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Preface

Since its founding in 1952, the Advisory Group for Aerospace Research and Development has published, through the Flight
Mechanics Panel, a number of standard texts in the field of flight testing. The original Flight Test Manual was published in the
years 1954 to 1956. The Manual was divided into four volumes:

1. Performance

2. Stability and Control

3. Instrumentation Catalog, and
4. Instrumentation Systems.

As a result of developments in the field test instrumentation, the Flight Test Instrumentation Group of the Flight Mechanics
Panel was established in 1968 to update Volumes 3 and 4 of the Flight Test Manual by the publication of the Flight Test
Instrumentation Series, AGARDograph 160. In its published volumes AGARDograph 160 has covered recent developments in
flight test instrumentation.

In 1978, the Flight Mechanics Panel decided that further specialist monographs should he published covering aspects of
Volumes | and 2 of the original Flight Test Manual, including the flight testing of aircraft systems. In March 1981, the Flight
Test Techniques Group was established to carry out this task. The monographs of this series (with the exception of AG 237
which was separately numbered) are being published as individually numbered volumes of AGARDograph 300.

In 1993 the FTTG was disbanded, and the Flight Test Editorial Committee was formed to continue sponsoring and editing
volumes in the AG 160 and AG 300 series.

At the end of each volume of both AGARDograph 160 and AGARDograph 300 an Annex gives a list of volumes published in
the Flight Test Instrumentation Series (AG 160) and in the Flight Test Techniques Series (AG 300).

The present Volume is a sequel to two previous AGARDographs published in the AGARD Flight Test Techniques Series,
Volume 2 on “Identification of Dynamic Systems” and Volume 3 on “Identification of Dynamic Systems — Applications to
Aircraft, Part 1: The Output Error Approach” both written by R.E. Maine and K.W. Iliff. The intention of the present document
is to cover some of those areas which were either absent or only briefly mentioned in these volumes. These areas are Flight Path
Reconstruction, Nonlinear Model Identification, Optimal Input Design and Flight Test Instrumentation.

The theoretical developments are illustrated with examples taken from an actual flight test program.
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Préface

Depuis sa création en 1952, le Groupe Consultatif pour la Recherche et les Réalisations Aérospatiales (AGARD), a publié, par
I’intermédiaire du Panel de la Mécanique du Vol, un certain nombre de textes normatifs dans le domaine des essais en vol. Le
premier Manuel d’Essais en Vol a été publié entre les années 1954 et 1956. Ce manuel est composé de quatre volumes a savoir:

Performances

Stabilité et Contréle
Catalogue d’Instrumentation
Systémes d’Instrumentation.

H W=

Suite aux développements dans le domaine de I’instrumentation des essais en vol, le Groupe de Travail sur 1I’Instrumentation des
Essais en Vol du Panel de la Mécanique du Vol a été créé en 1968 avec pour mandat de mettre a jour les volumes 3 et 4 du
Manuel des Essais en Vol, sous la forme de la série AGARDographie 160 sur I’Instrumentation des Essais en Vol. Les différents
volumes de I’AGARDographie 160 publiés jusqu’a ce jour couvrent les derniers développements dans ce domaine.

En 1978, le Panel AGARD de la Mécanique du Vol a décidé d’éditer d’autres monographies spécialisées, couvrant les volumes |
et 2 du Manuel des Essais en Vol d’origine, y compris les Essais en Vol des systémes de bord. Au mois de mars 1981, le Groupe
de Travail sur les Techniques des Essais en Vol a été constitué pour mener a bien cette tiche. Les monographies dans cette série,
a I’exception de I’AG 237 qui porte un numéro distinct, sont numérotées individuellement dans la série AG 300.

Le groupe a été dissout en 1993, et le Comité de Rédaction des Essais en Vol a été créé afin d’assurer la publication de volumes
dans les séries AG 160 et AG 300.

A la fin de chacun de ces volumes, un annexe donne la liste des volumes publiés dans la série “Instrumentation des Essais en
Vol” (AG 160) et dans la série “Techniques des Essais en Vol” (AG 300).

Le présent volume représente 1a suite de deux AGARDographies publiées dans la série “Techniques des Essais en Vol”; il s’agit
du volume 2 sur “L’Identification des Systémes Dynamiques” et du Volume 3 sur “L’Identification des Systémes Dynamiques —
Applications aux Aéronefs” Titre 1: “La Méthode des Ecarts de Performances” rédigés par R.E. Maine et K.W._ [liff. Ce docu-
ment a pour objet de traiter certains sujets qui ont été peu ou pas abordés dans ces volumes, c’est-d-dire, la reconstitution de la
trajectoire de vol, ’identification des modeles non-linéaires, 1’optimalisation des éléments de conception et I’instrumentation des
essais en vol.

Les développements théoriques sont illustrés par des exemples tirés d’un programme d’essais en vol réel.
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SYMBOL DEFINITIONS, ABBREVIATIONS AND REFERENCE
FRAMES

Throughout this volume many different variables
are introduced. Often the actual meaning of the
symbol follows directly from the context of its use.
Vectors will be generally underlined. Matrices and
reference frames (reference axes) are denoted with
capitals. Their use follows directly from the

context.

0.1 Symbols, abbreviations, definitions

a

Ax’ Ay’ Az

ohal

parameter vector; polynomial
coefficient of d(w) in denominator
in T(w)
specific aerodynamic forces along
the X-, Y- and Z-axis respectively
wing span; poelynomial coefficient of
n(w) in numerator of T(w)
mean aerodynamic chord
Cramer-Rao Lower Bound; rate of
climb
parameter in angle of attack vane
calibration formula
parameter in angle of side slip vane
calibration formula
sidewash coefficient
upwash coefficient

L
pV2Sh
aerodynamic rolling moment
(nondimensional moment about Xg-
axis)

, coefficient of

constant part of C,

II\U

I“Ap (

m

m

m

I'I’laZ

m

ing
bc

JC,

Bb

Y
aC,
a5,

a

M
KpV?IST
aerodynamic pitching moment

(nondimensional moment about Yp-
axis)

, coefficient of

constant part of C,

acl]).

. Ap,
d .
Yap V-

2c, + Loy
mg W

da

7o,



c, N, coefficient of c aCy
pV2Sh X;, —
aerodynamic yawing moment Fhand
(nondimensional moment about Zg- v
axis) aC,
~ons . C
C"o constant part of C, X, 35,
C oS, Cy _ Y coefticient of
"p pb %BpV?2s
2V aerodynamic lateral force
aC Cy constant part of Cy
C, ° 0
r Or_b aCy
2V Cy
p . pb
c o, Y
' 9 aCy
C
C a(:n Yr a l‘b
i s v
p Bb
v c ICy
Y -
c ac, B ap
", a5, aCy
: c,.
oC, ’ b _
5, a_br : ~
0C
Cy _X_ , coefficient of CYé i__l B
%p Vv 2S i abﬂ
aerodynamic longitudinal force aCy
. . 3 C _—
CXO constant part of Cy Vs, 35,
C _acx_ C, Z _, coefficient of
Xap, Ap, P VIS
g YBpV?2 aerodynamic vertical force
) constant part of
C aCy CLO p C,
X = .
! 5.9¢ c IC,
V ZApl Ap
(-) 1
0C V2
Cx zcx + ¢ X \Vj ) P \%
’ o e
c, £
oC “q =
Cxu a—x Pl
a \Y
ac e
Cx e — C, 2C, + __tv
« da u Ly v
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e

L,I,1

Xy ‘'z

L.,I,1

Xy’ yz> zx
J
J

l“_fﬁ

Z8

(k)

2121

dimension of R,,

polynomial in denominator of T(w)
model residue vector in regression
analysis

model residual; elementary input
signal; basis vector of Ky,
mathematical expectation operator;
energy

vector function

right handed rectangular reference
frame; linear system matrix
gravitational acceleration

linear system input matrix
geometric altitude

matrix in linear system observation
model

identity matrix

moment of inertia of propeller and
rotating engine components
moments of inertia about the X-, Y-
and Z-axis respectively
corresponding products of inertia

imaginary number , f_T

matrix in linear system observation
model; performance index

Kalman filter gain matrix

One stage prediction gain matrix
aerodynamic moment about the X-
axis; likelihood function; orthogonal
matrix

mass of the aircraft; integer
aerodynamic moment about the Y-
axis; information matrix

M/N, average information matrix
point-input information matrix from
u®

set of average information matrices
from power constrained input
signals

integer

xi

polynomial in numerator of T(w)
aerodynamic moment about the Z-
axis

origin of frame of reference
angular rate about the X-axis (roll
rate)

static pressure of air

total pressure in propeller slipstream
total power of input signals

angular rate about the Y-axis (pitch
rate); integer

impact pressure of air

angular rate about the Z-axis (yaw
rate)

radius of hypersphere; multiple
regression coefficient

partial correlation coefficient
n-dimensional Euclidean space
information space

integer

wing surface area; sensitivity matrix
power spectral densily matrix of
input signals

time (continuous)

time (discrete)

observation time interval; state
transformation matrix; temperature
frequency response matrix
component of airspeed along the X-
axis

vector of input signals

vector of harmonic signal in input
signals

Fourier transform of vector of input
signals

state transformation matrix
component of airspeed along the Y-
axis

vector of measurement errors

true airspeed

covariance matrix

covariance matrices

component of airspeed along the Z-
axis; measurement noise

, components of aircraft weight along

the X-, Y- and Z-axis respectively;
components of atmospheric wind
x-coordinate of the a-vane in the
body fixed reterence frame
x-coordinate of the B-vane in the
body fixed reference frame



|

X(w)

Yo

YE

Y(w)

position of the aircrafts centre of
gravity with respect to an earth
fixed reference frame along the X-
axis

system state vector; row vector of
independent variables in regression
analysis

Fourier transform ol system state
vector

aerodynamic longitudinal force
along the X-axis; matrix of
independent variables in regression
analysis

observation vector

y-coordinate of the a-vane in the
body fixed reference frame
position of the aircrafts centre of
gravity with respect to an earth
fixed reference frame along the Y-
axis

Fourier transform of observation
vector

aerodynamic lateral force along the
Y-axis

z-coordinate of the f-vane in the
body fixed reference frame
position of the aircrafts centre of
gravity with respect 10 an carth
fixed reference trame along the Z-
axis

aerodynamic vertical torce along the
Z-axis

Greek symbols

a

angle of attack; power ratio of a
harmonic signal in the input signals
angle of attack measured by a vane
angle of side slip; cartesian
coordinates

angle of side slip measured by a
vane

flight path angle

Kronecker delta

aileron deflection angle 8,=9, -0,
left aileron deflection (aileron down
iS positive)

right aileron deflection (aileron
down is positive)

elevator deflection angle (¢levator
down is positive)

xii

o rudder deflection angle (rudder left
is positive)
A increment

€ aerodynamic model error

6 pitch angle; phase of a harmonic
signal in the input signals

8 parameter vector

A veclor containing bias errors

r discrete system input matrix

7 amplitude of a harmonic signal in
the input signals

My _m
pSb

He m
pSc

v Kalman filter innovation

WP angle of yaw

ap information vector, vector
representation of M

p air density

a standard deviation

¢ angle of roll

w angular frequency

Superscripls

* reconstructible state variable or
identifiable parameter

estimated value; normalized value
- mean value

~ small deviation from nominal value

H malrix conjugale transpose
(k) harmonic signal in the input signals
0 optimal value
T matrix transpose
derivative with respect to time
-1 matrix inverse

subscripls

m measured quantity

B body flixed reference frame F

D datum fixed reference frame F

E Earth fixed vertical reference frame
Fg .

engine

stability reference frame Fg
nominal value

o we




0.2 Abbreviations

cg centre of gravity

CRLB Cramer Rao Lower Bound

cov a covariance matrix of a

det A determinant A

DME Distance Measuring Equipment
DUT Delft University of Technology
In logarithm to base e

LHS Left Hand Side

ML Maximum likelihood

NLR National Aerospace Laboratory
TAS V, True Air Speed

r A trace of square matrix A

0.3 reference frames

A number of different reference frames will be
referred in this volume. Their definitions will be
given below. Within this volume, the translational
equations and the rotational equations are both
referred to the body axes. The aircraft attitude is
defined by the Euler angles 1p, 8 and ¢ and for this
reason the vehicle carried vertical reference frame
is introduced. The aircraft position is defined with
respect to the earth fixed reference frame.

Datum reference frame F

The location of characteristic points relative to the
aircraft - as for instance the centre of gravitly - is
expressed in terms of coordinates in a body fixed,
rectangular and left handed reference frame which
is named here the datum reference frame (see fig.
0-1). The Xp-axis is in the plane of symmetry of
the aircraft. The Yp-axis is perpendicular to this
plane of symmetry and points to port. The
direction of the Zj-axis is upwards in normal
flight. For the particular aircraft used in the present
flight tests, the origin O coincides with the
projection on the plane of symmetry of a reference
point on the starboard wing leading edge at 1.4 m
distance from the plane of symmetry. The direction
of the Xj-axis is chosen parallel o a reference
wing chord connecting the leading edge and the
trailing edge at the same distance from the plane of
symmetry.

Body-fixed reference frame F,

The body-fixed reference frame of the aircraft is a
right-handed orthogonal system OpX;YgZg. The
origin Og lies in the centre of gravity of the

xiii

aircraft (see fig. 0-1). The XgOgzZ; plane coincides
with the aircraft’s plane of symmetry if it is
symmetric, or is located in a plane, approximating
what would be the plane of symmetry. The X-axis
is directed towards the nose of the aircraft, the Y-
axis points to starboard and the Zg-axis points
lowards the bottom of the aircraft.

The positive directions for the body axis rates (p,
q, and r respectively), the body axis velocities (u,
v, and w), the body axis forces (X, Y, and Z), and
the body axis moments (L., M, and N) are shown in
figure 0-2.

Stability reference frame Fg

The stability reference frame OgXY¢Zg is a
special body-fixed reference frame, used in the
study of small deviations from a nominal flight
condition. The reference frames Fy and Fg differ in
the orientation of the X-axis. The Xg-axis is chosen
parallel to the true airspeed V. In the case of a non
symmetrical nominal flight condition the X¢-axis is
chosen parallel to the projection of V. on the
aircraft’s plane of symmetry.

Earth-fixed reference frame Fy;

The earth-fixed reference frame is a right-handed
orthogonal system OpX ;Y :.Z;, which is considered
to be fixed in space. Its origin can be placed at an
arbitrary position, but it will be chosen to coincide
with the aircraft’s centre of gravity at the start of
a flight test manoeuvre. The Zg-axis points downw-
ards, parallel to the local direction of the
gravitation. The Xg-axis is directed north, the Y-
axis east (fig. 0-3).

Vehicle-carried vertical reference system F
The origin of the vehicle carried vertical reference
frame is attached to the aircraft’s centre of gravity.
Except for this difference, Fy is identical to the
earth fixed vertical reference Fi; (fig. 0-3).

Vehicle carried vertical reference frame F

The reference frame F was found to be convenient
in the analysis of the linearized flight path
reconstruction problem. The origin is attached to
the aircraft’s centre of gravity. The Z-axis points
downwards parallel to the local direction of
gravitation. . The X -axis coincides with the
projection of the Xg-axis at the start of a flight test
manoeuvre on the local horizontal plane (fig. 0-4).



Ys ' 2,

A
Ve~

© v

12,

Figure 0-1:  The datum reference frame F), and body-fixed reference frame F,.
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Figure 0-2: The body-fixed reference frame Fy. X, Y, Z, L, M and N denote the forces along and
moments about the body-axis; u, v, w, p, g and r denote the linear and angular velocities.
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XV (north)

X E (north)

Figure 0-3: Relationships between earth-fixed reference frame and vehicle-carried vertical reference
frame. The vector r denotes the position of the aircraft c.g. with respect to Fy.

zy.2¢

Figure 0-4: The body-fixed reference frame Fyy and the vehicle-carried vertical reference frames F,,
and F at the start of a flight test manoeuvre.
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Synopsis

This AGARDograph is a sequel to the previous AGARDographs published in the AGARD Flight Test
Techniques Series, Volume 2 on ‘Identification of Dynamic Systems' and Volume 3 on ‘Identification of
Dynamic Systems - Applications to Aircraft Part - 1: The Output Error Approach’ both written by R.E.
Maine and K.W. Iliff. The intention of the present document is to cover some of those areas which were
either absent or only briefly mentioned in these volumes. These arecas are Flight Path Reconstruction,
Nonlinear Model Identification, Optimal Input Design and Flight Test Instrumentation. Just like Maine and
Iliff the present authors will stay close to those techniques with which they are most familiar. The present
approach to identification is rather different from that presented in the earlier AGARDographs in the sense
that the identification problem is decomposed into a state estimation and a parameter identification part.
This approach is referred o as the Two-Step Method (TSM), although one will find other names like
Estimation Before Modelling (EBM) in the literature. It will be shown in the present AGARDograph that
this approach has significant practical advantages over methods in which no attempt is made to decompose
the joint parameter-state estimation problem. The two-step method is generally applicable to flight vehicles
such as fixed wing aircraft and rotorcraft which are equipped with state of the art inertial reference
systems. The theoretical developments in the present AGARDograph will be illustrated with examples of
a flight test program with the De Havilland DHC-2 Beaver aircraft, the experimental aircraft of the Delft
University of Technology which has been used for almost two decades to test new ideas in the science of

aircraft parameter identification.

1 INTRODUCTION

The primary goals of most tlight test programs of
civil and military aircraft are the certification lor
air worthiness and the estimation of performance
and stability and control characteristics. While
certain characteristics can be measured directly in
flight such as rate of climb in stationary rectilinear
flight or damping ratio’s and time constants of
eigen motions a much more efficient approach is to
identify a mathematical model of the aerodynamic
forces and moments acting on the aircraft from
measurements of dynamic flight test manoeuvres.
Identification implies the development of an
adequate mathematical model structure as well as
estimation of the numerical values of the
parameters in the model. When applied to aircraft
this process is often referred o as aircraft
parameter  identification.  After  successful
identification of acrodynamic models for different
aircraft configurations and flight conditions they
may be exploited in numerous difterent ways. It is
possible now to compute a variety of performance
and stability and control characteristics, to compile
tables and graphs for Aircraft Operations Manuals
and compare actual aerodynamic characteristics
with theoretical predictions or wind tunnel results.
A very interesting application is in the

enhancement of the fidelity of mathematical
models for tlight simulation. During the last two
decades, the advent of the digital computer and
improvement in {light measurement echniques has
made a tremendous impact on theory and practice
of aircraft parameter identification. Working Group
11 (WG 11) of the Flight Mechanics Panel of
AGARD has defined as one of its missions to
stimulate the development and applications of
aircraft parameter identification techniques in its
series on Flight Test Techniques. In this series, an
excellent overview of identification of dynamic
systems has been written by R.E. Maine and K.W,
1liff in volume 2 [1]. In the succeeding volume, the
same authors gave an exhaustive, practical and
elegant treatment of one of the primary parameter
identification technique namely the Output Error
Method used at NASA Dryden for the problem of
estimating aircraft stability and control derivatives
[2]- The report examines this one single approach
with lucid presentation of results and discussion
right from flight test planning to evaluation of
results carried out at their NASA Dryden Flight
Research facility. This matcrial formed the main
theme of part - 1 of volume 3.

The purpose ol the present AGARDograph which



is part - 2 of volume 3, is to present and discuss in
detail a successful and practical method for aircraft
parameter identification that has originated at the
Delft University of Technology. This method is
referred to here as the Two-Step Method, although
one may find other names like Estimation Before
Modelling (EBM) in the literature. The report goes
into some detail on the application of accurate
Flight Test Instrumentation sensors and systems
which has revolutionized the identification process
and in particular has made the two-step method an
attractive and efficient identification tool. The
report also examines and focuses attention on some
new emerging areas of technology namely the
Optimal Input Design for excitation of aircraft
manoeuvres which can lead to more accurate
parameter estimates and reduction of expensive
flight test time. The problems, results and
discussions addressed in this report are based
mainly on the investigations at the Delft University
of Technology (DUT) and the National Aerospace
Laboratory (NLR), Amsterdam.

1.1 Flight Testing and Identification
Background of Delft TU and NLR

Since the early sixties the Faculty of Aerospace
Engineering of the Delft University of Technology
and the National Aerospace Laboratory,
Amsterdam have been engaged in the development
of methods to derive aircraft performance as well
as stability and control characteristics from
dynamic flight test data. Traditional methods of
performance testing employed measurements in
steady straight flight conditions in which the
aircraft experienced neither translational nor
angular accelerations. Attention was focused on the
analysis and design of ‘hybrid® flight test
manoeuvres consisting of quasi-steady as well as
nonsteady flight conditions for the derivation of all
aircraft performance- and stability and control
characteristics of interest. The emphasis on the
simultaneous measurement of performance- and
stability and control characteristics dictated
development and application of high accuracy
flight test measurement techniques and transducers.
Key to success proved to be what was called flight
path reconstruction, i.e. the technique to accurately
reconstruct the time history of the aircraft’s state
during the flight test manoeuvre. The results of
these investigations were reported in references [3

o 14].

Between 1967 and 1968, a number of flight test
programs were carried out to evaluate the quality
and performance of the flight test methods, the
flight test measurement system and the data
reduction procedures developed for the derivation
of aircraft performance, stability and control
characteristics from measurements in nominally
symmetric nonsteady manoeuvring  flight.
Symmetric flight trials flown with the DHC-2
Beaver aircraft of the Delft University of
Technology yielded most encouraging results.

It was decided to extend these investigations to
high subsonic jet flight. In the early seventies
proposals were made for flight test programs with
the Hawker Hunter MK 7 experimental aircraft of
the National Aerospace Laboratory. A new high
accuracy flight test instrumentation system was
built which was small enough to be installed in a
wing mounted pod [16]. During 1973 and 1974
several successtul tlight tests were conducted. The
higher speeds and different propulsion system
required new aerodynamic models. Also, the flight
path reconstruction needed an extended model
which included the effects of curvature and rotation
of the earth. This gave birth to a new concept
namely, the calibration of engine gross thrust and
mass flow sensor systems in dynamic flight
simultaneously  with the identification of
acrodynamic parameters and independent of any
data of the engine manufacturer. An overview of
the results of these very successful flight tests is
given in ref. [12].

Around 1978, further flight test programs were
planned to aim at the aircraft model identification
both in symmetric and asymmetric nonsteady
manoeuvring flight as an international cooperative
program with DLR in Braunschweig, Germany.
The results of these investigations are reported in
ref. [19]. The method for parameter identification
developed at DUT was by then dubbed the Two-
Step Method: in the first step, the flight path is
reconstructed, followed by the second step in
which the parameters are identified. Based upon
the confidence and experience gained in methods
and analysis, further flight test programs were
carried out by the National Aerospace Laboratory
(NLR) to investigate the applicability for the case
of a twin engined transport type aircraft, the
Fokker F-28 Fellowship. Initial results of the




assessment of performance and stability and control
characteristics are reported in ref. [21]. The
techniques as developed in the course of these
flight test programs were subsequently applied with
high degree of success during the testing and
development phase of Fokker 50 and Fokker 100
type aircraft [22]. In 1987 flight simulation models
were developed for the Cessna Citation 500 of the
Dutch Government civil aviation flying school
(RLS) flight simulator [23].

The National Aerospace Laboratory and Delft TU
are currently cooperating in a flight test program
with the Fairchild Metro I experimental aircraft of
NLR. These experiments have demonstrated that
estimation of the aircraft state, as well as the
identification of longitudinal and lateral
aerodynamic model parameters can be performed
on-board in real time [24 to 26]. In the same flight
test program, attention is focused on different
measurement and analysis methods to identify
propeller thrust in dynamic flight test manoeuvres
[27].

Thus, this successful chain of experiments and
analyses amply demonstrated that nonsteady flight
test techniques as developed and tested at the Delft
University of Technology and the National
Aecrospace Laboratory was a proven, cost effective
and well established technique for the measurement
of performance and stability and control
characteristics as required for the certification of
aircraft. The results and discussions of the two-step
identification procedure presented in this report are
based on this nonsteady flight test technique.

1.2 Requirements for Nonsteady Flight Test
Techniques

The successful application of the nonsteady flight
test technique developed at the Delft University of
Technology depends on a well chosen combination
of the aircraft to be tested, the flight test
instrumentation system, the signals applied to
excite the aircraft, the models selected for
identification and the procedure devised to analyze
test data. The nonsteady flight test technique in
particular hinges on accurale measurement of
several inertial- and barometric variables.

The flight test method includes:
1. Utilization of a high accuracy flight test

instrumentation system, comprising high
quality inertial and barometric sensors, see ref.
[13].

2. Careful calibration of all transducers to be used
in the flight test instrumentation system, ref.
[16,17,28].

3. Analytic or computer aided development of
optimal manoeuvre shapes, i.e.,optimal time
histories for the control surface deflections
required to excite the aircraft, -so as for
example (o maximize the amount of
information in the measurements, concerning
the characteristic parameters of interest, ref.
[3,29].

4. Excitation of the aircraft manually or under
servo control (according to the optimal test
signals developed) during test flights flown in
fine weather.

5. Off-line analysis of the measurements recorded
in flight, using advanced state and parameter
estimation techniques [30].

1.3 Motivation for Nonlinear Analysis

Stability and control derivatives are the parameters
in a linear aerodynamic model of the aircraft.
Linear aerodynamic models can be represented by
homogeneous polynomials of the first degree in the
state and control input variables of the linearized
equations of motion. Such polynomials are widely
used as linear approximations ol aerodynamic
forces and moments acting on the aircraft in
dynamic flight conditions. In general the domain in
which linear models are valid is restricted to small
deviations from a nominal flight condition which is
stationary.

The advantage of using nonlinear models is that
such models should be valid for a larger range of
flight conditions. In addition dynamic flight test
manoeuvres are much less constrained with respect
to the amplitudes of angle of attack and air speed
excursions.

One specific form of representing nonlinear models
is by using higher order polynomials in state and
control input variables. In principle, the domain of
nonlinear models covers larger deviations from a
given nominal flight condition, as compared to
linear models.



1.4 Motivation for Manoeuvre Design

The importance of choosing appropriate control
inputs and exciting specific aircraft modes for
extraction of stability and control derivatives from
dynamic flight test data was first noted by Gerlach
[3]- Subsequent research focused on design
techniques for optimal control input signals.
Optimal input signals may be designed to either
maximize the information contents contained in the
flight test data or minimize the necessary length of
the flight test manoeuvre for a specified level of
accuracy of the parameters to be estimated. After
a review of the literature attention is focused in the
present AGARDograph on two techniques for the
optimization of control input signals as developed
at the Delft University of Technology.

1.5 Two-Step Method

Analysis of dynamic flight test data, in the sense of
estimating stability and control derivatives from
measurements of the dynamic response of the
aircraft to control input signals, can be formulated
in the theoretical frame work of maximum
likelihood estimation theory [53]. This requires the
stability and control derivatives to be interpreted as
unknown parameters in a dynamical system of a
given form. It is assumed that the response of the
system to precisely known input signals has been
observed by measuring the outputs of the system at
discrete instants of time. The measurements are
assumed to be corrupted by additive, mutually
independent and normally distributed random
errors. It is known that the likelihood function of
these measurements depends on the parameters as
well as on the initial state vector components.
Optimizing the likelihood function with respect to
these parameters and the initial state vector
components constitutes a nonlinear optimization
problem. The optimum values are called the
maximum likelihood estimates of the system
parameters and initial condition. In this form the
maximum likelihood method is a so-called Output
Error Method and probably the most frequently
used method to date for estimating stability and
control derivatives from measurements in dynamic
flight test manoeuvres [54,55]. The maximum
likelihood method has been extensively discussed
in the preceding part - 1 of the present volume 3 in
the AGARD Flight Test Techniques Series.

In the present volume it is shown that, if certain
conditions concerning accuracy and type of the
variables measured in flight are met, the original
maximum likelihood estimation problem can be
decomposed into two separate estimation problems
which can be solved in two consecutive steps. Each
of the two separate estimation problems is much
easier to solve than the original estimation
problem. These two steps are€ called step 1 and step
2. In the general case of nonlinear equations of
motion, step 1 corresponds to a nonlinear state
reconstruction problem known as the Flight Path
Reconstruction problem [7,10]. The next step 2 can
be formulated as a ‘linear-in-the-parameters’
estimation problem. This is of great practical
importance, as it allows the systematic and step
wise development of adequate nonlinear models of
the aerodynamic forces and moments during the
flight test manoeuvre.

1.6 Organization of the Report

In chapter 2 we will discuss mathematical models
which will be useful for the analysis of flight path
reconstruction and aerodynamic model
identification. The nonlinear equations will be used
for the practical implementations, while the linear
models  will be wused for the study of
reconstructibility and identifiability. In chapter 3
we will treat flight path reconstruction in a detailed
way in its own right. We discuss identification of
nonlinear aerodynamic models using regression
techniques in chapter 4. Next we present two
approaches in chapter 5 for the optimization of
multi dimensional input signals which can be of
great use in the design of flight test manoeuvres.
Practical examples of different types of
longitudinal and lateral control input signals,
several of which evaluated in real flight are
presented in chapter 6. The detailed aspects of
flight test instrumentation, design, execution and
flight data processing are covered in chapter 7.
Conclusions drawn from the previous sections are
presented in chapter 8.




2 AIRCRAFT AND INSTRUMENTATION MODELS

In this chapter we present some mathematical
models which will be used in the later chapters.
These models can be broadly classified as
Kinematic models, Observation models and
Aerodynamic models. Kinematic models are in fact
a special form of the customary equations of
motion in which specific aerodynamic forces (the
outputs of ‘ideal’ accelerometers in the centre of
gravity) and angular rates serve as inputs.
Kinematic models can conveniently be written in
state space form. Observation models describe the
relations between several observed variables as
airspeed and side slip angle and the state vector
components of the kinematic model. Kinematic and
observation models are instrumental for flight path
reconstruction.

As discussed in chapter 3 flight path reconstruction
refers to techniques to compute the time histories
of the components of the state vector (including the
*flight path’) from onboard inertial, barometric and
other sensors.

Aerodynamic models describe the aerodynamic
forces and aerodynamic moments which act on the
aircraft during the dynamic flight test manoeuvre to
be analyzed. In the linearized form of the equations
of motion the models of these aerodynamic forces
and moments are also linearized and contain well
known sets of parameters called stability- and
control derivatives. It is possible to apply the
identification techniques discussed in chapter 4 to
estimate the values of these stability- and control
derivatives from dynamic flight test measurements.
The two-step method as discussed in the present
document, however, allows also the estimation of
so called aerodynamic derivatives in nonlinear
aerodynamic models, be it that these nonlinear
models should be of a special form in which the
derivatives appear linearly in the output (the
aerodynamic force- and moment coefficients). A
question of theoretical and practical interest is
whether one should estimate stability- and control
derivatives at all flight conditions of interest (as
defined by nominal angle of attack, Mach number,
power setting, etc.) or estimate aerodynamic
derivatives in one nonlinear aerodynamic model
valid for the same set of flight conditions. In any
case nonlinear aerodynamic models become
mandatory when linear models turn out to be
inadequate, and in those applications where interest

is focused on the modelling of aircraft performance
characteristics, e.g. see Mulder and van Sliedregt
[12].

Although nonlinear forms of kinematic and
observation models are used for actual flight path
reconstruction, linearized versions of these models
are developed also below to allow discussion of
certain state reconstructibility topics in chapter 3.
The linearized forms of aerodynamic models
shown below serve the same purpose in a
fundamental discussion of identifiability in chapter
4. In addition the design of optimal input signals
for dynamic flight test manoeuvres as discussed in
chapter 5 is based on linear forms of all
mathematical aircraft models.

2.1 Kinematic Models
2.1.1 Aircraft Equations of Motion

In this volume we restrict ourselves to the
simplified case of rigid and symmetrical aircraft
moving through an atmosphere which moves with
uniform constant speed over a flat earth. Using a
body fixed reference frame with origin in the
centre of gravity this results in equations of motion
as presented below.

In flight path reconstruction, see chapter 3, the
quality of the sensor systems employed may in
some cases warrant accounting for the effects of
curvature and rotation of the earth, ref. [13].
Aircraft equations of motion take the form of three
sets of first order differential equations for
respectively  translational  velocities, angular
velocities and attitude angles, e.g. Etkin [57].
Using the customary body-fixed reference frame Fy
the equations for the components u, v and w of
true air speed V, along the body axes Xp, Yg and
Zg take the following form:

X = m(l; +qw - rv) + mgsin® ,

’ . 2.1-1)
Y =m(v + ru - pw) - mgcosOsing ,
Z =m(w +pv - qu) -~ mgcosBcos¢ |,

where p, q and r denote the rates of rotation about
the axes of Fg; 6 and ¢ denote pitch and roll angle
respectively; m denotes aircraft mass and g denotes
the local acceleration due to gravity. X, Y and Z



represent the components of the total aerodynamic
force, including the aerodynamic effects of
propulsion systems.

The rotational dynamics of the aircraft are
represented by a second set of first order
differential equations for the angular rates p, q and
r about the body axes Xp, Yg and Zg respectively.
For an aircraft with a geometrical plane of
symmetry, these equations are given by:

L = pr _(Iy _Iz)qr —Ixz(r +pq) ’
M =1gq -, -I)rp 'sz("z -p?) +I o,
N =Lr -(I, -1)pq -L.@-qr -logq.

(2.1-2)
where L, M and N denote the total aerodynamic
moments (including again any aerodynamic effects
of the propulsion system) about the body axes Xp,
Yp and Zg. 1,, 1) and I, denote the moments of
inertia and 1, the only (due to symmetry) non-zero
product of inertia in Fy. Gyroscopic effects of
rotating propellers or turbines can easily be taken
into account. For the case of a spin axis parallel to
Xg this leads to additional terms with Iw, as
shown in (2.1-2).

The orientation of Fy with respect to the earth-
fixed vertical reference frame Fy; is governed by a
third set of first order differential equations for the
Euler angles ¢, 8 and vt

q; =p +qsingtan® + rcos¢ptand |
6 = qeost (2.1-3)

P
The three sets of equations (2.1-1), (2.1-2) and
(2.1-3) may be written in standard state space form
by solving for the derivatives with respect to time
and defining a state vector with v, v, w, p, q, 1, ¢,
68, \ as components. By adjoining an aerodynamic
model (a set of models of the total aerodynamic
forces X, Y, and Z and the total aerodynamic
moments L, M and N) these equations can be
solved by means of numerical integration given the
aircraft mass, moments and product of inertia and
an initial value of the state vector. It is worth
noting here that the ‘physical’ input variables such
as control surface deflections and engine thrust or
power changes also serve as inputs to the above set

- rsing ,

gsing secO + rcos¢psecod .

of differential equations as they should appear as
independent variables in the aerodynamic model.
The solution consists of the time histories of
translational and angular velocity components u, v,
w and p, q, 1, and the Euler angles ¢, 0, 1. Next
we will write the model in a slightly different form
and define a set of alternative input signals.

2.1.2 Nonlinear Kinematic Models

Kinematic models of aircraft motion consist of a
set of first order ordinary differential equations in
which not the ‘physical inputs’ but rather measured
variables as specific aerodynamic forces and body
rotation rates appear as forcing functions.

A specific force is defined here as the external
non-gravitational field force per unit of mass.
Specific forces are the variables measured by
‘ideal” accelerometers in the body’s centre of
gravity, irrespective of whether the body is
influenced by a gravitational field or not. In flight
tests such ideal accelerometers would measure the
specific aerodynamic forces according to:

X = Axm )
Y = Aym s (2.1-4)
Z =Am,

in which A,, A, and A, denote the specific
acrodynamic forces along the body axes Xz, Yg
and Zy respectively. Substitution of (2.1-4) into
(2.1-1) and dividing by m leads 1o the following
set of relations:

u =A_ - gsin0 -qw +rv |

(2.1-5)

\% =Ay + geosOsing - ru  +pw |

w =A, +geosBeos¢ - pv +qu

As mass m has been eliminated we may take the
view point that (2.1-5) represents a set of what
might be called kinematical relations. The two sets
of equations (2.1-5) and (2.1-3) may again be
solved numerically if now the specific aerodynamic
forces A, Aj and A, and the angular rates p, q and
r are taken as input variables. The solution consists
of the time histories of the translational velocity
components u, v and w and the Euler angles ¢, 6,
.

The position of the aircraft’s centre of gravity
relative to the earth fixed frame of reference Fg can




be computed as well by numerically integrating the
following set of equations simultaneously with
equations (2.1-5) and (2.1-3):

* E (2.1-6)
Ye|=Lg [v]+|Wye|
. w W
Zg ZE

where Lgg denotes an orthogonal matrix of the
form:

sing sinBcosyp cosé sinBcosy

cosO cost . Lo
b cos¢ simp + sing simp

sing sin@simp
+ CosP cos

cosd sin@simyp |,
- sing cosy

Lgg = cosOsiny

-sin6

sind cosO cos¢ cosO

(2.1-7)
and W, , W”E and WZE denote the components of
a constant atmospheric’ wind vector Wg along the
axes of Fg.

Remartk In cases of relatively long flight path’s in
particular during climb or descent as in typical
performance flight tests, it can no longer be
assumed that the atmospheric wind components are
constant. For the case of varying wind components
Eq. (2.1-5) may still be used if u, v and w are
replaced by the corresponding components ug, vg
and wg of Vi, speed with respect to the earth fixed
reference frame Fy. Eq. (2.1-6) then takes the form:

XEg Ug
Ye| = Lgg |VE
Zg WE

Next the components u, v and w of V, follow from
V.=Ve-We. It may be attractive from the
estimation theoretic point of view to add a model
of the varying wind components to the kinematical
model. The reason is that a model will have much
less parameters than the total number of unknown
values of the three components of the wind at the
(discrete) time instants of the flight test manoeuvre.
A simple model which seems to work well in
practice describes the wind components as a linear
trend in time and proportional to altitude. A more
sophisticated alternative would be a slochastic
model driven by ‘white noise’.

Equations (2.1-5), (2.1-3) and (2.1-6) represent a
kinematic model for the motion (speed, attitude and
position) of Fy with respect to a flat and non
rotating earth. If the effects of the curvature and
rotation of earth are to be included then we must
express the geographical positions in terms of
longitude and latitude and decompose the local
atmospheric wind along the axes of the vehicle
carried vertical reference frame Fy, or F [13]. In
the case of flexible aircraft, the specific
aerodynamic forces and the quantities sensed by
accelerometers can in principle no longer be
assumed identical. Even then, however, the
kinematical relations (2.1-5), (2.1-3) and (2.1-6)
would still be valid. To see this, we might interpret
equations (2.1-1) as equations of motion of just an
inertial reference system fixed at the centre of
gravity. Then the components X, Y, Z would
represent external suspension forces. A,, A, and A,
in (2.1-5) would represent specific suspension
forces and still be identical to the quantities sensed
by ideal accelerometers.

We may now interpret (2.1-5), (2.1-3) and (2.1-6)
as to represent a dynamical system, and define a
state vector X and an input vector u as follows:

CO](U7V)W1¢79)\p’xE)yE’ZE) ’

col(Ax,Ay,Az,p,q,r) .

X

(2.1-8a)

[t}

u

14

The system state equation may be written as:

x = f[x,u) . (2:1-80)
f denoting a nonlinear vector function of x and u.
While acceleromelers and rate gyro’s serve to
measure the components of the input vector u,
barometric and other sensors may be used to
measure the components of an observation vector,
see section 2.3 below.

2.1.3 Linearized Kinematic Models

In the present section we derive a set of linearized
kinematical relations starting again from equations
of motion as in section 2.1.2 above, but this time
in their linearized form.

The linearized form of the equations of motion is
derived in two steps. First the nonlinear equations
of motion (2.1-1) and (2.1-2) for variables in the
body fixed reference frame Fy; are written in terms




of variables in a (body fixed) stability reference
frame Fg. Next we may linearize these equations
for small deviations from a nominal flight
condition of steady, rectilinear flight with side slip
angle equal to zero. It is readily ascertained that in
the nominal flight condition the components of air
speed along and the rates of rotation about the axes
of Fg have the following values:

s Vo

ug voS =0 ,

pos=0 s Q. =0, Tog =0 ,

S

while the nominal pitch angle is equal to the
nominal flight path angle:

9oS = Yo »
the subscript ( referring to the nominal flight
condition. The linearized versions of the equations
of motion (2.1-1) and (2.1-2) may now be written
as:

is = mas + mgcosy,Og ,

~ ~ ~ ~ 2.1-9)
Yg =m(vg + Vyrg) - mgeosy, o,

ZS = m(\‘:vS - Voas) + mgsinyoés ,

Ly = IxSpS - lszrS - Losina,qg,

Ms =1 as + leu‘)eSi“(,’O};S + lewecosao?s ,

ys

IerS

Z
w
i}

- szsps - lw. cosayqyq -

(2.1-10)
where the superscript " indicates small deviations
from the steady, rectilinear nominal flight condition
mentioned above. The side slip angle in the
nominal flight condition is defined to be zero.
(This means that if the nominal aerodynamic tlow
field is asymmetrical due to for example propeller
slipstream swirl the nominal roll angle will have a
value different from zero. Below, this value is
assumed to be small enough to be negligible.)
From section 2.1.2 it follows that we may write the
external aerodynamic force increments Xg, Yg and
Zs in terms of corresponding increments of
accelerometer readings according to:

5&5 = ngm ,
7, - nysm ’ (2.1-11)
Zg = KZSm )

The linearized forms of the kinematical relations
for the Euler angles of Fg are:

dg =pg +tanf;rg,

D2

s “ds» (2.1-12)

~ rg

COS Yy

Now it is convenient to express the geographical
position in terms of coordinates Xy, yr, zt along
the axes of the vertical reference frame Fr.
Equation (2.1-6) is then written as:

XT Ug xT

(2.1-13)
Yr| =L |Vs|* yt| >
Z7 Wg 2y

where the transformation matrix Lyg can be written
as:

~  singgsinBgcosyp g cosdgsinBgcosy ]
cosBgcosy ¢ e . .~
- cosfpgSinp g + sinpgsimp ¢

I"I’S= ~

) sinpgsinfgsimp g cosdgsinBgsimp g
cosOgsimp g ~ ~

- sinpgcosy ¢

cosdgcosbg

+ COSPg COsY g

-sinQg singgcosOg

Linearization of (2.1-13) results in:

~ ~

Xp¢ = COsygUg +sinygwg - Vgsiny By + W,‘T
Yo = v + V cosy s + W

Yr s 008 Ws yT
zZp = -sinygug  + cosyyWg - Vjcosy,05 + WZT

(2.1-14)
Because of the definition of the nominal flight
condition given above, it follows that:




Vs = Vs Wg = Wg
Ps =Ps > 9s =4s g =13
4’5 =¢5
with:
~ W, ~ Vv
a_s, Bs_s
Vo Vo

Equations (2.1-9), (2.1-12) and (2.1-14) may be
written as the following sets of linear first order
differential equations for the longitudinal variables:

ug = -cosy,0 + Axs ,
= —gsiny06 + KZS "
a = + qS ’
Vo
es = qS ’
Xp = cosygug + Vi sinyya - Vsiny 0 +WXT,
;T = —sinyoas + Vocosyoa - Vocosyoé + WZT,
(2.1-15)
and lateral variables:
Z goOsYpds * Ay
= - rs s
Vo
J; S fs (2.1-16)
cosY,
o=+t
yr = VoB + Vjcosyyyp + WyT .

Eqgs. (2.1-15) and (2.1-16) are a linearized form of
the nonlinear kinematical relations (2.1-5), (2.1-3)
and (2.1-6) derived in section 2.1.2. As said above,
they will not be used in actual flight path
reconstructions but rather will serve to analyze the
reconstructibility characteristics of flight path
reconstruction problems in chapter 3.

2.2 Aerodynamic Models

Aerodynamic models are defined in the present
conlext as mathematical models of the aerodynamic
force- and moment components in a body-fixed or
wind-axes reference frame. The development of
aerodynamic models from (dynamic) flight test
data requires an initial ‘guess’ of the mathematical
structure of the model. This initial guess is referred
to here as the a priori model, indicating that no
flight data was yet incorporated in the model. A
priori models can be based on physical knowledge,
(semi) empirical databases, results from
Computational Fluid Dynamics or on wind tunnel
measurements.

The form of the a priori model will strongly
depend on the ultimate goal of the flight test
program. If the goal would be to develop an in
essence phenomenological model, to be used in for
example control system design or simulation it
would ‘suffice’ to select a set of suitable variables
‘explaining’ the observed phenomena (the time
histories of aerodynamic force- and moment
components). If, however, the flight test program
is aimed at an analysis of aircraft performance
characteristics, a physical model would be needed
showing minute details in (sub)models of thrust,
lift and drag, e.g. Mulder and Van Sliedregt [12].
If the atmosphere is in uniform motion with respect
to earth and the effects of elastic deformations of
the airframe are neglected, the total aerodynamic
force and moment depend on not only the present
values of variables such as control surface
deflections, angle of attack and side slip angle but
also on the past trajectory with respect to the
surrounding air mass. This leads 1o aerodynamic
models consisting of integrals of ‘indicial
functions’ [58]. A more practical and well proven
alternative is to expand each of the above
mentioned variables as a (truncated) Taylor series
backwards in time. This results in aerodynamic
models in the form of (nonlinear) algebraic
functions of the above mentioned variables and
their derivatives with respect to time,

Below in section 2.2.1 an example is given of an
aerodynamic model for the case of a low-subsonic,
propeller driven aircraft. The model consists of
three polynomials for the aerodynamic force
components, three polynomials for the components
of the aerodynamic moment and an expression
relating engine power to a measure of propeller
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thrust. The linearized version of the model, which
will be referred to in chapter 4 and 5, is derived in
section 2.2.2.

2.2.1 A Nonlinear Aerodynamic Model for Low
Speed Propeller Driven Flight

In this section an aerodynamic model is developed
for the case of low speed propeller driven flight.
The first part of the model describes the
(dimensionless) aerodynamic force and moment
coefficients while the second part expresses a
measure of propeller thrust in terms of engine
power.

For a given aircrafl configuration the components
of the aerodynamic force and aerodynamic moment
depend on the present flight condition as defined
by variables as angle of attack, side slip angle,
body rotation rates, control surface deflections,
engine power setting, dynamic pressure, true air
speed, Mach number and Reynolds number. By
considering dimensionless force and moment
coefficients dynamic pressure disappears from the
list of wvariables. On the other hand, in
nonstationary flight conditions the past values of in
particular the angle of attack and the side slip
angle are known to also have a nonnegligible effect
on the force and moment coefficients. This is
usually accounted for by including derivatives with
respect to time in the list of variables. In the
present case of low speed flight we may assume
the effect of compressibility to be so small that it
can be neglected. Also, scale effects can probably
be ignored, as Reynolds number
occurring in flight are relatively small in the
present case.

If the propeller is represented as an ideal pulling
disc, it is possible to derive the following relation:

Apc L P

%pV? YpV?2
where Ap, denotes the increase of total air pressure
in the propeller slip-stream and P denotes engine
power. It can also be shown that Ap,/‘/sz2 is a
direct ‘measure’ for propeller thrust [3]. In the case
of propeller driven aircraft, neglecting
compressibility and scale effects, variations of air
speed V and engine power sellings (engine speed
and manifold pressure in the case of a piston
engined aircraft) affect the aerodynamic force and
moment coefficients only indirectly through

(2.2-1)

changes of Ap(/l/zpvz. Consequently, the effect of
true air speed and engine power setting can be
represented by one single variable Apt/%pv2 in the
list of variables above |195]. Assuming that the
aerodynamic force and moment coefficients are
analytic functions of the remaining variables then

they can be expanded in the form of a Taylor
series. If the effects of the lateral variables B, p, T,
B, 0, and 6, on the longitudinal coefficients Cy, C,
and C, and vice versa, the effects of the

longitudinal variables Ap/%pV?, a, q, & and 8, on

variations

the lateral coefficients Cy, C, and C, are neglected,
then first order models for the longitudinal and
lateral aerodynamic force and moment coefficients
can be written in terms of dimensionless variables
in the following form:

Cy =Cy +C +Cya+C q_E_ +
X Xg xAP“/szz Xq X4V
ac
+ Cx(;—v— + be 5, »
Ap r
c, =C, + ‘_+C,a+C, 3¢+
z Zy CIRVISVE! Z, ¢ 147V
ac
* it O
A —
Cln = m, pl + Cm a + Cm ic- +
0 Ap %pvz a qV
at
+ m(;_v— my e’
(2.2-2)
and:
b rb
Cv = Cy, *Cygb * Crog *Cr gy ¥
+cyﬁ+c b +Cy 6,
r
C, =G, *C,b+G LARNYORILLI
P2V T2V
+ C B e b uc b
Cn=n+C|3+C pb rb+
0 P2V r2v
C E‘i + C"o 6 +C_ O
(2.2-3)
In cases where an aerodynamical plane of




symmetry exists (coinciding with the geometrical
plane of symmetry) it follows that these ‘cross
coupling’ effects can be neglected in first order
aecrodynamic models.

It can be seen here that the relations (2.2-2) and
(2.2-3) result in nonlinear relations for the
dimensional aerodynamic forces and moments. For
example, using equation (2.2-1) in the model for
Cy in (2.2-2) we get:

P
Cy = (Cxo + aCxAp‘) + bCXAPIW +
atT
Xa ™

+C, 0

qc
+ Cxua + Cqu +C Xy Oc -

For constant engine power P the expression for the
dimensional aerodynamic force X:

X = Cy%pV?S
may then be written as the following nonlinear
expression:

X =Xy:V2 + Xy V!4 X aV2 s

+ X, vaVv + X&v‘;‘V + Xbcvzf)eV2 .

In line with what was stated above concerning the
development of a priori aerodynamic models
systematic wind tunnel evaluations were made to
verify the postulated relations between the force
and moment coefficients and the following
variables in the right hand side of (2.2-2) and
(2.2-3): a, B, Ap/%pV? &, 8, and 8. The
evaluations were made in a high quality low
subsonic wind tunnel with a 1:11 scale model of
the De Havillland DHC-2 Beaver [14]. The model
was equipped with an engine driven propeller to
simulate slipstream effects. Some of the results are
shown in fig. 2-1. These wind tunnel results
indicated that the a priori models (2.2-2) and
(2.2-3) would fail to describe several significant
nonlinear characteristics. For example, it follows
from fig. 2-1(a) that Cy and C,_ depend in a
nonlinear fashion on a. Further, a pronounced
lateral to longitudinal aerodynamic cross coupling
exists in the sense that C  also depends on B. Fig.
2-1(b) shows that while the C-f and C-§ relations
are approximately linear, this is certainly not true
for the relation C -f. In addition the same figure
shows that Cy, C, and C_ all depend on
Ap/%pVand o, an example of longitudinal to

lateral aerodynamic cross coupling. Finally, from
Fig. 2-1(c) it follows that the lateral control
derivatives with respect to 0, depend on Ap,/l/zpvz.
In retrospect this is not surprising since at least
part of the vertical tailplane is submerged in the
propeller slip stream.

The wind tunnel results can be exploited next to
extend the a priori model with additional terms
accounting for the observed (static) nonlinearities
and cross coupling effects. However, as we are
inclined to add only a limited number of additional
terms for reasons discussed in chapter 4, the
resulting a priori model will still only be capable to
approximale the observed static aerodynamic
characteristics. The resulting a priori model
accounts for the nonstationarity of actual flight
conditions with simple terms containing first order
derivatives of o and . We must expect this to lead
to rather crude approximations of the actual
complex aerodynamic phenomena of nonsteady
tlight.

Finally, the resulting a priori model describes only
the deterministic components of the aerodynamic
force and moment coefficients. This means that
stochastic contributions as generated by turbulent
boundary layers, turbulence in the propeller
slipstream and local flow separations are not
included. The etfect of such random fluctuations on
aircraft motion is discussed in Jones |63].

2.2.2 Linearized Aerodynamic Models

For small deviations from a stationary rectilinear
flight condition, well known linear models may be
derived of the aerodynamic force and moment
coefficients [57].

The linear nondimensional models of the
longitudinal force and moment coefficients Cy, C,
and C,, may be writlen as:

- u/VO -
] | S S, O O[] &
EZ = Czu Czu CZq Czu Czbe qE/VO
C'“ m, Cm(‘ Cm 4 mg mbc U.F/ V0
SC
(2.2-49)
where:
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pd X

Cx = ——r,
YapyVo S

¢, =_"% _. (2.2-5)
YapyVo S

= _ M

m T T 5=
Yapo Vo SC

and Cy , Cy , etc. denote the longitudinal stability
and control derivatives in the body fixed reference
frame Fg. The models in the stability reference
frame Fg can be written as:

.GS/VO.
Ex a
Cag =[Cx,z.n]s' q455/V, (2.2-6)
Cog oIV,
5,
where:
CXuS Cx(ls CXqS CXUS bees
[CX,Z,m]S = CZ“S Czas Czqs CZ‘.‘S Czbes
{C"’“s C'““s "4g C"‘<.ls e

The linear nondimensional models_of the lateral
force and moment coefficient Cy, C, and C, may
be written as:

o Or O
I
0

where:

~

~ Y

Cy = ———,
YapyVo S

¢, =Lt (2.2-8)
1, Vi Sb

e . N
Yop, Ve Sb

and Cy , CYp’ etc. denote the lateral stability and
control derivatives in the body fixed reference
frame Fg. The corresponding models in stability
frame of reference Fg can be written as:

~

B
psb/ZV0

O
-
7

rsb/2V, (2.2:9)

Bb/V,

O

ns

where:

[CYv'v"] s-

Some computer programs are available for the
linearization of aerodynamic models. In particular
NASA Dryden has developed an interactive Fortran
program ‘linear’ that provides the user with a
powerful and flexible tool for the linearization of
aircraft aerodynamic models [64]. The program

_ numerically determines a linear system model from

a nonlinear aerodynamic model supplied by the
user.

2.3 Observation Models
Observation models relate certain measured

variables such as airspeed and barometric altitude,
to the components of the state vector and input




vector as defined in (2.1-8). Observation models
take the form of nonlinear algebraic relations
between the observed variables and the state- and
input vector components, see section 2.3.1. A
linearized version, used in the reconstructibility
analysis of chapter 3 is given in section 2.3.2.

2.3.1 Nonlinear Observation Models

In this section the models are derived for
observations of true air speed V, angle of attack a,
side slip angle B, barometric altitude variations and
geographical position measurements.

True air speed V can be derived from differential
and absolute barometric and temperature
transducers. The observation model for V follows
directly from its definition as the resultant of the
air velocity components u, v and w along the axes
of Fg:

> (2.3-1)
By definition, the angle of attack is:

(2.3-2)

o = arctanﬁ s
u

which is different from a,, the angle of attack
measured by an angle of attack vane. This is due to
a number of effects, such as aircraft induced air
velocity components, the rotation of Fy about the
Xp and Yp axes, vane dynamics and boom
bending. The first two effects can be described by:

W =X, q tY.Pp

a, = arctan
M u

+ Cupa + Cuo ,

(2.3-3)
where C, is the upwash coefticient and C, 'is the
zero shift of the angle of attack vane. It is assumed
that the measured angle of attack depends linearly
on a [36]. In practice, the actual upwash may also

depend on engine power settings.

The side slip angle is defined as:

B =arctan— (2.3-4)

u® + w

which is again different from what a side slip vane
would measure, as shown in fig. 2-2. When the
vane axis of rotation is parallel to the Zg axis and
the effects of an aircraft induced side velocity
components and the rotation of Fy about the Xg
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and Zg axes are taken into account, the side slip
vane angle is:
Vot Xl T 2P (2.3-5)

B, = arctan + C,B + CBo ,

where xg and zg are the coordinates of the wind
vane relative to Fg, C; is the sidewash coefficient
of the wind vane and Cﬁo accounts for the vane
being positioned outside the aircraft’s geometrical
plane of symmetry as well as for any asymmetry of
the air flow due to for example rotation in the
propeller slipstream. The aircraft induced part of
the measured sideslip angle is assumed to be a
linear function of B. The quantities C; and Cg_
should either be given or estimated from the flight
test data.

Altitude variations can accuralely be measured with
differential pressure transducers as long as the
flight condition is ‘quasi stationary’. The
corresponding observation model is:

Ab = -z, . (2.3-6)
In principle any navigation system (e.g. inertial
platform, doppler radar, OMEGA or DME) may be
used for the measurement of the geographical
position. In the case of a flat earth approximation,
it is often convenient to express the geographical
position in terms of coordinales x; and yg in a
vertical earth fixed reference frame Fp.

V, Ah, a, and B, are components of an observation
vector y :

y = colV, b, q,,8,) . 23-7)
The observation vector y above reflects the
configuration of the flight measurement system as
used in the flight test program discussed in the
following chapters. If for example the measurement
system would include an Inertial Reference System
(IRS) then pitch, roll and yaw attitude angles could
have been included in y as well.

Equations (2.3-1) to (2.3-6) may be written in the
form of the following observation equation:

(2.3-8)
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2.3.2 Linearized Observation Models

In the stability reference frame Fg, the equation for
resultant velocity V is given by:

Vo= yud v s wl . (2:39)
The corresponding linearized from is:
V-3, (2.3-10)

The linearized form of the observation model of
the angle of attack vane for small deviations from
the nominal stationary and rectilinear flight
condition is given by:

~ Wy
+ = arclan— +

L A N L I

w. )2\ Y L

1 +[2
Yo

+ Cplag + @) + Cy

=(1 + Cup)oz0 + CUO + (1 + Cup)cx +

X Yoo ~
(ls~ ag

- =95 * —Ps -
VO

(2.3-11)
In the nominal flight condition, the vane angle is:
o, = (1 + Cop) o + Cy -

Subtraction of o, from both sides of equation

(2.3-11) results %in the following linearized
observation model:
~ ~  Xag~ Yag~ (2.3-12)
- %8 $ .
a, Cul(l —qu + VO Ps >
where:

C,, = (1 +Cp)

The observation model of the sideslip vane can be
linearized in a similar way resulting in:

~ VO
BVO B, =arctanu_ +
0
v Xg~  Zg~
N S U g
v 2Ly oy Yo
1+ |2
Ug
+ Ci(By + B) + Cy
v Xy~ Z
=Y + B —_Bp+CsiB + G,
U Yo Yo

since vy=B,=0. Substitution of wy=Vycosa, and
transformation of xg, zg, T and p from Fy 0 Fg
results in:

~ -~ xgq ~
B"O +B, = C‘31 + ° -
Vocosay (2.3-13)
z
Bs ~
V., cosa, * CBO ’
0 0
in which:
C[j = 1 + Csi
1 COs O,

It is very difficult to determine Cg in flight. This
can be seen as follows. Assume first a stationary
rectilinear flight condition with roll angle equal to
zero. Then, for a strictly symmetrical airflow
condition, the sideslip must be zero. For propeller
driven aircraft, however, the airflow cannot be
assumed to be symmetrical due to the rotation in
the propeller slipstream. Consequently, a stationary
rectilinear flight with zero roll angle does no
longer imply a zero sideslip angle (in addition, if
the side slip vane is not mounted in the aircraft’s
symmetry plane, there will also be an offset in B,).
Let the side slip then be equal to B, and the vane
indicate a value B, in this condition of zero roll
angle. In the nominal flight condition with zero roll
angle mentioned above it then follows from
equation (2.3-13) that:

Cp = Byy ~ Cp,Bo >
and because 3, is unknown, Cﬁo is unknown also.
The consequence of this is that the linearized
observation model of the side slip vane, comprises
an unknown constant Cﬁo according to:




2y

V,cosa,

Ps+Cp,
(2.3-14)
where (3 indicates a deviation of the vane angle
with respect to 8, . The fact that Cg_ is unknown
actually affects the reconstructibility of the sideslip
angle. This is discussed in detail in section 3.1.2.

2.4 Models of Measurement Errors

The outputs of the sensors used for measurement
of the system input and output signal components
are corrupted with time dependent errors.

The components of the input vector u are measured
by the accelerometer and rate gyroscopes. These
measurements are assumed to be contaminated with
constant bias errors as well as with random errors.
By careful pre-flight calibration the scale factor and
misalignment errors can be neglected, although
these can become important for recordings of long
duration. The error model is expressed as:

A A
A (i) A (i)
u = AW _ (AL _ A - wii) (2.4-1)
p(i) p(i)
q() q()
G) ), ()

where the index i refers to a discrete time t,

A = col(h, Ay 0 AL A A
represents a veuor of btas error corrections which
are unknown but assumed to be constant during
each dynamic flight test manoeuvre and:

ﬂ=col(wx,wy,wz,wp,wq,wr)” .
represents a veclor of additive stochastic
measurement errors. These errors are assumed to
be zero mean and uncorrelated, i.e.:

E{w(i)}
E{w@Hw ()} = V,,9; -

0
= (2.4-2)

il

The measurements of the observation vector are the
barometric and the vane measurements. The
barometric measurements V and Ah are assumed to

be corrupted only with random measurement errors.
The bias of these differential barometric
measurements can be measured by short circuiting
of the pneumatic sensor systems prior and posterior
to each flight test manoeuvre, which allows an
accurate post flight compensation of the bias errors.
The absolute static pressure measurement defines
the reference condition and therefore its bias is
usually not important for parameter identification.

Usually, the bias and scale factor errors in the vane
angle transducers are small enough to be
negligible, because these transducers are relatively
stable and can be calibrated very well before flight.
In addition in flight these transducer errors are
indistinguishable from the much larger upwash and
sidewash calibration coefficients discussed in
section 2.3. Therefore only random errors are
assumed.

In summary the measurement errors of the
observation vector y are all assumed to be:

Y, =Y +y, (2.4-3)
where the measured variable is denoted by y, , and
y is assumed to be free of bias errors. The
stochastic measurement errors v are assumed to be
additive, zero mean and uncorrelated according to:

E{v()}
E{v®Y()} = V.5, -

The final set of measurements are not in the
observation model presented in section 2.3, because

they are not used in flight path reconstruction, but
in parameter identification.

n
(=]

(2.4-9)

1
<
o

The total pressure increase Ap, in the propeller
slipstream was measured with a differential
pressure transducer of the same type and quality as
used for the measurement of V and Ah. Therefore,
zero mean and uncorrelated measurement errors
can also be assumed for this variable. The control
surface deflections 8,, 8, and &, transducers are
also stable sensors, which can be well calibrated on
the ground, so again zero mean and uncorrelated
measurement errors can be assumed.

The above modelling of the measurement errors is
only valid if the utmost care is devoted to the
quality of the transducers as well as of the data



logging part of the instrumentation system and to
careful and repeated calibration of all measuring
channels. The typical accuracies of the
measurement system used in the flight experiments
is shown in chapter 7 by the results of extensive
laboratory calibrations.

In the design phase of the above measurement
system much attention was given to the ‘quality’ of
the transducers to be used in the system. Perhaps
one of the most significant benefits of using such
high quality transducers is that models of the
measurement error characteristics can assume
relatively simple forms, a typical example of this
are the inertial measurement errors.

2.5 Conclusions

In this chapter, different kinds of mathematical
models were presented, namely kinematic,
aerodynamic, observation and error models.
Nonlinear as well as linear versions of these
models were derived. The nonlinear versions of the
models are used for the actual analysis of dynamic
flight test measurements. Their linearized
counterparts are used in chapter 3 and 4 for
analysis of state reconstructibility and identifiability
of stability and control derivatives, and in chapter
5 for the optimization of control inputs of dynamic
flight test manoeuvres.
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Figure 2-1(a): Longitudinal aerodynamic force and moment coefficients of the DHC-2 Beaver aircraft
as a function of angle of attack a. and side slip angle P for three different values Ap/%:pV? as
measured at a Reynolds number of 0.47x10° on a 1:11 scale model in the wind-tunnel.
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Figure 2-1(b): Lateral aerodynamic force and moment coefficients as a function
of side slip angle B, for three different values of Ap /VapV>.
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Figure 2-1(c): Lateral aileron and rudder control derivatives as a function
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Figure 2-2: Definition of side slip angle B and side slip vane angle B,
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3 FLIGHT PATH RECONSTRUCTION

The problem of flight path reconstruction from
onboard measurements studied in this volume
centres around properly combining the kinematic
model of the aircraft’s state trajectory (and so
implicitly the aircraft’s flight path) as discussed in
chapter 2, with a compatible set of transducers
such as inertial, barometric and flow angle
transducers for the measurement of the input and
output signals, see chapter 7. The calculation of the
aircraft’s state trajectory from the recorded input-
and output measurements is what is called a state
estimation_or state reconstruction problem in the
system theoretical literature. The term estimation is
used if the calculation of the state vector is based
on the measurements up to and including the
present time. The term reconstruction indicates that
all available measurements of a complete flight test
manoeuvre are used to calculate the state vector.
Reconstruction can only be used for post-
manoeuvre data analysis. However, as a
‘reconstructed’ state vector is based on past as well
as future measurements it will be intuitively clear
that reconstructed state vectors are in principle
more accurate than ‘estimated’ state vectors.

The earliest aircraft state reconstructions used
barometric airspeed and altitude output
measurements, e.g. Gerlach [3]. As airspeed and
altitude measurements define a ‘flight path’ the
aircraft  state  reconstruction problem  was
subsequently called ‘flight path reconstruction’ by
Jonkers [6].

The initial motive behind the development of flight
path reconstruction methods was to reconstruct
certain variables which are difficult t0 measure
directly in dynamic flight conditions. One typical
examples of such a variable is the angle of attack.
It soon followed that several transducer bias errors
could be (and in fact had to be) estimated
simultaneously.

Following a flight path reconstruction, the
reconstructed state variables are used for the
identification of the aerodynamic model as
described in chapter 4. Several performance and
stability and control characteristics of interest may
subsequently be derived either directly from the
aerodynamic model or by correcting the
reconstructed aircraft states of the actual flight
condition of nonstationary flight 1o a
‘corresponding’ stationary tlight condition, also

using the identified aerodynamic model [5,11].

Historical Background

The first application of state estimation to post
flight data analysis was made by Gerlach around
1960 at the Delft University of Technology. While
early attempts to measure aircraft performance in
quasi-steady and nonsteady flight conditions
suffered from inadequate instrumentation, he
applied high accuracy instrumentation techniques
and showed that the need for direct measurement
of the angle of attack could be eliminated. This
stimulated research in and development of so
called flight path reconstruction methods.

This early invention was primarily concerned with
the accurate determination of the angle of attack
and airspeed during dynamic symmetrical flight
test manoeuvres. The difficult problem of
measuring the angle of attack directly in dynamic
flight conditions by means of vanes was
circumvented by deriving it instead as the
difference between the pitch angle and the flight
path angle. Airspeed and tlight path angle could be
derived from horizontal and vertical speed. Pitch
angle, horizontal and vertical speed as well as
altitude were all obtained by integrating functions
of measurements from a high accuracy piich rate
gyro and high accuracy normal and longitudinal
accelerometers. The initial conditions for the
integration were determined from airspeed and
altitude measurements at the steady state initial part
of the manoeuvre. It soon turned out that the
results of the integration suffered from imprecise
initial conditions and the etfect of small unknown
bias errors of the pitch rate gyro and the
longitudinal and vertical accelerometers. This led to
the idea to ‘compare’ computed aifspeed and
altitude with high accuracy baromelric
measurements of these variables. Regression
techniques were used next in an iterative loop to
compute least squares estimates of the initial
conditions and of the unknown bias errors, see [4,
5,66). Later, Jonkers [6] used the Extended Kalman
Filter and Kalman Smoother to solve the same
problem. Since the barometric airspeed and altitude
measurements define a flight path he introduced
the name flight path reconstruction. Mulder [10]
compared Maximum Likelihood solutions with
those trom the extended Kalman Filter and Kalman
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Smoother.

Except for probably being the first to demonstrate
the feasibility of flight path reconstruction methods
Gerlach also pointed out that these methods may
serve also to provide a check on instrument
accuracy and data consistency apart from
generating estimates of unmeasured or poorly
measured variables. These items were the primary
objectives in most of the studies that followed
Gerlach’s original work [3 to 5]. All results of
Gerlach were obtained in low speed symmetrical
flight conditions. Subsequently the technique was
applied successfully to high speed flight and
asymmetrical flight conditions.

Subsequently, probably the earliest uses of slate
estimation techniques for flight path reconstruction
elsewhere were Wingrove [31 to 33] at NASA
Ames, Eulrich and Weingarten [34] at Calspan, and
Molusis [35] at Sikorsky Aircraft and later Klein
[36] at JIAFS, NASA Langley. Over the past few
years, the work in this field has been evolving
towards the use of more detailed kinematic models,
the development of more sophisticated algorithms,
and new applications [31].

The flight path reconstruction problem can be
solved by a number of different methods. Several
important techniques are:

Weighted Least-Squares - This method solves the
case where the random error is assumed to be

present only in the inputs of the kinematic model

as used for flight path reconstruction. This means
that only system stale noise is considered. The
resulting algorithm, which is of the so-called
Equation Error type, see Maine and lliff [1] and
chapter 4 later, is relatively simple and very
efficient from the numerical point of view.

Extended Kalman Filter/Smoother - A standard
Kalman filter [190] estimates the state of a linear
system with an error model which allows noise in
the inputs (system state noise) as well as noise in
the observations. The Kalman algorithm is a
recursive formula, which proceeds sequentially
(filters) through the data. For a fixed time interval
a substantial improvement in accuracy can be
obtained by adding a smoothing step in the reverse
time direction. Nonlinear kinematic equations are
handled by linearizing around a nominal trajectory

(usually the current best estimate of the trajectory
is used) and bias and scale lactors can be estimated
by including them as undriven states with unknown
initial condition, see section 3.1 below and Jonkers

[6].

Qutput Error - This method applies in the case
where all errors are assumed to be in the
observations, i.e. there is no state noise. In
principle the method compares a simulation of the
actual system with the measurements, while
integrating so-called sensitivity functions, which
describe the influence of the model paramelers on
the state. After one simulation run, a
Gauss-Newton (or allernative) optimization
algorithm is used to find new estimates of the
model parameters. In practice this process has to be
repeated for several iterations, which makes this
method relatively expensive in computer time. In
addition the number of sensitivity equations can be
large, which adds to the computer memory
requirements. The sensitivily equations can be
derived analytically. An alternative is compute
sensitivities directly via finite differences. This
results in very flexible software programs.

Filter Error - This method solves in principle the
same problem formulation as the Extended Kalman
Filter/Smoother i.e. with system state noise as well
as observation noise. In principle it is a
combination of a Kalman Filter and an Output
Error method. The Filter Error method is the most
expensive with respect to computer time of the
above methods. In addition it is the most complex
with respect to implementation and therefore
seldomly used for practical flight path
reconstructions.

Flight path reconstruction as a means of checking
instrument accuracy and data consistency is now
used by many flight test groups [37 to 49] and
[235]. Once a consistent, smoothed set of time
histories is obtained {rom the data, other analyses,
such as estimation of aerodynamic model
parameters can be readily performed, see chapter 4.
The data consistency application is now more or
less a routine matter and has been extensively
treated in the literature. Some of the various other
applications of flight path reconstruction have been
in the area of aircraft accident analyses [50],
estimation of wind vector components from high




altitude turbulence measurements [51], testing of
high performance aircraft involving high angle of
attack and spin manoeuvres [52], aircraft modelling
[9 to 12,61,119] and stall speed determination. A
good number of additional citations on this subject
can be found in the papers of Chapman and Yates
[189].

A number of computer programs are available for
state estimation, but a particular reference must be
made to the package SMACK (SMoothing for
AirCraft Kinematics) [69] developed at NASA
Ames research centre, DEKFIS (Discrete Extended
Kalman Filter Smoother) developed at the Systems
Control [44], FTDA (Flight Test Data Analysis)
[30] developed at the Delft University of
Technology and FPR (Flight Path Reconstruction)
package developed at NLR Amstlerdam [217].

Although it is possible in principle to apply any of
the methods discussed above to the solution of the
flight path reconstruction problem a choice is made
in the remaining part of this chapter for the
Extended Kalman Filter/Smoother for the following
reasons. First the Extended Kalman Filter/Smoother
allows to account for sysiem noise as well as
observation noise. The second reason is that this
method has been well proven in many actual
applications to flight path reconstruction problems.
We first start discussing the application of the
Extended Kalman Filter/Smoother to the flight path
reconstruction problem in section 3.1, and then
analyze some of the reconstructibility
characteristics in section 3.2. This analysis is
based on the linearized form of the kinematical
model for flight path reconstruction as derived in
section 2.1. We continue with a practical example
in section 3.3 and conclusions in section 3.4.

The Extended Kalman Filter/Smoother algorithms
used for flight path reconstruction are listed in full
in appendix C. More details can be found in the
extensive Kalman filter literature, for instance Sage
and Melsa [71] for theoretical background or
Brown and Hwang [234] for practical
implementation details.
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3.1 Nonlinear Flight Path Reconstruction

In this section, extended Kalman filtering and
smoothing algorithms are applied to the solution of
the nonlinear flight path reconstruction problem.
First we will discuss the basic linear Kalman filter
in section 3.1.1. Subsequently in section 3.1.2 it is
shown that the problem must be re-formulated to
tit the Kalman filter model. The application to the
nonlinear flight path reconstruction is discussed in
section 3.1.3 and the estimation of the unknown
parameter vector is discussed in section 3.1.4. For
convenience a summary of the Kalman filter and
smoother algorithms is given in appendix C,
together with a description of the application of
Maximum Likelihood estimation to deterministic
nonlinear flight path reconstruction. Finally section
3.1.5 describes how some additional quantities,
which are needed for aerodynamic model
identification, can be derived from the
reconstructed tlight path.

3.1.1 Basic Kalman Filter

This subsection discusses the basic linear Kalman
filter as first published by Kalman [190]. This filter
is based on the linear stochastic differential
equations:

X(1)
y(®
y (@) =y@ + @) .

F-x(®) + G,-u(®) + G -w(),

Hex(t) + Ju() | (-1-1)

In practice all measurements are sampled with a
fixed time step At and the data processing is done
by sequentially processing these samples. This
means that the discrete form of (3.1-1) is required.
The discrete form of the linearized slate equations
is:

x(i+1)
v ()

m

@-x(i) + F,u() + T, w(),
Hex() + J-u(i) + ¥() -

(.1-2)

In which the transition matrix @, the deterministic
input distribution matrix I' | and the stochastic input
distribution matrix I, can be calculated from F, G
and G, as shown in appendix C. The process noise
w(i) and the measurement noise v(i) are assumed
to be zero mean and white gaussian noise with
covariances V and V_, respectively.
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The Kalman filter that produces the optimal
estimate of the state of this system is described in
the following. When the estimate of the state at
time step t,, X(i|i), is known, the estimate at time
step t,,,, X(i+1]i), is:

x(+1i) = ®xGili) + T, () G-1-3)
This is called the propagation step. The covariance

matrix P(i+1|i) of the state at time step t;,, follows
from a known P(i|i) as:

i+l

P(i+l]i) = PG[i)®T + T,V T, . (3.1-4)
At this moment the measurements at t,,, can be
used in the update step to improve the state
estimate at time step t;,, by:

;(i+1|i+1) =;_(i+1|i) +

+ KG+D) [y, G+1) = HxGe1]i) - JuGen)],
(3.1-5)
where the gain matrix K(i+1) is calculated from the
covariance matrix P(i+1[i) by:

KGi+1) = PG+1[)H T [HPG+1[pH " + v, "

(3.1-6)

The covariance matrix of the improved estimate
P(i+1[i+1) is calculated as:

PGi+1]i+1) = [I - K(i+1)H] PGi+1]i) . 3.1-7)

These relations are applied recursively, starting

from the first time step t, by using the initial

values for the estimate and the covariance matrix:

X010)
PO0)

The estimate of the state vector at the final time ty
X(N|N) is based on all measurements between 1
and ty, but for all earlier times the estimate X(i|i)
is based on only a part of the available
measurements. The filter estimate can be improved
by adding a Smoother step to the algorithm. One
implementation of a Smoother is to start at the
final time ty and then work backwards towards t,
all the while correcting the estimates for the
information contained in the measurement afier the
current time, resulting in a smoother estimate
X(1|N), which for all t has a lower covariance
P(i|N) than the filter estimate X(i|i) with P(i[i).

0,
P, .

(3.1-8)

3.1.2 Treatment of Input Noise

The standard Kalman filter is based on the linear
stochastic differential equation given by (3.1-1). In
section 2.1 a set of differential equations was
derived that relates the aircraft state vector to the
input vector of specific forces and angular rates
(2.1-8b), repeated here:

X =f(x.u), (3.1-9)
x©) =x,.

where the state vector and input vector were
defined in (2.1-8a) as:

2(_ CO](U,V,W,‘I);e"P,XE:yEyZE),

(3.1-10)

u col(Ax,Ay,Az,p,q,r).

If the input vector u and the initial value of the
state vector X, are precisely known then the state
vector can be reconstructed by simple integration.
In reality not all components of the initial value of
the state are measured and the measurements are
corrupted with errors. The input vector u is usually
completely available, but its measurement is
corrupted by errors such as bias error and random
noise.

In sections 2.3 and 2.4 observation models and
measurement error models were derived leading to
equation (2.4-1) for the measurements u,, of the

input vector and to equation (2.4-3) for the

measurements of the state vector. The total
observation vector is then:
u w
. - " (0, 0) ¢ | (3.1-11)
Lo A

where the vector 8 includes all the unknown
parameters like biases, scale factors, vane
calibration coefficients, wind components, etc. The
vector w accounts for the noise on the
measurements of the input vector u, and v

accounts for the noise on the measurements of the
observation vector y, .

The problem with this formulation is that the ‘true’
input vector u is not available for use in equation
(3.1-1). It is therefore convenient to transform the
formulation into an equivalent form by not using




the ‘true’ but the ‘measured’ input vector u, in
(3.1-1). Using (2.4-1) this means that the system
error model is now considered to be driven by
u, +w+A instead of by u, where

(3.1-12)

u =colfA, A, ,A
—m

> p ’ q ’ r ’
X m y m m m m m

Zy

and A is the bias error error correction on the
measurements of the original u. (It should be noted
that A forms part of 8.) The new input vector u,, is
by definition known exactly, but the noise vector
w and the the bias error correction are now seen to
be driving the system, e.g. that w is treated as
system noise in (3.1-1), as was already implied by
choice of name. The system differential equation
now becomes:

=7 E(E’Em’ﬂ’g) ’ (3.1-13)
x(0) =x .

and the observation equation becomes:
Y, =hix,u »9) +V. (3.1-14)

The observation vector y,, now no longer includes
direct measurements of the input vector u,, but u
is still needed in the observation equation, because
the angular rates and specific forces still appear in

the observation models derived in section 2.3.

The equations are now in a form which is suitable
for the application of Kalman filter theory. It
should be added here that there are other
approaches for this problem, see for instance Bach
[40 to 43}

3.1.3 Linearized Kalman Filter

Now that the system equations are in the proper
form the implementation of the nonlinear Kalman
filter will be discussed. Initially, the estimation of
the unknown parameter vector will be postponed to
the next subsection.

The general flight path reconstruction problem is
nonlinear. However, in order to apply Kalman filter
techniques, the differential equations describing the
errors must be linear. Three approaches will be
discussed in the following.

In the first approach the kinematic and observation
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equation are linearized around a nominal steady-
state flight condition. The problem is usually
defined in the stability axis system using
perturbation variables referred to the steady-state
condition. This necessitates the calculation of the
matrices of partial derivatives F,G,, G, H and J
which in this case are constant. This approach is
assumed in appendix C.1 and is also used in the
reconstructibility analysis in section 3.2. This
approach is not used for practical flight path
reconstruction, because for linearity reasons only
small deviations from the steady-state flight
condition are allowed.

In the second approach it is assumed that there is
a nominal trajectory x"" which is close to the true
solution and in addition satisfies the system
differential equation. This can be done by
integrating (3.1-9) using u,_ instead of u. If the
errors in u_are small this will be reasonable. Then

Lt

the perturbation X can be defined as:

=x - xom (31’15)

|>

By linearizing the system equations we obtain:

i
T}
>
+
Q
€

2 (3.1-16)

Yy

Hx +v,

where F, G, and H now are time-varying matrices
of partial vector derivatives of the functions
f(x,u,w) and h(x,u) with respect to the state vector
x and the noise vector w. Since the nominal
trajectory satisfies the differential equations u,
does not affect the perturbation X and so no longer
appears in these equations.

This approach has been succesfully applied to the
updating of inertial navigation systems. The INS
output can be directly used as a nominal trajectory,
which will be reasonably close to the true
trajectory, because the sensor errors of an INS are
very small, see Brown and Hwang [234].

In order for the linearization to be accurate, it is
important that the nominal trajectory x"" is close
to the actual trajectory. This is very difficult to
achieve with flight test sensors. The third approach
is then o use the Extended Kalman Filter (EKF)
where in each update step the nominal trajectory is

sel equal to the last estimale of the state veclor and
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the error estimate is reset to zero. In practice the
update correction is applied directly to the
prediction of the actual system state X(i+1]i)
instead of to the estimate of the perturbation
X(i+1]i), see equation (C.2-8). Because the error
estimate is reset to zero, the propagation equation
(3.1-3) now becomes trivial and it is possible to
directly integrate the system differential equations
to the next time step using (C.2-2). This has the
additional advantage that it is no longer necessary
to pre-calculate a nominal trajectory before starting
the Kalman filter procedure.

When the solution has converged this will ensure
that the linearization will remain valid. However,
the EKF may diverge when the estimate of the
state is too far from the true solution, for example
because of a poor initial estimate for the state x.

In all the presented approaches, it is necessary (o
calculate matrices of partial derivatives. Analytical
differentation can be done by hand which must be
done with extreme care to prevent human errors.
Here it is preferable to use a symbolic algebra
package such as Maple or Mathematica, which will
give correct answers, as long as the problem is
entered correctly. A good alternative to analytical
differentation is to calculate numerical derivatives
during each step of the algorithm. Although this is
expensive in computer time, this has the advantage
of much flexibility if the system equations are
changed frequently, because it can eliminate the
need to change the software.

3.1.4 Estimation of Unknown Parameters

As stated earlier the system cquations also contain
a vector of unknown parameters 8, which includes
biases, scale factors etc. If this is taken into
account the flight path reconstruction problem
becomes a joint state and parameter estimation
problem. This can be handled in the Kalman filter
approach by augmenting the state vector with the
unknown parameter veclor as:

and adding

6 =0 (3.1-18)

- = (3.1-17)

to the differential equations. If one (or more) of the
unknown parameters is not constant, but varies
with time in an unpredictable manner, this
component 6, can be modelled as a Markov
process:

1 _ (3.1-19)

Here 1, is the correlation time that governs the
temporal evolution of 6,. If T, is large with respect
to the observation time the evolution of 6, will
approximate a random walk. These models have
been used 1o describe accelerometer and gyroscope
drift, where T, turns out to be large (1 to 10 hours),
see Brown and Hwang [234].

The same Markov model can also be used to
describe the wvariation of the wind vector
components with time and the change in the
barometric pressure reference. In combination with
absolute position measurements (e.g. GPS) this
allows succesful Flight Path Reconstruction in less
favorable wheather conditions, for tlight.tests with
large changes in altitude and for longer flight
recordings.

Adding unknown parameters must be done with
great care, because too much added parameters will
soon lead to nonreconstructible components in the
augmented state. This is analyzed in detail in
section 3.2. Furthermore, adding many constant
paramelers makes the Extended Kalman filter very
prone to divergence. The reason for this is that
when a parameter is modelled as a constant, the
Kalman filter covariance of this parameter will
converge to zero and this will cause the gain
matrix K(i) also to converge to zero. In effect the
Kalman filter will start to ignore the observations
after a certain amount of time. This can be avoided
by adding some artificial noise by using a Markov
model instead of a constant parameter, since now
the filter covariance and consequently the gain will
no longer converge to zero.

For convenience the prime on the augmented state
x will be dropped in the following discussions.

The Extended Kalman filter and smoother gives a
solution of the nonlinear system state
reconstruction problem, which takes the stochastic




measurement errors of accelerometers and rate
gyros into account. However, in practice these
measurement errors are very small. If these errors
are assumed equal to zero (i.e. w=0) the flight path
reconstruction problem becomes an Output Error
problem. This makes it possible to formulate the
flight path reconstruction problem in terms of the
problem of calculating Maximum Likelihood
estimates of the unknown parameters. This is
described in more detail in appendix C.3.

In earlier work [10], extended Kalman filtering and
smoothing solutions of the nonlinear flight path
reconstruction problem have been compared to the
corresponding solution resulting from the Output
Error method. For the case of a flight test
measurement system which was (with respect to
accuracy) equivalent to the system used in the
present study, both solutions proved to be virtually
identical.

The actual application of the extended Kalman
filter and smoother to {light path reconstruction in
an actual flight test program is presented in section
3.3, together with some characteristic results.

3.1.5 Calculation of Additional Quantities

The results of the flight path reconstruction are
used for the calculation of quantities needed for
aerodynamic model identification as discussed in
chapter 4.

With (2.3-1) airspeed is calculated as:

A fa} N A

Vo=Vu? + v+ w?

(3.1-20)

in which the superscript " indicates a reconstructed
variable. Angle of attack and side slip angle are
determined with (2.3-2) and (2.3-4) as:

A

>

a = arctan¥ , (3.1-21)
u

B = arctan — (3.1-22)
w? + w?

Reconstructed bias error corrections are used to

correct A, , p,, and q,. Aerodynamic forces are
m .

calculated according to (2.1-4) as:
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X =m(A, +}A),
m

Y = m(Ay + }»y) , (3-1-23)
m

Z =m(A, +A),
m

and subsequently, the dimensionless aerodynamic
force coefficients Cy, Cy and C, are calculated by
division by l/szZS.

Acrodynamic moments can be calculated with
(2.1-2). This requires differentiation of the
measured angular rotation rates since angular
accelerations are not measured directly.
Furthermore, the moments and products of inertia
must be known. The relations used for the
calculation of the aerodynamic moments read:

N

L = prm - (Iy - IZ)(qll] + }\'q)rm -

- L, * 0 A )@, +A))

M = Iqu - (IZ - Ix)rm(pm + }\'P) -

[a}

2 A
- sz(rm - (pm + }\'p)2) + Icwe(rm + )\'r) ’

N =Lr, -, -1)®, +2)aq, +2) -
B sz(pm - (qm + )‘q)rm) - Iewc(qm + )"q) )
(3.1-24)
The dimensionless moment coefficients C,, C, and
C, are calculated by division by '%pVSc and
Vszzsb respectively.

For aerodynamic model development, see section
4.2, it is necessary to know the time histories of &
and {. These variables can be calculated by
numerical differentiation from & and B. Alternately,
these variables can also determined by
differentiation of (3.1-21), resulting in:

. AA AR

A

o= bW - wu o (3.1-25)
A A
U2 + W2

and by differentiation of (3.1-22), resulting in:

A AR A A

"

- (u2 + why - v(uu + ww)
A A A ‘//\_——/\ )
(u2 + V2 + W2) u2 + V2

With (2.1-5), \A/, 4 and W can be found according
to:

A A

(3.1-26)
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u = Axm - gsin0 - (q,, + )»q)w tr.v,
v =A + Ay + geosOsing - (r, + Aju +
m
+ (Pm M )"p)w > (31-27)
w =A, +h,+gcosBcosd - (p, +A)v +
m

A A

+ (qn] + )\'q)u *

3.2 Reconstructibility Analysis

In the case of ‘small’ perturbations the kinematic
system model and the observation models for flight
path reconstruction as developed in chapter 2 may
be linearized, see (2.1-15), (2.3-11) and (2.3-13). In
this case, flight path reconstruction constitutes a
linear reconstruction problem. Furthermore it
follows that in the linear case the reconstruction of
the longitudinal and of the lateral state vector
components become independent reconstruction
problems. In general, it may not be possible to
reconstruct all components of the state vector. The
ultimate objective of the present analysis will be to
determine which ‘parts’ of the state vectors are
reconstructible whether longitudinal or lateral.

In section 3.2.1. it is shown how to derive the
reconstructible  subspaces (so  called the
reconstructible  ‘parts’ of the stale vector)
corresponding to a particular linear system and
observation model. Reconstructibility depends of
course on the number and particular type of
transducers used in the reconstruction, and so
depends on the ‘observation configuration’, as
expressed in terms of an observation model. The
results are applied in section 3.2.2, resulting in
reconstructible subspaces for the longitudinal and
for the lateral flight path reconstruction problem
for different observation configurations.

It is to be noted here that the analysis presented in
this section is a tutorial introduction meant to
explain the principles of reconstructibility analysis.
In the actual practice of flight testing, the
instrument configurations can be much more
elaborate than the simple configuration described
here. Nevertheless, the same reconstructibility

concept can be used to analyze more realistic
configurations.

3.2.1 Reconstructible Subspaces

Let us discuss the reconstructible and
nonreconstructible subspace of state vector from
input and observation measurements [70]. Consider
the linear stochastic system:

-)i - F._)S + Gu'E + Gw.l s (3'2-1)
with the observation model:
= + Vv
o “272 (3.2-2)

=Hx+Ju~+y,

in which x, v and y denote the state, input and
observation vector of dimension n, s and m
respectively. The vectors w and v denote system or
process noise and additive measurement noise
respectively. The elements of the system matrix F,
the input matrix G and the observation matrices H
and J are known. Starting from an initial condition
X(1y)=x, which is unknown, the system is excited
by a known input signal u(t), t€[t,,t,]. In order to
find a basis for the reconstructible subspace of x,
the so called reconstructibility matrix Q is formed
according 1o:

[H
H-F

Q = |H-F? (3.2-3)

H,Fn-l
Assume that ttie maximum number of independent
rows in Q is equal to n,. Then the dimension of
the reconstructible subspace is n; and a set of
independent rows of Q forms a basis for this
subspace. Now it is possible to construct a matrix
U of rank n, which can be partitioned as:

Ul
U = | (32-4)

in which U, contains the independent rows of Q.
The matrix U, forms a basis for the
nonreconstructible subspace. The matrix U
transforms the state vector X into a reconstructible
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art X, and a nonreconstructible part x, accordin
X X
to:

(3.2-5)

The components x, can be reconstructed to a high
precision from exact recordings of the input signal
u(t) and observation signal y(t), t€[ty,t,] [70]. The
obvious choice for an algorithm to solve the linear
longitudinal and lateral flight path reconstruction
problems is a Kalman filter and smoother |70 and
71].

We study now the linear flight path reconstruction
in the context of state reconstruction. The
associated system and observation models (3.2-1)
and (3.2-2) are derived from the linearized
kinematical model of section 2.1.3. This model can
then be divided into two independent models,
governing the longitudinal and lateral motion
respectively. This means that for the linear case,
the reconstruction of the longitudinal motion is
independent of the reconstruction of the lateral
motion.

3.2.2 Longitudinal Case

In the stability reference frame Fg, the longitudinal
and vertical accelerometer and pitch rate gyro
measurements can be written as:

A"'Sm = Ay Thg T W
A Y 3.2-6
Alsm T A T Mg T Vg (32:0)
qsm = s _)\"*S :qu ’

where the superscript  denotes deviations from
nominal values belonging to the nominal flight
condition of steady straight flight, A denotes
(small) bias error corrections and w denoles
random measurement noise. Substilution of A,
Agg and qg in the linearized kinematical relations of
the longitudinal motion (2.1-15), results in:
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ug = -gcosy, 0 + )\"‘S + Axsm * Wyo o
~ . 5 1 1 =~
= -ismyo-e + A +A  +__A +
V. %S as ZSm
0 0 0
+ qQ 1 W, o+ W
qsm \Y] s qs °’
0
8 =A_+q +w
95 * sy, 4s ’
X = cosyyrug + Vgsinygra - Visiny, -0 + WxT ,

zp = -sinygrug + Vicosyyra - Vicosy,'0 + WZT .

(3.2-7)
The unknown bias error corrections )\"‘S’ A,. and
)‘qs’ and the longitudinal components o? the
atmospheric wind W, _and W, ', are assumed to
be constant in the course of one flight test
manoeuvre. This assumption may be expressed in

terms of the following constraints:

Mg =0,

A =0,

zg

N =0, (3.2-8)
qs

W, =0,

X’l‘

W, =0.

Egs. (3.2-7) and (3.2-8) may be interpreted to
represent the following linear dynamical system:

5‘ =Fx +G, u+G_w (3:2-9)

-— U - W
where X represents a so-called augmented state
vector, composed of the variables ug, @, 6, X and

zy of equations (3.2-7) and the parameters A, _, A,

: s’
)\‘IS’ W, and W, of equations (3.2-8):

S

ug, o, 0, xp, 2, .

x = col (3.2-10)

Y q,wx,l_,w,_,l.) :

Xg'es 7 TYs
u represents the input vector o the system:

(3.2-11)

m m

u =collA, ,AZS ,qsm),

Note that lower case w is used to indicate
measurement noise, while upper case W is used to
indicate atmospheric wind components.
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and w represents system noise [70]:

W= col(w, W, W (3.2-12)
From section 2.3 and the list of measured variables
given in table 3-5, it follows that the available
observations pertaining to the system (3.2-7) and
(3-2-8) are airspeed, angle of attack, geographical
position and altitude variations with respect to a
nominal altitude. The corresponding observation

vector is:

~ o~~~ 3.2-13
)L=col(us,o.v,xT,zT). ( )
From section 2.3.2. it follows that the
corresponding linearized observation model may be
written as:

y=Hx +Ju. (3.2-14)

For reasons explained below, the observation
matrix H is partitioned into 4 matrices of
dimension 1xn, n denoting the dimension of the
augmented state vector defined above:

H=l:1 (3:2-15)

4
It may be ascertained that H is empty except for
the following non-zero elements:

by, =1,
P2 =G (3.2-16)
h,, =1,
hys =1.

Now it is assumed that the angle of attack vane has
been calibrated prior to the flight tests, so that C,
is known. For each individual row of H, it is
possible to define a corresponding reconstructibility
matrix. This leads to the reconstructibility matrices
Q;, for each row H; of the observation matrix H. It
is possible to derive from each matrix Q; the
reconstructible subspace of the state vector x which
corresponds to a scalar observation y;. Knowledge
of the reconstructible subspaces of x corresponding
to individual elements y; of the observation vector
y, allows an easy comparison of different feasible

observation configurations, i.e. combinations of
elements of y, with respect to the resulting
reconstructible subspace of x, as shown below. For
example, the reconstructibility —matrix Q
corresponding to a particular row H; is:

Hi
H,-F

QI' - Hi°F2 (32'17)

Let U, denote the matrix of independent rows in
Q and x1 =U, x the corresponding reconstructible
state veclor. The reconstructible state vector of an
observation configuration consisting of a set of two
or more rows of H, i.e. two or more elements of y,

may then be constructed from the independent
rows in the corresponding set of matrices U, . This
procedure allows a comparison of different
observation configurations with respect to the
corresponding reconstructible subspaces of the state
veclor.

The system matrix F of the linear longitudinal
flight path reconstruction model (3.2-7) and (3.2-8)
is rather sparse. This makes it easy to derive the
analytical form of the reconstructibility matrices Q,
corresponding to each of the elements y, of y. The
matrices Q; are shown in Appendix B for the case
of a nominal flight condition of stationary,
rectilinear flight. Using these matrices, it is
possible to determine the set of independent TOWSs
U1 and the corresponding components of x1 for
each of the matrices Q;. The reconstructible parts
of the state vector x are shown in table 3-1, for the
case of nominally horizontal flight conditions., i.e.
¥6=0- .

Next, the reconstructible state vectors x, for three
different extended observation vectors are shown in
lable 3-2. It is seen from the first column that an
observation configuration consisting of airspeed
and angle of attack observations results in an error

L
cause for this error is that A, cannot be
reconstructed. Because of the assumption made in
(3.2-8) this error is constant. Inspection of the
second column shows that the same error is also

in the reconstructed trajectory of 8. The




present in an observation configuration consisting
of airspeed and altitude observations. Addition of
observations of the longitudinal geographical
position, as in the observation configuration of the
third column, has no effect in this respect.

It appears that for any observation configuration,
A,. is nonreconstructible. The practical implication
is that the quality of the longitudinal accelerometer
should be such that )\XS is small enough to be

negligible.

At first sight, the second column of table 3-2,
corresponding to the observation configuration with
airspeed and altitude observations, seems (o
compare unfavourably to the first column,
corresponding to airspeed and angle of attack
observations, because of an error

—l'}\xq + _l_-WZH
g S vo !

of the angle of attack a. This is because A,_ as
well as W, cannot be reconstructed. As mentioned
above, however, the effect of A, can be kept small
by using a high quality accelerometer, see section
3.3. The magnitude of WZT, on the other hand,
depends on atmospheric weather conditions. In
general, dynamic flight tests are made in fair
weather dominated by anti cyclonic atmospheric
pressure patterns. In such weather conditions,
vertical winds are associated with a downward
motion of the atmosphere called subsidence, which
is of the order of 0.1 to 0.2 m/s. Consequently, in

L ‘W, _can be neglected when

V, T
V, is not too small.

in the reconstructed trajectory

general, the term

The advantage of using the observation
configuration of the second column, rather than the
observation configuration of the first column, is
that while altitude variations can be accurately
measured with barometric pressure transducers, it
is much more difficult to measure the angle of
attack. In general, angle of attack measurements
must be corrected for aircraft induced air velocity
components. This necessitales a lime consuming
and cumbersome calibration of the angle of atlack
sensor in a series of strictly slationary rectilinear
flight conditions. Furthermore, the results of such
a calibration apply, at least in principle only to
stationary flight conditions. This means that
additional and unknown errors may be associated
with the extrapolation of the results of the
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calibration to dynamic flight conditions.

From the third column, it follows that addition of
longitudinal geographical position measurements in
the observation model does not change the
reconstructibility of the angle of attack a of the
observation configuration of the second column.
Although X and W"T have become reconstructible,
they are not of interest for aerodynamic model
identification, see chapter 4.

The above arguments show that the use of second
observation configuration is more appropriate than
the other two configurations for flight path
reconstruction of actual flight test data, see sections
3.2 and 3.3. The above analysis should also lay
some foundation to derive criteria for the
formulation of observation configuration.

3.2.3 Lateral Case

Analogous to (3.2-6) the lateral accelerometer, roll
and yaw rate gyro measurements along and about
the axes of Fg respectively, may be wrilten as:

A)’sm = AYS - )\)'s - w)’s ’
~ o~ _ (3.2-18)
psm - ps )\PS WPS ?
rg . =fs - )\fs - W

Again, the superscript ~ denotes deviations from a
nominal flight condition of steady rectilinear flight.
Substitution in (2.1-16) results in:

~ geosy, ~ C o~
p = g. g * Lo - A LA -
VO - 0 ys s VO ySln
-— ;“ + l .
S v ys ’
m VO

< 1 ~
y o= At ! Ty + ! W,

cosy, '8 cosy, ™ cosy, 'S
& =A _ +tanyyh_ +pg  +lany,rg
¢ Ps Yo S Ps m Yo' T's m

+ WPS + lanyo'wrs ,

;.l. = VO'E + VOCOSYO'J) + WYT .

(3.2-19)
Equation (3.2-19) represents a linear system with
state vector components B, ), ¢g and yp. In
principle the bias error corrections )\Ys’ xps and )”fs
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and the lateral component of the atmospheric wind
W, are unknown, but may be assumed to be
constant in the course of one flight test manoeuvre.
This assumption can be expressed in terms of the
following constraints:

Ay =0,
)_‘ps =0, (3.2-20)
hg =0,

yp =0

An additional parameter Cg appears in the
linearized observation model ololhc side slip vane,
see equation (2.3-13). This parameter is also
assumed to be constant in the course of one flight

test manoeuvre, resulting in the following

additional constraint:

& =0 (3.221)
Bo :

Analogous to the longitudinal case discussed
above, an augmented state vector may now be
composed of the variables P, 1, ¢g and y; in
equations (3.2-19) and the parameters A, ys? )\,S )\

Wy and Cﬁ in (3.2-20) and (3.2-21) according lo

_)_(. = col B,w,¢S,y’r))\ys,)"ps;}\'rsacﬁoyWy.r
(3.2-22)

Next, equations (3.2-19), (3.2-20) and (3.2-21) may
be interpreted to represent the following linear
dynamical system:

x=Fx+Gu+Gyw, G-25)
in which u denotes the following system input
vector:

u = col (A (3.2-24)

r
IS, ’psm m) ?

and the vector W represenls again system noise,

accounting for the -effects of input signal
measurement errors:

=c 3.2-25

w Lol(wyS,wPS,wrS) ( )

From section 2.3 and the list of measured variables
shown in table 3-5 it follows that the available
observations pertaining to the time dependent
variables and constant paramelers in equations
(3.2-19), (3.2-20) and (3.2-21) respectively, are

sideslip vane angle, yaw angle and lateral
geographical position. The corresponding linearized
observation variables constitute the following
observation vector:

~ o~ o~ 3.2-26
X:col(ﬁv,w,yT) . ( )
Using equation (2.3-14), the corresponding
linearized observation model can be written as:

y=Hwx+Ju. (3.2-27)

Analogous 1o equation (3.2-14), the observation
matrix H may be partitioned into 3 matrices of
dimension 1xn, n denoting the dimension of the
augmented state vector defined above:

(3.2-28)

The observation matrix H is empty except for the
following non-zero elements:

by, = Cal ’

h =1

18 ’ (3.2-29)
h,, =1,

h3'4 =1.

The reconstructibility matrices Q, corresponding to
the rows H; in the observation matrix H, have been
derived in appendix B. Subsequently, analogous to
the longitudinal case discussed above, the
components of the reconstructible state vectors x1
can be determined. The reconstructible parts of the
state vector are shown in table 3-3, for nominally
horizontal flight conditions, i.e. y,=0. The
reconstructible state vectors ﬁ;i for three different
feasible extended observation configurations are
shown in table 3-4.

From table 3-4, it follows that all these observation
configurations generate a constant error in the
reconstructed side slip angle. In this respect, there
is no improvement as compared to the first column
of table 3-3, where only the sideslip vane
observations are employed. The only advantage of
adding yaw angle and lateral geographical position
observations as in the third column of table 3-4, is
the reconstructibility of the bias error correction
)\.rs. In the tlight path reconstruction of actual flight




test data, however, no attempt was made to
estimate A, and only sideslip vane observations
were included in the observation model, see section
3.3.

3.3 Practical Flight Path Reconstruction

The analysis in section 3.2 of the longitudinal and
lateral flight path reconstruction problem was based
on linearized versions of the kinematic and the
observation model. The significance of this analysis
lies in the possibility to determine reconstructible
subspaces in the augmented state space for
different observation model configurations. For
actual flight path reconstruction, however, the more
precise nonlinear kinematical relations (2.1-3),
(2.1-5) and (2.1-6) are used. In addition these
relations are extended to include the effects of the
curvature and rotation of the carth, see ref [13].

In this section the resulis of the reconstructibility
analysis are applied in 3.3.1 to define the model
for an example measurement configuration.
Subsequently the initialization of the Kalman filter
is discussed in 3.3.2. Finally some actual results
from flight tests are presented.

The example of a successful flight path
reconstruction and the associated high accuracy
flight test measurement system is taken from a
flight program of the DHC-2 Beaver [14,16]. A list
of measured variables is shown in table 3-5.

Flight path reconstruction may be interpreted as a
particular example of the reconstruction of the state
vector of a nonlinear, dynamical system model.
Table 3-6 presents the elements of the state vector
X, input vector u,, and observation vector y of the
system model.

-llﬂ)

Application of the extended Kalman filter and
smoother requires a priori specification of the
covariance matrices of the process noise V,,, and
the observation noise V. In flight path
reconstruction, process noise is due to random
errors  of accelerometer and rate  gyro

measurements.

The flight test measurement system consist of
separate channels for each of the variables to be
measured. It may therefore be assumed that
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measurement errors of different variables are
uncorrelated. This means that V,, and V_, are
diagonal, see also section 2.4. Their elements can
be estimated from the residuals of laboratory
calibrations.

Perhaps one of the most important design
considerations of the flight test measurement
system was the minimization of parasitic
sensitivities of recorded flight test data to
‘environmental factors’ which occur in actual
flight, such as mechanical vibrations, temperature
and pressure variations and electro-magnetic
interference [16 and 17]. It is impossible, however,
to build an instrumentation system which is
completely insensitive in this respect. Parasitic
sensitivities lead to additional contributions to the
measurement errors of the instrumentation system
during flight. In the present application of the
Kalman filter and smoother these extra
measurement errors were laken into account by
substituting for the diagonal elements of the
covariance matrices V, and V_, substantially
larger values than the corresponding estimates
obtained from laboratory calibrations.

The wvalues as used in the present state
reconstruction problem are listed in table 3-6 in
terms of standard deviations, i.e. square roots of
the diagonal elements of V, and V.

3.3.1 Flight Path Reconstruction Model

The system and observation model for the
nonlinear flight path reconstruction problem is
derived as follows. With (2.4-1) the specific
aerodynamic force along Xy can be written as:

A =A

L= A, (3:3-1)
Similar expressions hold for the specific forces A,
and A, as well as for the angular rates p, q and .
Substitution in (2.1-5) defines with (2.1-3) and
(2.1-6) a nonlinear stochastic system with state

vector x as defined earlier in (2.1-8):

+ At W

2(_-_-col(u,v,w,xp,e,q),xE,yE,ZE), (3.3-2)
input vector u,:

=0 3.3-3

'le B LOI(Axm 4 Aym ? Azm 4 pm ? qm ’ rm) ’ ( )

and process noise w due to the stochastic
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accelerometer and rate gyro measurement errors as
defined in (2.4-2):

w = col(wx,wy,wz,w , W ,wr) , (3-3-9)
From inspection of the list of variables determined
in flight as given in table 3-5, it follows that the
most complete observation vector would include
airspeed, change of altitude, angle of attack, side
slip angle, yaw angle and geographical position:

y = col(V,Ah,av,ﬁv,lp,xE,yE) . (3.3-5)
The corresponding nonlinear system and
observation models contain a relatively large
number of unknown parameters: the components of
the constant atmospheric wind in (2.1-6), the
accelerometer and rate gyro bias error corrections
in (2.4-1) and the parameters in the observation
models of the vane measurements «, and B,,. This
results in the augmented state vector to consist of
26 elements:

i = COl(u)VywaIP)O)(D)xEryEyzE)"'

W, oW W, AR A LA

Cup’Cuo’xu’yu’csi’cﬂo’xﬁ’zﬂ M

(3.3-6)
Additionally one can think of scale factors for vane
measurements, accelerometers, rate gyros to be
included in the state vector. Because of its high
dimension, the reconstruction of this augmented
state vector would be rather expensive in terms of
computing time. Furthermore, as shown in section
3.2, x is not completely reconstructible, at least for
the case of small amplitude flight test manoeuvres
for which linearized kinematical and observation
models are valid. For aerodynamic model
identification, however, not all elements of x need
to be known. This leads to the possibility to reduce
the dimension of x as shown below.

1. If the horizontal distance traversed in the
course of a flight test manoeuvre is small
compared to the scale of the prevailing
atmospheric pressure pattern, and if the flight
test manoeuvre is executed at some nominal
altitude, then W, _and WYE’ the components of
the horizontal wind can be assumed to be
constant. It is shown in section 3.2 that in this

case, neither W, and WYE nor the

geographical position coordinates Xg and yg are
needed for aerodynamic model identification.

These variables may, therefore, be removed
from the system and observation model.

2. The reconstructibility analysis of section 3.2 is
based on the assumption that the angle of
attack vane is calibrated in separate
measurements in stationary rectilinear flight
conditions. Here, the parameters of the angle of
attack vane calibration model (2.3-3) have been
included as elements of x to indicate that this
calibration can in principle also be made in
nonstationary flight conditions as part of a
flight path reconstruction. In the context of the
present section, however, following the
arguments in section 3.2, a, was removed from
the observation model. This implies of course
also removal of the parameters C Cop Xa
and y_ in X.

up?

3. As mentioned in section 3.2, the quality of the
heading gyro in terms of rate of drift was low
compared to the quality of rate gyros in terms
of bias error corrections. For this reason, 1 is
removed from the observation model.

4. The position coordinates xg and zg can be
interpreted as unknown parameters in the
calibration model of the sideslip vane (2.3-5),
and be determined as part of a flight path
reconstruction. However, these coordinates can
also be calculated directly for a given location
of the aircraft’s mass centre since the position
of the vane is known.

Now, the resulting observation model configuration
corresponds to the second column of table 3-2 and
the first column of table 3-3:

y = col(V,Ah,[ﬁv) . (3:3-7)
This means that, at least for small amplitude flight
test manoeuvres, il is impossible to reconstruct the
bias error corrections A,, A, and A,. This has the
effect of introducing bias errors in the
reconstructed angle of attack a, pitch angle 8 and
roll angle ¢. However, the quality of the
accelerometers and rate gyros is such that these
bias error corrections can be assumed to be very
small. Consequently, the corresponding bias errors
in the reconstructions of a, 6 and ¢ are small
enough to be negligible. Since the angle of attack
vane observations are discarded, the wvertical




component of the atmospheric wind is also not
reconstructible. The corresponding error in the
reconstructed angle of attack can be relatively large
as compared to the bias error introduced by the
nonreconstructibility of A,. If the vertical wind is
due to subsidence and anti-cyclonic (high)
atmospheric pressure distributions, a representative
value is 0.1 m/s. At a nominal TAS of V=45 m/s
the corresponding error in the reconstruction of a
is of the order of 0.1°, which is approximately 10
times the error introduced by A,.

In section 2.3.2 it was argued that Cﬁo’ the constant
term in the sideslip vane calibration model, cannot
in principle be determined directly in stationary
rectilinear flight. Furthermore, according to section
3.2, Cﬁo is also not reconstructible. This means that
Cg, must be set equal to B, the sideslip vane
angle in the nominal flight condition preceding the
flight test manoeuvre.

The state vector resulting from the discussion
above is:

X = col(u,v,w,1p,6,¢,ZE,kZ,XP,)\q,CSi) .

(3.3-8)
In order to avoid the introduction of different bias
errors in the reconstructed time history of the side
slip angle, one value of Cg was used in the flight
path reconstruction of all flight test manoeuvres at
each nominal flight condition.
An important remark is necessary at this stage. The
state vector (3.3-8) and the observation vector
(3.3-7) may look very simple. In practice much
more measurements are available for example,
attitude angles, geographical positions, etc. which
obviously improve the reconstructibility. However,
the additional measurements also introduce
additional noise, bias and scale factor errors thus
complicating the analysis. For the purpose of the
current exposition, a full analysis would go too far.

3.3.2 Filter Initialization

Next, an a priori estimate of the state vector at the
start of the flight test manoeuvre and the
corresponding covariance matrix must be specified.
Let X(i|j) denote an estimate of the state vector at
time t;, as calculated from the set of all measured
observation vectors y,, from the start of the tlight
test manoeuvre at time t; up to and including time
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;. The corresponding covariance matrix is denoted
by P(i|j). The reconstruction of the state vector is
started from an a priori estimate of the state vector
x(0|0) with covariance matrix P(0]0). In the case
of a nonlinear system model, as in flight path
reconstruction, the accuracy of x(0|0) determines
to a certain degree the magnitude of the
linearization errors in the extended Kalman filter
and smoother. For this reason, it is advantageous to
start each flight test manoeuvre from a condition of
nominally stationary and rectilinear flight. As
shown below, in such flight conditions it is
relatively easy to calculate fairly accurate values of
the components of the state vector x mentioned in
table 3-6, from the stationary outputs of the
instrumentation  systemm. Nowadays accurate
measurements of the attitude angles can be
obtained from the Inertial Navigation Systems or
Attitude Heading Reference System, but if these
are not available the following procedure can still
be used.

The yaw angle 1 cannot be calculated from the
stationary outputs of the instrumentation system.
So a direct measurement of 1 is always necessary,
if only to provide an initial value. It is based on
the integration of the angular rate measurements. It
plays no direct role in the aerodynamic model
identification and its main importance lies in the
calculation of the centripetal and coriolis terms in
the full kinematic equations.

A good choice for the a priori estimate {(0]0) of
W is its measured value at time =1,

v(0[0) = v,,(0) - -39)
Although not measured directly by the
measurement system, it is nevertheless possible to
derive a priori estimates for the remaining two
attitude angles, i.e. the pitch angle 0 and the roll
angle ¢, as follows [66].

Since the initial flight condition at time t=t; is
nominally stationary and rectilinear, the
components u, v, and w of airspeed V are constant
in time, i.e.:

u(0) = v(0) = w(0) = 0, (3.3-10)

and furthermore, the three body rotation rates p, q
and r, are zero:
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p(0) = q(0) = r(0) = 0. (3:3-11)
Substitution of (3.3-10) and (3.3-11) in the
equations of motion (2.1-5) results in:

gsin0 = A, (3.3-12)
geos@sing = -A (3.3-13)
geosBcosp = -A, . (3:3-14)

Elimination of 8 in (3.3-13) by substituting for
cos® from (3.3-14) results in the following
expression for ¢:

A
¢ = arctan_L . (3.3-15)

z

Equations (3.3-12) and (3.3-15) show that in
stationary rectilinear flight conditions, it is possible
to estimate the attitude angles 6 and ¢ from the
specific aerodynamic forces A,, A, and A,. The
specific aerodynamic forces are measured in flight
with accelerometers. This makes it possible to
calculate the a priori estimates 8(0]0) and $(0]0)
of the pitch and roll angle respectively, from the
accelerometer outpuls A, (O) A, (0) and A, (0)
according to:

6 A, 0) (3.3-16)
8(0]0) = arcsin ,

" A, (0)

WP(0[0) = arctan Ay"’ (3.3-17)

Zm(o)
Next, the a priori estimates of the three velocity
components u, v and w of airspeed V must be
determined. Much like 6 and ¢ above, these
velocity components are also not measured directly
in the measurement system. It is possible, however,
to estimate these velocity components in an
indirect way as follows.

In the initial nominal flight condition, the roll
angle ¢ is kept equal to zero as closely as possible.
The flight condition is, therefore, nominally
symmetrical, see section 2.3.2. This means that the
velocity vector V is approximately parallel to the
plane of symmetry, see fig. 2-2.

Due to the absence of additional information, the
only rational estimate of v(0), the component of V

in the initial flight condition, is zero, i.e.:

v(0|0 - 0. (3.3-18)
The remaining two velocity components could
readily be estimated from V (0), the measured
airspeed at time t=t,, and a(0|0), the a priori
estimate of the angle of attack, if this latter
estimate were known. Fig. 2-2 shows that in
symmetrical flight conditions, u and w can then be
estimated with the following relations:

(3.3-19)

3(010) =V _(0) -cos&(0|0) ,

m

(3.3-20)

w(0[0) = V_(0)-sina(0]0) .

m
The angle of attack is measured directly in the
measurement system by means of a vane, see table
3-5. The use of this measurement as an a priori
estimate of a(0), however, depends on C, and
C,» the parameters in the vane calibration formula
see (2.3-3). Thes€ paramelers can be determined in
a separate ftlight test program consisting of
measurements in stationary rectilinear flight
conditions, e.g. ref [9). It is possible, however, to
avoid execution of such an additional flight test
program by calculating an a priori estimate of o(0)
in an alternative way as follows. From fig. 2-2 it
can be deduced that in strictly symmetrical
rectilinear flight conditions the following relation
exists between the angle of attack «, the flight path
angle y and pitch angle 6:

a=0-y. (3.3-21)
Using (3.3-21) the a priori estimate a(OlO) follows
from:

0|0) = éo(g()) - (0 |0) (3.3-22)
ln 3.3-22) 6(0[0) is calculated with (3.3-16). The
a priori estimate of the flight path angle can be
based on the following relation, see fig. 2-2:

y = arcsin% , (3.3-23)
in which C denotes the rate of climb. Assuming for
the present C(0|0) to be known and substituting
the measured airspeed for V, then the a priori
estimate y(0]0) can be determined with:

A

c©|0)
V.0

m

Y.(O |0) = arcsin (3.3-249)




Rate of climb belongs also to the group of
variables which is not measured directly in the
measurement system, see lable 3-5. It is possible,
however, to calculate rate of climb in stationary
flight conditions from altitude measurements at
different instants of time according to:

Ah(At) - Ah(0)
- a7
in which Ah denotes the change of altitude with
respect to a certain reference altitude and At
denotes a suitable time interval with a length in the
order of seconds. As can be seen from table 3-5
the altitude variation Ah is not directly measured,
but it can be calculated from static pressure and
total temperature measurements. By substituting the
results at time t={;, and t=t,+At in (3.3-25), an a
priori estimate of C(0) can be calculated with:

C(0) = (3.3-25)

Ah (At) - Ah (0)

At '
The change of altitude as derived from static
pressure and total temperature measurements
constitutes the best-possible a priori estimate of
zg(0), .the vertical distance from the horizontal
plane corresponding to the static pressure at the
start of the recording:

C(0]0) = (3.3-26)

A

25(0]0) = -Ah_(0) . (3.3-27)

Finally, due to lack of any information, the initial
estimates of the bias error corrections A, )\.p and Xq
and of the sidewash correction factor C;, see
section 2.3.1, are set equal to zero.

si?

According to table 3-6, the diagonal elements of
P(0|0) were given numerical values which were
approximately two orders of magnitude larger than
the values resulting from taking account only of
the errors of the measurement system. The reason
is that the assumption of stationarity of the initial
nominal flight condition, on which several ol the
above estimates of the components of the initial
state vector are based, is - in general - not fully
satisfied in practice. This means that these
estimates are corrupted by errors which depend on
the ‘degree of stationarity” of the initial flight
condition. The large numerical values of the
diagonal elements P(0|0) above, are a reflection of
the possibility that in some cases the initial flight
condition might deviate significantly ftrom a
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stationary flight condition, introducing additional
errors in the estimates of the components of the
initial state vector. A more refined estimation of
the initial condition, taking into account possible
deviations from the nominally stationary flight
condition is given in [13].

3.3.3 Results

Some results of an actual flight path reconstruction
are presented in figs. 3-1, 3-2 and 3-3.

Fig. 3-1 shows the time histories of the difference
between the measured values V , ah  and va and
the corresponding extended Kalman smoother
estimates.

The dynamic longitudinal and lateral flight test
manocuvres, with a length of 10 and 16 seconds
respectively, are preceded and followed by sections
of quasi-steady flight. It can be seen in fig. 3-1,
that the accuracy of the V and ah measurements
during these dynamic sections of the flight test
manoeuvre, is generally considerably lower than in
the remaining quasi-steady sections. This
phenomenon is thought to be caused by the
dynamic response of the air in the pneumatic
pressure tubes connecting the total and static
pressure orifices with the pressure transducers. Due
to the complexity of these responses, they can only
partially be accounted for in a practical way. As a
result, the remaining measurement errors are no
longer expected to be uncorrelated in time.

This problem was circumvented by discarding all
lotal and static pressure measurements in the
dynamic sections of the flight test manoeuvre. This
means that in these sections the V and ah
observations are not used, which reduces the
observation vector to y=f,. In simulation
experiments with uncorrelated measurement errors
in every section of the flight test manoeuvre, such
a tlemporary reduction ol the observation
measurements proved o result in only a small
increase of the: theoretical Kalman smoother
estimation variances.

Fig. 3-2 shows the reconstruction of the bias error
corrections and the side wash correction factor by
the extended Kalman filter. The estimated bias
error corrections A (N|N) and A (N|N) at t=ty, N
denoting the total number of observation vector
measurement and ty denoting the time instant of
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the last measurement, of the roll and pitch rate
gyro respectively, are in the order of 0.004 deg/s.
This is equivalent to 1 mV, the resolution of the
data logging part of the instrumentation system.
The estimated value of A, the bias error correction
of the wvertical accelerometer, at t=ty is
approximately equal to 0.036 m/s>. This is
considered to be an extremely large value for high
quality force balance type accelerometers as used
in the present instrumentation system. Our
experience is that large bias error corrections of
such accelerometers can be caused by microscopic
defects in the pendulum bearings in the transducer.
The acceleromeler in question was subsequently
replaced.

The reduction of the bias estimation error variance
with time confirms the validity of the linear
reconstructibility analysis as carried out in section
3.2. In this analysis the reconstruction of the side
wash correction factor C; had to be left out of
consideration since it would imply a nonlinear
reconstruction analysis. Fig. 3-2 shows that,
although C is reconstructible, the accuracy of its
reconstruction remains relatively low.

The time intervals of the longitudinal and lateral
dynamic manoeuvres during which the airspeed
and altitude observation measurements are
discarded, are evident particularly in figs. 3-2(a)
and (b). During these time intervals there appears
to be virtually no reduction of the standard
deviations of the bias estimation errors. Finally, it
must be noted that smoothing cannot improve the
accuracy of bias estimates. This is the reason that
Fig. 3.2 only shows filter results.

Characteristic examples of the theoretical extended
Kalman filter and smoother reconstruction
accuracies of the dynamic state vector components
are shown in Fig. 3-3. They are expressed in terms
of standard deviations. These standard deviations
are the square roots of the diagonal elements of
P(i|i-1) and P(i|N), i.e. the covariance matrices of
estimation errors resulting from the Kalman filter
and Kalman smoother respectively.

Fig. 3-3 also confirms the conclusions of the linear
reconstructibility analysis of section 3.2. The
theoretical reconstruction errors of the extended
Kalman smoother of all state vector components,

except yaw angle 1, are shown to be very small.
Since only side slip vane measurements were used
here as lateral observations, the lateral observation
model corresponds to the first column in table 3-3.
According to section 3.2, this will leave
nonreconstructible. It is not surprising, therefore,
that the a priori estimation error of 1 remains
approximately equal to the a priori value during
filtering as well as smoothing. Since v is not used
quantitatively further on, this does not affect the
results of the second step of the data analysis
procedure. It must be remarked that the use of yaw
angle measurements, see table 3-5, and side slip
measurements as lateral observations, does allow
reconstruction of the yaw angle . In addition, it is
also possible to reconstruct the bias error correction
A, of the yaw rate gyro, see table 3-3.

Figs. 3-3(a), (b), (¢), (e} and (g) clearly show time
intervals during which standard deviations of the
extended Kalman filter increase, rather than
decrease with time. These time intervals correspond
again to the time intervals of the longitudinal and
lateral dynamic manoeuvres during which airspeed
and altitude observation measurements are
discarded. However, in the standard deviation
curves of the extended Kalman smoother, these
time intervals become virtually indiscernible from
the quasi-steady sections of the flight test
manoeuvre. This shows clearly the great advantage
of the Kalman smoother step.

In general it can be said that experience with the
extended Kalman filtering and smoothing
algorithms for flight path reconstruction of the
flight test manoeuvres as carried out in the course
of the present flight test program has been very
good. All manoeuvres to which the algorithms
were applied could successfully be reconstructed in
the sense that the residuals were of approximately
the same magnitude as shown in fig. 3-1. In
addition, the estimated bias error corrections were
of the same order of magnitude as during the
laboratory calibrations.

3.4 Conclusions

Flight path reconstruction is an important tool for
the analyst of flight test data. This is true
irrespective whether one applies it as a first step of
the two step method, as an independent




compatibility check as a precursor to the one step
method or just as a method to reconstruct
trajectories.

The emphasis in this section has been on the
detailed analysis ol one relatively simple
measurement configuration. There are no reasons
why this configuration cannot be extended with
any number of additional transducers and this is in
fact what is being done in most flight test projects.
However, in the present exposition there are some
good reasons for our emphasis.

Firstly, the measurement configuration treated in
this section is the minimum necessary for
aerodynamic parameter identification. As such it is
essential to be familiar with its characteristics and
limitations.

Secondly, under normal circumstances there are no
additional measurements which will dramatically
improve the accuracy of the paramelter
identification results achievable with this minimum
configuration. This is not always the case,
however. For example the addition ol absolute
position (e.g. GPS) to the observation vector will
improve the accuracy of the reconstructed wind
vector, which can be ol greal importance in less
favourable weather conditions (varying winds). It
should be noted, however, that GPS will not help
much for the vertical wind component. To estimate
the vertical wind component one could in principle
us an angle of attack vane, at the cost of having to
identify the vane calibration coefficients as well.

Finally, all the essential characteristics of the flight
path reconstruction problem are exhibited by the
configuration treated in this section. This is true in
particular for the reconstructibility analysis. It
should be no problem for the reader to apply this
analysis to his own perhaps more extensive
measurement configuration.

As noted before, flight path reconstruction has
many more applications than just for acrodynamic
model identification, speed
determination and accident analysis. ldeally a flight
path reconstruction softwarce package should be
flexible enough to handle these other applications
as well.

such as stall
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There are other aspects involved in the application
of flight path reconstruction, not the least among
which is the choice of the instrumentation error
model. Some of these aspects will be further
discussed in chapter 7.

This concludes our discussion of the first step in
the two step method. Now that we have an
accurate estimate of the state trajectory of the
aircraft, we will turn our attention in the following
section to the determination of the aerodynamic
model.
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Table 3-1: Reconstructible state vectors x,. of individual observations y; of the linear
longitudinal flight path reconstruction prob/em, applicable to horizontal nominal flight
condttions.
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Table 3-2: Reconstructible state vectors x; for three different observation configurations
of the linear longitudinal flight path reconstruction problem, applicable to horizontal
nominal flight conditions.



= Cﬂ P = ~
B+ 0 | [3+1p+_Wy,_
o~ 1 ‘VG § ~ ]'
s+ —hyg T —hy N bs =My
rs Yr
PS

Table 3-3: Reconstructible state vectors gc_:J of individual observations y, of the linear
lateral flight path reconstruction problem, applicable to horizontal nominal flight
conditions.
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Table 3-4: Reconstructible state vectors x, for three different observation configurations
of the linear lateral flight path reconstruction problem, applicable to horizontal nominal
flight conditions.
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1 A, specific force along X-axis
2 A, specific force along Y-axis
3 A, specific force along Z-axis
4 p roll rate
5 q pitch rate
6 r yaw rate

1Y yaw angle
8 n engine speed
9 T, total temperature
10 0, elevator angle
11 0, port aileron angle
12 0, slarboard aileron [lap angle
13 0, rudder angle
14 Oy, port wing flap angle
15 O starboard wing flap angle
16 O, elevator trim angle
17 O, rudder trim angle
18 a, a-vane angle
19 B, B-vane angle
20 Ap, increase in lotal pressure behind propeller disc
21 Ap, variation in static pressure
22 q. impact pressure
23 P, engine manifold pressure
24 Py static pressure
25 DME Distance Measuring Equipment
26 T, carburettor temperature

Table 3-5: List of measured variables.




state vector:

X =col(u,v,w,lp,e,cp,zE,KZ,?Lp,Aq,Csi)

input vector:

u =c
— col (AK i AY m’ Az m’ P> > I'm)

m

observation vector

Y =col(V,an,B,)
square roots of diagonal elements of V_ :

T, = 0.0032 m/s?
xl‘“ .

O, = 0.0014 m/s”
y m R

- = 0.0056 m/s”
‘m

o, = 0.0032 deg/s

a, = 0.0032  deg/s
m

a = 0.0032 deg/s

g m

square roots of diagonal elements of V_:

oy = 0.30 m/s

Gy = 0.40 m

o = 0.86 deg
By

m

Table 3-6: State, input and observation vectors, and covariance
matrices of process and observation noise of the extended
Kalman filter and smoother.
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Figure 3-1: Residuals of the extended Kalman smoother. Results
of the reconstruction of an actual flight test manoeuvre.
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Figure 3-1: Continued.
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Figure 3-2: Extended Kalman filter estimates of bias error corrections A, A, A,
side wash correction factor C; and corresponding standard deviations.
Results of the reconstruction of an actual flight test manoeuvre.
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(d) Estimate of side wash correction factor C; of the side slip vane angle

Figure 3-2: Continued.
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Figure 3-3: Theoretical standard deviations of the extended Kalman filter and -smoother. Results of
the reconstruction of an actual flight test manocuvre.
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(d) Standard deviations of \(ii-1) and \p(i|N), the estimates of the yaw angle of the extended Kalman
filter and the extended Kalman smoother respectively

Figure 3-3: Continued.
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(e) Standard deviations of 6( ili-1) and 6( i|N), the estimates of the component of the pitch angle of the
extended Kalman filter and the extended Kalman smoother respectively
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Figure 3-3: Continued.
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Figure 3-3: Continued.
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4 AERODYNAMIC MODEL IDENTIFICATION

Aircraft aerodynamic model identification is the
process of developing ‘adequate’ mathematical
descriptions of the aerodynamic forces and
moments acting on the aircraft from measurements
in flight [1,2,78,125,189,199]. Model identification
encompasses the selection of a mathematical model
structure as well as the estimation of the numerical
values of the parameters in those models. Model
identification is often also referred to as parameter
identification. Parameter estimation is the narrower
problem of just estimating the numerical parameter
values given the form or structure of the
mathematical model.

The model identification procedure which is the
subject of the present volume is the so-called two-
step method, see chapter 1. In the first step, called
flight path reconstruction, time histories are
reconstructed of variables as airspeed, angle of
attack and side slip angle. In addition 1o that, the
occurrence of (small) zero shifts may be detected
in transducers such as accelerometers and rate
gyros. The outputs of these transducers may
subsequently be corrected using estimated values of
these zero shifts, see chapter 3.

The identification of the aerodynamic model is the
second step of the two step method and is
discussed in the present chapter. This second step
uses the results of the first step, which
consequently must be executed first.

Historical background

The aircraft model identification problem has been
the interest of several researchers since more than
four decades.

Perhaps one of the first approaches to the
identification of aircraft dynamic response models
can be traced back to the work of Milliken in 1947
[77]. His analysis centred around the use of
frequency response data and simple graphical
methods. Several years later Greenberg 78] and
Shinbrot [79] established more general and
rigorous ways for determining acrodynamic model
parameters  from  transient manoeuvres. They
introduced paramelter estimation methods based on
application of linear and nonlinear least squares
methods. Shinbrot interpreted the equations of
motion (a set of ordinary differential equations) as
algebraic equations and assumed all of the
variables in the equations of motion including

derivatives with respect to time and the control
input signals to be known functions of time. This
enabled him to estimate parameter values by
minimizing a criterion in the form of a sum of
squares of equation errors. For some variables, for
instance the angle of attack, this would require
computing derivatives with respect to time, which
Shinbrot avoided by transforming the measured
responses by means ol so called Method Functions.
After the transformation the equation error is still
a linear function of the unknown paramelers, a
remarkable fact which holds true for both linear as
well as nonlinear forms of the equations of motion.

The advent of fast digital computers and also the
rapid progress in system theory paved the way for
substantial improvements and refinements in
aircraft parameter estimation techniques lowards
the end of sixties and more so in the beginning of
seventies. These techniques were generally
classified into equation error methods |4,80] and
output- and prediction error methods [2,81 o 113,
115,122,126,200]. Shinbrot’s method mentioned
above is a typical example of an equation error
method.

Output error methods use numerical solutions of
the equations of motion to compute the time
histories of observed variables. Now parameter
estimates are computed by minimizing the sum of
squares of the differences between these computed
variables and the corresponding measured values.
Prediction error methods use ‘Kalman Filter
representations’ [95] of the system dynamics to
allow and account for process- or system noise
resulting from measurement errors of the input
signals (control surface deflections) or external
disturbances (e.g. atmospheric turbulence). The
highlights of the progress were in the areas of
algorithms for the estimation of parameters in
linear as well as nonlinear acrodynamic models and
the determination of *adequate” acrodynamic model
structures.

As a resull, the estimatioa of stability and control
derivatives (i.e. parameters in a linearized form of
the equations of motion) of fixed wing aircraft has
now become more or less a routine procedure. This
is not the case, however, for those flight regimes
where nonlinear acrodynamic effects are significant



and aerodynamic characteristics cannot be
described in linear terms only. The main problem
becomes then to determine the ‘adequate’ form of
the aerodynamic model for a ‘proper’ description
of the observed airplane motion. In the literature a
number of methods have been proposed for
determining adequate models from dynamic
response measurements. Unbehauen and Gohring
[141] proposed a simple statistical method to select
the order of linear models of single input, single
output (SISO) systems. Genesio and Milanese
[142] describe more advanced statistical methods
for order selection of models of linear multiple
input and multiple output (MIMO) systems. In
aircraft parameter identification of fixed wing rigid
aircraft the order of the system model is known
from the equations of motion. The problem of
determining an adequate model structure is strictly
related to the models of the aerodynamic moments
and the aerodynamic forces acting on the aircraft
during the flight test manoeuvre at the particular
set of nominal flight test conditions. Klein [143]
may have been the first to use formal statistical
techniques to test the correctness of models of
aircraft responses. He formed an appropriate
statistic as the ratio of two variance estimates from
residuals and repeated measurements of frequency
response curves. Klein | 144] also recommended the
analysis of residuals for checking the accuracy of
the model and suggested the sensitivity of a
response to parameter changes for finding the
important parameters in the model. Stepner and
Mehra [145] gave a criterion for fit error which
combined the sum of squares of residuals and the
number of parameters in the model. Later Taylor
Jr. [146] developed a criterion for the optimal
number of unknown parameters satisfying the
expected model response error. Hall, Gupta et al
[59,148] gave a comprehensive treatment of model
structure  determination based on stepwise
regression and their use in real flight data was then
investigated by Gupta and Hall [131], Vincent,
Gupta et al [202], Stalford [203] and Klein et al
[150,151].

The DUT approach

In the middle of the 1960°s, Gerlach of the Delft
University of Technology realized that for high
parameter accuracy, the customary technique of
analogue recordings of measurements in continuous
time would not suffice. He developed a digital
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measurement system which sampled measurements
at discrete times. Now if a quadratic criterion for
the equation error is minimized with respect to the
parameters in the aerodynamic model, it becomes
possible to apply the well developed mathematical
techniques of regression analysis [3]. He applied
the concept of minimizing equation errors, not to
the equations of motion as Shinbrot had done, but
rather directly to the equations of aerodynamic
model. This in fact marked the beginning of
continuous investigations into what became known
as the two-step method for aircraft parameter
identification at the Delft University of Technology
and the National Aerospace Laboratory, NLR. In a
sense, flight path reconstruction, the first step of
the two step method, may be seen as o have a
similar function as the transformations in
Shinbrot’s method in that they both prepare for
application of equation error methods. The
objective of the present chapter is to go into the
details of the second step of the method using
equation errors for aerodynamic model

" identification.

The second step exploils regression analysis to
determine the model structure and  model
parameters in the acrodynamic model. The model
determination phase consists of selecting a
restricted number of variables from a finite set of
so-called candidate variables. This leads to the
selection of an adequate model structure.

The organization of the present chapter is as
follows. In section 4.1, we first discuss the issue of
identifiability of the parameters in linear
aerodynamic__models (stability and control
derivatives) from flight test data. This is an
analogous effort to what we discussed as the issue
of state reconstructibility of linearized Kinematic
models in section 3.2. Next we present the general
regression technique, a model development
procedure based on residual analysis and also
briefly touch upon the collinearity problem [75] in
section 4.2, In section 4.3 a practical investigation
of nonlinear aerodynamic model identification from
flight test data for both the longitudinal and lateral
case is conducted. Flight tests with the DHC-2
Beaver aircraft are used again for illustration.
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4.1 Linear Aerodynamic Model Identification

The purpose of the analysis in this section is to
determine the identifiable part of the parameter
vector of linearized aerodynamic models. This is in
fact the case in which only *small’ perturbations
from a nominal steady flight condition are
considered. The parameters in our model
correspond now to the so-called stability and
control derivatives. Since the equation error
method is used in the second step of the two-step
method the estimation problem reduces to a linear
parameter estimation problem. Well established
regression techniques may be used to solve this
linear estimation problem. These techniques will be
discussed in section 4.2

In section 4.1.1 we define parameter identifiability
and show as to how to construct the identifiable
sub space of the parameter space. In section 4.1.2
we develop the appropriate aerodynamic model
equations by taking account of the results of the
reconstructibility analysis of chapter 3. Finally we
analyze the identifiability of the parameters in the
resulting equations in sections 4.1.3 for the
longitudinal case and in 4.1.4 for the lateral case.

4.1.1 Parameter ldentitiability

If small perturbations from nominal flight
conditions are considered, then from chapter 2, the
aerodynamic forces and moments can be expressed
in terms of homogeneous polynomials of first
order. A natural question is, can we estimate all
parameters in these first order polynomials from
the available flight test measurements. This
question is answered in section 4.1.2 using the
notion of parameter identifiability.

If aerodynamic forces and moments are expressed
in terms of polynomials, then the corresponding
aerodynamic models may be written in the
following form:

y() = x(Ha + e(i)
in which i refers to a time instant t;, y(i) is a scalar
dependent  variable representing  measured
aerodynamic force or moment, x(i) is a 1 x r
matrix of measured independent variables, a is the
vector of parameters to be identified and e(i)
denotes a stochastic equation error due o
measurement and model errors. The model errors

(4.1-1)

could come from atmospheric turbulence, propeller
slipstream or jet interference effects or fuel
sloshing, etc., all of which can add unmodelled
contributions to force and moment coefficients. All
of these errors are rather heuristically accounted for
by e(i), a stochastic random variable with the
following properties:

E{e(i)} =0,

E{e(i)e()} = V.95, .
For N different sets of y(i) and x(i) it is customary
1o write (4.1-1) in the form:

(4.1-2)

Y=Xa+e
in  which  Y=col|y(1),y(2),...,y(N)], e=colfe(1),
€(2),....,e(N)] and X denotes the following matrix of
independent variables:

x(1)
X < x(.2)

x(N)
The least squares estimate a may readily be
calculated from Y and X as the solution of the so
called normal equations |73]:

(XTX]h =X Ty | (4.1-3)

If the matrix [X"-X] is invertible, i.e. has full rank
r, then X has rank r and a is the unique solution of
(4.1-3). If the actual rank of X is r <r, then it is
impossible to compute independent estimates of all
of the components of the parameter veclor a.
Completely analogous (o the definition of
reconstructible  subspace  in  system  state
reconstruction problems as discussed in chapter 3,
identifiable subspaces may be defined in parameter
identification problems as follows.

It X is of rank r|, it is always possible to arrange
and partition X as:

X =[x x]=[x, x,c] (4.1-4)
in which C denotes a constant r;x(r-r,) matrix. The
Nx(r-r;) matrix X, contains those columns of X
which are dependent on the independent columns
contained in the Nxr; matrix X,. Substitution of
(4.1-4) in (4.1-3) results in:
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X, X, X, X, C ) X,
....... i R = - Y.
T "~ T T
cTx, X, : ¢TX, X,C||&%) |CTX|
(4.1-5)

There exists no unique solution for 3, and 3, in
(4.1-5). The minimum norm solution is found by
selecting one of the solutions, indicated as a,, 4, by
setting:

al=0 (4.1-6)
If the value of any parameter in a, or a relation
between paramelers involving components in a, are
known, it may be preferable to use this knowledge
instead of simply putting a, to zero. The

. A%
components in a, may then be calculated as:

S @1

It is instructive to determine the expected value of

AK

4
B@) =[x,

- [x
=1 cla-=a

Equation (4.1-8) clearly shows that 4, is a biased
estimate of a;, but il can be interpreted as an
unbiased estimate of the new parameter
g}:gﬁcﬁ. Analogous to the treatment of the
reconstructible part 1} of the state veclor x in
section 3.2, a; is called the identifiable part of the
parameter vector a. In the same way as in section
3.2, we can now find a matrix U, which constitutes
a basis for the identifiable subspace of the
parameter space and a matrix U, which constitutes
a basis for the unidentifiable subspace of the
parameter space. The linear transformation:

= U,

= |eee|a (4.1-9)
ﬂ; U,
transforms the parameter vector a into an

identifiable part a; and unidentifiable part a,. If the
matrix X contains the maximum number of r
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independent columns, then the parameter vector a
is completely identifiable.

4.1.2 Linear Aerodynamic Model Equations
including Reconstructibility Analysis

In the present section, the linear aerodynamic
model presented in chapter 2 is developed further
by including the results of the reconstructibility
analysis of chapter 3.

In the linear case, the parameters to be estimated
are the stability and control derivatives of the
longitudinal and lateral aerodynamic force and
moment coefficients. In the stability reference
frame Fg, used in the present section, these models
are listed in (2.2-6) and (2.2-9).

Application of the least squares method of section
4.1.1 requires the availability of all variables in the
equations (2.2-6) and (2.2-9) be known. That is to
say, all the aerodynamic force and moment
coetficients as well as all variables in the right
hand side, i.e. ug/V, &, etc. o be known at
discrete instants of time. These variables must
either be measured directly or be reconstructed as
part of a longitudinal or lateral flight path
reconstruction.

The measured time histories of the specific
aerodynamic forces and body rotation rates in Fg
may be used 0 compute the aerodynamic force and
moment coefficients in the left hand side of
equations (2.2-6) and (2.2-9). The results are
indicated by subscripts m. For example, stm and
CISm are obtained as follows.

Division of both sides of the first relation in
(2.1-11) by VpoV(Z)S results in:

. m-A,
S
Cy.=—— >,
) 2
Yapo Vo S
in which aircraft mass:m may be assumed to be
known. The same may be assumed for the
reference wing area S and the nominal values of air
density pg and true airspeed V.

(4.1-10)

Using (3.2-6), Axs can be written as:

Ag = Arg *hg t W, (4.1-11)

m
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where kxs denotes an unknown bias error
correction and w, an unknown random
measurement error. Substitution in (4.1-10) results

mn:

% 2 m ')\"‘S mew, @.1-12)
Xsp Xs T oD "3 )
PoVoS  Y%p,VyS

Similar expressions holds for Cy, and ézsm.

Division of the first line in the moment equations
(2.1-10) by Y%p,V3Sb results in:

Ls 2 g 2 @113)

Ps = ————
Yapy Vo Sb

Po Vo Sb

s
where, for simplicity, the effect of rotating
components, such as propellers or jet engine
turbines have been neglected. The wing span b is
known. The moment of inertia I, . and the product
of inertia [, can be calculated by book-keeping
methods or estimated from free-oscillation rig
measurements, ref. [223].

The angular accelerations pg and Tg are not
measured directly but derived by numerically
differentiating pg and Tg. Since the rotation rate
measurements are assumed to be contaminated by
constant bias and random errors, differentiation will
result in:

= + W’
Ps pSm rs’

(4.1-14)
f's = l'Sm * W’.S ’ .
in which w._and w;_denote random errors in pg
and Tg respectively. Substitution of (4.1-14) in

(4.1-13) results in:

6'3 = Elq - _._xs2 Wp +
S P S
" %Py Vo SP (4.1-15)

Ly
+ W
hpoViSh  ° i
Similar expressions can be derived for C, . and
Cpg-

In the right hand side of equations (2.2-6) and
(2.2-9) several variables like ug, a and B arc

obtained from flight path reconstruction. As a
result of actual flight path reconstructions using
high accuracy instrumentation techniques, the
stochastic estimation errors of the reconstructible
parts of the state vector are relatively very small.
Therefore, these errors are neglected in the present
analysis and only the bias errors are taken into
account. According to section 3.2, table 3-2, g is
reconstructible. However, & and B have been
shown to be non reconstructible. For the
observation configuration analyzed in chapter 3 it
follows from table 3-2 and lable 3-3 that:

a o 4+

1 1
g Ty e

1]

(4.1-16)
CBl $ = Cﬁl-[&‘ - CBo .

Differentiation of both sides of these relations

results in:

5]
1]
R

(4.1-17)

All remaining variables in the right hand side of
equations (2.2-6) and (2.2-9) may be obtained from
direct measurements. For example, according to
(3.2-6):

T 4.1-
Qg _qSm +)\qs +qu R (4.1-18)

and according to section 2.4:

5.=3, -v (4.1-19)

b4
€m o

in which vg_denotes the measurement error of the
elevator delflection angle 0.

Substitution of the relations derived above in the
linear aerodynamic models (2.2-6) and (2.2-9)
results in models which may be used for estimation
of linear stability and control derivatives. For
example, substitution of (4.1-12), (4.1-16),
(4.1-17), (4.1-18) and (4.1-19) in the linear
aerodynamic model of Cy in (2.2-6) results in:




mA

éx =5 4 Cy - _l-kx -_l_-Wz ]+
Sm s Po V02 S as | g 5 VO T
A, C v -
+ Cy 38 + Cy _§+Cx ot +
sV, us 'V, as
9s,,° (; c %
M Cxq —— " Cx; +Cx, O -
sV, a5V, g ‘m
m C
-———w__ +C —w, -C v
X v X F. Y
lAp(]\,ozs XS 95 V. 9s beg e
which can be written more compactly:
C c c s Cy o'
= + D 3 o’ +
xsm XOS xuS VO x“S
gs © é‘.c. (4.1-20)
+ Cy S Cy- +
45V, as 'V,
bec 'bem * a’CXS '

The last term 6éxs in (4.1-20) represents the
equation error resulting from several time-varying
measurement errors. However, if high accuracy
measurement  techniques are used, these
measurement errors are t0o small to explain the
order of magnitude of equation errors found when
analysing actual flight test data. Therefore,
aerodynamic model errors rather than measurement
errors are the cause of time-varying equation
errors. Relations similar to (4.1-20) may be derived
for CYs CZs ,C sp Cmg, 4nd C . The
difference with the rclauon 2. 2. 6) and (2 2- -9) are
supplementary constant terms accounting the
existence of measurement bias error corrections and
unreconstructible components in the longitudinal
and lateral state vectors and terms representing
equation errors.

4.1.3 Identifiability of Linear Longitudinal
Aerodynamic Model

To begin the discussion, it may be seen from
equation (4.1-20) that the linear models of the
longitudinal aerodynamic force and moment
coefficients contain the
independent variables:

following set of
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Us g, Dt 9% g
Vo Vo

In the remaining part of the present section an
index m indicates the presence of an unknown bias
error in an otherwise perfectly measured variable.
At any particular instant of time, these variables
constitute one row in the matrix X of independent

variables as defined in section 4.1.1.

| ug (4.1-21)

The variables @ig/V,, &, 8 and ggc/V, are state
vector components of the longitudinal linear
equations of motion [57]. It may be verified that
these equations of motion with elevator control
deflections O, as input signal represent a
completely controllable system [70]. This means
that in principle it is possible to design a
longitudinal flight test manoeuvre such that the
time histories of ug/V,, @, 6 and qgc/V, are
linearly mdependem This implies independence of
1, gV, a, gs, C/Vy and 9, in (4.1-21).
According to the linearized kinematical model in
(2.1-15), the remaining variable ac/V, can be
written as:

aoc . ismyoe + LAZS + __.qs . (4.1-22)
Vo Vo2 Vo2 Vo
where

=~
= _— Y%p,V,S C,
S m Po Yo Zg

The linear aerodynamic model of éZS may be
written as:

p Us ~ qsC
c, =¢C, -~ +C, ra+(C, - +
S US VO (XS qS v()
ac z
+C,. ‘_ + CZ d

L“S VO bcg €

It is clear now that &E{VO depends linearly on the
variables Ug/Vy, @, 8, qg¢/V, and 8, in the
following fashion:
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e u ~

x€ - .__1_ C, S CZ(1 ‘a -
Vo Zyc-CZ(;S us 'V, s

gc E
- 2u, smyoe + (2u, +CZ )

0 Vo

+C, 3

(4.1-23)

In general the stability derivatives CZ and C
are small compared to 2u, [57). Equatlon (4.1-2 233

may, therefore, be simplified by neglecting CZas
and Cqu'

In the reconstructibility analysis of the linear
longitudinal flight path reconstruction model, it
was shown that the selected observation
configuration of the actual flight tests led to a
constant error in the reconstructed version & of the
angle of attack &, see equation (4.1-16). This
constant error vanishes after differentiation, see
equation (4.1-17).
Using equations (4.1-16), (4.1-17), (4.1-18) and the
simplifications above, (4.1-23) may now be written
as: -

;‘— ; ~ as c ~
o ¢ 1, =, a0, =2 8 |c-
Vo vy Vo (4.1-24)
- ﬁsmyoe
%

in which C denotes a 5x1 matrix as defined in
(4.1-4), with elements:

C A C
et | sy o Lw |L DD
u. (g SV, T Vo
C C, C
ZUS L(ls 1 Zbes
2u, 2u, 2u,
(4.1-25)

If the nominal flight condition is horizontal then
¥,=0 and consequently the term with 6 vanishes.
According to section 4.1.1 this means that no
unique solution exists for the longitudinal stability

and control derivative estimation problem. It one of

the solutions is selected, for instance by setling

Cx . =Cz,s=Cun =0 the remaining estimates will be
blaqed as shown in equation (4.1-8).

The existence of unidentifiable longitudinal
stability and control derivatives was noted earlier
by Gerlach [3}. The linear dependence exists only
in horizontal nominal flight conditions. This means
that in principle non horizontal nominal flight
conditions (i.e. climb or descent) allow complete
identifiability of all longitudinal stability and
control derivatives. In normal practice, however,
nominal flight path angles are too small to result in
an effective elimination of the above identifiability
problem. If a large flight path angle is chosen, the
engine power setting will be very different than in
horizontal flight, which may affect the aerodynamic
model through interference effects and may
introduce errors due to the limited accuracy of the
thrust calculation.

Another possibility is to consider a manoeuvre in
rolling or turning tlight. This will also remove the
linear dependence in equauon (4.1-24) via the
previously dropped term gn,/VO-n,osq)o-smq)O-q) at
the linearization of the Kkinematical equations
(2.1-5), see [103,21]. The success of this approach
is limited by the effect of the rolling or turning
flight condition on the aerodynamic model, which
can be very important, especially for aircraft with
propellers.

Lateral

4.1.4 ldentifiability of Linear

Aerodynamic Model

To begin the discussion, it can be seen that_the
independent variables in the models of Cy_ , C,

~ Sm Sm
and Cnsm are:

~

~  Pg b rg b e ~  (4.1-26
m B

. “m N

LB 2V, ' 2V, 'V, 18,00
The variables B, ¢, psb/2V, and Tb/2V, are
components of the state vector of the linear lateral
equations of motion [57]. Analogous to the
longitudinal case discussed above, it may be
verified that these equations represent a completely
controllable system with aileron and rudder control
deflections 8, and 0, as input signals. This means
that lateral flight test manoeuvres can be designed
such that the time histories of B, ¢, pgb/2V,
rsb/2V, 6, and &, are linearly independent. This

P




implies independence of 1, B, ps, b/2Vo, Ts, b/2V,,
O, and 0, in equation (4.1-26).

Next it must be investigated whether B'bN0 is
independent. This could be checked by rewriting
Bb/V, using equation (2.1-16) as:

~ ~ Tsb )
E = g_t;cosyoqas + %qu -2.2 (4.1-27)
Vo v, A 2V,
where
~ 1,
Ayg — /ﬁpOV ’s C

The linear aerodynamic model of CYq from equation
(2.2-9) may be written as:

= 5 b qu
C,. =Cy P +C, B ., D
vs TPt Oy v, r2V
b ~ -
+Cy > +Cy D, +Cy -0, .
Y, 2\/0 Yba a Ybr r

Substitution for Ay in (4.1-27) leads, for the case of a
nominally horizontal flight condition, i.e. y4=0, to the
following expression for $b/V:

Bb 1 gb
Vo = 1 Vs B fakvAl I
2/‘tb—CYBq 0

peb Teb

+ Cy Ps +(cY _4,“1’).r5 +
Ps 2V, S 2V,

+ Sn +C -gr
bag brg

(4.1-28)
In equation (4.1-28) the terms CY psb/2V,, and
Cygas 9, are relatively small and may be neglected.
Also Cy.. and CY.s are usually negligible
compared to 2u, and 4u, respectively.

According to the reconstructibility analysis of the
lateral flight path reconstruction model it follows
from equations (4.1-16) and (4.1-17) that the
reconstructed angle of side slip B has a constant
error which vanishes after differentiation. Using
equations (3.2-18), (4.1-16), (4.1-17) along with
the simplifications above, cquation (4.1-28) may be
written as:

59

]
—
-
-

(4.1-29)

in which C denotes a 6x1 matrix as defined in
(4.1-4), with elements:

cT - |- YBs “Bo _ s Bs
2w, Cy  4Vy T2
P 0 (4.1-30)
1 T
0,-=,0, -
2 2,

The controllability of the lateral equations of
motion guarantees the existence of flight test
manoeuvres for which the time history of ¢g is
linearly independent of the time hislories of the
remaining variables in (4.1-29).

Consequently, the same holds true for [3 b/V. This
means that in principle, all lateral stability and
control derivatives in the chosen model are
identifiable.

4.2 Nonlinear Model
Identification

Aerodynamic

Nonlinear aerodynamic models are preferred to
linearized models for analysis of actual flight test
data. The obvious reason for this is that the validity
of nonlinear models, as for instance in the form of
relations for the aerodynamic force and moment
coetficients (2.2-2) and (2.2-3), is not restricted to
small deviations from a nominal flight condition.
Furthermore, in the context of the two step method,
the aerodynamic model identification problem can
be formulated as a Linear Regression problem.
Model identification implies the development of an
adequate model structure. Since linear regression
techniques are used, aerodynamic model
development can be based on residual analysis in
subsequent steps starting from a relatively simple
model structure.

In section 4.2.1 a brief outline is given of classical
regression analysis. section 4.2.2 discusses the
properties of simplified models. The subject of
section 4.2.3 is model development via residual
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analysis. In section 4.2.4, we briefly touch upon
the sources of collinearity problems, their detection
and treatment. For a detailed introduction to
regression analysis the reader is referred to the
books of Draper and Smith [73], Montgomery and
Peck [75], Sen and Srivastava [228].

4.2.1 Principles of Regression Analysis

Models of aerodynamic force and moment
coefficients, as for instance in equations (2.2-2)
and (2.2-3) can be restricted to the following
general form:

r
y(i) = Y a o x () + () , (4.2-1)

k=1
for i=1(1)N, in which y(i) denotes an aerodynamic
force or moment coellicient, a,, k=1(1)r denote
aerodynamic model parameters to be estimated and
x(i) are airplane state and control variables. The
variable €(i) denotes modelling errors accounting
for all unmodelled effects like turbulence in the
propeller slipstream and in the boundary layer, fuel
sloshing, atmospheric turbulence, etc. These errors
are treated as stochastic contributions to the force
and moment coefficients and satisfy

E{e(i)} =0,
E{e()-e()} =V, 9, .

That is to say that we postulate some assumptions

that the equation error diagnostics are of the type:

* (i) is a slationary vector,

* (i) is uncorrelated with x,(i),

* ¢(i) is identically distributed and uncorrelated
with zero mean and variance 02,

* ¢(i) has normal distribution so that confidence
intervals for the estimates can be found and
regression hypothesis tests can be employed.

The integer i in equation (4.2-1) refers to a

particular time instant t=t; during a dynamic flight

test manoeuvre. Models of this form are the subject

of classical regression analysis. The variables x,(i)

are called independent variables. These variables

are assumed to be known exactly while y(i), called
the dependent variable, is assumed to be measured
with finite accuracy according to:

Ym(D) = y(0) + (i),
where v(i) represents a random measurement error
whose characteristics are similar 1o €(i) with:

(4.2-2)

(4.2-3)

E{v(i)} =0,

(4.2-4)
E{v(i)-v()} = V.5, .

The problem of regression is to calculate an
estimate of the parameters a, given N sets of
values of the independent variables x, (i) and
measurements of the dependent variable y _(i).

Equation (4.2-1) can be written in terms of a
parameter vector a=col[a,,a,,...,a,] and a 1xr matrix
x(i)=[x,(i),x,(i},...,x (i)} according to:

y(i) = x(@i)-a + (i) ,
for i=1(1)N.

(4.2-5)

Equation (4.2-5) can be substituted in (4.2-3)
which may then be written in the following
compact form:

Y - Xa+eg+v, (4.2-6)
where:

X = C‘Ol(ym(l) ’ ym(z) >t ym(N)) >

e =cole(l),eQ2), ..., e(N)) ,

v = col{v(l),v(2), ..., v(N))

and X denotes a matrix of independent variables:

x(1)
x(2
x - [@
x(N)
The vector of residuals corresponding to a
particular estimate a of the parameter vector a is
defined as:
(4.2-7)

e=Y -X-a.
- -—m -

The least squares estimate 2 minimizes the sum of
the squares of the residuals e(i), i=1(1)N,

N
min E e (i) = min ST'S
a it . (4.2-6)

= m;n (lm —X';>'r (_Y_m —X-;)

a

EY

jo

The necessary conditions for the existence of a
minimum are:




2fere) -2 -

da da

(4.2-9)

Substitution of ¢ results in the so called normal
equations:

[X T-X] ; = x Ty (4.2-10)

_m

A unique solution exists if and only if [XTX] is
positive definite. That is if its inverse exists. Then:

;_ - [X T.X]-I X T.y (4.2-11)

-m '
An unbiased estimate of the variance of (V +V,)
can be calculated with:

\A’e _ el . (4.2-12)
N -r

It is not difficult to show that under the
assumptions made above the least squares estimate
in (4.2-11) is unbiased:

E@) = [XTX]" XT-E(Y ) =a . @2-13)

—_m

The covariance matrix of parameler estimation
eITors is:

V@ = E{(a - B@)a - E@)"} .
Substitution of (4.2-11) and (4.2-13) results in:

A - - 4.2-14
V@) =V, [xTX]? @219
Since V, is usually unknown, it is customary to
substitute instead V, as calculated with (4.2-12).

The goodness of fit of the perfect model:

r
y() = 3 axy () (42-15)
k=1
to the measurements y, (i), i=1(1)N may be
expressed in tlerms ol the simple correlation
coefficient between y (i) and y(i)=x(i)a. This
correlation coellicient is usually referred to as the
multiple correlation coefficient R and R? is called
the measure of fit.
Now define Ay, (i) and Ay(i) as deviations of y (i)
and y(i) from the mean y, i.e.
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AZI])(i) = Xln(i) - y
Ay(i) =y@) -y

_ 1
y - W ,X=1: ym(l)

Then the multiple correlation coefficient R follows
from:

N R 2
[Zl (v, () - Y) (¥ (i) -37))

R2 =
ZN; Y -9 ii::(;'(i) -y)? (4.2-16)
[y
(avr ey, ) (ax™ay)
where:
AY = col(By, (1), 8y, @), -, Ay, (N))
AY = col(ay(1), AY2) ., Ay(N)) .

[t may easily be verified with (4.2-7) that

AY,=AY+e. Substitution of this result in (4.2-16)

and using the fact that e and AY are orthogonal,

i.e. e "AY=0, R? can be written as:
R?=p . &€
AY!-AY

-—in -1

(4.2-17)

based on the assumption that e=0.

A general remark about the least squares at this
stage is necessary. In an actual experiment, the
above assumptions may not be generally met.
Because of the measurement errors in the
independent variables, the least squares estimates
are asymplotically biased, inconsistent and
inefficient [157,159]. However, as a result of high
accuracy instrumentation used and independent
variables reconstructed from state estimation, the
experience shows that these errors are quite small.
The computed least squares eslimates are accurate
and comparable to those obtained for example from
an output error method.
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4.2.2 Characteristics of Simplified Models

In Equation (4.2-1), each term a,x,(i) corresponds
to one term of a multiple Taylor series expansion
representing the aerodynamic model (section 2.2).
Under certain conditions these Taylor series
expansions can be assumed to be close
approximations to the actual aerodynamic
phenomena.

Let r denote the corresponding number of terms. In
practice, the maximum number of parameters
which can be estimated from a given set of
measurements is much smaller than r. Let r, denote
this a priori number of parameters. The
corresponding model is:

y(i) = E a - x, () - (4.2-18)
k=1

Since (4.2-18) probably contains only a small
subset of the set of parameters in the perfect model
(4.2-15), it is called a simplified model. A
characteristic property of simplitied models is that,
in general, their parameter estimates are biased.
This can be shown as follows. For a given set of N
data points, the perfect model (4.2-15) can be
wrilten as:

Y=Xa=X-a +X,a. 4.2-19)
in which a; denotes an r; dimensional parameter
vector of the simplified model and a, an (r-r))
dimensional vector of the remaining parameters.
Each column of the matrix X, can be decomposed
in a vector contained in the column space of X,
and a vector perpendicular to this column space.
This means that X, can be written as:

X, = X,°C + AX, (4.2-20)
in which C denotes an rx(r-r,) matrix. Let a,

denote the least squares estimate of a, in the
simplified model Y=X-a,. According to (4.2-11):

" Tyl T (4.2-21)
il = [Xl .Xl] Xl .-Y—m :

From equation (4.2-19), it can be shown that this
estimate is biased:

E(é}‘) =[x x ] % By,

-—m

[XlT'Xll-l XlT (Xl’.a.l + Xz'ﬁ:)

art [XlT'xl]-l XIT'Xz'iz .

It can be shown that:
T -1, T

where the index j refers to the j-th column of C
and X, respectively. The expected value of _5_; is
therefore:

E(a) =a +Cua (4.2-22)

=2

In general 2,20 and C=O, thus 2, is biased.

It is important to note here that this bias is not
constant but rather depends on the structure of the
matrix X. This means in the case of dynamic flight
tesl manoeuvres, the parameter estimation bias of
simplified models depend on the form of the flight
lest manoeuvre.

The covariance matrix of 4, is:

A. I\‘ I\. /\‘ /\‘ r
V) = B{(a: @) (a; -B@p) )
Substitution of (4.2-21) and (4.2-22) leads to an
expression similar to (4.2-14):

iy v, [T ]

4.2.3 Model Development via Residual Analysis

In aerodynamic model identification it is often
possible to specify an a priori model containing
those terms which are known to be indispensable
from experience or from theoretical considerations.
Next, the model fit is improved by selecting
additional terms from a set of so called candidate
variables. This can be done in successive steps via
residual analysis.

The procedure described below is called forward
selection in the literature, because at each step one
variable is added to the model. An alternative
procedure is backward elimination where one starts




with a model with many variables already included
and at each step the least important variable is
eliminated. Finally one can combine the two
procedures and at each step include the most
important variable and subsequently eliminate the
least important variable, this procedure is called
stepwise regression. In actual practice all
procedures work well, but they need not
necessarily lead to the same model. For instance, it
may occur that one variable has a high correlation
early in the forward selection procedure and
therefore is included, but its contribution may
become insignificant after a few other variables
have been included. The stepwise regression
procedure will in this case eliminate this variable,
while the forward selection procedure will retain it.

Let the initial model contain r; parameters. The
corresponding least squares estimate a, can be
calculated with (4.2-21). The remaining model
residuals are:

n

e =Y -X,a
=

—1 —m

(4.2-23)

- [1 -x, [x"x,]” x,T] Y .
Next, each member of the set of candidate
variables is evaluated with respect to its capability
to improve the fit of the model. Let such a variable
be x (i), i=1(1)N. Then a column vector X, can be
defined as X,=col[x(1),x.(2),...,x(N)]. If one uses
X, as the vector of the independent variables in a
model for the least squares residual vector ¢,
according to:

e = )_(_2-;12 +e , (4.2-24)
the corresponding least squares estimate of a,,

indicated as aj, is now

" — 4.2-25
a = [XIX,|" X[, | (422
and the ‘new’ least squares residuals ¢} are equal

to:

A

Do x (4.2-26)
22 9.1 éz a,

According to (4.2-20), X, can always be
decomposed into components along and

perpendicular to the column space of X:

X, = X;¢c +AX (4.2-27)
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in which ¢ denows a column vector. By
substituting equations (4.2-27) in (4.2-25) it is
noticed that if AX,=0, then also a;,=0, and from
equation (4.2-26) we get e,=¢,. That is, adding this
candidate variable does not improve the goodness
of fit. In general, a;=0 and with equations (4.2-26)
and (4.2-25) the following expression may be

: 1T 1.
derived for g, €

-1
e'Te! =eTe -elaX [XT-X AXT-e
= = N - B B L =2 =

zeTie -eT. .
£ e "~ & AKX,

deTxTox ¢ T, -1 T,
[_C. 5] élg + Aéz A)_(.z] A_)sz El *

(4.2-28)

In the analysis here, AX, is used as a candidate
variable instead X,. The reason for this can be
ascertained from equation (4.2-28). Since XX, is
positive definite, we have:

g e, <g) e
where ¢, denotes the vector of the smaller
residuals:

)
-
22 = El Aéz 4
. A,
The least squares estimate a, is calculated as:

Xl ] axl, .

The vector ¢ in equation (4.2-27) is equal to:

T (4.2-30)

c=[x"x [T XX,

This is easily proved by showing that:

XIT.A)_(.Z = XIT(KQ B XI‘E) = .0_ ‘

The procedure for model development via residual
analysis is o calculate from a given set of
candidate variables (stored in the form of column
vectors X,) the orthogonal components with respect
to the columns of X,. Next, one of the orthogonal
candidate variables, in general the one which
generates the smallest value of el e, is included
in the model. Then this selection procedure is
repeated for the set of remaining candidate
variables, where the orthogonal components of the
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candidate variables are calculated with respect to
the new (extended) matrix of independent variables
of the form [X,AX,]. This only requires
orthogonalization with respect to the new column
AX,, since all candidate variables were already
orthogonal with respect to the columns of X,.

The improvement of the goodness of fit in the
subsequent steps of the model development can be
described by the multiple correlation coefficient
given in equation (4.2-17):

T

[ A
Rf =1 -_*= (4.2-31)
AYT-AY

-m --m

in which ¢ refers to the {-th step.

Each addition of a new candidate variable, results
in a reduction of the sum of squares of model
residuals _e_{c;, and a corresponding increase of
multiple correlation coetficient R, This makes it
difficult to decide when to stop the process of
adding candidate variables to the model. Therefore,
we need to define additional statistical criteria to
decide this issue.

One possibility is to test the statistical significance
of each new parameter estimate by the sequential
F-test and to test the statistical significance of all
model parameters simultaneously by the total
F-test. The feature of sequential F-test is that it can
be used as a criterion for adding or removing terms
trom the model when it is being ‘built’. For
application of the sequential F-test one calculates:

St T
Fst:q = T ' (N - rl) ’
. € ¢
t =

in which r, denotes the total number of parameters
in the new model. F,, can also be written in terms
of multiple correlation coefficients according to:

2 2
R, - Ry
Frg = ———— *(N - 1) . (4.2-32)
2
1 - Ry

At this stage it is convenient to introduce the
partial correlation coefficient R} being the simple
correlation coefficient between ¢, and AX,. The
partial correlation coefficient can be written as:

(4.2-33)
€ €
-1 =4¢-1

The relation between the multiple correlation

coefficients R, and R, and the partial correlation
coefficient R} is:

RZ=1-(1-R2)-(1-R". (4.2-34)
Substitution of (4.2-34) in (4.2-32) results in:
.2
R,
Fog =——— "(N- 1) (4.2-35)
1 -R,

The null hypothesis Hgya=0 is rejected at a
chosen confidence level o in favour of the
alternative hypothesis H,:a=0 if:

Fy > F, (1, N-1), (4.2-36)
in which F_ denotes the value of Fisher’s
distribution function with 1 and N-r, degrees of

freedom; a=Pr{H,[H,}.

The combination of equations (4.2-35) and (4.2-36)
allows us to bring the sequential F-test in the
following form:

accept H, if :

R‘2 > k
¢ 1+K (4.2-37)
i
where k = ‘F (1 ,N-r) .
Ry Fall N0

This is depicted in fig. 4-1.

For application of the total F-test one calculates:

T T

e ‘e —¢e "¢ N -
F =070 == (N-mw (4.2-38)
el (r, - 1)
- =

in which ¢, denotes the residuals of the most
simple model with only one parameter a; and

independent variable xy(i)=1, i=1(1) N. F,, can
also be written as:
R} (N -r1)
Fiop = —— - v (4.2-39)
1 -R; (- 1)

The null hypothesis Hgy:a;=0, i=1(1)r, is rejected




and the alternative hypothesis H, is accepted at a
chosen confidence level a if:

F, > F(r,-1,N-r), (4.2-40)

where F, denotes the value of Fisher’s distribution
function with r-1 and N-r, degrees of freedom;
a=Pr{H,|H,}.

Combining equations (4.2-39) and (4.2-40) allows
us to bring the total F-test in the following form:

accept H, if :

2.k
Re > ¢ (4.2-41)

-1
where k = .N__-Fu(r,—l , N-r)) .

- r'

An important characteristic of a model is its
capability to predict aerodynamic force and
moment coefficients for other data sets then was
used in the determination procedure itself. The
Prediction Sum of Squares (PRESS) criterion is
often used to test for this characteristic, see Allen
[229]. The prediction error for one data point is
calculated by omitting this data point from the
regression and then calculating the difference
between this data point and the prediction by the
model based on the remaining data points. The
PRESS criterion is then calculated by repeating this
procedure for all data points and summing the
squared prediction errors. This criterion is
recommended by Klein [150]. A disadvantage of
this criterion is that if sequential correlation is
present in the data, as is often the case with actual
flight test data, this criterion will not be effective.

In order to negate the shortcomings of the PRESS
criterion, the Predict criterion was introduced by
Mulder [14]. This criterion uses a second dataset,
which is not used in the parameter estimation at
all. The model as estimated from the first data set
is used to predict the model output for the second
data set. The Predict criterion is then defined as:

N A N A
: . A\ 2
PREDICT = ¥ V(y()) + ¥ (y.() - y())
=) i=l
(4.2-42)
If ¥,,(i) denotes the estimate of y,(i) of the second
data set, then y,,(i) can be calculated according to:
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Y1) = X,() 'ﬂ; )

where §1 is the parameter estimate based on the
first data set and X, is the data matrix for the
second data set. The first term in equation (4.2-42)
is the estimated value of the prediction RSS
calculated from the parameter estimation errors of
i caleulated as V(§y(0)=Xo(i) V(@D X, (D),
while the second term is the actual prediction RSS.
When the number of included variables increases
in the aerodynamic model the fit error in the first
data set will decrease and as a consequence the
first term in equation (4.2-42), which is the
predicted fit error for the second data set, will
decrease as well. As long as variables are added
which improve the prediction the second term and
the criterion as a whole will decrease as well, but
soon variables will be added which happen to
improve the fit to the first data set, but which
actually degrade the prediction error for the second
data set. In that case the second term will usually
cause the Predict criterion to increase rapidly and
thus give a good indication of the predictive
capability of the model.

For more details on slatistical tests the reader is
referred again to [73,75,228). In section 4.3 we
will discuss the application of sequential and total
F-tests and of the Predict criterion while
developing longitudinal and lateral aerodynamic
models from dynamic flight test data.

The final step in the model determination
procedure is the validation of the model using
independent data sets. It is very important to set
aside extra recordings dedicated for validation
during the planning of a flight test program. This
is of course closely linked to the Predict criterion
approach, although strictly speaking the second
data sets used in this criterion are not independent
any more.

4.2.4 Data Collinearity

If there is a high correlation between measured
variables in the data matrix, this condition is called
data collinearity. The matrix [X"-X] in the normal
equations (4.1-3) or (4.2-10) becomes very ill-
conditioned and as a result some parameters or
combination of parameters become nearly
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unidentifiable. An example of collinearity is a
highly manoeuvrable aircraft whose stability
augmentation system deflects various control
surfaces in concert thus causing near linear
dependence among their deflections. One should
recognise the collinearity problems as a data
problem rather than as a statistical problem.

The condition may even further degrade when
actually computing numerical values due o round-
off and truncation errors in digital computation,
Conversely, the same type of errors may also make
a singular matrix appear to be just ill-conditioned.
This points out the need for accurate numerical
methods.

Some well-known numerical methods which are
successftul in dealing with ill-conditioned matrices
are Householder's transtormation, Given's rotation
and singular value decomposition. For more details
the reader is referred to Lawson and Hanson [72].

Some of the sources of collinearity problems can

result from:

a) a flight experiment where certain independent
characteristic modes determined by some of the
regressors are not excited by the input signals,

b) over parameterization of the model or

¢) constraints in the data, ¢.g. due to stability

~ augmentation systems.

The detection of these collinearities can be made

by inspecting:

a) correlation matrix [X"-X],

b) eigen system analysis and singular value
decomposition or

¢) parameter variance decomposition.

A good theoretical discussion on these topics can

be found in [74,75 and 228]. Some very interesting

discussions with respect to sources of collinearity,

diagnostics and adverse effects in the light of

estimating parameters of modern high performance

aircraft with high augmentation can be found in

Klein [62,125,156 and 157].

4,3 Practical Aerodynamic Model Identification

In section 4.2, acrodynamic model development
from ftlight test data begins trom relatively simple
a priori models containing only those variables
which are known to be indispensable from theory

or from experience. Next, a set of candidate
variables is postulated, from which a limited
number is selected to be included in more refined
versions of the aerodynamic model.

To begin with, a priori models of the longitudinal
and lateral aerodynamic force and moment
coefficients are shown in table 4-1. The
aerodynamic force and moment coefficients are
initially assumed to depend linearly on the selected
sets of independent variables, except for the terms
with a? in the models of Cy and C,,» Which were
known to be indispensable from earlier flight test
experience [14,15]. In addition, it is initially
assumed that no aerodynamic ‘cross coupling’
effects are present. That is to say, the longitudinal
aerodynamic force and moment coefficients are
assumed to depend only on variables related to
strictly longitudinal manoeuvres, while the lateral
aerodynamic force and moment coefficients are
assumed to depend only on variables related to
strictly lateral manoeuvres.

The result of the wind tunnel experiments as
presented in fig. 2-1, however, indicate that
aerodynamic cross coupling effects do exist and in
fact are rather pronounced. The longitudinal
coefficients C, and C depend on B and the lateral
coelficients Cy, C and C_ depend on a as well as
on Apl/'/zpvz. The cross coupling effects and also
the relation between C_ and B as seen trom fig. 2-1
are clearly nonlinear.

In this case it appears that the aerodynamic
coefficients are continuous functions of Ap,/l/zpvz,
a and B. It is possible therefore to approximate
these functions by means of truncated Taylor series
expansions. The models in table 4-1 are in fact
examples of such approximations in which, except
for the quadratic terms in «, only terms up to the
first  order are retained. More accurate
approximations will result if terms of higher order
than the first are added to these a priori models.
This leads, therefore, to the so-called candidate
variables.

For example, it is important to notice the form of
the term (Ap/%pV?)-od-B¥. In the present section
all these variables, up to the third order, i.e.
i+j+k=3, were included in the set of candidate
variables. Also included in the set of candidate
variables, were the control surface deflections 0,, 0,
and O, as well as products of these control surface




deflections and first and second order powers of
Apt/l/zpvz,a and B. These latter products were
included to account for the variation of control
derivatives, as was already indicated by the wind
tunnel experiments (fig. 2-1(c)). The set of
candidate variables was extended further by adding
the dimensionless body rotation rates pb/2V, qc/V
and rb/2V and the dimensionless time derivatives
ac/V and Bb/V. In general, body rotation rates are
included in aerodynamic models to account for the
effect of curvature of the streamlines on the
aerodynamic force and moment coefficients [10].
The body rotation rates in the aerodynamic models
of table 4-1 are used to model the effects of the
dimensionless body rotation rate qc/V related to
longitudinal manoeuvres on the longitudinal force
and moment coefficients, and to model the effects
of the dimensionless body rotation rates pb/2V and
th/2V related to lateral manocuvres on the lateral
force and moment coeflicients. By including all
dimensionless body rotation rates in the set of
candidate variables, it is possible to account for
hypothetical aerodynamic cross coupling effects.
That is, the effect of qc/V on the lateral, and the
effects of pb/2V and rb/2V on the longitudinal
aerodynamic force and moment coefficients. The
dimensionless time derivatives ac/V and Bb/V
were included in the set of candidate variables to
account for nonstationary aerodynamic effects and
the effects of the finite time needed for the vertical
and lateral air velocity components induced by the
wing and the fuselage to reach the horizontal and
vertical aircraft tail surfaces [10].

The nonlinear dependence of the aerodynamic
force and moment coefficients on Apl/‘/zpvz, a, and
B, the variation of the control derivatives, and the
hypothetical effects of the body rotation rates and
the time delays as described above, all amounted to
a total number of 40 candidate variables.

The above considerations clearly illustrate that the
selection of candidate variables is to a certain
extent arbitrary, even if supported by results from
quite extensive wind tunnel experiments, as in the
present case.

The process of sequential selection of candidate
variables for improved model fit will be
demonstrated now. Rather than a single
longitudinal or lateral tlight test manocuvre, a dala
set consisting of 3 longitudinal and 3 lateral
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manoeuvres at 3 different values of nominal True
Air Speeds of 35, 45 and 55 m/s respectively, will
be used for this purpose. In such a data set, the
range of variations of variables such as Apl/l/zpvz,
o and B is considerably larger than in a single
longitudinal or lateral manoeuvre, as can be seen
from fig. 4-2. The longitudinal and lateral
manoeuvres lasted 10 and 16 seconds respectively.
Combined with a sample rate of 10 Hz, this
resulted in a joint data set of 786 data points.

Starting from the a priori models above, the models
are sequentially extended with those candidate
variables corresponding to the largest value of the
partial correlation coefficient R, which is
equivalent to minimizing the residual sum of
squares ¢ e,

Fig. 4-3 shows two typical examples of the
variation ol the different criteria for model
development as a function of the number of
candidate variables added to the a priori model.
The criteria shown are the performance index (P.1.)
g{-gl, the total F-value F,, the partial correlation
coefficient R, and the PREDICT function. In these
examples, both the total and the sequential F-tests
lead to inclusion of at least 6 additional terms.
Acceptance by the F-tests means that each of these
terms yielded a significant contribution to the
goodness of fit of the aerodynamic model to the
actual measurements. The Predict function,
however, is shown 1o be a much more severe
criterion in this respect. A large increase of the
predict function indicates that the larger models are
inferior to more simple models in predicting the
force or moment coefficient using a second,
independent data set. Compared to the a priori
models, the models as selected with the predict
function are shown to contain only conditional
variables.

For all aerodynamic force and moment coefticients,
the selected candidate variables and corresponding
improvements of the goodness of fit are shown in
lable 4-2. Here, the goodness of fit is expressed in
terms of the multiple correlation coefficient R, and

of i - R} expressed as a percentage.

With respect to goodness of fit, considerable
differences exist particularly between models of
aerodynamic force coefficients and models of
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aerodynamic moment coefficients. Accurate models
could be developed for Cy and C,. The fit of the
models of C_ and in particular C;, however, is
rather poor. These results are of course not general,
but rather depend on the aerodynamic
characteristics of aircraft, on the nominal flight
condition and on the flight test manoeuvres. A
comprehensive presentation of experimental results
related to this aerodynamic model development can
be found in Blok and Mulder [178].

4.4 Conclusions

Several aspects of the regression technique have
been described in this chapter. This technique is
very efficient with respect to computing time and
very convenient to apply when one wants to obtain
the parameters of a given aerodynamic model.
Moreover, it is also a very important tool for the
delermination of the structure of model.

In this chapter a number of statistical tests for the
validity of the identification results were discussed.
In addition, the use of a priori information in
support of the model development was
demonstrated. It is very important to stress,
however, that the procedures that we describe here
are certainly not ‘black-box’ procedures, which will
automatically produce the right answers. The
aerodynamic insight of the analyst is the best
criterion for the validity of the results. In this we
fully agree with the discussion by Maine and 1hiff
[1,2].

Linear Regression lends itself well for
implementation in an interactive program package
and quite a number of these packages have been
developed. The essential features of such a package
are complete freedom for the choice of candidate
variables, complete freedom of selections within
datasets and combinations of datasets and extensive
facilities for inspecting the model residuals using a
large variety of statistical tests and graphical
presentations. In this way the analyst is able to
apply his engineering judgement in the best
possible way.

Like any other estimation method regression may
give biased results when the statistical assumptions
on which it is based are violated, see (4.1-2). In
practice there is always measurement noise (or

estimation errors) in the independent variables. In
this case, the application of the Total Least Squares
technique allows to take account of these errors in
the independent variables, see Golub and Van Loan
{230] and Huffel {231}. Initial applications of TLS
have shown significant improvements over the
standard regression method [219].
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Table 4-1: A priori longitudinal and lateral aerodynamic models.
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0.999415 3.41
1 0.999533 3.05 i Jo
2 0.999552 2,99 _ )
o, (Ap,/¥pV?)
3 0.999567 2.94 _
ac/V
4 0.999601 2.82 g2
s 0.999699 2.45 )
B> (ap,/%pV?3)
6 0.999712 2.39 B
0.996999 774
1 0.998327 5.78 ,
o
2 0.998961 4.55 " "
B? (ap,/%pV?)
3 0.999049 435 g
(ap,/15pV?2)
4 0.999117 4.20 e
(ap,/1pV?2)
5 0.999162 4.09 "
6 0.999202 3.99 ,
ac/V
0.986309 16.49
1 0.991233 13.21 g
2 0.993302 11.55 th/2V
3 0.994284 10.67 .
4 0.995078 9.90 B
5 0.995479 9.49 i ,
B2 (ap,/%pV?)
6 0.995857 9.09 | o,
5, (Ap,/15pV?)

Table 4-2: Statistically significant steps in the development of models of the aerodynamic force
and moment coefficients. Model development is based on the combined data of longitudinal and
lateral manoeuvres at three different nominal flight conditions at 6000 ft pressure altitude and
TAS of 35, 45 and 55 m/s respectively. Asterix indicates the models as selected using the
PREDICT function criterion of section 4.2,
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0.996551 8.29
0.997119 7.58 ;

Bb/V
0.997571 6.96 5.6
0.997740 6.71 oY
0.997895 6.48 .

ac/V
.997993 6.33 [52
0.998323 5.78 o 2
0.954197 29.91
0.959872 28.04 3
0.964516 26.40 .

fb/V
0.967861 25.14 b0t
0.969724 24.42 ,

(Ap|/ YapV —)
0.972087 23.46 5 ﬁl
0.973925 22.68 .
B (ap,/%pV?)
0.960266 27.90
0.980841 19.48 A3
(Apt/ pV -)
0.986839 16.17 qt/V
0.990024 14.08 B
0.992129 12.52 5
o, (Ap,/%pV?)

0.992961 11.84 ;

Bb/V
(.993742 11.16

(Apl;"/zp\/ 3)

Table 4-2: Continued.
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Different criteria for model development for increasing number of additional terms in a

priori aerodynamic models of C, and C,. The open arrows indicate the selected number of additional

terms based on the PREDICT function criterion.
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5 OPTIMAL
ESTIMATION

In the estimation ol aecrodynamic parameters from
flight tests the form of the flight test manoeuvre is
vital for the accuracy of the parameter estimates.
This naturally leads to the design of optimal input
signals for flight test manoeuvres, which is the
subject of the present chapter.

Several factors must be taken into account in
designing inpult signals for flight test manoeuvres:

Model assumptions Input signal design must not
result in violation of the assumptions underlying of
the model description. In the case of linearized
models the inputs should not cause too large a
deviation from the nominal flight condition.

Flight test instrumentation The input signals must
reflect the characteristics of the flight test
transducers and data logging system such as
dynamic range, measurement accuracy and sample
rale.

Accuracies of parameter estimates The optimization
of input signals should lead to maximum ‘quality’
of the data acquired during a flight test manoeuvre.

Length of individual flight test manoeuvres The
flight test time should be kept as short as possible.
This not only saves expensive flight testing time
but also limits the volume of data storage and data
processing.

Pilot acceptability The dynamic range and
maximum amplitude of control input signals should
be acceptable to the pilot. Only very “simple’ input
signals are suitable for manual implementation.
Input signals should, of course, never manoeuvre
the aircraft outside of its flight envelope.

Aircraft structural constraints Input signals for
flight test manoeuvres should not lead to larger
than the design structural loads.

A fundamental problem in the design of input
signals for system parameter estimation is that the
design itself depends on the system parameters.
Consequently, these parameters must be known
before the actual flight tests are made. If they were

INPUTS FOR AIRCRAFT PARAMETER

known, however, then estimation would obviously
no longer be necessary. This problem has been
described as the circularity problem. Necessarily,
the design of input signals must be based on a
priori estimates of the actual system parameter
values. The circularity problem can be addressed
by calculating and implementing a sequence of
‘optimal” input signals. Input signal design is then
seen as an integral part of the identification
procedure as shown in fig. 5-1. Starting from
windtunnel experiments or other sources, one may
develop an aerodynamic model structure and select
a set of a priori parameter values. Together with
the estimation objectives and experimental
conditions, one has the basic presumptions for the
design of input signals. Next actual identification
results may be used to ‘refine’ the preliminary
input signal design. Now, optimal input design and
parameter identification can be used in an iterative
manner until the desired objectives are met. Such
an iterative procedure raises the interesting and yet
unsolved question whether, and if so under which
conditions, it will converge.

Historical background

In this section, we give a brief trace of the
evolution of the theory of optimal input design.
Starting with the work of Nahi et al., [159,160],
the problem of deriving optimal input signals for
the estimation of parameters in dynamical system
models from response measurements has been
studied intensively by several researchers. A
detailed survey has been conducted by Goodwin
and Payne [161] and Kalaba and Spingran |162]. In
the field of dynamic flight testing, Gerlach |[3]
appears to be the [irst to explicitly recognize the
influence of the form of input signals on the
accuracy ol estimated aerodynamic model
derivatives. He proposed a qualitative method for
the determination of ‘optimal’ frequencies in scalar
input signals to linear second order systems |5].
The significance of the work of Nahi stems from
the idea to use a norm of Fisher's Information
Matrix (M) as a criterion for the optimization of
input signals. The inverse of Fisher’s information
malrix yields a universal lower bound on parameter
estimation accuracies, called the Cramer Rao
Lower Bound (CRLB); see appendix A. The idea to



base the optimization of input signals on a norm of
the information matrix results in input signals
which have a general significance, in the sense of
being independent of the type of estimation
algorithm applied.

Important contributions to the theory and practice
of the calculation of optimal aircraft input signals
have been made subsequently by Mehra [164 to
166]. Based on the work of Kiefer and Wolfowitz
[167], and Kiefer [168], Mehra proposes algorithms
for the design of scalar and multi-dimensional
input signals in the frequency domain as well as in
the time domain.

The time domain optimization problem can be
formulated in terms of a Nonlinear Control
Problem with fixed end time [161 and 166]. These
problems are notoriously difficult to solve [169]. A
disadvantage of generating a solution in the time
domain is that in practical applications constraints
on the frequency contents of input signals may be
important. A typical example are the constraints
imposed by the finite bandwidths of anti-aliasing
filters. It is not clear how such constraints can be
taken account of in time domain optimizations.

As an alternative to the above formulation of a
fixed-time control problem, one can specify the
desired parameter accuracies and find those input
signals which attain_this goal in the shortest time.
This time-optimal control problem has been studied
by Chen [114] and more recently by Morelli [123].
The resulting input signals are of the bang-bang
type. Chen is using combinations of Walsh
functions, while Morelli adopts dynamic
programming techniques to determine the optimal
switching times. Morelli’s technique was recently
applied by Cobleigh [179] and the resulting input
signals were applied by Noderer [147] for
validation using actual flight test data from an
X-31 drop model.

Optimization of input signals in the frequency
domain is advocated by Mehra [165]. The resulting
algorithms are very efficient with respect to

computation time. Furthermore, the underlying.

optimization problem can be shown o be convex.
In this context, convexity refers to the form of the
object function or criterion for which the extreme
must be located. Convexily is an attractive
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property, as it implies just one global extreme
rather than multiple local extremes. The result of

the optimization is in the form of line spectra
consisting of a finite number of frequencies, see
also [161].

Another approach in the frequency domain is by
localizing ‘identifiability’ (in fact ‘sensitivity”)
regions of individual parameters on the frequency
axes of Bode diagrams. The diagrams indicate how
‘identifiability’ of different parameters depends on
frequency and which frequency regions should thus
be represented in the input signals. A procedure
that optimized a sequence of step functions was
developed by Koehler |20, 65]. The aim of the
optimization was to find a signal with a shape as
simple as possible and power distributed uniformiy
over a wide range of frequencies. This resulted in
the now popular 32711 signal, see also chapter 6.

A different form of broad band test signals which
have been used in recent years are the ‘frequency
sweeps’ as proposed by Tischler [139, 140]. Such
signals are initiated by applying two sinusoidal
cycles with a frequency corresponding to the lower
end of the frequency range required. The frequency
is then increased gradually while reducing the input
signal amplitude. Next the input signal is returned
to trim. The overall length of the test sequence is
chosen ideally to allow good identification of the
low frequency modes as well as to give a proper
excitation of the vehicle over the frequency range
of interest. These sweep signals were also applied
by Sridhar and Wulff {232] in the evaluation of
some of the lateral handling qualities of the
BO-105 helicopter.

DUT Approaches

In this section we introduce two approaches
developed at the Delft University of Technology
(DUT) for the design of aircraft optimal input
signals. Both approaches use a scalar norm of
Fisher’s information matrix as design criterion and
exploit the advantages of parameter estimation via
the two-step method, see chapter 4.

The first approach is based on the representation of
input signals by means of finite sets of
orthonormal functions in the time domain. This
leads to a conceptually simple method in which the
input signal design problem is converted into a
nonlinear optimization problem. The method
applies to linear as well as noalinear systems. If
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harmonic functions are used in the optlimization
there is a (loose) relation with the f[requency
domain. By excluding harmonics above a certain
frequency it is possible to limit the frequency
contents of the resulting input signals.

The second approach is a derivative of Mehra’s
method in the frequency domain [215, 216). Its
efficiency is enhanced by exploiting the two-step
method for parameter estimation to reduce the
information matrix to a block diagonal structure.
Convex analysis is applied 10 minimize the number
of harmonic signals in the input design. The
optimization results in the optimal amplitude ratios
and the frequencies of the harmonic signals
selected by the algorithm.

Optimization criteria

Both DUT approaches usc a scalar norm (J) of the
information matrix M as the optimization criterion.
Different norms can be used in the optimization,
however, the following norms are frequently
mentioned in the literature [158,161]:

tr M

Maximization of the trace of the information
matrix indeed maximizes in a certain sense the
amount of information present in the measured
responses, but does not take any account of the
condition of M. This mecans that the optimized
input signals will not necessarily lead to acceptable
parameler estimation accuracies, since the latter are
related to the inverse of M, i.e. the Cramer Rao
Lower Bound. In spite of this rather unfavourable
characteristic, the criterion has been used by some
authors mainly on account of computational
efficiency of the resulting algorithms [159 and
163).

In det M

It can be shown that the determinant of M is
inversely proportional to the volume of the one-
sigma ellipsoid of the Gaussian multi-dimensional
probability density function of parameter estimation
errors. Input signals which maximize In det M are
called D-optimal [161].

tr M

The resulting input signals are called A-optimal
[164], and minimize the sum of the variances of
the parameter estimation errors, i.e. the diagonal

clements of the Cramer Rao Lower Bound. It is
possible to give priority to estimation errors of
some parameters by multiplying M with a
weighting matrix and taking the trace of the matrix
product.

)\'max Of M.l

Input signals are based on the minimization of the
largest eigenvalue A, of M™". This cost function
is related to the maximum radius of the uncertainty
ellipsoid.

Fig. 5-2 shows the relationship between J and the
one-sigma ellipsoid of the Gaussian probability
density function of the estimates of a two-
dimensional parameter vector 8. It can be seen that
for strongly correlated parameter estimates, the
maximization of tr M does not necessarily shrink
the ellipsoid to a point.

Fisher’s information matrix is not only influenced
by the input signals, but also by the number of
samples N, see appendix A. In order to eliminate
this (trivial) effect on J, it is recommended to use
M=M/N rather than M in the matrix norms defined
above.

The last three cost functions require M to be of full
rank. Only if M is of full rank it is possible to
compute estimates of all parameters from the
measured system responses o the applied input
signals. In this case the parameters are called
identifiable. 1t follows from appendix A that the

condition of M is influenced by the form of the

(multi-dimensional) input signal. If M’s rank is not
full, and cannot be improved by manipulating the
form of the input signals then one or more of the

parameters are structurally unidentifiable. In that
case one should omit as many rows and columns
(corresponding to the unidentifiable parameters) as
needed to make M’s rank full.

Constraints on input signals

In practice it will hardly ever be possible to apply
input  signals with maximum amplitudes
corresponding to full deflections of control surfaces
without exceeding the limits of the permissable
flight envelope. Another restriction on the
amplitude of input signals and responses is
imposed by the calibrated measurement input
ranges of the transducers in the measurement
system. However, perhaps the most important




reason to restrict input signal amplitudes is to stay
within that ‘small’ part of the flight envelope for
which it may be assumed that the model structure
as used for the optimization of the input signals is
‘valid’. Since the present state of the art of input
signal design is based on linearized models it
follows immediately that only ‘small” perturbations
from a nominal flight condition are allowed.

If input signals of given form are scaled up each of
the design criteria above will improve. The
physical reason for this is that the signal to noise
ratio improves with higher input signal amplitudes
and so it is possible to arrive at better parameter
estimates. So, also for the sake of a meaningful
optimization of input signals (i.e. not leading to a
trivial result of input signals with infinite
amplitudes) the input signal amplitudes must be
restricted.

While trom the above it will be clear that
constraints on input signal amplitudes are essential,
a still open question is how these constraints must
be imposed. Constraints can be imposed directly on
the input signals themselves, but indirect
constraints on one or more components of the state
vector are feasible as well. Also, constraints can
take the form of hard boundaries or may be
specified in terms of input signal power or energy.
The approach taken in the remainder of the present
chapter is as follows:

s Hard constraints are not very relevant in input
signal design for flight tests. The reason is that
hard constraints either on input signals or state
components are much less severe (except in the
rather hypothetical case of a flight test
manoeuvre planned on the very edge of the
permissable  flight envelope) than the
constraints resulting from the use of a
linearized system model.

* A power or energy conslraint is applied to the
components of the (multi-dimensional) input
signal. The resulting optimized input signals
can subsequently be scaled-up or down as a
compromise between large signal to noise
ratios (input signal scaled up) and small system
model errors (input signal scaled down). Input
signals for flight tests should be designed for

optimal shape.

The total measurement interval time as well as the
total number of discrete sample times play a major
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role in the attainable accuracies of the parameter
estimates as expressed by the inverse of Fisher’s
information matrix. For optimization of input
signals in the time domain, one may specify a
fixed total interval time and sampling rate. As
mentioned before sample rate as a design variable
may be eliminated by using an average Fisher
information matrix defined as M=M/N. The same
average information matrix is also used for the
optimization of input signals in the frequency
domain.

Organization of the chapter

chapter 5 is organized as follows. In section 5.1 the
time domain approach for the calculation of
optimal input signals composed of orthonormal
functions is described. It is shown, that the optimal
input signals may be derived from the solution of
a nonlinear parameter oplimization problem.
Starting with the general case of nonlinear systems,
it is shown that for the case of linear systems, the
necessary calculations turns out to be remarkably
simple and computationally efficient. In section
5.2, the method is applied to system and
observation models which allow a decomposition
of the parameter-state estimation problem as
described in chapter 3 and 4.

The frequency domain approach is discussed in
section 5.3 to 5.5. First, Fisher’s information
matrix is derived in the frequency domain, using
the model for the decomposed parameter-state
estimation problem. It is also shown that the
information matrix can be represented as a simple
convex combination of a limited number of point-
input information matrices which each correspond
to a single harmonic in the input design. Finally,
the reconstruction of the optimal input signal is
performed from the harmonic signals.

5.1 Optimization of Multi-dimensional Input
Signals for Parameter Estimation of Nonlinear
and Linear Systems

The present section describes in detail a method for
the optimization of multi-dimensional input signals
for parameter estimation of nonlinear and linear
systems. The method is based on the representation
of the components of multi-dimensional input
signals by means of weighted sums of orthonormal
functions [section 5.1.1]. In general, the numerical
value of the criterion for optimality, i.e. a norm of
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Fisher’s information matrix or of the Cramer Rao
Lower Bound, depends on the energy and form of
the input signals. Therefore it is a function of the
weighting factors of these orthonormal functions.
This allows the formulation of the problem of input
signal optimization in terms of a nonlinear
parameter optimization problem, in which the
parameters are the weighting factors. This is
discussed in section 5.1.2. In section 5.1.3 it is
shown that in the case of linear systems, it is
possible to apply the concept of so called
elementary information matrices. It is argued that
this results in significant savings of computation
time.

Initially, Powell’s direct search method [170], was
used 10 solve the nonlinear parameler optimization
problems of section 5.1.2 and 5.1.3. The resulting
algorithm was employed for the optimization of the
Deift University of Technology (DUT) control
input signals of the flight test program described in
chapter 6. After completion of the flight test
program, however, a new and faster version of the
algorithm was developed in which the Newton-
Raphson method was used. This version of the
algorithm is described in section 5.1.4.

5.1.1 Representation of Multi-dimensional Input
Signals

In the following, u(t) denotes an s-dimensional
input signal with components u,(t), ¢=1(1)s:

u@® = col(ul(t),...,u,(l),...,us(l)) .
LE [to,1]

(5.1-1)

The crux of the present method for the
optimization of input signals lies in the
introduction of certain constraints on form and
energy of each of the components of the multi-
dimensional input signal u in the time interval
[teot;]. In section 5.1.2, it is shown how these
constraints lead to the formulation of the parameter
optimization problem mentioned above.

The constraints on the form are the consequence of
an approximation of the components u, of u by
means of a weighted sum of a finite number of p
orthonormal functions 4, (t), k=1(1)p, according to:

p
ut) = 2 Bie Wi(V) (5.1-2)

where B,, k=1(1)p, denote a set of weighting
factors. The functions 1, (t) are assumed to be
orthonormal on [ty,t,], as defined by:

4

'[ W () w,(0) dt = 8,

(1]

where 8, denotes the Kronecker delta. The shape
of the orthonormal functions ,(t) has still to be
defined in more detail later on.

The energy of the different components uyt) of
u(t) in the time interval [t,,L,] is constrained to a
set of fixed and a priori selected values. The
energy E, of the component uyt) in [t,t,] can be
written as:

2
di

1 |

p
E, = J”tz([) = J(‘; Bee Wi (V)

4

p
Y Beabor ka([) Y (1) dt

1 n=1

(5.1-3)
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Equation (5.1-3) is in fact, a particular form of
Parseval’s theorem [171]. It follows from here that
for given energy E, in the time interval [t,t,], the
component ut) can be represented by a point P,
on a hypersphere with radius R=VE, in p-
dimensional Euclidian space. The position of P,
on the sphere can be expressed not only in
cartesian or rectangular, but also in spherical
coordinates. The rationale behind the introduction
here of spherical coordinates will become clear in
the next section 5.1.2. The relations between the
rectangular coordinates B,, and the corresponding
spherical coordinates ¢;, of P, can be written as:

B,y = Rysing,,

k-1

By = R'.jl:l[ cosq)j,sinq)k, , (5.1-9)

p-1
ﬁp, = R,-H cos ¢,
j=1

for k=2(1)(p-1), as depicted in fig. 5-3 for the case
p=3.

It will be convenient to define the vectors:




B, = COI(Bwﬁzv---»Bp,) ,

for ¢=1(1)s in which p is the number of individual
orthogonal functions in uyt) and s denotes the
dimension of u(t).

Next, the elements of all the vectors B, are

arranged in one column, in the form of a new
vector § with elements B, as:

El Bl

g = |8 = |8 (5.1-5)

B, (B

If q denotes the dimension of §, then q=sp.

Next, a set of q so called elementary input signals
is introduced. An elementary input signal is an s-
dimensional vector g (t) defined as follows:

P, P, ()
0 0
gl(t) = H ) e ,gp(t) = : s e
0 0
(5.1-6)
0 0
0
R O R
: 0
0 (1)

where k=1(1)p.

The set of elementary input signals can be
interpreted as the columns of a matrix D(t), as
shown in fig. 5-4 for the case s=2 and p=4.

The input signal u(t) can now be written in the
following compact form:

(5.1-7)

4
u® =DW-B = _El Bi-e, ()

in which f denotes the vector of weighting factors
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as defined in equation (5.1-5).

In principle, any set of functions orthonormal on
[tost;] could be used in equation (5.1-2). If the set
is ‘complete’ then any continuous function on
[to-t;] can be approximated ‘to any desired degree
of accuracy’ by increasing the total number p of
orthonormal functions [171]. This means that for
p — o, optimized input signals of the form (5.1-2)
will be independent of which class of orthonormal
functions is used. In practice, for reasons discussed
in the following sections, p is limited to finite and
relatively small values. In that case, it must be
expected that the form of the optimized input
signals will show which set of orthonormal
functions is used in equation (5.1-2). For example,
in Swick |172] a set of orthonormal functions is
described which consists of positive and negative
steps to +1 and -1 respectively. Application of
these so called Walsh functions, [fig. 5-5], would
result in input signals consisting of a finite number
of positive and negative steps of varying
magnitudes. Input signals of this kind are
considered to be less suitable for actual
implementation in flight, see also section 6.
However, for excitation of other types of systems,
as for instance the pharmaco-kinetic system
described in [173], such input signals would be
very practical.

An attractive properly of sinusoidal functions is
that their energy is ‘concentrated’ around discrete
frequencies. This property can be exploited to
‘influence’ the frequency contents of the optimized
input signals by simply omitting functions outside
a certain frequency range. The following two sets
of sinusoidal functions were employed for the input
signal optimizations as described in chapter 6:

set 1:
2 .
P () = ‘,T sinw, t,
(5.1-8)
w, = k-w -
Kk~ 0 2 o T ’
set 2:
P () = 1[% sinw, t ,
(5.1-9)

_k. —n
o, =kw,, w%—T,
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in which k=1(1)p, t€]t,t,], and T=t;-t, see figs.
5-6 and S5-7. It is noted that any input signal which
is composed of set 1 or set 2 functions will be zero
at the start and end times. This is another
advantage of sine functions as there will be no
discontinuities when inputsignals are superimposed
on the steady state or trim deflections of control
surfaces in the nominal flight condition.

The sine functions in both set 1 and set 2 are
readily shown to be orthonormal over the time
interval [ty,t,]. Set 1 consists of functions having k
periods in [t,,1,], set 2 consists of functions having
k-half periods in [ty,t,]. Sets of only sine functions
are not complete. It is possible to define a
complete set of orthonormal functions by adding a
constant and cosine functions to the sine functions
of set 1. The resulting set of functions is indicated
as set 3, see fig. 5-8:

set 3:
wo(t) = —,-l'.'
Y, O = ‘/_ sinwt ,
“ ! (5.1-10)
wzk(l) ‘[ coswyt ,
w ko, , o = 2 R
(1 T

in which again k=1(1)p, €[t,\,] and T=t-t,.

In the present context, functions of set 3 are of

theoretical interest only. Input signals based on
these functions will lead to discontinuities and
consequently, are not be suitable for actual
implementation in flight.

As mentioned above, w, in equations (5.1-8),
(5.1-9) and (5.1-10) is loosely related to the
frequency contents of the particular function. As k
becomes larger, the power of the corresponding
sine or cosine function in a power spectral density
plot is concentrated more closely around wy. This
fact may be used by the designer to limit the
frequency contents of input signals. In this way it
is possible, for instance, to avoid measurement
errors due 1o the finite bandwidth of the pre-
sampling filters in the measurement system.

Another possibility is to design input signals such
that undesirable characteristic modes of the
dynamic system are not excited. A typical example
of such characteristic modes are the high frequency
structural modes of flexible aircraft.

5.1.2 Input Signal Optimization for Nonlinear
System Parameter Estimation

In the present section it is shown that the design of
multi-dimensional input signals for nonlinear
system parameter estimation may be formulated in

terms of a nonlinear parameter optimization'

problem. The nonlinear systems considered are of
the following form:

ﬁ(l) = £(8, x(), () (5.1-11)

in which x(t) denotes an n-dimensional state vector,

u(t) an s-dimensional input signal and 8 a vector of

r system parameters for which it is assumed that a
set of approximate a priori values is known.
Furthermore, f denotes. a real valued vector
function of dimension n. Each of its components is
assumed to be continuous, such that its partial
derivatives with respect to 8, x(t) and u(t) exist.
The system is observed at dlsuele instants of time
LE[tL,], i=1(1)N, according to the following
nonlinear observation model:

¥(0) = h(8, x(i), u(i) (5.1-12)
in which y(i) denotes an m-dimensional vector of
observations at t=t,. The usual assumption is made,
that observation measurement errors are adequately
represented by additive stationary Gaussian
sequences of stochastic variables, which are
assumed to have zero mean values and to be
uncorrelated in time. However, measurement errors
pertaining to the same instant of time are not
assumed to be uncorrelated. This leads to the
following measurement model:

¥,0 =y0) « @),

m

E{()) -1-13)

E{v(i)v'()} =V, ij
for i,j=1(1)N.

|
< Io
=4

The input signal u(t) is also sampled at discrete
instants of time. The corresponding measurement




errors are assumed to be small enough to be
negligible. This situation is considered to be quite
representative for the case of dynamic flight tests,
where control surface deflections can indeed be
measured with high accuracy.

The system model (5.1-11) is restricted to be
deterministic. In the present context, this implies
that the actual measurements arc made in a stable
atmosphere, where turbulence is negligible.
Furthermore, stochastic
aerodynamic forces and aerodynamic moments, as
generated for instance in the (turbulent) boundary
layer, are also neglected. In general these stochastic
contributions are very small, except in those flight
regimes where appreciable flow separation occurs.

With the assumptions made above, the solution of
the system differential equations may, for given
values of the initial state vector x,=x(l,) and the
parameter vector 8, be calculated according to:

1

X0 =%, ¢ jﬁ(g,zm,g@)) d .

0

(5.1-14)

The maximum likelihood (ML) estimate of 8
corresponds to the global maximum of the
logarithm of the likelihood function In L of the
observation measurements, see appendix A. For a
given input signal time history u(t) in the time
interval [i,t,], this likelihood function depends not
only on the parameter vector 8, but also on X, and
on the elements of the covariance matrix of
measurement errors V. The dimensions of the
parameter vector 8 and the initial vector x, are r
and n respectively. In the most general case, the
total number of nonidentical elements in the
symmetrical covariance matrix V,, of observation
measurement errors is Yam(m+1), if this matrix is
assumed to be nondiagonal. In cases where X, and
V,, are unknown, they must be estimated in
addition to 8. The solution of the ML estimation
problem then involves locating the global
maximum in the r+n+%m(m+1)-dimensional space
of 8, x, and the upper triangular elements of V..
For convenience the elements of V! rather than
of V, are chosen as the unknowns (o be estimated,
see appendix A. The upper triangular elements of
VW'l can be arranged in a new parameter vector 1
of dimension Y2m(m+1).

Next we compute the covariance matrix of

contributions to the.
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parameler estimation errors. First we gather all
parameters in 8, X, and n in one augmented
parameter vector 8, of dimension r+n+%m(m+1):

(]

0 = |X

1
In correspondence with this partitioning, it is now
possible to partition the ‘augmented’ covariance

matrix V6161 of the estimated parameters, 8, in the
following manner:
VOO V9x0 Ven
..... H e e eeme
lvoov (5.1-15)
V()a()a %90 XoXg X"
..... PO
Vg ¢ V, &V
n nxy wm

The important role of Fisher’s information matrix
in ML estimation theory stems from the fact that
its inverse, Cqy 4, called the Cramer-Rao lower

a’a . . . .
bound (CRLB), constitutes an asymptotic limit for
Venon as N goes to infinity [53]:

. -1
lim Vg, = Mo,e =Gy g
3 a aa

N — o aa

The information matrix My 4 is a positive, semi-
. . . a“a . .

definite and symmetrical matrix which can be

partitioned as:

Mgy =[Mio ¢ M,

X,
a a 0

M’IOEM_ i M

nx, nn

According to appendix A the blocks Mg, M
Mxo‘l and Mnxo are empty:

o’

MOO MOxO o W
" e semes AR,
- 5.1-16
Moo = |Mqo @ My 0 ( )
{ 0O 0 M.
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Now, Cy g the CRLB, can be written as:
a-a

Co0, "||M . : M 0

-1
VOO va MGO MOx
0 0
lim | e e anes = e A s
N — ® . 5
x00 : onx0 MxOB : I\Axox0
lim V. = M2
w nmm
N = o
lim Ven = lim qu =0,
N —- » N — o
lim V = lim V =0,
N — o XN N > w nxg

The upperdiagonal block of Mg, in equation

. a S .
(5.1-16) represents the combined information
matrix on the parameter vector 8 and the vector of
initial conditions x,,. For convenience this matrix is
written below as:

(5.1-17)

*o*o

With (5.1-17), it is now possible to write M, o, I

(5.1-16) and Cg 4 as follows: o
a“a

M 0]
Mgg = [ i o= (5.1-18)
aa
O nn
M 0
Coo = | & == (5.1-19)
a a O -

m

Three matrix norms for the optimization of input
signals, as defined earlier, may now be applied to
equations (5.1-18) and (5.1-19). The resulting
criteria can be written as follows:

a) J = lrMeaOa =uM +uM,
b) I = IndetMy, = In(detM - detM, )
a’a
= IndetM + IndetM,_
¢) J = uMgyy =uM! o+ trM,",:

It is shown in appendix A that the elements of M
depend on u(t), t€([ty,Y]. The elements of M,
however, are shown to be fully independent of u(t).
If we omit the terms containing M, . the following
simplified criteria result:

a) J =uM,
b) J = IndetM ,
c) J=uM,

J may now be written as a nonlinear scalar
function of q=sp weighting factors B,

J = J(ﬁ) = J(E]""’Eﬂ"”,ﬁs) ’

where:

(5.1-20)

B, = col(ByeBygsrsByq) -

According to section 5.1.1, the components of the
s-dimensional input signal with prescribed energies
Ep €=1(1)s, can also be represented as s points
P, on hyperspheres in a p-dimensional space with
radii r=VE, Let ¢, denote the vector of
spherical coordinates of one of these points P, as
defined in (5.1-4) and fig. 5-3, then J in (5.1-20)
can be written in an alternate form with a smaller
number, viz. s(p-1), of spherical coordinates as
arguments:

3= 3{0ypr) (s.1-21)

where

@, = ol(0,0, 050010, 4) »

With (5.1-20) or (5.1-21) it is possible to formulate
the input signal design problem in terms of a
parameler optimization problem. The
correspondence between (5.1-20) and (5.1-21) is
that J in both expressions depends on a finite
number of arguments or parameters. There is,
however, an important difference when applying
(5.1-20) and (5.1-21). Equation (5.1-20) needs an
additional set of constraints on input signal




energies in order to obtain a meaningful
optimization problem. However, optimization of J
in (5.1-21) directly leads to optimal input signal
components uyt) of prescribed energy E,
Therefore, optimization of (5.1-21) rather than
(5.1-20) allows us to solve an unconstrained
optimization problem, which is much easier to
solve than an optimization problem with
constraints.

In principle, a variety of algorithms may be applied
to solve such optimization problems [174]. If
partial derivatives of J with respect to its
arguments ¢,,...,0., are not available, it may be
appropriate to apply one of the direct search types
of optimization methods, which depend only on the
feasibility to calculate the value of the function J
for given values of the arguments in (5.1-21), e.g.
Powell’s algorithm [170].

It is noted here, that each evaluation of the
function J in (5.1-21), requires the numerical
solution of the system differential equations in
(5.1-11), and the solution of a set of sensitivity
differential equations for the calculation of the
information matrix. Therefore, the optimization of
input signals as described above, must be expected
to be rather time consuming. In the next section, it
is shown that in the case of linear system and
observation models, the repeated solution of system
and sensitivity equations for every function
evaluation can be avoided.

5.1.3 Input Signal Optimization for Linear
System Parameter Estimation

The method, described in the previous section 5.1.2
for the calculation of optimal input signals for
nonlinear system parameter estimation, is now
applied to the more restricted case of linear system
parameter estimation. The systems considered are
of the following form:

%) = FOX() + G@u0) . 122
in which as before x denotes an n-dimensional
state vector, u an s-dimensional input signal and 8
a vector of the r parameters which are to be
estimated. F(8) and G(8) denote constant matrices
of appropriate dimensions. At N discrete instants of
time GE[ty,t], i=1(1)N, the system is observed
according to the following model:
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¥()
¥,

H@xG) + I©u() ,

(5.1-23)
y(@) + v() .

in which y denotes an m-dimensional observation
vector, H(B) and J(8) denote constant matrices of
appropriate dimensions, and y, denotes the
measurement of y. The measurement noise v(i) is
assumed to be zero mean, uncorrelated in time and
Gaussian as in equation (5.1-13). It is assumed
again, that u(t) is known exactly and that equation
(5.1-22) is deterministic, i.e. the system (5.1-22) is
not subjected to unmeasurable stochastic inputs.
The performance criterion for input signals is again
a scalar norm J of M, the joint information matrix
of 8 and x,:

(5.1-24)

*o*o

The general expression for M, as derived for the
case of nonlinear systems, is still valid in the
present case of linear systems [29]. In this
expression, M is described in terms of sensitivity
matrices S(t). The elements of these sensitivity
matrices are partial derivatives, representing the
sensitivity of the components of the observation
vector y with respect to the components of the
parameter vector 8 and the vector of initial
conditions x, The information matrix M for
observation measurements at discrete instants of
time t; can be written as:

N
M =¥ s TGV, -S() , (5.1-25)
i=]
in which the index i refers to the discrete time
instant t;, and V, represents the not necessarily
diagonal covariance matrix of the vector v(i) of
observation measurement errors. The matrix S(i) in
equation (5.1-25) represents the sensitivity matrix
S at the discrete sampling time t;. The sensitivity
matrix S(t) can be partitioned as follows:

S() = [Se(l) S, (5.1-26)
The partial derivatives of the components y with
respect to the components of r are contained in the
matrix Sy(t), while the partial derivatives of the
components of y with respect to the components of
Xy are contained in the matrix Sg(t).
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First the matrix Sy(t) is partitioned in terms of
column vectors as follows:

Se® = |2, ¥, %, ®

where the j-th column vector xe(t) is defined as
dy/98;.

Next, the partial derivatives of the matrices of the
system and observation model in equations (5.1-22)
and (5.1-23) respectively, with respect to the
component 8; of 6, are defined as:

IF@©) 9G(0)
Fo (8 = =, Gy (8 = =,
JORE ® = 5
IH(®) 23©
H,(®) = , g0 = =,
@ " =5 0@ =g
where j=1(1)r.
It is to be noted that these matrix partial

derivatives are constant for a given parameter
vector 8, i.e. independent of the state vector x(1)
and the input signal u(t).

In a similar way, the partial derivatives of the state
vector X with respect to the components 6, of 8 are
defined as:

x () = 20
j 96

These vectors of partial derivatives vary as a
function of time depending on x;, and u. This
follows directly from the particular form of the
sensitivity differential equations used to calculate
these vectors of partial derivatives [53].
The sensitivity equations are readily derived from
equation (5.1-22) by partially differentiating both
sides of this equation with respect to 6;, and
subsequently changing the order of the
differentiation with respect to 8, and t, for which it
must be assumed that x is analytic [171]. The
resulting sensitivity equations of x4 are constant,
linear and of the following form:

X © = FOx, () + Fo ©9x() + Gy @u) ,
(5.1-27)
with initial conditions:
X, (to) =0,
where j=1()r.

The vectors of partial derivatives Yg, are calculated
with the following relation, resultmg from partial

differentiation of both sides of equation (5.1-23)
with respect to 6;:

Xej(i) = H@)l‘.ej(') + Hej@)z‘_(i) + Jej@ﬂ(i) ,
(5.1-28)
where j=1(1)r, and the index i refers to the discrete
sample times LE[t,,1,].

The second matrix of partial derivatives in S(t) is
Syy(1)- In a similar way 1o Sq(t) above, S, (t) may
aleo be partitioned in terms of u)lumn vectors
according to:

S, = xxol(l) }LXOZ(I) xxon(t)

Next, analogous to x, above, the partial derivatives
of the state vector x with respect to the
components X, of the initial state x,, j=1(1)n, are
defined as:

(t) - ax(t)

axo
The veuors of parlml derivatives x, may also be
calculated with a set of sensmvnty differential
equations, in a similar way as the vectors 59,
above. These sensitivity equations are derived by
partially differentiating both sides of equation
(5.1-22) with respect 0 X, and subsequently
changing the order of differentiation with respect to
Xo; and with respect to time of the term in the left
hand side. The resulting sensitivity equations of

X, are of the following form [46]:

]

ixoj(‘) = F(9)5,(0].(1) (5.1-29)

with initial conditions:
CHOREE

where j=1(1)n.

It is noted that these sensitivitly equations are
constant and linear similar to the sensitivity
equations in (5.1-27).

Finally, partial differentiation of both sides of
equation (5.1-23) with respect to x(j results in the
following relation for the vectors of partial
derivatives s,

H(_)x (i) (5.1-30)

}

where j=1(1)n, and the index i refers again to the
discrete sample times LE[ 1,1, ].




By solving the sensitivity differential equations in
(5.1-27) and (5.1-29), and subsequently applying
the relations (5.1-28) and (5.1-30), it is now
possible to compute the vectors of partial
derivatives in the matrices Sg(i) and S, (i),
i=1(1)N. Subsequently, these matrices are used to
compose the sensitivity matrices S(i) according to
equation (5.1-26). Finally, the information matrix
M of 8 and x, is computed with equation (5.1-25).

It is noted that the solution of the system
differential equations (5.1-22) is needed for the
solution of the sensitivity differential equations
(5.1-27) in which x appears as a forcing function.

In a manner, completely analogous to the nonlinear
case discussed in section 5.1.2, we may now
formulate the problem of optimizing input signals
u,(t), 8&=1(1)s of given energy E, in [t,t] in
terms of an unconstrained nonlinear parameter
optimization problem. The problem is to calculate
the global extreme of the criterion J with respect to
its arguments, the elements of the vectors of
spherical coordinates,

V=3(0) 000, -

As mentioned before, application of direct search
methods will be time consuming since every
function evaluation requires the solution of the
system and sensitivity ditferential equation,
(5.1-22), (5.1-27) and (5.1-29). In the present case
of linear system models, however, the repeated
integration of differential equations for every
function evaluation can be avoided. To this end a
set of so called elementary information matrices is
calculated instead. Each of these matrices
corresponds to particular elementary input signals
defined by equation (5.1-6).

Now it is shown that M can be determined directly
from these elementary information matrices. As
discussed above, the information matrix M is
computed from the sensitivity matrix S, which is
composed of the sensitivity matrices Sy and S, for
the parameter vector 8 and the initial condition x,
respectively. The sensitivity matrices Sy(i) at the
discrete sample times LE[ 1L, ] are derived from the
solution of the system differential equations
(5.1-22) and the sensitivity differential equations
(5.1-27). The solution of these differential
equations is the response to a given initial
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condition x; and given input signal u(t), t€[t,t,].
It is readily ascertained that the relations (5.1-22)
and (5.1-27) represent a set of nonhomogeneous
linear ordinary differential equations. This means
that the solution of these differential equations is in
fact a superposition of the response of the
homogeneous equations to the initial condition Xy,
and the response of the nonhomogeneous equations
to the forcing function u with zero initial condition.

According to equation (5.1-7), the forcing function
or input signal u is composed of linear
combinations of elementary input signals ¢;:

q

u( = El Bie® -
Due to the linearity of the nonhomogeneous
differential equations (5.1-22) and (5.1-27), the
response 1o u is in fact identical to a superposition
of elementary responses to elementary input signals
¢;. This allows the total sensitivity matrix Sg(t) to
be written as follows:

So(t) = ij B, St i) (5-1-31)
i=l

in which index i refers to the elementary input
signal ¢;. The matrices Sgy(t,i) are, for obvious
reasons, called here elementary sensitivity matrices.
Turning now to the sensilivity matrix S(t) in
equation (5.1-26) it should be remarked that x,,
although assumed =zero in the manoeuvre
optimization process, has still to be estimated from
the actual flight test data. Keeping this in mind,
S(t) may be wrilten as:

0]
S = |3 B, -Syti) S, (5.1-32)
i=1

This expression for the sensitivity matrix may be
substituted in Equation (5.1-25) for the information
matrix M of the parameter vector 8 and the vector
of initial conditions x,,.

The result is that the information matrix M can be
expressed as:
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1Y T (T — P e ,
q .
iz=l: Bi .Mxoe(]) : rv‘xox0
(5.1-33)
where the following so called elementary
information matrices are introduced:
T -1
Mgg(ini) = Y- Sq (ki) 'V -Se(k.j)
k=1
N T -1
Mexo(i) = |§ SO (k’l) .vvv .Sxo(k) s (51-34)
al -1
Mxoe(i) = E Sx(’]r(k).vvv 'Sﬁ(kvi) s
and where:
Al 1
= Tky-v 7' -
M,y = Y S, (K)Vy, S, (k). (5-1-35)

k=1

It is noted that the elementary information matrices

introduced in equation (5.1-34) are not information

matrices in the sense of Fisher because, in general,

they are not symmetrical. It follows from equation
(5.1-34) that:

Mog(i,j) = Mgg(i.J) » (5.1-36)
and:
Mo, (i) = szo(i) : (5.1-37)

For the computation of the elementary information
matrices in equation (5.1-34), the input signal u,
that is the values of the parameters B, in equation
(5.1-7), may be yet unknown. This means that,
these elementary information matrices may be
computed prior to the actual optimization of the
object function given by the criterion in (5.1-21).
It should be noted that the asymmetrical relations
(5.1-36) and (5.1-37) may be employed to reduce
the total number of different elementary
information matrices to be computed.

The information matrix M in relation (5.1-33) can
be calculated from these elementary information
matrices for any set of values of the parameters £,
that is any input signal u of the form (5.1-7).

Accordingly, the elementary information matrices
are computed only once for a given set of
elementary input signals e;.

In cases where direct search methods are applied
for the optimization of the object function, it is not
uncommon that the function has to be evaluated in
a very large number of points in the space of its
arguments. In those cases, the calculation of M
with relation (5.1-33) instead from relation
(5.1-25), will result in a considerable reduction of
computation of time needed for the optimization of
J.

5.1.4 Application of the Method of Newton and
Raphson

Experience gained in the course of the work with
Powell’s direct search method [170], showed that
convergence became progressively slower as the
total number of spherical coordinates in equation
(5.1-21) increased. This limited the number of
arguments for practical purposes to approximately
20.

A very attractive characteristic of Newton-Raphson
methods, [174], is thal the sequence of steps to a
local extreme may be given a simple geometrical
interpretation. Furthermore, the original method
may readily be modified in order to assure
convergence in cases of large numbers of
arguments [130 and 173].

The slightly disappointing performance of Powell’s
direct search method and the attractive properties
of Newton-Raphson methods led to the application
of these latter methods to the present problem of
input signal optimization.

For application of Newton-Raphson methods it is

convenient to introduce a new vector ¢ of spherical
coordinates which contains all vectors ¢, 0=1(1)s,
in (5.1-21), s denoting again the dimension of the
input signal u. As explained earlier in section 5.1.2,
each vector ¢, is of the same dimension (p-1).
This means that the new veclor ¢ is of dimension
s'(p-1). & can be defined similarly to B, as:

2,

(5.1-38)

o = &




Starting from a given approximation §(i) of ¢ ., at
which J attains a stationary and therefore extreme
value, the Newton-Raphson method of calculating
a closer approximation ¢(i+1) is:

-1
] _al

o (5.1-39)
ap 99T | 9%

o(i+1) = ¢(i) -

assuming, that the Hessian matrix 6°J/(9gdg ") is
either positive or negative definite.

The Newton-Raphson method requires calculation
of the first and second order partial derivatives of
J, with respect to its arguments, the elements of ¢.
It is possible to derive analytical expressions for
these derivatives in terms of the elementary
information matrices Mgy(i,j), Mg, (i) and M, o(i).
This leads to significant savings in computing time,
as the elementary information matrices are
calculated only once for a given sel of elementary
input signals.

The Newton-Raphson method itself is discussed in
more detail by Schmidt [174]. The original method
was modified, in order to assure convergence in
cases where the Hessian matrix was ill-conditioned
[173].

The Newton-Raphson method was applied to the
optimization of rudder and aileron input signals for
the aircraft and flight conditions in chapter 6.
Present experience is that the algorithm quickly
converges even in cases with up to 62 arguments
(s=2, p=32) [29].

5.2 Effect of Decomposition of
Parameter-State Estimation Problems

System

The subject of section 5.1 was the optimization of
input signals for nonlinear and linear deterministic
systems with respect to different scalar norms of

Fisher’s information matrix M. According (o

equation (5.1-17), the information matrix could be
partitioned as:

MBG { Mon
M = canes o4 e s
Mxoe Xg%0
in which the subscripts 6 and x, refer to the r-
dimensional parameter vector 8 and the n-
dimensional vector X, of initial conditions
respectively. The particular form of M reflects the
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fact that the parameter vector 8, as well as the
initial state vector X, are to be estimated
simultaneously from given sets of observation
measurements of the response of the system to a
given input signal u and initial condition x,,.
Therefore, it would perhaps be appropriate to call
M as defined in equation (5.1-17), the joint
information matrix of 8 and x,. Correspondingly,
the estimates 8 and X, arise as the solution of what
is called a joint parameter-state estimation
problem.

In the present section, a particular class of
deterministic, linear system and observation models
is described, which allows decomposition of the
joint parameter-state estimation problem into two
other estimation problems i.e. a state reconstruction
problem and a parameler estimation problem.
These two estimation problems are independent in
the sense that the joint information matrix has the
following form:

(5.2-1)
O M

This class of system- and observation models
allows application of the two-step method for
dynamic flight test data analysis as discussed in
chapter 4. If the parameter-state estimation problem
can be decomposed, it is possible to compute the
elementary information matrices as defined in
section 5.1.3 much more efficiently.

It can be seen that in correspondence with the
results of section 5.1.2, the class of delerministic,
linear system and observation models considered
here, the parameters L0 be estimated are absent in
the system matrices F and G |equation (5.1-22)]
but present only in the matrices H and J of the
observation model  [equation  (5.1-23)].
Interestingly, these paramelers appear only in some
part of the total number of rows of these
observation matrices. This permits the separation of
the elements of the observation vector y into two
different groups, as elements of the vectors y, and
¥, The elements of y, correspond to the rows in H
and J containing no parameters to be estimated,
while the elements of y, correspond to the rows of
matrices H and J which contain one or more of
those parameters. The corresponding system and
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observation models may now be written as:

x® = Fx()
¥, () = H;x()
Y, = H,®)x(i) + I,O)u() .

in which the index i refers to discrete instants of
time tE€[ty,t,], i=1(1)N, x again denotes the n-
dimensional state vector and u the s-dimensional
input signal. y, and y, denote the components of
the observation vector y of dimension m; and m,
respectively. The separation of the elements of y
into two groups corresponds, of course, to the
following partitioning of the original observation
matrices H and J in as:

+ Gu® ,

+Ju() , (5.2-2)

CH,
H@®) = | - ,
H,(®
- (5.2-3)
3,
I® =| =
1,0

It is assumed that the components y,; and y, of the
observation vector y, are corrupted by additive
measurement errors according to:

y, ) =y, +yv@),
(5.2-4)
IAIOIESRORRAOR

where v;(i) and v,(i) are components of an m-

dimensional vector v(i) with dimensions m, and

m,. These measurement errors are represented by

stationary Gaussian sequences of stochastic

variables with zero mean and uncorrelated in time.

In addition, it is also assumed that the elements of

v,(i) are not correlated with the elements of v,(i).

The above assumptions correspond to:

vy ¢ v,y 0)
E{X(i)XT(j)} B 2 1 de e
v,()vG) ¢ v,y ()
VV v O
171
= e i = Va8,
o vV,
272
(5.2-5)

for i,j=1(1)N.

Now we compute the joint information matrix M in
equation (5.2-1) for the system and observation
models in equations (5.2-2) and (5.2-4) respectively
and the measurement statistics in (5.2-5) as:

N
M = 378 )V, SG)
i=]
where the sensitivity matrix S(t) can be partitioned
as:

SO = [Se® S, 0]
Each of the sensitivity matrices Sy(t) and S, (t) can
be partitioned next according to the partitioning of
¥(t) in y,(t) and yo(t):

So,® # S, ®
S([) = | e o o
Se 0 ¢ S,

Finally, the matrices Sy (t) and Sg(t) may be
partitioned into column vectors for each of the
elements 6, of the parameter vector 8. In similar
way, the matnces S, (1) and S, (t) may be
partitioned in column *Nectors for %ach of the
elements x, of the initial state vector x, The
constituting ’column vectors of partial derivatives
obey the following relations which are readily seen
to be equivalent to relations in (5.1-28) and
(5.1-30):

x,ej(i) =H11<0j(i) +Hlej§(i) +-'19j£(i),

H,O®x 0) +H20j@)1(i) +Jzej(9)2(i),

(5.2-6)

(5.2-7)




L @ =Hx, O,
i ! (5.2-8)
i) = HL©O)x @{).
L, O = BOx, 0
J
The matrices H; and J; do not contain any
elements of the parameter vector 8. This means
that the partial derivatives of H; and J; with
respect to 6; are zero:

H =0, J, =0,

lo
which simplifies the first of two relations in (5.2-7)
to:

xlej(i) = Hlz(_(,j(i) . (5.2-9)
The partial derivatives of the state vector x with
respect to 6; obey the sensitivity differential
equation (5.1-27) derived in section 5.1.3 for the
case of linear system models. In the present case,
the partial derivatives of F and G with respect to

are equal to zero:
Fej =0, Gej =0. (5.2-10)

Now the simplified sensitivity equations are:

’_;ej(t) = Fzgej(t) , (5.2-11)

with initial conditions:
59,(‘0) =0,

for j=1(1)r.

It can be seen that these¢ simplified sensitivity
equations are homogeneous, as the two forcing
terms containing the state vector x and the input

signal u have disappeared. For the given set of

initial conditions the solution of these sensitivily
equations is readily seen to be:

XM =0, (5.2-12)

for {zto and j=1(1)r.

Substitution of equation (5.2-9) and (5.2-12) in
(5.2-7) results in the following simplified
expression for the partial derivatives of y,(i) and
¥,(i) with respect to 6;:

89

llej(i) =0,

15, O = Hy Ox0) + Iy ©u6)

(5.2-13)

It is not possible, to simplify the relations in
(5.2-8) for the partial derivatives of y,(i) and y,(i)
with respect to the elements x,, of the initial state
vector x, Substituting F(8)ZF, the sensitivity
differential equations (5.1-29) as derived in section
5.1.3 can be written as:

ixoj(l) = F}_ij(t) : (5.2-14)

with initial conditions:
x () =1,
0

for j=1(1)n.

It may be concluded from the above that, for the
present class of system and observation models, the
calculation of the sensitivity matrices S(i) as
defined in (5.2-6) is significantly simplified. This
is due to the fact, that the sensitivity matrix Sg (i)
is equal to zero and that for the calculation of the
sensitivity matrix Sez(i) it is no longer necessary to
solve the corresponding sets of sensitivity
differential equations (5.1-27).

It is possible, however, to simplify the calculation
of the joint information matrix M in (5.1-17) still
further. This next simplification exploits the
decomposition of the joinl parameler-state
estimation problem into independent state and
parameter estimation problems. The feasibility of
such a decomposition arises when the system
model and the first part of the observation model
presented in equation (5.2-2), viz:

x® =Fx(®) +Gu(),

y,() = H;x(@) +Ju) .
result in a reconstructible state vector [70]. This
implies that the following information matrix:

N
= Tiy-v.! . i 5.2-15
Mxoxo 2 SXol (l) Vlv1 Sxol(l) ) ( )

i=1

is of full rank n, and that all components of x, can

be estimated from the set of N observation

measurements y, (i). Neglecting the information
m
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contained in the observation measurements y,(i)
concerning the initial state vector X, is equivalent
to substituting:

S,,0) = O (5.2-16)

in the partitioned sensitivity matrix S(i), as defined
in (5.2-6). If in addition,

So,() = O (5:2-17)
is substituted in (5.2-6), the result is:
0+ 8,0
SG) = | - PR ) (5.2-18)
Se,() ¢ O

Using rclations (5.2-18) and (5.2-5) in (5.1-25)
leads to the following form for the joint matrix M:

o ¢ O
M = |oer i e (5.2-19)
0] M"o"o
where
N
Mog = 32 80,0 Vay, So )
. : (5.2-20)
X% ,z=1: S"OJT(i) .VV_JIVI .S"Ol(i)

When the three criteria J for the optimization of
input signals are applied 0 M, they can be written
as:

a) J =uM = rMyq + "M"o"o ,
b) J = IndetM = IndetMg, + lndelMxOx0 ,
o J=uM?l =uMy, + ter;lxo .

The matrix M, , cannot be influenced by form or
energy of the system input signals [29]). This means
that in the expressions for the three criteria above,
the terms containing M, .~ are constant.
Consequently, the optimization of input signals
may be based on one of the following simplified
criteria:

a) J =M
b) J

06 *
IndetM

0806 >

c) J trMe-el .

It may be concluded that for the present class of
system and observation models, the optimization of
input signals requires computation of only one of
the matrices in the partitioned joint information
matrix M in (5.1-17), i.e. Mg, the information
matrix for the parameter vector 8.

Analogous to section 5.1.3, the information matrix
Mgy above can be computed from a set of
elementary information matrices  Mgy(i,j)-
According to (5.1-33), Mgy can be wrilten as:

9 9

Mg =3 ) B, B;*Mgq(i,j) (5-2-21)
i=1 jel

in which B, denotes again a weighting factor in the

s-dimensional input signal u and q=s-p, p denoting

the selected number of orthonormal functions in

(5.1-7). The general form of the elementary

information matrix Mgg(i,j) is given by:

N
Mgo(i,i) = X0 So (ki) -V -Sy(k,) (5.2-22)
k=1

where the index k refers to the discrete sample
time t,€[t,t,], and Sy(k,i) denotes an elementary
sensitivity matrix for the elementary input signal ;.
Sg(k,i) is the result of the response of the system to
this elementary input signal g;, starting from the
initial condition x4=0 at time U,

The elementary information matrices may be
written as:

N
Mgg(iLi) = § S ;(k,i)-vv'z’v2-se2(k,j). (5.2-23)

where the sensitivity matrices Sez(k,i) are
independent of the solutions of sensitivity
differential equations, just as S (k). The only
difference is in the input signal and the initial
condition, i.e. ¢; and x,=0 for Sg _(k,i) rather than u
and an arbitrary x, for Sg(k). No sensitivity
differential equations need to be solved when
computing the elementary information matrices
Mgg(i,j) in equation (5.2-23). This leads to
considerable savings in computing time.

The results of the present section were applied to
the optimization of the longitudinal and lateral
control input signals for the dynamic flight test
manoeuvres as described in chapter 6.

In section 5.1.3 the optimization of input signals is




based on scalar norms of the information matrix M
in (5.1-33). In the present section it was shown that
for the system and observation models given in
equation (5.2-2), simplified criteria can be used
based on the information matrix Mgy given in
equation (5.2-21).

53 Input Signal Optimization for Linear
Systems in Frequency Domain

The present section describes a method for the
optimization in the frequency domain of multi-
dimensional input signals for parameter estimation
of linear systems [215,216]). The method was
initially developed by Mehra [164,165] and is also
discussed by Goodwin and Payne [161]. It can be
shown that in the frequency domain each Fisher
information matrix is an element of a convex set of
point-input information matrices which encloses all
realizable input power constrained information
matrices. With this property, the optimal
information matrix and the optimal input signal can
be expressed as a linear combination of point-input
information matrices and harmonic input signals
respectively. The efficiency of the method is
enhanced by taking account of the application of
the two-step method for parameter estimation, see
chapter 4. This leads to a reduction of the
minimum number of harmonic signals in the
optimized input signal. Convex analysis is used
later on to prove the global optimality of the input
design.

5.3.1 Fisher’s Information Matrix in the

Frequency Domain

In the present section, Fisher’s information matrix
is derived for the class of linear system- and
observation models as defined in section 5.2, which
allows decomposition of the joint parameler-state
estimation problem. For input optimization it is
sufficient to consider only the following system
and observation model:

X = F@® x() + GE© u@)
Y0 = Hy®) x(®) +J(®) u()
¥, 0 = 5,0 + v,00)

(5.3-1)

i =1(1)N
where 5&) denotes the n-dimensional state vector
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and u(t) the s-dimensional input signal of either the
longitudinal or the lateral-directional linearized
equations of motion, see chapter 2. The m,-
dimensional observation vector y,(t) belongs to the
second part of the observation model which
contains all parameters to be estimated. These
parameters are collected in the r-dimensional
parameter vector 8. The observations of y,
belonging to the first part of the observation model
are only used in the state estimation problem.
These latter observations do not contribute to the
information matrix of 8 if state estimation errors
are small enough to be negligible. Additive
measurement and/or model errors are assumed with
a Gaussian distribution:

E{v,(} =0

E{v,()v, ()}

1}
<

vy O (5.3-2)

. 2 2.
diag(o) ""’Omz) 9,

The average information matrix” per sample
M=M/N may now be written as, see also (5.2-20):

- N 3y (i) ay_(i)
M=lim =lye?ys b
N N a8 72 997

= (53-3)

N
1 Teyoy -1 .
N § 502 (l) szv2 Sez(')

For what follows it will be convenient to write
(5.3-3) in continuous, rather than in discretle time.
The resulting expression for M is:

T oot .
K’l - 1 dlzl([) -1 dlz(l) dt

T J, 98 22 7507

=0
(5.3-4)

T
1 . -1
T Lsozr(l) .vv2v2 .502([) dt
t

The frequency domain representation of M is
obtained by applying Parseval’s theorem:

- = 9Y N(w) Y (-w)
M= (2 v 2 7 4
T 2n )~ a0 2 T goT

11 7o -
= _ .V .
= = f Se, (@) V.., “Sg,(-w) dw

(5:3-5)

The matrix M denotes the information matrix
My, for the parameter vector 8 in the remaining.
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In the frequency domain Y,(w) can be obtained
from Fourier transforming the system equations
(5.3-1):

Y, (@) = Hy®X(w) + 1, U(w)
= [H®OT(@,8) +J,0)] Uw)

(5.3-6)

where:

T(w,8) = [jol - F®)]" G® (:3-7)
The columns of the sensitivity matrix S (w) follow
from partial differentiation of Y ,(w) with respect to
individual elements of 6:

Y (w) aH,(0 T(w,0
X = 0 T(w,8) + Hz@_w_’:)_ +
a0, 96, a8, (5.3-8)
ARG
9 U(w)
a6, |~

The above expressions implicitly assume a steady
state response of the system, so the system should
be stable and the observation time interval T large
enough for the effect of transients to be negligible.
From (5.3-7) it follows that the frequency response
matrix T(w,0) depends on the parameter vector 6.
In the two-step method, however, the state is
reconstructed in the first step using a kinematical
model, see chapter 3, while the second step in
which the parameters are estimated has no
influence on the first step. In the present context
this means that the dependence of T(w,8) on the
parameter vector 8 should be disregarded. This is
expressed in what follows by writing T(w) rather
than T(w,8). Substituting IT(w,8)/30,=0 in (5.3-8)
results in:

(')12((1)) }
a9,

dH,(0
©
a8,

93,0
90

k

(@) + U)

(5.3-9)
Each of the elements of the matrices H,(8) and
J,(8) corresponds to one of the stability and control
derivatives in the parameter vector 8. If no
derivatives would be excluded from 0 (ie. 8
contains m,(n+s) derivatives) then by substituting
the partial derivatives of the matrices H,(8) and
J,(8) into equation (5.3-9) it is readily seen that the
senstivity matrix Sy (w) can be written as:

U'()T ")
Sez(w) =
0  UWT W

Ulw) ©

U(w)

(5.3-10)
Noting that V____ is a diagonal matrix, one can
easily verify by substituting (5.3-10) in (5.3-5) that
the average information matrix takes a block
diagonal structure:

M, o}

M = (5.3-11)

o M

my

Each individual block in (5.3-11) can be written as:

+0
A

- 11
M, = — win(m) tr{S, (@)} do
! (5.3-12)
i=1(1)m,
where:
n T(W)| A
M@) =Re{| ~ |Sh(w)[THw) : 1]}
I
S (@) = 1 (5.3-13)
Suu(( ) m‘ Suu((u)
Su@) = = U(-0)UT()

and the subscript  denotes the conjugate transpose.
If the parameters in each output equation are with
respect to the same state variables and inputs, then
the blocks M; in (5.3-11) are identical except for a
scalar factor 1/03'. Otherwise, each block Mj can be
derived from the matrix M(w) by omitting rows
and columns form M(w) corresponding to the
excluded derivatives in the j-th output equation.

I\A/I(u)) in (5.3-12) may be expressed as a function
of numerator and denominator polynomials in the
frequency response matrix T(w) and the power
spectral density matrix S, (w) of the input signal
u(t). By representing each element of the frequency
response matrix [T(w)],, as a rational function
with varying polynomials n(“)(w) in the numerator
and a common polynomial d(w) in the denominator
according to:




n*(w
[T@)}, = __d(_)
(w) (5.3-14)
b + 5™ + .+ 6™ G-

ay +a,jo + .. +a_ (o) + (o)

k=1(Dn , 2=1(1)s
one obtains:

M) = — L Re{N(w) S\(0) N H(w)}
|d(w)|?
(5.3-15)
where:
(D) ... n9w)]
N(w) = n("l)((x)) v 0" (w) (5.3-16)
d(w) 0
o d(w) |

5.3.2 Representation of the Information Matrix
in Information Space

The average information matrix as defined in
(5.3-11) may be represented by an information
vector \ with components ; in an information
space R, spanned by basis vectors ¢;:

d
v =Y v (5.3-17)
i=1

The vector representation of M is intelligently
chosen so that the dimension of R, is as small as
possible. As shown in the previous section M may
completely be reconstructed via the block matrices
M; where each block is derived from the matrix
M(w). The information vector is theretore compiled
from the independent elements of M(w). It follows
from equation (5.3-15) that M(w) is a symmetric
(n+s)x(n+s) matrix. This means that 1 may be
composed of just the d=%2(n+s)(n+s+1) upper
triangular elements in M(w):
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00

TR ] [ 40 (5, @) do
R R R (5.3-18)
p(@) = col( M@, , M@)]y; » - »
(M@ o)
where Mj follows from:
Wy W e Ve
oo LYz Ve (5.3-19)
i 3.
G;
L‘pms w'/z(nﬁ)(n»sﬂ)_

Power constraints on input signals may be written
in the frequency domain as:

f tr{S,(w)}dw (5:3-20)

W==-0

S)i—l

The geometric interpretation of a power constraint
is a (d-1)-dimensional hyperplane in the d-
dimensional information space R, Consider the
lower s diagonal elements of M(w), ie. the
elements [M(w)], k=(n+1)(1)(n+s). By
substituting (5.3-15) in (5.3-18) it is readily shown
that the sum of the corresponding components of
is equal to P

s
E Wyl -mitie1) =

i=l

s +0

1
¥ - J Wt eny(@) F{S, ()} do

i=1

= -0

+00 n+s A

- 2_1;: ) f ) k;} [M(@)] tr{ S, (@)} dw
Lo

= — f tr{Sp (@)} U{S,(w)}do = P,

n W=~

_ (5.3-21)
Now, M may be represented in terms of (d-1)
basisvectors ¢; and (g;-¢,) in the hyperplane which
is positioned by the vector P, €y
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d-1
= +Ewle +Elp| e, —_

lel |EI
(5.3-22)
= {i | i=d+1-%j(j+1) , j=1(1)s}

5.4 Calculation of Optimal Input Signals using
Convex Analysis

The criterion for optimal input signals is a scalar
norm J of the average information matrix M. From
section 5.3 above it follows that J becomes a
vector function in the (d-1)-dimensional hyperplane
of R, The optimal input signal u°(t) consists of a
finite number of harmonics and will produce the
optimal average information matrix M°.

5.4.1 Application of Convex Analysis

The actual optimization is performed by applying
convex analysis. If one defines the set M of all
average information matrices corresponding to
power constrained input designs, then M is a
convex set. Convexity means that for two elements
belonging to a set, any element on the line segment
between those elements also belongs to the set. The
property of convexity thus implies that any
information matrix in M, including the optimal
information matrix M°, can be obtained from other
information matrices in M. We will use this

property by composing the input signal u(t) of

elementary signals y_‘k_)(l) in such a way that the
information matrix M from u(t) is a convex
combination of information matrices M® from
u®(t). M or its representation as information vector
ap can thus be written as:

M =Y a® MY
k

p =Y a® y®
k

1 = z alk)
k

A necessary condition for this composition is that
the power spectral density matrix S (w) is a
convex combination of the power spectral density
matrices Suu(k)(w) of u™(v):

(5.4-1)

a® > 0

Su@ =Y a® s&w)
k

1 Z o

k

5.4-2)
a® >0

The above equation automatically implies that the
elementary input signals u(k)(t) also have power P,
just as the input signal u(t) itself.

The maximum number of matrices M® 1o realize
any M in M follows from the dimension of the
smallest linear variety in which M may be situated.
As stated by the theorem of Carathéodory, see
Rockafellar [221], the required number is at most
that dimension plus one. Locating the set M in a
(d-1)-dimensional hyperplane of the information
space Ry, the number of required elementary
signals g(k)(l) in the input signal becomes d, i.e. the
dimension of R,,.

5.4.2 Harmonic Input Signals

Now that the information matrix M is obtained in
terms of information matrices M® from the signals
u®(1), the problem is to find u(k)(t) In principle,
the signals u®(t) should make the whole set M
realizable so that the matrices M® constitute the
convex hull of M. The set M is specified by all
information vectors 1y which satisfy the integral

equation (5.3-18) and the power constraint
(5.3-20):
1 +00
Vg f P(w) tr{S (w)}dw
W i (5.4-3)
P, = 71; f tr{S,,(w)}dw

w-o
It can be shown that the whole convex set M is
realizable by the choice of single harmonics with
power P_ for the elementary signals u®(t). These
single harmonics have a power spectral density

matrix S, ®(w) whose trace is a Dirac pulse with
magnitude P, at their_frequencies w=w,. The
information matrices M® become point-input
information matrices and they are represented by
the information vectors P (w,). The s-
dimensional elementary input signal u®(t) is now
defined by:




g(k)(t) col(ukl(l),...,uks(t)>

K sin(w, t+@) , ©, =0
‘/é;tkp\/Z—

(5.4-4)

U0
® , 0, =0

s
p=1(1)s , 1€[0,T] , ®, T/2nEN, Eﬂifzpu
p=1

where 4, and @, are the amplitude and the phase
of the p-th component of g(k)(t). The power specral
denstiy matrix of y_(k)(t) is given as:

S‘f:)((u) SkT()((o +(n)k) + Ské((u —(x)k)

=T 5.4-5

(Sl = 7/‘kpﬂkqx ( )
(cos((pkp 'q)kq) _jSi“((T’kp 'q)kq))

If the harmonics are combined into the input signal

u(t), then the resulting input signal u(t) is given by:

d .
u(t) = E Yoo u®) (5.4-6)
k=1
The average information matrix can be derived
from (5.4-1) via substitution of the above S (w) in
equation (5.3-12) for M; and subsequently in
(5.3-11) for M and in (5.3-18) for . For input
signals formulated in the above way, the average
information matrix and information vector become:

_;_2 M(w,) o |
d ]
M =P Y a¥
k=1 n
1
0 L M()
L mz
d A
v =P, Y a® vy 647
k=1

d
1 =) o ,a® >0
k=1

5.4.3 Global Optimality of Input Design

The global optimality of the optimal average
information matrix M° is examined by verifying
whether the gradient of the optimization criterion
J along a line segment in M starting from M° in
any direction is positive anywhere. If there is
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another (local) minimum for J, then there must
exist a line segment from M® which has negative
gradients. _
Consider an arbitrary information matrix M’ in M.
The complete line segment between M° and M’
lies in M due to_the convexity of M. Any
information matrix M on the line segment is given
by:

M=(1-a)M® + aM" , Osasl (5:4-8)
The gradient of J along the line segment is given
by:

3l al oM a1 [=o e
Do LMy - e 9 [y
do aM da M

_ (5.4-9)
The matrix dJ/OM can be obtained from

differentiating the optimization crileria as defined
earlier with respect to M. With M being a non-
negative symmetric matrix, it follows that dJ/6M is
a non-positive symmetric matrix and thus has non-
positive real eigenvalues. Let now D represent the
diagonal matrix with eigenvalues u of dJ/dM, and
let P denote the unitary matrix with the
corresponding orthonormal eigenvectors p as
columns. Then the gradient satisfies:
KL Ve val
Ja

T LmlP HMe =80 [P, (5.4-10)

2 . tur{P H[I\_'Io—l\—/l‘]P}

= U tr{M°-M"}
The above expression comprises_the complete line
segment, including M°. Since M? is the optimal
information matrix, the gradient for M=M°® is non-
negative. This implies that tr{M°M"} is non-
negative, so that dJ/da is non-negative along the
complete line segment. Therefore, for all line
segments in M starting from M°, the gradients are
non-negative anywhere and M° is the only
minimum and thus the global minimum.

5.5 Optimization of Harmonic Input Signals
The optimization of the input signal corresponds to

the search of the optimal coefficients a® and the
power spectral density matrices S, *Y(w) of the
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elementary signals u®(t). By restricting the u®(t)
to single harmonics with power P, the variables to
be optimized are the frequencies w, in u®(t), and
the amplitudes u,, and phase shifts @, p=1(1)s,
between the components of u( (t). For single-input
designs, u,, follows directly from P, while ¢, is
cancelled out by the Fourier transformation. It is
possible to specify additional constraints on the
frequencies of the harmonics, for instance by
choosing allowable discrete frequencies or a
frequency range in the input design.

5.5.1 Application of the Gradient Method

As algorithm for the optimization, the gradient

method is most attractive due to the formulation of

M as convex combination. The optimization of
each harmonic input signal corresponds to the
search of the minimal gradient of the optimization
criterion J. This leads to the frequency w, and the
power spectral density matrix S, *(w) of an
additional elementary signal. The matrix S, M(w)
is later on converted to the amplitudes u, and
phases @, for the signal components.

For finding the minimal gradient from the present
iteration point, let the average information matrix
M be positioned_on a ‘line segment’ between the
present iterated M’ and the point-input information
matrix M®. Because of the convexity, M always
belongs to the set of information matrices M. The
gradient for the criterion function J for M" along
the line segment

M = (1-a®) M* + o® M® (5.5-1)
is given by:
M) _ 3I(M)
o aa® .
= tr{ OJ(EA) M (5.5-2)
oM (')(x(k) a®=0
= (M) [M‘—E{“‘)]}
IM

Because of the application of the two-step method,
the matrices M~ and M® have a block diagonal
structure, see equation (5.3-11). With this property,
the above equation can be rewritten as:

aIM* < AIMY) =
((_k))= - 3w 28 i)
Jda j=! IM,

(5.5-3)

P (I MY}
i=l c')Mj

where 9J/0M;, j=1(1)m,, are the block matrices on
the diagonal of the matrix derivative dJ/dM. The
first term on the right hand side is a constant
which is determined by the present iteration point.
The second term is influenced by the additional
harmonic input signal and it has to be minimized.
The matrix multiplications of 3J/dM; and M; are
now expressed as a function of the power spectral
density matrix Suu(k)(w)_by subsequently using the
equations (5.3-12) for M; and (5.3-15) for M(w).
This leads to:

M,
R R
01'2 2n w=-w ah_'ij
Re (N(@) 5% (@) N @)} ) x
ld(w)l
lr{S“u (w)} dw (5.5-4)
= _21; i Re tr{Q;(w) gﬁtﬂ(w)} X
tr{S¥(w) } dw
where:
1 M)
Q) = — N fi(w) N(w)
T |d(m>|2 oM,
(5.5-5)

The matrix Q;(w) is a hermitian matrix which
follows from the symmetric property of 4J/dM and
the properties of the polynomials in N(w), see
equation (5.3-16).

Now, the minimal gradient can be found by
substituting the functions for the power spectral
density matrices of the harmonic signals. With the
hermitian property of Q;(w) one gets with equation

(5.4-5):




w2 §0y - LRreu(Q)si)u{s,)
M, &
w{ M) 79y - LRew{QySi}ir(S,)
M T
. (5.5-6)

Q@) = ¥ Q)
=1

Since the matrices Q(w) and S, are hermitian, their
eigenvalues are real. Furthermore, S, is non-
negative definite. Let now D(w) represent the
diagonal matrix with eigenvalues u(w) of Q(w),
and let P(w) denote the unitary matrix with the
corresponding orthonormal eigenvectors p(w) as
columns. Then:

r{ 31(134') M®y =
aM
= L Re tr{P(w) D) P "(w) SI} tr{S,)
T

= % ‘Z_;'ul(wk) [P "(@y) SZ P(w)]y r{S,}

1
2 ?t- lumin((uk) lr{Sk} = lu'min((")k) I')u

(5.5-7)
The equality occurs for SE:nPuEni“(wk)gfzin(wk),
where p, . (w,) is the normalized eigenvector
associated with the minimal eigenvalue g ; (w,) of
Q(w,). This eigenvector is directly related to a
harmonic signal as can be seen from (5.4-5):

T
Sk = J'IZPu .Rmin(wk) E:in(mk)

1 i® P
gmn(wk) = ’ZP col(u“e kl,...,,ukse k’)

It is to be noted that the above specified
eigenvalues and eigenvectors are functions of
frequency. One therefore needs to search for those
frequencies w, which result in matrices Q(w,) for
which the smallest eigenvalue g, . (w,) is minimal
for all frequencies. This search is conducted by a
standard one-dimensional search method.

(5.5-8)
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5.5.2 Combination of Harmonic Input Signals

To determine the optimal ratio between an input
signal u’(t) resulting from the optimization in
section 5.5.1 above and an additional harmonic
input signal u®(t), a standard one-dimensional
search method is again applied. Along the line
segment between M~ and M® this leads to a
coefficient a® for which the optimization criterion
is minimal. This coefficient can now be applied for
the new iterated input signal, see equations (5.4-6).
If g(k)(l) comprises a new frequency, then its power
spectral density matrix Suu(k)(w) can directly be
joined with the other power spectral density
matrices in S_,"(w). As they also consist of Dirac
pulses. This leads to:

S, = (1-a™)S () + a®sF(w)

k-1
= (1-a®) ¥ u‘“)SuL(')(m) + a¥s ()
=1

k
(2
- 3 sl
=1

u®) = y1-a® uw'@ + Va® u®)

) (5.5-9)
= Z 1/(1(') ll_(l)([)
=1
where:
a® = (1-a®)a® | sOw) = 5.%w) , t=k

old = g , S\f:)((o) = S(k)(w) , I=k

(5.5-10)
If the frequency in the addtional g(k)(t) is already
present in u’(t), say in g‘j)(t), then g(k)(t) and
S.. () have to be linked with u9) and S, (w)
respectively. This now leads to:

S, (@) = (1-aMS:(w) + a®Ss P (w)

k-1
= (- Yy (1‘(')Su:‘<')(m) + a®S (w)

=1
k-1
=} a®sPw) (5.5-11)
=1

where:
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o = (1-a®)a® |, s0w) = 5.%) , txj

a(j)su(;il)(w) =(1 ‘(l(k))a‘(j)su;(j)(m) . .
» £5)
+ ol Su(:)((u)

(5.5-12)
The coefficient a® and harmonic signal g(i)(t) can
be found by representing the power spectral density
matrices of the harmonics as a multiplication of
normalized vectors, see equation (5.5-8). In this
way one obtains:

ads u(j)T(w) = anP, -pO(w)p? H(mj)

N Wk T .
= (1-a® @59 () + a®s® T (w)
(5.5-13)

. . ; s()T
OB, pI) = [(1-a®)a5:9 ) +

M a(k)su(:)T] BU)(“’,')

Hence, the addtional harmonic input signal is
included in an already existing harmonic input
signal which is modified by solving an eigenvalue
problem. The eigenvalue results in the modified
coefficient @ and the eigenvector is used for the
determination of Suu(j)(w) and y_(j)(l) according to
equation (5.5-8).

5.5.3 Elimination of Superfluous Harmonic
Input Signal

Each iteration step is concluded with a check if
one harmonic input signal can be expressed in
terms of other harmonic input signals so that it
may be eliminated. With the above procedure, the
input signal is extended with an addtional harmonic
resulting in an additional point-input information
matrix M® with vector representation y®. After a
number of iteration steps, the number of harmonic
signals may become larger than the dimension of
the hyperplane of K, in which the average
information matrices are situated. This means that
the vectors Y® become dependent and that one
vector can be expressed as a linear combination of
the other vectors. The procedure results in:

u = Zp: Yo®  u®) = i Vort® u®(0)
k=1 k=1

k]
. . [0} (k) (5.5-14)
ORI N PO B

, s
H T/:;l— /“kl
p-l
Y n@?P-y®) =0 ,psd
k=1

The upper bound on psd is specified by the
dimension d of the information space R,,. At this
stage, one can see how a reduction of d,
established by applying the two-step method in
combination with convex analysis, leads to a
reduction of the number of elementary input

signals.

5.6 Conclusions

In this section we have explained that input design
is essential for accurate estimation of parameters.
A brief survey of different approaches available has
been given. We have described in more detail two
approaches developed at the Delft University of
Technology. In the time domain approach, we have
shown that multi-dimensional input signals for
parameter estimation of nonlinear and linear
dynamical systems can be represented in terms of
sets of orthonormal functions or elementary
signals. Input signals described in this way may be
optimized with respect to one of several
optimization criteria based on Fisher’s information
matrix, by solving a nonlinear optimization
problem. Linear dynamical systems allow a more
efficient computation of the information matrix if
a sel of elementary information matrices is
computed and stored beforehand. A special class of
linear systems was introduced allowing a
decomposition of the joint parameter-state
estimation problem. For this class of systems, the
elementary information matrices take a remarkably
simple form.

In the frequency domain approach, we have shown
that convex analysis leads to computational
efficiency in the design of input signals, in
particular for the case of parameter-state estimation
problems which allow decomposition. We have
also shown that such estimation problems lead to
more simple input signals consisting of a fewer
number of harmonic signals.
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Figure 5-1: Optimal input design within identification procedure.
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Figure 5-2: Probability density function and uncertainty ellipsoid for a two-dimensional gaussian
distribution of the paramter estimates.
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Figure 5-3: Rectangular and spherical coordinates of P, in p-dimensional
Euclidian space representing u, with energy E,=R% in [t,t,].
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Figure 5-4: Definition of matrix D(t) of a two-dimensional input signal (s=2) consisting
of four orthonormal functions (p=4). Shaded areas denote nonzero elements;
i refers to a particular column of D(t), i.e. the elementary input signal e(t).
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Figure 5-5: Example of orthonormal Walsh functions in the time interval [0,T].

Figure 5-6: Orthonormal functions of set 1, Eq. (5.1-8), in the time interval [0,T].
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Figure 5-7: Orthonormal functions of set 2, Eq. (5.1-9), in the time interval [0,T].
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Figure 5-8: Orthonormal functions of set 3, Eq. (5.1-10), in the time interval [0,T].
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6 DESIGN AND EVALUATION OF OPTIMAL INPUT

SIGNALS

In earlier chapters, we have discussed the
theoretical aspects of Flight Path Reconstruction,
Aerodynamic Model Identification and Optimal
Input Design. In this chapter we lay emphasis on:
¢  Optimization of Longitudinal and Lateral Input
signals.
s Evaluation of different types of input signals
with respect to parameter estimation accuracy.
We discuss DUT approaches in the time and
-frequency domain.

The DUT approach in the time domain considers
the results of the flight test program with the De
Havilland DHC-2 Beaver experimental aircraft. We
focus our attention on the design of longitudinal
and lateral input signals using the theory developed
in section 5.1. We also briefly describe other well-
known signals tor the purpose of comparison. The
main basis for the comparison of results from flight
tests will be centred around the sample covariance
matrices of estimated parameters corresponding to
the different types of longitudinal and lateral input
signals.

The DUT approach in the frequency domain
considers the results of simulated experiments only.
The optimal input signals are obtained by the
method developed in section 5.3 to 5.5. The results
are presented for a case study of designing elevator
control input for estimating short period parameters
of the C-8 Buffalo aircraft. The performance
evaluation of the derived optimal signal is done
against the results of Mehra [165]. Some results are
also presented for designing simultaneous optimal
rudder and aileron inputs. In this case the Beaver
example is chosen for the purpose of comparison
with well-known Doublet and 3211 signals. The
basis for the comparisons in both the case studies
are in terms of standard deviations of the parameter
estimates. Additionally, some useful quantities of
interest like norms of Fisher’s information matrix
and aircraft response to the optimal signals are
presented.

6.1 Input Design in Time Domain

For the design of the longitudinal and lateral DUT
input signals, use was made of the method
developed in section 5.1 and in particular, the
version for linear system and observation models
as described in section 5.1.3 based on the concept
of elementary information matrices. As discussed
earlier, the two step method was applied to the
analysis of the actual flight measurements. This
means that the reconstruction of the state is
separated from, and independent of the estimation
ol the aerodynamic model parameters. According
lo section 5.2, this leads to significant savings in
the computation time for the elementary
information matrices. The actual optimization of
the input signals was initially performed by
applying Powell’s algorithm and later by a more
powerful Newton-Raphson algorithm.

The input designs depend on a priori values of the
parameters. These values were determined from
results of earlier measurements in strictly
longitudinal dynamic flight test manoeuvres [4].
The a priori values of the lateral stability and
control derivatives were obtained from the results
of wind tunnel experiments, see fig. 2-1. The
derivatives with respect to pb/2V and rb/2V were
determined from measurements in stationary
horizontal turns. The derivatives with respect to
Bb/V were set equal to zero. For a condition of
nominally steady rectilinear flight at a TAS of 45
m/s and altitude of 6000 ft, the resulting set of
values has been listed in table 6-1. The tlight tests
reported here were the result of a cooperation of
three organisations namely DLR Braunschweig,
Delft TU and NLR Amsterdam.

The comparison of the performance of the different
types of input signals, was agreed to be based on
the traces of the covariance matrices of the
estimated parameters. The corresponding criterion
for the optimization of the input signals is:

J=uM™
in which M denotes the information matrix.
The longitudinal manoeuvres were assumed to be
flown via the elevator control only, while the
lateral manoeuvres were assumed to be tlown via




both the aileron and rudder controls

simultaneously.
6.1.1 Design of DUT Longitudinal Input Signals

The longitudinal input signals were designed to
minimize the trace of the covariance matrix of the
estimated longitudinal stability and control
derivatives in the linear equations of motion. In the

body-fixed reference f{rame Fg, these linear
derivatives are, see (2.2-4):
Cxu » Cxu ’ Cxq > Cxu H xbg ’

. 6.1-1
Cz, » Co ’Czq » Cz, ’Czbe ’ ( )
Cmu 4 Cm(l 4 Cmq 4 Cm(’l 4 Cmbc -
The dimension of the information matrix

corresponding to these 15 derivatives is 15x15. In
section 4.1 it is shown, that in the case of
nominally horizontal flight, which is considered in
the present section, this information matrix is never
of full rank due to the presence of the derivatives
with respect to &c/V,. These derivatives could be
eliminated by rewriting the linearized equations of
motion in an appropriate form. With respect to the
information matrix this means that the
corresponding rows and columns must be omitted.
The resulting reduced information matrix is of
dimension 12x12 and is, in general, of full rank.

The dimension of the information maltrix was
further reduced, on the basis of the sufficiently
wide separation of the wo characteristic
longitudinal motions. The weakly damped low
frequency motion or phugoid had a period of
approximately 25 seconds. The period of the
heavily damped short period motion was
approximately 1.7 seconds. The wide separation
between the two characteristic motions allowed the
omission of the rows and columns in the
information matrix of the derivatives with respect
to airspeed. An explanation for this is that airspeed
variations are significant only in the phugoid. The
input signal optimizations in the present section
were based on the idea to combine the information
matrices obtained in relatively short dynamic
manoeuvres, at different values of the nominal
airspeed. These latter, short manoeuvres may then
be optimized with respect to estimation accuracies
of only those stability and control derivatives
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which are strongly related to the short period
characteristic motion. As a consequence, the
estimation accuracies of the derivatives with
respect to airspeed should not be taken into
account in the design of such short dynamic
manoeuvres. Eliminating the corresponding rows
and columns in the information matrix, all
longitudinal dynamic manoeuvres were ‘assigned’
a relatively short time interval of 10 seconds which
should be long enough for a proper excitation of
the short period characteristic motion having a
characteristic period of only 1.7 seconds. It should
be quite feasible to combine the information
matrices of manoeuvres at different airspeeds. In
practice, however, it would introduce additional
data management problems. In addition, differences
in centre of gravity locations during the various
manoeuvres must be carefully corrected for. In
order to avoid such complications, it was decided
to base the comparison of the longitudinal input
signals on single longitudinal manoeuvres, at
nominally constant airspeeds. The corresponding
results are presented in section 6.2. As a
consequence, all longitudinal manoeuvres should be
expected to be sub optimal compared to longer
manoeuvres, optimized for the estimation of all
longitudinal stability and control derivatives,
including those with respect to airspeed.

Finally, the derivatives Cxq and Cy , were
considered of minor importance only. They also
were not taken into account in the design of the
longitudinal manoeuvre. This was accomplished by
eliminating again the corresponding rows and
columns in the information matrix. It is noted that
this may have produced another contribution to the
sub optimality of the longitudinal input signals, as
in the actual analysis of the flight tests these two
derivatives were found to be of some importance
for a proper model fit.

The remaining information matrix is of dimension
7x7. The corresponding 7 stability derivatives are:

Cx
Cog » Czy > Cgy (6.1-2)
Cm(1 4 cmq ’ Cmoe

According to section 5.1, multi-dimensional input
signals are represented in terms of finite series of
orthonormal functions. They are written as:



p
ut) = sz: Bo W, (V) (6.1-3)
in which € refers to the ¢-th component of the s-
dimensional input signal u(t) and 1, (t) is a member
of a set of p orthonormal functions in the interval
[t,,t,]. Different kinds of orthonormal functions
were discussed in section 5.1. The performance
index J depends on the coefficients f,, Input
signal optimization is equivalent to minimization of
J with respect to the coefficients B, see section
5.1

In the present section, 0=1 since only elevator
inputs are considered. The length of the input
signal was selected to be T=t,-1,=10 sec. For this
value of T, the elevator input signals may now be
optimized for different values of p and different
sets of orthonormal functions 1 (t). Two different
sets of orthonormal functions were used. They
were indicated as set 1 and set 2 in section 5.1.1.
Both sets of functions consist of sine functions of
the form:

P () = sinw,t,
in which k=1(1)p and 1t belonging to the interval
[te-t;], see equations (5.1-8) and (5.1-9) and figs.
5-6 and 5-7. The frequencies w, of the first set of
functions correspond to those in a Fourier series:
2n
W =k =
K T
In the second set of functions the frequencies are
chosen to be:

bi 8
w =k _ .

k T
The functions of both set 1 and set 2 are
orthogonal in the interval [(, L], as can easily be
shown; see also section 5.1.1.

Fig. 6-1 shows the relative performance index and
the relative standard deviations of the estimated
parameters of optimal input signals consisting of

varying numbers p of set 1 or set 2 orthonormal

functions. The relative performance index J, is
defined as:

Jr(:l = i ’
Jn

in which J denotes the performance index of an

optimized input signal consisting of 2 orthonormal
functions of set 1. In a similar way, the relative
standard deviation o, of an estimated parameter is
defined as:

(o]

an

g =

rel ’

in which o, denotes the standard deviation of an
estimated parameter resulting from the
implementation of an input signal consisting of 2
orthonormal functions of set 1.

The relative performance index and the relative
standard deviations appear to depend strongly on
input signal ‘bandwidth” f =w /2x, where £,
denotes the highest frequency of any of the
orthonormal sine functions in set 1 or set 2. In
particular as long as [, is below the short period
characteristic frequency J, decreases markedly
with increasing f,. Fig. 6-1(a) shows that J
decreases monotonically with increasing values of
p- This holds true for input signals consisting of set
1 functions as well as for input signals consisting
of set 2 functions. Figs. 6-1(b) and (c) show that
the relative standard deviations of the estimated
derivatives with respect o o depend in a quite
different way on p. The standard deviation of Cy
increases with increasing values of p, while the
standard deviations of C; and C,, decrease with
increasing values of p only for f, below the
characteristic frequency of the short period
oscillation, The standard deviations of C;, C, ,
Cy,. and C,. in tig. 6-1(a) behave similarly to J
in fig. 6-1(a), i.e. a monotonic decrease with
increasing values of p.

Furthermore, for a given value of f, input signals
consisting of functions of set 2 prove to be
superior o input signals of functions of set 1 with
respect to the performance index as well as with
respect to each of the standard deviations of the
estimated paramelers.

Results for p>20 are not shown since for these
high values of p the convergence of Powell’s
algorithm was very slow.

Plots as shown in fig. 6-1 allow a deliberate
selection of the number and type of orthogonal
functions from which to compose the input signal.
For the actual flight tests the input signals were
prerecorded on an FM tape recorder connected to
the electro-hydraulic control system. These input
signals had to be generated, therefore, in real time
on a digital computer. The software was designed




such that three input signals, for the aileron,
elevator and rudder channel respectively were
simultaneously generated. In the case of a
longitudinal manoeuvre, the coefficients B, of the
aileron and rudder input signals were set equal to
zero and conversely, in the case of a lateral
manoeuvre the coefficients f,, of the elevator
input signal were set equal to zero. The input
signal values were calculated at a rate of 20 times
per second. The maximum number of sine
functions which could be calculated simultaneously
in real time turned out to be equal to 24. Therefore
each of the 3 input signals could maximally consist
of only 8 sin functions.

Fig. 6-1 indicates that the potential improvement of
input signal performance resulting from selecting £,
in excess of about 0.8 Hz is only marginal. This
corresponds to 8 functions in set 1 or 16 functions
in set 2. Considering the limitation on p mentioned
above, the best input signal for implementation in
the present flight tests can be seen 1o consist of 8
functions of set 1.

From the viewpoint of safety and economy, it is
essential in the design of input signals for dynamic
flight tests to take into account the aircraft’s
terminal flight condition at t=t;. It should not be
‘too far’ from the original, nomiinal flight
condition. The deviation of the terminal from the
nominal flight condition can explicitly be laken
account by adding a penalty function to the
performance index, according to:

I, =1+ xT(t) - Wex(y) (6.1-4)
in which x(tg) denotes the linearized state vector at
time t=t; and W denotes a positive semi-definite
weighting matrix. It is understood that x(t,;)=0.
Minimization of J S rather than of J leads in general
to a different input signal and therefore to a higher
value of J. The input signals calculated in fig. 6-1
turned out to result in rather large deviations from
the nominal flight condition. The input signal
selected for implementation in the flight tests was,
therefore, slightly adapted, by adding a penalty
function as in equation (6.1-4). It was found that at
the cost of a relatively minor increase of J, in the
order of 15%, the terminal flight condition at t=t;
could be moved closely to the original, nominal
flight condition.

The resulting input signal as actually measured in
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flight, is shown in fig. 6-3(e).
6.1.2 Design of DUT Lateral Input Signals

The design of the DUT lateral input signals was
also based on linear equations of motion and
minimization of the trace of the covariance matrix
of the estimates of the lateral stability and control
derivatives. In the body-fixed reference frame Fg
these derivatives are, according to (2.2-9):

CYﬁ ’ CYP » CY' ’ CY‘3 ’ CYéa b CYO, ’
CIB ’ C| P » C| P ClB ’ Clba ) C] . s (6'1-5)
ng 4 Cnp ? Cnr ’ ng ? nba ’ nbr

The dimension of the corresponding information
matrix is 18x18.

Before the actual flight tests were performed, the
stability derivatives with respect to fb/V were
expected to be of minor importance only. These
derivatives were therefore not taken into account in
the input signal optimization. This was
accomplished by omitting the corresponding rows
and columns in the information matrix, reducing its
dimension to 15x15.

The lateral motions are dominated by the Dutch
roll periodic motion and the roll aperiodic motion.
The Dutch roll motion had a period of
approximately 5 seconds. The time constant of the
roll motion was approximately 1.4 seconds. As a
consequence, the length of the lateral input signal
was chosen to be 16 seconds which is about 3
times the period of the Dutch roll characteristic
motion. Such fairly long input signals compared to
the period of the Dutch roll motion were
considered to guarantee a proper excitation of the
dominant characteristic lateral motions.

Fig. 6-2 presents the results of the optimization of
the lateral input signals. Two sets of orthogonal
functions as mentioned in the previous section
were used to calculate the optimal performance
index and corresponding square roots of the
diagonal elements of the covariance matrix for
increasing values of p.

Analogous to the longitudinal case, Powell's
algorithm was found to converge more slowly if p
was larger. This prevented in fact the optimization
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of input signals consisting of more than 10
orthogonal functions per input signal component.
All curves of fig. 6-2 clearly suggest that an
additional increase of p and therefore higher
‘bandwidth” f, would probably have resulted in
slightly better input signals.

As mentioned earlier, in the practical
implementation, each input signal component could
consist of maximally 8 functions of set 1 or set 2.
Given this restriction on p, the best practical input
signals consisted of the maximum number of 8
functions of set 1.

The resulting optimized input signals were slightly
adapted again, by adding a penalty function to the
original performance index J, as in (6.1-4). The
adapted input signals were found to result in a
terminal flight condition at t=t; which was very
close to the original, nominal tlight condition at the
cost of only a negligible increase of J.

The resulting aileron and rudder input signals, as
actually measured in flight, are shown in fig.
6-3(e).

6.1.3 Doublet, 3211, Mehra and Schulz Input
Signals

The Doublet, 3211, Mehra and Schulz longitudinal
and lateral input signals are shown in fig. 6-3. The
rationale behind these signals is given below. For
a more detailed description,the reader is referred to
reference [20].

Doublet

The Doublet input signals are of the ‘bang-bang’
type, switching between plus or minus the signal
amplitude Aa. For a signal length of 2At, the
instant to switch trom +Aa to -Aa is at time t=At.
This type of input signal has been, and probably
still is, widely used for excitation of aircraft
longitudinal and lateral characteristic motions. In
the present case, different t-values were used for
the elevator, aileron and rudder input signals.
These At-values were selected Lo result in a proper
excitation of the short period, roll and Dutch roll
characteristic motions respectively.

As mentioned before, all 5 types of elevator input
signals as well as all 5 types of aileron and rudder
input signals were scaled to have the same energy
in the longitudinal and lateral time intervals of 10
and 16 seconds respectively. Since At is rather

small, this would in the case of Doublet signals
have resulted in rather large amplitudes. It was
decided, therefore, to implement the Doublet
signals twice during each observation time interval.
Actually measured time histories are shown in fig.
6-3(a).

3211

The 3211 input signal is also of the ‘bang-bang’
type. Let the signal length be 7At. The switching
times are then at t=3At, t=5At and t=6At. The
signal can be optimized with respect to parameter
estimation accuracies by searching for the best
value ol At. Marchand [180] has shown that a
deliberate choice ol At can be made through
qualitative considerations in the frequency domain.
In order to avoid too large amplitudes, the 3211
signals were also implemented twice during each
observation time interval. Actually measured time
histories are shown in fig. 6-3(b).

Mehra

Mehra and Gupta |164] propose the use of
frequency domain techniques for the design of
input signals, see also chapter 5. The result of an
optimization in the frequency domain is a line
spectrum which is subsequently approximated by a
set of weighted sine functions in a finite
observation time interval. Since the more general
algorithm for multidimensional input signals was
not available when the flight test program started,
the aileron and rudder input signals had to be
calculated separately, i.e. as in the case of scalar
input  signals. The resulting signals were
nevertheless implemented simultaneously in each
lateral manoeuvre. Furthermore, the criterion used
for the design of the Mehra input signals was the
determinant of the information matrix, rather than
the trace of the covariance matrix. Actually
measured time histories are shown in fig. 6-3(c).

Schulz

Schulz [163] formulates the problem of designing
an input signal as an optimal control problem in
the time domain. In order to simplify the
calculations, the criterion used is the trace of the
information matrix, see chapter 5. In the lateral
case, the aileron and rudder signals were calculated
separalely, as one-dimensional input signals.
Analogous to the lateral Mehra input signals, they
were nevertheless implemented simultaneously in




each lateral manoeuvre. Actually measured time
histories are shown in fig. 6-3(d).

All longitudinal and lateral input signals were low-
pass filtered, before being recorded on tape for use
with the electro-hydraulic control system. The filter
used consisted of two identical second-order filter
with undamped natural frequencies of 19 rad/s
(corresponding to approximately 3 Hz) and
damping ratios of 0.691. The filtering caused some
significant distortions, in particular of the block
type Doublet and 3211 input signals, see fig. 6-3.
The distortion of the input signals of the Mehra,
Schulz and DUT type proved to be negligible.

Even after filtering, significant ditferences
remained in the frequency contents of the different
types of input signals. This is illustrated by the
power spectral densities of the elevator input
signals of the longitudinal and the aileron and
rudder input signals of the lateral manoeuvres in
fig. 6.4. It follows that only the Doublet and 3211
input signals contain a significant amount of power
above 1 Hz. A considerable difference in
bandwidth appears o exist between these two input
signal types. Compared to the Doublet signals, the
3211 signals contain much higher frequencies.
Compared to the two block type input signals, the
remaining input signals may be classified as low-
frequency-type input signals. Of these input
signals, the Schulz input signals appear lo contain
the lowest frequencies.

6.2 Performance Evaluation of Longitudinal
and Lateral Input Signals

In the present section a comparison is made of the
performance of the different types of longitudinal
and lateral input signals. The calculation of sample
statistics of the estimated paramelers is discussed
in section 6.2.1. The actual comparison of input
signal performance is made in section 6.2.2,

6.2.1 Sample Estimated
Parameters

Statistics of the

One set of computer programs was used for the
calculation of all longitudinal and lateral parameter
estimates from the 47 flight test manoecuvres at the
nominal steady rectilinear flight condition of 45
m/s TAS and 6000 ft SA. The programs were

implementations of the algorithms described in
section 3.3 and 4.3. However, rather than applying
the model development procedure of section 4.3,
fixed and a priori specified longitudinal and lateral
aerodynamic models had 0 be used for the
estimation of the aerodynamic derivatives. The
reason for this was that different flight test
manoeuvres usually led to the selection of slightly
different sets of candidate variables. This prevents
the calculation of sample statistics of the estimated
parameters.

The specified longitudinal and lateral aerodynamic
models are shown in table 4-1. It is noticed that, in
accordance with the identifiability analysis in
section 4.1.1, the variable Gc¢/V is not present in
the model. On the other hand, a nonlinear variable
a? in the models of Cy and C,, was found to be
indispensable for an acceptable model fit. This is in
agreement with the nonlinearity of the Cy-a and
C,,-o relationships as manifested in the wind
tunnel results of fig. 2-1. Inclusion, however, of
derivatives with respect o o affects the estimation
accuracies of the derivatives with respect to a. The
estimated derivatives with respect to o and a?
were, therefore, ‘combined’ into one ‘linearized
derivative’ according to:

C, =C +2:a-C, |
Yoo X Xa? (6.2-1)
CXu = Cmu * z'a.cmuz

in which a denoted the mean value of o during the
flight test manoeuvre.

The estimates were obtained by the two step
method and subsequently used to calculate sample
standard deviations.

One set of derivatives relating to the C,- and C-
equations are plotted in fig. 6-5. In figs. 6-6 and
6-7 the sample standard deviations of the Doublet,
3211, Mehra and Schulz manocuvres are plotted,
relative 1o the standard deviations of the DUT
manoeuvres in order to expose more clearly the
existing differences. For comparison, the same is
done with respect to the theoretical standard
deviations, as derived from the theoretical
covariance matrix V(a,):

véy -V [
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6.2.2 Comparison of Input Signal Performance

The results of fig. 6-5 allow a comparison of the
different manoeuvre types with respect to sample
means and sample standard deviations of estimated
aerodynamic derivatives.

The large differences between corresponding
sample means, show that most of the estimated
acrodynamic derivatives are strongly biased.
Furthermore, biases prove to depend on manoeuvre
type. The expected value of an estimated parameter
in simplified models is given by equation (4.2-22):

E@)) =3, + Ca,

where

c= [XIT'XJ_I XITXZ (62-2)
The phenomenon of estimation bias in regression
analysis is often connected with the existence of
additive measurement errors in the independent
variables [182]. In the present work, the
independent variables are either measured directly
or derived from a flight path reconstruction and
thus corrupted with measurement or reconstruction
errors respectively. These errors, however, are
much too small to be held responsible for the
observed differences between samples means. A
more plausible model for the observed estimation
biases is given in section 4.2.2. Aerodynamic
models, as defined in table 4-1 comprising a
limited number of independent variables, will only
approximate the underlying much more complex
aerodynamic mechanisms. These models are
therefore always simplified versions of hypothetical
‘perfect models’.

Following chapter 2, aerodynamic models are
represented here as Taylor series expansions of a
given set of variables and their first and higher
order time derivatives. Simplified models contain
finite subsets of these variables. The simplified
models used in the present section are linear with
the exception of o’ terms in the models of Cy and
C,,; see section 4.2, The variables in X, include,
therefore, nonlinear products of the variables in X.
This means, that those elements in C which are
related to these nonlinear products will depend on
the magnitude of the deviations from the nominal

flight condition. A measure for these deviations, as
occurring in the course of a flight test manoeuvre,
is the root mean square deviation:

d = yulXX ] /N
in which 5(1=X1-X1. In the present flight test
program it was found that different types of input
signals resulted in different values of d. This is
clearly shown in tlable 6-2. It follows, that in
particular the longitudinal and lateral Schulz input
signals produce large values of d. This is not
surprising, as these input signals were designed to
maximize the trace of the information matrix, see
section 6.1.3. It is noted that 3271 manoeuvres on
the other hand, result in rather small values of d.

(6.2-3)

Fig. 6-5 shows striking differences between sample
standard deviations of the estimated parameters of
different types of input signals. This holds true for
the longitudinal as well as the lateral input signals.
Since the present work is focused on the design of
DUT input signals, the sample standard deviations
of the 3211, Doublet, Mehra and Schulz input
signals were expressed in terms of the
corresponding sample standard deviations of the
DUT input signals in figs. 6-6 and 6-7, see also
section 6.2.1.

In tables 6-3 and 6-4 the observed differences of
sample standard deviations were tested for
statistical significance. The results indicate that,
even for a fairly high value of a=Pr{H,|H,}=5%,
relatively few statistically significant differences
exist. This is a direct consequence of the fact that
the sample sizes are relatively small. Even less
statistically significant differences would have
resulted, if the actually observed differences in
sample standard deviations were identical to the
differences as predicted by theory in figs. 6-6 and
6-7. These predicted statistically significant
differences are also shown in tables 6-3 and 6-4.
The sample standard deviations of the 3271,
Doublet, Mehra and Schulz manoeuvres relative to
the corresponding DUT values were subsequently
tested for statistically significant deviations from
the corresponding theoretical results, see again
tables 6-3 and 6-4. The tests show that statistically
significant deviations from theory do indeed exist.
It is noted that, with only one exception, all these
deviations resulling from Doublet, Mehra and
Schulz manoeuvres are positive, i.e. the relative




sample standard deviations are larger than
predicted by theory. On the other hand, also with
only one exception, all statistically significant
deviations resulting from the 3211 manoeuvres turn
out to be negative.

The results for the experimental and theoretical
sample relative standard deviations can be
explained as follows. The theoretical covariance
matrix V(a,) for biased estimates in simplified
models is based on the assumption that C in (6.2-2)
is deterministic. For the calculation of a sample
variance matrix of ‘_Al,, C must, therefore, be
constant. From (6.2-2) it tollows that C depends on
the form of the tlight test manocuvre, i.e. the lime
histories of the independent variables in X, and X,.
The use of an electro-hydraulic control system for
the implementation of pre-recorded input signals,
as in the present work, results in highly
reproducible flight test manoeuvres. Yet, two flight
test manoeuvres ol the same type will never be
-exactly identical, due to for instance small
deviations from the initial nominal flight condition,
differences in aircraft weight and centre of gravity
location and non-reproducible components in the
control system outputs. Furthermore, during the
execution of the longitudinal manoeuvres, the pilot
would manually add small lateral control inputs to
keep the wings level. During the lateral
manocuvres the pilot would add small longitudinal
control inputs, in order to prevent too farge pitch
and airspeed variations. These additional control
inputs generated by the pilot were non-reproducible
and turned out to be largest in the case ol the
Schulz manocuvres, while virtually nonexistent in
the case of the 3211 manocuvres.

It follows {rom equation (6.2-2), that differences
between longitudinal or lateral manocuvres of the
same type will resuit in C being not exactly
constant. The matrix rather depends on the
particular realization of the manoeuvre. Different
biases may, therctore, be expected to exist in the
estimated paramelers ;_;, as calculated from a set ol
realizations of a particular type of flight test
manoeuvre. The effect of this is an increase of
sample variance.

The root mean square deviations d in table 6-2 are
loosely connected to the magnitude of the
parameter bias in simplified models. There exists a
marked difference in this respect between for
instance 3277 and other manocuvres. Furthermore,
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it {ollows from the above, that due to the smaller
pilot implemented control inputs, 3277 manoeuvres
can, compared again to the other manoeuvres
types, be reproduced more accurately.

The above reasoning may now serve to explain,
although rather tentatively the results of the
statistical tests in tables 6-3 and 6-4. For example,
the negative deviations of relative sample standard
deviations of the 3271 manoeuvres may be
attributed to the parameter biases being smaller and
the flight test manoeuvre reproducibility being
higher than the DUT manoeuvres.

For a comparison of only the inpul signal
performance, in terms of variances of parameter
estimates, perhaps a clearer picture results if the
parasitic effects of parameler bias and manoeuvre
reproducibility are ignored. This would indeed
indicate that the comparison should be based on
the theoretical, rather than on the sample relative
standard deviations. These theoretical standard
deviations, in relative rather than in absolute form,
were presented in figs. 6-6 and 6-7.

The relative theoretical standard deviations of the
estimated longitudinal parameters are shown in fig.
6-6. Perhaps the most remarkable result is the
relatively poor performance of Schulz manoeuvres,
in particular with respect to the qc/V and 9,
derivatives. The differences between the remaining
types of input signals seem to be less marked in
the sense of one type of input signal being
markedly superior to the others. This does not
imply, however, that variations in parameler
estimation accuracies would exist. The theoretical
standard deviation of, for example, the §,
derivatives of the Doublet manoeuvres prove o be
more than 135% of the corresponding results of the
DUT manoeuvres, while the theoretical standard
deviations of Ap‘/‘/sz2 derivatives of the 3271
manoecuvres are found to be less than 70% of the
corresponding results ol DUT manoeuvres.

The relative theoretical standard deviations of the
estimated lateral parameters are shown in fig. 6-7.
Remarkable is again the poor performance of the
Schulz manoeuvres. Also the Mehra manoeuvres
can, however, for all derivatives be seen to result
in relatively large standard deviations. Only small
differences prove to exist between the standard
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deviations of the remaining Doublet, 3211 and
DUT manoeuvres, although the Doublet manoeuvre
is seen to be slightly superior.

In the comparison made above, the Schulz
manoeuvres shown were optimized with respect to
the trace of Fisher’s information matrix. The
relatively poor performance of these manoeuvres
indicates that this criterion does not guarantee good
performance in terms of standard deviations of the
estimated parameters.

In the longitudinal case, the performance of the
Mehra manoeuvres is of approximately the same
level as the performance of DUT manoeuvres,
although both manoeuvres types were optlimized
with respect to different criteria, see section 6.1.1
and section 6.1.4. However, as mentioned above, in
the lateral case the performance of the Mehra input
manoeuvres is considerably lower. Since the
longitudinal Mehra input signal performed quite
well, the cause of the relatively low performance in
the lateral case is thought to be the separate
optimization of the aileron and rudder input
signals. Compared to the corresponding DUT input
signals, this resulted in a relatively low frequency
aileron signal for proper excitation of the Dutch
roll  characteristic motion. Simultaneous
optimization would probably have ‘assigned’
excitation of the Dutch roll motion to the rudder
control, which is in this respect much more
efficient. The multidimensional version of Mehra's
algorithm might, therefore, be expected to result in
improved input signals, see [165].

The differences with respect to theoretical standard
deviations between the remaining types of inputl
signals, i.e. the Doublet, 3211 and DUT signals
appear to be less pronounced although significant
differences exist for individual derivatives.

The Doublet and 3211 manoeuvres appear to result
in relatively high estimation accuracies of the
control derivatives with respect to §, and O, in the
lateral case. In the longitudinal case, the 32711
signal results in a higher estimation accuracy ol the
control derivative with respect to 0, compared (o
the DUT signal. The Doublet signal, however,
results in a lower estimation accuracy. In fig. 6-4
it may be seen that estimation accuracies of control
derivatives in general appear to depend on the
bandwidth of the input signal, in the sense that a
higher bandwidth results in a higher estimation
accuracy. This beneficial effect of higher

frequencies on the estimation accuracies of control
derivatives is also evident in figs. 6-1 and 6-2. In
the lateral case, the Doublet manoeuvre results in
slightly higher estimation accuracies of all
derivatives compared to the DUT manoeuvre. The
3211 manoeuvre results in higher estimation
accuracies of the control derivatives, but in lower
estimation accuracies of the derivatives with
respect to the side slip angle  and the
(dimensionless) rotation rates p and r. In the
longitudinal case, it is the 3277 manoeuvre which
results in the higher estimation accuracies
compared to the DUT manoeuvre. The Doublet
manoeuvre results in higher estimation accuracies
of the derivatives with respect to Ap‘/’/épV2 and
angle of attack «, but in lower estimation
accuracies of the derivatives with respect to the
(dimensionless) rotation rate q and the control
angle O,

6.3 Input Design in Frequency Domain

This section illustrates the results of the input
design technique in the frequency domain
described in section 5.3 to 5.5. The input design
for the estimation of parameters in the model of
the short period mode of the C-8 Buffalo aircraft is
discussed in section 6.3.1. Section 6.3.2 presents
the simulation results for the designed input signal.
Input signals of Mehra discussed in Gupta and Hall
|158], Chen [114] and Morelli [123] are also
briefly discussed. Section 6.3.3 illustrates the
design technique for the estimation of the
parameters in the lateral model of the DHC-2
Beaver aircraft. In section 6.3.4, the evaluation of
the results of the designed aileron and rudder
inputs is discussed.

6.3.1 Design of Longitudinal Input Signal

The input design for the estimation of the short
period mode parameters is previously investigated
by Mehra, Chen and Morelli. The applied model is
given by Gupta and Hall [158]:
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where a is angle of attack, q is pitch rate and d, is
elevator deflection. The parameters are specified in
table 6-5. The output signals consist of a and q
which are measured at a sampling rate of 25 Hz.
The measurement errors are zero mean and
uncorrelated. Their standard deviations are given in
table 6-6.

With respect to the application of the two-step
method, the system is replaced by

a|l M, M[la] M, |
) ) (6.3-2)

-yl (.1 Zu 1 (&3 Zbe
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where the parameters in the differential equations
are not treated as parameters any more. The
differential equations are only used for generating
the state trajectory. The standard deviations of the
‘measured’ time derivatives can be constructed via
five-point Taylor polynomials of a and q. The
values are also listed in table 6-6.

The replaced model is only used for the
optimization of the input signals. For the
evaluation of the optimal input signal and for
uniform comparison with other optimization
techniques, the derived input signal is submitted to
the original system.

The optimal elevator control is derived via a search
of the optimal information matrix M? in the convex
set. M of information matrices M with power
constrained inputs. As explained in section 5.3, M
has a block diagonal structure structure where each
matrix block is constructed from the matrix M(w).
Via the independent elements of M(w), M can be
represented by the information vector 1 in the
information space R,,. The number of independent
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elements can be restricted to (n+1) for single input
systems, see [216], where n is the number of
independent state variables. The elements of M(w)
are hereto expanded as a power series of
w?i-D/ld(w)|?, i=1(1)(n+1). The term
w?"/|d(w) |%, however, only appears in the bottom
diagonal element of M(w) which is equal to unity
by the imposed power constraint; see equation
(5.3-21). This now puts the set M in a n-
dimensional linear variety K, As the system
(6.3-2) has only one input and two stale variables,
M can be situated in a two-dimensional plane. M
can thus be represented by the information vector
1 with two independent components P, and 1,
and the scalar norms J, defined earlier as
optimization criteria, become two-dimensional
vector functions. The two- and three-dimensional
views of the matrix norms are shown in fig. 6-8
and fig. 6-9. In fig. 6-8, the contours represent
constant values of the norms, while the depths in
fig. 6-9 correspond to the values of the norms.
The location ° of M° i.e. the location with
minimal value of the norm, can be seen in these
figures. The different norms locate M® more or less
in the same position. This may lead to the
conclusion that one may expect similar
performances for the input designs optimized to
different criteria.

The elevator control is optimized for the criterion
J=tr M! as used by other investigators. Let the
elevator control be composed of harmonic signals
whose power is set to P ,=16.667 deg® for the
purpose of comparison. The frequencies of the sine
functions are set to specified values we|0, 1.5, 4.5]
rad/s and they are optimized within the range 0 to
4.5 rad/s. The first iterations of the optimization
process with optimizing frequencies are shown in
fig. 6-10.

- The average information matrix is represented in a

two-dimensional plane in the information space Ky,
as described above. The point-information matrices
M® are first calculated from the harmonic signals
u®(t) of which the input signal u(t) is composed.
It follows from equations (5.3-18) and (5.4-5) that
the set of MM, represented by y® in Rap IS @
curve depicted by the dash-dot arc in fig. 6-10.
This curve determines the convex hull of M. Each
point on the curve corresponds to a single
frequency in the input signal. By composing u(t)
from u®(t) the information matrix M becomes a
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convex combination of M® for power constrained
input designs. In vector representation, the
information veclor 1 is sitvated in a polyhedron
where the vertices are specified by m(k). By
connecting all vertices one may find the sufficient
Y® to attain . The sufficient number of
harmonics is three, since the set M lies in a two-
dimenional plane.

The initial harmonics _Ll(k)(l) are chosen so that the
evaluated information matrix is nonsingular. At
each iteration, the minimal gradient of J with
respect to the power ratio of any harmonic signal
is searched. This results in a direction indicated by
the dashed line in fig. 6-10. The crossing of this
line with the curve for y® now represents a new
harmonic in the input signal. If the frequencies are
fixed, then the resulting harmonic is one of the
specified harmonic signals. If the frequencies are
optimized, the resulting harmonic is an additive
harmonic signal. The amplitude of the new
harmonic is calculated by a direct search of the
minimal value of J along the direction of the
minimal gradient. The location of the minimal
value represents the power ration between the
previous iterated inpul signal and the new
harmonic. It can be seen that after some iterations,
this leads to superfluous usage of harmonic signals.
Therefore, by applying Caratheodory’s theorem, the
new iterated input signal can still be represented by
three harmonic signals, dispensing one of the
harmonics when the new information matrix is
found. The iterations are continued until the
gradient becomes larger than -0.1%, indicatling a
flat surface and small changes in estimation errors
for successive input designs, or until the shift of
becomes smaller than 0.1%, indicating a small
change only in M and a small contribution of new
harmonics in the input design.

The schematic sketch of the optimal harmonic
signals for the optimal elevator control is shown in
fig. 6-11 for both specified and optimized
frequencies. One can see that the frequencies do
not differ much for both cases and result in close
approximations for the location of the optimal
information matrix. The derived optimal signals,
however, are not unique. Several other
combinations of harmonic signals are possible. For
the present case, even an optimal signal consisting
of only two harmonic signals is possible. This is
caused by allowing an arbitrary choice of input
frequencies. It also follows from the figure that for

a limited frequency range, which corresponds to a
restricted segment of the hull, the optimal M° may
not be attainable. Furthermore, in order to keep the
highest input frequency limited, the input signal
must be allowed to have very low frequencies.

The time history of the DUT elevator inputs with
fixed and optimized frequencies are shown in fig.
6-12 for a time length of T=6 sec, together with
their power spectral densities. The corresponding
frequencies, amplitudes and powers of the
elementary signals are presented in table 6-7.

The optimal input with optimized frequencies does
not differ much from the input with specified
frequencies. Both input signals contain one high
frequency, and two low frequencies. One frequency
is close to the natural frequency of the short period
mode (w,y=1.32 rad/sec). This is logical since
around this frequency the input is generally
amplified most, which results in higher signal/noise
ratios for the outputs. The other two frequencies
make the regression equations from which the
parameters can be identified in the frequency
domain less dependent on each other, see Gerlach
3]

The optimal input time histories according to fig.
6-12 are not unique because of the phase shifts in
the elementary signals. These phase shifts do not
follow from the synthesis in the frequency domain.
In order to avoid disturbancies at t=t,, the phases
are setl to zero.

6.3.2 Evaluation of Longitudinal Input Signal

For the evaluation of the DUT signal, the original

system (6.3-1) is driven with the DUT elevator
input for specified frequencies. The generated angle

of attack and pitch response are given in fig. 6-13.

The original system is also driven with the DUT
signal to evaluate the average Fisher’s information

matrix M for each of the scalar norms J mentioned

earlier. The average information matrix M=M/N is

computed as a function of the measuring time
interval T with a constant sampling interval set to

At=0.04 sec. The resulting criteria J are plotted in

fig. 6-14.

It can be seen that_around T=4 sec, the criteria

J=tr M\, J=-In det M and J=1/(eig M), become
stable. This means that larger measuring time
intervals yield little or no gain in accuracy.




The present short period mode is also investigated
by Mehra, presented in Gupta and Hall [158], Chen
[114] and Morelli {123]. These optimal inputs are
shown in fig. 6-15.

The optimal elevator input derived by Mehra in the
time domain technique started from a doublet
input. The applied optimization criterion is J=tr M1
at a measuring time interval T=6 sec. Maintaining
the same energy over the measuring time interval,
the doublet input is optimized by adding new
elementary signals which are eigen functions of a
matrix function of Fisher’s information matrix.
The optimal elevator input derived by Mehra in the
frequency domain technique started from a signal
with two frequencies with equal power. The signal
is now optimized for the criterion J=tr M"!. The
optimization technique is equal to the present
technique but with the parameters occurring in the
differential equations, the model in equation
(6.3-1), and without reducing the number of
elementary signals. The input signal has a total of
eight frequencies in the input spectrum.

The optimal elevator input by Chen is a member of
an orthogonal set of Walsh functions with full
positive and negative amplitude. From functions
with different block lengths, the function which
results in the shortest time to achieve all specified
parameter standard deviations is regarded as
optimal. The optimal input signal thus depends on
the goals for the parameter accuracies.

The optimal elevator input by Morelli also
minimizes the measuring time interval to attain
specified parameter standard deviations. The input
may also be optimized for a apecified measuring
time interval by setting the desired parameter
standard deviations to zero. The input consists of
a sequence of zero and full positive and negative
amplitudes where the block lengths are optimized
via dynamic programming techniques. This entails
that for regular time instants the input signal is
continued with an amplitude resulting in the lowest
optimization criterion at the next time instant.

The DUT optimized input signal is compared with
the optimal input signals from the Mehra
techniques which are based on the same conditions.
The elevator inputs have input power constraint
P =16.667 deg® and they are submitted to the
original system (6.3-1) with same noise
characteristics (lable 6-6), sampling rate (25 Hz)
and measuring time interval (6 sec). The signal
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performance is evaluated via the criterion J=tr M
and the parameter standard deviations og. The
results are presented in table 6-8 and fig. 6-16. It
can be seen that the DUT input signals perform
well.

6.3.3 Design of Lateral Input Signal

The input design for the estimation of the lateral
control and stability derivatives is based on the
same model and flight conditions as in section
6.1.3 for the time domain approach. The applied
model is obtained by merging the kinematic lateral

flight path model (2.1-16) and the lateral
aerodynamic model (2.2-9):
(<1 [ys O ol[=1 [
B Y‘} Y(p yP yr B yba ybr
< 1 ~
00 0 O 0 ~
I? cos Yy, v 0 0 6,
ol = o 0 0
¢ 00 0 1 wany, O e 3
; p| b |l
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~ h
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C ~
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where:
CYB C\(p Cy, CY[; CYoa CYo,
(6.3-4)
[Cy_l,n]= ClB CIP Cl, Cl'; Cloa Clb[
{Cnﬁ Cnp Co, Cné C“% C%r

and where the matrix elements gl Ar€
functions of the control and stability derivatives.
The element functions are listed in table 6-9 and
the derivatives are listed in table 6-1. It should be
noted that Ygor-slg, ATE regarded as independent of
the parameters since the slate estimation is
decoupled from the parameter estimation.

The aileron input 8, and rudder input 8, are
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simultaneously optimized for the estimation of the
following parameters:

CY ’ CY ’ CY ’ CYOQ y CYOI. ’
Cy +G, G, ~C, G, (63-5)
nB ’ CnP ’ Cnr ’ C"ba 4 C"br

The output signals consist of the specific lateral
force and moment coefticients which are computed
from acceleration and body rotation measurements
at a sampling rate of 10 Hz. The errors are zero
mean and uncorrelated with standard deviations
listed in table 6-10. These standard deviations are
derived from the standard deviations of the
measured specific lateral [orce and constructed via
five point Taylor polynomials ol the roll and yaw
rates. The output signals become mutually
uncorrelated by approximating the product of
inertia 1,,=0, see equation (4.1-15). The_criterion
for the optimization is specified as J=tr M\,

The optimal aileron and rudder inputs are again
derived via a search for the optimal information
matrix M?°. Because of the zero values of
derivatives with respeclt to B and by approximating
the product of inertia I,,=0, the inlormation matrix
M has a block diagonal structure where all blocks
are identical except ftor a scalar factor 1/0?,
j=1(1)3. The input design can therefore be
restricted to one block corresponding to the
derivatives in one output equation. The five state
variables in equation (6.3-3) can be reduced to the
four independent state variables B, @, p and r. With
two input signals §, and 8, M can be situated in a
20-dimensional plane Ky, where M is represented
by the wvector ap. The number of sufticient
harmonic signals is thus at most twenly-one.
However, the optimal inputs may generally be
approximated by fewer harmonic input signals.

The aileron and rudder inputs are optimized for a
total power P =18.75 deg? as in section 6.1.3. The
inputs consist of harmonic signals whose
frequencies are set to specified values and are
optimized as well. The frequency range of the sine
functions is restricted from 2 2 to g 27 rad/s. The
initial signal has frequencies all(ihe spcg)it'ied values
w=k 2" rad/s, k=2(1)9, where the aileron power is
uniformly distributed over the four upper
frequencies and the rudder power over the four

lower frequencies. This choice was made because
the low frequency Dutch roll is most efficiently
initiated by a rudder input, while the highly
damped aperiodic roll is best initiated by an aileron
input.

The optimal inputs are again derived via the
gradient method. At each iteration, the input signal
is either added with a harmonic incorporating a
new frequency, or the amplitudes and phases of the
harmonics at the existing frequencies are modified.
The derived aileron and rudder inputs with
specified and optimized frequencies are shown in
fig. 6-17 by their time histories and power spectral
densities. The corresponding  frequencies,
amplitudes and powers of the harmonic signals for
both cases are presented in table 6-11.

It can be seen that the power is almost entirely
concentrated at the highest [requency for the
aileron input. Furthermore, the rudder input
remains concentrated at the low frequencies around
the natural frequency of the Dutch roll motion
(wy=1.22 rad/s). If the frequencies are optimized,
the rudder input gets additional frequencies around
this natural trequency. It can be seen from the
phase shifts that only the harmonics with
frequencies around the natural frequency of the
Dutch roll and at the highest frequency are
modified.

6.3.4 Evaluation of Lateral Input Signal

The evaluation of the DUT input signal is carried
out for the aileron and rudder inputs with specified
frequencies. The generated state variables are
shown in fig. 6-18. It can be seen that the yaw
angle 1 has a strong deviation from the nominal
condition. The deviations ol the other variables
remain limited. Furthermore, the roll rate strictly
follows the aileron input, where the other output
and slate variables contain lower frequencies from
the rudder input.

The average Fisher’s information matrix and its
norms are also calculated for the DUT inputs. The
norms J of the matrix M=M/N are shown in fig.
6-19 as a function of the measuring time interval T
with a sampling rate At=0.1 sec. The norms
become stable around T=7.5 sec. This is about one
and half the period of the Dutch roll motion.

The performance of the DUT input signals is
compared with Doublet and 3211 inputs. These




latter two heuristic input signals are described in
section 6.1.4. For the purpose of comparison all
inputs have the same tolal power P =18.75 deg2
and they are submitied to the original system. The
comparison is made via the criterion J=tr M and
via the standard deviations oy of the parameter
estimates. The results are presented in fig. 6-20 and
table 6-12.

The comparison of the different input signals sow
contrasting values for J and oy. The DUT aileron
and rudder inputs perform relatively better than
3211 inputs.

6.4 Conclusions

When we look at the theoretical results for the
performance of input signals optimized in the time
domain, there are no large differences between the
results of the different types of input signals
(except for Schulz). Certainly improvements of 20-
50% in the parameter standard deviations hardly
seem to be worth the trouble of optimal input
design.

It is even more surprising that in the case of the
actual flight tests a simple heuristic input signal
such as a Doublet or a 3211 can perform as well as
and sometimes even better than one of the optimal
signals.

For the DUT input design in the frequency domain,
the estimation results of the short period and lateral
stability and control derivatives gave a good
comparison with other input signals.

Representing the optimal information matrix via a
vector in the information space can be used to
evaluate the mutual performance of different input
designs and design criteria. If the locations are very
close to each other one may expect equal
accuracies of the parameter estimates. The input
designs from different optimization criteria yields
almost similar locations for the information vector
and provided equivalent input designs and
performances.

It must be kept in mind, however, that these
conclusions hold for the simple aerodynamic model
used in the examples and they may not be true for
a more complicated model. In any case, if the
aircraft to be tested is as simple as the one
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presented here, one can feel reassured by the
knowledge that it is difficult to do better than a
multi-step input with a well-chosen step length.
This has the added advantage that these inputs are
casy to fly manually.

On the other hand the aircraft to be tested may be
more complicated, for example it may have some
(combination of) parameters in itls model
description which are nearly unidentiliable, but
which are nevertheless required for a certain
application. For the Beaver example the a&-
derivatives are a case in point, because one may
not be content to remove those parameters from the
model and in that way introduce an error may
become noticeable in certain flight manoeuvres. In
this case it is certainly worthwhile to apply one of
the described optimal input signal design methods
and find an input signal that allows the
identification of all parameters.

The optimal input signals have the advantage that
their frequency contents are much lower than the
multi-step signals and do not contain ‘superfluous’
frequency components. This can be of great
importance, e.g. to avoid structural modes being
excited by the input signal or to avoid the
influence of the frequency-dependence on the
aerodynamic model. The aerodynamic model
description in terms of Taylor polynomials, as used
in this volume, is really only a low-frequency
approximation of the (infinite-dimensional)
physical system. Exciting the aircraft with higher
frequencies will therefore yield different parameter
estimates in the approximate model than exciting
the aircraft with lower frequencies. This effect is
responsible for some of the systematic differences
shown in the previous section. 1deally one should
identify the aircraft model using the same input
signal frequency content as in the application for
which it will be used, i.e. with a low frequency
content for a commercial training simulator or with
high frequency content for an air-combal simulator.

Some of the practical advantages of using higher
frequencies can also be achieved with the optimal
input signals by specitying a higher frequency
content, for instance by using a weighting function
in the criterion which emphasizes the ‘higher-
frequency’ parameters (e.g. the control derivatives)
or by choosing higher frequency elementary signal
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components (sinus or square wave) which can be
done quite easily using the DUT methods.

Even if we intend to apply multi-step input signals,
e.g. because the signals have to be flown manually,
the amplitude, duration and relative phase of the
multi-step input signals can be inspired by the
optimal design. The analysis will also show how
much you may be losing in theory by applying a
multi-step input signal. Furthermore, the extra
effort spent on optimal input design yields
important extra information for the planning of the
flight tests, such as safe input amplitudes,
minimum required manoeuvre times, elc.

Finally, it must be said that the instrumentation and
the algorithms to accomplish the parameter
identification task have now advanced Lo the point
where the choice of optimal control inputs may be
the only and ultimate limiting factor in the
attainable accuracy of these stability and control
parameters.




CXUS = 0 Czﬂs = -0.9019
Cx, = 02019 Cp = L7203 Cyg = 0.0413
Cxyy = 0.3715 Cppy = 5817 Congg -1.5466
Cx,, = 05316 Cpy = 38131 Cuyg = 18
cxﬂeq = -0.0795 c:zﬁeq = -0.5705 cmb;L -2.19
Cypg = 0684 Cpe = 00759 Cpe = 0.0419
Cy, = 0 o -0.6312 Coge 0.0496
Gy -0.145 ¢ 0.0842 c -0.0693
s PBs ps

Yos 0 Cifs 0 Cops U
Cy, = 0 Cy 0.115 =iy 0.008
(218 B:SS = 0.061 C'a;s = -0.0026 C,,B:: = -0.0622
V, = 45 m/s He = 58.656 Ky = 0.1058
a = 0.1385 rad i = 6.365 Ky = 1.0832
Po = 1.024 kg.m® K: = 0.1438
my = 2215 kg Ky, = -0.0021

Table 6-1: Nominal flight condition and a priori values of longintudinal and lateral stability and
control derivatives as used for the design of longitudinal and lateral input signals.

DOUBLET 0.0605 0.1115
3211 0.0497 0.0728
MEHRA 0.0569 0.1169
SCHULZ 0.0620 0.1488
DUT 0.0578 0.1070

Table 6-2: Root mean square deviation d from a nominal rectilinear flight condition, at 45 m/s
TAS and 6000 ft, during different types of longitudinal and lateral flight test maneouvres.
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T Z, -0.737 1/sec M, -0.562 1/sec?
M‘1 -1.588 1/sec
Zs, 0.005 1/sec M, -1.660 1/sec?
V =41.2 m/sec
h = Sea Level

Table 6-5: Parameter values and flight condition for short period mode
of C-8 Buffalo aircraft.

 modified model

¥, o 1.00 deg a 23.75 deg/sec
¥s q 0.70 deg q 16.62 deg/sec?

Table 6-6: Standard deviations of measurement errors for short period
mode models of C-8 Buffalo aircraft.
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Y, A, |0.0014 mjsec? C, 1.288 10
Yo P 0.0032 deg/sec’ G, 7.993 10
Ya i 0.0032 deg/sec? C, 1.477 10°

¥i-¥s C,-C, |341210M

Table 6-10: Standard deviations and non-zero correlations of
measurement errors for lateral mode model of DHC-2 Beaver aircraft.
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2 0.785 0.048 0 0 0 (.896 1.339 0
3 1.178 0.052 0.966 1.390 0 0.000 0.008 0.070
4 1.571 0.064 1.201 1.550 0 0.000 0.016 -1.125
5 1.964 0.048 0 0 0 0.896 1.339 0
6 2.356 0.024 0.448 0.946 0 0 0 0
i 2.749 0.024 ().448 (.946 0 0 0 0
8 3.142 0.024 0.448 .946 0 0 0 0
9 3.534 0.717 13.435 5.184 0 0.013 0.159 0.195

DUT signals with specified frequencies

2 0.785 0.048 0 0 0 (.899 1.341 0

3 1.178 0.048 0 0 0 (.899 1.341 0
1.341 0.016 0.008 0.127 -2.569 (.285 0.754 0.000
1.492 0.001 0.000 0.022 -2.001 0.011 0.146 0.000

4 1.571 0.048 0 0 0 (.899 1.341 0

5 1.964 0.048 0 0 0 (.899 1.341 0

6 2.356 0.024 (.449 0.948 0 0 0 0

7 2.749 0.024 0.449 0.948 0 0 0 0

3 3.142 0.024 0.449 0.948 0 0 0 0

9 3.534 0.710 13.489 5.194 0 0.013 0.162 0.195

Table 6-11:

DUT signals with optimized frequencies

Optimal atleron and rudder inputs with harmonic input signals for lateral
mode parameters of DHC-2 Beaver aircrafi.




= -0.684 3.42 3.26 3.40
5. 0 24.82 22.32 18.36
Cy, -0.145 42.14 26.89 24.58
Cyy 0 18.38 12.89 13.44
Cy,, 0 3.86 2.89 2.99
Coe 0.061 2.08 1.89 5.29
Ciy -0.0759 0.22 0.21 0.21
Gy, 0.6312 1.57 1.41 1.16
= 5.0842 2.66 1.70 1.55
g 0 1.16 0.81 0.85

| Cyy, -0.115 0.24 0.18 0.19
Biee -0.0026 0.13 0.12 0.33
&, 0.0419 0.39 0.38 0.39
C,. 0.0496 2.86 2.57 2.12
C, -0.0693 4.86 3.10 2.83
G 0 2.12 1.49 1.55
o 0.008 0.44 0.33 0.34
Bia. 0.0622 0.24 0.22 0.61
J=tr M"! 4.521 107 2.309 107 1.917 107

. 5.77 577 9.70
Max. aileron 577 -5.77 -9.70
amplitude
W e | ap [

Table 6-12: Comparison of Cramer-Rao lower bounds for T=16 sec (N=161) for
heuristic and optimal aileron and rudder inputs with design criteria J=tr M”!

for lateral mode parameters of DHC-2 Beaver aircrafl.
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Figure 6-6: Relative (with respect to corresponding results from DUT manoeuvres) theoretical and
sample standard deviations of estimated longitudinal aerodynamic derivatives of 5 different types of

longitudinal dynamic flight test manoeuvres; sample results are shown immediately above each

aerodynamic derivalive, corresponding theoretical results are presented as the left most group of bars.
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Figure 6-7: Relative (with respect to corresponding results from DUT manoeuvres) theoretical and
sample standard deviations of estimated lateral aerodynamic derivatives of 5 different types of lateral

dynamic flight test manoeuvres; sample results are shown immediately above each aerodynamic

derivative, corresponding theoretical results are presented as the left most group of bars.
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o tr(inv[M/N]) b 1/min(eig[M/N])
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Figure 6-8: 2D view of attainable optimization criteria.

tr(inv[M/N]) 1/min(eig[M/N])

‘\‘\\\\\\\\\\"imn

—In{det[M/N])

Figure 6-9: 3D view of attainable optimization criteria.
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Figure 6-11: Reconstruction of optimal information matrix from elementary signals (®) and as a
function of \p (+) for elevator input for criterion J=tr M.
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Figure 6-13: Time history of angle of attack and pitch response from DUT elevator input with
specified frequencies.
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Figure 6-14: Optimization criteria as function of measuring time interval (At=0.04 sec).
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Figure 6-16: Comparison of Cramer-Rao Lower Bounds.
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7 PRACTICAL ASPECTS OF FLIGHT TESTS

In this chapter the instrumentation, flight test
design and execution, the data processing and the
data quality evaluation are discussed. All of these
topics are present in all flight tests, but parameter
identification tests add special requirements.

In addition the software development will be
briefly described, because this is an area that can
be very expensive both during development and
during use, especially when the software fails to
perform according to specifications.

7.1 Flight Test Instrumentation

For the purpose of parameter identification (light
tests, the inertial transducers, the pressure
transducers and the angular position transducers are
the most important. Other transducers such as
temperature and outputs from navigation systems
will also be discussed. Some aspects of signal
conditioning will be covered. Finally the
characterization of measurement channel will be
described.

7.1.1 Inertial Transducers

As discussed in chapter 3 the accurate
measurement of specific forces and angular rates is
very important for an accurate flight path
reconstruction, because these measurements form
the components of the input vector 1o the system
model describing the aircraft’s flight path. In
particular it is important that the bias, scale factor
and alignment do not change. For instance a bias
variation over the range ol operational conditions
should be in the order of 0.001 m/s> for the
specific forces and 0.001 deg/s for the angular
rates. This level of accuracy leads to the use of
‘inertial grade’ transducers. It is possible to build
an inertial sensor package of this accuracy from
components, as described by van Woerkom [16] or
Breeman [22]. However, it may be preferable to
buy an existing inertial sensor package of the shelf.
Such packages are produced for missile guidance
and often include gyroscope drive e¢lectronics,
signal conditioning and accurate A/D converters.

Another possibility is the use of a commercially
available Inertial Navigation System (INS) or
Inertial Reference System (IRS). The term INS

usually refers to a system with transducers
mounted on a stabilized gimballed platform, while
the term IRS always refers to a system with
transducers rigidly mounted to the case. In civil
aircraft these systems are likely to be already
available onboard. Although these systems are
more expensive than separate transducers or a
simple inertial sensor package, their superior
accuracy, stability and reliability imply that they
are much cheaper to operate, because calibrations
or repairs will be very infrequent.

On the other hand, a gimballed platform INS is not
very suitable for parameter identification flight
tests, because there are no body referenced specific
forces or angular rates directly available. In
addition the resolution of the attitude angles is
usually poor and the accuracy is further degraded
by the internal shock mounting that is used to
protect the sensitive transducers.

A strap down IRS is much better in this respect.
All IRS’s built today use laser gyroscopes. The
advantage of the laser gyroscope is the excellent
stability of bias, scale factor and alignment and the
inherently small time delays. The main
disadvantage is the amount of noise in the outputs,
which is caused by the need for dithering Lo
prevent lock-in (see Aronowitz |[224]). In
commercially available IRS’s the signal outputs are
heavily filtered, which leads to signal distortion
and time delay. Furthermore the lack of adequate
anti-aliasing filtcring combined with low sampling
rate lead to problems with aliasing, especially in a
high-vibration environment, in practice the
sampling rates used in commercial IRS’s are about
50 Hz. Most of the above-mentioned problems can
be eliminated by having the manufacturer modify
the IRS specifically for flight test. NLR has
operated modified IRS’s successfully during the
last eight years for a number of ftlight test
applications.

The mounting of inertial transducers requires
special care. The sensors should be accurately
aligned with respect to the aircraft body axes or,
equivalently, the misalignments should be
measured very accurately. This also means that the
mounting of the sensors in the box as well as the



mounting of the box to the airframe should be very
rigid and stable.

7.1.2 Pressure Transducers

As discussed in chapter 3 the accurate
measurement of static and dynamic pressure is very
important for an accurate flight path reconstruction,
because these measurements form the primary
components of the observation vector of the system
model describing the flight path.

The required absolute accuracy is about 20 Pa, but
a differential accuracy of better than 5 Pa is very
desirable. This last number translates to about 0.5
m accuracy in the change in altitude, which is the
important quantity for the reconstruction of altitude
variations. Any errors here will affect the
reconstructed state trajectory directly.

This level of accuracy is obtainable by modern
high quality pressure transduccrs, but only if the
temperature  of the transducer is either Kkept
constant or measured and accounted for in the
calibration. The approach of keeping the transducer
at a constant temperature was applied in the system
described in section 7.1.5 below. Modern air data
computers (ADC) normally measure the transducer
temperature and account for it in an internal
calibration procedure and in this way can be about
as accurate as temperature-stabilized transducers,
however, without the operational difficulties
associated with temperature stabilization. This
makes ADC’s attractive as f{light test transducers
and NLR has applied thesc transducers successfully
for flight test application for a number of years.
Time delays in the pressure measurements are
mainly due to the pressure tubing connecting the
sensing port to the transducer. The small internal
volume of modern pressure transducers has helped
to reduce this effect, but it still pays to keep the
length of the pressure tubes as small as possible by
placing the transducers near the sensing ports.

The effect of time delays in the pressure
measurements on the flight path reconstruction is
generally not very large, although they show up
very clearly in the residuals. It is in any case a
good idea to measure the time delays on the
ground [208 and 214] and correct the flight data
for the time delays. It must be kept in mind that

the delays are dependent on the pressure in the
lubing, so that the ground measurement has o be
performed for several static pressure levels.

7.1.3 Angular Position Transducers

Angular position transducers are needed to measure
the air flow angles and the control surface
deflections. For the air flow angle transducer (a
and P) an accuracy of about 0.02 deg is required.
The stability of the alignment of the air flow vanes
with respect to the body axes is more important
than the absolute accuracy, because the angle of
attack and angle of sideslip resulting from the
flight path reconstruction can be used to obtain an
accurate calibration of the air flow vanes [208 and
213]. Ideally, this calibration will take into account
the upwash and sidewash etfects discussed in
chapter 2, as well as the effect of structural
deformation of the boom or the aircraft. It is
important to check the alignment of the vanes with
the aircraft on a regular basis, before each tlight if
possible. For the control surface deflections the
accuracy requirements are somewhat less, about
0.02 degree. In this case the correct mounting of
the deflection transducer to the airframe is very
important, because the structure of the aircraft as
well as the control surface will deform significantly
under loading. A good design of the mounting will
minimize this effect [207]. In any case the
deflection of the aerodynamic surtace itself must
be measured and not the pilot stick deflection or
the cable displacement.

The time delay of the control surface detlection
measurements is very important for aerodynamic
model identification, see lliff [2]. Especially the
rate derivatives are very sensitive to this delay. The
time delay between the deflection measurements
and the inertial measurements can be checked
directly by mounting an accelerometer 1o a control
surface and moving the controls at different
(requencies. If the same data acquisition chain is
used as for the flight tests, this test can readily
exhibit the delay of the deflection measurements
relative to the inertial measurements o an accuracy
of about 1 ms.




7.1.4 Signal Conditioning Characterization

As described in chapter 3, state reconstruction can
be used to obtain accurate reconstructed variables
using the redundancy present in the measurement
data set. In order to apply this technique it is
necessary to formulate a precise and complete

characterization of the measurement system. In the

past a characterization of a measurand could
consist of accuracy and bandwidth of the sensor.
Nowadays most measurands are the result of a
complex sequence of processing steps in the flight
hardware. In this subsection a general framework
is proposed for specifying the characteristics of
measurands. This general [ramework can then be
filled in for each of the measurands used for state
reconstruction. We will begin by introducing the
following definitions:

Definitions

Translation The desired physical quantity often
cannot be sensed directly but must first be
translated to the transducer. Examples are the pitot
probe and the pressure tubing for air data and the
mechanical gearing for rotary position.

Transducer The translated physical quanlity is
transformed into a secondary physical quantity (the
transducer output) which can be measured more
easy or more accurately. Nowadays the secondary
physical quantity is usually a voltage, a current or
an impedance change.

Signal conditioning The transducer output is not
directly suitable for conversion, because the signal
level is not compatible with the A/D converter or
because the frequency content would cause aliasing
errors. Consequently the transducer output must be
bias shifted, amplified and filtered.

A/D converter After signal conditioning the signal
is converted to a digital code. There are two
common conversion techniques: successive
approximation converters yicld a number which
directly represents the signal amplitude at the
sampling instant and integrating converters, which
yield a number representing the analog integral of
the signal over the last sampling interval.
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Digital processing The digitized transducer signals
are in many cases not the desired results.
Therefore, modern sensor systems contain digital
processing. In simple cases this involves
calibrations, corrections and digital filtering, but it
can also involve a complex calculation based on a
number of different transducer signals.

Data transmission The processed digital data must
be finally transferred to the user equipment, in the
present case the flight control computer. This
involves formatting the data and transmitting the
data over a digital data bus.

The proposed framework is just a subsetl of the
characteristics that come into play in the selection
of transducers. Only the characleristics that are
judged relevant for the application must be
included. In figure 7-1 the general structure for a
measurement channel is shown. It consists of
translation, transducer, analog signal conditioning,
analog to digital conversion, digital processing and
data transmission. For cach of these elements
characteristics can be specified. Taken all together
these specifications determine the overall response
of the measurement channel.

A complicating factor is that in modern
measurement systems the output measurand often
depends on more than one sensor. In the simple
case the output of one sensor is corrected for a
sensitivilty for another physical quantity, e.g a
pressure sensor is corrected for temperature. In this
case only the remaining sensitivity after
compensation is relevant. More complicated is the
case where the measurand is derived from a
number of sensors, e.g. groundspeed from body
accelerations and gyroscopes. This can be treated
by defining the transfer characteristics from each
sensor to each measurand separately.

For simplicity the characteristics of the translation
of the physical quantity to the sensor input might
be included in the transducer characteristics.
Examples are the pneumatic tubing between the
sensing hole and the pressure sensor and the shock
mounting of an inertial sensor. A list of
characteristics is:



1. Translation
(a) Transfer function
(b) Time delay

2. Transducer
(a) Range
(b) Bias
(c) Scale factor
(d) Resolution (sensitivity)
(e) Sensitivity to lemperature, off-axis signals
(f) Hysteresis
(g) Transfer function H(w)
(h) Time delay
(i) Electrical noise spectrum

3. Analog signal conditioning
(a) Range
(b) Bias
(¢) Scale factor
(d) Transfer function H(w)
(e) Time delay
() Electrical noise spectrum

4. Analog to Digital conversion
(a) Range
(b) Accuracy
(c) Resolution
(d) Sample rate
(e) Sample instant jitter
(f) Digital noise spectrum

5. Digital processing
(a) Amplitude limitation
(b) Digital transfer function H(z)
(c) Time delay
(d) Round-off
(¢) Numerical noise spectrum

6. Data transmission
(a) Truncation
(b) Transmission rate
(¢) Transmission delays
(d) Transmission delay jitter

To reduce the amount of work, characteristics that
are judged less important can be left blank. For
example, the analog signal conditioning may have
a negligible bias compared to the sensor. In other
cases it may be impossible to tell whether the error
must be attributed to the sensor or to the signal
conditioning. This is also true for sensors which

form part of a feedback loop.

In the above list time delays are listed separately
from the transfer functions. This implies that the
transfer functions are defined to have no fixed
delay components. An alternative is to list the
complete transfer function and to incorporate the
delays in factors like €' or z in the transfer
functions.

The next step in this activity is the drawing up of
a list of physical quantities of measurand transfer
characteristics that could be of interest to the
project. Subsequently this list can be filled in with
information obtained from vendor brochures, by
questioning vendors or by direct measurements in
the laboratory or in flight.

7.1.5 Example of Flight Test Measurement
System

The general arrangement of the flight test
instrumentation system as used in the flight test
programs with the DHC-2 Beaver aircraft is shown
in figure 7-2. A detailed description of the
predecessor of this flight test measurement system
is given in Van Woerkom [16]. The present system
like its predecessor was designed and built by the
Faculty of Aerospace Engineering of the TU Delft.

The transducers of the instrumentation system are
listed in table 7-1. The first set of these
transducers, mounted in the so-called Inertial
Measurement Unit (IMU) are shown in figure 7-3.
Three accelerometers were positioned such that
their axes of sensitivity were mutually
perpendicular inside a temperature-controlled box.
The effect of temperature on the characteristics of
these accelerometers was eliminated by maintaining
a fixed temperature inside the box during
instrumentation calibrations as well as in flight.
Three rale gyros were mounted outside on the box.
Their axes of sensilivity were mutually
perpendicular as well.

The second set of transducers, used to measure
various lotal and static pressures, consisted of one
absolute and four differential pressure transducers
which were also positioned in a temperature
controlled box for the same reasons as statled as
above. This can be seen in figure 7.4,




This box contained in addition a vacuum bottle
with which the reference static pressure at the start
of a flight test manoeuvre could be sampled. It
further contained a heater and fan, a set of two-
way valves and the necessary electronics. More
details are given in Van Woerkom [205].

All transducer outputs were converted and scaled
to a range from 0 to 10,000 mV dc. Nextthese
outputs were filtered by identical 4th order low-
pass anti-aliasing filters. Each [ilter consisted of
two identical second order filters with undamped
natural frequencies of 19 rad/s and damping ratios
of 0.691. These damping ratios were selected so as
to obtain an approximately constant gain and linear
phase characteristics in the region of low
frequencies. The only effect on the low frequency
components of the transducer oulpuls was,
therefore a common time delay. This in turn led to
considerable simplifications ol the computations
required for ‘elementary data processing” [176].
The resolution of the analog to digital converter
was equal to 1 mV or 0.01% of full scale. Each
channel of the system was scanned at a rate of 10
times per second. The multiplexer comprised 40
channels and the system was capable of digitizing
and recording 400 samples per second. The number
of transducers in the instrumentation system (26)
was smaller than the number of multiplexer
channels (40). The excess channels were used o
sample the accelerometers, rate gyro’s and elevator,
aileron and rudder deflection transducers at the
double rate of 20 samples per second.

The instrumentation system was repeatedly
calibrated before, during and after the flight test
program. These repeated calibrations made it
possible to monitor variations of instrumentation
and transducer characieristics with time, in the
course of the flight test program. The calibrations
comprised the complele measurement channels,
from the transducers up to the outputs of the
analog to digital converter, rather than just the
individual components in each channel, because it
was thought that the results of calibrations of
complete  channels would be the most
representative for the actual in-flight performance
of the measurement system. Some lypical
calibration results are shown in figure 7-5.
Especially the calibration of the pressure
transducers show bias changes with time.
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Electro-hydraulic control system

A diagram of the electro-hydraulic control system
which was used to generate the optimal input
signals is shown in figure 7-6. The system included
three electro-hydraulic actuators for control of the
ailerons, rudder and elevator respectively. The
actuators were coupled via pilot controllable
clectro-magnetic couplings and safety shear pins to
the existing manual control system. Hydraulic
power was gencrated by an auxiliary hydraulic
pump which was fitted to the engine. In order to
eliminate the possibility of hydraulic fluid spillage
in flight, the system was designed to have no open
connections with the outside air. Therefore it was
not possible to use an open reservoir for hydraulic
fluid storage and a so-called compensator was
used, this is in essence a cylinder and piston
providing a variable volume. Together with an
accumulator, filters and hydraulic valves, the
compensator was mounted in a hydraulic power
pack installed in the back of the Beaver passenger
cabin. The electro-hydraulic control system was
operated by the pilot via an overhead control panel.
The actuator servo valves could be commanded by
means of a three-axes side stick controller, by three
trim wheels or by input signals recorded on a
multi-channel FM tape recorder.

7.2 Ground Preparations

Before the actual flight tests a number of activities
have to be performed on the ground. The
instrumentation system must be calibrated and it
must be installed and aligned with the aircraft axes
and finally the aircraft’s weight, center of gravity
and moments of inertia must be determined.

7.2.1 Calibrations

Analysis of the calibrations consisted of fitting
polynomials of degree appropriate to the calibration
data, using regression analysis. For each channel,
this appropriate degree of the polynomial for an
adequate fit to the calibration data was determined
in a rather qualitative way, based on the root mean
square of the residuals. These rms-values are
subsequently taken as a measure of the accuracy of
the channels of the measurement system.

An impression of the accuracy, as defined above,
of some of the transducers (channels) of the
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instrumentation system can be deduced from
figures 7-5(a) through (d). These figures show the
residuals resulting from fitting one polynomial to
several sets of calibration data resulted from
calibrations made at different calender dates. Figure
7-5(a) shows the residuals of four tilting table
calibrations of the longitudinal accelerometer
instrumentation channel. The relative rms-values
(rms divided by the calibrated input range) of these
particular residuals amounted to 0.0023%, which is
equivalent to 0.00046 m/s>. Still lower relative
rms-values, when the polynomials were fitted to
each of the calibration data sets individually. This
clearly indicated a change of characteristics from
the first calibration to the next calibration. Figure
7-5(a) shows that it is in particular the constant
part of the channel outputs which appears to vary
with time. This is quite typical characteristic of
inertial transducers like accelerometers and rate
gyros. This is the basis for the inclusion of
corresponding zero shifls as unknown parameters
in the flight path reconstruction problem.

The residuals of five calibrations of the roll rate
gyro channel are shown in figure 7-5(d). The rms-
value was 0.0035 deg/s. Also in these calibrations,
a variation of the constant part of the channel
output over successive calibrations appeared o
exist. When polynomials were fitted to individual
calibrations, rms-values of approximately 0.0020
deg/s resulted. The instrumentation system used
high quality differential-pressure transducers. In
terms of relative rms-value ol calibration residuals,
they proved to be of the same level of accuracy as
the high quality accelerometers and rate gyro’s
discussed above. This is illustrated by figure
7-5(c), showing the residuals of two calibrations of
the ap, differential pressure channel. The rms-
value of the residuals was 0.6 N/m?.

Figure 7-5 (d) shows the residuals of four
calibrations of p_, the absolule pressure channel.
The rms-value of the residuals was 81 N/m®. This
relatively high rms-value was obviously caused by
deterministic  differences  between  successive
calibrations, due 1o variations with time of the
transducer input-output relationship. Figure 7-5(d)
clearly demonstrates the advantage of multiple
calibrations in the course of a flight test program.
It was possible to fit a calibration polynomial to
each of the calibrations individually and to
determine for each flight the probably best
polynomial by interpolation in time. Examples of

calibration results of other types of transducers,
such as control surface angle, air flow angle,
lemperature and engine rotation rate transducers are
presented by Kranenburg [176].

7.2.2 Measurement of Moments and Products
of Inertia

The total aerodynamic moments acting on the
aircraft cannot be measured directly in flight. They
must be determined indirectly from the equations
of motion. For the case of a rigid aircraft, this
leads to a set of relations for L, M and N as given
in chapter 2. These relations hold for a symmetrical
aircraft for which the products of inertia I, and I,
are equal to zero. It follows, that the angular
accelerations and angular velocities must be
measured and that the moments of inertia I, ly and
I, as well as the product of inertia I,, must be
known. This motivated the design of a rig for the
experimental determination of aircraft moments and
product of inertia, shown in figure 7-7. A detailed
description of the rig has been given by
Kranenburg [175] and De Jong [223].

Depending on the configuration of the rig, the
aircraft could be oscillated about either the
longitudinal, lateral or vertical axis. In the case of
oscillations about the longitudinal and lateral axes
the aircraft mass center was below the axis of
rotation, while for oscillations about the vertical
axes the aircralft was suspended as a bifilar
pendulum. All these oscillations are readily
recognized as being inherently stable. This
eliminated the nced for the application of external
stabilizing springs. The rig was carefully designed
such that mechanical friction would be as small as
possible. This was obtained, among other things,
by the application of high precision knife-edge
bearings. The damping of the roll, pitch and yaw
oscillations about the longitudinal, lateral and
vertical axis respectively proved o be very low.
Evidence for the low damping of these oscillations
is provided by table 7-2, showing typical values of
period and damping ol the roll, pitch and yaw
oscillations respectively.

The virtual absence of mechanical friction was
thought o be essential for accurate moment of
inertia measurements, for the following reasons. In
the first place, weakly damped oscillations allow
ample opportunity o accurately determine period




and damping. In the second place, the absence of
mechanical friction and in particular Coulomb
friction, will permit the use of linear equations of
motion for oscillations with sufficiently small
amplitudes.

The moments and products of inertia can be very
easily calculated from the observed oscillation
periods, but this can also be formulated in terms of
a system parameter estimation problem. At first
sight, this might seem to lead to unnecessary
complications, because the application of e.g.
maximum likelihood estimation as discussed in
Appendix A implies solving a nonlinear
minimization problem. There arise new
possibilities, however, when the rig configuration
is designed to allow more complex oscillations for
instance involving translations as well as rotations
about different axes.

7.3 Flight Test Design and Execution

The design and execution of parameter
identification flight tests require careful planning
and organization. This process has to begin with a
definition of the goals of the flight test program.
These goals can be specitied as to the ditferent
topics to be covered (e.g. aerodynamics, engine,
flight control), to the desired coverage of the flight
envelope and to the desired confidence level of the
results. Next a detailed tlight test plan can be
written, flight test cards can be drawn up and the
flight test program can be executed.

7.3.1 Flight Envelope

As far as the number of topics and the coverage of
the flight envelope are concerned, parameter
identification in general places no special
requirements other than those of other type of
flight tests. Special care is required, however, at
the boundaries of the flight envelope. For instance
during dynamic manoeuvres at low speeds the stall
boundary may easily be crossed. It is also
necessary to take into account that the dynamic
stall boundary usually is at a different angle of
attack than the static stall boundary. Also at high
flight speeds the Mach buffet boundary is usually
very close to the steady-state flight condition. One
result may be that undesired effects are introduced
into the parameter identification due 0 the
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unmodelled effect of stall. An even worse result
may be that the pilot loses control of the aircraft.

The total number of recordings is determined by
the requirements of parameter identification on the
one hand and by budgetary constraints on the other
hand. In the end a compromise between these two
factors has to be found.

7.3.2 Experimental Design

The identification of a complete aerodynamic
model often requires more information than is
present in any single manoeuvre. This can be
solved by combining recordings of different
manoeuvre types during the data processing (multi-
manoeuvre analysis). The intended use of
combined recordings has to be taken into account
during the flight planning. Although it is possible
to correct for the differences in e.g. centre of
gravity or moments of inertias between recordings,
these variations may still introduce a degree of
uncertainly into the analysis. The best approach
may be to execute all manoeuvres which are going
to be combined as closely paced in time as
possible. This does, however, have the operational
disadvantage of forcing the pilot to execute all the
different manoeuvres types in sequence, which is
more difficult than executing all recordings of one
manoeuvre type before starting the next.

The results from parameter identification will
always show a certain scatter due to a number of
effects, such as atmospheric disturbances and
instrumentation errors. The confidence in the
identification results can be improved markedly by
repeating individual manoeuvres or sequences of
manoeuvres. This allows us to obtain experimental
standard deviations of parameter estimates which

may be a much more reliable indication of the
accuracy ol these estimales than theoretical
standard deviations as resulting from the Cramer-
Rao lower bound or the covariance matrix from
regression analysis, see also [2]. The number of
repetitions can be limited to two or three in most
cases, bul il is necessary lo use at least five
repetitions for a few reference conditions and
configurations. The conclusions from the larger
number of repetitions can then be extrapolated to
the other cases. A minimum number of repetitions
for all other cases will ensure that no unique
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effects will be missed, as for example the cross,- 1
of a stall boundary which will show up as;ya
increase the scatter of the parameter estimates.
results of parameter identification can also s ¢
variations from flight to flight or even betweer-, ¢1:
beginning and the end of the same flight. This ;.
be caused by a number of factors such as: ;.
s the accuracy of the calculated centre of gy 4
position, mass or moments of inertia,
e changes in the instrumentation (calibr
shifts, instrument exchange),
s changes in the weather conditions at diff |
altitudes or on different days.
It is very important o schedule extra rc. at
recordings ol a chosen reference configuration und
condition to evaluate these factors. These repeat
recordings should preferably be distributed over the
flights in a quasi-random fashion.

The task of the pilot can be lightened by utilizing
a Stability Augmentation System (SAS) if present.
The SAS can be used o stabilize those axes which
are not excited during the flight tests. One has to
be very careful, however, that the SAS does not
contribute an effective input signal to the excited
axes, because this may introduce correlated inputs
into the system. The result of correlated inputs is
a significant decrease in identifiability.

7.3.3 Test Plan

The total test plan should be approved by the
analysts, the pilots, the flight test engineer and the
flight instrumentation engineer. Subsequently the
test plan has to be divided in parts which can be
executed in one tlight. Careful planning can save
flying time by finding the best sequence of
manoeuvres. These savings are often negated by
the demands of experimental design, however,
because this may require either a more random
sequencing of recordings or the execution of
related tests in a prescribed sequence.

Each of the separate tests should be summarized on
a flight test card. This card should contain all
necessary information to execute the test, but
nothing more. It should at least define initial
conditions, aircraft configuration and input signal.
For manual test inputs a simplificd graph may be
very helpful. The flight test card could also list
hints, warnings, desired final conditions or possible

excursion limits. It can be very useful to have
alternate flight test cards on hand, for example in
the case that the weather or air traffic control
precludes the execution of the original flight plan.

The execution of the flight test plan requires the
full attention of a flight test engineer. He has to
select the items to be covered during a particular
flight, prepare flight test cards, brief the pilots,
conduct the tests during flight and finally document
all the relevant parameters, such as weight, c.g.,
fuel load, etc. All observations made by the pilot
or by the other members of the crew should be
recorded, possibly on audio tape.

7.4 Flight Test Data Processing

The flight test data processing involves more than
just the implementation of the algorithms presented
in the earlier chapters. It involves transcription of
flight tapes, data storage and data management,
calibration, processing, analysis and presentation.
All of these steps are not unique o the processing
of parameter identification flight tests and normally
will already be available in your organization, but
the use for paramelter identification imposes special
requirements with respect to data management,
accuracy and time correlation. This may necessitate
a significant effort 10 upgrade the existing system
or the bold decision to develop a new system from
scratch. In the following subsections the special
requirements for parameter identification will be
discussed for each of the data processing steps.

7.4.1 Data Management

Large amounts of dala are gathered during
parameter identification Qight tests in a variety of
conditions and configurations. The subsequent
processing of the data involves a large number of
steps. The data management requirements are
therefore twofold:

The administration _of the original measured
recordings This should describe of the purpose and
the execution of a recording, together with the
aircraft configuration (flap angle, gear position,
engine setting) the flight condition (altitude,
airspeed). In addition all the reference data needed
for the data processing should be included, such as
aircraft weight and centre of gravity position,




instrumentation settings, etc. The importance of
this administration lies e.g. in the possibility to
select recordings which contain information which
pertain to a specific condition and use these
recordings in a combined (multi-manoeuvre)
analysis.

The administration of intermediate and final results
This should describe the precise meaning of each
calculated variable, such as the program which
created the variable, the date and time of the
calculation and the unique identification of the data
sets on which the calculation depended. In
particular the ability to identify the source of a
final result is essential. This allows e.g. the
reinterpretation of final results in the light of later
changes in data processing parameters or in model
structure used for parameter identification.

7.4.2 Accuracy

Parameter identification and in particular the Two-
Step method places special demands on these
processing steps in lerms of accuracy. As
mentioned earlier it may be necessary to perform
special calibrations before and after a flight test
program. In addition it may be necessary 10 use
more sophisticated calibration procedures, €.g. to
incorporate additional terms in the calibration
formulae. The precise correction lor instrument
sensitivities also demands extra attention. Examples
are the correction of accelerometers for off-axis
sensitivity or the correction of air data for Pressure
Error Correction.

7.4.3 Time Correlation

A time correlation accuracy in the order of
1 millisecond is essential for PI. Numerical
experiments have shown that a shift of a 10 ms in
dynamic measurands may give errors of 50% in
some parameter estimates. In an ideal data
acquisition system all measurands are recorded by
the same measurement chain. In actual practice the
measurands are derived (rom different systems with
different sample rates, filter characteristics and
internal  delays. Very often a special
synchronization signal (e.g. a Time Code) is
recorded by all channels, so that it can be used to
restore the synchronization. The actual restoration
may require very difficult software aigorithms.
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Very often it is necessary to filter and re sample
the data to reduce high-frequency noise in the data.
The use of nonrecursive filter techniques (see
Oppenheim and Schafer [225] or Rabiner and Gold
|[226]) will ensure that no additional time delays
are introduced. Another aspect is that some
calculations in the processing are actually filter
operations (e.g. interpolation, differentiation or
integration). Again il is necessary (o use
formulations that do not introduce a phase
distortion. An example is calculating the numerical
derivative of a signal where the use of a central
difference formula will ensure zero time shift.

7.4.4 Presentation

A good presentation is very important for the easy
interpretation of intermediate as well as final
results. Although tables have their place for precise
documentation, especially graphical presentation
can give enhanced insight, e.g. to highlight trends
in the data. Flexible interactive plotting procedures
are needed here allowing for different plot styles
(e.g. X-Y, T-Y, bar charts, box- and-whisker plots),
line styles and plot symbols. Special care is needed
to label the data clearly and unambiguously and to
identify the plots with date and time. Easy change
of scaling is also required.

7.5 Flight Test Data Quality Evaluation

The quality of the measurement data is defined
here as the degree of absence of all factors that
would detract from its usability for the intended
purpose. It is obvious that this quality will directly
determine the accuracy of the parameter
identification results. Therefore it is of utmost
importance to ensure the data quality before any
attempt at identification is made. In principle the
best time to perform data quality checks is in
dedicated tests before or during the actual flight
tests: in the instrumentation laboratory, on the
flight line and during instrumentation check-out
flights. Accurate determination of each individual
error effect can also be done best in a dedicated
test. These lests are ideally performed with a
computer on-line in the aircraft 1o reduce the loss
of time and the cost of flight tests with inaccurate
measurements.

The evaluation of the data quality from existing
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flight test data, as sometimes the case, is generally
much more difficult. But it is still very important
to do this evaluation for the following reasons:

1. A particular measurement channel may
deteriorate or fail during the course of a flight
test program.

2. A specific error effect may only be present
during actual flight tests, such as static
pressure  distortions in  dynamic flight
conditions. These effects can only be
determined from the flight tests.

Another good reason is the fact that the evaluation
of the data quality also gives a good feel for the
data contents. It gives a first indication of the
actual accuracy of the measurements and it can
clear up misunderstandings in the definition of
measured variables (e.g. sign conventions). Apart
from complete failure, which is often (but not
always!) easy to spot there are a number of errors
that can occur during all stages of the measurement
channel as described in section 7.1.4.

Some examples are:

Sensing The transducer may not sense the desired
quantity directly, for example a static pressure may
be distorted by the flow around the aircraft.

Transducer These could be changes in bias or scale
factor, sensitivity to temperature, vibration or
electromagnetic radiation.

Data acquisition system These could be changes in
the analog components, such as amplifiers, pre-
sample filters and A/D converters, or bit errors in
the recording chain (dropouts) or time shifts and
other phase errors.

Because of the large number of possible error
sources, an intimate knowledge with the
characteristics of the instrumentation system is
absolutely necessary for successful correction of
data errors.

7.5.1 Data Inspection
Visual inspection of data plots is an important first

step in the evaluation of data quality. The
measurements can be scrutinized for obvious errors

such as wrong signs, excessive measurement noise,
data dropouts, spikes and missing (or even
exchanged!) data channels.

In addition frequency domain techniques can be
very useful for data quality evaluation. Examples
are:

1. Time shift of a signal can be determined by
examining the slope of the phase response of
the signal with respect to a reference. This
method is very sensitive, but it is most useful
in ground checks as it may be difficult to find
a suitable reference measurement in flight.
Time domain modelling can also be used to
determine time shift.

2. Initial checks of compatibility between
variables may be quickly performed in the
frequency domain. For instance it can be
verified that /0 has a 1/s frequency response
characteristic. Sign errors are also easily
detected by inspecting the phase response.

3. Coherence functions can be used to ensure that
both input and output signals have low noise
contents and are well correlated with each
other.

4. The noise spectrum can give an indication of
the cormrect functioning of a transducer
(channel). Excessive noise (perhaps in part of
the frequency spectrum) can give an indication
of malfunction in sensing, transducer or data
acquisition. For example discrete frequencies in
a gyroscope signal could indicate a bearing
failure, noise spikes could be a vibration
problem or faulty wiring or connectors. Noise
analysis also gives vital information for the
design of data processing filters, which remove
the measurement noise and allow the sampling
rate to be reduced.

This may also be a good place to wamn for the
effect of pre-sample filtering. If a failing transducer
has high-frequency noise or sudden steps in its
output, the pre-sample filters will transform the
signals in smooth signals, thus masking the
problem. In normal operation pre-sample filters are
essential to prevent aliasing errors, but it may be a
good idea to record the unfiltered signals as an
instrumentation test. Another important point is the




negative effect of phase errors in the analogue
filters on the parameter identification. Some
authors even recommend dispensing with anti-
aliasing filters altogether. If recording techniques
permit it, it is thercfore recommended Lo use the
highest possible sampling rates (and pre-sample
filter bandwidth) and to reduce the sample rate in
the analysis by linear-phase digital filtering in the
ground processing. This has the added advantage of
allowing a more considered choice of sampling rate
in the data analysis.

7.5.2 Compatibility Checking

Any redundancy in the measured variables can be
exploited to verify the data quality. There are a
large number of techniques in use for the purpose
of data quality evaluation.

A simple example is the measurement of a single
variable by two different transducers. If the
transducers are of the same type, then the outputs
of the two measurement channels can be directly
compared to find discrepancies in sensing,
transducer or data acquisition. I the two
transducers use a different measurement principle,
then the comparison is not so straightforward.
However, the characteristic errors will be different.
If these differences are taken into account properly,
comparison of the two transducers can still yield
important information.

In practice it is rare that two redundant transducers
are used, but it is not uncommon to have a
standard aircraft instrument as well as a tlight test
instrumentation sensor. In this case it is strongly
recommended to record the aircraft instrument
output as well. The disadvantage is not so much
the extra data channel to be wired in the aircraft,
but rather the extra effort needed to calibrate and
evaluate the aircraft instrument, which is necessary
to allow its use for data quality checks.

Partially redundant measurements can also be used
in a complementary filter approach, thus making
the best use of all available information. Such a
filter can be designed using the Kalman filter
approach. For example, rate gyro data can be used
for the low frequency range and angular
accelerometer data can be used for the higher
frequency range. However, it is very important that
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undesirable error characteristics of one of the
transducers, such as hysteresis, nonlinearities or
spurious responses, do not destroy the quality of
the overall result.

A special case of compatibility checking is
Kinematic Compatibility checking. Here the
kinematic relationships that exist between the
different measured variables are used. The
procedure can be applied in many forms: from the
simple comparison between two signals to the
complete  six-degree-of-freedom  flight path
reconstruction described in chapter 3. The
procedure is also called Kinematic Consistency
checking or Flight Path Reconstruction. The chosen
name reflects whether the procedure is seen as an
independent check or as an integral part of the
processing.

The set of equations describing the six-degree-of-
freedom kinematic equations were given in
chapter 2. In practice these equations are extended
with terms describing the navigation over a
spherical and rotating earth.

In principle any measurement which depends on
the state vector defined in chapter 3 can appear in
the observation equation, for example air speed or
doppler velocity, pressure or radio altitude, angle
of attack or angle of sideslip, latitude and longitude
from Inertial Navigation Systems, VOR/DME or
the Global Positioning System. The error in the
measurements, whether in the input or in the
observation vector, can be modelled as bias (A),
scale factor error (k), time shift (1) and white,
Gaussian random noisc (n), see for instance
Blackwell and Feik [236]. If this random noise is
not white it may be necessary to augment the state
vector with a model of the noise characteristics.

With modern inertial sensors the measurement
errors are very small. As a consequence the
variations in the wind components during a
recording become the dominant error source. This
makes it possible as well as desirable to estimate
these wind wvariations. The estimation of the
absolute wind components requires the presence of
absolute position or velocity references of
reasonable accuracy, e.g. from an INS, VOR/DME
or GPS. However, it should be noted that in
general only the variations in the wind speed
components are of interest for flight mechanics,
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because constant wind components only affect the
error in the absolute velocities in earth-fixed
coordinates. This means that absolute position
references are not strictly required, although they
can be of great use.

One simple way of modelling the wind variations
that works very well in practice describes the wind
variation as a linear trend in time and as
proportional to altitude. A more sophisticated
description may use a Markov model (see 3.1.4),
but the parameters in such a wind model will
depend on the weather conditions. The estimation
of wind components is an example of the use of
estimation procedures (o reconslruct an unmeasured
state component. Another practical example is the
estimation of the angle of attack in the case that no
direct measurement is available or the direct
measurement is unusable.

It is in general not possible to ideatity the large
number of parameters in the described error
models, because the basic observability and
identifiability theory is applicable here. If too many
error components are included 1he standard
deviations of the estimates increase rapidly and the
correlation coefficients approach one. The degree
of correlation is also dependent on the type of and
shape of the manoeuvre, so it is feasible to perform
specially designed manoeuvres for the purpose of
identifying the error components, but these
manoeuvres will not necessarily be optimal for
parameler identification. It may be more fruitful to
combine several different manoeuvres in a multi-
manoeuvre analysis and then estimale an error
model which is valid for all the recordings (see
section 7.5.3).

As mentioned above, a simple example of
compatibility checking is the comparison of a rate
gyroscope and an attitude gyroscope. The rate
signal can be integrated and compared with the
attitude signal. Error models for each of the two
types of gyroscopes can be defined, e.g. bias and
time shift for the rate gyroscope and linear drift
and time shift for the attitude gyroscope. The
difference between the signals can then be
attributed (o various errors sources and the
parameters of the error model can be estimated
using parameter identification.

Even this simple example already points out a
common problem, i.e. the bias of the rate
gyroscope has exactly the same effect as the linear
drift of the attitude gyroscope and the same is true
for time shifts. This means that the errors in the
different measurements must have different
characteristics in order to be useful for
compatibility checking. If it could be assumed that
the attitude gyroscope has negligible drift and the
rate gyroscope has a negligible (or perhaps known)
time shift, then rate gyro bias and the time shift of
the attitude gyro can be put in the error model and
values for these parameters can be found. But in
general these assumptions are difficultl to make and
need the advice of the instrumentation department.

The bias in the rate gyro will always have the same
effect, a linear increase of the error with time. But
a scale factor error, e.g. in the attitude
measurement, will only be noticeable if larger
excursions are present. Even in the case of large
excursions, the estimate of bias and scale factor
may be highly correlated, e.g. when the attitude
angle happens to increases linearly with time. This
demonstrates the dependence of identifiability on
the manoeuvre shape.

7.5.3 Use of Error Corrections

After all error corrections have been determined as
far as possible, the question remains what to do
with this information. There are two extreme
philosophies:

The identified error components are put in an error
model, which is added to the aerodynamic model.
The parameter identification procedure is then
performed on the combined model, using the
original measured variables as observations.

Finally the instrumentation department should
always be asked to verify the estimated instrument
errors. It may turn out that an error which seems to
have been successfully modelled in one way,
should be actually attributed to an entirely different
error source which happens 1o have the same
effect.

When a large number of manoeuvres are conducted
in a particular flight and in one flight condition,
the error model identified for each of the




manoeuvres should ideally be the same. This
makes good physical sense since the calibration of
the instrumentation will change very littie during
one particular tlight. Failure of a sensor or other
instrumentation components during the f{light
would, of course, be an exception.

This suggests that when a sufficient number of
recordings is available, mean values of the biases
and scale factors should be used as corrections for
the whole flight. Simple statistical analysis can be
performed to establish if the sample is large
enough so that statistically significant values can
be determined. If only some of the estimated error
components are significant, it may be necessary to
reduce the size of the error model until only
significant paramelters remain.

7.5.4 Final Remarks

It can be concluded that data quality evaluation is
a necessary slep in the process leading 1o
successful parameter identification. However, the
final test of the validity of this procedure lies in
the quality of the paramcter identification results.

7.6 Computer Software Development

The cost of developing complex softwire systems
has increased. enormously in the last decades.
Moreover, the resulting programs often are full of
errors and perform miserably. This is the reason
that the discipline of Software Engineering has
generated a tremendous interest. Every few years
completely new approaches are proposed, become
popular and are in turn replaced by newer ideas.
Nevertheless a consensus on general principles
seems to have arrived, the so-called Structured
Analysis [183] and Structured Design [184]
approaches. ‘

This approach states that the software development
process should be divided in a number of strictly
separated stages. In each stage only a limited
number of concerns are addressed:

User _requirements In this stage the user
requirements are spelt out in detail. The most
important point here is that this specification
should be complete, all relevant details should be
included.
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System analysis Based on the detailed specification
the user requirements are analyzed and brought
into a structured form. The use of Computer Aided
Software Engineering (CASE) tools can be of
benefit here. This stage concentrates on what is
needed.

Technical design On the basis of the previous
analysis, the program is designed. This stage
concenlrates on how the problem is solved.

Implementation On the basis of the technical
design the computer program is written.

Testing Using the test data sets defined during the
carlier stages, the program is tested. This stage
should benefit the most from the structured
development approach.

In our opinion the separation between these stages
is a helpful way 10 keep the development process
organized and o prevent mixing solutions into the
problem analysis. However, we think that this
seperation  cannot and should not be rigidly
cnforced. For instance, if the person writing the
user requirements is already considering possible
design solutions, this may prevent the drafting of
requirements, which are impossible to meet. But
then the suggested solutions should not be mixed
with the requirements, but confined to a final
section with recommendations.

A disadvantage of the structured techniques is that
they are based on generating multitudes of abstract
charts, which are very hard to understand for
anybody bul the analysts themselves. The newer
Object-Oriented Analysis and Design techniques
[237,238] promise 0 be much better in this
respect, among others because they concentrate
more useful information into fewer charts.

In principle flight data processing software has no
special distinguishing characteristics with respect o
software engineering. Mosl programs run non real-
time and in a strict input-processing-output
sequence. This is even true for interactive programs
where the user interaction is mostly limited to the
overall control over complete software modules.
However, for Real-Time software implemented in
onboard computers the story is completely
different. Here the possibilities for testing under
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realistic circumstances is limited and structured
approaches, in particular those developed for real-
time use {185], should be of benefit.

The development of processing software for
parameter identification demands a considerable
effort. It may be wiser to buy software off the
shelf. Unfortunately not too much is available.
What is available may not run on the available
computer system. Conversion of software from one
computer to another can also be a major effort
depending on the differences between the
computers. The latter situation is mitigated
somewhat by the general trend towards the use of
graphics work stations running UNIX. Another
trend is the use of X-windows for user interface
and graphics and the use of graphics standards
such as PHIGS.

Even under UNIX not all problems are solved, the
data management systems, graphical libraries and
user interfaces may vary considerably among
systems. There is also some software developed by
institutes and universities, such as MMLE3 or
pEst/GetData/THPlot (NASA), MANS (RAE) and
FTDA (TUD). One should also look seriously at
commercially available software, because this
software may be beller supported.

In the end it may be cost effective to first select
software purely on the basis of requirements and
financial possibilities and then to buy the requisite
hardware to match this software.

7.7 Conclusions

In this chapter several practical aspects of flight
testing were discussed with special emphasis on the
requirements for parameter identification. The
tlight test instrumentation was discussed and the
need for a delailed knowledge of each
measurement channel was shown. The ground
preparations involving the transducer calibrations
and the determination of the moments of inertia
were discussed. The flight test design and
execution are very important to the success of a
flight test program. Several aspects of the fight
test data processing were discussed such as data
management and graphical presentation, while
accuracy and time correlation were emphasized.
The evaluation of the quality of the flight test data
is a necessary step to gain confidence in the results

derived from this data. Finally the systematic
development of the data processing software is
important to insure reliable results.




157

‘s4aonpsuvd) Suipuodsaiiod pup sa|qUIDa pansvIul Jo 1517 i1-L 21qEL

01 (D,) 0€ <« 0f JuaLINISUL 1jRIDIER sinjesadway Joreinqies | YL 97
01 (GUA-N) 06 <« 0 VSOL Sury juawdinbg Fuunseajy odueisid | INA 4
01 (Jequ) 0501 < 00S Sp1 uoneieg SHIW ainssaid oness d 04
01 (1equ) QQET <  00S Gyl uoneieg SHW ainssaid plojiuew auigua X €7
01 (tequ) 0 <« 0 Gyl uoneieg SN ainssaid yoedun b e
0l (Jequ) 0 <«  0¢- Sp1 uonereg SN amssald dneIs ul uoleUeA ldv 1Z
01 (tequ) 0 <« 0 cp1 uoneieg SYW | ostp saiadoad puryaq ainssaid [e10) U1 asealOUl 'dv 0z
01 (o) 0 <«  0f AN o|3ue suea-g 'd 61
0] (L) 0og < 0Ol 1Lnd o]3ue sueA-D ‘0 81
01 () 81 <« 8I- 1aj9wonuajod 1eaul| suinog o[Sue wy 19ppni ) Ll
1] () 92z < 8I- 19pwonuajod 1esul] swinog a|Sue Wy 101BAD[D .u_m 91
01 (L) 88 <« 0 1a12wonuajod 1eaul] DID o|3ue depy Suim pieoqieis i) ST
o1 (,)) 88 < 0 1yeuwonuaiod Ieaul] DO a15ue depy Suim pod o I
0z (,) sz <« sz 1eyswonuajod 1eaut] DD a13ue 1appni o) [
0z (,b) €€ < LI- 191pwonuatod 1eaul| DD a[3ue depj uoid[ie pIROQIEIS 9 71
0z () €€ <« LI- 1aawonuajod reaul| DID [3ue uosaqie pod :@ Il
0z () €z <= 8 11pwonuajod 1eaut] DO a1Sue 101BA3[D Q 01
01 (H,) 0g <« 0g ZOT unowasoy aimesadway (B0 'L 6
01 (wdr) povz <  00S J29[g [eJoUdD paads ouiBua u Q
0z () 09 <= 0 uksie] Auadsg a1Sue mek th s
0z (s/,) 0T < 0Z- g.809 [[PmAauoy ajes mek 1 9
0z (s/,) 0T <« 0T 4,809 [omAauoy aes youd b S
0T (s/,) 0T < 0T g.8D9 [[PmAauoy atel [[ol d 12
0z (Sw) 0z < 0 Xa[4-0 PUBNSpUNS/QIEy JouuoQg sixe-Z Juo[e a010j d1j1oads B/ €
0z (;Su) ¢ — G- 0IEP 1ouuoqg sixe- A Juoje 2010) dyy1oads v z
-— sixe-y Juo[e 9010] d1j10ads v I

018 Jouuog




158

about longitudinal axis 3.92 0.0083 52 13
about lateral axis 4.19 0.0040 116 28
about vertical axis 7.51 0.0040 207 28

Table 7-2: Typical values of period (P), damping ratio (g), and time and number of
periods to damp to one half of the initial amplitude '( T,, and .C 12 of the thr;ee different
types of oscillation of the 'Beaver’ DHC-2 experimental aircraft in the rig for the
measurement of aircraft moments and products of inertia.
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Figure 7-3: [Inertial measurement system consisting of
three accelerometers and three rate gyros.

Figure 7-4: Temperature controlled box containing
one absolute and four differential pressure transducers.
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Figure 7-6:
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Figure 7-7: Rig for the measurement of aircraft moments and products of inertia.




164

8 CONCLUDING REMARKS

This volume is brought out as a sequel lo the two
carlier volumes already published in the AGARD
Flight Test Technique Serics, volume 2 on
‘Identification of Dynamic Systems' and volume 3
on ‘Ildentification of Dynamic  Systems -
Applications to Aircraft Part - 1: The output error
approach’ both written by R.E. Maine and K.W.
1liff. The present part 2 of volume 3 has examined
in some detail the practical application of the Two
Step Method for estimating aircraft acrodynamic
model parameters from flight test data and has
discussed in some detail the practical aspects of
control input design for estimation of stability and
control derivatives. Two different DUT approaches
for control input optimization were presented.

The identification ol acrodynamic models from
measurements of dynamic light test manoeuvres
requires the solution ol a sequence ol nonlinear
state-parameter estimation problems in which a set
of aerodynamic model structures is tested with
respect to model fit and parameter identifiability. If
accurate measurements are made of  specific
acrodynamic forces (outputs of accelerometers) and
angular rates, the parameler-state  estimation
problem may then be decomposed into two parts
L.e. a slate reconstruction problem, called ight
path reconstruction and a parameler estimation
problem which is linear-in-the-paramelters.

It was noted that since the system and observation
models of the flight path reconstruction problem
are known in much detail, it is not necessary Lo
evaluate different model structures, and the flight
path reconstruction problem nceds only to be
solved once for each flight test manocuvre. This
means that the identification ol acrodynamic
models is considerably simplificd because lincar in
the parameter estimation problems are much casier
to solve than nonlinear state-parameter estimation
problems.

In the linear case the flight path reconstruction
problem (a nonlinear state estimation problem if
based on nonlinear equations ol motion) separates
into two independent linear state eslimation
problems of the longitudinal and  lateral
components ol the state vectlor respectively. The
linearity ol these estimation problems can be

exploited in a reconstructibility analysis. The
results of such an analysis may be used to compare
different observation model configurations with
respect to the dimension and character of the
reconstructible subspace of the slate space.

Nonlinear system and observation models are used
for actual flight path reconstructions of the
dynamic flight test manoecuvres executed in the
course of a flight test program. Well-known
extended Kalman filtering and  smoothing
algorithms can  be successfully applied. The
selection of the variables to be reconstructed as
components of an augmented state vector was
made  using  the  results ol the  linear
reconstructibility — analysis  for  the  chosen
observation configuration,

After the flight path reconstruction, it has been
shown that the acrodynamic model identification
can be lormulated in terms of a linear least squares
problem. This permits the application of powerful
numerical techniques for the calculation of
parameter estimates. The resulting algorithms turn
oul to be very computer time cfficient, which paves
the way for the development of an interactive
identification computer program. Combined with
extensive computer graphics facilities, this program
allows the analyst to rapidly evaluate alternative
model structures on a lew sclecled measurements.
Also the possibility exists o combine measurement
data from several different flight test manoeuvres
lor the purpose of aerodynamic  model
identification.

Analogous o the reconstructibility analysis of the
(light path reconstruction problem we have
discussed that it is possible to analyze the
identifiability of  the stability and  control
derivatives, i.e. the parameters in the linearized
aerodynamic models. We have shown that not all
longitudinal stability and control derivatives were
identifiable if the nominal flight condition was
straight horizontal flight. On the other hand, all
lateral stability and control derivatives were shown
lo be identiliable if the flight test manoeuvre is
executed  such  that  independent  roll angle
exeursions oceur.



Since the parameter estimation problem of the
second step of the analysis was linear-in-the-
parameters it is possible to develop aerodynamic
models stepwise via residual analysis. In each step
the best of a set of candidate model extensions was
selected. The problem was to decide how many
model extensions should be included in the model.
To this end a new criterion was proposed based on
the theoretical accuracy of a predicted model
output and its actual deviations from a second
independent set of measurements.

We have then turned our attention to a most
important aspect of flight test technique namely,
the optimal input design. We have discussed that
the accuracy of aerodynamic model parameters
estimated from measurements of dynamic flight
test manoeuvres depends, among other things, on
the control input signals, i.e. the shape of the
control input time histories. This mecans that
different control input signals result in different
parameter estimation accuracies. In order o express
the theoretical performance of control input signals
with respect to parameter eslimation accuracy
several performance indices can be based on the
theoretical covariance matrix of parameter
estimation errors (the Cramer-Rao Lower Bound).
It follows that control inpul signals may be
optimized with respect to each one of these
performance indices.

Two new techniques were presented with which
such optimizations may be carried out. The first
technique is based on the representation of multi-
dimensional control input signals in terms of a
finite number of orthonormal functions. The second
technique is based on the application of convex
analysis in frequency domain for the optimization
of input signals. We have shown that when energy
constraints were imposed on the control inputs,
constrained optimization problems which are
generally difficult to solve can be transformed into
an unconstrained optimization problem. This makes
the optimization problem easier to solve.

Next we have pointed out that the optimization of
only if

control input signals is meaningful
theoretical performance indices are adequate
predictions of corresponding actual or sample
performance indices. While theoretical performance
indices are based on the CRLB, actual performance
indices must be judged on sample covariance
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matrices.

In order to determine sample covariance matrices
of parameler estimation errors corresponding to
particular types of control input signals, an
automatic (open loop) flight control system was
installed in the De Havilland DHC-2 Beaver
aircraft to allow precise repetition of control input
signal in a series of (almost) identical manoeuvres.
As an important result from the described flight
test program it was observed that in relative, rather
than in absolute terms, theoretical performance
indices were adequate predictions of sample
performance indices. This result is the experimental
foundation for the application of control input
signal optimization techniques.

In the present part 2 of volume 3 of the AGARD
Flight Test Techmiques Series we have also
discussed in some depth, the aspects of
instrumentation, flight test design and execution,
the data processing and data quality evaluation
which are all very important, and which will be
present in all flight test programs for aircraft
parameter identification irrespective of which
methods are 1o be used for the identification of the
aerodynamic model paramelers.
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A BRIEF SUMMARY OF MAXIMUM

LIKELIHOOD ESTIMATION THEORY

In this appendix a brief overview will be presented
of Maximum Likelihood estimation theory and its
application to the solution for the parameter-state
estimation problem of dynamical systems. The
concepts as presented here are referred to in
chapter 3 to 5.

A summary of general properties of maximum
likelihood estimates is presented in section A.1; see
Eykhoff [76] or Nahi [53]. In sections A.2 and A.3
the theory is applied to the solution of the
parameter-state estimation problem of nonlinear
and linear syslems respectively.

A.1 General Properties of Maximum Likelihood
Estimates

The joint conditional probability density function
of a set of N random vectors y, (i), i = 1(1) N, can
be writlen as:

p(lm(l) ,lm(Z) > ’lm(N) | g) ’ (A1)
where 8 denotes the parameter vector of the
conditional probability density function.

When sample values of y, (i), i=1(1)N, are
substituted (A.1-1) is called the likelihood function
L(6). Then a parameler eslimate O may be
calculated by maximizing (A.1-1) with respect to
0. When the absolute or global maximum of the
likelihood function is reached, the resulling
estimate is called the Maximum Likelihood (ML)
estimate By, of 8. Instead of maximizing L(8) it is
common practice o maximize In L(8) instead,
usually resulting in an optimization problem which
is easier to solve. Since the logarithm is a
monotonic function this leads to the same value of
O

The necessary conditions for a maximum lead to
the following set of so-called likelihood equations:

dln L(0)

=0. (A.1-2)
a0 -

8=0\L

These equations correspond 10 the normal
equations of linear regression theory. Maximum
likelihood estimates have the following attractive

properties:
i) ML estimates are asymptotically unbiased,

lim E{éML} =0 (A.1-3)

N -+ « -

ii) ML estimates are asymptotically efficient,

im E([0, -9] [ -]} = Cuu A1

N — o

in which Cy, denotes a symmetrical semi
positive definite matrix. This matrix is called
the Cramer-Rao Lower Bound (CRLB).

iii) ML estimates are consistent; see Eykhoff [76].

Eq. (A.1-4) shows that the covariance matrix of a
ML estimate is the best of all conceivable estimaltes
for large sample sizes.

For unbiased estimates the CRLB is:

=M A.1-5
Coo = My > (A.1-5)
where My, is the Fisher information matrix which
can be wrillen in two equivalent forms according
to:

dlnl(0) dlnL(B)
a0 907

(A.1-6)

#*In L(0)
20007

where the conditional expectation is taken over the
sample space of y (i), i=1(1) N. Mgy is
symmetrical and positive semi definite. The
importance of the Fisher-information matrix in
estimation theory stems from the fact that its
inverse yields a lower bound, i.c. a maximally
achievable accuracy for any conceivable type of
estimate of 8.

In the literature on estimation theory the notion
‘identifiability” of a parameter vector 8 is defined
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in several ways. Here ‘identifiability” is related
directly to the rank of the information matrix as
follows:

The parameter vector 8 is identifiable from the set
of measurements y, (i), i=1(1)N, if and only if My,
is positive definite for any 8 in a neighbourhood of
8,y in parameter space.

A.2 Continuous Time Nonlinear Systems

Let x(t) be the n dimensional state vector and u(t)
the s dimensional input vector of the following
nonlinear system:

X = {0, %0, u(0) , (A2-1)

with initial condition:
x(0) = x,

where f denotes a nonlinear vector function, and 8
an r dimensional system parameter vector.

It is assumed that u(t) is known for t€[t,t,]. AUN
uniformly spaced time instants (E€]t,l,], i=1(1)N,
the m-dimensional system output is sampled
according 1o the following model ":
¥() = b(8,x(@), u@®) .
Y, =y +v@.
where v(i) represents an additive gaussian
measurement error with the following statistics:
E{v()}

E{v@v'()} =V, 8

(A2-2)

0
= (A2-3)

for i,j =1(1)N and in which V_, denotes the
covariance matrix of v(i). It is assumed that for any
X,ER" and B€R", Eq. (A.2-1) possesses a unique
solution, indicated as x(t) and y(t), €[]

At one particular sample time instant  the
conditional probability density function of y, (i) is:

p(xnl(i) |9-’50 » vVV) = (zn)-l/:“) (del VVV)-I/2 x

exp {% (2,0 - Y0 " V2 (1,0 -x0)] } -

" Note that x(i), y(i), etc. are simplified notations
for x(t;), ¥()-

Because of (A.2-3) the joint probability function of
Y(1)Y(2)s-. Y m(N) is the product of the marginal
probability density functions. The logarithm of the
likelihood function can then be written as:
In L(O,x ,V ) =-!Nm In(2n) - E Indet(V, )
-’20 vv ) 2 v
‘IN 3 =vi v N
72 (2,0 -xO] Vo [1,0 -xO] -
(A.2-4)
For a given set of observation measurements, the
arguments of the likelihood function are the
elements of 6, x;, and V. It will be convenient to
take the elements of V!, rather than the elements
of V,,, as arguments of the likelihood function.
This means that the logarithm of the likelihood
function will be writien below as:

In L(gig , Vv_v]) .

According to (A.1-2), the necessary condition for
the logarithm of the likelihood function to have a
maximum value is that all first order partial
derivatives with respect to its arguments are equal
to zero. Analytical expressions {or these derivatives
of the log likelihood function with respect to its
arguments are equal to zero. Analytical expressions
for these derivatives of the log likelihood function
with respect to 8, x,, and V_, can be obtained from
(A.2-4) by applying the rules for ditferentiation
with respect to vectlors and matrices as given in
Deskins [186]. The resuits are as follows:

-1
E)lnL(Q,zO,VW) N ay ()

-y

Vol [£,0 0]

99 ]
(A2-5a)
(')lnL(B,x ,Vv_vl) N o T
— -y 20 FROROI R
aéo =1 d-).(.o m

(A.2-5b)

N

] 4

=1

(A.2-5¢)

2 2 [1,0 -30)] [1,0 -x0] "




The so called likelihood equations for 8, x, and
V., result when each of these derivatives is set
equal to zero. The maximum likelihood estimates
Omis Koy, and (V' satisty the likelihood
equations.

It is possible to interpret 8, x,, and the elements of
VW‘l as components ol an ‘augmented’ parameter
vector 8, according to:

-1
vv]nn
Yy

<
1

T -1 -1
= col(07, 1T 1Vl Vil ooV

it

col(gT , )_(OT ,ﬂT) ,

in which n contains the upper or lower triangular
elements of V!, The Fisher information matrix as
defined in (A.1-6) may now be partitioned as:

MOO 0x, (U]
....... H §o cemmes
A2-6
MBO = M"ue XoXo X" ( )
a a
....... R H “
Mv]O i Mv]xn i Mlm

Using either the first or the second definition of the
information matrix in (A-6) it is possible © show
that the individual blocks in (A-12) can be wrillen
as:

N 2. Ty .
My, = ML =3 LD o O

- » (A2-7a)
°0 =Y 20"
N . T o
T ay (i) ., -1 9y(i)
Mg, = My = Z} = Vo, o (A2TY)
i= X
T e
MO!] = MnO =0 ’ (A.Z 7L)
M -MmT = =y () v ay(i)
Xg%p - XoXp - X—: - vv T (A.2-7d)
i=l d50 050
M =M' =0 (A2-Tc)
Xgn NXg

Let the elements n, and n; of n correspond to the
elements [V, '], and [V . of V!
respectively. The element {M

amyj ©f M, may then
be written as:
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N
IMvm]hj = T(Vkmvln + vknvlm) (A2-7f)
in which v, Viw Vin €0 Vi denote the elements
[lekm’ |VW]ln’ [Vw]kn and [Vw]lm respecuvely of
the covariance matrix V_, of observation
measurement errors.

With (A.2-7c¢) and (A.2-7¢) the CRLB can be
written as:

Mgg MOxO o Ow
“ W e | e
Coo, = | | (A2-8)
xg0 X% ) ..
0 o} M,
L

According to (A.1-4), the variance matrix of ML
estimation errors approaches asympiotically the
CRLB. Eq. (A.2-8) shows that in addition to the
estimation errors of the elements of V' are
asymptotically uncorrelated with the estimation
errors of 8 and x,. I [(8,x(1),u(1)) and h(B,x(t),u(1))
are continuously differentiable with respect to 8
and x(1), the partial derivatives 9y(i)/08" and
dy(1)/ox, in (A.2-7) can be tound by solving the
following set of differential equations, the so-called
sensitivity equations; see Nahi [53]:

a 0x0) _ 95(8,x0,50) ax0)
di g7 ox') 90"
, 310,50, u) A29)
097
d ox( _ 9f(8,x(m,u®) ox()
degxT ax (1) oxT

with initial conditions:
dx(0)
967
ax(0)

=
9%

The sensitivity equations (A.2-9) can be derived by
partially differentiating both sides of the syslem
differential equation in (A.2-1). Subsequently, the
order of differentiation in the left hand side of the
equation with respect to 8 or x,, and ( respectively,
is reversed, for which it must be assumed that x is
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analytic; see Arfken [171].
Next, partial differentiation of the observation
equations in (A.2-2) leads to:

ay() _ ah(8,x(),u(®)) ax(@)
20T ax (i) 207
. Oh(e x(i), u(:)) (A2-10)
297
dy() _ ah(8,x(),u()) ox()
axT ax (i) axT

It is noticed here that the partial derivatives
ax(i)/08", ax(i)axs, dy(i)a8" and ay(i)ax; depend
all on the input signal u(t), (€[t ].

According to (A.2-7), Myy, My, and M, , are
composed of the latter two derivatives at the
sampling times t.. This means that the CRLB for
QML and X, depends on the system input signal
u(t) in [ty,t;]. On the other hand the CRLB for the
elements of VW'1 depends only on the number of
samples taken, and cannot be influenced by u(t).
This property of the CRLB may readily be deduced
from (A.2-8) and (A.2-7f).

A.3 Continuous Time Linear Systems

As shown in the previous section, the calculation
of the information matrix of nonlinear systems
requires the solution of nonlinear sensitivity
equations. In the case of linear systems, these
sensitivity equations reduce to linear equations.
Let the deterministic linear and constant system:

Q) = (A3-1)

with initial condition:
X(tg) = X,

be observed at discrete instants of time according
to the following observation model:

y(@ = H(Q) x() + I(® -u@) ,
Y@ =y@ + v,

m

F(9)-x(1) + G(0) u() ,

(A3-2)

in which v(i) represents again an additive gaussian
measurement error (A.2-3). The parameter vector
8 contains the unknown clements of the matrices F,
G, H and J. The Fisher information matrix and
CRLB for 8, x, and V., ' of constant linear

systems are identical to the expressions given in
(A.2-6) and (A.2-8) for the case of nonlinear
systems. The sensitivity equations of linear
systems, however, are readily seen to be also
linear. Furthermore, if the system and observation
models in (A.3-1) and (A.3-2) are constant, i.e. F,
G, H and J do not depend on time, then the

sensitivity equations are also constant. The
sensitivity equations may be wrilten as:
d ax(y) ax(1) aF(G)
——— =F(6 +
dt 99, TN 69 69 0
aG(8
, 269 u(t) | (A3-3)
90 i
ax(t ax(t
220 g 220
L oax, X,
for j=1(1)r and with initial conditions:
dx(0
O Lo,
00T
0xO) _
o

The solution of (A.3-3) is used (o calculate the

derivatives ol y with respect to 8 and x, according
to:
dy(i I x(i oH(6
¥() - H(0)- x(i) , 9H(8) x(i) +
a0, - 96 a0, ~
J J ]
a1(0
- ( ) iy | (A3-4)
J
ay(i d
x(}r) - H(0)- X(l)
‘)l(o E)x

for j=1(1)r.

It is worth noting that in case 8 is known, the
estimation problem reduces to a state estimation
problem. The corresponding CRLB is:

Mx-l‘ 5 O
0%

C = ceseneee W seecwss (A.3'5)

. -1
0 : M‘l‘l
According to chapter 3, M, yx, as full rank if and
only if the system (A.3-1) is reconstructible.
The information matrix of the state vector x(i) at
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time tE€[t,t;] can be wrilten analogously to
(A.2-7d):

i N OayTG) - ay() A3-6
Mx(i)x(i) - lz=l: aé(,) Vvv az(_T(l) . ( . )

It is possible to express the information matrix
M, gy in terms of the information matrix of the
initial state x,, M, .

The matrix of partial derivatives dy(i)/dx"(i) can be

written as:
oy@) _ oy % _ ay() [axG) !
axT) oxl ax"G) oxl |oxT |

in which the matrix ol partial derivatives (’)ﬁ(i)/(')_)_(_'(l).
' may be computed with the sensitivily equations
(A.3-3). Substitution of (')y_(i)/alT above in the

information matrix M., results in:

-1

N T T . o\ -1
ax'()y [ oy () ., -1 9y() [ax(@i)
M) =21:[ 5% TR axT | ax’
) o= =0 =0 -0 =0
_[ax") | M. 05(? B
9, O ox (A3-7)

From (A.3-3) and (A.3-4) it follows that partial
derivatives of y(i) with respect to x, are
independent of u(t). This means that the ML state
reconstruction accuracy as expressed in terms of
the CRLB Mx(i)x(i)" is also independent of the time
history of the input signal, see (A.3-6).

However, if one or more of the system and
observation model parameters must be estimated
simultaneously with the reconstruction of the state,
the system state reconstruction accuracy is no
longer independent of u(t). This phenomenon is
caused by the fact that the parameter and initial
state estimation errors are in principle not
uncorrelated i.e.:

N T(; ;
M, =3 2L ® vy 240 o

0 o T

i=1 ag 0_)50
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APPENDIX B - CALCULATION OF RECONSTRUCTIBILITY
MATRICES Q; FOR THE OBSERVATIONS yi OF THE
LONGITUDINAL AND LATERAL LINEAR FLIGHT PATH
RECONSTRUCTION PROBLEM

In this appendix, the reconstructibility matrices Q; of the longitudinal and lateral linear flight path
reconstruction problem will be derived for the case of a non-horizontal stationary rectilinear nominal flight
condition, y, 0.

B.1 Reconstructibility Matrices of the Longitudinal Flight Path Reconstruction Problem

From (4.1-21) and (4.1-22) it follows that the linear system matrix F of the longitudinal flight path
reconstruction model consists of the following elements:

0 0 -geosy, 0 0 1 0 0 0 0
0 0 -Lsiy, 0 0 0 L 1 0 o
Vo Vo
0 0 0 0O 0 0 o0 1 0 O
cosy, Vgsiny, -Vgsiny, 0 0 0 0 0 1 0
F = |=siny, Vjycosy, -Vycosy, 0 0 0 0 0 0 1|, (B.1-1)
0 0 0 0 0 0 O o0 o0 0
0 0 0 O 0 o0 o 0 0 o0
0 0 0 g 0 O 0 0 0 O
0 0 0 0O 0 0 0 0 0 o
I 0 0 0 6 0 0 O 0 0 o |
It is easily verified that:
[0 0 0 0 0 o 0 -gcosy, 0 O]
00 0 0 0 0 0 -Viosinyo 0 0
0 0 0 0 o0 0 0 0 0 0
0 0 -g 0 0 cosy, siny, 0 0 0
F2 =10 0 0 0 0 -siny, cosy, 0 0 0}, (B.1-2)
0 0 0 0 O 0 0 0 0 O
0 0 0 o0 O 0 0 0 0 0
0O 0 0 0 o 0 0 0 0 o
0O 0 0 0 O 0 0 0 0 0
i 0O 0 0 0 0 0 0 0 0 ¢ |

and:
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[0 0 0 0 0o 0 o 0 0]
0O 0 0 0 0 0 o0 0 0
6 0 o O O O O o0 o0 O
6 0 o o O O O -g O O
03 0 0 0 0 0 0 0 0 0 O (B.1-3)
0 0 0 6 0 0 0 0 0 0]
o 0 0 o0 0 O O 0 o0 0
o o 0o 0 0 0 0o O 0 O
O 0 o o O O O O 0 o0
LO ¢ 0 0 o O O O O0 O ]
while fourth and higher powers of F vanish.
The observation matrix H follows from (4.1-23) and (4.1-24) as:
0 0O 0 o0
0 C, 0 0 0
H i (B.1-4)
0 o 0 0 0
0 O 0 1 0 0 0
With (4.1-25) this leads to the reconstructibility matrices (only the non-empty rows are shown):
1T 0 0 6 0 0 O 0
Q 0 0 -gcosy, 0 0 1 O 0 , (B.1-5)
0 0 0 0 0 0 0 -geosy, 0 O
[0 C, 0 6 0 O 0 0 0 0 w
1
0 0 -BC oy, 0 0 0 _LcC C 0 0
Q2 "—0 ay 0 v(). [<3] «) , (B1-6)
0 0 0 0 0 0o 0o -Ec sy 0 0
| 0
[0 0 0 1 0 0 0 0 0
V,si -V,si 0 o0 0 0 1 0
o, cosy, Vgysiny, oSNy, ’ (B.1-7)
) 0 0 -g 0 0 cosy, sinyy, 0 0 0
| 0 0 0 0 0 0 0 -g 0 O
and:
0 0 0 0 1 0
Q, = -siny, V cosy, -V cosy, 0 0 0 (B.1-8)
0 0 0 0 0 -siny, cosy, O
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B.2 Reconstructibility Matrices of the Lateral Flight Path Reconstruction Problem

From (4.1-27) and (4.1-28) it follows that the lincar system matrix F of the lateral flight path
reconstruction model consists of the following elements:

{ 0 0 ..ig_cosyo 0 L 0 -1 0 0
VO VO
0o 0 O 0 0 0 ' o o0
cosy,
0 0 0 0 0 1 tny, 0 O
F = |V, Vjooy, 0 0 0 0 0 0 1 (B2-1)
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
| 0 0 0 6 0 0o 0 0 0]
It is easily verified that:
0 0 0 0 0 vg;c()syo viosinyo 0 0 )
0 0 0 0 0 0 0 0 0 )
0 0 0 0 0 0 0 0 0
F2 - 0 0 geosy, 0 1 0 0 0 0 ’ (B.2-2)
0 O 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 |
0 0 0 0 0 0 0 0 |
[0 0 0 0 0 0 0 0|
and:
0 0 0 0 0 0 0 0 0]
0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0
0 0 0 0 0 gcosy, gsiny, 0 O
F*=10 0 0o 0 0 0 0o 0 0], (B.2-3)
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 O 0 0 0 0
6 0 0 0 O 0 0 0 0]

while fourth and higher powers of F vanish.

The observation matrix H follows from (4.1-29) and (4.1-30) as:
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CBl 6 o o o0 0 0 1 O
0 0 1 0
With (4.1-25) this leads to the reconstructibility matrices (only the non-empty rows are shown):
[Cs, 0 0 0 0 0 0 1 0]
1
0 0 Bcycosy, 0 _.C 0 -C 0 0
Ql - VO By Yo VO By By , (B.2-5)
0 0 0 0 0 Ec COSY, :Ne siny, 0 0
V() ﬁl VO B]
0 1 0 0 0 O 0 0 O
) (B.2-6)
% =10 0 0 0 0 0o 1 0o of
cosY,
L
and:
0 0 0 1 0 0 0 0 0
V., cos
o - Vy Vgeosy, 0 0 0 0 0 0 1 (B.2-7)
3 0 0 geosy, 0 1 0 0 0 0|’
0 0 0 0 0 gcosy, gsiny, 0 O
L E

B.3 Reconstructible Subspaces

A (non-unique) basis Uy, for the reconstructible subspace corresponding to the observation y, can be
formed out of the independent rows in Q;. The results, in terms of components of in are, tor yy=0 listed
in table 3-1 and table 3-3 for the longitudinal and lateral lincar flight path problem respectively.
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APPENDIX C -
RECONSTRUCTION

In this appendix more details are given on the
algorithms discussed in chapter 3. In section C.1
the Kalman filter and smoother is applied to a
system model which is linearized around a nominal
steady condition. In section C.2 the Extended
Kalman filter and smoother is applied to a
nonlinear system model. Finally in section C.3 the
Maximum Likelihood estimation is applied to a
deterministic nonlinear system model.

For more details on the algorithms the reader is
referred to |71 and 76].

C.1 Kalman Filter/Smoother Applied to a
Linear System Model

In this section the kinematical model described by
(3.1-4) and (3.1-5) is linearized around a nominal
steady flight condition. The linearized kinematical
model can be wrilten as:

x()
¥®
y () = y@) + v()

m

Fx) + Gu (1) + G, w(b)
(C.1-1)

Hx() +Ju ()

In these equations x, y, and u, are actually
replaced by their deviations from the constant
nominal values. F, G, G, H and J are the partial
vector derivatives of f(x,u, ,w) and h(x,u,) with
respect to X, v, and w.

The system model may next be discretized as:
x(i+1) =@x@) + Ty (i) + T, w()
Y, = Hx@) +Ju () + v()

In which the transition matrix @, the deterministic
input distribution matrix I, and the stochastic input
distribution matrix I are calculated with:

(C.1-2)

<P

Q
1+Y L Faacs

q=1 q'
S
r, =1+ FiAL9| G At (C.1-3)
q=1 ((]"'1)'
N
r, =[1+Y F9A19] G, AL
o=1 (@+1)!

ALGORITHMS FOR FLIGHT PATH

where Q is chosen to be sufficiently large to
guarantee the accuracy of the calculation.

Assumptions
1) The process and measurement noises are zero
mean and white with:

Elwi)} =0, E{wOw'®) = Vi,
E{v@d} =0, E{v)ry'®} =V...
E{wi)v'()} =0.

(C.1-4)

2) The initial slate vector X, is a random variable
vector and w(i) and v(i) are assumed to be
uncorrelated with x,:

E{x,w'()} = E{wix/} =0,

E{x,v'()} =E{v()x,} =0.

(C.1-5)

The Kalman filter provides a way of estimating the
state x(i) of the model (C.1-2). The filter has the
following two interpretations.

1) If the process and measurement noises are
Gaussian, the filter gives the minimum
variance estimate of the state. That is, it
evaluates the conditional mean of x(k) given
the past measured data {y, (i-1), y,(i-2),...};
see Sage and Melsa [71].

2) If the Gaussian assumption is removed, the
filter gives the linear minimum variance
estimate of the state [71] (i.e., having the
smallest unconditional error covariance among
all linear estimates), but this will not, in
general, be the conditional mean.

The Katman filter has the following results; see
[71]:




i) The one-stage prediction algorithm:

X(i+1]i) = Px(il) « I yu (1) (C.1-6)
x(0[0) = E{x,}

ii) The prediction error covariance matrix
algorithm:

Pi+1]i) = ®PGi[)®T + TV, L

W wwTw

POI0) = E[x, ~x010)][5, ~x010)]"}

(C.1-7)
iti) The Kalman gain algorithm:

K(i+1) = PG+1[)H T [HPG+1[)H T + v,.]”

(C.1-8)

iv) The measurement update algorithm:

;(i+1|i+1) = ;(i+1|i) + K(i+1) x
[lm(m) - Hx(i+1]i) —ng(m)]
(C.1:9)

v) The posteriori covariance matrix algorithm:

P(i+1]i+1) = [I - K(i+1)H] P(i+1]i)
= [1 - K@i+1)H] Pi+1]i) [1 - KG+1H]" +
+ K@G+1)V, K T(i+1)
(C.1-10)
The second formula of Eq. (C.1-10) is
considered to be numerically more robust than
the first one as it cannot result in a non-
symmetric covariance matrix; see Bryson and
Ho [233].

Once the Kalman filtering is performed, the
Kalman smoother may be applied backwards in
time to smooth the estimated state trajectory and 1o
find the initial conditions of the system stale
equation.

189

The‘so-called fixed interval Kalman smoother can
be written in the following form [71]:

lfs(i) )

X(IN) = x(i]) + K(i) [xG+1IN) = x(i+1]i)]

P(i|N) = PGili) + KG) [PG+1|N) - PGi+1[i)] K ()"
(C.1-11)

P(i [i))®TP(i+1]i)™!

C.2 Extended Kalman Filter/Smoother Applied
to a Nonlinear System Model

Current practice is to use the complete nonlinear
kinematical system model of chapter 3 for
nonlinear flight path reconstruction. The model can
be written in the following general form:

0 = 1(x0,u,0),w0)
yo = H(_)g(l),u (l)) (C2-1)

-m

¥, =x@) + v

where x(t) is an augmented slate vector with the
unknown paramcters as augmented stale variables.

The discrete form of the extended Kalman filter is
applied to estimate the stale variables of this
nonlinear system with the same assumptions as
given in section C.1, see also [71].

i) The one-stage prediction algorithm:

Gl

xGi+1]i) = (i) + J i@ .0 @) ¢ (o)

£(0 |0)

E{x,}

where u’(t) denotes a linear or higher order
interpolation between u, (i) and u, (i+1).

ii) The one-stage prediction covariance matrix
algorithm:

P(i+11i) = d(i+1,i)PGEl)d(i+1,0) +
o o (C.2-3)
+ L +1,0)V, T, +1i)

POI0) = Ed[x, - X010)][x, - x010)]")
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in which the linearized transition matrix

®(i+1,i) is calculated from:

Q
D(i+,i) = 2-‘_ FuG)at
i 0 (C.2-4)
A1 (EORTRORO)
o i axT = x(19)

and the linearized stochastic input distribution
matrices I' (i+1,i) and G_(i) are calculated

from:
L
rG+Li) = (I +Z FYGi)ALY| G (i)Al
& @)
o arf.u, 6. w0)
G - Lk
Jx x = x(if)
- w =0
(C.2-5)

where Q again is chosen sufficiently large.

It is important to note that F(i) and G (i) are
calculated at x=x(i|i), i.e. al the the last
estimatle of x, instead of on some nominal
flight trajectory. This modified form of the
Kalman filter is called the Extended Kalman
Filter.

iii) The Kalman gain algorithm:
K(@i+1) = P(i+1]i)H T(i+1) x
[HG+)PG+11)R TG+1) + v, |
(C.2-6)

where the linearized observation matrix is
calculated with:

ab(x(0),u (+1))

T

(C2-7)

H(i+1) = -
X

(i +] }i)

I
n
x>

iv) The measurement update algorithm:
x(i+1]i+1) = x(i+1[i) + K(i+1) x

{_m(m) - h(x(|+1|) u (.+1))]

(C.2-8)
v) The posteriori covariance matrix algorithm.

P(i+1]i+1) = [I - K@G+1)H(i+1)] PGi+1]i)
= [1 - K@+1)H@i+1)] PG+1[i) x
[I - RG+1yHG+D]" + KG+1)V, K T(i+1)

(C.2-9)
Again the second formula of Eq. (C.2-9) is
considered 1o be more robust than the first one.

Also for nonlinear system models an extended
Kalman smoother may be applied backwards in
time to smooth the estimated trajectory and to find
the initial conditions of the nonlinear system state
equaltions.

The fixed interval extended Kalman smoother is
wrillen as, see¢ also [71]:

K@) = P(|| HI(i+1, I)P G+
x(i[N) = x(||1) + K (i) [x(|+l}N) - x(|+1|1)]
PGIN) = P(i]i) + K (i) [PG+1|N) - P(i+1]i)] K ()"

(C.2-10)

C.3 Maximum Likelihood Estimation Applied
to a Deterministic Nonlinear Model

If the system noise w(t) is neglected, the flight path
reconstruction problem reduces to an output error
problem. This can be solved by a Maximum
Likelihood algorithm as described below.

In this algorithm, see also Eykhof{ {76}, the
unknown initial conditions x(1,) of the system and
the measurement noise covariance matrix V_, are
also considered to be unknown parameters together
with the set of unknown parameters 8 and the
Maximum Likelihood estimate of these parameters
is computed. The system model to be used in this




case is written in the following form:

X0 = fx0,u,0.89)
¥© =h(x®,2.©,8)

y () =y@) +v@)
where the parameter vector 8 consists again of
unknown biases and scale factots of the flight test
instrumentation system, but now also includes the
unknown initial value of X.

(C.3-1)

1}

The system is assumed to be deterministic, i.e. the
assumption is made here of very small
measurement noise from the inertial transducers.
Then the joint state and parameter estimation
problem can be formulated as a nonlinear
optimization problem in which the function to be
minimized with respect to 8, x(t,) and v, !is the
negative logarithm of the likelihood function:

lnL(Q,_)go , Vv_vl) =
- %il 1,0 - Y60 Vil [r,0 - ¥6.9)] +

N
— IndetV
+ - IndetV,, (C3-2)

where the covariance matrix of the measurement
noise V, is estimated using:

1

A N
Vvv = =
N 5

[£,0 - ¥60)][1,0 - %60
(C3-3)

The estimated output in Eq. (C.3-3) is obtained by
integrating a set of deterministic state equations:

1.

X =5 * J £(x(0).u,(9.8) a

(4]

¥(i.8) =h(x(),u (),.0)
The solution algorithm starts by assuming an initial
value for 8 and using (C.3-4) to calculate a first
estimate of X(t) and y(i,8). Then V_, is estimated
using equation (C.3-3) and the log likelihood
function is calculated from (C.3-2). A search
procedure, such as Gauss-Newton, is then applied
to find a better estimate for 8. The above
procedure is iterated as long as the log likelihood

(C.3-4)
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function decreases significantly.

Experience is that from the computational point of
view the ML algorithm appears to be more
expensive than the extended Kalman filter. Note
that the ML method will generate estimates of the
measurement error covariance matrix V., in
addition to estimates of the transducer biases and
scale factors and the initial state vector. The reader
is referred to appendix A for more details of this
algorithm.
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of those areas which were either absent or only briefly mentioned in these volumes. These
areas are Flight Path Reconstruction, Nonlinear Model Identification, Optimal Input Design
and Flight Test Instrumentation. The present approach to identification is rather different
from that presented in the earlier AGARDographs in the sense that the identification
problem is decomposed into a state estimation and a parameter identification part. This
approach is referred to as the Two-Step Method (TSM), although one will find other names
like Estimation Before Modelling (EBM) in the literature. It will be shown in the present
AGARDograph that this approach has significant practical advantages over methods which
no attempt is made to decompose the joint parameter-state estimation problem. The two-
step method is generally applicable to flight vehicles such as fixed wing aircraft and
rotorcraft which are equipped with state of the art inertial reference systems. The theoretical
developments in the present AGARDograph will be illustrated with examples of a flight
test program with the De Havilland DHC-2 Beaver aircraft, the experimental aircraft of the
Delft University of Technology which has been used for almost two decades to test new
ideas in the science of aircraft parameter identification.

This AGARDograph has been sponsored by the Flight Mechanics Panel of AGARD.
ISBN 92-835-0748-7
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