 3u/3r *9 " r3(W/r)/3r 

We note once more the uncertainty of definition of the denominator of vr9 — velocity gradient, vorticity 
gradient (as shown) or angular-momentum gradient? — and the certainty that the direct effects of curvature 
at the F-factor level will overwhelm the ambiguities of definition at f-factor level. The definition of 
v_o given here is the most common one in discussions of swirling duct flows. It offers the possibility 
that v is well-behaved in regions of solid body rotation where the numerator and denominator both go 
to zero, and the denominator is unlikely to go to zero elsewhere in simple swirling flows with W -*• 0 as 
r •+ °°. These are of course operational advantages rather than a proof of physical relevance: W/r is not 
constant in an irrotational swirling flow (W « 1/r) although vw is expected to be zero. Now 
unfortunately even plane three-dimensional flows will usually exhibit different eddy viscosities for the 
"streamwise" and "cross-stream" components of shear stress, because, although the transport equations for 
the two components are identical except for cyclic interchange of symbols, the mean pressure gradient and 
the boundary conditions will in general affect the streamwise and cross-stream motions in different ways. 
Even in thin attached boundary layers the angle between the resultant shear stress and the resultant 
velocity gradient (which would be zero if the eddy viscosity were isotropic) behaves in a very complicated 
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fashion (Section 5.3): the ability of calculation methods, even extensions of fairly sophisticated two-
dimensional transport-equation methods, to predict the behaviour of this angle is by no means proved. 
Therefore correlations of the properties of plane three-dimensional flows by eddy-viscosity anisotropy 
factors are unlikely to be applicable to a wide range of flows. A purist objection to anisotropy factors 
is that eddy viscosity, like mixing length, is a local-equilibrium concept: local equilibrium implies that 
the turbulence is determined by the local rate-of-strain field, and in particular that the direction of 
the shear stress is the same as the direction of the velocity gradient, so that vrx must equal vr6. 
This by itself need not stop us using anisotropy factors for correlating data, any more than it stops us 
using eddy viscosity for correlating data in two-dimensional flows, but it lends weight to the practical 
objections outlined above. 

It appears, therefore, that the anisotropy of eddy viscosity of three-dimensional flows is likely 
to be significant and ill-behaved even in plane thin shear layers (125, 247). Streamline curvature effects 
will further complicate the picture even if the shear layer remains thin or slender while attempts to 
describe non-thin swirling flows in terms of eddy-viscosity anisotropy factors are unlikely to lead to 
anything better than a broad-brush treatment and are most unlikely to tell us anything of permanent value 
about the direct effects of curvature on the turbulence. Swirling flows are an example of the frequent 
impossibility of deducing curvature effects by comparison with experiments on a non-curved but otherwise 
identical flow: their curvature and their three-dimensionality are inseparable. We must therefore fall 
back on "numerical experiment", examining predictions of swirling flows by calculation methods that give 
good results in the corresponding axisymmetric non-swirling flow and in three-dimensional plane flows; the 
discrepancy between prediction and experiment can be provisionally attributed to curvature effects, and 
minimised by application of F-factors or otherwise. This approach has not yet been tried with modern 
transport-equation methods except for the use of anisotropy factors for vrg in an eddy-viscosity transport 
equation for vrx in Ref.245: these methods are at present mainly confined to two-dimensional (or non-
swirling axisymmetric) flow, and more work is needed to develop a repertoire of methods for three-
dimensional flows. Some attempts to modify simpler calculation methods for application to swirling flow 
will be referenced below. Two objections to using simpler local-equilibrium methods for the "numerical 
experiments" proposed above are that swirling flows, especially jets, are often highly turbulent with 
significant turbulent transport terms, and that equally often they have large mean transport terms because 
the flow changes rapidly in the axial direction. At present, therefore, all the theoretical attacks on 
swirling flows leave something to be desired: the paper by Koosinlin and Lockwood (246) gives a good idea 
of the current position. 

We proceed to review the experimental work on swirling flows, excepting isolated vortices and thin 
annular shear layers. The most common types of swirling shear layer left in the category are swirling jets 
or plumes in nearly still air, and swirling pipe flows. In almost all cases the flow near the axis of 
rotation is stable and in a state close to solid-body rotation as far as the circumferential motion is 
concerned. Production of turbulent energy by the axial component of the mean shear, 3U/3r, is small in 
this region because 3U/3r - 0 on the axis. It therefore seems very probable that any swirling flow 
which changes fairly slowly in the x direction will have a laminar core as in a classical vortex. The 
stability further from the axis depends on the source of swirl, (i.e. the source of angular momentum) which 
determines the angular momentum gradient appearing in the relevant Richardson number, Eq(105). We 
emphasize yet again the unreliability of local-equilibrium curvature parameters, especially in highly-
turbulent free shear layers. If swirl is introduced only at the source of the shear layer (i.e. at a jet 
nozzle or a pipe entry) the flow near the outer edge is unstable because the velocity falls rapidly to zero 
there, either in the undisturbed fluid or at a solid surface, so that there is a region in which the 
angular momentum decreases outward. Therefore the net effect of "pre-swirl" is usually to increase overall 
mixing rates, and by a larger fraction than would be expected merely on the basis of increased resultant 
velocity. Accordingly, swirling shear layers are commonly found in devices for augmenting or controlling 
mixing. Some idea of the magnitude of changes in mixing rate can be gained from Swithenbank and Chigier's 
(248) suggestion that pre-swirl could be used as the main method of control of combustion rate in a 
supersonic ramjet. Pre-swirl can also be used to shorten the noise-producing region of an exhaust jet 
(249) or to promote better mixing of the multiple exhaust streams of a by-pass turbojet. In view of the 
other data, the conclusion of Povinelli and Ehlers (250) that swirl (intensity not stated) had negligible 
effect on mixing downstream of a blunt-base fuel injector is difficult to understand. If swirl is 
introduced or maintained by rotation of the outer boundary or by entrainment of fluid with axial vorticity 
the turbulence is stable almost everywhere ("almost" being an acknowledgement of the possibility of an 
overshoot in circulation like that believed to exist in a turbulent line vortex). 

The picture is complicated by the basically inviscid phenomenon of recirculation zones (Fig.32) near 
the axis of some strongly-swirling flows, where the static pressure is reduced so much by the swirl that 
fluid from further downstream is forced back along the axis. This is a deliberately vague description, 
designed to fit several versions of the phenomenon (245, 251-253). There is no reason to suppose that 
streamline curvature effects play an essential part, although the presence of a laminar core may be 
important in some cases, as will be seen below. Clearly the extra turbulence generated by recirculation 
may more than cancel any stabilizing effects of swirl, and we can neither extract useful information on 
curvature effects nor apply the foregoing rudimentary analysis to such complex flows. A good introduction 
is the 1964 paper by Gore and Ranz (251): for a review of current work, especially by the Sheffield group 
under Beer, see Chigier (129). 

Any swirling flow with solid boundaries in the r,9 plane is likely to be significantly affected 
by fluid from the "Ekman" boundary layers that spiral inward on these boundaries under the influence of 
radial pressure gradient. Charwat and Schlesinger (254) have described the complicated flow pattern that 
occurs in the recirculating part of the wake of an axial cylinder in a swirling external flow. The ratio 
of the circumferential velocity to axial velocity at the cylinder radius was nearly 2.0. The recirculating 
flow supplies the Ekman boundary layer as well as the entrainment to the annular mixing layer, and the 
fluid leaving the Ekman boundary layer near the axis moves uniformly downstream, recirculation being 
confined to an annular zone. The effect of the extraction of fluid via the Ekman layer and the 
hypothetically laminar core is similar to that of suction through the base: the recirculation region is 
much shorter than in a non-swirling flow. A noteworthy feature of swirling base flows is that the 
angular velocity of the fluid in the free shear layer will tend to increase as it approaches the axis 
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(angular momentum being approximately conserved) and both the fluid which recirculates and that which 
escapes downstream may be swirling very strongly. Charwat and Schlesinger present some evidence that the 
flow downstream of the primary recirculating zone experienced what they call "vortex breakdown" but which 
appears to be the recirculation phenomenon found in strongly-swirling jets. Note that their flow 
is effectively the inner part of an annular swirling jet, a configuration popular in fuel injectors. It 
seems unlikely that detailed predictions of such a complicated flow will be possible in the near future, 
and although the photographs of Ref.254 show clear qualitative evidence of the stabilizing effects of 
rotation, particularly on the Ekman effluent, a consideration of the quantitative effects of streamline 
curvature would be premature. The same conclusions about the Ekman layer effects and the general 
complication of the flow apply to other confined vortices, typified by the Ranque-Hilsch vortex tube (a 
device for undermining faith in the second law of thermodynamics by separating an isothermal stream into 
one hot and one cold stream): an extensive review of this popular subject is given by Lewellen (255) and 
some interesting flow pictures by Johnston (256), Travers (257) and Yu (258) but no fresh information about 
curvature effects can be extracted. Badrl Narayanan and Kangovi (259) have investigated the near-wake of 
a rotating axial cylinder in a purely axial external flow, in which case the Ekman flow is radially 
outwards and therefore less spectacular in its effects. The ratio of circumferential velocity to axial 
velocity was only 0.33 and although the (destabilizing) effects of rotation were noticeable as an increase 
in the spreading rate of the free shear layer and a reduction of about 30 per cent in the length of the 
recirculating region, no spectacular changes in the flow were observed, 

1 0 . 2 SWIRLING WAKES AND J E T S 

The only experimental work on the swirling wake far downstream of a rotating body seems to be that of Liu 
(260). The velocity defect on the centre line decreased by about 20 per cent in the range 10 < x/R < 50 
as a result of rotation of a blunt-based body at a velocity ratio of 0.58, but the drag of the body was 
not measured and the results of Ref.(259) suggest that it may have increased considerably as a result of 
rotation, so that the change in velocity defect at constant drag would have been larger than 20 per cent. 
This implies significant effects of swirl on mixing rate in the earlier regions of the far wake. 

Swirling jets and wakes have been classified by A.J. Reynolds (261) according to whether the ratio 
of a typical circumferential velocity W to a typical axial velocity U or velocity defect AU 
increases, decreases or remains constant as x increases. The only case in which the ratio increases is 
the axisymmetric swirling wake of a self-propelled body (zero drag but finite torque — not a practical 
situation although of course it applies to the usual idealization of a wingtip vortex of an aircraft of 
high aspect ratio). In the case of small swirl, implying negligible effect of the swirl on the axial motion, 
self—preservation and conservation of momentum and angular momentum requires AU = x-1/2, W « x—^Z1*, 
6 » x1/1*. Note that the wingtip vortex nominally has large swirl (negligible axial motion). In the case 
of the rotating body with finite drag, the small-swirl solution is AU = x-2/3, W <* x-1, 6 « x1/3, and 
the relations for AU and 6 have been verified by Liu for x/R > 15 (where the swirl was probably quite 
small and the turbulent motion maintained chiefly by the mean shear 3U/3r as in a non-swirling wake). 
In the case of the jet in still air, U « x-1, W <* x~2, 6 •* x. Now even if the small-swirl solution is 
not exactly valid it is certain that the ratio of typical velocities, W/U or W/AU, will decrease 
steadily with distance from the origin of a swirling jet or wake. Therefore, particularly in the case of 
the swirling jet which is much more important than the swirling wake in practice, the major effects of 
swirl on mixing occur fairly close to the origin. Even in the case of small enough swirl for the axial 
flow to become approximately self-preserving, the swirl will have largely decayed before self-preservation 
is attained. It follows that the effects of swirl will interact with the effects of the initial 
conditions (262), specifically the profiles of axial and circumferential velocity just downstream of the 
jet nozzle or wake-producing body, which makes it most unfortunate that the majority of investigators of 
swirling jets have used rather arbitrary initial conditions not easily reproducible by others and sometimes 
not fully documented by the experimenters themselves. 

From the point of view of reproducibility, the best swirling jet generator is a long rotating pipe 
giving a fully-developed pipe flow in solid-body rotation. This was used by Rose (263) in the first of 
the well-known experiments on the subject, published in 1962, Chigier and Chervinsky (264) quote work 
on annular swirling jets by Ullrich (1960). Rose shows that, for a pipe circumferential velocity of about 
0.4 times the centre-line velocity of the pipe flow, the swirling jet at x/d • 15, where d is the pipe 
diameter, has almost twice the diameter of the non-swirling jet. However the turbulence intensity at 
x/d - 15 is about the same fraction of centre-line velocity in each case, indicating that the effects of 
swirl on the turbulence and on the mixing rate have already largely disappeared (the maximum swirl angle 
was about 9 deg. at x/d - 15). This is confirmed by measurements of mean-velocity decay at larger 
distances from the exit. Shortly after Rose's work, Lee (265) carried out a similar experiment and 
confirmed Rose's results. 

In the years since Rose's paper a great deal of work has been done on swirling jets and associated 
flows. Nearly all theoretical work has been based either on assumptions of self-preservation or at least 
of negligible effect of swirl on the axial component of shear stress: the latter assumption is an 
extension, which can be seen in the present context to be unreliable, of the well-known "small-crossflow" 
assumption used in three-dimensional boundary layers. Since most engineers are interested in using swirl 
to promote mixing (inevitably in the non-self-preserving region) and since we are interested in the effect 
of swirl on turbulence structure this work is of little relevance: references are given, for instance, by 
Pratte and Keffer (237). Rubel (266) has correlated the eddy viscosity needed to predict the swirling jet 
measurements of Chervinsky (267) as a function of a simple Rossby number, equal to (axial velocity)/(swirl 
velocity). Rubel's correlation is non-linear but can be fitted quite closely by an eddy-viscosity factor 

* ' ? ' 
which can be related to an F-factor if one replaces W/U by a multiple of (3W/3r)/(3U/3r), a reasonable 
approximation in the outer region of a swirling jet. The only other piece of theoretical work on swirling 
jets that implicitly includes an allowance for curvature effects on the turbulence is that of Schetz (268), 
who takes the value of his (supposedly isotropic) eddy viscosity from experiments on classical vortices. 
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Most other theoreticians have carried over empirical constants from the analogous non-swirling flow: for 
example Lee (269) uses an entrainment coefficient taken from experiments on non-swirling buoyant plumes 
and finds good agreement with his own experiments on plumes with swirl introduced at the source. In such 
a case it follows that the effect of swirl on mixing rate must have been negligible. 

Experiments on swirling jets have been reported by several authors (237, 263-265, 270-272). Craya 
and Darrigol (271) report turbulence measurements, including some in a recirculating jet, but do not 
document their mean flow. The only detailed investigation of the turbulence, other than Rose's work, is 
that reported by Pratte and Keffer (237) also in the jet from a spinning pipe. The Reynolds number was 
only slightly higher than the minimum required for turbulent pipe flow, and the flow was apparently not 
fully developed at exit. The axial velocity profile measured one diameter downstream of the exit happened 
to be very close to a fully-developed jet profile, and as a result the mean flow appeared to be self-
preserving at all the measurement stations although the turbulent quantities do not attain self-preservation 
until roughly x/d » 12. Measurements of all six independent Reynolds stresses were made, although the 
measurements of the shear stresses uv", vw and uw are unfortunately rather scattered. The 
circumferential component of shear stress, vw, appears to increase monotonically with distance downstream 
but since impossible non-zero values occur on the axis the measurement may not be trustworthy, A unique 
experiment on a pair of contra-rotating jets has also been reported by Keffer (273): the effects of 
streamline curvature on the turbulence had probably subsided before the jets interacted seriously. 

Beer and his colleagues (notably Chervinsky and Chigier) at Ijmuiden and latterly at Sheffield, 
have concentrated on swirling flows for application to conbustion systems. As well as the work on pre-
swirling jets already referred to, they have studied jets and buoyant plumes which have no pre-swirl but 
which entrain swirling fluid from outside. A high level of swirl is maintained far downstream, in contrast 
to the pre-swirling jet. As pointed out by Emmons in the discussion following Ref,(272), the angular 
momentum in these flows increases with distance from the axis and, in the most common configuration, 
becomes nominally constant in the external swirling flow. There is at present no evidence of an overshoot 
in circulation like that believed to exist in trailing vortices. Therefore, again in contrast to the 
pre-swirling jet,there is probably no region of a constant-density externally-swirling flow in which the 
turbulence is intensified by the direct effects of swirl: of course the increase in resultant velocity 
tends to increase the turbulence level. Naturally, variable density is a feature of combustion systems and 
— see Eq(91) — the most common case of low density near the axis of a flame and high density in the 
external flow reinforces the stabilizing effect of a positive angular momentum gradient. Beer et al. (123) 
show photographs of a swirl-stabilized flame which is not only laminarized but laminated, with an annular 
structure like that seen in isolated vortex cores. In a cold helium/air flow, simulating a flame, the two 
components of Reynolds shear stress fell to zero in the core region, confirming that the flame itself was 
laminar. The Reynolds numbers of these laboratory flows — originally studied by Emmons and Ying (274) — 
are fairly small but much higher than the critical Reynolds number of a non-swirling flow. A large-scale 
version of the phenomenon is the "fire whirl", the effect on a large fire of entraining naturally-swirling 
air from the atmosphere. Swirling flames are an example of the class of flows in which a qualitative 
consideration of curvature effects is helpful in understanding the phenomena but which are rather too 
complicated to yield quantitative data for general use: turbulence measurements are difficult and 
numerical experiments may show up discrepancies other than those directly attributable to curvature effects. 

10 .3 SWIRLING PIPE FLOWS 

Duct flows, like jets, can be classified according to whether the swirl is introduced at the start of the 
flow, to decay downstream, or maintained by helical vanes or by rotating the boundary. Note that rotating 
cylinder flows with no net axial motion were reviewed in Section 4 and thin annular boundary layers in 
Section 6. 

Swirling flow in a stationary pipe, maintained by a "twisted tape" was investigated by Backshall 
and Landis (275). The so-called twisted tape was a helical partition of 27 deg. helix tip angle, extending 
across Che full diameter and down the full length of the pipe, so that in effect the flow was that in a 
twisted duct of semi-circular cross section. Secondary flows analogous to the Ekman effect occur [see the 
earlier papers by Smithberg and Landis (276) and Seymour (277)] with convergence of fluid in the tape 
boundary layer towards the centre line of the pipe and a corresponding concentrated radial outflow into 
the main body of the fluid, in addition to quasi-inviscid secondary flow caused by skewing of the mean 
vorticity vector. Date (278) makes the useful point that these sources of secondary flow probably 
overwhelm the stress-driven secondary flows that would exist even in a straight semicircular pipe. 
Thorsen and Landis (279) discussed the further complication of large density gradients, and proposed 
correlations for heat transfer and friction factor involving a Grashof number based not on gravitational 
acceleration but on centrifugal acceleration. As commented in Section 5, "centrifugal buoyancy" effects 
are likely to be rather smaller than the curvature effects that appear even in constant-density flow. 
Backshall and Landis (275) concentrated on the flow near the circular wall of a pipe with a twisted tape, 
finding that the logarithmic law adequately correlated the resultant mean velocity profiles out to a 
distance from the wall of about 0.2 times the pipe radius a or 0.05 times the radius of curvature of the 
streamline. The value of Rf near the wall given by Eq(104) is about -3y/a, so that some curvature 
effects might be expected. Nearer the axis, where curvature effects are stabilizing but probably larger, 
departures from axisymmetry themselves affect the turbulence. Many other investigators have reported 
pressure drop and heat transfer in pipes with twisted tapes. The practical interest is in the increase in 
heat transfer to or from a given pipe with given mass flow: the status of empirical correlation formulae 
for pressure drop and heat transfer appears satisfactory (280) but our knowledge of the flow processes 
certainly is not. Date (278) reviews correlation formulae and presents interim calculation methods, which 
do not explicitly consider streamline curvature effects. For introductory reviews of the subject as a 
whole see the early paper by Kreith and Margolis (281) or the more recent paper by Lopina and Bergles (282). 
Ref, (280) is a general survey of heat-transfer augmentation by turbulence promoters. A very recent paper 
by Seban and Hunsbedt (283) treats the heat transfer in an annulus with a twisted "tape". Note that some 
investigators refer to the axial distance for 180 deg. (not 360 deg.) twist as the "pitch", and that the 
usual ambiguity between radius and diameter as a non-dimensionalizing factor also occurs: "helix tip 
angle" ia unambiguous and meaningful. 



66 

There seems to be little detailed information on the decay of pre-swirl in a simple pipe flow: any 
device for generating strong swirl will cause large changes in the axial velocity profile, whose return to 
"full development" will be inseparable from the decay of the swirl, and the configuration is more 
attractive to the theoretician than the experimenter. The subject gradually merges into the study of 
classical isolated vortices in the Mabey-Squire type of vortex tube: it is frequently unclear whether 
experiments on "vortex flows" in tubes are supposed to relate to classical vortices surrounded by an 
irrotational flow (W » 1/r), to fully-turbulent pipe flow initially near a state of solid-body rotation 
(W « r), or to some unhappy compromise between the two, A fairly early paper of this type is Ref.97, 
which gives a short review of previous work. Unfortunately it is not possible to classify experiments by 
the swirl generator used: the use of a twisted tape or rotating grid implies a rough approximation to 
solid-body rotation, but a vortex tube with radial entry, of the type originally intended to generate a 
classical vortex with W = 1/r outside the core, can be used by design or accident to produce almost any 
swirl distribution. Kreith and Sonju (285) made measurements of the decay of swirl in a pipe downstream 
of long twisted-tape swirl inducers with tip helix angles up to about 30 deg. The measurements are not 
sufficiently detailed to show how soon the flow becomes substantially axisymmetric. The main results for 
swirl decay were obtained using a "swirl meter", a flat plate at zero incidence, nearly spanning the pipe 
and free to rotate about a shaft on the axis. The rotational speed of the plate is an average, weighted 
in some unknown way, of W/r. The swirl so measured decreased to half its initial value by about 40 pipe 
diameters downstream of the end of the twisted tape, the decay rate decreasing as Reynolds number 
increased. Very good agreement was found with a theory which assumed a constant value of vrg, independent 
of x and r and equal to about one-third of a representative average value of vrx. While one can 
count this as further evidence for the anisotropy of eddy viscosity, the ostensible deduction from the 
constancy of vrg with x is that streamline curvature (which decreases with x) has no effect on the 
turbulence, even for an initial swirl angle as large as that in Backshall and Landis' experiment. Wolf, 
Lavan and Fejer (286) measured the swirl in a stationary pipe with a radial inlet, with vanes giving an 
approximation to free-vortex flow (W •* 1/r). The swirl distribution soon took up the familiar form shown 
in Fig.32, but although the exponential decay of swirl substantiates Kreith and Sonju's assumption the 
value of v r x deduced from the results is about half that found by Kreith and Sonju. This is as good a 
demonstration as one could wish of the sensitivity of swirling flow to the details of the swirl 
distribution, a sensitivity which may not be entirely attributable to the effects of streamline curvature 
but which is doubtless aggravated by those effects. It seems very improbable that the satisfactory 
logarithmic profiles of Ref.275, and the satisfactory decay predictions of Refs (285) and (286) with v g 
independent of the decay of swirl, should really be taken as an indication of negligible curvature effects 
in pipe flow. Various other theoretical investigations (e.g. Refs 287, 288; see also Refs 245, 278) have 
used concepts generally similar to those of Kreith and Sonju, invariably with good agreement with 
experiment after choice of an empirical constant in the formula for v g or its equivalent, and usually 
implying vrg much less than vrx. There is a clear need for more experiments and for comparisons with 
more refined calculation methods to elucidate the effects of streamline curvature in swirling pipe flow, 
A recent paper is Ref.289. This paper seems to have suffered severely from typographical and linguistic 
difficulties but once more indicates v fl < v . 

Rask and Scott (290) recently measured the decay of strong pre-swirl in an annular duct, which, like 
a pipe flow, is stable everywhere except near the outer boundary where W decreases rapidly. The mean 
flow exhibited inhomogeneities which they describe as having a spiral form like a spring of variable pitch: 
it seems very likely that these were helical vortices but it is not clear whether they were directly 
attributable to curvature effects on the turbulence or caused by an instability of the mean flow resulting 
from the rapid decrease in radial pressure gradient caused by the decay of the swirl. This latter effect 
is known to cause recirculation in strongly-swirling pipe flow: Gore and Ranz (251) classify it as a 
viscous effect because the swirl decays by viscous (or turbulent) action, in contrast to the recirculation 
that can occur close to a swirl generator, or at the exit of a pipe (i.e. the start of a jet) when the 
constraint of the wall on radial motion is removed. An intermediate explanation could be a form of 
precession of the swirling flow near the centre body analogous to that described by Syred and Beer (262) 
in a jet. Whatever the reason for Rask and Scott's results it is surprising that these departures from 
axisymmetry have been observed in an annular duct but not in a pipe where the flow near the axis is 
unconstrained: possibly separation or incipient separation from the centrebody is involved. Scott and 
Rask (291) have further analysed their swirling annular flow data to extract eddy viscosities. The results 
suffer from the difficulty first noticed by Wattendorf (82), that 3U/3r and uv go to zero at different 
radii so that vrx shows misleadingly large scatter even if negative values are rejected. Scott and Rask 
conclude that in general vrg < \-rx, and they point out that quite low values of vrg appear near the 
inner wall: indeed v g barely exceeds v in some conditions suggesting that the highly-stable flow 
near the inner wall has almost reverted to the laminar state. 

White (213) investigated flow in a spinning pipe, fed from a swirl-vane vortex generator so that the 
entry flow was rotating at roughly the same speed as the pipe but did not have a fully-developed axial 
velocity profile. Cannon and Kays (143) investigated heat transfer in a spinning pipe with fully-
developed (non-rotating) flow at entry. In these cases the effect of streamline curvature is everywhere 
stabilizing since W increases monotonically to the wall. In Cannon and Kays' experiment, a region of 
swirling relaminarized flow spread out from the wall into the non-rotating turbulent core. When the flow 
rate was increased, the speed of rotation of the pipe remaining constant, helical instability waves 
appeared at the laminar-turbulent interface. These may have been essentially similar to the streamwisc 
vortices that appear in transition of a three-dimensional boundary layer even on a plane surface, but, as 
remarked in Section 5.6, the mechanism as described by the investigators could be a curved-flow analogue 
of the Kelvin-Helmholtz instability or overturning of a density interface in a gravitational field (144) 
with a region of large velocity gradient being overturned in a centrifugal field. White's flow-visualization 
pictures, taken near the pipe entry, show a stable but wandering core with some evidence of turbulent 
mixing at larger radii. At the highest rotational speed tested, the axial pressure gradient in fully-
developed flow was only 0.6 of that in the stationary pipe at the same mass flow rate, indicating that 
turbulence was suppressed over most of the cross—section. 

Several experimenters have reported on flow with an axial component between concentric rotating 
cylinders ("spinning", according to our chosen convention). Kaye and Elgar (292) plotted boundaries, in 
the Reynolds number-Taylor number plane, between laminar flow with and without vortices and turbulent flow 
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with and without vortices, for the (unstable) case of a rotating inner cylinder. The work was extended to 
heat transfer (with small temperature differences so that the velocity field was little affected) by 
Becker and Kaye (293): the measurements were not detailed enough to deduce the effects of curvature on 
the Reynolds analogy factor, Astill (294) further extended the work to the entry region, where the 
boundary layers on the rotating cylinders have a uniform non-swirling free stream as in the experiments of 
Parr (166), and Furuya (167). He comments that the change from turbulent flow without vortices to 
turbulent flow is "easily detected" by the appearance of sharp peaks in the hot wire trace. This suggests 
that even in the presence of axial flow the vortices between rotating cylinders are particularly 
strong, although in this case there is no direct circumferential "feedback" (Section 5.5) to maintain them. 
Perhaps the first of the possible constraining influences mentioned in Section 5.5 (that the number of 
vortices at any cross section must be an integer) is still powerful enough to sustain a simple, well-
organized vortex structure. Gelhar and Monkmeyer (295) who give a useful review of previous work, 
extended Kaye and Elgar's results to higher Reynolds numbers and found that helical vortices occurred if 
the Taylor number exceeded about 0.25 times the Reynolds number for a gap-to-mean radius ratio of 0.134, 
corresponding to a cylinder rotational speed of about 0.65 times the axial bulk velocity of the fluid, 
for Reynolds numbers based on bulk velocity and gap of about 1 to 3 x 101*. Both groups of experimenters 
found that, in the turbulent vortex regime, increasing the axial velocity decreased the mixing rate (Kaye 
and Elgar measured heat transfer, Gelhar and Monkmeyer measured torque and in the latter experiment at 
least the Reynolds number was high enough for conventional transition effects to be absent). A plausible 
explanation is that increasing the axial velocity reduces the intensity of the vortices, which are likely 
to be more efficient in transporting heat or momentum than ordinary turbulent eddies. Nagib's discovery 
(74) of concentric sets of helical vortices of opposite pitch in the corresponding laminar flow is 
unlikely to be repeated in the more diffusive environment of turbulent flow (the multiple vortex system 
deduced by So and Me lor (160) from measurements in a curved turbulent boundary layer is kinematically 
impossible) but is a reminder that quite complicated transient motions might occur as modifications of the 
large eddy structure. Nagib's thesis is a helpful introduction to the problems of transition in swirling 
flows. 

Humphreys, Morris and Barrow (296) measured heat transfer in the entry region of a pipe spinning 
about an axis parallel to itself (the application being to cooling passages in rotating machinery). Their 
results are correlated in terms of the acceleration ratio h02/g where h is the distance between the 
pipe axis and the axis of rotation. Although this parameter is frequently used in discussions of 
"centrifugal buoyan£y" effects it is not a valid one because g does not enter the problem: the proper 
parameters are Od/U and h/d, representing swirl effects and the relative importance of radial pressure 
gradient respectively [the ratio of_the centrifugal pressure difference across a diameter to a typical 
dynamic pressure is of order hd02/U2 5 (Od/U)2.(h/d)]. In the entry region 6/d is an additional 
parameter. An additional parameter that appears when, as in the present case, significant density 
gradients occur is the 'centrifugal buoyancy' part of the Richardson number, e.g. Eq(91). However, 
Humphreys et al. found the effects of centrifugal buoyancy to be small, at least in the entry region, and 
attributed the increases in heat transfer (up to 50 percent at h02/g as 40) to the fact that the entry 
flow was swirling with respect to the pipe as in Cannon and Kays' experiment. Unfortunately — though not 
surprisingly — no profile measurements were made in this rather complicated rig. 

10.4 MISCELLANEOUS SWIRLING FLOWS 

There are a few experiments on swirling flows that are not easy to classify. Koosinlin and Lockwood (297) 
made measurements in the boundary layer on a rotating cone in still air. In contrast to the rotating disc, 
in which the only extra rate of strain is lateral (3V/3r in x, r, 9 coordinates), the rotating cone 
suffers curvature/rotation effects as well as lateral divergence: the combination of the two extra strain 
rates presents a difficult problem. Also, the cone angle in Koosinlin and Lockwood's experiment (80 deg. 
included angle) was large enough to invalidate the Richardson number analysis for slowly-growing flows on 
rotating bodies leading to the first element of Eq(113) and to force reliance on the dubious arguments 
about the proper choice of axes in general three-dimensional flows following Eq(109). In view of the 
sparseness of the results (one profile each for U and W) no analysis can be attempted. Koosinlin and 
Lockwood also present results for an annular wall jet, blowing over the rotating cone from a nozzle at the 
apex: the net effect of rotation is to decrease the growth rate although Koosinlin and Lockwood (246) 
obtain quite good agreement between experiment and calculations by a method that does not explicitly allow 
for direct effects of curvature or rotation (or lateral divergence) on the turbulence. 

Literature on swirling flows inside conical annular diffusers is reviewed by Hoadley and Hughes 
(298) and by Hughes (165). When the boundary layers become thick enough for the thin-shear-layer 
approximation to break down (implying curvature effects beyond the range of applicability of F-factors) 
significant interaction between boundary layers and potential flow may occur, and the main effect of swirl 
in suppressing separation, or transferring it from one wall to the other, may be exerted via changes in 
Che inviscid flow rather than direct influence on the turbulence. The above-mentioned investigators also 
studied the effect of rotating the centrebody of an annular diffuser (a likely occurrence in a turbo-
machine); separation from the hub was delayed over a certain range of rotational speeds. 

Nakamura et al, (299) extended their own work (167) and that of Parr (166), on boundary layers on 
rotating cylinders in constant-pressure axial streams, to the case of thick "boundary layers" (6/r as 
large as 0.45) and flow over axisymmetric steps (h/6 rv, 0.5). Their mean velocity measurements are 
presented in some detail and should be useful for test cases. Without detailed comparisons with a 
calculation method known to give good results in thick "boundary layers" on non-rotating cylinders, the 
interaction between the effects of rotation and of large 6/r is difficult to distinguish; the rate of 
growth of the thickest rotating boundary layer appears to be nearly linear while the thinner boundary 
layers, rotating or non-rotating, grow more slowly than this, indicating that rotation effects increase 
strongly with 6/r at least up to 6/r *** 0.45. The step results show no unexpected features: the 
measurements were not detailed enough to detect the Ekman pumping effect mentioned earlier in the present 
Section. 

Traugott's experiments (100) on turbulence generated by a rotating grid were described in Section 4, 
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and incidental results on curved boundary layers were obtained as a spin-off from the main measurements. 

A configuration intermediate between the Ranque-Hilsch type of short vortex tube and the long pipe 
with decaying swirl is a long pipe fed from tangential nozzles near one closed end. Near the swirl 
generator a complicated flow can occur. The "swirl number" varies rapidly with streamwise distance 
because the axial momentum flux varies rapidly,so that even if a simple correlation on swirl number were 
admissible we could expect the flow to depend critically on geometry, while in practice the behaviour is 
likely to be more complicated than predicted by swirl-number correlations. For instance. King, Rothfus 
and Kermode (300) found a reversed-flow region near the axis, starting at the injector nozzle position and 
extending for a few tube diameters downstream. It is not clear how the reversed-flow region joined on to 
the presumed Ekman effluent jet travelling downstream along the axis, but precession and breakup of the 
jet near the plane of the injector nozzles would be expected. A more important question, in the context 
of studies of the decaying swirl far downstream, is whether the influence of the separated flow region 
propagates along a non-turbulent core. It is known that the cores of isolated vortices can transmit axial 
disturbances over long distances (216) and if the same is true of swirling pipe flows results for swirl 
decay inferred from experiments with a particular type of swirl generator may not be generally applicable. 

This review of swirling flows makes it clear that although useful practical results and data 
correlations have been obtained, the subject is a confusing one and that our basic knowledge is 
accordingly confused. Much confusion could be avoided, however, by clearer classification of the 
different types of swirling flow and in particular by restricting the use of the words "vortex" and 
"vortex tube" to mean respectively the fully-rolled-up vortex, surrounded by irrotational fluid (Section 9) 
and the Ranque-Hilsch type of short vortex tube, relying on Ekman-layer pumping of fluid near an end wall. 
Fig.32 is a summary of the types of flow discussed above: at present each type must be considered 
separately and there is little prospect of a common treatment, because curvature effects on the 
turbulence structure are usually large. Fortunately, detailed predictions are not always required — in 
the case of pipes with twisted-tape swirl promoters, for instance, one requires only a correlation for 
heat transfer and pressure drop plus some qualitative understanding to aid optimum design. Qualitative 
understanding of curvature effects suggests that the development of any swirling flow may be quite 
sensitive to the initial swirl profile, specifically the extent of regions with a given sign of angular 
momentum gradient. Care should be taken to choose meaningful initial swirl distributions and to measure 
them accurately. On the theoretical side, formulation of transport-equation methods and comparison with 
mean-flow experiments is probably the only way of inferring curvature effects with adquate accuracy. The 
use of eddy-viscosity anisotropy factors is a much inferior approach and data correlations on this basis 
are unlikely to be widely applicable, although they have been useful in the past. For this reason the 
correlations of anisotropy factors quoted in the literature will not be reproduced here. 

Two useful reviews are Ref.255, principally on the flow in Ranque-Hilsch vortex tubes and similar 
situations, and Ref.301, principally on the theoretical aspects of swirling flows in ducts: they contain 
about 350 and 220 references respectively, covering most aspects of swirling flows. 

11. DISCUSSION AND CONCLUSIONS 

1 1 . 1 PHENOMENA AND CALCULATION METHODS 

An important class of "complex" turbulent flows [i.e. flows other than simple shear layers (p.4, Refs 1, 2)] 
consists of shear layers subjected to extra rates of strain, additional to the simple shear 3U/3y. Most 
of the extra strain rates or body forces so far investigated (Fig.2 and Section 3) produce changes in 
Reynolds stress of the order of ten times the changes predicted by plausible extensions of calculation 
methods (Section 2.5) for simple shear layers. The reason is that the extra rates of strain have large 
effects on the higher-order structural parameters of the turbulence which are not reproduced by the 
empirical approximations to these parameters used in calculation methods. An obvious first step in 
allowing for these effects is to make the empirical approximations depend additionally on a dimensionless 
quantity representing the extra rate of strain. The simplest dimensionless quantity (p.16) is e/(3U/3y), 
the local ratio of the extra strain rate to the simple shear, but this implies the assumption that 3U/3y 
is a suitable measure of the eddy frequency or fluctuating rate of strain and the turbulence quantity 
(Reynolds stress)*/2/(eddy length scale) is more realistic: the special case (-uv)*/2/L is equal to 
3U/3y in the local-equilibrium approximation for a simple shear layer (p.13). Extra strain rates can be 
applied rather suddenly and their full effects on the turbulence structure are not felt for a time of the 
order of the lifetime of the eddies that carry the Reynolds stresses (pp 18-20), corresponding to a 
streamwise distance of roughly 105 in the outer part of a boundary layer or 26 in a mixing layer or 
jet. In many cases it is therefore necessary to allow for "history" effects in the correction factors for 
extra rates of strain, additional to, and more important than, any allowance for "history" effects in the 
basic calculation methods. This has not yet been done formally, but a simple lag equation for the 
effective value of e, Eq(37), produces significant improvements and is easy to ap,ly to any type of 
calculation method. 

In view of the dependence of the Reynolds stresses on the history of the extra strain rate, 
correction factors which are elaborate non-linear functions of the local parameters e/(3U/3y) or 
e/((-uv) */2/L) are probably not realistic, even if an "effective" value of e is used. Non-linear 
functions deduced from experiments on self-preserving or local-equilibrium flows are not likely to be 
valid in non-self-preserving flows. A further difficulty is that extra strain rates are likely to change 
the turbulent transport terms in the Reynolds-stress transport equations (Section 2.4) as well as the 
destruction/redistribution terras, and we have at present very few data on this effect. Without more data 
on extra strain rates in general it is probably unrealistic to use a correction factor more complicated 
than 

F • 1 + wry
 (36) 

where e is the effective value obtained from Eq(37) and a is a constant for a given type of shear 
layer and a given type of extra strain rate: at most, we can justify making a an empirical function of 
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y/6, or changing the magnitude of a with the sign of e as in the Monin-Obukhov meteorological 
formula, Eq(119). Note that non-linear meteorological formulae are intended for the special case of the 
Earth's local-equilibrium inner layer, and note also that a more complicated parameter than e/(3U/3y) 
may be needed in three-dimensional or compressible flows even though it is to be used in a linear formula. 
Following the usual spirit of linear formulae we restrict the application of Eq(36) to small extra strain 
rates (p.17), say |e/(3U/3y)| < 0.05 giving 0.5 < F < 1.5 with a = 10. Naturally this excludes a 
large number of cases one would like to be able to predict, in which large extra strain rates are applied 
to a shear layer. However Eq(37) has the property that the effective value of e at the end of a short 
region of extra rate of strain depends only on the total extra strain and not on the distribution of the 
extra rate of strain, which can therefore take large values for short periods without invalidating the 
linear analysis. Eq(37) is of course a simplification but it seems likely that a more refined lag equation 
would exhibit a similar response to "strain impulses". The linear analysis can therefore be applied to 
short regions of large extra strain rate and fails only for prolonged large extra strain rates or 
extremely strong strain impulses. 

The simplest application of the correction factor F is to the length scale that necessarily 
appears in any calculation method, whether it be the apparent mixing length, a length factor in the 
apparent eddy viscosity, or a true eddy length scale like the dissipation length parameter L as in Eq(36), 
p.18. Since F is supposed to be limited to values close to unity we can write 

(_Uv)3/2 (-uv)3/2 1 (-5v)3/2 f _oe_1 

L L0 " ' 1 + ae/(3U/3y) ' L0 T ~ 3U/3yj ( U 2 ) 

This has the advantage that in a flow subjected to several small extra strain rates (such as an axisymmetric 
compressible flow like that of Ref.54, which suffered from curvature, lateral dilatation and bulk 
compression) the different values of ae can simply be summed. This still applies if each ae is 
determined from a separate application of a lag equation like Eq(37), even if [as discussed after Eq(37), 
p.19] the lag is applied to e/U instead of e. A more dubious advantage is that computer calculations 
do not break down if 1 + ae/(3U/3y) becomes zero: this avoids failures in unimportant regions near the 
edge of a shear layer where 3U/3y becomes small, but tempts one to use F-factors without considering 
their limits of validity. Eqs (37) and (142) have been implemented in the calculation method of Ref.16 as 
used for the numerical experiments in Appendix 2: further details are available from the author. In local 
equilibrium conditions L becomes equal to the apparent mixing length il and F-factor modifications can 
therefore be made to the inner-layer logarithmic formula [Eq(43)] if it is used as a boundary condition for 
the calculation. 

Examples of flows subjected to extra rates of strain were discussed in Sections 3.2 to 3.4: Ref.l 
is a comprehensive bibliography of complex turbulent flows in general. 

An important class of flows with extra strain rates are curved or rotating shear layers. Rotating 
flow systems are usually most conveniently analysed in rotating rectangular Cartesian coordinates but 
coordinate systems for curved shear layers and other distorted flows need more care. In two dimensions or 
on infinite swept wings (s,n) coordinates (Section 2.2) are appropriate: axisymmetric swirling flows can 
be analysed in (x,r) coordinates (Section 2.3). There are some physical uncertainties in the analysis of 
fully three-dimensional curved flows but here and in other cases of flows with complicated streamlines 
or complicated boundaries it may be necessary to use complicated coordinate systems to obtain numerical 
stability. The general tensor analysis of Appendix 1 is intended for use in such cases: it has not been 
necessary to use it in the present discussion of the physics of curvature effects. In the other limit of 
weak curvature effects the equations in the (s,n) system can be simplified, eventually reducing to those 
of the rectangular (x,y) system: it is hoped that Section 2.2. is an adequate list of the pitfalls 
awaiting practitioners of higher-order turbulent boundary layer theory. 

The analogy between streamline curvature and buoyancy effects on turbulence, originally due to 
Prandtl (80, p.775), is no longer of great quantitative help in evaluating F-factors or other correction 
formulae, since meteorological formulae for the Earth's inner layer are at best only a rough approximation 
in other regions of laboratory shear layers and we now have at least some explicit data for the latter 
cases. However the algebraic analogy between the parameters for buoyancy and for curvature [Eqs (4,5) and 
(50) to (60): Sections 5.1 and 5.2: Table 2] is helpful in illuminating physical processes and resolving 
ambiguities in the case of curvature. Quantitative analyses for the stability of inviscid flows, analogous 
to classical treatments of buoyant fluids, are probably not very relevant to turbulence (p.38) although 
Orr-Sommerfeld solutions for curved or rotating turbulent flows, using an assumed eddy viscosity (pp.41-42) 
may be useful in comparative studies of the appearance of longitudinal vortices or other convection cells 
in unstable cases. The buoyancy/curvature analogy is qualitatively useful in discussions of instability 
vortices or the internal waves which probably appear in stably-curved turbulent flows (Sections 5.5 and 5.6). 
We note (pp,40-41) the difficulties in definition of vortices which arise from their gradual emergence from 
the large-eddy structure of the turbulence. Only disturbances from upstream or the effect of lateral 
boundaries can constrain the vortex pattern sufficiently for it to produce spanwise inhomogeneity of the 
mean flow. The behaviour of the turbulence will be little affected by the steadiness or otherwise of the 
vortex pattern: the distinction is man-made and can be eliminated by suitable averaging techniques. 
Probably the only case in which the distinction is material is that of a separating boundary layer: the 
reaction time of the external flow being presumably much longer than the typical time scale of unsteady 
vortices, the separation line (at which d5/dx becomes of order unity) probably remains fairly straight 
if the vortices are unsteady, whereas strong spanwise variations of separation position may build up 
if the vortices are steady enough to produce spanwise periodicity of the mean flow. 

The main dimensionless parameters for curved or rotating flows (Section 5.1) can be derived, 
following meteorological practice, either as the square of the ratio of the oscillation frequency of a 
displaced fluid element to a typical frequency of the turbulence or as the ratio of the extra production 
of radial-component turbulent intensity to the total production (Ri and Rf respectively). The 
extended Monin-Obukhov parameter, (L/K)/!„,,-., is equal to (extra production) /(dissipation) and may be 
more useful in regions dominated by turbulent transport rather than production (if any local parameter is 
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useful in such circumstances). Although these parameters all reduce to -2 e/(3U/3y) —with 
e = 3V/3x = -U/r — in the simplest case of constant-density two-dimensional local-equilibrium flow, they 
can be significantly different from this simple parameter in swirling, three-dimensional (Section 5.2) or 
compressible flows and all the evidence is that in these cases the "meteorological" parameters should be 
used in the F-factor instead of the rate-of-strain ratio. Since the difference in the case of adiabatic 
compressible flow is a factor 1 + (y-l)M2/2 the point is of some importance in aeronautics. The 
meteorological parameters can be evaluated for more general cases of variable-density flow: the 
Richardson number with the centrifugal acceleration U2/r replacing g is not a complete parameter for 
these cases. 

Many of the experiments reported on curved or swirling shear layers were carried out in ignorance 
of the large size of curvature effects and are therefore outside the range of linear F-factor corrections. 
Unfortunately the turbulence data obtained in these experiments are not sufficient to help us extend the 
F-factor analysis in any rigorous fashion: for instance the only measurements of turbulent transport terras 
are the limited data of Guitton (7) in a wall jet, the measurements of Lumley and collaborators (204) in a 
mixing layer which seem to be inconsistent in some respects, and the recent work of Castro (11), also in 
a mixing layer. Therefore measurements of strongly-curved flows are not directly useful at present in 
formulating generally-applicable curvature corrections. Data for flows with mild curvature are not 
extensive enough to warrant correlations of a as functions of y/6: the analysis of Parr's data by Cham 
and Head (127) suggesting a very large variation of a with y is not supported by any other analysis. 
The present position seems to be that fairly reliable values for a can be deduced for boundary layers 
and wall jets, the values appropriate to the dissipation length parameter used in the calculations of 
Appendix 2 by the method of Ref.16 being 

Stable (convex) boundary layer: a - 14 
Unstable (concave) boundary layer: a " -9 
Stable (concave) wall jet: a - 8 
Unstable (convex) wall jet: a • 6 

The mixing-length data of Johnston and collaborators (158) in rotating ducts, and further analysis of the 
measurements of Wattendorf (82) and of Eskinazi and Yeh (98), agree at small distances from the wall with 
the above values of a for the boundary layer. Nearer the centre of the duct the mixing-length ratio 
H./i0 on the stable side becomes a function [Eq(129] of Che "bulk Richardson number" or "rotation number", 
h/R or Oh/U, rather than of a local parameter, at least when the bulk parameter is numerically large: 
here l 0 is the mixing length at the same point in the plane flow (effectively a multiple of h). The 
behaviour of I in the highly-unstable part of the duct flow where Ur % constant, so that Ri **> 0, 
Rf *•> °», is less certain. Certainly for the rotating duct (Fig.6) and probably for the curved duct, this 
corresponds to dominance of the large eddy structure by longitudinal vortices ("steady" or otherwise) 
extending over a large fraction of the duct width: "steady" longitudinal vortices have also been observed 
in boundary layers. Therefore, limiting values of l / i 0 as functions of the "bulk Richardson number" 6/R 
can be expected in unstable cases also. Note that the length 6 does not correspond exactly to the length 
Jh: a precise trade-off could be obtained by considering the duct as two interacting boundary layers but 
this is not a universally accepted approach and it is better to await explicit data for the boundary layer. 
Note also that the relation between the behaviour of J,, just discussed, and the behaviour of L depends 
on the (unknown) behaviour of the turbulent transport terms. Eq(129) should not be applied directly to L 
or any other eddy length scale, although similar equations relating turbulence structural parameters to 
bulk curvature parameters should be valid as long as the equivalent of l 0 in Eq(129) is simply related to 
bulk scales like h, 6 or T W (the detailed distribution of l 0 or its equivalent is obviously not 
relevant when the turbulence structure has been greatly altered by curvature effects). 

The case of strongly-stable flows may not be as critical as the unstable case. Crudely speaking, 
if the turbulence is strongly suppressed the Reynolds stresses are negligible and any curvature-correction 
factor that predicts them to an order of magnitude is acceptable for calculation methods. The deductions 
from the calculations for So and Mellor's stable boundary layer in Appendix 2 suggest that the regular 
F-factor [applied in the form L0/L •» 1 - ae/(3U/3y) to avoid the singularity when ae/(3U/3y) - -1] will 
predict the suppression of turbulence in a boundary layer fairly well as long as the value of L0 is 
related to the sub-boundary-layer thickness rather than the width of the boundary layer before application 
of curvature. Johnston's correlation for the limiting value of %l t 0 or its equivalent should become 
useful in the future. 

Therefore the best advice (based on the above discussion and on Appendix 2) that can be given to 
people wishing to calculate curved boundary layers or two-dimensional duct flows by the method of Ref.16 or 
similar methods is 

* Use the F-factor in reciprocal form, Eq(142), with Eq(37) as a lag equation, and replace 
e/(3U/3y) by half one of the "meteorological" parameters (Table 2) in three-dimensional or compressible 
flows or other difficult cases. 

* Use the values of a given above, with X - 106 in Eq(37). 

* For the limiting value of L in the outer regions of unstable boundary layer take L/6 • f(6/R), 
L0 being directly related to 6 in the method of Ref.16. A highly provisional suggestion for the function 
f is 0.095 (1 + 305/|R|), but since this is fairly close to the original (not reciprocal) local F-factor 
with the outer-layer approximation 3U/3y \ 0,3 U/6 the local F-factor could be used instead. 

In the case of wall jets (Section 7) and possibly free jets (Section 8) without an external stream 

* Use the F-factor, Eq(142); according to unpublished work by Sawyer, a lag equation is necessary 
in some cases, but X in Eq(37) is probably only about twice the shear-layer thickness or 36.5. 

* For strongly-unstable flows use the growth-rate data of Ref.7 (Fig.4): no reliable comments can 
be made on limiting values of L because jet flows are dominated by turbulent transport processes and 
because the thin-shcar-layer approximation used in the calculations of Appendix 2 is not valid in highly-
unstable jets, the value of 6/R corresponding to a given Richardson number being higher than in boundary 
layers. 
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In the case of mixing layers or jets with an external stream little can be said. A wall jet 
beneath an external stream eventually reverts to a boundary layer so that the appropriate value of a for 
small curvature changes in some unknown manner from the wall-jet value to the boundary layer value. A 
free jet in an external stream eventually reverts to a small-deficit wake, for which we have no curvature 
data. 

It is evident from the above that improvements in the proposed calculation rules could be made after 
a little more experimental work or even a little more numerical experiment or analysis of existing data. 
I have decided not to include advance details of the work being done by my colleagues and myself in what 
is supposed to be a general review, but we hope that its outcome will be a more solid data base and a 
clearer understanding of the effects of large curvature on turbulent transport. 

At present it would be very risky to suggest general rules for calculating classical trailing 
vortices (Section 9) or other slender swirling flows (Section 10) which are nominally turbulent throughout 
their cross section. Again, the basic reason is our lack of information about turbulent transport terms. 
The core of a swirling flow is necessarily in solid-body rotation so that the Richardson number (Ri or 
Rf) is very large and turbulence is effectively suppressed unless the swirl is small: further from the 
axis turbulence is probably maintained in the face of strong stabilizing effects by turbulent transport 
from even larger radii. The apparent Reynolds number dependence of trailing vortices, even at full scale, 
suggests that a large fraction of the total volume of turbulent fluid is at low local Reynolds number, 
introducing further complications (note that there is no evidence that highly-stable boundary layers have 
extended regions of low local Reynolds number: the Reynolds shear stress at the edge of the sub-boundary-
layer in So and Mellor's experiment (160) fell to zero as rapidly as in a conventional boundary layer). 
Laboratory data for swirling flows are plentiful, but no existing experiment is sufficiently systematic to 
show up Reynolds number effects attributable to stabilizing curvature rather than the usual influence of 
solid boundaries. A general criticism of past work on swirling jets and pipe flows is the failure to 
appreciate the delicate effect of swirl distribution on flow stability. In view of the difficulties 
encountered (219, 237, 302) in measurements of vw (the rate of radial transfer of circumferential 
momentum) it seems unlikely that reliable measurements of turbulent transport terms in the Reynolds stress 
transport equations (notably v2w) will be made in the near future but numerical experiments by transport-
equation calculation methods may be fruitful. 

Flows in curved or rotating pipes or low-aspect-ratio rectangular ducts, together with flows in 
pipes containing twisted tapes or other types of swirl generator, are dominated by secondary flows, and 
the effects of streamline curvature on the turbulence cannot be distinguished at present. 

1 1 . 2 FUTURE RESEARCH WORK 

The overt purpose of research work being to contribute to calculation methods, the previous sub-section can 
be re-interpreted as a suggested research programme to supply the information needed to improve 
calculations of curved flows. As always, the need is for experiments, and for experiments with a clearly-
defined purpose preferably identifiable with the needs of calculation methods. The main needs seem to be 

* Data for boundary layers, and other shear layers, with curvature effects typical of aeronautical 
practice rather than the exaggerated effects studied in many previous experiments designed to investigate 
curvature effects. This is roughly a requirement that 0.5 < F < 1.5 over most of the shear layer, and 
the results of the work should contribute to improvement of simple F-factor formulae. Three-dimensional 
or compressible flows particularly need attention, and our knowledge of heat transfer is mainly indirect 
or inferential (303). Turbulence data would of course be welcome but mean-flow data (including skin-
friction measurements both for their intrinsic value and for checks on momentum conservation) can still be 
used as test cases for calculation methods. Tabulations of the mean-flow data used in the calculations of 
Appendix 2 are given in that Appendix, 

* Experiments on vortices and swirling flows that acknowledge the importance of curvature effects 
on turbulence. It seems likely that either great care or conditional-sampling techniques or both will be 
needed to investigate the stabilized inner cores of these flows, which appear to wander under the influence 
of longitudinally-propagating disturbances or the turbulent flow farther from the axis. Accurate 
measurements of all the Reynolds stress components in these three-dimensional flows will be difficult to 
obtain. 

* Measurements of the triple velocity products that dominate turbulent transport of Reynolds 
stresses in the radial direction. Reliable measurements in almost any situation would be welcome: data 
for uv2, in addition to Reynolds stress measurements, would enable the pressure-strain "redistribution" 
term in the Tiv transport equations to be deduced if pressure transport were ignored. Pressure-
fluctuation measurements within the turbulence would of course be desirable but although some apparently 
reliable data are available the technique is so difficult, particularly in laboratory flows, that 
significant contributions to curved flows are unlikely in the near future. Pressure transport seems to be 
small in most plane flows but may be large in stable curved flows bearing internal waves (11). 

* Basic investigations of the changes in large-eddy structure caused by streamline curvature, 
specifically the development of unsteady longitudinal vortices and their tendency, with increasing 
curvature effects, to become steady enough to contribute to mean longitudinal vorticity. The development 
of internal waves in stably-curved flows, still largely hypothetical, also merits study and can also be 
regarded as a consequence of curvature effects on the large eddies. 

The demands made on calculation methods by the effects of curvature and other extra rates of strain 
are more severe versions of the demands made by plane flows. Empirical models of the turbulent transport 
of Reynolds stress must be extended, with the aid of experimental data, to curved flows: once more the 
large-eddy behaviour is the key, and correlations in terms of local parameters are not likely to be widely 
applicable. Transport equations for eddy length scales have only recently been developed for plane flows: 
since most of the terms in these equations are effectively unmeasurable and must be evaluated by numerical 
experimentation their extension to curved flows will not be easy. However a length-scale transport 
equation capable of reproducing mean transport (history effects) has been found to be necessary when extra 
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strain rates change rapidly, and turbulent transport 
becomes important in the same circumstances as turbul 
local-equilibrium methods of mixing-length or eddy-vi 
flows (0.5 < F < 1.5) as in plane flows if assisted 
a, more highly curved flows may require partial diff 
at least one length scale. In the case of swirling f 
always large near the axis, and calculation methods b 
unlikely to attain aeronautical standards of accuracy 

of length scale (in the radial direction) presumably 
ent transport of Reynolds stress. Therefore, while 
scosity type may be as adequate in mildly-curved 
by an ordinary differential equation like Eq(37) for 
erential transport equations for Reynolds stresses and 
lows, for instance, curvature effects are nearly 
ased on, say, eddy-viscosity anisotropy ratios are 
except in a very narrow range of flows. 

Much evidence of the importance of curvature effects has been reviewed in this AGARDograph, and the 
case for further research work seems plain. As well as being intrinsically important, streamline curvature 
merits study for the light it throws on the effects of extra strain rates in general. If existing 
calculation methods for simple shear layers are to be extended reliably to flows subjected to extra strain 
rate, or even if the rules for calculating curved flows set out in Section 11.1 are to be significantly 
improved, careful experiments and careful analysis of transport equations will be needed. 

12. 

1. 

2, 
3. 

4, 

5. 
6. 

7. 

8. 

REFERENCES 

Bradshaw, P. 

Bradshaw, P. 
Bradshaw, P. 
Dean, R.B. 
McEligot, D.M 
Thomann, H. 

Van Dyke, M.D 
Giles, J.A. 
Hays, A.P. 
Sawyer, R.A. 
Guitton, D.E. 

Spettel, F. 

10. 

11. 

Mathieu, J. 
Brison, J.F. 
Huffaker, R.M. 
Jelalian, A,V. 
Keene, W.H. 
Sonnenschein, CM. 
Johnston, J.P. 
Halleen, R.M. 
Lezius, D.K. 
Castro, I.P. 

12. 
13. 

14. 
15. 

16. 

17, 

18. 

19. 

20. 

21. 

22. 

23. 
24. 
25. 

26. 
27. 

28. 

29. 

Stine, G.H. 
Von Karman, T. -

Rayleigh, J.W.S. 
McLaren, T.I. 
Pierce, A.D. 
Fohl, T. 
Murphy, B.L. 
Bradshaw, P. 
Ferriss, D.H. 
Rodi, W. 

Newman, E.G. -

Bradshaw, P. 
Goodman, D.G. 
Baum, E. 

Alber, I.E. 
Lees, L. 
Wilcken, H. 

Rosenhead, L.(Ed.) 
Townsend, A.A. -
Bradshaw, P. -

Townsend, A.A. 
Kline, S.J. 
Morkovin, M.V. 
Sovran, G. 
Cockrell, D.G. (Eds 
Donaldson, C.du P. 

Reynolds, W.C. 

Variations on a theme of Prandtl. AGARD Conf. Proc. 93, 1972, p.C-1. See also 
A bibliography of "complex" turbulent flows. Imperial College, Aero Dept., Rept 
72-04, 1972. 
Advances in turbulent shear flows. Von Karman Institute, Lecture Series 56, 1973. 
Calculation of interacting turbulent shear layers. Duct flow. ASME J. Fluids 
Engg. (in press: see also ASME paper 72-WA/FE-25). 

Effect of streamwise wall curvature on heat transfer in a turbulent boundary 
layer. J. Fluid Mech., vol.33, 1968, p.283. 
Higher-order boundary-layer theory. Ann. Rev. Fluid Mech., vol.1, 1969, p.265. 
Turbulent wall jets on logarithmic spiral surfaces. Aero, Quart,, vol.17, 1966, 
p.201. 

Some contributions to the study of equilibrium and non-equilibrium turbulent wall 
jets over curved surfaces. McGill Univ., Mech. Engg. Dept., Ph.D. thesis, 1970. 
Tensions de Reynolds et production d'energie cine"tique turbulente dans les jets 
parietaux sur parois planes et concaves. J. de Mec, vol.11, 1972, p.403. 

Application of laser doppler systems to vortex measurement and detection. 
Aircraft Wake Turbulence and Its Detection (J.H. Olsen, A.Goldburg and M. Rogers, 
Eds.), New York, Plenum Press, 1971. 

Effects of spanwise rotation on the structure of the two-dimensional fully 
developed turbulent channel flow. J. Fluid Mach., vol.56, 1972, p.533. 

A highly distorted turbulent free shear layer. Imperial College, Aero. Dept., 
Ph.D. thesis, 1973. 
Coanda effect. Aviation Week, 1 Jan 1973, p.64. 
Some aspects of the turbulence problem. Proc. 4th Int. Congr. Appl. Mech., 
Cambridge, 1934, p.54, 
On the dynamics of revolving fluids. Proc. Roy. Soc. A, vol.93, 1916, p. 148. 
An investigation of internal gravity waves generated by a buoyantly rising fluid 
in a stratified medium. J. Fluid Mech,, vol.57, 1973, p.229. 

Applications of a general method of calculating turbulent shear layers. J. Basic 
Engg., vol.94D, 1972, p,345. 
Basic equations for turbulent flow in cartesian and cylindrical coordinates. 
Imperial College, Mech. Engg. Dept,, Rept. BL/TN/A/36, 1970. 
Some contributions to the study of the turbulent boundary layer near separation. 
Australian Dept. of Supply, Rept. ACA-53, 1951. 
The effect of turbulence on static-pressure tubes. A.R.C. R.&M. 3527, 1968. 

An interaction model of a supersonic laminar boundary layer on sharp and rounded 
backward facing steps. AIAA J., vol.6, 1968, p.440. 
Integral theory for supersonic turbulent base flows. AIAA J., vol.6, 1968, p.1343. 

Effect of curved surfaces on turbulent boundary layers. NASA TT F-11421, 1967 
(translation of Ing.-Arch., vol.1, 1930, p.357). 
Laminar Boundary Layers. Oxford, Clarendon Press, 1963. 
The Structure of Turbulent Shear Flow. Cambridge, University Press, 1956. 
The understanding and prediction of turbulent flow. Aero. J., vol.76, 1972, 
p.403. 
Equilibrium layers and wall turbulence. J. Fluid Mech., vol.11, 1961, p.97. 
Proceedings, Computation of Turbulent Boundary Layers — 1968 AF0SR-IFP — Stanford 
Conference, Vol.1. Stanford Univ., Thermosciences Divn., 1969. 

.) 
Calculation of turbulent shear flows for atmospheric and vortex motions. 
vol.10, 1972, p.4. 
Computation of turbulent flows — State-of-the-art, 1970. Stanford Univ. 
Thermosciences Divn., Rept. MD-27, 1970 and Chem. Engg. Progress, 1972. 

AIAA J. 



73 

30. Rotta, J.C. 

31. Patankar, S.V. 
Spalding, D.B. 

32. Cebeci, T. 
Smith, A.M.O. 

33. Nash, J.F. 
Patel, V.C. 

34. Hanjalic, K. 
Launder, B.E. 

35. Rodi, W. 

36. Daly, B.J. 
Harlow, F.H. 

37. Patel, V.C. 

38. Myring, D.F. 

39. 

40. 

41. 

42. 

43. 

44. 

45. 

46. 

Howard, L.N. 
Gupta, A.S. 
Batchelor, G.K. 
Proudman, I. 
Crow, S.C. 

Lumley, J.L. 
Tucker, H.J. 

Marechal, J. 

Morel, T. 
Torda, T.P. 
Bradshaw, P. 
Green, J.E. 
Weeks, D.J. 
Brooman, J.W.F. 

47. 
48. 
49. 

50. 

51. 

52. 

53. 

54. 

55. 

56. 

57. 

58. 

59. 

60. 
61. 

Keffer, J.F. 
Keffer, J.F. 
Crabbe, R.S. 

Townsend, A.A. 

Cham, T.-S. 
Head, M.R. 
Gardow, E.B. 

Head, M.R. 
Patel, V.C. 
Winter, K.G. 
Rotta, J.C. 
Smith, K.G. 
Patel, V.C. 
Nakayama, A. 
Damian, R. 
McMillan, O.J. 
Johnston, J.P. 
Young, S.T.B. 

Heskestad, G. 

Heskestad, G. 

Gartshore, I.S 
Morel, T. 

62. Bradshaw, P. 

63. 
64. 

65. 

66. 

67. 

Ferriss, D.H. 
Zwarts, F. 
Bushnell, D.M. 
Alston, D.W. 
Peake, D.J. 
Brakmann, G. 
Romeskie, J.M. 
Lewis, J.E. 
Gran, R.J. 
Kubota, T. 
Bradshaw, P. 

Turbulent shear layer prediction on the basis of the transport equations for the 
Reynolds stresses. Sectional Lecture, 13th Int. Congr. Appl. Mech., Moscow, 1972 
and DFVLR-AVA Ber.061-72 A17. 
Heat and Mass Transfer in Boundary Layers. London, Intertext, 1970. 

Analysis of Turbulent Boundary Layers. New York, Academic Press, 1973 (in press). 

Three-dimensional Turbulent Boundary Layers. Atlanta, SBC Technical Books, 1972. 

A Reynolds-stress model of turbulence and its application to thin shear flows. 

J. Fluid Mech., vol.52, 1972, p.609. 
On the equation governing the rate of turbulent energy dissipation. Imperial 
College, Mech, Engg. Dept,, TM/TN/A/14, 1971. 
Transport equations in turbulence. Phys. Fluids, vol.13, 1970, p.2634. 

The effects of curvature on the turbulent boundary layer. A.R.C. R.4 M, 3599, 
1968. 
The effects of normal pressure gradients on the boundary layer momentum integral 
equation. RAE TR 68214, ARC 30858, 1968 (see also Myring and Young, Aero. 
Quart,, vol.19, 1968, p.105). 
On the hydrodynaraic and hydromagnetic stability of swirling flows. J. Fluid Mech., 
vol.14, 1962, p.463." 
The effect of rapid distortion on a fluid in turbulent motion. Quart. J. Mech. 
Appl. Math., vol.7, 1954, p.83. 
Viscoelastic properties of fine-grained incompressible turbulence. J. Fluid Mech., 
vol.33, 1968, p.1. 
Towards a turbulent constitutive relation. J. Fluid Mcch., vol.41, 1970, p.413. 
The distortion of turbulence by irrotational strain. McGill Univ., Mech. Engg. 
Dept., Rept. 70-7, 1970 (see also J. Fluid Mech., vol.32, 1968, p.657). 
Etude experimentale de la deformation plane d'une turbulence homogene. J. de Mec, 
vol.11, 1972, p.263. 
Turbulent kinetic energy and free mixing. Paper presented at Langley Working 
Conference on Free Turbulent Shear Flows, 1972. 

Prediction of turbulent boundary layers and wakes in compressible flow by a lag-
entrainment method. RAE TR 72231, 1972. 

The uniform distortion of a turbulent wake. J. Fluid Mech,, vol.22, 1965, p.135. 
A note on the expansion of turbulent wakes. J, Fluid Mech., vol.28, 1967, p.183. 
Measurements in a laterally strained turbulent boundary layer. McGill Univ., 
Mech. Engg. Dept., Rept. 71-2, 1971, 
Entrainment and the structure of turbulent flow. J. Fluid Mech., vol.41, 1970, 
p.13. 
Calculation of the turbulent boundary layer in a vortex diffuser. A.R.C. R.& M. 
3646, 1970. 
The three-dimensional turbulent boundary layer in a free vortex diffuser. M.I.T., 
Gas Turbine Lab., Rept. 42, 1958. 
Improved entrainment method for calculating turbulent boundary layer development. 
A.R.C. R.& M. 3643, 1970. 
Studies of the turbulent boundary layer on a waisted body of revolution in 
subsonic and supersonic flow. ARC R & M 3633, 1968. 

An experimental study of the thick turbulent boundary layer near the tail of a 
body of revolution. Iowa Inst, of Hydraulic Research, Rept. 142, 1972 (to appear 
in J. Fluid Mech.). 
Performance of low-aspect-ratio diffusers with fully developed turbulent inlet 
flows. Stanford Univ., Thermosciences Divn., Rept. PD-14, 1970. 
Unpublished work at Imperial College: see Bradshaw, P. and Young, S.T.B. in 
RAE-DFVLR Seminar on non-hypersonic boundary layers (J.E. Green and E, Krause, 
eds.) ARC 33311, 1971. 
Hot-wire measurements in a plane turbulent jet. 
p.721. 
Hot-wire measurements in a radial turbulent jet. 
p.417. 
Two-dimensional turbulent wakes. J. Fluid Mech., 
Calculation of free turbulent mixing. Interaction approach. 
of Technology, Mechanics Dept., Ph.D. Thesis, 1972. 
Calculation of boundary layer development using the turbulent energy equation: 
compressible flow on adiabatic walls. J. Fluid Mech., vol.46, 1971, p.83. 
Ph.D. Thesis, McGill University, 1970. 
Calculation of compressible adverse pressure gradient turbulent boundary layers. 
AIAA J., vol.10, 1972, p.229. 
Comparisons between some high Reynolds number turbulent boundary layer experiments 
and various recent calculation procedures at Mach 4, AGARD Conf. Proc. 93, 1971. 

An experiment on adiabatic compressible turbulent boundary layer in adverse and 
favourable pressure gradients. J. Fluid Mech., vol.51, 1972, p.657. 

Anomalous effects of pressure gradient on supersonic turbulent boundary layers. 
Imperial College Aero Rept. 72-21, 1972. 

J. Appl. Mech,, 

J. Appl. Mech, 

vol.32, 1965, 

, vol.33, 1966, 

vol.30, 1967, p.547. 
Illinois Institute 



74 

68. Pasiuk, L. 
Hastings, G.H. 
Chatham, R. 

69. Wilcox, D.C. 
Alber, I.E. 

70. Bippes, H. 
Gbrtler, H. 

71. Coles, D.E. 
72. Taylor, G.I. 

73. Coles, D.E. 
Van Atta, C.W. 

74. Nagib, H.M. 

75. Jeffreys, H. 

76. Lezius, D, 
Johnston, J.P. 

77. Gortler, H. 

78. 

79. 

80. 

81. 

82. 

83. 

84. 

85. 
86. 

87. 

88. 

89. 

Gregory, N. 
Walker, W.S 
Johnston, J 

Prandtl, L. 

Wendt, F. 

Wattendorf, 

Schmidbauer 

Taylor, G.I 

Pai, S-I. 
Metral, A. 
Zerner, F. 
Prandtl, L. 

Richardson, 

Businger, J 

P. 

F.L 

H. 

L.F 

A. 
Wyngaard, J.C. 
Izumi, Y. 
Bradley, E.F. 

90. 

91. 

92. 

93. 

94, 

95. 

96. 

97. 

98. 

99, 

100. 

101. 

102. 

103. 

104. 

105. 

106. 

107. 

Schlichting, H. 

Bradshaw, P. 

Thompson, B.G.J 

Clauser, M. 
Clauser, F. 
Kreith, F. 

Einstein, H.A. 
Li, H. 
Mabey, D.G. 

Keyes, J.J. 

Eskinazi, S, 
Yeh, H. 
Yeh, H. 

Traugott, S.C. 

Schubauer, G.B. 
Klebanoff, P.S. 
Tani, I. 

Wille, R. 
Fernholz, H. 
Newman, B.G. 

Fernholz, H. 

Fbrthmann, E. 

Bradshaw, P. 
Gee, M.T. 

Experimental Reynolds analogy factor for a compressible turbulent boundary layer 
with a pressure gradient. NOL TR 64-200, 1964. 

A turbulence model for high speed flows. Proc. 1972 Heat Transfer and Fluid 
Mech. Inst. (R.B. Landis and G.J. Hordemann, Eds.) 1972, p.231. 
Dreidimensionale Stbrungen in der Grenzschicht an einer konkaven Wand. Acta 
Mechanica, vol.14, 1972, p.251. 
Transition in circular Couette flow. J. Fluid Mech., vol.21, 1965, p.385. 
Stability of a viscous liquid contained between two rotating cylinders. Phil. 
Trans. Roy. Soc. A, vol.223, 1923, p.289. 
Digital experiment in spiral turbulence. Phys. Fluids, vol.10, 1967, p.S120. 

On instabilities and secondary motions in swirling flows through annul!. Illinois 
Institute of Technology, Mechanics Dept., Ph.D. Thesis, 1972. 
Some cases of instability in fluid motion. Proc. Roy. Soc. A, vol.118, 1928, 
p.195. 
The structure and stability of turbulent wall layers in rotating channel flow. 
Stanford Univ., Thermosciences Divn., Rept. MD-29, 1971. 
On the three-dimensional instability of laminar boundary layers on concave walls. 
NACA Tech. Memo. 1375 — translation of Math. Phys. Kl., Nachr. Ges. Wiss., 
Gbttingen, vol.1, 1940, p.1. 
The effect on transition of isolated surface excrescences in the boundary layer. 
ARC R & M 2779, 1950. 
The effect of rotation on boundary layers in turbomachine rotors. Stanford Univ., 
Thermosciences Divn., Rept. MD-24, 1970 (to appear in NASA SP-304). 
Ludwig Prandtl Gesammelte Abhandlungen. (W. Tollmien, H. Schlichting and H. 
Gbrtler, Eds.) Springer, 1961. 
Turbulente Strbraungen zwischen zwei rotierenden konaxialen Zylindern. Ing.-Arch., 
vol,4, 1933, p.577. 
A study of the effect of curvature on fully developed turbulent flow. Proc. Roy, 
Soc. A, vol.148, 1935, p.565. 
Turbulent friction layer on convex surfaces. NASA Tech. Memo 791 and ARC no.2608 
— translations of Luftfahrtforsch., vol.13, 1936, p.160. 
Distribution of velocity and temperature between concentric cylinders. Proc, Roy. 
Soc. A, vol.151, 1935, p.494. 
Turbulent flow between rotating cylinders. NACA TN 892, 1943. 
The Coanda effect. U.S. AEC-tr-3386 or British TIL/T4207, translations of French 
Pub. Sci. et Tech. du Min. de 1'Air 218, 1948. 
Essentials of Fluid Dynamics (FUhrer durch die StrBmungslehre), London, Blackie, 
1952, 
The supply of energy from and to atmospheric eddies, Proc. Roy. Soc. A, vol.97, 
1920, p.354. 
Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci., 
vol.28, 1971, p.181. 

Turbulenz bei Warmeschichtung. Zeit. ftlr Angew. Math, und Mech., vol.15, 1935, 
p.313. 
The analogy between streamline curvature and buoyancy in turbulent shear flow. 
J. Fluid Mech., vol.36, 1969, p.177. 
The calculation of shape-factor development in incompressible turbulent boundary 
layer with or without transpiration. AGARDograph 97, 1965, p.159. 
The effect of curvature on the transition from laminar to turbulent boundary layer. 
NACA Tech. Note 613, 1937. 
The influence of curvature on heat transfer to compressible fluids. Trans. ASME, 
vol.77, 1955, p.1247, 
Steady vortex flow in a real fluid. Proc. 1951 Heat Transfer and Fluid Mech. Inst., 
Stanford, 1951, p.33. 
The formation and decay of vortices. Imperial College, Aero, Dept., D.l.C. thesis, 
1953. 
An experimental study of gas dynamics in high velocity vortex flow. Proc. 1950 
Heat Transfer and Fluid Mech. Inst., Stanford, 1960. 
An investigation on fully developed turbulent flows in a curved channel. J, Aero. 
Sci., vol.23, 1956, p.23. 
Boundary layer along annular walls in a swirling flow. Trans. ASME, vol.80, 1958, 
p.167. 
Influence of solid-body rotation on screen-produced turbulence. NACA TN 4135, 
1958. 
Investigation of separation of the turbulent boundary layer. NACA Rept. 1030, 
1951. 
Production of longitudinal vortices in the boundary layer along a concave wall. 
J. Geophys. Res., vol.67, 1962, p.3075. 
Report on the first European Mechanics Colloquium, on the Coanda effect. J. Fluid 
Mech., vol.23, 1965, p.801. 
The deflexion of plane jets by adjacent boundaries — Coanda effect. In Boundary 
Layer and Flow Control (G.V. Lachmann, Ed.) vol.1, London, Pergamon, 1961, p.232. 
Umlenkung von Freistrahlen an gekrummten Wanden. Jahrbuch 1964 der WGLR, 1964, 
p.149. 

• Uber turbulente Strahlansbreitung. Ing.-Arch., vol.5, 1934, p.42 : translated as 
NACA TM789, 1936. 

• Turbulent wall jets with and without an external stream. ARC R. and M. 3252, 
1960. 



75 

108. 

109. 

110. 

111. 

112. 

113. 

114. 

115. 
116. 

Von Glahn, U.H. 

Metral, A. 

Sawyer, R.A. 

Sawyer, R.A. 

Stratford, B.S. 
Jawor, Z.M. 
Golesworthy, G.T 
Stratford, B.S. 
Jawor, Z.M. 
Smith, M. 
Lumley, J.L. 
Panofsky, H.A. 
Turner, J.S. 
Johnston, D.S. 

117. Laderman, A . J . 
Deraetr lades , A. 

118. Wyngaard, J.C. 

119. Gough, D.O. 
Lynden-Bell, D. 

120. Strittmatter, P.A. 
Illingworth, G. 
Freeman, K.C. 

121. Synge, J.L. 

122. Morkovin, M.V. 

123. Beer, J.M. 
Chigier, N.A. 
Davies, T.W. 
Bassindale, K. 

124. Fahlbusch, H. 
125. Bradshaw, P. 

126. Johnston, J.P. 

127. Cham, T.-S. 
Head, M.R. 

128. Kurzweg, U.H. 

129. Chigier, N.A. 

130. Tennekes, H. 

131. Nicholl, C.I.H. 

132. Cermak, J.E. 

133. Mackrodt, P.A. 

134. Favre, A. 
Gaviglio, J. 

135. Gupta, A.K. 
Laufer, J. 
Kaplan, R.E. 

136. Zilitinkevich, S.S, 
137. Sandmayr, G. 

138. Smith, A.M.O. 

139. McEligot, D.M. 
Le Mone, M.A. 

140. Angell, J.K. 

141. Pao, Y.-H. 

142. Stewart, R.W. 

143. Cannon, J.N. 
Kays, W.M. 

144. Woods, J.D, 

145. Greenspan, H.F. 
146. Hines, CO. 
147. Mowbray, D.E. 

Rarity, B.S.H. 

Use of the Coanda effect for obtaining jet deflection and lift with a single-
plate deflection surface. NACA TN 4272, 1958. 
Sur un phenomfene de deviation des veines fluides et ses applications. Proc. 
5th Int. Congr. Appl. Mech., Cambridge, 1938. 
Two-dimensional reattaching jet flows including the effect of curvature on 
entrainment. J. Fluid Mech., vol.17, 1963, p.481. 
Two-dimensional turbulent jets with adjacent boundaries, Cambridge Univ., Engg. 
Dept., Ph.D. Thesis, 1962. 
The mixing with ambient air of a cold airstream in a centrifugal field. ARC 
C P . 687, 1962. 

The mixing between hot and cold airstreams in a centrifugal field. ARC CP 793, 
1965. 

The Structure of Atmospheric Turbulence. Interscience, 1964. 

Buoyancy Effects in Fluids, Cambridge, University Press, 1973. 
Velocity and temperature fluctuation measurements in a turbulent boundary layer 
downstream of a stepwise discontinuity in wall temperature. J. Appl. Mech., 
vol.26, 1959, p.325. 
Measurements of the mean and turbulent flow in a cooled-wall boundary layer at 
Mach 9.37. AIAA paper 72-73, 1973. 
An experimental investigation of the small-scale structure of turbulence in a 
curved mixing layer. Penn. State Univ., Ph.D. Thesis, 1967. 
Vorticity expulsion by turbulence: astrophysical implications of an Alka-
Seltzer experiment. J. Fluid Mech., vol.32, 1968, p.437. 
A note on the vorticity-expulsion hypothesis. J. Fluid Mech., vol.43, 1970, 
p.539. 

On the stability of a viscous liquid between two rotating co-axial cylinders. 
Proc. Roy. Soc. A, vol.167, 1938, p.250. 
Effect of compressibility on turbulent flows. In Mgcanique de la Turbulence 
(A. Favre, Ed.). New York, Gordon and Breach, 1964. 
Laminarization of turbulent flames in rotating environments. Combustion and 
Flame, vol.16, 1971, p.39. 

Recovery factor in flow of cambered walls. Z. Flugwiss., vol.15, 1967, p.130. 
Calculation of three-dimensional turbulent boundary layers. J. Fluid Mech., 
vol.46, 1971, p.417. 
Measurements in a three-dimensional turbulent boundary layer induced by a swept, 
forward-facing step. J, Fluid Mech., vol.42, 1970, p,823. 
The turbulent boundary layer on a rotating cylinder in an axial stream. J. 
Fluid Mech., vol.42, 1970, p.1. 
A criterion for the stability of heterogeneous swirling flows. Zeit. fiir Angew. 
Math, und Phys., vol.20, 1969, p.141. 
Gasdynamics of swirling flows in combustion systems. Astro. Acta, vol.17, 
1972, p.387. 
Free convection in the turbulent Ekman layer of the atmosphere. J. Atmos. Sci., 
vol.27, 1970, p.1027. 
Some dynamical effects of heat on a turbulent boundary layer. J. Fluid Mech., 
vol.40, 1970, p.361. 
Laboratory simulation of the atmospheric boundary layer. AIAA J., vol.9, 1971, 
p.1746. 
Spiralstrbmungen ira zylindrischen Ringraum hinter Leitr'ddern. Z. Flugwiss., 
vol.15, 1967, p.335, 
Turbulence et perturbations dans la couche liraite d'une plaque plane. AGARD 
Rept. 278, 1960. 
Spatial structure in the viscous sub-layer. J. Fluid Mech., vol.50, 1971, p.493. 

Shear convection. Boundary-Layer Meteorology, vol.3, 1973, p.416. 
Uber das Auftreten von Langswirbeln in turbulenten Grenzschichten an konkaven 
Wanden. DLR FB 66-41, 1966. 
On the growth of Taylor-GBrtler vortices along highly concave walls. Quart. 
Appl. Math., vol.13, 1955, p.233. 
The structure and dynamics of horizontal roll vortices. Lecture presented at 
NCAR Colloquium on Dynamics of the Tropical Atmosphere, 1972. 
A comparison of circulations in transverse and longitudinal planes in an 
unstable planetary boundary layer, J. Atmos. Sci., vol.29, 1972, p.1252. 
Spectra of internal waves and turbulence in stratified fluids. Radio Sci., 
vol.4, 1969, p.1315. 
Turbulence and waves in a stratified atmosphere. Radio Sci., vol.4, 1969, 
p.1269. 
Heat transfer to a fluid flowing inside a pipe rotating about its longitudinal 
axis. J. Heat Transfer, vol.91, 1969, p.135. 
Wave-induced shear instability in the summer thermocline. J. Fluid Mech., 
vol.32, 1968, p.791. 
The Theory of Rotating Fluids. Cambridge, University Press, 1968. 
Gravity waves in the atmosphere. Nature, vol.239, 8th September 1972, p.73. 
A theoretical and experimental investigation of the phase configuration of 
internal waves of small amplitude in a density-stratified liquid. J. Fluid 



76 

148. Bretherton, F.P. 

149. Scorer, R.S. 

150. Scorer, R.S. 

151. Phillips, CM. 

152. Pao, Y.-H. 

Radio Sci. vol.4, pt.12, 

Roy. Met. Soc., vol.75. 

Met. Soc., vol.79, 1953, 

153. 

154. 

155. 

156. 

157. 
158. 

159. 
160. 

161. 

162. 

163. 

164. 
165. 

166. 

167. 

168. 

169. 

170. 

171. 

172. 

173. 

174. 

175. 

176. 

177. 

178. 

179. 

180. 

181. 

182. 

183. 

184. 

185. 

Reynolds, W.C 
Hussain, A.K.M.F 
Browning, K.A. 
Starr, J.R. 
Whyman, A.J. 
Caldwell, D.R. 
Van Atta, C.W. 
Stegen, G.R. 
Van Atta, C.W. 
Bradshaw, P. 
Johnston, J.P. 

Bradshaw, P. 
So, R.M.C 
Mellor, C L . 
Thompson, B.G.J. 

Patel, V.C. 

Coles, D.E. 

Meroney, R.N. 
Hughes, D.W. 

Parr, 0. 

Furuya, Y. 
Nakamura, I. 
Dean, R.C. 

Anders, U. 

Litvai, E. 

Adler, M. 

Ito, H. 

Mori, Y, 
Nakayama, W. 
Trefethen, L. 

Tillman, W. 

Ustimenko, B.F, 
Zmeikov, V.N. 
Bukhman, M.A. 
Rotta, J.C 

Koosinlin, M.L. 
Lockwood, F.C 
Rastogi, A.K. 
Whitelaw, J.H. 
Cebeci, T. 

Papailiou, K. 
Satta, A. 
Nurzia, F. 
Dvorak, F. 

Kepler, C.E. 
O'Brien, R.L. 
McLafferty, G.H. 
Barber, R.E. 
Clutter, D.W. 
Kaups, K, 

Mech., vol.28, pt.l, 1967, p.1. 
Waves and turbulence in stably stratified fluids. 
1969, p.1279. 
Theory of waves in the lee of mountains. Quart. J. 
1949, p.41. 
Theory of lee waves Parts 2 and 3. Quart. J. Roy. 
p.70 and vol.80, 1954, p.417. 
The maintenance of Reynolds stress in turbulent shear flow. J. Fluid Mech., 
vol.27, pt.l, 1967, p.131, 
Undulance and turbulence in stably-stratified media. In Clear Air Turbulence 
and Its Detection (J.H. Olsen, A. Goldburg and D.M. Rogers, Eds.), New York, 
Plenum Press, 1971, 
The mechanics of an organized wave in turbulent shear flow. Parts I-III. J. 
Fluid Mech., vol.41, 1970, p.241; vol.54, 1972, p.241; vol.54, 1972, p.263. 
Measurements of air motion in regions of clear air turbulence using high-power 
Doppler radar. Nature, vol.239, 29th September 1972, p.267. 

Characteristics of Ekman boundary layer instabilities. J. Fluid Mech., vol.44, 
1970, p.79. 
A technique for phase speed measurements in turbulent flow. J. Fluid Mech., 
vol.42, 1970, p.689. 
An Introduction to Turbulence and Its Measurement. Oxford, Pergamon, 1971. 
The suppression of shear-layer turbulence in rotating systems. AGARD Conf. 
Proc. 93, 1972. 
A note on reverse transition. J. Fluid Mech., vol.35, 1969, p.387. 
An experimental investigation of turbulent boundary layers along curved 
surfaces. NASA CR-1940, 1972. 
A critical review of existing methods of calculating the turbulent boundary 
layer. ARC R. and M. 3447, 1964. 
Measurements of secondary flow in the boundary layers of a 180 degree channel. 
ARC CP 1043, 1968. 
The turbulent boundary layer in a compressible fluid. RAND Corp. Rept. 
R-403-PR, 1962, and ARC 24478, 1963. 
Unpublished work, Imperial College, 1973. 
Swirling flow in an annular diffuser with a rotating centre-body. Cambridge 
Univ., Ph.D. Thesis, 1972. 
Untersuchungen der dreidimensionalen Grenzschicht an rotierenden Drehkbrpern 
bei axialer Strbmung. Ing.-Arch., vol.32, 1963, p.343. 
Velocity profiles in the skewed boundary layers on some rotating bodies in axial 
flow. J. Appl. Mech., vol,37, 1970, p.17. 
On boundary layers in centrifugal compressors. Creare, Inc., TN-95, 1970 (to 
appear in NASA SP-304). 
Messungen in der ebenen turbulenten Grenzschicht im rotierenden System. DLR 
FB 68-07, 1968. 
Prediction of velocity profiles for turbulent boundary layers on the blading of 
radial impellers. Proc, 4th Conf. on Fluid Machinery (L. Kisbocskbi and A. 
Szabo, Eds.), Budapest, Akademiai Kiadb, 1972, p.771. 
Strbmung in gekrUmmten Rohren. Zeit, ftlr Angew. Math, und Mech., vol.14, 1934, 
p.257. 
Friction factors for turbulent flow in curved pipes. J. Basic Engg., vol.81, 
1959, p.123. 
Study on forced convective heat transfer in curved pipes (Second report, 
turbulent region). Int. J, Heat and Mass Transfer, vol.10, 1967, p,37. 
Fluid flow in radial rotating tubes, Proc. 9th Int. Congr. Appl. Mech., vol.2, 
1957, p.341. 
Development of turbulence during the buildup of a boundary layer at a concave 
wall. Phys. Fluids, vol.10, 1967, p.S108. 
Turbulent transfer in rotary flows of an incompressible fluid. Fluid Mech. — 
Soviet Research, vol.1, 1972, p.121. 

Effect of streamwise wall curvature on compressible turbulent boundary layers. 
Phys. Fluids, vol.10, 1967, p.S174. 
The prediction of turbulent boundary layers on rotating axially-symmetrical 
bodies. Imperial College, Mech Engg. Dept., Rept. BL/TN/A/46, 1971. 

• Procedure for predicting the influence of longitudinal curvature on boundary-
layer flows. ASME paper 71-WA/FE-37, 1971. 

• Curvature and transition effects in turbulent boundary layers. AIAA J., vol.9, 
1971, p.1868. 
On the two-dimensional boundary layers as they appear on turbomachine blades. 
AGARDograph 164, 1972, p.1. 

• Calculation of turbulent boundary layers and wall jets over curved surfaces. 
AIAA Journal, vol.11, 1973, p.517. 

• Supersonic turbulent boundary layer growth over cooled walls in adverse pressure 
gradient. Wright-Patterson AFB Rept. ASD TDR 62-87, 1962. 

• The effect of adverse pressure gradients on the characteristics of turbulent 
boundary layers in supersonic streams. J. Aero/Space Sci., vol.29, 1962, p.1. 

• Wind tunnel investigation of turbulent boundary layers on axially symmetric 
bodies at supersonic speeds. Douglas Aircraft Co. Rept. LB-31425, AD-435111, 
1964. 



77 

186. Young, C.H. 
Reda, D.C 
Roberge, A.M. 

187. Zakkay, V. 
Calarese, W. 

188. Lighthill, M.J. 

189. Fernholz, H.-H, 

190. Newman, B.C. 

191. Fekete, G.I. 

192. Fernholz, H.-H. 

193. 

194. 

195. 

196. 

197. 

198. 

199. 

200. 

201. 

202. 

203. 

204. 

205. 

206. 

207. 

Bradbury, L.J.S 
Wood, M.N. 
Caille, C 

Huffman, CD. 
Bradshaw, P. 
Patankar, U.M. 
Sridhar, K. 
Kind, R.J. 

Matthews, L. 
Whitelaw, J.H. 
Schwartzbach, C 

Wygnanski, I, 
Newman, B.G. 
Bradshaw, P. 
Wong, F.Y.F. 
Russell, P.J. 
Hatton, A.P. 
Wyngaard, J.C. 
Tennekes, H. 
Lumley, J.L. 
Margolis, D.P. 
Rapp, A.F. 
Margolis, D.P. 
Govindaraju, S. 
Saffraan, P.G. 
Kuchemann, D. 
Maskell, E.G. 
Fennel1, L.J. 

208. 

209. 

210. 

211. 
212. 
213. 

214. 
215. 
216. 

217. 
218. 

Olsen, J.H. 
Goldburg, A. 
Rogers, M. (Eds.) 
Poppleton, E.D. 

Adams, CN. 
Gilmore, D.C. 
Oon, E.H. 
Muirhead, V.U. 
White, A. 

Brown, C E . 
Batchelor, CK. 
Harvey, J.K. 
Fackrell, J.E. 
Hall, M.G. 
Sarpkaya, T. 

219. Poppleton, E.D. 

220. 
221. 

222. 
223. 

224. 

225. 

Owen, P.R. 
Saffraan, P.G. 

Squire, H.B. 
Rose, R. 
Dee, F.W. 
Hoffman, E.R. 
Joubert, P.N. 
Donaldson, C 
Sullivan, R.D 

du P. 

226. Donaldson, C du P. 

Hypersonic transitional and turbulent flow studies on a lifting entry vehicle. 
J. Spacecraft & Rockets, vol.9, 1972, p.883. 

An experimental study of vortex generation in a turbulent boundary layer 
undergoing adverse pressure gradient. NASA CR-2037, 1972. 
Note on the deflection of jets by insertion of curved surfaces and on the 
design of bends in wind tunnels. ARC R.S M. 2105, 1945. 
Zur Umlenkung von Freistrahlen an konvex gekrummten Wanden (Coanda-Effekt). 
Habilitationsschrift, Tech. Univ. Berlin, 1965, and DLR FB 66-21, 1966. Trans­
lated as Canadian NRC-TT-1504, 1971. 
The prediction of turbulent jets and wall jets. Canadian Aero, & Space J., 
vol.IS, 1969, p.287. 
Coanda flow of a two-dimensional wall jet on the outside of a circular cylinder. 
McGill Univ., Mech, Engg. Research Labs. Rept. 63-11, 1963. 
Aerodynamische Hysterese, Steurschneiden- und Reynoldszahl-Einfluss bei der 
Strbmungsmulenkung und Ablosen an stark gekrummten WMnden (Coanda-Effekt). 
Zeit. Flugwiss., vol.15, 1967, p.136. 
An exploratory investigation into the deflection of thick jets by the Coanda 
effect. RAE TR 65235, ARC 27586, 1965. 
The even distribution of air emerging at right angles from a duct. Sulzer Tech. 
Rev., vol.1, 1956, p.28. 
A note on von Karman's constant in low Reynolds number turbulent flows. J. 
Fluid Mech,, vol.53, 1972, p.45. 
Three-dimensional curved wall jets. J. Basic Engg,, vol.94, 1972, p.339. 

A calculation method for circulation control by tangential blowing around a 
bluff trailing edge. Aero. Quart., vol.19, 1968, p.205. 
Plane-jet flow over a backward-facing step. Imperial College, Mech. Engg. Dept., 
Rept. EHT/TN/A/27, 1971. 
An experimental investigation of curved two-dimensional turbulent jets. AGARD 
Conf. Proc. 93, 1972. 
The reattachment of an inclined two-dimensional jet to a flat surface in 
streaming flow. CASI Transactions, vol.1, 1968, p.3. 
The reattachment and relaxation of a turbulent shear layer. J. Fluid Mech., 
vol,52, 1972, p.113. 
Turbulent flow characteristics of an impinging jet. Proc. Inst. Mech. Engrs., 
vol.186, 1972, p.635, 
Structure of turbulence in a curved mixing layer. Phys. Fluids, vol.11, 1968, 
p.1251. 

- Turbulent and pressure transport in a curved mixing layer. Phys. Fluids, 
vol.10, 1967, p.1347. 

- Flow in a turbulent trailing vortex. Phys. Fluids, vol.14, 1971, p.2074. 

- Vortex motions — some illustrations. RAE TM Aero 1229, 1970. 

- Vortex breakdown — some observations in flight on the HP 115 aircraft. RAE 
TR 71177, 1971. 

- Aircraft Wake Turbulence and Its Detection. New York, Plenum Press, 1971. 

- Exploratory measurements of the flow in the wing tip vortices of a Lockheed 
Hercules. Sydney Univ., Aero. Dept., Rept. ATN-7104, 1971 and STAR N72-28277. 

- Some observations of vortex core structure. Canad. Aero, and Space J., vol.18, 
1972, p.159. 

- Decay of trailing vortices. ARC CP 1238, 1973. 
- Compressible vortex flow. AIAA paper 73-106, 1973. 
- Flow of a fluid in an axially rotating pipe. J. Mech. Engg. Sci., vol.6, 1964, 

p.47. 
- Aerodynamics of wake vortices. AIAA J., vol.11, 1973, p.531. 
- Axial flow in trailing line vortices. J. Fluid Mech., vol.20, 1964, p.645. 
- Observation of a mechanism causing a trailing vortex to break up. Imperial 
College, Aero. Dept., Rept. 70-08, ARC 32607, 1970. 

- Vortex breakdown. Prog. Aerosp. Sci,, vol.12, 1972. 
- On stationary and travelling vortex breakdown. J. Fluid Mech., vol.45, 1971, 
p.545 (see also AIAA J., vol.9, 1971, p.1217). 

- A preliminary experimental investigation of the structure of a turbulent 
trailing vortex. McGill Univ., Mech. Engg. Res, Labs., TN 71-1, 1971. 

- The decay of a turbulent trailing vortex. Aero, Quart., vol.21, 1970, p.69. 
- Structure of turbulent line vortices. Unpublished paper, Caltech., 1973 and 
ASTIA document AD-753131. 

- The growth of a vortex in turbulent flow. Aero. Quart., vol.16, 1965, p.302. 
- Aircraft vortex wakes and their effect on aircraft. ARC CP 795, 1963. 

- Turbulent line vortices. J. Fluid Mech., vol.16, 1963, p.395. 

Decay of an isolated vortex. Aircraft Wake Turbulence and Its Detection (J.H. 
Olsen, A. Goldburg and M. Rogers, Eds.), New York, Plenum Press, 1971 (see also 
Ref.28). 
The relationship between eddy transport and second-order closure models for 
stratified media and for vortices. ARAP, Inc., Rept. 180 (paper presented at 



78 

227. 

228. 

229. 

230. 

231. 

232. 

233. 

234. 

235. 

236. 

237. 

238. 

239. 

240. 
241. 

242. 

243. 

244. 

245. 

246. 

247. 

248. 

249. 

250. 

251. 

252. 

253. 

254. 

255. 
256. 
257. 

258. 

259. 

260. 

261. 
262. 

263. 
264. 

265. 
266. 
267. 
268. 

Earnshaw, P.B. 

Mason, W.H. 
Marchraan, J.F. 
Hackett, J.E. 
Evans, M.R. 
Ragsdale, R.G. 

McCormick, B.W. 
Tangier, J.L. 
Sherrieb, H.E. 
Chigier, N.A. 
Corsiglia, V.R. 
Chevalier, H. 

Rorke, J.B. 
Moffitt, R.C. 
Baldwin, B.S. 
Sheaffer, Y.S. 
Chigier, N.A. 
Titchener, I.M. 
Taylor-Russell, A 
Pratte, B.D. 
Keffer, J.F. 
Robinson, C H . 
Larson, R.R. 
El-Ramly, Z. 

Kiichemann, D. (Ed 
Kiichemann, D. 

Reynolds, A.J. 

Beer, J.M. 
Chigier, N.A. 
Lilley, D.G. 
Chigier, N.A. 
Roberts, L.W. 

Koosinlin, M.L. 
Lockwood, F.C 
Vermeulen, A, 

Swithenbank, J. 
Chigier, N.A. 
Bradshaw, P. 

Povinelli, L.A. 
Ehlers, R.C. 
Gore, R.W. 
Ranz, W.E. 
Syred, N. 
Bee"r, J.M, 
Chigier, N.A. 
Chigier, N.A. 
Beer, J.M. 
Charwat, A.F. 
Schlesinger, M.E. 
Lewellen, W.S. 
Johnston, S.C 
Travers, A. 

Yu, J.P. 
Sparrow, E.M. 
Eckert, E.R.G. 

— 

-

— 

-

-

— 

• » 

-

-
J. 
— 

~ 

~ 

) 
-

-

-

— 

-

-

-

-

-

-

— 

— 

— 

-
-
-

— 

Badri Narayanan, M.A 
Kangovi, S. 
Liu, C-Y. 

Reynolds, A.J. 
Syred, N. 
Beer, J.M. 
Rose, W.G. 
Chigier, N.A. 
Chervinsky, A. 
Lee, S-C 
Rubel, A. 
Chervinsky, A. 
Schetz, J.A. 

— 

-
m 

-
— 

-
-
-
-

Langley Working Conference on Free Turbulent Shear Flows), 1972. 
An increment in total head in the neighbourhood of a leading edge vortex. RAE 
TR 66218, 1966. 
Far-field structure of aircraft wake turbulence. J. Aircraft, vol.10, 1973, 
p.86. 
Vortex wakes behind high-lift wings. J. Aircraft, vol.8, 1971, p.334. 

A mixing length correlation of turbulent vortex data. ASME paper 61-WA-244, 
1961. 
Structure of trailing vortices. J. Aircraft, vol.5, 1968, p.260. 

Wind-tunnel studies of wing wake turbulence, J. Aircraft, vol.9, 1972, p.820. 

Flight test studies of the formation and dissipation of trailing vortices. J. 
Aircraft, vol.10, 1973, p.14. 
Wind tunnel simulation of full scale vortices. NASA CR-2180, 1973. 

Prediction of far flow field in trailing vortices, AIAA paper 72-989, 1972. 

- Experiments on the growth of vortices in turbulent flow. ARC CP 316, 1957. 

- The swirling turbulent jet. J. Basic Engg., vol.94, 1972, p.739. 

A flight evaluation of methods for predicting vortex wake effects on trailing 

aircraft. NASA TN D-6904, 1972, 
Aircraft trailing vortices. A survey of the problem. Carleton Univ., Divn. of 
Aerothermodynamics, Rept. ME/A72-1, 1972. 
Prog. Aero. Sci., vol.7, 1969. 
Report on the IUTAM symposium on concentrated vortex motions in fluids. J. 
Fluid Mech., vol.21, 1965, p.1. 
On the dynamics of turbulent vortical flow. Zeit, fllr Angew. Math, und Physik, 
vol.12, 1961, p.149. 
Combustion Aerodynamics. Barking, Applied Science Publishers, 1972. 

Nonisotropic turbulent stress distribution in swirling flows from mean value 
distributions. Int. J. Heat and Mass Transfer, vol.14, 1971, p.573. 
Turbulent swirling flows with recirculation. Imperial College, Mech. Engg. 
Dept,, Ph.D. Thesis, 1972. 
The prediction of axisymmetrical turbulent swirling boundary layers. Imperial 
College, Mech. Engg. Dept., Rept. HTS/73/1, 1973. 
Measurements of three-dimensional turbulent boundary layers. Cambridge Univ., 
Engg. Dept., Ph.D. Thesis, 1971. 
Vortex mixing for supersonic combustion. Proc. 12th Symposium (International) 
on Combustion, Poitiers, 1969, p.1153. 
Preliminary note on a mixing nozzle-ejector shroud combination for jet noise 
reduction. NPL Aero Rept. 1116, 1964. 
Swirling base injection for supersonic combustion ramjets. AIAA J., vol.10, 
1972, p.1243. 
Backflows in rotating fluids moving axially through expanding cross sections. 
J.A.I.Ch.E., vol.10, 1964, p.83. 
Turbulence measurements in swirling recirculating flows. Proc. Symposium on 
Internal Flows, Salford Univ., 1971, p.B27. 

Velocity and static pressure distributions in swirling air jets issuing from 
annular and divergent nozzles. J. Basic Engg., vol.80, 1964, p.788. 
The structure of blunt base wakes in swirling flow. Astro. Acta, vol.17, 1972, 
p.375. 
A review of confined vortex flows. NASA CR-1772, 1972. 
Stability of rotating stratified fluids. AIAA J,, vol.10, 1972, p.1372. 
Experimental investigation of flow patterns in radial-outflow vortexes using a 
rotating-peripheral-wall water vortex tube. NASA CR-991, 1968. 
Experiments on a shrouded, parallel disk system with rotation and coolant 
throughflow. Int. J. Heat and Mass Transfer, vol,16, 1973, p.311. 

Base flow behind rotating axisymmetric bodies. Indian Inst, of Sci., Dept. 
of Aero. Engg., Rept. 71FM5, 1971. 
Wake of an axially symmetrical body with spinning, Proc. 9th Int. Symposium on 
Space Technology and Science, Tokyo, 1971, p.373. 
Similarity in swirling wakes and jets. J. Fluid Mech., vol.14, 1962, p.241. 
The damping of precessing vortex cores by combustion in swirl generators. Astro. 
Acta., vol.17, 1972, p.783. 
A swirling round turbulent jet. J. Appl. Mech., vol.29, 1962, p.615. 
Experimental investigation of swirling vortex motion in jets. J. Appl. Mech., 
vol.34, 1967, p.443. 
Axisymmetric turbulent swirling jet. J. Appl. Mech., vol.32, 1965, p.258. 
Some effects of swirl on turbulent mixing and combustion, NASA CR-1956, 1972. 
Turbulent swirling jet diffusion flames. AIAA J., vol.7, 1969, p.1877. 
Approximate analysis of a turbulent, swirling jet in a co-flowing scream. 
DFVLR FB 71-80, 1971. 



79 

269. 

270. 

271. 

272. 

273. 

274. 

275. 

276. 

277. 

278. 

279. 

280. 

281. 

282. 

283. 

284. 

285. 

286. 

287. 

288. 

289. 

290. 

291. 

292. 

293. 

294. 

295. 

296. 

297. 

298. 

299. 

300. 

301. 

302. 

303. 

304. 

305. 

Lee, S.-C 

Kerr, N.M. 
Fraser, D. 
Craya, A. 
Darrigol, M. 
Chigier, N.A. 
Chervinsky, A. 
Pratte, B.D. 
Keffer, J.F. 
Emmons, H.W. 
Ying, S.-C. 
Backshall, R.G 
Landis, F. 
Smithberg, E. 
Landis, F. 
Seymour, E.V. 

Date, A.W. 

Thorsen, R. 
Landis, F. 
Bergles, A.E. 

Kreith, F. 
Margolis, D. 
Lopina, R.F. 
Bergles, A.E. 
Seban, R.A. 
Hunsbedt, A. 
Deissler, R.G. 
Perlmutter, M. 
Kreith, F. 
Sonju, O.K. 
Wolf, L. 
Lavan, Z. 
Fejer, A.A. 
Kinney, R.B. 

Rochino, A. 
Lavan, Z, 

Saito, S. 
Saito, K. 
Aoki, S. 
Rask, D.R. 
Scott, CJ. 
Scott, CJ. 
Rask, D.R. 
Kaye, J. 
Elgar, E.C 
Becker, K.M. 
Kaye, J. 
Astill, K.N. 

Gelhar, L.W. 
Monkmeyer, P.L 
Humphreys, J.F 
Morris, W.D. 
Barrow, H. 
Koosinlin, M.L 
Lockwood, F.C. 
Hoadley, D. 
Hughes, D.W. 
Nakamura, I. 
Yamashita, S. 
Furuya, Y. 
King, M.M. 
Rothfus, R.R. 
Kermode, R.I. 
Murthy, S.N.B. 

Weske, J.R. 
Styrov, G.E. 

Kreith, F. 

Howarth, L. 

Cham, T.S. 
Head, M.R. 

Axisymmetrical turbulent swirling natural convection plume. J. Appl. Mech., 
vol.33, 1966, p.647 and p.656. 
Swirl. Part II effect on axisymmetrical turbulent jets. J. Inst. Fuel, vol.38, 
1965, p.519. 
Turbulent swirling jet. Phys. Fluids, vol.10, 1967, p.5197. 

Aerodynamic study of turbulent burning free jets with swirl. Proc. 11th 
Symposium (International) on Combustion, 1967, p.489. 
A counter-rotating pair of turbulent jets. Univ. of Toronto, Mech. Engg. Dept., 
Unpublished Report, 1972 (NRC grant A-2746). 
The fire whirl. Proc. 11th Symposium (International) on Combustion, 1967, 
p.475. 
The boundary layer velocity distribution in turbulent swirling pipe flow. J. 
Basic Engg., vol.91, 1969, p.728. 
Friction and forced-convection heat transfer characteristics in tubes with 
twisted tape swirl generators. J. Heat Transf., vol.86, 1964, p.39. 
Fluid flow through tubes containing twisted tapes. Engineer, vol.222, 1966, 
p.634. 
Prediction of friction and heat transfer in tubes containing twisted tapes. 
Imperial College, Mech. Engg. Dept., Ph.D. Thesis, 1973. 
Friction and heat transfer characteristics in turbulent swirl flow subjected to 
large transverse temperature gradients. J. Heat Transf., vol.90, 1968, p.87. 
Survey and evaluation of techniques to augment convective heat and mass transfer. 
Prog, in Heat and Mass Transfer, vol.1, 1969. 
Heat transfer and friction in turbulent vortex flow. Appl. Sci. Res. A, vol.8, 
1959, p.459. 
Heat transfer and pressure drop in tape-generated swirl flow of single-phase 
water. J. Heat Transfer, vol.91, 1969, p.434. 
Friction and heat transfer in the swirl flow of water in an annulus. Int. J. 
Heat and Mass Transfer, vol.16, 1973, p.303. 
Analysis of the flow and energy separation in a turbulent vortex. Int. J. Heat 
and Mass Transfer, vol.3, 1960, p.173. 
The decay of a turbulent swirl in a pipe. J. Fluid Mech., vol.22, 1965, p.257, 

Measurements of the decay of swirl in turbulent flow, 
p.971. 

AIAA J,, vol.7, 1969, 

Universal velocity similarity in fully turbulent rotating flows, J. Appl. Mech,, 
vol.34, 1967, p.437. 
Analytical investigations of incompressible turbulent swirling flow in 
stationary ducts. J. Appl. Mech., vol.36, 1969, p,15 (see also NASA CR-1169, 
1968). 
Decay of swirl in a straight pipe flow. Hungarian Acad. Sci., Proc. 4th Conf. 
on Fluid Machinery, Budapest, Akademiai Kiado, 1972. 

Decay of turbulent swirl in an annular duct. Univ. Minnesota, Dept. Mech. Engg. 
HTL TR 89, 1970. 
Experimental turbulent viscosities for swirling flow in a stationary annulus. 
Univ. Minnesota, Dept. Mech. Engg. HTL TR 94, 1971. 
Modes of adiabatic and diabatic fluid flow in an annulus with an inner cylinder 
rotating. Trans. ASME, vol.80, 1958, p.753. 
Measurements of diabatic flow in an annulus with an inner rotating cylinder. J. 
Heat Transfer, vol.84, 1962, p.97. 
Studies of the developing flow between concentric cylinders with the inner 
cylinder rotating. J. Heat Transfer, vol.86, 1964, p.383. 
Turbulent helical flow in an annulus. Proc. ASCE, J. Engg. Mech. Divn., vol.94, 
EMI, 1968, p.295. 
Convection heat transfer in the entry region of a tube which revolves about an 
axis parallel to itself. Int. J. Heat and Mass Transf., vol.10, 1967, p.333. 

Turbulent mean velocity measurements on a rotating cone. Imperial College, 
Mech. Engg, Dept., Rept. BL/TN/A/55, 1972. 
Swirling flow in an annular diffuser. Gas Turbine Consultative Cttee. Rept. 
680, 1970. 
The thick turbulent boundary layers on rotating cylinders in axial flow. Proc. 
2nd Int. JSME Symposium on Fluid Machinery and Fluidics, Tokyo, 1972, p.41. 

Static pressure and velocity profiles in swirling incompressible tube flow. 
J.A.I.Ch.E., vol.15, 1969, p.837. 

Survey of some aspects of swirling flows. Aerospace Research Labs., USAF, 
Rept. ARL 71-0244, 1971. 
Eksperimentalnoe issledovanie turbulentnogo zakruchennogo techeniya v 
tsilindricheskoi trube. Izv, Sibirskogo Otdeleniya Akad. Nauk SSSR, Ser. Tekh. 
Nauk, no.13, 1972, p.3 (see Int. Aerospace Abstracts, A73-21601, 1973). 
Convection heat transfer in rotating systems. Advances in Heat Transfer, vol.5, 
1968, p.129. 
The boundary layer in three-dimensional flow. I. Derivation of the equations for 
flow along a general curved surface. Phil, Mag., Ser.7, vol.42, 1951, p.239. 
The turbulent boundary layer on a rotating nose-body. Aero. Quart., vol.22, 
1971, p.389. 



80 

306. 

307. 

308, 
309. 
310. 

311. 

312. 
313. 

314. 

315. 

316. 

Miloh, T. 
Patel, V.C. 
Myring, D.F. 

Krause, E. 
Markatos, M.C. 
Smith, P.D. 
Gaffney, P.L. 
Aris, R. 

Flugge, W, 
Corrsin, S. 

Harlow, F.H. 
Nakayama, P.I. 
Coles, D.E. 
Hirst, E.A. 
Stratford, B.S 

Orthogonal coordinate systems for three-dimensional boundary layers, with 
particular reference to ship forms. J. Ship Res., vol.17, 1973, p.50, 
An integral prediction method for three-dimensional turbulent boundary layers 
in incompressible flow. RAE Tech. Rept. 70147, ARC 32647, 1970. 
Numerical methods in fluid dynamics, AGARD Lecture Series 57, 1973. 
Imperial College, Chem. Engg. Dept., Ph.D. Thesis, 1973. 
Approximation of the surface metric tensor by means of bicubic spline interpola­
tion. RAE Tech. Rept. 72185, 1972. 
Vectors, Tensors and the Equations of Fluid Mechanics. Englewood Cliffs, 
Prentice Hall, 1967. 
Tensor Analysis and Continuum Mechanics. Berlin, Springer, 1972. 
Interpretation of viscous terms in the turbulent energy equation. J. Aero. Sci., 
vol.20, 1953, p.lll. 
Turbulent transport equations. Phys. Fluids, vol.10, 1967, p.2323. 

Proceedings. Computations of Turbulent Boundary Layers — 1968 AFOSR-IFP-Stanford 
Conference, Vol.2. Stanford Univ., Thermosciences Divn., 1969. 
An experimental flow with zero skin friction throughout its region of pressure 
rise. J. Fluid Mech., vol.5, 1959, p.1. 

ACKNOWLEDGEMENTS 

It will be clear from the foregoing that I am indebted to librarians near and far, particularly 
Mrs. S.D. Bradshaw of the Aeronautical Research Council and Miss A.M. Pindelska of the Department of 
Aeronautics, Imperial College. Permission to reproduce copyright material was kindly given by the Editors 
of the Journal of Fluid Mechanics and Prof. H. Thomann (Fig.3) and Prof. J.P. Johnston (Fig.6). Permission 
to reproduce photographs was given by Dr R.M. Huffaker (Fig.5) and Dr E.D. Poppleton (Fig.30). I am 
grateful to the Von Karman Institute for inviting me to give part of a lecture course, part of the notes 
for which were a first draft of part of this monograph. Many people have helped me with comments on the 
draft, access to unpublished work, or general discussions of the subject: in particular I would like to 
mention Prof, J.M. Befir, Dr I.P. Castro, Prof. H. Fernholz, Dr M.R. Head, Prof. J.H. Horlock, Dr B.E. 
Launder, Dr F.C Lockwood, Prof. P.A. Libby, Prof. J.P. Johnston, Prof. R.N. Meroney, Prof. H.M. Nagib, 
Prof. V.C. Patel, Prof. P.C Saffman and Mr S.T.B, Young, Dr. T. Morel provided programs and running 
instructions for the free-shear-layer versions of the calculation method, and Mr S.T.B. Young carried out 
the calculations of Appendix 2 on the CDC 6400 of the Imperial College Computer Centre. The monograph 
having been typed by Miss J. Pratt, it may confidently be stated that any remaining errors are my own. 
Finally I am grateful to Prof. A.D, Young, the Editor, for his advice and encouragement. 



A 1-1 

APPENDIX 1 

SPECIAL COORDINATE SYSTEMS 

This Appendix begins with a discussion of coordinate systems, followed by an introduction to general 
tensor analysis, needed in transforming the equations of motion to arbitrary coordinate systems. Readers 
not concerned with coordinate transformations may start reading at Section A 1.3, and apply the following 
rules 

(i) interpret symbols u and x with superior or inferior indices (e.g. u; , x1) as standing for 
any one of the velocity components or coordinates (e.g. u- means u or v or w consistently 
throughout an equation). This is ordinary tensor notation, 

(ii) take g.. u1 to mean u- , 

(iii) take u1^ to mean Su^/Sx. , 

(iv) after applying (ii) and (iii), sum over all three values of an index that is repeated in a 
single term (Su^/Sx^ 5 3u/3x + 3v/3y + 3w/3z) , 

(v) in Eqs (A1.17) to (A1.21) take Uĵ  as the instantaneous velocity, later denoted by U^ + u.;. 

A 1 . 1 CHOICE OF COORDINATE SYSTEM 

Curved or swirling flows are best analysed in coordinate systems other than the familiar Cartesian system 
with three straight, mutually perpendicular axes: two examples used in the main text are (s,n,z) 
coordinates, where s is a simply-curved reference line and n and z its normals, and (x,r,9) 
cylindrical polar coordinates. By using a slight modification of the usual "Cartesian" tensor notation 
we can write the exact equations of motion so that their form in any given coordinate system can be 
deduced fairly easily. Several standard textbooks (e.g. Refs 23, 33) give the Navier-Stokes or boundary-
layer equations in conventional notation but incorporating scale factors to allow their evaluation in any 
orthogonal coordinate system. An orthogonal system is one in which the length of an infinitesimal line 
element depends only on the squares of increments in the coordinates and not on the products of different 
increments: for instance the square of the length of an infinitesimal line element in two-dimensional 
rectilinear coordinates (x,y) inclined at angle c*, is 

dS2 - dx2 + dy2 + 2 dx dy cos * (Al.l) 

so that the coordinates are orthogonal if if • w/2 and non-orthogonal otherwise. 

There is only one coordinate system that is everywhere orthogonal and has as one of its coordinate 
surfaces the surface of a given simply-connected body. The coordinate surfaces belonging to the other two 
sets must intersect the body surface in the lines of principal curvature. If the body is not simply-
connected (if for instance it is doughnut-shaped or if there are two separate bodies) there is in general 
no such coordinate system at all. As pointed out by Howarth (Ref.304) an infinite number of coordinate 
systems can be found which are orthogonal §_t the surface of a simply-connected body: for the purposes of 
calculating the boundary layer on the body using the thin-shear-layer approximation the non-orthogonality 
at points distant from the surface can be neglected. The most popular coordinate system for three-
dimensional boundary layer calculations uses the streamlines of the potential flow just outside the 
boundary layer as one set of coordinate lines, the other sets being the curved lines in the surface that 
are everywhere normal to the streamlines and the straight lines normal to the surface. This system has 
the general advantage that the direction of flow in the boundary layer is usually not too different from 
the external streamline direction so that integration of the parabolic boundary layer equations in the 
streamline direction is usually numerically stable (it has a particular advantage in methods which treat 
the velocity component in the external streamline direction as having some of the properties of the 
streamwise velocity in a two-dimensional boundary layer). Its disadvantages, however, are being gradually 
realized. Because of convergence and divergence of the streamlines, the size and shape of a unit 
rectangle in the surface may vary greatly from place to place: in this respect, the streamline coordinate 
system is likely to be generally worse than the everywhere-orthogonal system. Also, it is better if 
possible to avoid a coordinate system that alters whenever the incidence of the body alters or whenever the 
displacement effect of the boundary layer alters significantly. Two interesting compromises for bodies 
like hulls or fuselages are the approach of Cham and Head (305) who formulate their equations in a system 
based on body geometry and then transform to streamline coordinates, and the body-oriented coordinate 
system of Miloh and Patel (306) consisting of the intersections with the body of cross-sectional planes 
normal to the axis together with the curved lines in the surface orthogonal to the lines of intersection. 

Some work has been done on coordinate systems for three-dimensional boundary layer calculation 
which are non-orthogonal even in the body surface. Both Myring (307) and Krause (308) point out that a 
convenient rectilinear system for swept wings consists of the generators and the intersections of the 
wing surface with planes parallel to the direction of flight. In this and other systems for boundary 
layer calculation the most convenient choice for the third set of coordinate lines is the set of straight 
lines normal to the surface. 

The concept implicit in the above discussion is that of the streamlined body, with little effect 
of the thin turbulent region on the external inviscid flow. In this case the latter can be calculated 
separately, perhaps in a different coordinate system or even by means of a transformation that predicts 
the velocity distribution only at the surface and not in the interior of the fluid. In complex turbulent 
flows such as those described elsewhere in this monograph the thin-shear-layer approximation may be 
violated in some parts of the fluid and the thin portions of free shear layers are unlikely to lie in the 
coordinate surfaces of any coordinate system based on the body shape. Now the essential difficulty in 
numerical solutions of the steady Navier Stokes equations at high Reynolds numbers is that the viscous or 
turbulent stress gradients, although comparable in general with the total acceleration, may be small 
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compared to the individual terms in the acceleration U^SU^/Sx^. Therefore the truncation errors in the 
finite-difference representation of the individual acceleration terms may be comparable with the actual 
size of the viscous terms, leading to inaccuracy if Che errors have a stabilizing effect (like the 
"pseudoviscosicy" of upwind differences and similar schemes) and to instability if they do not. The three 
ways of avoiding this difficulty are 

(i) to use so small a mesh size that the Reynolds number based on mesh width and local velocity is 
of order unity (in turbulent flow the relevant viscosity is, roughly speaking, the eddy viscosity); 

(ii) to use a highly accurate difference scheme [to all appearances this is likely to take almost as 
much computer time as (i)]; 

(iii) to choose coordinate axes aligned with the direction of the velocity — i.e. the direction of any 
thin shear layer — so that, for each value of 1, U£3Uj-/3x» has one predominant term: then, provided 
that the truncation errors in the acceleration and the pressure gradient nearly cancel, which can be 
arranged by using the same finite-difference approximation for the two, adequate accuracy can be obtained. 
This is close to the procedure used naturally by choosing conventional thin-shear-layer axes or by making 
the stream function one of the coordinates, and is the only one of the three likely to be acceptable at 
practical Reynolds numbers. 

Now at high Reynolds numbers viscous or turbulent stresses will be significant only in fairly thin 
shear layers, so we need not use streamline coordinates everywhere. However, to calculate the interactions 
between the shear layers and the external stream that occur in many complex turbulent flows we are likely 
to need a coordinate system that is adjusted — possibly by iteration during the calculation — to minimise 
truncation errors. In general the most convenient system is likely to be non-orthogonal, at least in some 
parts of the field. The equations of motion and their finite-difference analogues will contain extra 
factors (functions of the metric tensor) depending on the coordinate system, but the manipulation of these 
by the numerical analyst and by the computer itself need not be an order of magnitude more complicated than 
in the case of orthogonal systems. Indeed, orthogonal systems with complicated boundary surfaces may be 
more difficult to process numerically than a geometrically-simple non-orthogonal system: the calculation 
of an orthogonal system surrounding a two-dimensional body is exactly equivalent to calculating the 
streamlines and equipotentials of inviscid flow about that body, and Markatos (309) found that the computer 
time required to set up a coordinate system orthogonal to an analytically-specified wavy surface 
exceeded the time taken to calculate the viscous flow on one side of the surface. Both Miloh and Patel 
(306) and Smith and Gaffney (310) have discussed the numerical approximation of the extra factors in surface 
coordinate systems for three-dimensional boundary layer calculation: Smith and Gaffney's results are 
directly applicable to two-dimensional Navier-Stokes problems. The fully three-dimensional case has not 
yet been tackled but, at least in the case of turbulent flow, our lack of physical knowledge prevents us 
treating a fully three-dimensional flow with any confidence. 

A 1 . 2 GENERAL TENSOR ANALYSIS 

An essential tool in the discussion of coordinate systems which are not specified beforehand is general 
tensor analysis. The subject is usually regarded with some horror by non-mathematicians, but it is merely 
a convenient system of notation and a set of rules for transforming familiar equations into unfamiliar 
coordinates. Those unimpressed with the elegance of the derivations can simply take the rules on trust. 

There seems to be no textbook in which the mathematics of general tensors is explained in the most 
appropriate way for analysis of the equations of fluid motion [the nearest approach being the book by Aris 
(311) in which fluid motion is used to illuminate general tensor analysis rather than the other way 
around]: the following self-contained account has therefore been prepared. It is intended to be more 
rigorous than the use of general tensors by recent authors who are really concerned only with orthogonal 
coordinates. As Fliigge points out in the preface to Ref.312, general tensor analysis, "like other sharp 
tools, can be very beneficial and very dangerous, depending on how it is used". 

The equation numbers of the main results (e.g. A1.6) are underlined. 

Consider a coordinate system x1 (i • 1,2 or 3) where we write the index i above the symbol for 

future convenience. The transformation to another coordinate system x (j - 1,2,3) can be written with 
complete generality as 

dxj . 2*1 dx (A1.2) 
Sx1 

where the derivative is evaluated at the local value of x , and the whole expression is summed over the 
three values of i. More generally, if a1 is any vector other than a position vector x1, it transforms 

a"J . • % a1 (A1.3) 
3x1 

Quantities that transform in this way are called "contravariant". Quantities that transform according to 
the rule _£ 

a. - " ^ a. (A1.4) 
J 3xJ 1 

with both i-indices in the numerator, are called "covariant", and written with the index below the symbol. 
Coordinates necessarily transform according to the first rule, Eq(A1.3), and are therefore always 
contravariant. Higher-order tensors can have mixed indices, e.g. h} : this example counts as covariant, 

.Jk 
by a majority of the indices. The tensor summation convention applies only if the repeated index appears 
once in the covariant and once in the contravariant position. A tensor with equal numbers of covariant 
and contravariant indices is a scalar. In non-orthogonal systems the order of the indices matters: 
b., and b. . are in general different. The derivative operator 3/3X1 has its index in the denominator 
Jk kj B 
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and counts as covariant. Velocities, SxVSt, and accelerations, 32x1/3t2, are time derivatives of 
position vectors and are therefore contravariant. Since accelerations in fluid flow depend on stress 
gradients, the latter must also be contravariant; therefore the stress tensor must be a second-order 
tensor with two contravariant indices, so that its gradients, with two contravariant indices and one 
covariant, are contravariant by majority. A mild paradox is that since work is a scalar equal to force 
times distance, force (and therefore acceleration) ought apparently to be covariant: however scalar "dot" 
products contain special factors to ensure that the final result is a scalar irrespective of the variance 
of the tensors concerned [see the last element of Eq(A1.6) for example] and force and acceleration can 
therefore be taken to be contravariant. 

Consider as the fundamental coordinate system the rectangular Cartesian coordinates Xx. By 
Pythagoras' theorem the distance dS between two points with coordinates X 1 and X 1 + dX1 is given by 

dS2 - (d X ( 1 ) ) 2 + (dX<-2))2 + ( d X ( 3 ) ) 2 (A1.5) 

We enclose numerical contravariant indices in parentheses to avoid confusion with exponents. Using 
Eq(A1.3), the length of the line element in any transformed coordinates x 1 (obviously the same length) 
is given by , , 

, i f3Xk i 3XK ji 
dS2 - I \ — - dx • — r d x J 

k-1 U x 1 3xJ i 

= g.. dx1 dxJ (A1.6) 

over i and j [g11(dx(
1') ) 2 + g 1 2 dx^^dx} '...] and where th( 

osen covariant so that dS2 is a pure scalar) called the "metric 
clear from Jthe definition that it is convenient to take g£- • g.. in any coordinate 
1.1), g 1 2 - g 2 1 - cos iji, not 2 cos x.. A contravariant metricJ tensor can be 

ij 

where the right hand side is summed over i and j [gn(dx' ) + gi2 dx^ 'dxj ...] and where the 

identity defines a tensor g.. (chosen covariant so that dS2 is a pure scalar) called the "metric 
tensor". It is clear from 
system: in Eq(Al 
consistently defined by 

g £ j g
J k - «i (A1.7) 

where 6. • 1 if i - k and is zero otherwise. In orthogonal coordinates g-- is by definition zero 
unless i = j [compare Eqs (Al.l) and (A1.6)]. A covariant index can be converted into a contravariant 
one by the relation 

aJ - g1Ja. (A1.8) 

and vice versa: the same operation can be performed successively on the Indices of a higher-order.tensor 
but if non-orthogonal coordinate systems are to be used we must distinguish between tensors like p ., 

Hi i %m\ 
equal to g p . , and p. , equal to g p... because in general p . )* p. in non-orthogonal systems. 

£J J J * JC.J j x. 
Therefore although some authors preach or practice the arbitrary raising and lowering of indices, it is 
safer to keep to the natural variances that follow from the essential contravariance of coordinates in the 
way expounded at the end of the previous paragraph. 

Especially when dealing with complicated or non-orthogonal coordinate systems, it is convenient to 
generalize the usual rules of differentiation so that derivatives of gr; are automatically included: 
the new operation is called "covariant differentiation". Covariant differentiation of a contravariant 
vector (or majority-contravariant tensor) a1 with respect to xJ is given by 

i 3a 
a-j 3xJ 

f + { k " j } ̂  ^ i ) 
FlUgge (312) and others use the notation ax/j. Covariant differentiation of a covariant vector a. 
given by 

a- • " — T - j • k • I a. (ALIO) 
*-.J 3xJ I L J J k 

where the "Christoffel symbol of the second kind" is given by 

{ i } . Jgip(!!Fi • ! £ . 5fe] (Aiaii 
l J " J l 3vk SxJ 3xP > 

It is covariant with respect to j and k and contravariant with respect to i, and therefore covariant 
by majority. The result of these rules is that we need not explicitly consider the effect of coordinate 

transformations on derivatives: in particular, g.. and g are zero. The symbol becomes much 
ij.fc ' ii 

simpler if the coordinates are orthogonal when Eq(A1.7) shows that g^g " •> (no summation). Defining 
2 

the "scale factors" h. by g.. " h. we get, for orthogonal coordinates, 

• 0 if i,j,k are all different 

1 ah£ 

if i - j - k - H - m 
or i - j - I , k 
or i - k • I , j 

r. 3vm 

h l or i - j - t , k - m 

h„ ah„ 
£ l_ 

h2m 3 xm 

if j - k - I , i - m (A1.12) 
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Some simplification is possible whenever one or more of the g.. is zero or constant, as is likely to be 
the case in most practical coordinate systems. 

Some coordinate systems do not all have dimensions of length. For example, in the (x,r,9) system 9 
is an angle, and as a result 39/3t is not the velocity component in the 9 direction. We therefore 
have to distinguish between the quantities that appear in the equations of motion written in general 
tensor notation, and their "physical components" in a given coordinate system. It is always most 
convenient to write the general equations so that they represent the physical components in a Cartesian 
system: the only apparent differences from the ordinary Cartesian equations are the appearance of co- and 

contra-variant tensors and of the metric tensors g.. or g . In order to recover physical components 

in any other system we need to apply further factors so that, for instance, the 9-component velocity 
appears correctly as r39/3t. The rules are that the physical j-component of a contravariant vector a , 
written a(j), is , 

a(j) - (g..) aJ = h. aJ (no summation) (A1.13) 

which also defines h. , one of the three "scale factors". To obtain the physical j-component of a 
covariant vector we first raise the index and then apply Eq(A1.9), getting 

a(j) " (g..) g a. = h. g Ja. (no summation) (Al.14) 

In the special case of orthogonal coordinates, g1^ is zero unless j - i, so that 

a(j) - (g.j)' gJJa.. - a^hj (A1.15) 

since g « 1/g-;. Physical components of tensors are extracted by application of the vector rules to 
each index in turn. We do not need to apply these rules to the metric tensor, which is not a physical 
quantity in a given coordinate system but a relation between two coordinate systems. The physical 

component of the derivative of a quantity a written with a necessary change of the covariant index as 

a(i,m) and including the physical component of 3x , is h. h g a . Converting a1 back to a 

conventional derivative by Eq(A1.9) and expressing it in terms of the physical components of its elements, 
we get 

<• *. u i, in* F 3 fa(i>l / i I a < n ) 1 1 . 4 I**. 
a(i,m) - h.h g + \ \ (A1.16) 

1 m L ax,, I h i 1 In I J hn J 
where the derivative of h. must be evaluated explicitly. We see that the insertion of the Christoffel 
symbol and the conversion to physical components both introduce derivatives of metric quantities: when 
dealing only with orthogonal coordinates where the Christoffel symbols reduce to functions of the scale 
factors h. both processes can be considered together (in fact, in the example above the derivative of h. 
cancels with part of the Christoffel symbol) but in non-orthogonal systems they are distinct. 

The complete procedure for deriving the differential equations which represent the conservation 
principles of physics in any chosen coordinate system is therefore 

(i) write the equations for Cartesian coordinates in general tensor notation with the correct 
variance, replacing partial derivatives by the " ." operator and ignoring derivatives of metric tensors; 

(ii) work out the metric tensor g. . (A1.6) and the scale factors h. I /g~7T for the chosen 

coordinate system, and evaluate the Christoffel symbols (Al.ll); 

(iii) convert the " */' operators back to 3/3x. by using (A1.9) and (ALIO); 

(iv) recover the physical components of vectors and tensors by using Eqs (A1.13), (A1.14) and (A1.16); 

(v) substitute for the metrics, scale factors and Christoffel symbols from step (ii); 

Step (i) is performed below, once for all. Steps (iii) and (iv) could be performed once for all but 
specialization from the general form to any of the particular coordinate systems likely to be used in 
practice would be rather more complicated than applying the rules given above and taking advantage of the 
zero elements of g... Steps (ii) and (v) would be done by hand if the coordinate system were specified 

algebraically and by computer if it were specified numerically. 

A 1.3 THE EQUATIONS OF FLUID FLOW 

We now apply these rules and definitions to the principles of conservation of mass and momentum for an 
incompressible fluid with viscous stress proportional to rate of strain [see (311), Ch.8], To begin with, 
we use U1 for the instantaneous (mean plus fluctuating) velocity. 

The mass-conservation (continuity) equation is 

U* - 0 (A1.17) 

The contravariant rate of strain is related to the covariant rate of strain 

e 
qr q,r r,q 

by 

J(U + U ) (A1.18) 
q.r r,q' 

il li rl ai IQ\ 

e • g g e (A1.19) qr 
and is therefore 
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L H . I / r£ „i qi ,,£ . ... „„s e - .Kg U + g* V ) (A1.20) 
.r ,q 

i i£ 
The viscous stress gradients in the x -component Navier Stokes equation can be written as 2 ve and we 

r£ i see that the contribution of the second term in Eq(A1.20) to this vanishes by continuity, leaving vg U 

which can be shown to be a self-consistent definition of v V2 U1 in general tensors. ' 

The x -component Navier-Stokes equation becomes 

au1 £ i in p £ ri. „i „i ... ... 

3T + " V - - 8 "=- + V 8 ",r£ + F (A1-21) 

where F is any body force per unit mass. All the quantities in Eqs (AL 17) , (A1.20) and (AL21) have 
the proper variance as outlined at the beginning of this section, and the difficulty over the order of 
indices in mixed censors does not appear. 

i £ 
Adding the zero quantity U U to the left of Eq(A1.21) allows us to write its second term as 

£ i • 
(U U ) so that the extra Reynolds stress gradients that appear in turbulent flow are obviously -(u u1) , 

,£ , £ 
where we now return to the convention that large and small letters denote mean and fluctuation respectively. 

In rotating axes the Coriolis "body force" 2 Sl K IJ must be added to the right hand side of Eq(A1.21). 
Since the body force or acceleration must be contravariant we take it as 

F1 -E 2 E
U m Sl (Um + u ) (A1.22) 

£ ra m 
where e is +1 if i,£,m are in cyclic order 123123, -1 if they are in anticyclic order 321321, 
and zero if i, £ and m arc not all different. Sl̂  represents a vector normal to the plane of rotation 
and is therefore (311, p.176) covariant. Um is a velocity component normal to the angular velocity vector 
(i.e. a time derivative of a normal vector, Sn^/St) and must therefore be taken covariant as well. The 
index can be raised for compatibility with the other velocities but this should be done at the end of any 
further tensor manipulation. 

The mean-momentum equation for incompressible turbulent flow in the presence of a Coriolis "body 
force" caused by rotating the axes at angular velocity Sl is then 

DU1 _ „£ „i _ ,„£ „i, i£ P,£ , £ i, r£ ,,i „ i£m 0 „ ,.. ... 

5T = U ".£ ' (U U >.£ " - g "T - (U °.£ + V8 U.r£ + 2£ V m (A1-23) 

where e is defined after Eq(A1.22). In Cartesian coordinates g p can be read as p . and 
r£ i i . — ~i *l- i ' 

vg U as \>V , In compressible flow, using mass-averaged quantities such that p U • p U + p'u1 

where p and p' are the mean and fluctuating parts of the density p, and defining the mass-weighted 

fluctuation u b y U + u " U + u so that ii has a non-zero mean value, we have 
— ~£~i i£ — £ i 
( p U U ) • - g P o ~ pu u + complicated viscous terms (A1.23a) 

,£ ,£ 

The Reynolds-stress transport equation for u1uJ is obtained, as explained in Section 2, by 

multiplying the instantaneous u -component momentum equation by uJ and adding the u -component equation 

multiplied by u . With some use of Eq(A1.17) we get 

p ( u V ) _ . . j i .-ry. 
\Tt ' u (u uJ).£ 

- (u-̂ u* UJ. + uJu£ U1 ) 
,£ ,£ 

+ p'(gU uJ£ + gJ* u*Jt )/p 

- (gU(p'uJ)>)l + g ] V « 1 ) | 1 ) / P - ( u
l u J u t ) ( l 

+ v g r V u J r t • u i u ^ ) 

+ 2 S l < e i l m uJu + cjim u£u ) (A1.24) 
£ m m 

The six lines represent respectively mean transport,generation, redistribution by pressure fluctuations, 
turbulent transport, viscous transport and destruction, and redistribution due to rotation of the axes with 
respect to the stress tensor. Fig.9 summarizes the terms. 

The viscous terms can be decomposed into 

vgr£(u1uJ) - 2vg r l ui J 
,r£ ,r ,£ 
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The first term, which can be written as v V2(uru^) , clearly contains spatial gradients of turbulence 
quantities, so that its integral over the flow volume is zero: therefore it is a viscous transport term. 

. £r r£ 
The second term, which we have simplified by using g - g , may be called the viscous distruction term. 

The turbulent energy equation for Ju.u1 is Jg.. times Eq(A1.19), where the metric tensor lowers 

the j index to make each term a scalar, like Juj-u1 itself. Note that the individual normal stresses 
are still contravariant. The Coriolis terms in the turbulent energy equation are zero: mathematically, 

this is because of the symmetry of the stress tensor and the anti-symmetry of t ; physically, rotation 
of the axes does not affect scalar quantities. The viscous destruction or "dissipation" term, e, is the 

rate at which the rates of strain do work against viscous stresses and therefore is Jve e££, where e 
is as defined in Eqs (A1.13) and (A1.15) but includes only the fluctuating velocity components. As shown 
by Corrsin (313) this differs from the so-called destruction term as decomposed above by a further spatial-
gradient term: 

C = !ve i le., - vg.. gr£ u1 J , - v(uiJ).. (A1.25) 
ix- ji , r , x ,ij 

However both contributions to the viscous transport are small except at very low local Reynolds numbers, 

and the complete viscous term in any of the uLuJ equations is usually approximated by the so-called 
destruction term 

- 2 v g r l u ^ «i 
,r ,x. 

A "destruction transport equation" for this term can be obtained by differentiating the u -component 
. . r . r£ i r£ i £ 

Navier Stokes equation with respect to x and multiplying by g u . , adding g u times the x 
• •* i r 

derivative of the u -component Navier Stokes equation and taking the mean to get 
Dg u1 uJ /Dt. This automatically includes Corrsin's viscous transport term in the turbulent energy 

,r ,£ 
equation: our knowledge of the behaviour of the destruction transport equations is so fragmentary that 
this inclusion does not affect our decisions about closure schemes. The other part of the viscous 

transport, v V2 uxuJ , can be represented exactly if the u 1 ^ are known, although it may not be 
realistic to bother with it. The destruction transport equation for the case i - j is given in 
Cartesian coordinates by Harlow and Nakayama (314) and discussed in Refs (25, 34, 35): the general tensor 
form of any given equation should be clear from Eq(A1.21). 

A 1.4 TWO SPECIAL COORDINATE SYSTEMS 

We now consider the special (s,n) and (x,r,9) coordinate systems for which the mean-momentum and continuity 
equations are given in Section 2. There is of course no need to use general tensor analysis to derive 
equations in these well-known systems, but as an example we derive the continuity equation in x,r,9 
coordinates, with velocity components U,V,W. 

Since dS2 - (dx)2 + (dr)2 + r2(d9)2 we have gu - g22 " 1* g3 3 " r2, and hj - h2 - 1, (13 r 
i £ 

as the square roots of the g elements. Consider Eq(A1.16) with a equal to U , so that the metric 
£m ' ' 

factor outside the brackets becomes h h g : in any orthogonal system this is zero unless £ - m when 
7 ££ ££ 

it becomes h*:g • g..g * 1, using Eq(A1.7) and the definition of h. implied in Eq(A1.13). Therefore 

£ 3U 3V 
0 " u.£ " ai + a7 i [;) • { . ' * } "-£ 

1 3h£ 
Eq(A1.12) gives the Christoffel symbol as r which is zero unless £ - 3, n - 2 when it is 1/r. 

"£ 3xn 
Thus the continuity equation becomes 

s u av 1 3W V 

•ii + te + -rH + 7 " ° (A1'27) 

The turbulent energy equation, for Jq2" = }(u5 + v5 + w2") in (s,n) coordinates, given by Castro 
(11) is 

nek 2) f a f n] s i , -

- 1 (A1.28) 

where the four lines represent respectively advection, production, diffusion and dissipation: we neglect 
viscous diffusion of turbulent energy, which is negligible except in the viscous sublayer where x,y 
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coordinates can be used. The individual equations for u2, v2 and w2 are given (in slightly different 
notation) by So and Mellor (160) and can be deduced from the equations given by Rodi (17). 

The shear stress equation, also given by Castro (11) and (apparently with minor inconsistencies) by 
So and Mellor (160) is 

D(-uv) f 3 f nl 3 1 _ 

•ST" ' ["Ts + [1 + 5jv in-J(-v> 

_ f3V U*i I n1 — 3U U _ _ 

p ' f3v f nl 3u1 

" T [te + I1 + i | in"J 

3 f P7**" -*- ] f n] 3 f T u —rl (2 U^2 - U3) 

• T. l T + "^J M 1 + 5 j i n [ V + u v l + ~T— (A1-29> 
where the four lines represent mean transport, generation, redistribution (usually destruction) by pressure 
fluctuations, and turbulent transport by pressure and velocity fluctuations: we have neglected the viscous 
term entirely because it is negligible except in and fairly near the viscous sublayer and possibly in some 
other flows at low local Reynolds number. The last group in the generation term represents the effect of 
rotation of axes. If the axes are rotated by a small angle 9 the shear stress in the new axes is, to 
first order, -uv + 9(u2 - v 2): in the present case the axes rotate at an angular velocity d9/dt = (-U/R) 
so an extra contribution to D(uv)/Dt arises. The last group in the transport term arises from the 
irregular shape of the control volume, as does part of the last group in the diffusion term of the 
turbulent energy equation. 

The turbulent energy equation in (x,r,9) coordinates with velocity components U, V and W 
respectively, is given by Rodi (17) as 

T a a w a "Li-**. 

oui V-5 W _ 
u.u. - — - — U^ + - v » 
i J 3x- r r 

i ( ? ••*•)- J i{ ' (?*H}-4A(¥**-
- e (A1.30) 

where the terms are in the same order as in Eq(A1.21) and u.u. 3U./3x. is the sum of the nine terms 

obtained by taking U£ or u- as u, v or w: the components of x; are taken as x, r and r9. All 
terms in 9 are zero in axisyrametric flow: terms in W are zero only in axisymmetric non-swirling flow. 

The shear stress equations, for -uv and -vw respectively, are 

("3 3 W 3 "I 

Lu ix" * v V r + 7^J ( ' ^ 
- S 3V f3U 3Vl —* 3U uw 3V vw 311 3U 3V1 —5- 3U 

te + i7j + v a7 u2 te + uv Ite + iy") + v ' a7 + T ae + 

+ 

p ' rSv 3u"| 

~ [te * aTj 

3 (• p ' v 1 3 fp 'ul 1 3 — , 1 3 uw2 

— , + uv2 + — r r ~ + - — ( r uv 7) + - — (Gvw) - — (A1.31) 
3x I p J 3r I p J r J r r 39 r 

and 

f 3 3 W 3 " I , _ 

LuTx + V 3T + T t e J ( - w > 

3V 3V . - r f3V Wl _ 3W - , 3W w 3W V W _ — 
. -JQ — + v w — + w 2 — - — + uv — + v * i — + — — + — v w (w z - v z ) 

3x 3 r [39 r j 3x 3r r 39 r r 
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+ 

p- pw + 
P Ur 

3 , . 
— (uvw) + 
3x 

1 3v1 
r sgj 

3r I 
p'w 

p 

1 3 f p'v —3A 2 v2w w3 

- — + vw2 + - — (A1.32) 
r 39 I p j r r 

Eqs (A1.28) and (A1.29) are special cases of Eqs (A1.30) and (A1.32) with r9 •+ s, r ->• n + R and x 
derivatives neglected in the latter equations. Rodi (17) gives the equations for the other Reynolds 
stresses in (x,r,9) coordinates. Note that the division of the terms into mean transport, generation, etc. 
is not simple. Strictly, the quantities on the left of the transport equations should be reducible, by 
adding multiples of the continuity equation, to quantities whose volume integrals are all zero. Here we 
have grouped the terms according to their mathematical form rather than their physical meaning: Rodi 
groups the rotation-of-axis terms, discussed above, with the mean transport terms, and makes several other 
non-obvious groupings without explanation. 
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APPENDIX 2 

NUMERICAL EXPERIMENTS 

This Appendix contains details of the calculations by the method of Ref.16 referred to elsewhere in the 
text: see Tables 3 and 4 for a summary of the test cases. In all cases the thin-shear-layer approximation 
was used, the normal pressure gradient being neglected, and the values quoted for the integral thicknesses 
6* and 9 were obtained from the plane-flow definitions rather than the curved-flow definitions of 
Refs 37, 38 or 183. The errors introduced by these two simplifications tend to cancel, since the 
calculations of U/Ue approximate to Ur/Uere. Of course, these are f-factor effects (pp.17-18) and are 
small compared to F-factor effects, except in the case of severe curvature where changes due to f-factor 
effects become of order unity. The input data used for most of the calculations are tabulated at the end 
of the Appendix and may be useful for calculations by other methods: no great precision is claimed and 
some discrepancies in the original data may have gone unnoticed. Data for Schubauer and Klebanoff's 
aerofoil (101: Fig.26) are tabulated by Coles and Hirst (315). 

It should be pointed out that many of the test cases have very strong curvature, beyond the reach 
of F-factors. Calculations are included partly to demonstrate the limits of the F-factor analysis and 
partly to demonstrate the large differences between the experimental data and calculations with no 
curvature correction. In the compressible flows with curvature-induced pressure gradient, bulk 
compression/dilatation effects are larger than curvature effects, but again the calculations with no 
allowance for extra rate of strain disagree strongly with experiment. The experiment of Stratford (316: 
see also 315) on a separating boundary layer probably exhibited strong curvature effects but the aspect 
ratio of the tunnel was so small that secondary flows in the corners probably had a large effect: the flow 
was far from two-dimensional. The axisymmetric diffuser experiments of Fraser tabulated in Ref.315 appear 
not to suffer significantly from the extra strain effects of lateral divergence or of convex longitudinal 
curvature, but since these effects are of opposite sign they may merely have tended to cancel. For 
different reasons, therefore, the experiments of Stratford and of Fraser are not useful as test cases. 

Meroney's measurements (164) on surfaces with 6/R •. 0.01-0.02 are the first since Schmidbauer's to 
provide a test of the F-factor correction for curvatures typical of aerofoils and turbomachines without 
the complications of compressibility. The results shown in Fig.25(a) are from a first series of runs: the 
concave-surface data are those taken on the centre-line of the tunnel which happens to be near the line of 
maximum surface shear stress and minimum boundary-layer thickness (i.e. the line of maximum inflow in the 
longitudinal vortex system). The amplitude of c^ variation at x - 39 in, about 40 initial boundary-
layer thicknesses from the start of curvature, is about ±10 per cent with a spanwise wavelength of about 
1.26. At this position, the flux Richardson number at y/6 • 0.5 is numerically about 0.07 on both the 
concave and the convex surface, so that the F factors are just within the range 0.5 < F < 1.5 set as 
an arbitrary limit: at larger y larger values of Rc are found [Fig.25(b)] but the dissipation term to 
which the F-factor is applied becomes fairly small compared to the turbulent transport terms, and in any 
case the velocity gradient is small so that errors in calculating it have little effect on the overall 
profile. Agreement between experimental values of the integral parameters [Fig.25(a)] and calculations, 
using Eq(37) with X - 106 and Eq(119) with 6 • 7 (convex) and g " 4.5 (concave), seems satisfactory. 
It is hoped that the final results of the experiment, which is still in progress, may suggest improved 
values of 6 (or a) or even improved forms of F-factor. 

In the experiments of So and Mellor (160) the ratios of boundary-layer thickness to radius of 
curvature were as high as 0.08 on a convex surface and 0.13 on a concave surface (higher values were 
attained in a boundary layer separating from a convex wall but we have not done calculations for this case). 
These high values are beyond the reach of linear F-factors. The non-linear F-factor-like correction 
applied to the eddy viscosity by So and Mellor contains an empirical constant adjusted to suit their 
convex-surface data. They take 

3U . 1 (1 +S) I3''2 

- } - (1 - S ) 2 1 - 4.05-^—H L \ (A2.1) T,P 3y [ (1_ S)2 

where S S (U/R)/(3U/3y) as in Eq.(86) and vT is the empirical eddy viscosity value used in plane flow. 
The linearized version of this correction factor corresponds to an F-factor with a equal to 8 when 
applied to eddy viscosity or about 16 when applied to mixing length or dissipation length parameter, 
compared with the value of 14 suggested above for an F-factor applied to L on a convex (stable) surface. 
Therefore So and Mellor's factor would give results fairly close to Eq(36), with a - 14, for cases of 
mild curvature. It does not contain any lag allowance and, being based on local parameters, is automatically 
suspect in highly-curved flows where turbulent transport terms are important: however, the fit to So and 
Mellor's own results is very good. 

Calculations by the method of Ref.16 of the integral parameters are shown in Fig.22 (a) and (b). 
An initial set of calculations on the convex surface was done with the conventional boundary-layer 
thickness (the distance from the surface at which U • 0.995 Ue) as a scaling length for L, but it was 
then realised that the "correct" thickness to use is that of the turbulent sub-boundary-layer, the total 
thickness of the mean velocity profile being immaterial because its outer part is not turbulent. (So and 
Mellor's use of 6* for scaling is also unrealistic in this case.) Fig.22(c) shows a comparison between 
measured and calculated shear stress at the last station shown on Fig.18(a), for the two choices of scaling 
length. Agreement is quite good for the general profile shape and the thickness of the sub-boundary layer, 
underlining the statement on p.70 that any correction factor that predicts strong suppression of 
turbulence in highly-stable cases will give good agreement with experiment. Note, however, that the 
magnitude of c, is not well predicted. 

On the concave surface, longitudinal vortices form. So and Mellor regard the law of the wall as 
untrustworthy on a concave surface apparently because the velocity at the edge of the inner layer falls 
below the logarithmic line instead of rising above it as is more usual: however their quoted values of 
Cf, obtained from "Clauser plots" using the law of the wall, seem plausible and in reasonable agreement 
with calculations (though not with the hot wire measurements). So and Mellor measured velocity profiles at 
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only two streamwise positions: integral thicknesses at the crest and trough of the periodic spanwise 
variation are shown in Fig.22(b) for comparison with calculations. 

Although extensive data tabulations are given in So and Mellor's report some difficulties were 
experienced in extracting initial and boundary conditions for a calculation because of gaps or 
inconsistencies: therefore the tabulated data given here should not be taken as definitive. 

Young's experiment on a "curvature impulse" in a 30 deg bend with 5/R «+0.2 or -0.1 is still in 
progress. The calculations shown in Fig.23 for flow on and downstream of the concave surface agree 
satisfactorily with experiment although, as in Meroney's experiment, mapping of the longitudinal vortex 
pattern is not yet complete. The need for a lag equation to modify the F-factor is evident. 

As mentioned in the Introduction, Thomann's experiment at M - 2.5 (4) is the only one at any speed 
to investigate plane, concave and convex surfaces with nominally identical starting conditions and 
negligible pressure gradient. Unfortunately only surface heat transfer was measured and the starting 
conditions are uncertain. In the calculations we have assumed that the momentum thickness at x/L • 1 was 
as calculated by Thomann using Walz' method, and that the Stanton number (based on the difference between 
wall temperature and recovery temperature) was everywhere equal to 1.16 c .c/2, an accepted ratio for flat 
surfaces. A further difficulty is that the method of Ref.16 is fully operational only for adiabatic walls: 
in the calculations we have taken the temperature profile to be given by the adiabatic Crocco law 

? ) ' TW/T = i + r|£p| 

with the recovery factor r taken as 0.52 to get the right wall temperature (T/T as 0.7), which 
underestimates the temperature within the boundary layer. This combination of uncertainties and 
approximation results in the agreement with experiment being rather poor even for the plane surface 
[Fig.27(a), curve (l)]. St (or Cf) is overestimated: Thomann's measurements on the plane surface [the 
circles in Fig.27(a)] seem slightly erratic, and decrease with x more rapidly than expected, but 
allowance for the small adverse pressure gradient reported by Thomann scarcely changed the calculations. 

The curved-surface calculations were all done with the lag equation, Eq(37), with a "time constant" 
of 106. Although this "time constant" is certainly an over-estimate near the surface, the calculations 
seem to underestimate the lag in the response of heat transfer to a change in curvature. Now the main 
sources of data used to confirm the applicability of the traditional "time constant" of 106 to Eq(37) 
were the retarded-accelerated boundary layer of Lewis et al. (66) at Me as 4 (Fig.11) and the low-speed 
curvature-impulse data of Young (57: Fig.23). Although it is clear from these comparisons that the simple 
lag equation, Eq(37), does not give perfect agreement with experiment, it can be concluded that the "time 
constant" does not change very greatly with Mach number, and this agrees with the empirical finding that 
velocity profile shapes do not change greatly with Mach number so that the typical value of 3U/3y used 
in making the "time constant" Jq2/(-uv 3U/3y) should not change greatly with Mach number. However, wall 
cooling leads to fuller velocity profiles, smaller typical values of 3U/3y and thus larger "time constants": 
Morkovin's hypothesis of the insensitivity of turbulence structure to small density fluctuations should 
guarantee the insensitivity of uv/q2 to Mach number and heat transfer in the ranges in question. We have 
not explored the effects of varying the "time constant", in view of the other uncertainties in the 
calculation but it appears that a value of not more than 156 would optimise agreement with experiment. 
The difference between this and the traditional value of 106 can be plausibly attributed to heat transfer: 
therefore the value of 106 should be used in adiabatic flows where the velocity profile shape is closely 
the- same as at low speeds. 

Once it is granted that the "time constant" used in the calculations is rather too small it follows 
that the calculations with the low-speed values of a in Eq(36) — curves @ and @ in Fig.27(a) — 
underestimate the effects of curvature (compare the experimental and theoretical values at the last 
measurement station). However curves ® and @ , including the compressibility correction 1 + (y-l)M2/2 
for an adiabatic wall from Eq(93), seem to be significant overestimates. This discrepancy too can be 
explained away, in principle, by the effects of heat transfer: it can be seen from the first-order form 
of Richardson number, quoted following Eq(97), that cooling the wall, which reduces the numerical value of 
the (negative) temperature gradient 3T/3r, reduces the compressibility correction. In Thomann's 
experiment Tw/Te was about 1.5, compared to 2.2 on an adiabatic wall at the same Mach number, so that the 
compressibility correction would be significantly reduced. 

In summary, Thomann's experiment is at least not in demonstrable conflict with the values of a and 
of the "time constant" suggested above. It would be very desirable to have Cf measurements for an 
adiabatic wall with about the same 6/R; boundary layer profiles are of course desirable but an adequate 
value of initial momentum thickness could be obtained by integrating the c, distribution from the leading 
edge or transition point. 

Sturek and Danberg's measurements [Fig,27(b)] were made on a concave surface with |6/R| !& 0.03. 
Surface shear stress was measured with a Preston tube, but the resulting Vin-Driest-transformed logarithmic 
profiles in the curved region have a rather higher intercept than the accepted value of 5 [adequately fitted, 
for instance, by the Me » 4 data of Lewis et al. (66)]. The tops of the bars on the experimental points 
for Cf in Fig.27(b) represent values derived from the accepted (transformed) logarithmic law. Values of 
6* and 9 are those evaluated by the experimenters from "ideal" conditions, the compressible analogue of 
the "potential wall velocity" as defined by So and Mellor and others: these values agree quite well with 
those calculated by the method of Ref.16 neglecting normal pressure gradients, and the latter agree with 
the eddy-viscosity calculations of Cebeci (private communication). The run of boundary layer is only about 
15 times the initial 6 and the initial conditions significantly affect the results. The total pressure 
on a given streamline changes appreciably only near the wall so that 9 and H are scarcely affected by 
allowances for the effects of curvature and bulk compression/dilatation on the shear stress. The calculated 
maximum shear stress at the last measurement station increases by about 35 per cent when both allowances 
are made: the flow experiences a "strain impulse" (p.19) which has not produced very large changes in 
turbulence structure by x - 21 in, so that in principle a linear F-factor with a lag equation should be 
capable of describing the flow up to this point. However the present lag equation, Eq(37), is certainly not 
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adequate because the variation of response time with distance from the surface is not represented. This 
fact, and the uncertainty of the starting conditions and Cf measurements, makes it impossible to deduce 
more from the calculations than the evident need for allowances for extra rates of strain. Kepler and 
O'Brien's experiment [Fig.27(c)] on a concave surface with 24 deg. turning angle had |*5/RJ « 0.06 at the 
start of curvature, with a very strong adverse pressure gradient. A persuasive argument for the 
importance of extra strain effects is that a calculation with no allowance for them predicts separation 
of the boundary layer, which did not occur in the experiment: with an allowance for bulk compression, cf 

falls no lower than half its original value while a further allowance for curvature raises Cf slightly 
further. Surface shear stress was not measured and the values of 6* and 9 depend on the definitions 
chosen: the disagreement between calculations using the plane-layer definitions and the experimental 
values using a "free stream" velocity varying with y according to the inviscid flow equation is large. 
Fig.27(c) shows the very large disagreement between calculated and experimental velocity profiles after 
only 12 deg. of turning, i.e. a distance of about 3.56 from the start of curvature (U„ is the nominal 
velocity at the boundary layer edge in the case of the experiments, and the velocity corresponding to the 
wall static pressure in the case of the calculations). Now the total pressure profiles plotted against 
stream function would (in the absence of experimental and numerical errors) coincide almost exactly 
except near the wall because the pressure gradients greatly exceed the Reynolds stress gradients. Very 
little can be learned about turbulence from an experiment such as this, in which not even the surface 
shear stress was measured. 

Full calculations have not been done for two more supersonic flows, McLafferty and Barber's two-
dimensional concave-surface boundary layer (184) and Clutter and Kaups' axisymmetric bodies (185). Both 
sets of data are nominally useful although McLafferty and Barber's flow cannot be checked for two-
dimensionality because of the lack of c* measurements. A calculation of McLafferty and Barber's flow 
without allowance for curvature and bulk compression went to separation; again the implication is that 
extra strain rates have a large effect on the turbulence. McLafferty and Barber noted a lag in the 
response of the flow to the wall curvature: it is not possible to distinguish curvature lag effects from 
ordinary history. Clutter and Kaups' measurements are ideal for a test case except for the small ratio of 
cross-sectional radius of curvature to boundary layer thickness, the rapid lateral divergence and of 
course the effects of bulk compression; the flow is not unlike that over the rear of Winter's waisted body 
(54) for which calculations by a method with nearly the same physical input as the present one have been 
reported by Green et al. (46). 

Clearly, better confidence in the corrections for bulk compression and lateral divergence is needed 
before curvature effects in supersonic flows can be fully elucidated, Thomann's measurements give modest 
support to the present suggested values for "time constant" X, empirical "constant" a or 6, and Mach 
number dependence of the Richardson number. 

The wall jet calculations do not correspond exactly to any experiment and are not reproduced here. 
For convenience the runs were done with a finite free stream velocity, one-tenth of the maximum velocity 
on the initial profile which was that of a fully-developed wall jet. The thickness 6.5, defined as the 
value of y at which the velocity is half the maximum U^x, is surprisingly insensitive to Ue/Umax as 
long as the latter does not exceed about one-third. With R • ±10x to simulate the logarithmic spiral 
flow, but without any allowance for normal pressure gradients or extra terms in the (s,n) equation, the 
values of d6,5/dx were 0.085 on a convex surface and 0.065 on a concave surface using Eq(119) with 6 • 7 
in stabilized regions and 6 • 4 in destabilized regions. On a flat surface the calculated d6,5/dx was 
0.075, agreeing adequately well with experiment. Comparison of the calculated spreading rates for these 
values of B with the data of Fig.4 suggests that the optimum values of 6 are 4 in stabilized regions 
and 3 in destabilized regions (a - 8 and 6 respectively). Strictly the original values of 6 should be 
used in the wall region on the argument that it is nearer a boundary layer than a jet, but curvature 
effects on the turbulence in the wall region are negligible. Eq(37) was not used in these calculations: 
as written, Eq(37) would have an effect even in self-preserving flows but the "time constant" X of jet 
flows is probably very small and its effects would be noticeable only in cases of sudden change of 
curvature. 

A significant feature of the wall jet calculations was the relative size of the percentage changes 
in L, mixing length £ and eddy viscosity vT. The change in L/6.5 between convex and concave cases 
was 15 per cent, the change in £/6 was 8.5 per cent and the change in vT/(Umax 6.5) was 26 per cent. 
The departure from the usual rule that vT changes twice as much as £ and L, valid in boundary layers, 
is evidently due to variations in profile shape between the different cases. These variations may be 
exaggerated by deficiencies in the calculation method but are probably real in part (as mentioned on p.54, 
the dimensionless velocity gradient increases with increasing convex curvature and this is the sense 
required to explain the comparison between \)j and £). The implication is that values of a obtained 
by optimising the behaviour of Eq(36) applied to L would be double those obtained from the application 
of Eq(36) to £. Another boundary-layer rule, that entrainment velocity is proportional to maximum shear 
stress, is not very well obeyed: Tmax varies more than /0T5 which is proportional to entrainment 
velocity if wall stress is neglected. This supports the inference in Section 3 that the size of a in 
jet flows is underestimated by assuming entrainment proportional to shear stress. 

Further analysis of the data and calculations presented in this Appendix will be reported separately. 

Some of the sets of input data for the calculations are tabulated below. For full details of input 
for the method of Ref.16 see NPL Aero Rept. 1269 (1968) and IC Aero Rept. 71-24 (1971). Where no profiles 
of initial U/U. ("U") and t/p.U2 ("TAU") are given, these were generated from the input values of 
momentum thickness 9, Reynolds number Ue9/v and Cf/2, using the "synthetic starting profile" option: 
this employs the Coles velocity profile family, with an assumed mixing-length distribution to generate the 
shear stress profile. The sequence of data input, ignoring the first card indicating the number of cases 
which is always one as shown here, is 

(i) I array (control parameters and counts of points). Only 1(5), the number of free-stream 
velocity and curvature ordinates, and 1(6), the number of points on the initial profile, are relevant 
in general. 



A 2-4 

(ii) A array (input constant). A(l) « initial y step, A(2) - spacing of free-stream velocity and 
curvature ordinates, A(3) - initial x (x - 0 is position of first ordinate), A(4) • Reynolds number 
per unit velocity per unit length (velocity and length units being arbitrary), A(5) • initial cf/2. 
When synthetic starting profiles are used [indicated by 1(2) " 1] A(l) - initial 9, A(4) - initial 
Ue9/v. 

(iii) Free-stream velocity ordinates 

(iv) Ordinates of (radius of curvature)' 

(v) Velocity and shear stress profiles, 
and at intervals of A(l) thereafter. 

* } 1(5) values, spaced at A(2) 

U/U. and T/peUe. if any — 1(6) values, starting at y • A(l) 

In the compressible program the "free stream velocity" can be entered as pe/(reservoir pressure), 
Me or Me according as 1(10) • 0, 1 or 2, and the Reynolds number is based on reservoir conditions 
with the reservoir speed of sound as the velocity scale. Recovery factor (usually 0.889), viscosity-
temperature exponent (usually 0.76) and y (usually 1.4) appear in the A array. Synthetic starting 
profiles are called by setting 1(11) • 1. 

SU AND MtLLOU, 
CUNVHX SUHFACE 

I 

A 

"j 
U"< 

-rr> 
R 

i 
1 

0.059 
0.000 
0.010 
0.000 
1.000 
1.000 
1. 007 
1. 115 

.1.123 
"0.000 
0.000 
0.000 
.0905 
.0815 

1 5 
1.500 
7, 000 

0. 100 
1.000 
1.000 
1.017 
1. 115 
1. 123 
0.000 
0.000 
0.000 
.0893 
.0780 

100 33 
0.000 
0. 150 

1.000 
1. 000 
1.046 
1.115 
1. 123 
0.000 
0.000 
0.050 
.0868 
.0780 

25 0 
2170.0 
2.000 

1.000 
1.000 
1. 123 
1. 117 
1. 122 
0.000 
0.000 
0. 100 
. 0855 
.0780 

0 8 
.001831 
1. 000 

1.000 
1. 000 
1. 132 
1. 120 
1. 122 
0. 000 
0.000 
.0972 
.0845 
.0780 

0 32 
0.000 
0.000 

1.000 
1.001 
1. 123 
1. 122 

0.000 
0. 000 
. 0944 
,0845 

0 
0.000 
0.000 

1.000 
1.002 
1. 115 
1. 123 

0.000 
0,000 
.0925 
.0845 

SU ANl-i MHLL.0H, 
CONCAVK SUHFACK 

1 

r\ 

ue 

^ 

-L,m 
R 

1 
1 

0. 062 
0. 000 
0.010 
0.000 
1.000 
1 . 007 
0. 966 
0.883 
0.H98 
"0.000 
,0.000 
-.0561 
-.0485 
-.0415 

1 5 
2.500 
7.000 

0. 100 
1. 000 
1.007 
0.905 
0.886 
0.892 
0.000 
0. 000 
-.0541 
-.0457 
-.0415 

150 30 
0. 000 
0. 150 

1.000 
1.007 
0.883 
0.888 

0.000 
0.000 
-.0523 
-.0457 

25 0 
2292.0 
2.000 

1.002 
1.006 
0.880 
0.895 
" 

0.000 
-.0313 
-.0514 
-.0457 

0 8 
.001831 
1.000 

1.005 
1.004 
0.886 
0.898 

0.000 
-.0602 
-.0504 
-.0457 

0 32 
0.000 
0.000 

1 . 007 
1.002 
0.888 
0.902 

0.000 
-.0592 
-.0504 
-.0425 

0 
0.000 
0. 000 

1.008 
0.992 
0.884 
0.901 

0.000 
-.0581 
-.0504 
-.0415 
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THOMANN, 
CONVEX SURFACE. (CONSTANT PRESSURE) 

I 

r \ 

l \ 

R , m " 

1 
3 

0.479 
0. 15u 
0.700 
2. 500 
2, 500 
_2.500 
.Id. 00333 
0.00333 
0.00333 

2 150 
10.00 
0. 400 
0.005 
2.500 
2. 500 
2.500 
0.013333 
0.00333 
0.00333 

4H 16 
0. 000 
2. 000 
0.000 
2.500 
2. 500 

0.00333 
0.00333 

30 1 
4810.0 
1.000 
10.00 
2.SBB 
2.500 

0.00333 
0.00333 

8 0 
0.0012 
1. 400 
10.00 
2. 500 
2.500 

0.00333 
0.00333 

1 1 
0.000 
0.520 

2.50C 
2. 500 

0.00333 
0.00333 

0.00 
0.760 

2.500 
2.S0R 

0.00333 
0.00333 

KEPLEH ANU OBHIF.N. 
CUNCAVE SURFACE. (MACH 3 CASE) 

I 

f\ 

tA.. 

f ..•"" K. 

u TJ u« 

T 

e.u; 

1 
1 

. 0100 

. 15100 

. 7000 

. 0222 

. $33x6 

. 0820 
"0. 000 
-. 1667 
-.1667 
. 5280 
.7600 
.8410 
. 9250 
. 9760 
1. 000 
,000795 
.000715 
.000670 
.000360 
.000170 
.000020 

1 100 
.2000 
. 40130 
. W050 
. 0222 
.0375 
. 091S 
0.000 
-. 1667 
-. 1667 
. 5820 
. 7700 
.8600 
.9350 
.9840 
1.001 
.000790 
.• 00696 
.000543 
.000336 
. 000143 
.000014 

50 20 
.3000 
2.000 
0.000 
. 0222 
. 0430 
.1020 
0. 000 
-. 1667 
-. 1667 
.6060 
.7820 
.8710 
.9450 
. 9860 
1. 002 
.000780 
,000680 
.000515 
. 00031,; 
.000115 
.000010 

41 1 
1070200. 
1.000 
10.00 
.023H 
.0480 
. 1160 
0.000 
-.1667 
-. 1667 
.6800 
. 7900 
.8880 
. 9520 
.9890 
1. 003 
. 1-100770 
.000663 
.000488 
.000280 
.000090 
.000006 

8 0 
. 0008 
1.400 
10. 00 
.0242 
.0570 
. 1260 
0.000 
-. 1667 
-.1667 
.7050 
.8050 
.8980 
.9550 
.9910 
1. 004 
.000757 
.000642 
.000456 
.000250 
,m\jr-ixS(, 
. 000002 

0 0 
.3450 
.8900 

. 0260 

.0620 

. 1380 
-.0833 
-. 1667 
-. 1667 
,7300 
.8180 
.9070 
. 9600 
.994 0 
1.005 
.000745 
.000620 
.000430 
.000220 
.000048 
.000001 

0.000 
.7600 

.0290 

. 0700 

-. 1667 
-.1667 

.7450 

. 8300 

. 9160 

.9670 

. 9970 

.000730 

.000595 

.000398 

.000195 

.000030 

STUHEK ANU UANHEHU, 
CONCAVE SURFACE 

1 

r \ 

Mp 

JL.in 
R 

1 
1 

0.05326 
0. 150 
0.700 
3.509 
3. 509 
3.503 
3.360 
3.060 
0. 000 
,0.000 
0. 000 
-. 035 
-.035 

1 200 
0. 500 
0.400 
0.005 
3.509 
3.509 
3, 500 
3.323 
3.010 
0.000 
0.000 
-.0175 
-.035 
-. 035 

50 31 
1.000 
2.000 
0. 000 
3,509 
3. 509 
3.486 
3,280 
2.970 
0. 000 
0.000 
-.035 
-.035 
-.035 

40 1 
19320.0 
1.000 
10.00 
3. 509 
3.509 
3.468 
3.240 

0.000 
0.000 
-.035 
-.035 

6 0 
.00053645 
1.400 
10.00 
3.509 
3.509 
3.445 
3. 190 

0. 000 
0.000 
-.035 
-.035 

1 1 
0.000 
0.890 

3.509 
3.509 
3.430 
3. 150 

0.000 
0.000 
-.035 
-.035 

0.000 
0.760 

3.509 
3.506 
3,390 
3. 105 

0.000 
0.000 
-.035 
-.035 



TABLE 1 CONDITIONS FOR 10 PER CENT CHANGE IN SHEAR STRESS 

* boundary layers or duct flows with a streamline radius of curvature less than 
about 200-300 times the shear-layer thickness 

* wall jets or free jets with a streamline radius of curvature less than about 
100 times the shear-layer thickness 

* flows in high-aspect-ratio ducts rotating about the major axis at an angular 
velocity greater than about 0.005 U/h 

* boundary layers on axisymmetric bodies, or flow in circular ducts, which rotate 
about the axis at an angular velocity greater than about 0.003 U/-5 

* very large changes occur in any flow with solid-body rotation superimposed on 
an axial flow. 

TABLE 2 REFERENCE TABLE OF BUOYANCY/CURVATURE PARAMETERS 
For use in Eq(117) or its first-order version, Eq(36) with a • 28 

Flow 

2-dimensional curved layer 

Rotation about z axis 

Compressible flow or heat transfer 

Coplanar rotation and curvature 

Swirling flow 

Axisymmetric swirling flow 

Infinite swept wing 

ts 
Compound curvature 

Spinning cylinder in axial flow 

Ri or <4 V 

Eq(72) 

89 

90 

99 

-

-

-

-

114 

Rf 

Eq(79) 

89 

95 

-

102 

103 

103 

-

113 

Recommended* 
approximation 

Eq(73) or (84) 

89 (last form) 

98 

100 

-

108 

109 

109 

115 

* |uv'|1'2/L generally preferable to 3U/3r if different. 
t Assume effect of F-factor is on shear stress component in direction of streamline. 
§ Take axes to maximise U/r. 
Check text for notation used and range of applicability. 



TABLE 3 EXPERIMENTS ON LOW-SPEED BOUNDARY LAYERS AND DUCT FLOWS 

Date 

1930 

1936 

1937 

1950 

1962 

1968 

1972 

1973 

1973 

1935 

1956 

1967 
-1972 

1963 

1967 

1971 

1972 

1968 

1972 

Author Ref. Maximum 6/R 
Pressure 
Gradient Cf 

- boundary layers on two-dimensional curved surfaces -

Wilcken 

Schmidbauer 

Clauser 

Schubauer & Klebanoff 

Tani 

Patel B.L. 

Patel cyl. 

So & Mellor 

Meroncy 

Young 

Wattendorf 

Eskinazi 4 Yeh 

Johnston 4 co-workers 

22 

83 

93 

101 

102 

37, 
162 
37 

160 

164 

57 

82 

98 

10 

- boundary layers in swi 

Parr 

Mackrodt 

Hughes 

Nakamura 

Anders 

Litvai 

166 

133 

165 

167, 

299 

169 

170 

- 0.2 

+ 0.04 

± .015 

+ 0.02 

± 0.06 

+ 0.03 

± .13 

± .01 

+0.2,-0.1 

~ z 

f ->• a 

z 

a 

~ z 

~ z 

f 

z,a 

~ z 

~ z 

from T 

from U ? 

-

log law 

-

fn (R9,H) 

from x 

surface tube 

n II 

- curved or rotating ducts -

1 0.05 

* 0.05 

X 0.1 

-

-

-

surface tube 

from p.g. 

log law 

rling flow, or in axial flow over rotatir 

+ 0.1* 

-

range 

+ 0.2* 

z 

*» z 

z,a 

z,a,f 

-

-

-

— 

- curved rotating duct -

± 1 

X 1 

a 

a 

surface tube 

-

x(y) 

from U 

-

-

Turbulence 

-

-

(u1 only) 

Hot wire results suspect 

-

-

-

-

-

-

Hot wire measurements 

•i n 

II ii 

from p.g. 

from p.g. 

from p.g. 

g cylinders -

-

-

from U 

— 

-

-

it 

II 

-

flow viz. 

-

-

-

• 

-

-

Key: a - adverse, f • favourable, z • nominally zero. For rotating ducts 6/R becomes Jhn/U. For 
rotating bodies in axial flow and for the curved rotating duct, both curvature and rotation are 
important. *Figure given is 6/(cross-section radius). 

TABLE 4 EXPERIMENTS ON HIGH-SPEED BOUNDARY LAYERS 

Date 

1962 

1962 

1964 

1968 

1968 

1971 

Author 

Kepler S 

O'Brien 

McLafferty & 
Barber 

Clutter & 
Kaups 

Thomann 

Winter, Rotta 

4 Smith 

Sturek 4 
Danberg 

Ref. 

183 

184 

185 

4 

* 

Maximum 

6/R 

-0.06 

-0.04 

-»,-0.02 

±0.02 

-

-0.03 

Pressure 
Gradient 

a 

a 

a 

z 

a.f 

a 

Mach no. 

3 • 2 

3 *> 2 

1.6, 2.6, 
3,3, 4.5 

2.5 

0.6, 1.4, 2.0 

3.5 * 3 

Remarks 

Low Re 6 )« 2500 for most detailed 

case 

Bodies of revolution with flares 
— strongly divergent axisymmetric 

Heat transfer measurements only 

Waisted body of revolution: c^ from 
surface tube may be unreliable 

c, from Preston tube 

For Key see Table 3. 

Several other experiments have been reported, but in insufficient detail to be useful as test cases. Of 
the "two-dimensional" cases above, only Sturek and Danberg measured c^; Thomann measured St but not 
temperature profiles. Therefore there is no proper check on two-dimensionality except in Sturek and 
Danberg's flow which appeared to be slightly converging; other flows may be three-dimensional in either 
sense. 

* Sturek, W.B. and Danberg, J.E., AIAA paper 71-162 and Univ. of Delaware DMAE Rept. 141, 1971. 



(a) ( x . y ) coordinates wi th 
f ixed, arb i t rary origin. 

(b) (s,n) coordinates with radius 
of curvature R a funct ion 
of s, positive for convex s-axis 

(c) doubly - curv i l inear 
orthogonal coordinates. 

helical 
streamline 

(d) ( x . r .6 ) coordinates for 
"swir l ing" flows. 

(e) "rotating" duct with 
rotating (x .y ) coordinates. 

( f ) "spinning" pipe with f ixed 
or rotating (x.r.9) coordinates. 

FIG. 1 COORDINATE SYSTEMS AND DEFINITION SKETCHES FOR 
CURVED OR SWIRLING FLOWS. 



TURBULENT 

FLOWS 

SIMPLE 

SHEAR LAYERS 

COMPLEX 

FLOWS 

r 
INTERACTING 

PLANE SHEAR LAYERS 

I 
SHEAR LAYERS WITH BODY FORCES 

OR EXTRA RATES OF STRAIN 

STREAMLINE 
CURVATURE 

OR ROTATION 

LATERAL 

DIVERGENCE 

BULK 

COMPRESSION 

LONGITUDINAL 

ACCELERATION 

BUOYANCY 

FORCES 

OTHER 

EXAMPLES 

OTHER 

EXAMPLES 

FIG. 2 SUGGESTED CLASSIFICATION OF TURBULENT FLOWS. 
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FIG. 3 STANTON NUMBER (DIMENSIONLESS SURFACE HEAT TRANSFER 
COEFFICIENT) IN CONSTANT-PRESSURE SUPERSONIC BOUNDARY 
LAYER ON CONCAVE, PLANE AND CONVEX WALLS ( AFTER 
THOMANN (4 )). 
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CONCAVE CONVEX 
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R 

0-2 03 

FIG. 4 GROWTH RATE OF SELF-PRESERVING WALL JETS ON 
SPIRAL SURFACES ACCORDING TO GILES ET AL (6* o) 
AND GUITTON (7-°) AND ON CIRCULAR SURFACES 
ACCORDING TO SPETTEL ET AL (8 - * ; MEAN VALUES). 

FIG. 5 LAMINAR" CORE OF AIRCRAFT TRAILING VORTEX (9). 



(a) Hydrogen bubble pictures values of Q h/U shown. Dotted line indicates 
position of bubble wire. Larger bubbles have erupted from sublayer. 

T 
r 
1 

Stable side 
(leading) 

ield of view in 
photographs 

Bubble wire 

(b) Duct configuration showing f ield of view 

FIG. 6 LONGITUDINAL VORTICES IN ROTATI 
(JOHNSTON ET AL (10)). 
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(a) Arrangement of test rig. 
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ef 
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(b) Maximum turbulent intensity, q2 /U 2 . 
" ~ max. ref. 
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100 

FIG. 7 REDUCTION AND OVERSHOOT OF TURBULENT INTENSITY IN 
STABLY-CURVED MIXING LAYER (11). 



/ 
UNSTABLE 

< 

u0d-grr^. 

(a) Motion of displaced element in a curved flow. 

(b) Cross-sectional "streamlines" and streamlines near surface 
in contra-rotating toroidal vortices between circular cylinders. 

FIG. 8 IDEALIZED AND REAL EXAMPLES OF UNSTABLE 
CURVED FLOWS. 



Transport in 

Viscous 

Transport out 

Pressure 

Sources and 
sinks 

J U j S Dest ruction 

•4V 
Pressure 

redistribution 
destruction 

(a) Processes represented by transport equations for 
turbulence quantities. 

' * ' ' ' ' - • * **• S S S J- s * 

. - ^ i f ^ J Destruct ion. 

1 including 
" ^ / redistributiorf; 

Advection 

% 

Production 

• / * / / / / / / / / / * / ? / r . 

Dissipation 

Redistribution = 0 

Transport » 0 

(b) Local equilibrium. 

Diffusion 

(c) Nomenclature for turbulent 
energy equation. 

F IG . 9 TRANSPORT EQUATIONS. 



Extra 
rate of strain 

"time" or streamwise distance 

Generation 

xj-i 
XV 

Destruction 

Redistribution 

(Generation)-
(Destruct ion + 
Redistribution) 

FIG. 10 RESPONSE OF TERMS IN REYNOLDS-STRESS TRANSPORT 
EQUATION (FIG. 9) TO STEP CHANGE IN RATE OF STRAIN. 

2 0 

1 5 -

cf xlO 

10 

step increase in 
at this point 

Me=4 

1 , 

e 

\ / 

^ m m * 

Me = 2 5 Me = 3-6 

_L ± 
10 15 20 x (inches) 25 

FIG. 11 RETARDED-ACCELERATED SUPERSONIC BOUNDARY LAYER (66) 
—• - .MEAN LINE THROUGH MEASUREMENTS. .CALCULATION (16) 

WITHOUT DILATATION CORRECTION. , CALCULATION USING EQ (36) WITH 
e=-div U. 0t = 10. .CALCULATION USING EQ (36) AMD EQ (37) WITH 

"TIME CONSTANT" OF 10 5. 
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-

F-1 = ae/ l tL , 

\ 

•«#• — 
a=10(I-exp4-*^P)) 

a {*» 10 
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\ 8 > 

FIG. 12 RESPONSE OF F-FACTOR AND LAGGED 
F-FACTOR TO A STEP CHANGE IN EXTRA 
STRAIN RATE e. 

1 
Ky 

AAAA 

CENTRAL PART OF DUCT 

NOT IN LOCAL EQUILIBRIUM 

INNER (STABLE) OUTER (UNSTABLE) 

0-2 
i^^WW 

08 ( r - r j /d 10 

FIG13 MIXING LENGTH AND "a" FACTOR NEAR THE 
WALLS OF A CURVED DUCT= DATA OF ESKINAZI 
AND YEH (©) AND WATTENDORF ( A ). LIMITING 
VALUES OF a FROM BUOYANCY ANALOGY 
SHOWN—— • LIMITING *€/Ky FROM EQ (129) 
SHOWN . 



10mxcf 

5000 

x (cm.) 

FIG. U RETARDED-ACCELERATED BOUNDARY LAYER 
OF SCHMIDBAUER (83*FIG.6). G EXPERIMENT 

CALCULATION WITHOUT CURVATURE 
CORRECTION. • CALCULATION WITH a =U. 



Plane 
normal to 
generators 

-ree stream 
velocity 

Curved surface 
linear generators 

(s.n.z) system is 
orthogonal 

Orthogonal coordinates 
in surface 

(a) Slowly-growing axi-symmetr ic 
swir l ing flow. 

(b) Boundary layer on infinite" swept 
wing. 

(c) Boundary layer with compound 
curvature. 

FIG. 15 THREE-DIMENSIONAL CURVED FLOWS. 
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FIG 16 VARIATION OF APPARENT MIXING LENGTH WITH 
BUOYANCY PARAMETER IN ATMOSPHERIC INNER 
LAYER. (CONSENSUS OF SEVERAL AUTHORS.) 

/
A

V — Reflection at UJBV = oj 
/ \ 

i \ \ "BV > <» Ay 

\ \ Direction of L - j / 
\ 7 \ group velocity j T / / 

k 

\ \ ^ y Wave-number 
\ p \ / vector 
/ } S c \ (direction of phase 

/ y \ \ velocity). 

FIG. 17 GENERAL CONFIGURATION OF INTERNAL 
WAVES FROM A POINT SOURCE IN A STABLY-
STRATIFIED FLUID. 
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(a) Distribution of shearing stress for constant pressure flow 
along convex wall. 5 /R-^ 0 08. 
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(b) Growth of internal boundary layer on convex wall. X measured 
from start of curvature i R at 12 *8 inches. 

FIG. 18 COLLAPSE OF TURBULENCE IN OUTER REGION OF 
HIGHLY- STABLE BOUNDARY LAYER (160). 
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I 
5 

Plane layer 

0-6 y/6 08 

FIG. 19 MIXING LENGTH AND "a" FACTOR IN A HIGHLY CURVED 
BOUNDARY LAYER • DATA OF WILCKEN (22) 

0 002 

'•w 

PUS 

= 2 c f 
0 001 -

0004 

FIG. 20 DEPENDENCE OF SKIN FRICTION COEFFICIENT ON 
CURVATURE ACCORDING TO SCHMIDBAUER (83̂  FIG 4) 
THE GENERAL TREND IS CORRECT BUT THE 
VARIATION APPEARS TO BE OVERESTIMATED. 



80 A, deg. 100 

FIG. 21 BOUNDARY LAYER ON CIRCULAR CYLINDER (37). 
O EXPERIMENT, Re = 5x10* -.CALCULATION (16) WITHOUT 
CURVATURE CORRECTION. .CALCULATION WITH a =14. 
MEASURED SURFACE PRESSURE DISTRIBUTION USED IN BOTH CALCULATIONS. 



0004 

0003 

0002 
15 

H 

14 

1-3 

\ ~ Ra 10—14 in. 
•) 5*08in. 

80 40 x(in.) 60 
(a) Convex surface.o,experiment. .calculation 

without curvature correction. , calculation with 
Eq(37).X=105, and Eq(119). P =7(Q=14). 

0 005 

0002 

(b) Concave surface.o,experiment. .calculation without 
curvature correction. , calculation with Eq (37), X = 105, 

Calculations: 

L scaled on 5u(c f =00018) 
X - X ^ L scaled on l \ (cf = 0 0015) 

0 02 y/6u 0*4 

(c) Shear stress profile on convex surface 
station 11 (x =71 in.): see Fig. 18(a). 

and Eq(119). 0 = 4 (Ct= 8). At x=96, 6^=227, 9min=*113. 

FIG. 22 EXPERIMENTS OF SO AND MELLOR (160) ON CONCAVE AND CONVEX SURFACES. (SEE ALSO FIG. 18). 
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FIG. 23 BOUNDARY LAYER WITH "CONCAVE CURVATURE IMPULSE" (DURATION ABOUT 105) 
DATA OF YOUNG (57): FOR CONFIGURATION SEE FIG. 24. • , EXPERIMENT. -.CALCULATION 
(16) WITHOUT CURVATURE CORRECTION. 7CALCULATI0N USING EQ(117) WITH a = 9. . 
CALCULATION USING EQ (117) AND EQ (37) WITH "TIME CONSTANT" OF 105. 
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FIG. 24 u-COMPONENT INTENSITY IN UNSTABLY-CURVED 
BOUNDARY LAYER. 5/R = -01 (57): SEE FIG. 23. 
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FIG. 25 EXPERIMENTS OF MERONEY (164) ON CONCAVE AND CONVEX SURFACES. 
Q (CONVEX) AND G; (CONCAVE). EXPERIMENT. .CALCULATION USING 

EQ(37) WITH X=106 AND EQ(119) WITH p=7(Q =14) CONVEX. P=4(a=8) CONCAVE. 
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AND KLEBANOFF (101)- ©EXPERIMENT : 
CALCULATION WITHOUT CURVATURE CORRECTION. 

-CALCULATION WITH a =14. 
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(a) Heat - t rans fer measurements of Thomann (4 ) at Me-5>2 5 -Symbols-exper iment (see f i g - 3 ) . 
Lines-calculations. © Plane surface. (1) Concave, a= 9. (2) Convex, 0t= 14. 

® Concave, a=9 (UO-2 Ma). (|) Convex,a=14 (U02M*),all with "time constant" of 106. 
FIG 27 DEMONSTRATION CALCULATIONS FOR COMPRESSIBLE CURVED FLOWS BY 
METHOD OF REF 16 (SEE APPENDIX 2)* 1 + 0-2 M* IS COMPRESSIBILITY FACTOR IN Ri-
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(c) Concave-surface measurements of Kepler and O'Brien. Profiles at 1-2 in. from 
start of curvature. Calculated profiles corrected for bulk compression and 
curvature, and for bulk compression only, are identical. 

FIG. 27 (CONCLUDED). 
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in plane layer); n origin is point of maximum intensity 

FIG. 29 STABLY-CURVED MIXING LAYER (11). FOR CONFIGURATION 
see FIG 7(a). . . 
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FIG. 29 (CONTINUED). 
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(g) "Eddy diffusivities'' of q* and uv. s = 34cm.(see fig.29(a)). 

FIG. 29 (CONCLUDED) 
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FIG. 30 AIRCRAFT TRAILING VORTEX (209). 
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FIG. 31 CLASSICAL (TRAILING) VORTICES. 
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