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Preface 

Since its founding in 1952, the Advisory Group for Aerospace Research and Development has published, through the Flight 
Mechanics Panel, a number of standard texts in the field of flight testing. The original Flight Test Manual was published in the 
years 1954 to 1956. The Manual was divided into four volumes: 

1. Performance 
2. Stability and Control 
3. Instrumentation Catalog, and 
4. Instrumentation Systems. 

As a result of developments in the field test instrumentation, the Flight Test Instrumentation Group of the Flight Mechanics 
Panel was established in 1968 to update Volumes 3 and 4 of the Flight Test Manual by the publication of the Flight Test 
Instrumentation Series, AGARDograph 160. In its published volumes AGARDograph 160 has covered recent developments in 
flight test instrumentation. 

In 1978, the Flight Mechanics Panel decided that further specialist monographs should he published covering aspects of 
Volumes I and 2 of the original Flight Test Manual, including the flight testing of aircraft systems. In March 1981, the Flight 
Test Techniques Group was established to carry out this task. The monographs of this series (with the exception of AG 237 
which was separately numbered) are being published as individually numbered volumes of AGARDograph 300. 

In 1993 the FTTG was disbanded, and the Flight Test Editorial Committee was formed to continue sponsoring and editing 
volumes in the AG 160 and AG 300 series. 

At the end of each volume of both AGARDograph 160 and AGARDograph 300 an Annex gives a list of volumes published in 
the Flight Test Instrumentation Series (AG 160) and in the Flight Test Techniques Series (AG 300). 

The present Volume is a sequel to two previous AGARDographs published in the AGARD Flight Test Techniques Series, 
Volume 2 on “Identification of Dynamic Systems” and Volume 3 on “Identification of Dynamic Systems - Applications to 
Aircraft, Part 1: The Output Error Approach” both written by R.E. Maine and K.W. Iliff. The intention of the present document 
is to cover some of those areas which were either absent or only briefly mentioned in these volumes. These areas are Flight Path 
Reconstruction, Nonlinear Model Identification, Optimal Input Design and Flight Test Instrumentation. 

The theoretical developments are illustrated with examples taken from an actual flight test program. 

... 
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Prkface 

Depuis sa crkation en 1952, le Groupe Consultatif pour la Recherche et les RCalisations ACrospatiales (AGARD), a publiC, par 
I’intermCdiaire du Panel de la MCcanique du Vol, un certain nombre de textes normatifs dans le domaine des essais en vol. Le 
premier Manuel d’Essais en Vol a CtC public5 entre les annCes 1954 et 1956. Ce manuel est compos6 de quatre volumes i savoir: 

1. Performances 
2. StabilitC et ContrGle 
3. Catalogue d’lnstrumentation 
4. S y s t h e s  d’Instrumentation. 

Suite aux dCveloppements dans le domaine de I’instrumentation des essais en vol, le Groupe de Travail sur I’lnstrumentation des 
Essais en Vol du Panel de la MCcanique du Vol a CtC crCC en 1968 avec pour mandat de mettre i jour les volumes 3 et 4 du 
Manuel des Essais en Vol, sous la forme de la sCrie AGARDographie 160 sur I’lnstrumentation des Essais en Vol. Les diffkrents 
volumes de I’AGARDographie 160 publiCs jusqu’i ce jour couvrent les derniers dCveloppements dans ce domaine. 

En 1978, le Panel AGARD de la MCcanique du Vol a dCcidC d’Cditer d’autres monographies spCcialisCes, couvrant les volumes I 
et 2 du Manuel des Essais en Vol d’origine, y compris les Essais en Vol des systhmes de bord. Au mois de mars 1981, le Groupe 
de Travail sur les Techniques des Essais en Vol a CtC constituC pour mener ii bien cette tiiche. Les monographies dans cette sCrie, 
i I’exception de I’AG 237 qui porte un numCro distinct, sont numCrotCes individuellement dans la sCrie AG 300. 

0 

Le groupe a CtC dissout en 1993, et le ComitC de RCdaction des Essais en Vol a CtC crCC afin d’assurer la publication de volumes 
dans les sCries AG 160 et AG 300. 

A la fin de chacun de ces volumes, un annexe donne la liste des volumes publiCs dans la sCrie “Instrumentation des Essais en 
Vol” (AG 160) et dans la sCrie “Techniques des Essais en Vol” (AG 300). 

Le prCsent volume reprCsente la suite de deux AGARDographies publiCes dans la sCrie “Techniques des Essais en Vol”; il s’agit 
du volume 2 sur “L’Identification des Syst&mes Dynamiques” et du Volume 3 sur “L’Identification des S y s t h e s  Dynamiques - 
Applications aux ACronefs” Titre 1: “La MCthode des Ecarts de Performances” rCdigCs par R.E. Maine et K.W. Iliff. Ce docu- - 
ment a pour objet de traiter certains sujets qui ont CtC peu ou pas abordCs dans ces volumes, c’est-i-dire, la reconstitution de la 
trajectoire de vol, I’identification des moddes non-IinCaires, I’optimalisation des Cltments de conception et I’instrumentation des 
essais en vol. 

c 

Les dCveloppements thCoriques sont illustris par des exemples tirCs d’un programme d’essais en vol rCel. 
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0 

SYMBOL DEFINITIONS, ABBREVIATIOP 
FRAMES 

Throughout this volume many different variables 
are introduced. Often the actual meaning of the 
symbol follows directly from the context of its use. 
Vectors will be generally underlined. Matrices and 
reference frames (reference axes) are denoted with 
capitals. Their use follows directly from the 
context. 

0.1 Symbols, abbreviations, definitions 

parameter vector; polynomial 
coefficient of d(w) in denominator 
in T(w) 
specific aerodynamic forces along 
the X-, Y- and Z-axis respectively 
wing span; polynomial coefficient of 
n(o) in numerator of T(o)  
mean aerodynamic chord 
Cramer-Rao Lclwer Bound; rate o f  
climb 
parameter in angle o f  attack vane 
GI 1 i b ra t io n to rm u 1 a 
parameter in angle of side slip vane 
GI 1 ib ra t io n formula 
sidewash coefficient 
upwash coefficient 

, coefficient of L 
MpV2Sb 

aerodynamic rolling moment 
(nondimensional moment about X,- 
axis) 
constant part of c 

P 

dC, 

S AP D REFERENCE 

dC, - 
a- Bb 

V 

ac, 

ac, 
asr 

MpV2SC 

- 

- 

, coefficient of M 

aerodynamic pitching moment 
(nondimensional moment about Y,- 
axis) 
constant part of c 

111 

- 
9" 
V 

a- 

dClll 
2Cll1" + - av 
G l  
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Cn , coefficient of N 
cx .* ! 4 p V 2 S b  U 

aerodynamic yawing moment 
(nondimensional moment about Z,- 
axis) 

- 
a c  
V 

a- 

constant part of c 
n 

CY Y , coefficient of 
%pV'S C" P a- Pb 

2v aerodynamic lateral force 
constant part of c 

Y 
'nr rb 

2v 
a- CY 

a- Pb 
2v 

ac, 
CY I_ . rb 

d- 
2v 

acy 
a p 

CY 

- 

"8 
C 

acy 
a Sa 

CY 
a sr 

L/zpv2s 

- 

- 

Z , coefficient of 

aerodynamic vertical force 
constant part of c 

2 

X , coefficient of 
L/zpV?S 

CX 

aerodynamic longitudinal force 
constant part of c X cy* 

C. 
I 

ilCx 
2CX" + -v 

il V 

da 

acx 
aa2 
- dC, 

2czo + FV czu 

X 



0 

B 

- 
a c  
V 

a- 

dC2 

dimension of % 
polynomial in denominator of T(o) 
model residue vector in regression 
analysis 
model residual; elementary input 
signal; basis vector of !& 
mathematical expectation operator; 
energy 
vector function 
right handed rectangular reference 
frame; linear system matrix 
gravitational acceleration 
linear system input matrix 
geometric altitude 
matrix in linear system observation 
model 
identity matrix 
moment of inertia of propeller and 
rotating engine components 
moments o f  inertia about the X-, Y -  
and Z-axis respectively 
corresponding products of inertia 

imaginary number, fi 
matrix in linear system observation 
model; performance index 
Kalman filter gain matrix 
One stage prediction gain matrix 
aerodynamic moment about the X- 
axis; likelihood function; orthogonal 
matrix 
mass of the aircraft; integer 
aerodynamic moment about the Y -  
axis; information matrix 
M/N, average information matrix 
point-input information matrix from 

set o f  averagc information matriccs 
from power constrained input 
signa Is 
integer 

- 

polynomial in numerator of T(o) 
aerodynamic moment about the Z- 
axis 
origin of frame of reference 
angular rate about the X-axis (roll 
rate) 
static pressure of air 
total pressure in propeller slipstream 
total power of input signals 
angular rate about the Y-axis (pitch 
rate); integer 
impact pressure of air 
angular rate about the Z-axis (yaw 
rii te) 
radius of hypersphere; multiple 
regression coefficient 
partial correlation coefficient 
n-dimensional Euclidean space 
information space 
integer 
wing surface area; sensitivity matrix 
power spectral density matrix of 
input signals 
time (continuous) 
time (discrete) 
observation time interval; state 
transformation matrix; temperature 
frequency response matrix 
component o f  airspeed along the X- 
axis 
vector o f  input signals 
vector of harmonic signal in input 
signals 
Fourier transform of vector of input 
signals 
state transformation matrix 
component of airspeed along the Y- 
axis 
vector of measurement errors 
true airspeed 
covariance matrix 
covariance matrices 
component of airspeed along the Z- 
axis; measurement noise 

W,, Wy, W, components of aircraft weight along 
the X-, Y- and Z-axis respectively; 
components of atmospheric wind 
x-coordinate of the a-vane in the 
body fixed reference frame 
x-coordinate o f  the p-vane in the 
body fixed reference frame 

XU 

xB 

xi 



XE 

X - 

y. 
Y, 

YE 

position of the aircrafts centre of 
gravity with respect to a n  earth 
fixed reference frame along the X- 
axis 
system state vector; row vector of 
independent variables in regression 
analysis 
Fourier transform of system state 
vector 
aerodynamic 1ongitudin;il force 
along the X-axis; matrix of 
independent variables in regression 
analysis 
observation vector 
y-coordinate of the a-vane in the 
body fixed reference frame 
position of the aircrafts centre of 
gravity with respect b an  earth 
fixed reference frame along the Y-  
axis 
Fo 11 r i er tra ns  form c) f o bserva t ion 
vector 
aerodynamic lateral force along the 
Y-axis 
z-coordinate of the @-vane in the 
body fixed reference frame 
position of the aircrafts centre of 
gravity with respect 10 a n  ear th  
fixed reference frame along the Z- 
axis 
aerodynamic vertical furcc along the 
Z-axis 

X W )  

Y 

zB 

z, 

Z 

Greek symbols 
a angle of attack; power ratio of ii 

harmonic signal in the input signals 
a, angle of attack measured by a vane 
P angle of side slip; cartesian 

coordinates 
P" angle of side slip measured by a 

vane 
Y flight path angle 
b ij Kronecker delta 
bd aileron detlection angle b,=bar-bap 

left aileron deflection (aileron down 
is positive) 

bar right aileron deflection (aileron 
down is positive) 

b e  elevator detlection angle (elevator 
down is positive) 

rudder detlection angle (rudder left 
is positive) 
increment 
aerodynamic model error 
pitch angle; phase of a harmonic 
signal in the input signals 
parameler vector 
vector containing bias errors 
discrete system input matrix 
amplitude of a harmonic signal in 
the input signals 

m 
pSb 
- 

m 
iuc - 

V Kalman filter innovation 
11) angle 01' yaw 
3 information vector, vector 

C' a i r  density 
c'r s tandmi deviation 
(b angle of roll 
0 angular frequency 

pSC 

representation of M 

Superscripts 
.k. 

h 

- 
H 
(k) 
0 

T 

-1 

s u bsc r i p Ls 
m 
B 
D 
E 

c 
S 
0 

reconstructible slate variable or 
id en ti f ia bl e para me Le r 
estimated valuc; normalized value 
mean v;iluc 
small deviation from nominal value 
matrix conjugate transpose 
harmonic signal in the input signals 
optimal value 
matrix transpose 
derivative with respect to time 
matrix inverse 

measured qua nti ty 
body fixed reference frame F, 
datum fixed reference frame F, 
Earth fixed vertical reference frame 

engine 
slability reference frame Fs 
nominal value 

F, 

0 

a 

0 

xii 



0.2 Abbreviations 

cg 
CRLB 
cov 2 
det A 
DME 
DUT 
In 
LHS 
ML 
NLR 
TAS 
tr A 

centre of gravity 
Cramer Rao Lower Bound 
covariance matrix of 2 
determinant A 
Distance Measuring Equipment 
Delft University of Technology 
logarithm to base e 
Left Hand Side 
Maximum likelihood 
National Aerospace Laboratory 
V , True Air Speed 
trace of square matrix A 

0.3 re.,rence frames 

A number of different reference frames will be 
referred in this volume. Their definitions will be 
given below. Within this volume, the translational 
equations and the rotational equations are both 
referred to the body axes. The aircraft attitude is 
defined by the Euler angles 11, 8 and Q, and for this 
reason the vehicle carried vertical reference frame 
is introduced. The aircraft position is defined with 
respect to the earth fixed reference frame. 

Datum reference frame F, 
The location of characteristic points relative to the 
aircraft - as for instance the centre o f  gravity - is 
expressed in terms of coordinates in a body fixed, 
rectangular and left handed reference frame which 
is named here the datum reference frame (see fig. 
0-1). The XD-axis is in the plane of symmetry of 
the aircraft. The YD-axis is perpendicular to this 
plane of symmetry and points to port. The 
direction of the ZD-axis is upwards in normal 
flight. For the particular aircraft used in the present 
flight tests, the origin OD coincides with the 
projection on the plane of symmetry o f  a reference 
point on the starboard wing leading edge ;it 1.4 m 
distance from the plane of symmetry. The direction 
of the XD-axis is chosen parallel to a reference 
wing chord connecting the leading edge and the 
trailing edge at  the same distance from the plane of 
symmetry. 

Body-fixed reference frame F,, 
The body-fixed reference frame 0 1  the aircraft is ii 

right-handed orthogonal system O,X,Y,Z,. The 
origin 0, lies in the centre of gravity of the 

aircraft (see fig. 0-1). The X,O,Z, plane coincides 
with the aircraft's plane of symmetry if it is 
symmetric, or is located in a plane, approximating 
what would be the plane of symmetry. The XB-axis 
is directed towards the nose of the aircraft, the Y,- 
axis points to starboard and the Z,-axis points 
towards the bottom of the aircraft. 
The positive directions for the body axis rates (p, 
q, and r respectively), the body axis velocities (U, 
v, and w), the body axis forces (X, Y, and Z), and 
the body axis moments (L, M, and N)  are shown in 
figure 0-2. 

St;ibility reference frame Fs 
The stability reference frame O,X,Y,Z, is a 
special body-fixed reference frame, used in the 
study of small deviations from a nominal flight 
condition. The reference frames F, and F, differ in 
the orientation of the X-axis. The X,-axis is chosen 
parallel to the true airspeed V. In the case of a non 
symmetrical nominal flight condition the X,-axis is 
chosen parallel to the  projection of 1 on the 
aircraft's plane of symmetry. 

Earth-fixed reference frame FE 
Thc earth-fixed reference frame is a right-handed 
orthogonal system O,X,Y EZb, which is considered 
to be fixed in space. I t \  origin can be placed at an 
arbitrary position, but it  will be chosen to coincide 
with the aircraft's centre of gravity at  the start of 
a flight test manoeuvre. The ZE-axis points downw- 
ards, parallel to the local direction of the 
gravitation. The XE-axis is directed north, the YE- 
axis east (fig. 0-3). 

Vehicle-carried vertical reference system Fv 
The origin of the vehicle carried vertical reference 
frame is attached to the aircraft's centre of gravity. 
Except for this difference, Fv is identical to the 
earth fixed vertical reference FE (fig. 0-3). 

Vehicle carried vertical reference frame F, 
The reference frame F, was found to be convenient 
in the analysis of the linearized flight path 
reconstruction problem. The origin is attached to 
the aircraft's centre of gravity. The +axis points 
downwards parallel t o  thc local direction of 
grav i ki Lion. The X.I.-a x is CO incides w it h the 
projection of the X,-axis at the start of a flight test 
manoeuvre on the local horizontal plane (fig. 0-4). 
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Figure 0-1; The datum reference frame F,, atid body-fixed reference frame F,. 
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Figure 0-2: The body-fixed reference Jrurne Flp X ,  Y, Z, L, M and N denote Lhe forces along and 
mornetits ahoul die body-axis; U, v, w, p, y urd  r denote the linear and anpdur velocities. 
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Figure 0-3: Relationships between earth-fixed reference frame and vehicle-carried vertical reference 
frame. The vector r denotes the position of the aircrafr e.g. with respect to FE. 
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Figure 0-4: The body-fixed reference frame FB and the vehicle-carried vertical reference frames F ,  
and F ,  at the start of a flight test manoeuvre. 
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Synopsis 

This AGARDograph is a sequel to the previous AGARDographs published in the AGARD Flight Test 
Techniques Series, Volume 2 o n  ‘Idetitificatiun of Dynamic Systems’ and Volume 3 on ‘Identification of 
Dynamic Systems - Applications to Aircraft Part - 1: The Oulpul Error Approach‘ both written by R.E. 
Maine and K.W. Iliff. The intention of the present document is to cover some o f  those areas which were 
either absent o r  only brictly mentioned in these volumes. These areas are Flight Path Reconstruction, 
Nonlinear Model Identijicutiort, Optitnul Input Design and Flight Test Instrumenlution. J ust like Maine and 
Iliff the present authors will skiy close to those techniques with which they are most familiar. The present 
approach to identification is rather different from that presented in the earlier AGARDographs in the sense 
that the identification problem is decomposed into a state estimation and a parameter identification part. 
This approach is referred to as the Two-step Method (TSM), although one will find other names like 
Estimation Before Modelling (EBM) in the literature. It will be shown in the present AGARDograph that 
this approach has significant practical advantages over methods in which n o  attempt is made to decompose 
the joint parameter-state estimation problem. The two-step method is generally ;ipplicable to tlight vehicles 
such as fixed wing aircraft and rotorcraft which are equipped with state of the art inertial reference 
systems. The theoretical developments in the present AGARDograph will be illustrated with examples of 
a tlight test program with the De Havilland DHC-2 Beaver aircraft, the experimental aircraft of the Delft 
University of Technology which has been used for  almost two decades to test new ideas in the science of 
aircraft pa rameter iden ti fica tion. 

1 INTRODUCTION 

The primary goals o f  most tlight test programs ot 
civil and military aircralt are the certification for  
air worthiness and the estimation o f  performmce 
and stability and control characteristics. While 
certain characteristics can be measured directly in 
flight such as rate of climb in stationary rectilinear 
flight or damping ratio’s and time constants of 
eigen motions a much more efficient approach is to 
identifi a mathematical model of the aerodynamic 
forces and moments acting on the aircraft from 
measurements of dynamic tlight test manoeuvres. 
Identification implies the development of an 
adequate mathematical model structure 21s well as 
estimation o f  the numerical values of the 
parameters in the model. When applied to aircraft 
this process is often referred lo as aircrafi 
parameter iderttificutioti. After successful 
identification of aerodynamic models for different 
aircraft configurations and tlight conditions thcy 
may be exploited in numerous different ways. It is 
possible now to compute a variety of performance 
and stability and control characteristics, to compile 
tables and graphs for Aircraft Operations Manuals 
and com pa re a ctu ii 1 a erod y n a m ic c ha  ra cte r is ti cs 
with theoretical predictions o r  wind tunnel results. 
A very interesting application is in the 

enhancement of the fidelity o f  mathematical 
models for  tlight simulation. During the last two 
decades, the advent of the digital computer and 
improvement in llight mcasuremcnt techniques has 
made ii tremendous impact o n  theory and practice 
o f  a ircraft parameter identification. Working Group 
11 (WG 11) of the Flight Mechanics Panel of 
AGARD has defined :is one of i t s  missions to 
stimulate the development and applications of 
aircraft parameter identi f iation techniques in its 
series o n  Flight Test Techniques. In this series, an 
excellent overview of identification o f  dynamic 
systems has been written by R.E. Maine and K.W. 
Iliff  in volume 2 [ 11. I n  the succeeding volume, the 
same authors gave an exhaustive, practical and 
elegant treatment of one of the primary parameter 
identification technique namely the Output Error 
Method used at NASA Dryden for the problem of 
estimating aircraft stability and control derivatives 
[2]. The report examines this one single approach 
with lucid presentation o f  results and discussion 
right from tlight test planning to evaluation o f  
results carried o u t  at their NASA Dryden Flight 
Research facility. This matcrial lilrmcd the main 
theme of part - 1 of volume 3. 
The purpose 01‘ the present AGARDograph which 
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is part - 2 of volume 3, is to present and discuss in 
detail a successful and practical method for aircraft 
parameter identification that has originated a t  the 
Delft University of Technology. This method is 
referred to here as the Two-Step Method, although 
one may find other names like Estimation Before 
Modelling (EBM) in the literature. The report goes 
into some detail on the application of accurate 
Flight Test Instrumentation sensors and systems 
which has revolutionized the identification process 
and in particular has made the two-step method an 
attractive and efficient identification tool. The 
report also examines and focuses attention on some 
new emerging areas of technology namely the 
Optimal Input Design for excitation of aircraft 
manoeuvres which can lead to more accurate 
parameter estimates and reduction of expensive 
flight test time. The problems, results and 
discussions addressed in this report are based 
mainly on the investigations at the Delft University 
of Technology (DUT) and the National Aerospace 
Laboratory (NLR), Amsterdam. 

1.1 Flight Testing and Identification 
Background of Delft TU and NLR 

Since the early sixties the Faculty of Aerospace 
Engineering of the Delft University of Technology 
and the National Aerospace Laboratory, 
Amsterdam have been engaged in the development 
of methods to derive aircraft performance as well 
as stability and control characteristics from 
dynamic flight test data. Traditional methods of 
performance testing employed measurements in 
steady straight flight conditions in which the 
aircraft experienced neither translational n o r  
angular accelerations. Attention was focused on the 
analysis and design of 'hybrid' flight test 
manoeuvres consisting o f  quasi-steady as well as  
nonsteady flight conditions for the derivation of a l l  
aircraft performance- and  stability and control 
characteristics of interest. The emphasis on the 
simultaneous measurement of performance- and 
stability and control characteristics dictated 
development and application of high accuracy 
flight test measurement techniques and transducers. 
Key to success proved to be what was called flight 
path reconstruction, i.e. the technique to accurately 
reconstruct the time history of the aircraft's state 
during the flight test manoeuvre. The results of 
these investigations were reported in references [3 

to 141. 
Between 1967 and 1968, a number of tlight test 
programs were carried out to evaluate the quality 
and performance of the tlight test methods, the 
flight test measurement system and the data 
reduction procedures developed for the derivation 
of aircraft performance, stability and control 
characteristics from measurements in nominally 
symmetric nonsteady manoeuvring flight. 
Symmetric flight trials flown with the DHC-2 
Beaver aircraft of the Delft University of 
Technology yielded most encouraging results. 
It was decided to extend these investigations to 
high subsonic jet flight. In the early seventies 
proposals were made for flight test programs with 
the Hawker Hunter MK 7 experimental aircraft of 
the National Aerospace Laboratory. A new high 
accuracy flight test instrumentation system was 
built which was sm;ill enough to be installed in a 
wing mounted pod 1161. During 1973 and 1974 
several successful tlight tesb were conducted. The 
higher speeds and different propulsion system 
required new aerodynamic models. Also, the tlight 
path reconstruction needed an extended model 
which included the effects of curvature and rotation 
of the earth. This gave birth to a new concept 
namely, the calibration of engine gross thrust and 
mass tlow sensor systems in dynamic flight 
simultaneously with the identification of 
aerodynamic parameters and independent of any 
data of the engine manufacturer. An overview of 
the results of these very successful flight tests is 
given in ref. [ 121. 

Around 1978, further tlight test programs were 
planned to aim a t  the aircraft model identification 
both in symmetric and asymmetric nonsteady 
manoeuvring flight as a n  international cooperative 
program with DLR in  Braunschwcig, Germany. 
The resulLv, of these investigations are reported in 
ref. I 191. The method for parameter identification 
developed a t  DUT was by then dubbed the Two- 
Sfep Method: in the first step, the tlight path is 
reconstructed, followed by the second step in 
which the parameters are identified. Based upon 
the confidence and experience gained in methods 
and analysis, further tlight test programs were 
carried out by the National Aerospace Liboratory 
(NLR) to investigate the applicability for the case 
of a twin engined transport type aircraft, the 
Fokker F-28 Fellowship. lnitial results of the 
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assessment of performance and stability and control 
characteristics are reported in ref. [21]. The 
techniques as developed in the course of these 
flight test programs were subsequently applied with 
high degree of success during the testing and 
development phase of Fokker 50 and Fokker 100 
type aircraft [22]. In 1987 flight simulation models 
were developed for the Cessna Citation 500 of the 
Dutch Government civil aviation flying school 
(RLS) flight simulator [23]. 
The National Aerospace Liboratory and Delft TU 
are currently cooperating in a flight test program 
with the Fairchild Metro I1 experimental aircraft of 
NLR. These experiments have demonstrated that 
estimation of the aircraft state, as well as the 
identification of longitudinal and lateral 
aerodynamic model parameters cm be performed 
on-board in real time [24 to 261. In the same flight 
test program, attention is focused on different 
measurement and analysis methods to identify 
propeller thrust in dynamic llight test manoeuvres 
~ 7 1 .  

Thus, this successful chain of experiments and 
analyses amply demonstrated that nonsteady tlight 
test techniques as developed and tested at the Delft 
University of Technology and the National 
Aerospace Liboratory was a proven, cost effective 
and well established technique for the rneasurcment 
of performance and stability and control 
characteristics as required for the certification of 
aircraft. The results and discussions of the two-step 
identification procedure presented in this report arc 
based on this nonsteady tlight test technique. 

1.2 Requirements for Nonsteady Flight Test 
Techniques 

The successful application of the nonsteady flight 
test technique developed at the Delft University of 
Technology depends o n  a well chosen combination 
of the aircraft to be tested, the flight test 
instrumentation system, the signals applied to 
excite the aircraft, the models selected for 
identification and the procedure devised to analyze 
test data. The nonsteady tlight test technique in 
particular hinges on accurate measurement of 
several inertial- and barometric variables. 

The flight test method includes: 
1. Utiliziition of a high accuracy night test 

instrumentation system, comprising high 
quality inertial and barometric sensors, see ref. 

2. Careful calibration of all transducers to be used 
in the flight test instrumentation system, ref. 
[ 16,17,28 ]. 

3. Analytic or computer aided development of 
optima I manoeuvre shapes, i.e. ,op tima I time 
histories for the control surface deflections 
required to excite the aircraft, .so as for 
example to maximize the amount of 
information in the measurements, concerning 
the characteristic parameters of interest, ref. 

4. Excitation of the aircraft manually or under 
servo control (according to the optimal test 
signals developed) during test flights flown in 
fine weather. 

5.  Off-line analysis of the measurements recorded 
in flight, using advanced state and parameter 
estimation techniques [ 301. 

~ 3 1 .  

13,291. 

1.3 Motivation for Nonlinear Analysis 

Stability and control derivatives are the parameters 
in a linear aerodynamic model of the aircraft. 
Linear aerodynamic models can be represented by 
homogeneous polynomials of the first degree in the 
state and control input variables o f  the linearized 
equations o f  motion. Such polynomials are widely 
used as linear approximations o f  aerodynamic 
forces and moments acting o n  the aircraft in 
dynamic tlighl conditions. In gcncnrl thc domain in 
which linear modcls are valid is restricted to small 
deviations from a nominal flight condition which is 
s ta t io na r y . 

The advantage o f  using nonlinear models is that 
such models should be valid for a larger range of 
flight conditions. In addition dynamic flight test 
manoeuvres are much less constrained with respect 
b the amplitudes of angle of attack and air speed 
excursions. 

One specific form o f  representing nonlinear models 
is by using higher order polynomials in state and 
control input variables. In principle, the domain of 
nonlinear models covers larger deviations from a 
given nominal tlight condition, as compared to 
linear models. 
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1.4 Motivation for Manoeuvre Design 

The importance of choosing appropriate control 
inputs and exciting specific aircraft modes for 
extraction of stability and control derivatives from 
dynamic flight test data was first noted by Gerlach 
[ 3 ] .  Subsequent research focused on design 
techniques for optimal control input signals. 
Optimal input signals may be designed to either 
maximize the information contents contained in the 
flight test data or minimize the necessary length of 
the flight test manoeuvre for a specified level of 
accuracy of the parameters to be estimated. After 
a review of the literature attention is focused in the 
present AGARDograph o n  two techniques for  the 
optimization of control input signals as developed 
at the Delft University of  Technology. 

1.5 Two-step Method 

Analysis of dynamic tlight test data, in the sense of 
estimating stability and control derivatives from 
measurements of the dynamic response of the 
aircraft to control input signals, can be formulated 
in the theoretical frame work o f  maximum 
likelihood estimation theory [ 531. This requires the 
stability and control derivatives to be interpreted as 
unknown parameters in a dynamical system of ii 

given form. It is assumed that the response of the 
system to precisely known input signals has been 
observed by measuring the outputs of the system at 
discrete instants of time. The measurements are 
assumed to be corrupted by additive, mutually 
independent and normally distributed random 
errors. It is known that the likelihood function of 
these measurements depends on the parameters as 
well as on the initial state vector components. 
Optimizing the likelihood function with respect to 
these parameters and the initial state vector 
components constitutes a nonlinear optimization 
problem. The optimum values are called the 
maximum likelihood estimates of the system 
parameters and initial condition. In this form the 
maximum likelihood method is a so-called Outpuf 
Error Method and probably the most frequently 
used method to date for estimating stability and 
control derivatives from measurements in dynamic 
flight test manoeuvres [ 54,551. The maximum 
likelihood method has been extensively discussed 
in the preceding part - 1 of the present volume 3 in 
the AGARD Flight Test Techniques Series. 

In the present volume it  is shown that, if  certain 
conditions concerning accuracy and type of the 
variables measured in flight are met, the original 
maximum likelihood estimation problem can be 
decomposed into two separate estimation problems 
which c a n  be solved in two consecutive steps. Each 
of the two separate estimation problems is much 
easier to solve than the original estimation 
problem. Thcse two steps are called step I and step 
2. In the general case of nonlinear equations of 
motion, step I corresponds to a nonlinear state 
reconstruction problem known as  the Flight Path 
Reconstruction problem [7,10]. The next step 2 can 
be formulated as a ‘linear-in-the-parameters’ 
estimation problem. This is of great practical 
importance, as i t  allows the systematic and step 
wise development of adequate nonlinear models of 
the aerodynamic forces and moments during the 
tl ight test manoeuvre. 

1.6 Organization of the Report 

In chapter 2 we will discuss mathematical models 
which will be useful for the analysis of tlight path 
re CO ns tr u c t i o n mod e 1 
identification. The nonlinear equations will be used 
for  the practical implementations, while the linear 
models will be used for the study of 
reconstructibility and identifiability. In chapter 3 
we will treat tlight path reconstruction in a detailed 
way in its own right. We discuss identification of 
nonlinear aerodynamic models using regression 
techniques in chapter 4. Next we present two 
approaches in chapter 5 for the optimization of 
multi dimensional input signals which can be of 
great use in the design of flight test manoeuvres. 
Practical examples of different types of 
1ongitudin;il and lateral control input signals, 
several of which evaluated in real flight are 
presented in chapter 6. The detailed aspects of 
tlight test instrumentation, design, execution and 
flight data processing are covered in chapter 7. 
Conclusions drawn from the previous sections are 
presented in chapter 8 .  

a n d a er o d y n a m i c 
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2 AIRCRAFT AND INSTRUMENTATION MODELS 

In this chapter we present some mathematical 
models which will be used in the later chapters. 
These models can be broadly classified as 
Kinematic models, Observation models and 
Aerodynamic models. Kinematic models are in fact 
a special form of the customary equations of 
motion in which specific aerodynamic forces (the 
outputs of ‘ideal’ accelerometers in the centre of 
gravity) and angular rates serve as  inputs. 
Kinematic models a n  conveniently be written in 
state space form. Observation models describe the 
relations between several observed variables as 
airspeed and side slip angle and the state vector 
components of the kinematic model. Kinematic and 
observation models are instrumental for flight path 
reconstruction. 
As discussed in chapter 3 flight path reconstruction 
refers to techniques to compute the time histories 
of the components of the state vector (including the 
‘flight path’) from onboard inertial, barometric and 
other sensors. 
Aerodynamic models describe the aerodynamic 
forces and aerodynamic moments which act o n  the 
aircraft during the dynamic tlight test manoeuvre to 
be analyzed. In the linearized form of the equations 
of motion the models of these aerodynamic forces 
and moments are also linearized and contain well 
known sets of parameters called stability- and 
control derivatives. It is possible to apply the 
identification techniques discussed in chapter 4 to 
estimate the values of these stability- and control 
derivatives from dynamic flight test measurements. 
The two-step method as discussed in the present 
document, however, allows also the estimation of 
so called aerodynamic derivatives in nonlinear 
aerodynamic models, be it  that these nonlinear 
models should be of a special form in which the 
derivatives appear linearly in the output (the 
aerodynamic force- and moment coefficients). A 
question of theoretical and practical interest is 
whether one should estimate stability- and control 
derivatives at  all flight conditions of interest (as 
defined by nominal angle of attack, Mach number, 
power setting, etc.) or estimate aerodynamic 
derivatives in one nonlinear aerodynamic model 
valid for the same set of tlight conditions. In any 
case nonlinear aerodynamic models become 
mandatory when linear models turn out to he 
inadequate, and in those applications where interest 

is focused on the modelling of aircraft performance 
characteristics, e.g. see Mulder and van Sliedregt 

Although nonlinear forms of kinematic and 
observation models are used for actual flight path 
reconstruction, linearized versions of these models 
are developed also below to allow discussion of 
certain state reconstructibility topics in chapter 3.  
The linearized forms of aerodynamic models 
shown below serve the same purpose in a 
fundamental discussion of identifiability in chapter 
4. In addition the design of optimal input signals 
for dynamic flight test manoeuvres as discussed in 
chapter 5 is based on linear forms of all 
mathematical aircraft models. 

I121. 

2.1 Kinematic Models 

2.1.1 Aircraft Equations of Motion 

In this volume we restrict ourselves to the 
simplified case of rigid and symmetrical aircraft 
moving through an atmosphere which moves with 
uniform constant speed over a flat earth. Using a 
body fixed reference frame with origin in the 
centre of gravity this results in equations of motion 
as presented below. 
In flight path reconstruction, see chapter 3, the 
quality of the sensor systems employed may in 
some cases warrant accounting for the effects of 
curvature and rotation of the earth, ref. [13]. 
Aircraft equations of motion take the form of three 
sets of first order differential equations for 
respectively translational velocities, angular 
velocities and attitude angles, e.g. Etkin [57]. 
Using the customary body-fixed reference frame F, 
the equations for the components U, v and w of 
true air speed V- along the body axes X,, Y, and 
Z, take the following form: 

X = m(u + q w  - rv) + nigsin0 

Y = m(v + ru - pw) - mgcosOsin@ , 
(2.1-1) 

where p, q and r denote the rates of rotation about 
the axes of F,; 0 and @ denote pitch and roll angle 
respectively; m denotes aircraft mass and g denotes 
the local acceleration due to gravity. X, Y and Z 
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represent the components o f  the total aerodynamic 
force, including the aerodynamic effects of 
propulsion systems. 

The rotational dynamics of the aircraft are 
represented by a second set of first order 
differential equations for the angular rates p, q and 
r about the body axes X,, Y, and ZR respectively. 
For an aircraft with a geometrical plane of 
symmetry, these equations are given by: 

L = Ixp  -(Iy - 1 J q r  - I &  + p q )  , 

M = I,q - ( I ~  - I x ) r p  - I a ( r 2  - p 2 )  + I e w e r  , 

N = I,r -(Ix -1,)pq -IZx@ - q r )  -I,(oeq 

(2.1-2) 
where L, M and N denote the total aerodynamic 
moments (including again any aerodynamic effects 
of the propulsion system) about the body axes X,, 
Y, and Z,. I,, I, and I, denote the moments of 
inertia and I,, the only (due to symmetry) non-zero 
product of inertia in FR. Gyroscopic effects of 
rotating propellers or turbines can easily be taken 
into account. For the case of a spin axis parallel to 
X, this leads to additional terms with Ieo, as 
shown in (2.1-2). 

The orientation of F, with respect to the earth- 
fixed vertical reference frame FE is governed by a 
third set of first order differential equations for the 
Euler angles $, 0 and 11): 

$ = p + qsin$ t a n 8  + rcos@ t a n 8  , 

8 = qcos$  - rsin$ , (2.1-3) 

= q s i n $ s e c 8  + r cos$sec0  . 
The three sets of equations (2.1-1), (2.1-2) and 
(2.1-3) may be written in standard state space form 
by solving for the derivatives with respect to time 
and defining a state vector with U, v, w, p, q, r, I$, 
0, v as components. By adjoining an aerodynamic 
model (a set of models o f  the total aerodynamic 
forces X, Y, and Z and thc total aerodynamic 
moments L, M and N )  these equations can be 
solved by means of numerical integration given the 
aircraft mass, moment.. and product of inertia and 
an initial value of the state vector. It is worth 
noting here that the ‘physical’ input variables such 
as control surface deflections and engine thrust or 
power changes also serve as inputs to the above set 

of differential equations as they should appear as 
independent variables in the aerodynamic model. 
The solution consists of the time histories of 
translational and angular velocity components U, v, 
w and p, q, r, and the Euler angles $, 0, v. Next 
we will write the model in a slightly different form 
and define a set of alternative input signals. 

2.1.2 Nonlinear Kinematic Models 

Kinematic models of aircraft motion consist of a 
set of first order ordinary differential equations in 
which not the ‘physical inputs’ but rather measured 
variables as specific aerodynamic forces and body 
rotation rates appear as forcing functions. 
A specific force is defined here as the external 
non-gravitational field force per unit of mass. 
Specific forces are the variables measured by 
‘ideal’ accelerometers in the body’s centre of 
gravity, irrespective of whether the body is 
intluenced by a gravitational field or not. In tlight 
tests such ideal accelerometers would measure the 
specific aerodynamic forces according to: 

X = Axni , 

Y = A, in , (2.1-4) 

Z = A,in , 

in which 4, A, and 4 denote the specific 
aerodynamic forces along the body axes X,, Y, 
and Z, respectively. Substitution of (2.1-4) into 
(2.1-1) and dividing by m leads Lo the following 
set of relations: 

u = A ,  - g s i n 8  - q w  + r v  , 

v = AY + gcos8sin@ - ru + p w  , (2.1-5) 

w = AZ + ~ C O S O C O S @  - p v  + q u  . 

As mass m has been eliminated we may take the 
view point that (2.1-5) represents a set of what 
might be called kinematical relations. The two sets 
of equations (2.1-5) and (2.1-3) may again be 
solved numerically if  now the specific aerodynamic 
forces A,, A, and A, and the angular rates p, q and 
r are kiken as input variables. The solution consists 
of the time histories of the translational velocity 
components U, v and w and the Euler angles $, 8, 
v- 
The position of the aircraft’s centre of gravity 
relative to the earth fixed frame of reference FE can 

0 

0 

0 
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X E  

Y E  

be computed as well by numerically integrating the 
following set of equations simultaneously with 
equations (2.1-5) and (2.1-3): 

U E  

"E 

L J  

where L, denotes an  orthogonal matrix of the 
form : 

Remark In cases of relatively long tlight path's in 
particular during climb or descent as in typical 
performance flight tests, it can no longer be 
assumed that the atmospheric wind components are 
constant. For the case of varying wind components 
Eq. (2.1-5) may still be used i f  U, v and w are 
replaced by the corresponding components u p  vE 
and wE of &, speed with respect to the earth fixed 
reference frame FE Eq. (2.1-6) then takes the form: 

r. i r i  

P E 1  bl 
Next the components U, v and w o f x ?  follow from 
V+=V,-W,. It may be attractive from the 
estimation theoretic point of view to add ;I model 
of the varying wind component$ to the kinematical 
model. The reason is that ;I model will have much 
less parameters than the total number of unknown 
values of the three components of the wind at the 
(discrete) time instants of the tlight test manoeuvre. 
A simple model which seems to work well in 
practice describes the wind components iis a linear 
trend in time and proportional to altitude. A more 
sophisticated alternative wolild be a stochastic 
model driven by 'white noise'. 

Equations (2.1-S), (2.1-3) and (2.1-6) represent a 
kinemalic model for the motion (speed, attitude and 
position) of F, with respect to a flat and non 
rotating earth. If the effects of the curvature and 
rotation of earth are to be included then we must 
express the geographical positions in terms of 
longitude and latitude and decompose the local 
atmospheric wind along the axes of the vehicle 
carried vertical reference frame Fv or F, [13]. In 
the case of flexible aircraft, the specific 
aerodynamic forces and the quantities sensed by 
accelerometers can in principle no longer be 
assumed identical. Even then, however, the 
kinematical relations (2.1-5), (2.1-3) and (2.1-6) 
would still be valid. To see this, we might interpret 
equations (2.1-1) as equations of motion of just  an  
inertial reference system fixed at the centre of 
gravity. Then the components X, Y ,  Z would 
represent external suspension forces. A,, 4. and A, 
in (2.1-5) would represent spec@ suspension 
forces and still be identical to the quantities sensed 
by ideal accelerometers. 

We may now interpret (2.1-S), (2.1-3) and (2.1-6) 
as to represent ;I dynamical system, and define a 
state vector x and an input vector 1 as follows: 

The system state equalion may be written as: 

II. = f(r4) . (2.1-8b) 

- f denoting a nonlinear vector function of x and U. 
While accelerometers and rate gyro's serve to 
measure the components of the input vector LJ 

barometric and other sensors may be used to 
measure the components of an observation vector, 
see section 2.3 below. 

2.1.3 Linearized Kinematic Models 

In the present section we derive a set of linearized 
kinematical relations starting again from equations 
of motion as in section 2.1.2 above, but this time 
in their linearized form. 
The linearized form of the equations of motion is 
derived in two steps. First the nonlinear equations 
of motion (2.1-1) and (2.1-2) for variables in the 
body fixed reference frame F, are written in terms 
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of variables in a (body fixed) stability reference 
frame F,. Next we may linearize these equations 
for small deviations from a nominal flight 
condition of steady, rectilinear flight with side slip 
angle equal to zero. It is readily ascertained that in 
the nominal flight condition the components of air 
speed along and the rates of rotation about the axes 
of Fs have the following values: 

- - - si n$ , si nes si nib cos@ , si ne, si n v  , , 
- I. - 

+ C O S $ ~ ~ O S ~ ,  - sin@,cosVs cose,simp, 

uos = v, 9 VO, = 0 , WO, = 0 , 

Pos = 0 9 qo, = 0 9 ros = 0 , 

while the nominal pitch angle is equal to the 
nominal flight path angle: 

- 
00, - Yo ’ 

the subscript ,, referring to the nominal tlight 
condition. The linearized versions of the equations 
of motion (2.1-1) and (2.1-2) may now be written 
as: 

- - - x, =111us + mgcosyo e, , - - - (2.1-9) 
Y, = m(vS + Vors) - nigcosy,$, , 
- - - - 
Z, = ni(w, - Voq,) + iiigsiiiy00, , 

- - 
L, = I p - lzxs r ,  - le(o,siiiaOq, , 

M, = Iysqs + Ie~u,sincxops + I,~o,cosao r s  , 

x s  - - - 
- - 

N, = - L , P S  - I ,w ,c~) s~oqs .  
(2.1-10) 

where the superscript indicates small deviations 
from the steady, rectilinear nominal tlight condition 
mentioned above. The side slip angle in the 
nominal flight condition is defined to be zero. 
(This means that if the nominal aerodynamic flow 
field is asymmetrical due to for example propeller 
slipstream swirl the nominal roll angle will have a 
value different from zero. Below, this value is 
assumed to be small enough to be negligible.) 
From section 2.1.2 i t  follows that we may write the 
external aerodynamic force increments Xs, Y s  and 
2, in terms of corresponding increments of 
accelerometer readings according to: 

- w 

X ,  = Axsin , 

Y, = Ays in  , 

Zs  = A Z s m  . 

- - 
- 

(2.1-1 1) 

The linearized forms of the kinematical relations 
for the Euler angles of F, are: 

(2.1-12) 

Now it is convenient to express the geographical 
position in terms of coordinates xT, yT, zT along 
the axes of the vertical reference frame F,. 
Equation (2.1-6) is then written as: 

where the transformation matrix L,3 can be written 
as: 

0 

.- - si i i ~ ~  si ne, cosip c o s ~ ~  si ne, c o s ~  , - 1  cosos cos1p , - 
- cos$,sinV, + sin@,sinV, I 

1 -siiie, si 11$ , cos€& c o S ~ , ~ s e ,  I 
Linearization of (2.1-13) results in: 

- 
cosyo U , - 

+ sinyows 
- 

V, s i ny 0 , 
+ WXT 

- 
V S  + ~ O ~ ~ ~ Y O V S  + W Y T  - 

YT - 
- - - 
z T  = -sinyous + C O S Y ~ W ~  - Vocosy00, + WzT 

Because of the definition of the nominal flight 
condition given above, it follows that: 

(2.1-14) 
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with: 

Equations (2.1-9), (2.1-12) and (2.1-14) may be 
written as the following sets of linear first order 
differential equations for the longitudinal variables: 

(2.1-15) 
and lateral variables: 

(2.1-16) 

- - - 
4 = p S  + t a i v o r s  , - - - 
YT = + ‘OcoSYOw + wy.r ’ 

Eqs. (2.1-15) and (2.1-16) are a linearized form of 
the nonlinear kinematical relations (2.1-5), (2.1-3) 
and (2.1-6) derived in section 2.1.2. As said above, 
they will not be used in actual flight path 
reconstructions but rather will serve to analyze the 
reconstructibility characteristics of flight path 
reconstruction problems in chapter 3. 

Aerodynamic models are defined in the present 
context as mathematical models of the aerodynamic 
force- and moment components in a body-fixed or 
wind-axes reference frame. The development of 
aerodynamic models from (dynamic) flight test 
data requires an initial ‘guess’ of the mathematical 
structure of the model. This initial guess is referred 
to here as  the a priori model, indicating that no 
tlight d a h  was yet incorporated in the model. A 
priori models can be based on physical knowledge, 
(semi) empirical databases, results from 
Computational Fluid Dynamics or on wind tunnel 
measurements. 
The form of the a priori model will strongly 
depend on the ultimate goal of the flight test 
program. If the goal would be to develop an in 
essence phenomenological model, to be used in for 
example control system design or simulation it 
would ‘suffice’ to select a set of suitable variables 
‘explaining’ the observed phenomena (the time 
histories of aerodynamic force- and moment 
components). If, however, the flight test program 
is aimed at  an analysis of aircraft performance 
characteristics, a physical model would be needed 
showing minute details in (sub)models of thrust, 
l if t  and drag, e.g. Mulder and Van Sliedregt [ 121. 
If the atmosphere is in uniform motion with respect 
to earth and the effects o f  elastic deformations of 
the airframe are neglected, the total aerodynamic 
force and moment depend on not only the present 
values of variables such as control surface 
deflections, angle of attack and side slip angle but 
also on the past trajectory with respect to the 
surrounding air mass. This leads to aerodynamic 
models consisting of integrals of ‘indicia1 
functions’ [58 ] .  A more practical and well proven 
alternative is to expand each of the above 
mentioned variables as a (truncated) Taylor series 
backwards in time. This results in aerodynamic 
models in the form of (nonlinear) algebraic 
functions of the above mentioned variables and 
their derivatives with respect to time. 
Below in section 2.2.1 an example is given of an 
aerodynamic model for the case of a low-subsonic, 
propeller driven aircraft. The model consists o f  
three polynomials for the aerodynamic force 
components, three polynomials for the components 
of the aerodynamic moment and an expression 
relating engine power to a measure of propeller 

2.2 Aerodynamic Models 

9 
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thrust. The linearized version of the model, which 
will be referred to in chapter 4 and 5, is derived in 
section 2.2.2. 

2.2.1 A Nonlinear Aerodynamic Model for Low 
Speed Propeller Driven Flight 

In this section an aerodynamic model is developed 
for the case of low speed propeller driven flight. 
The first part of the model describes the 
(dimensionless) aerodynamic force and moment 
coefficients while the second part expresses a 
measure of propeller thrust in terms of engine 
power. 
For a given aircraft configuration the components 
of the aerodynamic force and aerodynamic moment 
depend on the present tlight condition as defined 
by variables as angle of attack, side slip angle, 
body rotation rates, control surface deflections, 
engine power setting, dynamic pressure, true air 
speed, Mach number and Reynolds number. By 
considering dimensionless force and moment 
coefficients dynamic pressure disappears from the 
list of variables. On the other hand, in 
nonstationary flight conditions the past values of in 
particular the angle of attack and the side slip 
angle are known to also have a nonnegligible effect 
on the force and moment coefficients. This is 
usually accounted for by including derivatives with 
respect to time in the list of variables. In the 
present case of low speed flight we may assume 
the effect of compressibility to be so small that it 
can be neglected. Also, scale effects can probably 
be ignored, as Reynolds number variations 
occurring in tlight are relatively small in the 
present case. 
If the propeller is represented as a n  ideal pulling 
disc, it is possible to derive the following relation: 

- - a + b -  Apt - P (2.2- 1) 
% p V 2  % p V 2  

where Apt denotes the increase of total air pressure 
in the propeller slip-stream and P denotes engine 
power. It a n  also be shown that Ap,l'hpV2 is a 
direct 'measure' for propeller thrust [3]. In the case 
of propeller driven aircraft, neglecting 
compressibility and scale effects, variations of air 
speed V and engine power settings (engine speed 
and manifold pressure in the case of a piston 
engined aircraft) affect the aerodynamic force and 
moment coefficients only indirectly through 

changes of Ap1/%pV2. Consequently, the effect of 
true air speed and engine power setting a n  be 
represented by one single variable Ap,lMpV2 in the 
list of variables above (1951. Assuming that the 
aerodynamic force and moment coefficients are 
analytic functions of the remaining variables then 
they c m  be expanded in the form of a Taylor 
series. If the effects of the lateral variables f3, p, r, 
6, and 6, on the longitudinal coefficients C,, C, 
and C, and vice versa, the effects of the 
longitudinal variables ApJ?4pV2, a, q, a and 6, on 
the lateral coefficients Cy, C, and Cn are neglected, 
then first order models for the longitudinal and 
lateral aerodynamic force and moment coefficients 
can be written in terms of dimensionless variables 
in the following form: 

+ CZIT uc + CZb 6, , 
e 

(2.2-2) I 
and: 

+ c1.- Pb + Clb sa + Clb 6, , 
P V  3 r 

+ c - Pb + Cnb 6, + cn* 6, . 
" r ;  v a r 

(2.2-3) 
In cases where an aerodynamical plane of 



symmetry exists (coinciding with the geometrical 
plane of symmetry) it follows that these 'cross 
coupling' effects can be neglected in f i rs t  order 
aerodynamic models. 
It can be seen here that the relations (2.2-2) and 
(2.2-3) result in nonlinear relations for the 
dimensional aerodynamic forces and moments. For 
example, using equation (2.2-1) in the model for 
C, in (2.2-2) we get: 

- 
q c  ac 

+ Cxua + Cx - + Cx.-  + Cx, b e .  
q v  u v  e 

For constant engine power P the expression for the 
dimensional aerodynamic force X: 

x = C x % p V 2 S  

may then be written as the following nonlinear 
express ion : 

x = X , N  + x,.,v-' + X u v z a V 2  + 

+ x , , q v  + XUv':xV + x, L. v r 6 e V 2 .  

In line with what was stated above concerning the 
development of ii priori aerodynamic models 
systematic wind tunnel evaluations were made to 
verify the postulated relations between the force 
and moment coefficients and the following 
variables in the right hand side of (2.2-2) and 
(2.2-3): a, p, ApJ!hpV2, be, b, and b,. The 
evaluations were made in a high quality low 
subsonic wind tunnel with a 1:11 scale model of 
the De Havillland DHC-2 Beaver [ 141. The model 
was equipped with an engine driven propeller to 
simulate slipstream effects. Some of  the results are 
shown in fig. 2-1. These wind tunnel results 
indicated that the a priori models (2.2-2) and 
(2.2-3) would fail to describe several significant 
nonlinear characteristics. For example, i t  follows 
from fig. 2-l(a) that C, and C,,, depend in a 
nonlinear fashion on a. Further, a pronounced 
lateral to longitudinal aerodynamic cross coupling 
exists in the sense that C,,, also depends on p. Fig. 
2-l(b) shows that while the Cy$ and C,-p relations 
are approximately linear, this is certainly not true 
for the relation Cl,-@. In addition the same figure 
shows that Cy, C, and C, all depend o n  
Ap,/%pVand a, an example o f  longitudinal to 

lateral aerodynamic cross coup1 ing. Finally, from 
Fig. 2-l(c) it follows that the lateral control 
derivatives with respect to b, depend on ApJ'/ZpV2. 
In retrospect this is not surprising since at  least 
part of the vertical tailplane is submerged in the 
propeller slip stream. 
The wind tunnel results can be exploited next to 
extend the a priori model with additional terms 
accounting for the observed (static) nonlinearities 
and cross coupling effects. However, as we are 
inclined to add only a limited number of additional 
terms for reasons discussed in chapter 4, the 
resulting a priori model will still only be capable to 
approximate the observed static aerodynamic 
characteristics. The resulting a priori model 
accounts for the nonstationarity of actual flight 
conditions with simple terms containing first order 
derivatives of a and p. We must expect this to lead 
to rather crude approximations of the actual 
complex aerodynamic phenomena of nonsteady 
tlight. 
Finally, the resulting a priori model describes only 
the deterministic components of the aerodynamic 
force and moment coefficients. This means that 
stochastic contributions as generated by turbulent 
boundary layers, turbulence in the propeller 
slipstream and local tlow separations are not 
included. The eflect 0 1  such random tluctuations on 
aircraft motion is discussed in Jones (631. 

2.2.2 Linearized Aerodynamic Models 

For small deviations from a stationary rectilinear 
tlight condition, well known linear models may be 
derived of the aerodynamic force and moment 
coefficients 1571. 
The linear nondimensional models of the 
longitudinal force and moment coefficients C,, C, 
and C,,, may be written as: 

- -  

(2.2-4) 
where: 
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[cx,z.l]s = 

- 
X - 

cx = 
Yzp,v;s ' 

where: 
cxus cxus c x q s  cxus CXbes 

c% c,as 4s " S  CZb " S  . cyps c y p s  c y r s  cyp, CYbas ' S  

Clll Clll" Clll qs emus Cm* [cY.l,n] s = clPS Cl 1s 'is C'bas Cbrs . - 

c, c,. 

e S  

- 
Z - 

c, = 
Y2pov;s ' 

The linear nondimensional models - -  of the lateral 

M - 
111 = 

!hpov;sc 

Cn Bs Cn P S  Cn rs ''bas cn* r s 

,., 
Y - 

cy = 
Y2pov;s ' 

- 
- CYp CYp CYr CYi CYba CYbr 

= CIp ClP CIr Cl i  Clba Clb, 

CY - 
c, - 

-Cn- Cnp Cnp Cn, Cnp Cnb3 Crib, 

L - 
(2.2-5) C, = 

!4poV:Sb ' 

- 
B NASA Dryden has developed a n  interactive Fortran - program 'linear' that provides the user with a 

pb/2V0 powerful and flexible tool for the linearization of 
b/2vo aircraft aerodynamic models [64]. The program 

numerically determines a linear system model from 
(ib/Vo . a nonlinear aerodynamic model supplied by the 
- 
- user. 
' a  

,., 
N 

% po V t S  b 

- 
cn = 

(2.2-8) 

and Cxu, C, , etc. denote the longitudinal stability 
and control %erivatives in the body fixed reference 
frame FB. The models in the stability reference 
frame F, can be written as: 

and Cyp, Cy,, etc. denote the lateral stability and 
control derivatives in the body fixed reference 
frame F,. The corresponding models in stability 
frame of reference Fs can be written as: 

where: 

I 

2.3 Observation Models 

(2.2-7) Observation models relate certain measured 
variables such as airspeed and barometric altitude, 
to the components o f  the state vector and input 
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vector as defined in (2.1-8). Observation models 
take the form of nonlinear algebraic relations 
between the observed variables and the state- and 
input vector components, see section 2.3.1. A 
linearized version, used in the reconstructibility 
analysis of chapter 3 is given in section 2.3.2. 

2.3.1 Nonlinear Observation Models 

In this section the models are derived for 
observations of true air speed V, angle of attack a, 
side slip angle p, barometric altitude variations and 
geographical position measurements. 
True air speed V can be derived from differential 
and absolute barometric and temperature 
transducers. The observation model for V follows 
directly from its definition as the resultant of the 
air velocity components U, v and w along the axes 
of F,: 

Jlwz. (2.3-1) v =  U + v  

By definition, the angle of attack is: 

(2.3-2) W 

U 
a = arctan- , 

which is different from CL", the angle of attack 
measured by a n  angle of attack vane. This is due to 
a number of effects, such as aircraft induced air  
velocity components, the rotation of F, about the 
X, and Y, axes, vane dynamics and boom 
bending. The first two effects a n  be described by: 

W - X u q  + Y,Q 
a, = arctan + cup  + Cuo > 

U 

(2.3-3) 
where Cu,, is the upwash coefficient and C, is the 
zero shift of the angle of attack vane. It is a&med 
that the measured angle of attack depends linearly 
on a [36]. In practice, the actual upwash may also 
depend on engine power settings. 

The side slip angle is defined as: 

V fi = arctan 
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and Z, axes are taken into account, the side slip 
vane angle is: 

v + x r - zBp p, = arctan @ + csip + CBo , (2.3-5) 
U 

where xB and zB are the coordinates of the wind 
vane relative to F,, Csi is the sidewash coefficient 
of the wind vane and CBo accounts for the vane 
being positioned outside the aircraft's geometrical 
plane of symmetry as well as for any asymmetry of 
the air flow due to for example rotation in the 
propeller slipstream. The aircraft induced part of 
the measured sideslip angle is assumed to be a 
linear function of p. The quantities Csi and CBo 
should either be given or estimated from the flight 
test data. 

Altitude variations can accurately be measured with 
differential pressure transducers as long as the 
tlight condition is 'quasi stationary'. The 
corresponding observation model is: 

Ah = - z E .  (2.3-6) 

In principle a n y  navigation system (e.g. inertial 
platform, doppler radar, OMEGA or DME) may be 
used for the measurement of the geographical 
position. In the case of ii tlat earth approximation, 
it is often convenient to express the geographical 
position in terms of coordinates xE and yE in a 
vertical earth fixed reference frame F,. 

V, Ah, a, and p, are components of an observation 
vector y : 

y = col(V,Ah,a,,p,) . (2.3-7) 

The observation vector y above reflects the 
configuration of the flight measurement system as 
used in the flight test program discussed in the 
following chapters. If for example the measurement 
system would include an Inertial Reference System 
(IRS) then pitch, roll and yaw attitude angles could 
have been included in y as well. 
Equations (2.3-1) to (2.3-6) may be written in the 
form of the following observation equation: 

(2.3 -4) 

Y = h(xd!) (2.3-8) 
which is again different from what a side slip vane 
would measure, as shown in fig. 2-2. When the 
vane axis of rotation is parallel to the Z, axis and 
the effects of a n  aircraft induced side velocity 
components and the rotation of F, about the X, 
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2.3.2 Linearized Observation Models 

In the stability reference frame F,, the equation for 
resultant velocity V is given by: 

2 v = us + v s  + w s  . l2 
The corresponding linearized from is: 

- -  v = u s .  

(2.3-9) 

(2.3- 10) 

The linearized form of the observation model of 
the angle of attack vane for small deviations from 
the nominal stationary and rectilinear flight 
condition is given by: 

WO 

U0 

uvo + a, = arctan- + 

+ 1 [: -ki+&,)+ U0 U 0  

uo 1 +  - 
I u o I  - 

+ Cup(a0 + Cl) + Cuo 

= (1 + C,)a0 + cuo + (1  + C,,)cx + 
- 

(2.3-11) 
In the nominal flight condition, the vane angle is: 

a = (1 + C,,)ao + Cuo . 
VO 

Subtraction of avo from both sides of equation 
(2.3-11) results in the following linearized 
observation model: 

- - x,s- Y u s -  (2.3-12) 
aV = C,,a - -qs + -ps , 

VO VO 
where: 

The observation model o f  the sideslip vane can be 
linearized in a similar way resulting in: 

I 

since vo=po=O. Substitution of uo=Vocosao and 
transformation of xp, zp, r and from F, to F, 
results in: 

ZPS - - p s  + Cpo 7 V, cosaO 

in which: 

It is very difficult to determine C in flight. This 
can be seen as follows. Assume first a stationary 
rectilinear flight condition with roll angle equal to 
zero. Then, for a strictly symmetrical airflow 
condition, the sideslip must be zero. For propeller 
driven aircraft, however, the airflow cannot be 
assumed to be symmetrical due to the rotation in 
the propeller slipstream. Consequently, a stationary 
rectilinear tlight with zero roll angle does no 
longer imply a zero sideslip angle (in addition, if 
the side slip vane is not mounted in the aircraft's 
symmetry plane, there will also be an offset in p,). 
Let the side slip then be equal to Po and the vane 
indicate a value p, in this condition of zero roll 
angle. In the nomina flight condition with zero roll 
angle mentioned above it  then follows from 
equation (2.3-13) that: 

PO 

- Cp, - lL0 - c,, Po * 

and because (3" is unknown, Cp, is unknown also. 
The consequence o f  this is that the linearized 
observation model o f  the side slip vane, comprises 
an unknown constant Cpo according to: 
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(2.3-14) 
where 6, indicates a deviation of the vane angle 
with respect to p,,. The fact that Cpo is unknown 
actually affects the reconstructibility of the sideslip 
angle. This is discussed in detail in section 3.1.2. 

2.4 Models of Measurement Errors 

The outputs of the sensors used for measurement 
of the system input and output signal components 
are corrupted with time dependent errors. 

The components of the input vector 1 are measured 
by the accelerometer and rate gyroscopes. These 
measurements are assumed to be contaminated with 
constant bias errors as  well as with random errors. 
By careful pre-flight calibration the scale factor and 
misalignment errors can be neglected, although 
these can become important for recordings of long 
duration. The error model is expressed as: 

U =  
-111 

where 

(2.4- 1) - - h - x(i) , 

le inc-x i refers to a discrete time ti, 

- A = col(h~,hy,hZ’hp’hq,h,) 
represents a vector o f  bias error corrections which 
are unknown but assumed to be constant during 
each dynamic flight test manoeuvre and: 

- w = ~ ~ ( ~ x , ~ y , ~ ~ , ~ p , ~ q , ~ ~ )  
represents a vector of additive stochastic 
measurement errors. These errors are assumed to 
be zero mean and uncorrelated, i.e.: 

(2.4-2) 

The measurements of the observation vector are the 
barometric and the vane measurements. The 
barometric measurements V and Ah are assumed to 
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be corrupted only with random measurement errors. 
The bias of these differential barometric 
measurements can be measured by short circuiting 
of the pneumatic sensor systems prior and posterior 
to each flight test manoeuvre, which allows an 
accurate post flight compensation of the bias errors. 
The absolute static pressure measurement defines 
the reference condition and therefore its bias is 
usually not important for parameter identification. 

Usually, the bias and scale factor errors in the vane 
angle transducers are small enough to be 
negligible, because these transducers are relatively 
stable and can be calibrated very well before flight. 
In addition in tlight these transducer errors are 
indistinguishable from the much larger upwash and 
sidewash calibration coefficients discussed in 
section 2.3. Therefore only random errors are 
assumed. 

In summary the measurement errors of the 
observation vector y are all assumed to be: 

II.,,, - - II. + v ’ (2.4-3) 

where the measured variable is denoted by L,,,, and 
y is assumed to be free of bias errors. The 
stochastic measurement errors 1 are assumed to be 
additive, zero mean and uncorrelated according to: 

(2.4-4) 

The final set of measurements are not in the 
observation model presented in section 2.3, because 
they are not used in flight path reconstruction, but 
in parameter identification. 

The total pressure increase Ap, in the propeller 
slipstream was measured with a differential 
pressure transducer of the same type and quality as 
used for the measurement of V and Ah. Therefore, 
zero mean and uncorrelated measurement errors 
can  also be assumed for this variable. The control 
surface detlections 6,, Cie and 6,. transducers are 
also stable sensors, which can be well calibrated on 
the ground, so again zero mean and uncorrelated 
measurement errors can be assumed. 

The above modelling of the measurement errors is 
only valid if the utmost care is devoted to the 
quality of the transducers as well as of the data 
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logging part of the instrumentation system and to 
careful and repeated calibration of all measuring 
channels. The typical accuracies of the 
measurement system used in the flight experiments 
is shown in chapter 7 by the results of extensive 
laboratory calibrations. 

In the design phase of the above measurement 
system much attention was given to the 'quality' of 
the transducers to be used in the system. Perhaps 
one of the most significant benefits o f  using such 
high quality transducers is that models of the 
measurement error characteristics c a n  assume 
relatively simple forms, a typical example o f  this 
are the inertial measurement errors. 

2.5 Conclusions 

In this chapter, different kinds o f  mathematical 
models were presented, namely kinematic, 
aerodynamic, observation and error models. 
Nonlinear as  well as linear versions of these 
models were derived. The nonlinear versions of  the 
models are used for the actual analysis of dynamic 
flight test measurements. Their linearized 
counterparts are used in chapter 3 and 4 for 
analysis of state reconstructibility and identifiability 
of stability and control derivatives, and in chapter 
5 for the optimization of control inputs of dynamic 
tlight test manoeuvres. 
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Figure 2-l(a): Longitudinal aerodynamic force and moment coepients  of the DHC-2 Beaver aircrafr 

measured at a Reynolds number of 0 . 4 7 ~  lo6 on a 1 : l l  scale model in the wind-tunnel. 
as a function of angle of attack a and side slip angle for three different values Ap,/%pV2 as 
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Figure Z-l(c): Lateral aileron and rudder control derivatives as a function 
of angle of attack a, for three different values of Ap/%pV2. 
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Figure 2-2: Definition of side slip angle p and side slip vane angle p,,. 
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3 FLIGHT PATH RECONSTRUCTION 

0 

The problem of flight path reconstruction from 
onboard measurements studied in this volume 
centres around properly combining the kinematic 
model of the aircraft’s state trajectory (and so 
implicitly the aircraft’s tlight path) as  discussed in 
chapter 2, with a compatible set of transducers 
such as inertial, barometric and llow angle 
transducers for the measurement of the input and 
output signals, see chapter 7. The calculation of the 
aircraft’s state trajectory from the recorded input- 
and output measurements is what is called a $& 
estimation or state reconstruction problem in the 
system theoretical literature. The term estimation is 
used if  the calculation of the state vector is based 
on the measurements up to and including the 
present time. The term reconstruction indicates that 
all available measurements of  a complete flight test 
manoeuvre are used to calculate thc state vector. 
Reconstruction can only bc used for post- 
manoeuvre data analysis. However, as a 
‘reconstructed’ state vector is based on past as well 
as future measurements it  will be intuitively clear 
that reconstructed state vectors are in principle 
more accurate than ‘estimated’ state vectors. 
The earliest aircraft state reconstructions used 
barometric airspeed and altitude output 
measurements, e.g. Gerlach [3]. As airspeed and 
altitude measurements define a ‘tlight path’ the 
aircraft state reconstruction problem was 
subsequently called ‘flight path reconstruction’ by 
Jonkers [6]. 
The initial motive behind the development of tlight 
path reconstruction methods was to reconstruct 
certain variables which are difficult to measure 
directly in dynamic tlight conditions. One typical 
examples of such a variable is the angle of attack. 
It soon followed that several transducer bias errors 
could be (and in fact had to be) estimated 
s im u I 1;i neo us1 y . 
Following a flight path reconstruction, the 
reconstructed state variables are used for the 
identification of the aerodynamic model as 
described in chapter 4. Several performance and 
stability and control characteristics of interest may 
subsequently be derived either directly from the 
aerodynamic model o r  by correcting the 
reconstructed aircraft states of the actual tlight 
condition of nonstationary flight to a 
‘corresponding’ stationary tlight condition, also 

using the identified aerodynamic model [5,11]. 

Historical Background 
The first application of state estimation to post 
tlight data analysis was made by Gerlach around 
1960 at the Delft University of Technology. While 
early attempts to measure aircraft performance in 
quasi-steady and nonsteady flight conditions 
suffered from inadequate instrum en ta t ion, he 
applied high accuracy instrumentation techniques 
and showed that the need for direct measurement 
of thc angle o f  attack could be eliminated. This 
stimulated research in and development of so 
called flight path reconstruction methods. 
This early invention was primarily concerned with 
the accurate determination of the angle of attack 
and airspeed during dynamic symmetrical flight 
test manoeuvres. The difficult problem of 
measuring the angle of attack directly in dynamic 
flight conditions by means of vanes was 
circumvented by deriving it  instead as the 
difference between the pitch angle and the flight 
path angle. Airspeed and tlight path angle could be 
derived from horizontal and vertical speed. Pitch 
angle, horizontal and vertical speed as well as 
altitude were all  obtained by integrating functions 
of measurements from a high accuracy pitch rate 
gyro and high accuracy normal and longitudinal 
accelerometers. The initial conditions for the 
integration were determined from airspeed and 
altitude measurements at the steady state initial part 
of the manoeuvre. It soon turned out that the 
results ol‘ the integration suffered from imprecise 
initial conditions and the effect of small unknown 
bias errors of the pitch rate gyro and the 
longitudinal and vertical accelerometers. This led to 
the idea to ‘compare’ computed airspeed and 
altitude with high accuracy barometric 
measurements of these variables. Regression 
techniques were used next in an iterative loop to 
compute least squares estimates of the initial 
conditions and of the unknown bias errors, see [4, 
5,661. Liter, Jonkers [ 61 used the Extended Kalman 
Filter and Kalman Smoother to solve the same 
problem. Since the barometric airspeed and altitude 
measurements define a tlight path he introduced 
the name tlight path reconstruction. Mulder [ 101 
compared Maximum Likelihood solutions with 
those from the extended Kalman Filter and Kalman 
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Smoother. 

Except for probably being the first to demonstrate 
the feasibility of flight path reconstruction methods 
Gerlach also pointed out that these methods may 
serve also to provide a check on instrument 
accuracy and data consistency apart from 
generating estimates of unmeasured or poorly 
measured variables. These items were the primary 
objectives in most of the studies that followed 
Gerlach's original work [3 to 51. All results of 
Gerlach were obtained in low speed symmetrical 
flight conditions. Subsequently the technique was 
applied successfully to high speed flight and 
as y m me tr ica I tl ig h t co nd it  ions . 
Subsequently, probably the earliest uses of state 
estimation techniques for flight path reconstruction 
elsewhere were Wingrove [31 to 331 at NASA 
Ames, Eulrich and Weingarten [34] at Cilspan, and 
Molusis [35] at Sikorsky Aircraft and later Klein 
[36] at JIAFS, NASA Langley. Over the past few 
years, the work in this field has been evolving 
towards the use of more detailed kinematic models, 
the development o f  more sophisticated algorithms, 
and new applications 1311. 

The flight path reconstruction problem can be 
solved by a number of different methods. Several 
important techniques are: 

Weighted Least-Squares - This method solves the 
case where the random error is assumed to be 
present only in the inputs o f  the kinematic model 
as used for llight path reconstruction. This means 
that only system state noise is considered. The 
resulting algorithm, which is of the so-called 
Equation Error type, see Maine and Iliff [ 11 and 
chapter 4 later, is relatively simple and very 
efficient from the numerical point o f  view. 

Extended Kalman FilterlSmoother - A standard 
Kalman filter [ 1901 estimates the skate of a linear 
system with an error model which ;rllows noisc in 
the inputs (system sh te  noise) a s  well a s  noisc in 
the observations. The Kalman algorithm is ia 

recursive formula , which proceeds seq lien tia I I y 
(filters) through the dah .  For ;a fixed time interval 
a substantial improvement in accuracy can be 
obtained by adding a smoothing step in the reverse 
time direction. Nonlinear kinematic equations are 
handled by linearizing ;iround a nominal trajectory 

(usually the current best estimate of the trajectory 
is used) and bias and scale l'actors can be estimated 
by including them as undriven states with unknown 
initial condition, see section 3.1 below and Jonkers 
[61. 

Output Error - This method applies in the case 
where all errors are assumed to be in the 
observations, i.e. there is no state noise. In 
principle the method compares a simulation of the 
actual system with the measurements, while 
integrating so-called sensitivity functions, which 
describe the influence of the model parameters on 
the state. After one simulation run, a 
Gauss-Newton (or alternative) optimization 
algorithm is used to find new estimates of the 
model parameters. In practice this process has to be 
repeated for several iterations, which makes this 
method relatively expensive in computer time. In 
addition the number o f  sensitivity equations can be 
large, which adds to the computer memory 
rcquircmenls. The sensitivity equations can be 
derived analytically. An alternative is compute 
sensitivities directly via finite differences. This 
results in very llexible software programs. 

Filter Error - This method solves in principle the 
same problem formulation as  the Extended Kalman 
Filter/Smoother i.e. with system state noise as well 
as observation noise. In principle it is a 
combination of a Kalman Filter and an Output 
Error method. The Filter Error method is the most 
expensive with respect to computer time of the 
above methods. In addition it is the most complex 
with respect to implementation and therefore 
seldomly used for  practical flight path 
reconstructions. 

Flight path reconstruction as a means of checking 
instrument accuracy and data consistency is now 
used by many tlight test groups [37 to 491 and 
12351. Once a consistent, smoothed set of time 
historics is obtained lrom the data, other analyses, 
such 21s estimation 01 aerodynamic model 
parameters can be readily performed, see chapter 4. 
The data consistency application is now more o r  
less a routine matter and has been extensively 
treated in the literature. Some of the various other 
applications of flight path reconstruction have been 
in the area o f  aircraft accident analyses [SO], 
estimation of wind vector components from high 
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altitude turbulence measurements [Sl] ,  testing of 
high performance aircraft involving high angle of 
attack and spin manoeuvres [52], aircraft modelling 
[9 to 12,61,119] and stall speed determination. A 
good number of additional citations on this subject 
can be found in the papers of Chapman and Yates 
[189]. 

A number of computer programs are available for 
state estimation, but a particular reference must be 
made to the package SMACK (SMoothing for 
Aircraft Kinematics) [69] developed a t  NASA 
Ames research centre, DEKFIS (Discrete Extended 
Kalman Filter Smoother) developed at  the Systems 
Control [44], FTDA (Flight Test Data Analysis) 
[30] developed a t  the Delft University of 
Technology and FPR (Flight Path Reconstruction) 
package developed a t  NLR Amsterdam [217]. 

Although it is possible in principle to apply any of 
the methods discussed above to the solution of the 
flight path reconstruction problem a choice is made 
in the remaining part of this chapter for the 
Extended Kalman Filter/Smoother for the following 
reasons. First the Extended KaIman Filter/Smoother 
allows to account for system noisc as well as 
observation noise. The second reason is that this 
method has been well proven in many actual 
applications to flight path reconstruction problems. 
We first start discussing the application of the 
Extended Kalman Filter/Smoother to the tlight path 
reconstruction problem in section 3.1, and then 
analyze some of the recorislruclihility 
characterisfics in section 3.2.  This analysis is 
based on the linearized form of the kincmatical 
model for tlight path reconstruction as derived in 
section 2.1. We continue with a practical example 
in section 3.3 and conclusions in section 3.4. 

The Extended Kalman Filter/Smoother algorithms 
used for flight path reconstruction are listed in fu l l  
in appendix C. More details can be found in the 
extensive Kalman filter literature, for instance Sage 
and Melsa [71] for thcoretical background o r  
Brown a n d  Hwang [ 2341 for practical 
implementation details. 
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3.1 Nonlinear Flight Path Reconstruction 

In this section, extended Kalman filtering and 
smoothing algorithms are applied to the solution of 
the nonlinear flight path reconstruction problem. 
First we will discuss the basic linear Kalman filter 
in section 3.1.1. Subsequently in section 3.1.2 it is 
shown that the problem must be re-formulated to 
fit the Kalman filter model. The application to the 
nonlinear flight path reconstruction is discussed in 
section 3.1.3 and the estimation of the unknown 
parameter vector is discussed in section 3.1.4. For 
convenience a summary of the Kalman filter and 
smoother algorithms is given in appendix C, 
together with a description of the application of 
Maximum Likelihood estimation to deterministic 
nonlinear tlight path reconstruction. Finally section 
3.1.5 describes how some additional quantities, 
which are needed for aerodynamic model 
identification, can be derived from the 
reconstructed tlight path. 

3.1.1 Basic Kalman Filter 

This subsection discusses the basic linear Kalman 
filter as first published by Kalman [ 1901. This filter 
is based on the linear stochastic differential 
equations: 

In practice a11 measurements are sampled with a 
fixed time step At and the data processing is done 
by sequentially processing these samples. This 
means that the discrete form of (3.1-1) is required. 
The discrete form of the linearized state equations 
is : 

x(i +1) = 

yI,Ji) 

-x(i) + Tu .:(i) + Tw -E(;) , 
(3.1-2) - - 

= He&(;) + J *x(i) + ~ ( i )  . 

In  which the transition matrix a, the deterministic 
input distribution matrix Tu and the stochastic input 
distribution matrix Tw can be calculated from F, G, 
and G, as shown in appendix C. The process noise 
E(i) and the measurement noise x(i) are assumed 
to be zero mean and white gaussian noise with 
covariances V,, and V, respectively. 
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The Kalman filter that produces the optimal 
estimate of the state of this system is described in 
the following. When the estimate of the state at 
time step ti, i ( i  Ii), is known, the estimate at time 
step ti+l, i(i+l Ii), is: 

A A 

- x(i+lli) = @*x(ili) - + r u w ( i )  - . (3.1-3) 

This is called the propagation step. The covariance 
matrix P(i+l Ii) of the state at time step ti+, follows 
from a known P(i Ii) as: 

P( i+l l i )  = alP(ili)alT + rwvwrf . (3.1-4) 

At this moment the measurement$ at t i+l can be 
used in the update step to improve the state 
estimate at time step ti+,  by: 

A A 

- x(i+I li+I) = - x(i+l Ii) + 
A 

+ K(i+1) [yJi+l) - Hx(i+lli)  - Ju(i+l)  , - - 1  
(3.1-5) 

where the gain matrix K(i+l) is calculated from the 
covariance matrix P(i+l 1;) by: 

K(i+l) = P(i+1 li)H [HP(i+l l i )HT + V-1-l 

(3.1-6) 
The covariance matrix of the improved estimate 
P(i+l J i+ l )  is calculated as: 

P( i+l l i+l)  = [I - K(i+l)H] P(i+lli) . (3.1-7) 

These relations are applied recursively, starting 
from the first time step to by using the initial 
values for the estimate and the covariance matrix: 

A 

- x(OI0) = - 0 , (3.1-8) 
P(OI0) = Po . 

The estimate of the state vector at the final time t N  

i(NIN) is based on all measurements betyeen tu 
and t,, but for all earlier times the estimate i(i Ii) 
is based on only a part of the available 
measurements. The filter estimate can be improved 
by adding a Smoother step to the algorithm. One 
implementation of a Smoother is to start at the 
final time t, and then work backwards towards to, 
all the while correcting the cstimatcs for the 
information contained in the measurement after the 
current time, resulting in a smoother estimate 
- k(i/N), which for all ti has ii lower covariance 
P(i IN) than the filter estimate i ( i  Ii) with P(i Ii). 

3.1.2 Treatment of Input Noise 

The standard Kalman filter is based on the linear 
stochastic differential equation given by (3.1-1). In 
section 2.1 a set of differential equations was 
derived that relates the aircraft state vector to the 
input vector of specific forces and angular rates 
(2.1-8b), repeated here: 

- x =f(r!,x) > (3.1-9) 
- x(0) = IC, . 

where the state vector and input vector were 
defined in (2.1-8a) as: 

If  the input vector 1 and the initial value of the 
state vector & are precisely known then the state 
vector can be reconstructed by simple integration. 
In reality not all components of the initial value of 
the state are measured and the measurements are 
corrupted with errors. The input vector 1 is usually 
completely available, but its measurement is 
corrupted by errors such as bias error and random 
noise. 

In sections 2.3 and 2.4 observation models and 
measurement error models were derived leading to 
equation (2.4-1) for the measurements E,,,, of the 
input vector and to equation (2.4-3) for the 
measurements of the state vector. The total 
observation vector is ‘then: 

y 111 ) \-I 
where the vector includes all the unknown 
parameters like biases, scale factors, vane 
calibration coefficients, wind components, etc. The 
vector accounts for the noise on the 
measurements of the input vector %,,, and 1 
accounts for the noise on the measurements of the 
observation vector L,,. 

The problem with this formulation is that the ‘true’ 
input vector 1 is not available for use in equation 
(3.1-1). It is therefore convenient to transform the 
formulation into an equivalent form by not using 
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the ‘true’ but the ‘measured’ input vector s,,, in 
(3.1-1). Using (2.4-1) this means that the system 
error model is now considered to be driven by 
S,,,+W+~ instead of by U-, where 

and is the bias error error correction on the 
measurements of the original 1. (It should be noted 
that forms part of e.) The new input vector s, is 
by definition known exactly, but the noise vector 
- w and the the bias error correction are now seen to 
be driving the system, e.g. that is treated as 
system noise in (3.1-1), as  was already implied by 
choice of name. The system differential equation 
now becomes: 

and the observation equation becomes: 

Y,,] - - h(x.!!, 2) + v . (3.1 - 14) 

The observation vector L,,, now no longer includes 
direct measurements of the input vector s,,,, buts , , ,  
is still needed in the observation equation, because 
the angular rates and specific forces still appear in 
the observation models derived in section 2.3. 

The equations are now in a form which is suitable 
for the application of Kalman filter theory. I t  
should be added here that  there are other 
approaches for this problem, see for instance Bach 
[40 to 431. 

3.1.3 Linearized Kalman Filter 

Now that the system equations are in the proper 
form the implementation of the nonlinear Kalman 
filter will be discussed. Initially, the estimation of 
the unknown parameter vector will be postponed to 
the next subsection. 

The general flight path reconstruction problem is 
nonlinear. However, in order to apply Kalman filter 
techniques, the differential equations describing the 
errors must be linear. Three approaches will be 
discussed in the following. 

In the first approach the kinematic and observation 

equation are linearized around a nominal steady- 
state flight condition. The problem is usually 
defined in the stability axis system using 
perturbation variables referred to the steady-state 
condition. This necessitates the calculation of the 
matrices of partial derivatives F,G,, G,, H and J 
which in this case are constant. This approach is 
assumed in appendix C.l and is also used in the 
reconstructibility analysis in section 3.2. This 
approach is not used for practical flight path 
reconstruction, because for linearity reasons only 
small deviations from the steady-state flight 
condition are allowed. 

In the second approach i t  is assumed that there is 
ii nominal trajectory x”””’ which is close to the true 
solution and in addition satisfies the system 
differential equation. This can be done by 
integrating (3.1-9) using U,,, instead of 1. If the 
errors in U,,,,, are small this will be reasonable. Then 
the perturbation can be defined as: 

(3.1-15) 

By linearizing the system equations we obtain: 

(3.1 - 16) 

where F, G, and H now are time-varying matrices 
of partial vector derivatives of the functions 
f(x,u,w) and h(x,u) with respect to the state vector 
- x and the noise vector W. Since the nominal 
trajectory satisfies the differential equations I,,, 
does not affect the perturbation and so no longer 
appears in these equations. 
This approach has been succesfully applied to the 
updating of inertial navigation systems. The INS 
output can be directly used as a nominal trajectory, 
which will be reasonably close to the true 
trajectory, because the sensor errors of an INS are 
very small, see Brown and Hwang [234]. 

In order for the linearization to be accurate, it is 
important that the nominal trajectory is close 
to the actual trajectory. This is very difficult to 
achieve with flight test sensors. The third approach 
is then to use the Exlerided Kalman Filter (EKF) 
where in each update step the nominal trajectory is 
set cqual to the last estimate of the slate vector and 
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the error estimate is reset to zero. In practice the 
update correction is applied directly to the 
prediction of the actual system state i(i+l Ii) 
instead of to the estimate of the perturbation 
- %(i+l Ii), see equation (C.2-8). Because the error 
estimate is reset to zero, the propagation equation 
(3.1-3) now becomes trivial and it  is possible to 
directly integrate the system differential equations 
to the next time step using (C.2-2). This has the 
additional advantage that it is no longer necessary 
to pre-calculate a nominal trajectory before starting 
the Kalman filter procedure. 

When the solution has converged this will ensure 
that the linearization will remain valid. However, 
the EKF may diverge when the estimate of the 
state is too far from the true solution, for example 
because of a poor initial estimate for the state E. 

In all the presented approaches, it is necessary to 
cdculate matrices of partial derivatives. Analytical 
differentation can be done by hand which must be 
done with extreme care to prevent human errors. 
Here it is preferable to use a symbolic algebra 
package such as Maple o r  Mathematics, which will 
give correct answers, as long as the problem is 
entered correctly. A good alternative to analytical 
differentation is to calculate numerical dcrivatives 
during each step of the algorithm. Although this is 
expensive in computer time, this h a s  the advantage 
of much tlexibility i f  the system equations are 
changed frequently, because it  can eliminate the 
need to change the software. 

3.1.4 Estimation of Unknown Pariiineters 

As stzted earlicr the system equations also contain 
ii vector of unknown parameters which includes 
biases, scale factors etc. I f  this is taken into 
account the flight path reconstruction problem 
becomes a joint state arid paratneter estirnution 
problem. This can be handled in the Kalman fil ter 
approach by augmenting the state vector with the 
unknown parameter vector as: 

and adding 

A = n  

(3.1 - 17)' 

(3.1-18) 

to the differential equations. If one (or more) of the 
unknown parameters is not constant, but varies 
with time in an unpredictable manner, this 
component 8, can be modelled as  ii Markov 
process: 

1 e, = ---ek + w o k .  
'k 

(3.1-19) 

Here tk is the correlation time that governs the 
temporal evolution of 8,. If t k  is large with respect 
to the observation time the evolution of 8, will 
approximate a random walk. These models have 
been used to describe accelerometer and gyroscope 
drift, where tk turns  out to be large (1 to 10 hours), 
see Brown and Hwang (2341. 

The same Markov model can also be used to 
describe the variation of the wind vector 
components with time and the change in the 
barometric pressure reference. In combination with 
absolute position measurements (e.g. GPS) this 
allows succesful Flight Path Reconstruction in less 
favorable wheather conditions, for tlight. tests with 
large changes in altitude and for longer flight 
record i ngs. 

Adding unknown parameters must be done with 
great care, because too much added parameters will 
soon lead to nonreconstructible components in the 
augmented state. This is analyzed in detail in 
section 3.2. Furthermore, adding many constant 
parameters makes the Extended Kalman filter very 
prone to divergence. The reason for this is that 
when ii paramcter is modelled iis ii constant, the 
Kalman filter covariance of this parameter will 
converge to zero and this will cause the gain 
matrix K(i) also to converge to zero. In effect the 
Kalman filter will start to ignore the observations 
after a certain amount of time. This can be avoided 
by adding some artificial noise by using a Markov 
model instead of a constant parameter, since now 
the filter covariance and consequently the gain will 
no longer converge to zero. 

For convenience the prime on the augmented state 
- x will be dropped in the following discussions. 

The Extended Kalman filter and smoother gives a 
solution of the nonlinear system state 
reconstruction problem, which takes the stochastic 
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measurement errors of accelerometers and rate 
gyros into account. However, in practice these 
measurement errors are very small. I f  these errors 
are assumed equal to zero (i.e. x=OJ the flight path 
reconstruction problem becomes an Output Error 
problem. This makes it  possible to formulate the 
flight path reconstruction problem in terms of the 
problem of calculating Maximum Likelihood 
estimates of the unknown parameters. This is 
described in more detail in appendix C.3. 

In earlier work [ 101, extended Kalman filtering and 
smoothing solutions of the nonlinear tlight path 
reconstruction problem have been compared to the 
corresponding solution resulting from thc Output 
Error method. For the case o f  a tlight test 
measurement system which was (with respect to 
accuracy) equivalent to the system used in the 
present study, both solutions proved to be virtually 
identical. 

The actual application of the extended Kalman 
filter and smoother to tlight path reconstruction in 
an actual flight test program is presented in section 
3.3, together with some characteristic results. 

3.1.5 Calculation of Additional Quantities 

The results of the flight path reconstruction are 
used for the calculation of quantities needed for 
aerodynamic model identification as discussed in 
chapter 4. 

With (2.3-1) airspeed is c;ilculated as: 

v =  /m U + v  + w  , 
(3.1-20) 

A 

in which the superscript indicates ii reconstructed 
variable. Angle of attack and side slip angle are 
determined with (2.3-2) and (2.3-4) as: 

A 
A 

W a = arctanT , 
U 

(3.1-21) 

A 
A 

(3.1-22) V @ = arctan /m. 
Reconstructed bias error corrections are used to 
correct 4 , p,,, and q,,,. Aerodynamic forces are 
calculated '&cording to (2.1-4) as: 

A 

X = m(Ax + A,) , 
m 

A 

Y = m(A + Ay) , Y 111 
A 
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(3.1-23) 

Z = m(AZ + A,) , 
111 

and subsequently, the dimensionless aerodynamic 
force coefficienks C,, Cy and C, are calculated by 
division by %pV2S. 
Aerodynamic moments can be calculated with 
(2.1-2). This requires differentiation of the 
measured angular rotation rates since angular 
accelerations are not measured directly. 
Furthermore, the moments and products of inertia 
must be known. The relations used for the 
calculation of the aerodynamic moments read: 

For aerodynamic model development, see section 
4.2, i t  is necessary to know the time histories of a 
and b. These variables can be calculated by 
numerical differentiation from &and fi. Alternately, 
thcse variables can also determined by 
differentiation of (3.1-21), resulting in: 

A i  A i  
i 

uw - w u  (3.1-25) a = A  A ,  

u2 + w2 
and by differentiation o f  (3.1-22), resulting in: 

A A A A A A  A A  
i 

(U2 + W*)V  - v(uu + ww) (3.1-26) 

A &cF ' =  A A 

(U2 + v2 + w2) 
. .  

With (2.1-5), ?, fi and 6 can be found according 
to : 
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U = 

A n n n  n 

u = AXI,, - gsiii0 - (q,]] + hq)w + rlnv , 

A n n n  n n  

v = A + A y  + gcososin@ - (TI,, + hr)u + 
Y 111 

n n  

+ + h p ) W  (3. 
A n n n  n n  

w = AZI,] + A,+ ~ C O S ~ C O S @  - @,,, + hp)v + 

n n  

+ (qm + A,)" . 

- " I "  

"2 

...... (3.2-4) 

-27) 

concept can be used to analyze more realistic 
configurations. 

3.2.1 Reconstriictible Subspaces 

Let us discuss the reconstructible and 
nonreconstructible subspace of state vector from 
input and observation measurements [70]. Consider 
the linear stochastic system: 

with the observation model: 
3.2 Reconstrectibility Analysis 

In the case of 'small' perturbations the kinematic 
system model and the observation models for flight 
path reconstruction as developed in chapter 2 may 
be linearized, see (2.1-15), (2.3-11) and (2.3-13). In 
this case, flight path reconstruction constitutes a 
linear reconstruction problem. Furthermore it  
follows that in the linear case the reconstruction of 
the longitudinal and of the lateral state vector 
components become independent reconstruction 
problems. In general, i t  may not be possible to 
reconstruct all componenls of the state vector. The 
ultimate objective of the present ;inalysis will be to 
determine which 'parts' of the state vectors are 
reconstructible whether longitudinal or lateral. 

In section 3.2.1. it is shown how to derive the 
reconstructible subspaces (so called the 
reconstructible 'parts' of the state vector) 
corresponding to a particular linear system and 
observation model. Reconstructibility depends of 
course on the number and particular type of 
transducers used in the reconstruction, and so 
depends on the 'observation configuration', as 
expressed in terms of a n  observation model. The 
results are applied in section 3.2.2, resulting in 
reconstructible subspaces for the longitudinal and 
for the lateral flight path reconstruction problcm 
for different observation configurations. 

It is to be noted here tha t  the analysis presented in 
this section is a tutorial introduction meant to 
explain the principles of reconstructibility analysis. 
In the actual practice of flight testing, the 
instrument configurations can be much more 
elaborate than the simple configuration described 
here. Nevertheless, the same reconstructibility 

Y,,, = Y  + v  
= H * ~ + J * ~ + ~ ,  

(3.2-2) 

in which 5 2 and y denote the state, input and 
observation vector of dimension n, s and m 
respectively. The vectors wand  1 denote system or 
process noise and additive measurement noise 
respectively. The elements of the system matrix F, 
the input matrix G and the observation matrices H 
and J are known. Starting from a n  initial condition 
- x(Q=& which is unknown, the system is excited 
by a known input signal i( t) ,  tE[t&]. In order to 
find a basis for the reconstructible subspace of J 

the so called reconstructibility matrix Q is formed 
according to: 

Q =  (3.2-3) 
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part and a nonreconstructible part according 
to: 

k;/ l u 2 l  
The CO p nents x1 can be reconstructed to a high 
precision from exact recordings of the input signal 
- u(t) and observation signal y(t), tE[t,,t,] [70]. The 
obvious choice for a n  algorithm to solve the linear 
longitudinal and lateral flight path reconstruction 
problems is a Kalman filter and smoother [70 and 
711. 
We study now the linear llight path reconstruction 
in the context of slate reconstruction. The 
associated system and observation models (3.2- 1) 
and (3.2-2) are derived from the linearized 
kinematical model of section 2.1.3. This model can 
then be divided into two independent models, 
governing the longitudinal and lateral motion 
respectively. This means that  for the linear case, 
the reconstruction of  the longitudinal motion is 
independent of the rcconstruction of  the lateral 
motion. 

3.2.2 Longitudinal Case 

In the stability reference frame F,, the longitudinal 
and vertical accelerometer and pitch rate gyro 
measurements can be written as: 

(3.2-6) 

- - 
- A  - w  = q s  

where the superscript denotes deviations from 
nominal values belonging to the nominal flight 
condition of steady straight flight, h denotes 
(small) bias error corrections and w denotes 
random measurement noise. Substitution of & 

S'. 4, and is in the linearized kinematical rclations ot 
the longitudinal motion (2.1-15), results in: 

qs - qs s I l l  

0 

xT = cosyo-us + Vosiiiyo*u - Vosinyo.O + W 

= hqs + qsm + w  4s ' 
- - - 

X T  ' - - - - 
z T  = s i n y o ~ u s  + V,cosy,-a - Vocosyo~O + WzT . 

(3.2-7) 
The unknown bias error corrections h h, and 
hqs, and the longitudinal components of the 
atmospheric wind W and W, *, are assumed to 
be constant in the course 01 one tlight test 
manoeuvre. This assumption may be expressed in 
terms of the following constraints: 

XS' 

XT 

(3.2-8) 

W Z T  = 0 .  

Eqs. (3.2-7) and (3.2-8) may be interpreted to 
represent the following linear d y n a m i a l  system: 

(3.2-9) - x = F.x  - + Gu*u - + G w - w  - , 

where represents ,a so-called augmented state 
vector, composed of the variables G,, 6, 0, XT and 
2,- of equations (3.2-7) and the parameters hxs, hZS, 
A,,, WxT and W. of equations (3.2-8): 

L T  

(3.2-10) x = u s , u , e , x . , . ,  z.,. ,... - (- - - -  - 

- U represents the input  vector to the system: 

(3.2- 11) 

* 
Note that  lower case w is used to indicate 

measurement noise, while upper case W is used to 
indicate atmospheric wind components. 
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H =  

and represents system noise [70]: 

"1 

H2 
i . 

- w = col(w x s  ' W Z S  'wqs) * (3.2-12) 

From section 2.3 and the list of measured variables 
given in table 3-5, it follows that the available 
observations pertaining to the system (3.2-7) and 
(3.2-8) are airspeed, angle of attack, geographical 
position and altitude variations with respect to a 
nominal altitude. The corresponding observation 
vector is: 

(3.2-13) 

From section 2.3.2. i t  follows that  the 
corresponding linearized observation model may be 
written as: 

y = H.2 + J - U  . (3.2-14) - 
For reasons explained below, the observation 
matrix H is partitioned into 4 matrices of 
dimension lxn, n denoting the dimension of the 
augmented state vector defined above: 

(3.2-15) 

I H 3  I 
lH41 

It may be ascertained that H is empty except for 
the following non-zero elements: 

h2,2 = c u i  ' (3.2- 16) 
h3,4 = ' 
h4,5 = 1 . 

Now it is assumed that the angle of att ick vane has 
been calibrated prior to the flight tests, so that C 

41 is known. For each individual row of H, it IS 
possible to define a corresponding reconstructibility 
matrix. This leads to the reconstructibility matrices 
Qi, €or each row H i  of the observation matrix H .  It 
is possible to derive from each matrix Qi the 
reconstructible subspace of the state vector 5 which 
corresponds to a scalar observation yi. Knowledge 
of the reconstructible subspaces of & corresponding 
to individual elements y i  of the observation vector 
E allows an easy comparison of different feasible 

observation configurations, i.e. combinations of 
elements ,of L with respect to the resulting 
reconstructible subspace of 5 as shown below. For 
example, the reconstructibility matrix Qi 
corresponding to a particular row Hi is: 

(3.2-17) 

Let UIi  tenote the matrix of independent rows in 
Qi and xIi=U,, the corresponding reconstructible 
state vector. ?he reconstructible state vector of an 
observation configuration consisting of a set of two 
or more rows of H, i.e. two or more elements of 41, 
may then be constructed from the independent 
rows in the corresponding set of matrices Ul , .  This 
procedure allows a comparison of different 
observation configurations with respect to the 
corresponding reconstructible subspaces of the state 
vector. 

The system matrix F of the linear longitudinal 
flight path reconstruction model (3.2-7) and (3.2-8) 
is rather sparse. This makes it easy to derive the 
analytical form of the reconstructibility matrices Qi 
corresponding to each of the elements y i  of y. The 
matrices Q, are shown in Appendix B for the case 
of a nominal tlight condition of stationary, 
rectilinear flight. Using these matrices, it is 
possible to determine the set of independent rows 
U,; and the corresponding components of xii for 
each of the matrices Qi. The reconstructible parts 
of the state vector & are shown in table 3-1, for the 
case of nominally horizontal flight conditions., i.e. 

Next, the reconstructible state vectors 5; for three 
different extended observation vectors are shown in 
table 3-2. I t  is seen from the first column that a n  
observation con figura tion consisting of airspeed 
and angle of attack observations results in an error 

in the reconstructed trajectory of 6. The 

cause for this error is that hXs cannot be 
reconstructed. Because of the assumption made in 
(3.2-8) this error is constant. Inspection of the 
second column shows that the same error is also 

y0=O. 

-'.A g x s  
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0 

present in an observation configuration consisting 
of airspeed and altitude observations. Addition of 
observations of the longitudinal geographical 
position, as in the observation configuration of the 
third column, has no effect in this respect. 
It appears that for any  observation configuration, 
h is nonreconstructible. The practical implication 
is that the quality of the longitudinal accelerometer 
should be such that hXs is small enough to be 
negligible. 

XS 

At first sight, the second column of table 3-2, 
corresponding to the observation configuration with 
airspeed and altitude observations, seems to 
compare unfavourably to the first column, 
corresponding to airspeed and angle of attack 
o b s e r v a t i o n s ,  b c c a u s e  of a n  e r r o r  

--*A 1 + -.WL.r 1 in the reconstructed tnjectory 

of the angle of attack 6. This is because h as 
well as W cannot be reconstructed. As mentioned 
above, however, the effect of h can be kept small 

X S  
by using a high quality accelerometer, sce section 
3.3. The magnitude of WLT, on the other hand, 
depends on atmospheric weather conditions. In 
general, dynamic tlight tests are made in fair 
weather dominated by ant i  cyclonic atmospheric 
pressure patterns. In such weather conditions, 
v e r t i d  winds are associated with ;I downward 
motion of the atmosphere called subsidence, which 
is of the order of 0.1 to 0.2 m/s. Consequently, in 

general, the term i . w  can be neglected when 

V, is not too small. 

VO g X S  

3 
ZT 

v, ZT 

The advantage of using the observation 
configuration of the second column, rather than the 
observation configuration of the first column, is 
that while altitude variations can be accurately 
measured with barometric pressure transducers, it 
is much more difficult to measure the angle of 
attack. In general, angle of attack measurements 
must be corrected for aircraft induced air  velocity 
components. This nccessitates ii time consuming 
and cumbersome calibration of the angle of attack 
sensor in a series of strictly stationary rectilinear 
flight conditions. Furthermore, the results of such 
a calibration apply, a t  least in principle only to 
stationary flight conditions. This means that  
additional and unknown errors may be associated 
with the extrapolation of the rcsults of the 

calibration to dynamic tlight conditions. 
From the third column, it  follows that addition of 
longitudinal geographical position measurements in 
the observation model does not change the 
reconstructibility of the angle of attack cl of the 
observation configuration of the second column. 
Although k,. and W have become reconstructible, 
they are not of interest for aerodynamic model 
identification, see chapter 4. 
The above arguments show that the use of second 
observation configuration is more appropriate than 
the other two configurations for flight path 
reconstruction of actual flight test data, see sections 
3.2 and 3.3. The above analysis should also lay 
some foundation to derive criteria for the 
formulation of observation configuration. 

XT 

3.2.3 Lateral Case 

Analogous to (3.2-6) the lateral accelerometer, roll 
and yaw rate gyro measurements along and about 
the axes of F, respectively, may be written as: 

(3.2- 18) 

- - - - r S  - A  - w  . r s 111 ‘S - ‘ S  

Again, the superscript denotes deviations from a 
nominal tlight condition of steady rectilinear flight. 
Substitution in (2.1-16) results in: 

1 1 -  1 i p  = -*Ars + - - r  +-*w ‘ S  ’ 
cosyo cosy, cosy, 

- 

+ w + taIIyo’wr 
P S  S ’  

- - - 
y . r  = v0-p + vocosyo’lc) + WYT . 

(3.2- 19) 
Equation (3.2-19) represents a linear system with 
state vector components 6, 9, ‘p, and YT. In 
principle the bias error corrections h A, and hrs 

- 

YS’ 
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and the lateral component of the atmospheric wind 
Wyr are unknown, but may be assumed to be 
constant in the course of one tlight test manoeuvre. 
This assumption can be expressed in terms of the 
following constraints: 

(3.2-20) 

= o .  
wYT 

An additional parameter Cp appears in the 
linearized observation model of the side slip vane, 
see equation (2.3-13). This parameter is also 
assumed to be constant in the course of one tlight 
test manoeuvre, resulting in the following 
additional constraint: 

c = o  Po 
(3.2-21) 

Analogous to the longitudinal case discussed 
above, an augmented state vector e may now be 
composed of the variables p, q ~ ,  $s and y.,. in 
equations (3.2-19) and the parameters hYs, h,3, AIS, 
WyT and Cp, in (3.2-20) and (3.2-21) according to: 

1 - 
- = p I '1' ~ 4 )  S > y T > hcys 1 hPS 7 9 cpo 9 wy.,. * 

(3.2-22) 
Next, equations (3.2-19), (3.2-20) and (3.2-21) may 
be interpreted to represent the following linear 
dynamical s ys tem : 

(3.2-23) 

in which 1 denotes the following system input 
vector: 

(3.2-24) 

and the vector represents aga in  system noise, 
accounting for the effects of input signal 
measurement err0 rs : 

(3.2-25) 
YS P S '  ' S  1 .  - w = col(w , w  

From section 2.3 and the list of measured variables 
shown in table 3-5 i t  follows that  the available 
observations pertaining to the time dependent 
variables and constant parameters in equations 
(3.2-19), (3.2-20) and (3.2-21) respectively, are 

sideslip vane angle, yaw angle and lateral 
geographid position. The corresponding linearized 
observation variables constitute the following 
observation vector: 

(3.2-26) 

Using equation (2.3-14), the corresponding 
linearized observation model can be written as: 

y = H . 5  + J . 1 .  (3.2-27) 

Analogous 1.0 equation (3.2-14), the observation 
matrix H may be partitioned into 3 matrices of 
dimension lxn, n denoting the dimension of the 
augmented state vector defined above: H=lj. (3.2-28) 

The o se ation matrix H is empty except for the 
following non-zero elements: 

The reconstructibil ity matrices Qi corresponding to 
the rows Hi in the observation matrix H, have been 
derived in appendix B. Subsequently, analogous to 
the longitudinal case discussed above, the 
components of the reconstructible state vectors L;. 
can be determined. The reconstructible parts of thd 
sbite vector are shown in tiible 3-3, for nominally 
horizontal tlight conditions, i.e. yo=O. The 
reconstructible state vectors E;. for three different 
feasible extended observation ' configurations are 
shown in table 3-4. 

From table 3-4, i t  follows that a l l  these observation 
configurations generate a constant error in the 
reconstructed side slip angle. In  this respect, there 
is n o  improvement ;is compared to the first column 
o f  bible 3-3, where only the sideslip vane 
observations are employed. The only advantage of 
adding yaw angle and lateral geographical position 
observations a s  in the third column of table 3-4, is 
the reconstructibility of the bias error correction 
A,. In the flight path reconstruction of actual flight 
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a 

test data, however, no attempt was made to 
estimate A,, and only sideslip vane observations 
were included in the observation model, see section 
3.3. 

3.3 Practical Flight Path Reconstriiction 

The analysis in section 3.2 of the longitudinal and 
lateral flight path reconstruction problem was based 
on linearized versions of the kinematic and the 
observation model. The significance of this analysis 
lies in the possibility to determine reconstructible 
subspaces in the augmented state space for 
different observation modcl configurations. For 
actual flight path reconstruction, however, the more 
precise nonlinear kinematical relations (2. 1-3), 
(2.1-5) and (2.1-6) arc used. In addition these 
relations are extended to include the effects of the 
curvature and rotation of thc earth, see ref [13]. 

In this section the results of the reconstructibility 
analysis are applied in 3.3.1 to define the model 
for a n  example rneasurcment configuration. 
Subsequently the initialization of the Kalman filter 
is discussed in 3.3.2. Finally some actual results 
from flight test% are presented. 

The example of a successful tlight path 
reconstruction and the associated high accuracy 
tlight test measurement system is taken from a 
flight program of the DHC-2 Beaver [ 14,161. A list 
of measured variables is shown in table 3-5. 

Flight path reconstruction may be interpreted as a 
particular example of the reconstruction of the stiite 
vector of a nonlinear, dynamical system model. 
Table 3-6 presents the elemenk of the state vector 
3 input vector s,, and observation vector y of the 
system model. 

Application of the extended Kalman filter and 
smoother requires a priori specification of the 
covariance matrices of the process noise V,, and 
the observation noise V,. In  tlight path 
reconstruction, process noise is duc to random 
errors of acceleromcter and rate gyro 
measurements. 

The flight test measurement system consist of 
separate channels for each of the variables to be 
measured. It may therefore be assumed that 

measurement errors of different variables are 
uncorrelated. This means that V,, and V, are 
diagonal, see also section 2.4. Their elements can 
be estimated from the residuals of laboratory 
calibrations. 

Perhaps one of the most important design 
considerations of the flight test measurement 
system was the minimization of parasitic 
sensitivities of recorded flight test data to 
‘environmental factors’ which occur in actual 
flight, such as mechanical vibrations, temperature 
and prcssure variations and electro-magnetic 
interference [ 16 and 171. It is impossible, however, 
to build an  instrumentation system which is 
completely insensitive in this respect. Parasitic 
sensitivities lead to additional contributions to the 
measurement errors of the instrumentation system 
during flight. In the present application of the 
Kalman filter and smoother these extra 
measurement errors were taken into account by 
substituting for the diagonal elements of the 
covariance matrices V,, and V,, substantially 
larger values than the corresponding estimates 
obtained from laboratory calibrations. 

The values as used in the present state 
reconstruction problem are listed in table 3-6 in 
terms of standard deviations, i.e. square roots of 
the diagonal elements o f  V,, and V,. 

3.3.1 Flight Path Reconstriiction Model 

The system and observation model for the 
nonlinear tlight path reconstruction problem is 
derived as follows. With (2.4-1) the specific 
aerodynamic force along X, can be written as: 

A, = A,,,, + hx + w, . (3.3-1) 

Similar expressions hold for the specific forces A, 
and A, as  well as for the angular rates p, q and r. 
Substitution in (2.1-5) defines with (2.1-3) and 
(2.1-6) a nonlinear stochastic system with state 
vector x as defined earlier in (2.1-8): 

x = col U ,  v ,  w ,1p, e ,  Q, , XE, Y E  , Z E  ) , (3.3-2) - ( 
input vector U,,,: 

and process noise due to the stochastic 
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accelerometer and rate gyro measurement errors as 
defined in (2.4-2): 

w = ~ I ( W x , W y  9 w , ,  w p ,  w q ,  wr)  , (3.3-4) 

From inspection of the list of variables determined 
in flight as given in table 3-5, it  follows that the 
most complete observation vector would include 
airspeed, change of altitude, angle of attack, side 
slip angle, yaw angle and geographical position: 

y = C O l ( V >  A l l ,  a,, B,, 11, X E ,  Y E )  * 
(3.3-5) 

The corresponding nonlinear system and 
observation models conlain a relatively large 
number of unknown parameters: the components of 
the constant atmospheric wind in (2.1-6), the 
accelerometer and rate gyro bias error corrections 
in (2.4-1) and the parameters in the observation 
models of the vane measuremenls a, and p,. This 
results in the augmented state vector to consist of 
26 elements: 

- x = col(" , v ,  w ,IC), 8 ,I$ , X E ,  YE,+' ... 

W X E ,  W Y E ,  W Z E >  Ax 7 Ay 9 A,, Ap, hq,  hr, *.. 

C", , c,, 9 x, , Y, t cs, > cp, 9 x 7 z p 6) 
(3.3 -6) 

Additionally one can think of scale factors for vane 
measurements, accelerometers, rate gyros to be 
included in the state vector. Because of its high 
dimension, the reconstruction of this augmented 
skite vector would be rather expensive in terms of 
computing time. Furthermore, as shown in section 
3.2, E is not completely reconstructible, a t  least for 
the case of small amplitude tlight test manoeuvres 
for which linearized kinematical and observation 
models are valid. For aerodynamic model 
identification, however, not all elemenh of x need 
to be known. This leads to the possibility to reduce 
the dimension of x as shown below. 

1.  If the horizontal distance traversed in the 
course of a tlight test manoeuvre is small 
compared to the scale of the prevailing 
atmospheric pressure pattern, and if the flight 
test manoeuvre is executed at  some nominal 
altitude, then WxE.and WYE, the components of 
the horizontal wind can be assumed to be 
constant. It is shown in section 3.2 that in this 
case, neither WxE and WYE nor the 
geographical position coordinates xE and yE are 
needed for aerodynamic model identification. 

2. 

3.  

4. 

These variables may, therefore, be removed 
from the system and observation model. 

The reconstructibility analysis of section 3.2 is 
based on the assumption that the angle of 
attack vane is calibrated in separate 
measurements in stationary rectilinear flight 
conditions. Here, the parameters of the angle of 
attack vane calibration model (2.3-3) have been 
included as elements of & to indicate that this 
calibration a n  in principle also be made in 
nonstationary flight conditions as  part of a 
tlight path reconstruction. In the context of the 
present section, however, following the 
arguments in section 3.2, a, was removed from 
the observation model. This implies of course 
also removal of the parameters Cup, Cue, xu 
and y u  in E. 

As mentioned in section 3.2, the quality of the 
heading gyro in terms of rate of drift was low 
compared to the quality of rate gyros in terms 
of bias error corrections. For this reason, q~ is 
removed from the observation model. 

The position coordinates xp and zp can be 
interpreted as unknown parameters in the 
calibration model of the sideslip vane (2.3-5), 
and be determined as part of a flight path 
reconstruction. However, these coordinates can 
also be ~ilculated directly for a given location 
of the aircraft's mass centre since the position 
of the vane is known. 

Now, the resulting observation model configuration 
corresponds to the second column of table 3-2 and 
the first column of table 3-3: 

y = col( V , A h ,  13,) . (3.3-7) 

This means that, a t  least for small amplitude flight 
test manoeuvres, i t  is impossible to reconstruct the 
bias error corrections A,, A, and A,. This has the 
effect of introducing bias errors in the 
reconstructed angle of attack a, pitch angle 8 and 
roll angle +. However, the quality of the 
accelerometers and rate gyros is such that these 
bias error corrections can be assumed to be very 
small. Consequently, the corresponding bias errors 
in the reconstructions of a, 8 and + are small 
enough to be negligible. Since the angle of attack 
vane observations are discarded, the vertical 
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component of the atmospheric wind is also not 
reconstructible. The corresponding error in the 
reconstructed angle of attack can be relatively large 
as compared to the bias error introduced by the 
nonreconstructibility of A,. If the vertical wind is 
due to subsidence and anti-cyclonic (high) 
atmospheric pressure distributions, a representative 
value is 0.1 m/s. At a nominal TAS of VO=45 m/s 
the corresponding error in the reconstruction of a 
is of the order of 0.1", which is approximately 10 
times the error introduced by A,. 

In section 2.3.2 it was argued that  CPO, the constant 
term in the sideslip vane calibration model, cannot 
in principle be determined directly in stationary 
rectilinear flight. Furthermore, according to section 
3.2, CPO is also not reconstructible. This means that 
C must be set equal to pvo, the sideslip vane 
angle in the nominal tlight condition preceding the 
flight test manoeuvre. 

PO 

The state vector resulting from the discussion 
above is: 

x = col U ,  v ,  w , 1 p ,  e ,  l$ , ZE, h Z ,  h p ,  hq , CSi) . - ( 
(3.3 -8) 

In order to avoid the introduction of different bias 
errors in the reconstructed time history of the side 
slip angle, one value of C was used in the flight 
path reconstruction of a l l  flight test manoeuvres at  
each nominal tlight condition. 
An important remark is necessary a t  this stage. The 
state vector (3.3-8) and the observation vector 
(3.3-7) may look very simple. In  practice much 
more measurement5 are available for example, 
attitude angles, geographical positions, etc. which 
obviously improve the reconstructibility. However, 
the additional measurements also introduce 
additional noise, bias and scale factor errors thus 
complicating the analysis. For the purpose of the 
current exposition, a fu l l  analysis would go too far. 

Pu 

3.3.2 Filter Initialization 

Next, an  a priori estimate of the state vector a t  the 
start of the flight test manoeuvre and the 
corresponding covariance matrix must be specified. 
Let $Ij) denote a n  estimate of the state vector a t  
time ti, as calculated from the set of all measured 
observation vectors L,,, from the start o f  the llight 
test manoeuvre a t  time 6 up to and including time 

tj. The corresponding covariance matrix is denoted 
by P(i(j). The reconstruction of the state vector is 
started from a n  a priori estimate of the state vector 
z(0 10) with cov;rriance matrix P(0 IO). In the case 
of a nonlinear system model, as in tlight path 
reconstruction, the accuracy of i (0  10) determines 
to a certain degree the magnitude of the 
linearization errors in the extended Kalman filter 
and smoother. For this reason, it is advantageous to 
start each flight test manoeuvre from a condition of 
nominally stationiiry and rectilinear llight. As 
shown below, in such tlight conditions it is 
rclatively easy to calculate fairly accurate values of 
the components of the state vector x mentioned in 
table 3-6, from the stationary outputs of the 
instrumentation system. Nowadays accurate 
measurements of the attitude angles can be 
obtained from the Inertial Navigation Systems or 
Attitude Heading Reference System, but if these 
are not available the following procedure can still 
be used. 

The yaw angle V J  cannot be calculated from the 
stationary outputs of the instrumentation system. 
So a direct measurement of 11 is always necessary, 
if only to provide an  initial value. It is based on 
the integration of the angular rate measurements. It 
plays no direct role in the aerodynamic model 
identification and i t s  main importance lies in the 
calculation of the centripetal and coriolis terms in 
the full  kinematic equations. 
A good choice for the a priori estimate $(OlO) of 

is i t s  measured value a t  time I=+,: 

(3.3-9) 

Although not measured directly by the 
measurement system, i t  is nevertheless possible to 
derive a priori estimates for the remaining two 
attitude angles, i.e. the pitch angle 8 and the roll 
angle Cp, as follows 1661. 

Since the initial llight condition a t  time t=b is 
nominally stationary and rectilinear, the 
components U, v, and w of airspeed 1 are constant 
in time, i.e.: 

u(0) = v(0) = w(0) = 0 , (3.3- 10) 

and furthermore, the three body rotation rates p, q 
and r, are zero: 
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in the initial flight condition, is zero, i.e.: 
p(0) = q(0) = r(0) = 0 . 

Substitution of (3.3-10) and (3.3-1 
equations of motion (2.1-5) results in: 

gsin0 = A, , 

gcos0sinQ = -A, , 

(3.3-1 1) 

) in the 

(3.3-12) 

(3.3-13) 

gcos 0 COS$ = -A, I 
(3.3-14) 

Elimination of 0 in (3.3-13) by substituting for 
cos0 from (3.3-14) results in the following 
expression for +: 

(3.3- 15) A 
Q = a r c t a n 2  . 

A, 
Equations (3.3-12) and (3.3-15) show that in 
stationary rectilinear tlight conditions, it is possible 
to estimate the attitude angles 0 and Q, from the 
specific aerodynamic forces A,, A, and A,. The 
specific aerodynamic forces are measured in flight 
with accelerorncters. This m;ik?s i t  possible to 
calculate the ii priori estimates 0(0lO) and $(0 10) 
of the pitch and roll angle respectively, from the 
accelerometer outpuls A, (0), AYIIl(0) and A, (0) 
according to: 

111 111 

A Ax JO) 
0(OlO) = arcsin- , 

6 

(3.3-16) 

(3.3- 17) 

Next, the a priori estimates of the three velocity 
components U, v and w of airspeed V must be 
determined. Much like 0 and Q, above, these 
velocity components are also not measured directly 
in the measurement system. It is possible, however, 
to estimate these velocity components in a n  
indirect way as follows. 

In the initial nominal tlight condition, the roll 
angle Q, is kept equal to zero as closely a s  possible. 
The tlight condition is, therefore, nominally 
symmetrical, see section 2.3.2. This means tha t  the 
velocity vector 1 is approximately parallel to the 
plane of symmetry, see fig. 2-2. 

Due to the absence of additional information, the 
only rational estimate of v(0), the component of V 

A (3.3-18) v(O10) = 0 . 
The rcmaining two velocity components could 
readily be estimated from V,JO), the measured 
airspeed a t  time t=b, and &(010), the a priori 
estimate of the angle of attack, if this latter 
estimate were known. Fig. 2-2 shows that in 
symmetrical flight conditions, U and w can then be 
estimated with the following relations: 

A A 

u(0 10) = Vlll(0) .cosa(O 10) , 

A A 

w(0 10) = VI1,(O) *sincx(O 10) . 

(3.3-19) 

(3.3-20) 

The angle of attack is measured directly in the 
measurement system by means of a vane, see table 
3-5. The use of this measurement as an  a priori 
estimate of U@), however, depends o n  C, and 
C,,,, the parameters in the vane calibration forkula, 
see (2.3-3). Thesl parameters can be determined in 
a separate tlight test program consisting of 
measurcments in sbtionary rectilinear tlight 
conditions, e.g. ref [9]. I t  is possible, however, to 
avoid execution of such an  additional flight test 
program by calculating an  a priori estimate of a(0) 
in an alternative way as follows. From fig. 2-2 i t  
can be deduced that in strictly symmetrical 
rectilinear tlight conditions the following relation 
exish between the angle of attack U, the tlight path 
angle y ;ind pitch angle 0: 

U = 0  - y  (3.3-21) 

Using (3.3-21) the a priori estimate &(0(O) follows 
from: 

(3.3-22) 

with (3.3-16). The 
a priori estimate of the tlight path angle can be 
based o n  the following relation, see fig. 2-2: 

y = arcsin- . c  , (3.3-23) 
V 

in which C denotes the rate of climb. Assuming for 
the present e(Ol0) to be known and substituting 
the measured airspeed for V, then the a priori 
estimate Y(Ol0) can be determined with: 

(3.3-24) 
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0 

Rate of climb belongs also to the group of 
variables which is not measured directly in the 
measurement system, see table 3-5. I t  is possible, 
however, to calculate rate of climb in stationary 
flight conditions from altitude measurements at  
different instants of time according to: 

C(0) = Ah(At) - Ah(0) (3.3-25) 
At 

3 

in which Ah denotes the change of altitude with 
respect to a certain reference altitude and At  
denotes a suihble time interval with a length in the 
order of seconds. As can be seen from table 3-5 
the altitude variation Ah is not directly measured, 
but it can be calculated from static pressure and 
total temperature measurements. By substituting the 
results a t  time t=h and t=t,+At in (3.3-25), a n  a 
priori estimate of C(0) can be calculated with: 

The change of altitude as derived from static 
pressure and total temperature measurements 
constitutes the best-possible ii priori estimate of 
zE(0), the vertical distance from the horizontal 
plane corresponding to the static pressure at  the 
start of the recording: 

(3.3-27) 

Finally, due to lack of a n y  information, the initial 
estimates of the bias error corrections A,, A,, and h, 
and of the sidewash correction factor Csi, sec 
section 2.3.1, are set equal to zero. 

According to table 3-6, the diagonal elements of 
P(OI0) were given numerical values which were 
approximately two orders of magnitude larger than 
the values resulting from taking account only of 
the errors of the measurement system. The reason 
is that the assumption of sbitionarity of  the init ial  
nominal flight condition, on which scvcral of thc 
above estimates of the components of the initial 
state vector are based, is - in gencral - not fully 
satisfied in practice. This means that  these 
estimates are corrupted by errors which depend on 
the ‘degree of shtionarity’ of the initial flight 
condition. The large numerical values of the 
diagonal elements P(0 10) above, iire a retlection of 
the possibility that in some cases the initial flight 
condition might deviate significantly from a 

ski tionary tlight condition, introducing additional 
errors in the estimates of the components of the 
initial state vector. A more refined estimation of 
the initial condition, taking into account possible 
deviations from the nominally stationary flight 
condition is given in [13]. 

3.3.3 Results 

Some results of a n  actual flight path reconstruction 
iire presented in figs. 3-1, 3-2 and 3-3. 

Fig. 3-1 shows the time histories of the difference 
between the measured values V,,,, ah,,, and pvnl and 
the corresponding extended Kalman smoother 
estimates. 
The dynamic longitudinal and lateral flight test 
manoeuvres, with a length of 10 and 16 seconds 
respectively, are preceded and followed by sections 
of quasi-steady tlight. I t  can be seen in fig. 3-1, 
t ha t  the accuracy of the V and a h  measurements 
during these dynamic sections o f  the tlight test 
manoeuvre, is generally considerably lower than  in 
the remaining quasi-steady sections. This 
phenomenon is thought to be caused by the 
dynamic response of the air in the pneumatic 
pressure tubes connecting the total and static 
pressure orifices with the pressure transducers. Due 
to the complexity of these responses, they can only 
partially be accounted for in a practical way. As a 
result, the remaining measurement errors are no 
longer expected to be uncorrelated in time. 
This problem was circumvented by discarding all 
total and static pressure measurements in the 
dynamic sections o f  the flight test manoeuvre. This 
means that  in these sections the V and a h  
observations are not used, which reduces the 
observation vector to y=pv. In simulation 
experiments with uncorrelated measurement errors 
in every section of the tlight test manoeuvre, such 
a temporary reduction of the observation 
measurements proved to result in only a small 
increase of the theoretical Kalman smoother 
estimation variances. 

Fig. 3-2 shows the reconstruction of the bias error 
corrections and the side wash correction factor by 
the extended Kalman filter. The estimated bias 
error corrections i,,(~ IN)  and iq(~ I N )  at  t=tN, N 
denoting the total number of observation vector 
measurement and t, denoting the time instant of 
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the last measurement, of the roll and pitch rate 
gyro respectively, arc in the order of 0.004 deg/s. 
This is equivalent to 1 mV, the resolution of the 
data logging part of the instrumentation system. 
The estimated value of h,, the bias error correction 
of the vertical accelerometer, a t  t=t, is 
approximately equal to 0.036 m/s2. This is 
considered to be an extremely large value for high 
quality force balance type accelerometers as used 
in the present instrumentation system. Our 
experience is that large bias error corrections of 
such accelerometers can be caused by microscopic 
defects in the pendulum bearings in the transducer. 
The accelerometer in question was subsequently 
replaced. 

The reduction of the bias estimation error variance 
with time confirms the validity of the linear 
reconstructibility analysis as carried out in section 
3.2. I n  this analysis the reconstruction of the side 
wash correction factor CSi had to be left out of 
consideration since it  would imply a nonlinear 
reconstruction analysis. Fig. 3-2 shows that, 
although CSi is reconstructible, the accuracy of its 
reconstruction remains relatively low. 

The time intervals of the longitudinal and lateral 
dynamic manoeuvres during which the airspeed 
and altitude observation measurements are 
discarded, are evident particularly in figs. 3-2(a) 
and (b). During these time intervals there appears 
to be virtually no reduction of the standard 
deviations of the bias estimation errors. Finally, it 
must be noted tha t  smoothing cannot improve the 
accuracy of bias estimates. This is the reason that  
Fig. 3.2 only shows filter results. 

Characteristic examples of the theoretical extended 
Kalman filter and smoother reconstruction 
accuracies of the dynamic slate vector components 
are shown in Fig. 3-3. They are expressed in terms 
of standard deviations. Thcse standard deviations 
are the square roots o f  the diagonal clemenLs of 
P(i li-1) and P(i IN), i.e. the covariance matrices of 
estimation errors resulting from the Kalman filter 
and Kalman smoother respectively. 

Fig. 3-3 also confirms the conclusions of the linear 
reconstructibility analysis of section 3.2. The 
theoretical reconstruction errors o f  the extended 
Kalman smoother of all state vector components, 

except yaw angle v, are shown to be very small. 
Since only side slip vane measurements were used 
here as lateral observations, the lateral observation 
model corresponds to the first column in table 3-3. 
According to section 3.2, this will leave v 
nonreconstructible. It is not surprising, therefore, 
that the a priori estimation error of 'II, remains 
approximately equal to the a priori value during 
filtering as  well as smoothing. Since 'II, is not used 
quantitatively further on, this does not affect the 
results of the second step of the data analysis 
procedure. It must be remarked that the use of yaw 
angle measurements, see table 3-5, and side slip 
measurements as lateral observations, does allow 
reconstruction of the yaw angle v. In addition, it is 
also possible to reconstruct the bias error correction 
h, of the yaw rate gyro, see table 3-3. 

Figs. 3-3(a), (b), (c), (e) and (g) clearly show time 
intervals during which standard deviations of the 
extended Kalman filter increase, rather than 
decrease with time. These time intervals correspond 
again to the time intervals of the longitudinal and 
lateral dynamic manoeuvres during which airspeed 
and altitude observation measurements are 
discarded. However, in the standard deviation 
curves of the extended Kalman smoother, these 
time intervals become virtually indiscernible from 
the quasi-steady sections of the flight test 
manoeuvre. This shows clearly the great advantage 
of the Kalman smoother step. 

In general it can be said that experience with the 
extended Kalman filtering and smoothing 
algorithms for tlight path reconstruction of the 
tlight test manoeuvres as carried out in the course 
of the present flight test program has been very 
good. All manoeuvres to which the algorithms 
were applied could successfully be reconstructed in 
the sense that the residuals were of approximately 
the same magnitude as shown in fig. 3-1. In 
addition, t.he estimated bias error corrections were 
of the same order of magnitude as during the 
laboratory calibrations. 

3.4 Conclusions 

Flight path reconstruction is a n  important tool for 
the analyst of tlight test data. This is true 
irrespective whether one applies it  as  a first step of 
the two step method, as an  independent 
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compatibility check as a precursor to the one step 
method or just as a method to reconstruct 
trajectories. 

The emphasis in this section has heen on the 
detailed analysis ol' one relatively simple 
measurement configuration. There are no reasons 
why this configuration cannot he extended with 
any number of additional transducers and this is in 
fact what is being done in most flight test projects. 
However, in the present exposition there are some 
good reasons for our emphasis. 

Firstly, the measurement configuration treated in 
this section is the minimum necessary for 
aerodynamic parameter identification. As such it is 
essential lo he familiar with ils characteristics and 
limitations. 

Secondly, under normal circumstances there are no 
additional measurements which will dramatically 
improve the accuracy of the parameter 
identification results achievable with this minimum 
configuration. This is not always the case, 
however. For example the addition of absolute 
position (e.g. GPS) to the observation vector will 
improve the accuracy of the reconstructed wind 
vector, which can be of great importance in less 
favourable weather conditions (varying winds). It 
should he noted, however, that GPS will not help 
much for the vertical wind component. To estimate 
the vertical wind component one could in principle 
us an angle of attack vane, a t  the cost of having to 
identify the vane calihration coefficienls as well. 

Finally, all the essential characterislics of the flight 
path reconstruction prohlem are exhihited by the 
configuration treated in this section. This is true in 
particular for the reconstructibility analysis. It 
should he no problem for the reader to apply this 
analysis to his own perhaps more extensive 
measurement configuration. 

As noted before, flight path reconstruction has 
many more applications than just for aerodynamic 
model identification, such as sbll speed 
determination and accident analysis. 1de;illy a night 
path reconstruction software package should he 
flexihle enough to handle these other applications 
as well. 

There are olher aspects involved in the application 
of flight path reconstruction, not the least among 
which is the choice of the instrumentation error 
model. Some of these aspects will he further 
discussed in chapter 7. 

This concludes our discussion of the first step in 
the two step method. Now that we have an 
accurate estimate of the state trajectory of the 
aircraft, we will turn our attention in the following 
section to the determination of the aerodynamic 
model. 
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Table 3-1: Reconstructible state vectors $. of individual observations yi of the linear 
longitudinal flight path reconstruction problem, applicable to horizontal nominal flight 

conditions. 

Table 3-2: Reconstructible state vectors ~7 for three different observation configurations 
of the linear longitudinal flight path reconstruction problem, applicable to horizontal 

nominal flight conditions. 
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Table 33 :  Reconstructible state vectors si of individual observations y, of the linear 
lateral flight path reconstruction problem, applicable to horizontal nominal flight 

conditions. 

Table 3-4: Reconstructihle state vectors $ for three different ohservation confgurahons 
of the linear lateral flight path reconstruction problem, applicable to horizontal nominal 

flight conditions. 
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1 

2 

3 

4 specific force along X-axis 

specific force along Y-axis 

4 specific force along Z-axis 

4. 

P roll rate 

I r  I yaw rate 

9 pitch rate 

7 

8 

9 

v yaw angle 

n engine speed 

T, total temperature 

6, elevator angle 

II 23 I n.. 1 eneine manifold nresswe 

-~ ~ 

11 b,, port aileron angle 

12 bar starhoard aileron flap angle 

13 br rudder angle 

14 64 port wing flap angle 

15 bfr starboard wing flap angle 

elevalor trim angle 16 bk 

17 

18 

19 

11 25 I DME I Distance Measuring Equipment 

bIr rudder trim angle 

a" a-vane angle 

6" B-vane angle 

20 

21 

22 

*PI 

API variation in static pressure 

9" impact pressure 

increase in total pressure behind propeller disc 

Pri static pressure 

26 Turb carhurettor temperature 



state vector: 

Input vector: 

observation vector 

E = col(V,Ah,B,)  

sqiiare roots of diagonal elements of V,: 

= 0.0032 

= 0.0014 
OA., 

rn 
= 0.0056 

= 0.0032 

= 0.0032 

111 

cTP 111 

111 ~~ 

CT. = 0.0032 

d S 2  

d S 2  

m / S 2  

degk 

deg/s 

deg/s 

square roots of diagonal elements of Vvv: 

= 0.30 d s  

= 0.40 rn 

= 0.86 deg 

m 

CTAh 111 

Table 3-6: State, input and observation vectors, and covariance 
matrices of process and observation noise of the extended 

Kalman filter and smoother. 
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Figure 3-1: Residuals of the exfended Kalman smoofher. Results 
of fhe reconstrucfwn of an actual flight fesf manoeuvre. 
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Figure 3-1: Continued. 
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Figure 3-2: Extended Kalman filter estimates of bias error corrections h,,, Aq h, 
side wash corrcction factor C,i and corresponding standard deviations. 

Results of the reconstruction of an actual flight test manoeuvre. 
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Figure 3-2 Continued. 
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X,-axis of the extended Kalman filter and the extended Kalman smoother respectively 
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Figure 33: Theoretical standard deviations of the extended Kalman filter and -smoother. Results of 
the reconstruction of an actual /light test manoeuvre. 
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(e) Standard deviations of G(i1i-I) and Gj(i!N), the estimates of the component of airspeed along the 
Z,-axis of the extended Kalman filter and the extended Kalman smoother respectively 
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(d) Standard dfviatwns of $ ( i l i - I )  and $(iWj, the estimates of the yaw angle of the extended Kalman 
filter and the extended Kalman smoother respectively 

Figure 3-3: Continued. 
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(e) Standard deviations of 6(ili-I) and 6(i!N), the estimates of the component of the pitch angle of the 
extended Kalman filter and the extended Kalman smoother respectively 
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(9 Standard deviations of &ili-I) and i(iW), the estimates of the roll angle of the extended Kalman 
filter and the extended Kalman smoother respectively 

Figure 3-3: Continued. 
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(g) Standard dcviations of ;E(i(i- l)  and i d i p ) ,  the estimates of the vertical displacement of the 
extended Kalman filter and the extended Kalman smoother respectively 

Figure 3-3: Continued. 
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4 AERODYNAMIC MODEL IDENTIFICATION 
Aircraft aerodynamic model identification is the 
process of developing ‘adequate’ mathematical 
descriptions of the aerodynamic forces and 
moments acting on the aircraft from measurements 
in flight [1,2,78,125,189,199]. Model identification 
encompasses the selection of a mathematical model 
structure as well as the estimation of the numerical 
values of the parameters in those models. Model 
identification is often also referred tn as parameter 
identification. Parameter estimation is the narrower 
problem of just estimating the numerical parameter 
values given the form or structure of the 
mathematical model. 
The model identification procedure which is the 
subject of the present volume is the so-called two- 
step method, see chapter 1. In the first step, Lillled 
flight path reconstruction, time histories are 
reconstructed of variables as airspeed, angle o f  
attack and side slip angle. In addition to that, the 
occurrence of (small) zero shifts may be detected 
in transducers such as accelerometers and rate 
gyros. The outputs of these transducers may 
subsequenlly be corrected using estimated values of 
these zero shifts, see chapter 3. 
The identification of the aerodynamic model is the 
second step of the two step method and is 
discussed in the present chapter. This second step 
uses the resulls of the first step, which 
consequently must be executed first. 

Historical background 
The aircraft model identifiation prohlem has been 
the interest of several researchers since more than 
four decades. 
Perhaps one of the first approaches to the 
identification of aircraft dynamic response models 
can be traced back to the work of Milliken in 1947 
[77]. His analysis centred around the use of 
frequency response data and simple graphical 
methods. Several years later Creenherg 1781 and 
Shinbrot 1791 established more general and 
rigorous ways for determining ;icrodynamic model 
parameters from transient manoeuvres. They 
introduced parameter estimation methods based on 
application of linear and nonlinear least squares 
methods. Shinbrot interpreted the equations of 
motion (a set of ordinary differential equations) as 
algebraic equations and assumed all of the 
variables in the equations of motion including 

e 

derivatives with respect to time and the control 
input signals to be known functions of time. This 
enabled him to estimate parameter values by 
minimizing a criterion in the form of a sum of 
squares of equation errors. For some variables, for 
instance the angle of attack, this would require 
computing derivatives with respect to time, which 
Shinbrot avoided by transforming the measured 
responses by means of so called Method Functions. 
After the transformation the equation error is still 
a linear function of the unknown parameters, a 
remarkahle fact which holds true for both linear as 
well as nonlinear forms of the equations of motion. 

The advent of fast digital computers and also the 
rapid progress in system theory paved the way for 
substantial improvements and refinements in 
aircraft parameter estimation techniques towards 
the end of sixties and more si) in the beginning of 
seventies. These techniques were generally 
classified inlo equation error methods 14,801 and 
oufpuf- and predicfion error mefhods [2,81 to 113, 
115,122,126,200]. Shinbrot’s method mentioned 
above is a typical example of an equation error 
method. 
Output error methods use numerical solutions of 
the equations of motion to compute the time 
histories of observed variables. Now parameter 
estimates are computed by minimizing the sum of 
squares of the differences between these computed 
variables and the corresponding measured values. 
Prediction error methods use ‘Kalman Filter 
representations’ [95] of the system dynamics to 
allow and account for process- or system noise 
resulting from measurement errors of the input 
signals (control surface deflections) or external 
disturbances (e.g. atmospheric turbulence). The 
highlights of the progress were in the areas of 
algorithms for the estimation of pardmeters in 
linear as well as nonlinear aerodynamic models and 
the determin;ition of ’adequate:’ aerodynamic model 
structures. 

a 

. 

As a result, the estimation of stability and control 
derivatives (i.e. parameters in a linearized form of 
the equations of motion) of fixed wing aircraft has 
now hecome more or less a routine procedure. This 
is not the case, however, for those flight regimes 
where nonlinear aerodynamic effects are significant 
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and aerodynamic characteristics cannot be 
described in linear terms only. The main problem 
becomes then to determine the 'adequate' form of 
the aerodynamic model for a 'proper' description 
of the observed airplane motion. In the literature a 
number of methods have been proposed for 
determining adequate models from dynamic 
response measurements. Unbehauen and Gohring 
[141] proposed a simple statistical method to select 
the order of linear models of single input, single 
output (SISO) systems. Genesio and Milanese 
[142] describe more advanced statistical methods 
for order selection of models of linear multiple 
input and multiple output (MIMO) systems. In 
aircraft parameter identification of fixed wing rigid 
aircraft the order of the system model is known 
from the equations of motion. The problem of 
determining a n  adequate model structure is strictly 
related to the models of the aerodynamic moments 
and the aerodynamic forces acting on the aircraft 
during the tlight test manoeuvre a t  the particular 
set of nominal flight test conditions. Klein [143] 
may have been the first to use formal statistical 
techniques to test the correctness of models of 
aircraft responses. He formed a n  appropriate 
statistic as the ratio o f  two variance estimates from 
residuals and repeated meiisuremcnts o f  frequency 
response curves. Klein [ 1441 also recommended the 
analysis of residuals for checking the accuracy of 
the model and suggested the sensitivity of a 
response to parameter changes for finding the 
important parameters in the model. Stepner and 
Mehra [145] gave a criterion for fit error which 
combined the sum of squares of residuals and the 
number of parameters in the model. Liter Taylor 
Jr. [146] developed a criterion for the optimal 
number of unknown parameters satisfying the 
expected model response error. Hall,  Gupki et aI 
[59,148] gave a comprehensive treatment of model 
structure determination based o n  stepwise 
regression and their use in real tlight d a h  was then 
investigated by Gupta and Hall [131], Vincent, 
Gupta et a1 [202], Stalford [203] and Klein et al 
[ 150,15 1 1. 

The DUT approach 
In the middle o f  the 196O's, Gcrlach of the Delft 
University of Technology realized tha t  lo r  high 
pa ra meter accii rii cy, t he ciis to ma ry tech n iq tic o 1 
analogue recordings o f  measurements in continuous 
time would not suffice. He developed a digital 
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measurement system which sampled measurements 
a t  discrete times. Now if a quadratic criterion for 
the equation error is minimized with respect to the 
parameters in the aerodynamic model, it becomes 
possible b apply the well developed mathematical 
techniques of regression analysis [3]. He applied 
the concept of minimizing equation errors, not to 
the equations of motion as Shinbrot had done, but 
rather directly to the equations of aerodynamic 
model. This in fact marked the beginning of 
continuous investigations into what became known 
as the two-step method for aircraft parameter 
identification at the Delft University of Technology 
and the National Aerospace Liboratory, NLR. In a 
sense, flight path reconstruction, the first step of 
the two step method, may be seen as to have a 
similar function as the transformations in 
Shinbrot's method in that they both prepare for 
application of equation error methods. The 
objective of the present chapter is to go into the 
details of the second step of the method using 
equation errors for aerodynamic model 
iden ti fica tion. 

The second step exploits regression analysis to 
determine the model structure and  model 
paramckrs in the aerodyn;imic model. The model 
determination phase consists of selecting a 
restricted number of variables from a finite set of 
so-called candidate variables. This leads to the 
selection of a n  adequate model structure. 

The organization of the present chapter is as 
follows. In section 4.1, we first discuss the issue of 
identiJiability of the parameters in linear 
aerodynamic models (stability and control 
derivatives) from tlight test dah.  This is an 
analogous effort to what we discussed as the issue 
of state reconstructibility of linearized kinematic 
models in section 3.2. Next we present the general 
regression technique, a model development 
procedure based on residual analysis and also 
briefly touch upon the collinearity problem [75] in 
section 4.2. In section 4.3 a practical investigation 
of nonlinear aerodynamic model identification from 
tlight test dah  for  both the longitudinal and lateral 
case is conducted. Flight tests with the DHC-2 
Beaver aircraft are used again for illustration. 
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4.1 Linear Aerodynamic Model Identification 

The purpose of the analysis in this  section is to 
determine the identifiable part of the parameter 
vector of linearized aerodynamic models. This is in 
fact the case in which only 'small' perturbations 
from a nominal steady flight condition are 
considered. The parameters in our model 
correspond now to the so-called stability and 
control derivatives. Since the equation error 
method is used in the second step of the two-step 
method the estimation problem reduces to a linear 
parameter estimation problem. Well established 
regression techniques may be used to solvc this 
linear estimation problem. These techniques will bc 
discussed in section 4.2 

In section 4.1.1 we define parameter identifiability 
and show as to how to construct the identifiable 
sub space of the parameter space. In section 4.1.2 
we develop the appropriate aerodynamic model 
equations by taking account of the results of the 
reconstructibility analysis of chapter 3. Finally we 
analyze the identifiability of the parameters in the 
resulting equations in sections 4.1.3 for the 
longitudinal case and in 4.1.4 for the lateral case. 

4.1.1 Parameter Identitiability 

If small perturbations from nominal tlight 
conditions are considered, then from chapter 2, the 
aerodynamic forces and moments ciin be expressed 
in terms of homogeneous polynomials of first 
order. A natural question is, ciin we estimate all 
parameters in these first order polynomials from 
the available flight test measuremenls. This 
question is answered in section 4.1.2 using the 
notion of parurneter ideritijiahility. 
If aerodynamic forces and moments are expressed 
in terms of polynomials, then the corresponding 
aerodynamic models may be written in the 
following form: 

y(i) = x(i)a + e(i) (4.1 - 1) - 
in which i refers to :I time inskint ti, y(i) is a scdar 
dependent variable representing measured 
aerodynamic force o r  moment, x(i) is a 1 x r 
matrix of measured independent variables, 2 is the 
vector of parameters to be identified and e(i) 
denotes a stochastic equation error due to 
measurement and model errors. The model errors 

could come from atmospheric turbulence, propeller 
slipstream or jet interference effects or fuel 
sloshing, etc., all of which can add unmodelled 
contributions to force and moment coefficients. All 
of these errors are rather heuristically accounted for 
by e(i), a stochastic random variable with the 
following properties: 

E{e(i)} = 0 , 
E{e(i)e(i)} = V,Sij . 

(4.1-2) 

For N different sets of y(i) and x(i) i t  is customary 
to write (4.1-1) in the form: 

Y = X a  + e  - - -  
in which l=co l [y (  l),y(2), ...,y( N)], g=col[e( l),  
e(2), ..., e(N)] and X denotes the following matrix of 
independent variables: 

The least squares estimate may readily be 
calculated from 1 and X as the solution of the so 
called normal equations 1731: 

A 

[x '*XI - a = 

If the matrix 

x , (4.1-3) 

XT*X] is invertible, i.e. has full  rank 
r, then X has rank r and is the unique solution of 
(4.1-3). If  the actual rank of X is r,<r, then it is 
impossible to compute independent estimates of all 
of' the components of the parameter vector ;r. 
Completely analogous to the definition of 
reconstructible subspace in system state 
reconstruction problems as discussed in chapter 3, 
identifiable subspaces may be defined in parameter 
identification problems as follows. 

I f  X is of rank r , ,  i t  is always possible to arrange 
and partition X a s :  

x =[x i  x2] = [ X I  x,.c] (4.1-4) 
in which C denotes a conskint rlx(r-rJ matrix. The 
Nx(r-r,) matrix X, contains those columns of X 
which are dependent on the independent columns 
contained in the Nxr, matrix XI.  Substitution of 
(4.1-4) in (4.1-3) results in: 



........ X,T II. 

(-1' a *  U, 

.._..... - ... - 

c TX,T] 
(4.1-5) 

There exists no unique solution for & and & in 
(4.1-5). The minimum norm solution is found by 
selecting one of the solutions, indicated as 3 by 

A *  A *  

a - 

setting: 

\-2) a *  

A 

a ' = O  
-2 - 

"2 ~ 

(4.1-6) 

If the value o f  any parameter in 3 or ;I relation 
between parameters involving components in 3 are 
known, it may be preferable to use this knowledge 
instead of simply putting 3 to zero. The 
components in i i  may then be calculated as: 

A *  

;; = [x,T.xl]-' x I -  T'Y 
(4.1-7) 

It is instructive to determine the expected value of 
I1 : 
A *  

E(?) = [x,T-x,]-' X,1'-E(Y) 

(4.1-8) 
= [x,TX,]-I x,' ([XI XI] ..E) 

= [I c]  5 = a] + c-z2 . 
Equation (4.1-8) clearly shows that ii is a biased 
estimate of gl, but it  can be interpreted as an 
unbiased estimate of thc new parameter 
- a;=zl+C%. Analogous to thc treatment of the 
reconstructible part o f  thc slate vector x in 
section 3.2, & is called the identifiable part of the 
parameter vector 5. In the same way as in section 
3.2, we can now find a matrix U, which constitutes 
a basis for the identifiable subspace of the 
parameter space and a matrix U, which constitutes 
a basis for the unidentifiable subspace of the 
parameter space. The linear transformation: 

(4.1-9) 

transforms the parameter vector 2 into an 
identifiable part g; and unidentifiable part &. I f  the 
matrix X contains the maximum number of r 

independent columns, then the parameter vector 
is completely identifiable. 

4.1.2 Linear Aerodynamic Model Equations 
including Reconstructibility Analysis 

In the present section, the linear aerodynamic 
model presented in chapter 2 is developed further 
by including the results of the reconstructibility 
analysis of chapter 3. 

In the linear case, the parameters to be estimated 
are the stability and control derivatives of the 
longitudinal and lateral aerodynamic force and 
moment coefficients. In the stability reference 
frame F,, used in the present section, these models 
are listed in (2.2-6) and (2.2-9). 

Application of the least squares method of section 
4.1.1 requires the availability of all variables in the 
equations (2.2-6) and (2.2-9) be known. That is to 
say, a l l  the aerodynamic force and moment 
coefficients as  well as all variables in the right 
hand side, i.e. Us/Vo, 6, etc. to be known at 
discrete instants of time. These variables must 
either be measured directly or be reconstructed as 
part of a longitudinal or lateral flight path 
reconstruction. 

The measured time histories of the specific 
aerodynamic forces and body rotation rates in Fs 
may be used to compute the aerodynamic force and 
moment coefficients in the left hand side of 
equations (2.2-6) and (2.2-9). The results are 
indicated by subscripts m. For example, C ,  and - s 111 

arc obtained ;IS follows. 

Division of both sides of the first relation in 
(2.1-11) by Mp,V$ results in: 

- 
(4.1- 10) - i n  * A x s  - c x s  - '/ip,v;s ' 

in which aircraft mass m may be assumed to be 
known. The same may be assumed for the 
reference wing area S and the nominal values of air 
density p, and true airspeed V,. 

Using (3.2-6), Axs can be written as: 

(4.1-1 1) 
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where A,, denotes an unknown bias error 
correction and wXs a n  unknown random 
measurement error. Substitution in (4.1-10) results 
in : 

' S  (4.1-12) - - 111 -Axs 111 'W 
- %", = cxs  - HpoV,2S - 'hpov;s 

Similar expressions holds for Cysll, and CZ51,1. 

Division of the first  line in the moment equations 
(2.1-10) by !hpoV;Sb results in: 

where, for simplicity, the effect of rotating 
components, such as propellers or jet engine 
turbines have been neglected. The wing span b is 
known. The moment of incrtia I,, and the product 
of inertia Izxs can be calculated by book-keeping 
methods or estimated from free-oscillation rig 
measurements, ref. (2231. 

The angular accelerations 6, and r, are not 
measured directly but derived by numerically 
differentiating Gs and TS. Since the rotation rate 
measurements are assumed to be contaminated by 
constant bias and random errors, differentiation will 
result in: 

(4.1 - 14) 
- - 

+ W '  rs,,, ' S '  
r s  = 

in which wk and w. denote random errors in 6, 
and is respectively. Substitution of (4.1-14) in 
(4.1-13) results in: 

'S 

1, + 'w; 
% p o V i S  b - 

Similar - expressions can be derived for ClnS and 
Clls. 

In the right hand side o f  equations (2.2-6) and 
(2.2-9) several variables like U,, 6 and p are 

obtained from tlight path reconstruction. As a 
result of actual tlight path reconstructions using 
high accuracy instrumentation techniques, the 
stochastic estimation errors of the reconstructible 
parts of the state vector are relatively very small. 
Therefore, these errors are neglected in the present 
analysis and only the bias errors are taken into 
account. According to section 3.2, table 3-2, us is 
reconstructible. However, 6 and fi have been 
shown to be non reconstructible. For the 
observation configuration analyzed in chapter 3 it  
follows from table 3-2 and table 3-3 that: 

cp, +i = c,+ $* - cp, . 
0 Differentiation of both sides of these relations 

resultr, in: 

(4.1-17) 

All remaining variables in the right hand side of 
equations (2.2-6) and (2.2-9) may be obtained from 
direct measurements. For example, according to - 
(3.2-6) : 

- - 
9 s  = q S l n  + hqs + w  qs ' 

and according to section 2.4: 

(4.1-18) - 

0 (4.1 - 19) 

in which vge denotes the measurement error of the 
elevator dellection angle 6,. 

Substitution of the relations derived above in the 
linear aerodynamic models (2.2-6) and (2.2-9) 
results in models which may be used for estimation 
of linear stability and control derivatives. For 
example, substitution of (4.1-12), (4.1-16), 
(4.1-17), (4.1-18) and - (4.1-19) in the linear 
aerodynamic model of C,, in (2.2-6) results in: 
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D 

8 

which can be written more compactly: 

" (4.1-20) - 
q s U'C 

c 
+ c,; *- + 

+ c x q s * T  s v, 
" " 

+ c,, -6 + 6 C X S .  
e 111 

e S  

The last term 6C, in (4.1-20) represents the s equation error resulting from several time-varying 
measurement errors. However, if  high accuracy 
measurement techniques are used, these 
measurement errors are too small to explain the 
order of magnitude of equation errors found when 
analysing actual flight test data. Therefore, 
aerodynamic model errors rather than measurement 
errors are the cause of time-varying equation 
errors. Relations - similar - to c4.1-20) may be derived 
for CYSlll' C&, ~CISI1,~ ClllSlll and C"SI1,. The 
difference with the relation (2.2-6) and (2.2-9) are 
supplementary constant terms accounting the 
existence of measurement bias error corrections and 
unreconstructible components in the longitudinal 
and lateral state vectors and terms representing 
equation errors. 

4.1.3 Identifiiildity of Linear Longitudinal 
Aerodynamic Model 

To begin the discussion, it  may be seen from 
equation (4.1-20) that the linear models of the 
longitudinal aerodynamic force and moment 
coefficients contain the following set o f  
independent variables: 
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In the remaining part of the present section an 
index m indicates the presence of an unknown bias 
error in an  otherwise perfectly measured variable. 
At any particular instant of time, these variables 
constitute one row in the matrix X of independent 
variables as defined in section 4.1.1. 

The variables USNO, 6, 6 and &F/V, are state 
vector components of the longitudinal linear 
equations of motion (571. It may be verified that 
these equations of motion with elevator control 
deflections 8, as input signal represent a 
completely controllable system [70]. This means 
that in principle it is possible to design a 
longitudinal tlight test manoeuvre such that the 
time histories o f  USNO, 6, 6 and &F/Vo iire 
linearly independent. This implies independence of 
1, Us/VO, a , &llz/VO and 8, in (4.1-21). 
According to the linearized kinematical model in 
(2.1-15), the remaining variable can be 
written as:  

- *  

where: 

2 "  1 I 

= - 111 %p,V,S CZs 

- 
The linear aerodynamic model of C,, may be 
written as: 

" " 

I t  is clear now that  6F/Vo depends linearly on the 
variables U S N O ,  6, 6, &&fo and 6, in the 
following fashion: 



Cxus=Czus=Cl,lus=O the remaining estimates will be 
biased as shown in equation (4.1-8). 

+ cz6 " S  *:"I 
(4.1-23) 

In general the stability derivatives Cz 
are small compared to atc [57]. Equat!& (4 .1 -h j  
may, therefore, be simplified by neglecting CGs 
and C, 

In the reconstructibility analysis of the linear 
longitudinal flight path reconstruction model, it 
was shown that the selected observation 
configuration of the actual flight tests led to a 
constant error in the reconstructed version &* of the 
angle of attack a, see equation (4.1-16). This 
constant error vanishes after differentiation, see 
equation (4.1- 17). 
Using equations (4.1-16), (4.1-17), (4.1-18) and the 
simplifications above, (4.1-23) may now be written 
as: . 

and C 

qS' 

- - 
- -sinyoO &C 

v,2 
in which C denotes a 5x1 matrix as defined in 
(4.1 -4), w i th e lemen B : 

r 

(4.1-25) 
If the nominal flight condition is horizontal - then 
yo=O and consequently the term with 8 vanishes. 
According to section 4.1.1 this means that no 
unique solution exists for the longitudinal stability 
and control derivative estimation problem. If one of 
the solutions is selected, for instance by setting 

The existence of unidentifiable longitudinal 
stability and control derivatives was noted earlier 
by Gerlach [3]. The linear dependence exists only 
in horizontal nominal flight conditions. This means 
that in principle non horizontal nominal flight 
conditions (i.e. climb or descent) allow complete 
identifiability of all longitudinal stability and 
control derivatives. In normal practice, however, 
nominal flight path angles are too small to result in 
an effective elimination of the above identifiability 
problem. If a large tlight path angle is chosen, the 
engine power setting will be very different than in 
horizontal tlight, which may affect the aerodynamic 
model through interference effects and may 
introduce errors due to the limited accuracy of the 
thrust calculation. 

Another possibility is to consider a manoeuvre in 
rolling or turning tlight. This will also remove the 
linear dependence in equation (4.1-24) via the 
previously dropped term gz/V: coscp,sin@o 4 at 
the linearization of the kinematical equations 
(2.1-5), see [ 103,211. The success of this approach 
is limited by the effect of the rolling or turning 
flight condition on the aerodynamic model, which 
can be very important, especially for aircraft with 
propellers. 

4.1.4 Identifiability of Linear Lateral 
Aerodynimic Model 

To begin the discussion, it can be seen - that the 
independent variables in the models of Cysm, ClSln 
and CllSll, are: 

- P S m  r S , l , b  b*b - - (4.1-26) 
l , P * , -  , - I  - , a , ,  a r  

2v, 2v, v, 
The variables B, 6 ,  Csb/2V, and rsb/2V, are 
components of the state vector of the linear lateral 
equations of motion (571. Analogous to the 
longitudinal case discussed above, it  may be 
verified that these equations represent a completely 
controllable system with aileron and rudder control 
detlections 6, and 6, as input signals. This means 
that lateral tlight test manoeuvres can be designed 
such that the time histories of B, 6 ,  Csb/2V,, 
rsb/2V,, 6, and br are linearly independent. This 
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implies independence of 1, p', fiSl,13/2V,, ?S,,13/2V,, 
and 6, in equation (4.1-26). 

Next it must be investigated whether p*b/V, is 
independent. This could be checked by rewriting 
bb/V, using equation (2.1-16) as: 

- 
r s b  (4.1-27) 2-. - b -  - Bb = ~ c o s y , g s  + -A 

- 
vo v, y s  2v, 

where: 

1 2 -  ,., 
= -%p,V,S cys 

111 - 
The linear aerodynariiic model of Cy, froin equation 
(2.2-9) iiiay be written as: 

- Substitution for AYs in (4.1-27) leads, for the case of a 
nominally horizontal flight condition, i.e. yo=O, to the 
following expression for pb/vo: 

(4.1-29) 

in which C denotes a 6x1 matrix as  defined in 
(4.1-4), with elements: 

The controllability of the lateral equations of 
motion guarankes the existence of flight test 
manoeuvres for which the time history of cPs is 
linearly independent of the time histories of the 
remaining variables in (4.1-29). 
Consequently, the same holds true for b*b/V,. This 
means that in principle, all lateral stability and 
control derivatives in the chosen model are 
identifiable. 

4.2 N o n l i n e a r  A e r o d y n a m i c  M o d e l  
I den titica tion 

(4.1-28) 
In equation (4.1-28) the terms Cy psb/2V, and 

Sa are relatively sm;ill and may be neglected. 
Also Cy. and Cyls are usually negligible 
compared to 2++, and 4ph respectively. 

16 

cY6,S 

PS 

According to the reconstructibility analysis of the 
lateral flight path reconstruction model it  follows 
from equations (4.1-16) and e.1-17) that the 
reconstructed angle of side slip p* has a constant 
error which vanishes after differentiation. Using 
equations (3.2-18), (4.1-16), (4.1-17) along with 
the simplifications above, equation (4.1-28) may be 
written 21s: 

Nonlinear aerodynamic models are preferred to 
linearized models for analysis of actual tlight test 
data. The obvious reason for this is that the validity 
of nonlinear models, as for instance in the form of 
relations for the aerodynamic force and moment 
coefficients (2.2-2) and (2.2-3), is not restricted to 
small deviations from ii nominal tlight condition. 
Furthermore, in the context of the two step method, 
the aerodynamic model identification problem can 
be formulated as a Linear Regression problem. 
Model identification implies the development of an 
adequate model structure. Since linear regression 
techniques are used, aerodynamic model 
development can be based on residual analysis in 
subsequent steps starting from a relatively simple 
model structure. 
In section 4.2.1 a brief outline is given of classical 
regression m i  lysis. section 4.2.2 discusses the 
properties of simplified models. The subject of 
section 4.2.3 is model development via residual 
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analysis. In section 4.2.4, we briefly touch upon 
the sources of collinearity problems, their detection 
and treatment. For a detailed introduction to 
regression analysis the reader is referred to the 
books of Draper and Smith [73], Montgomery and 
Peck [75], Sen and Srivastava (22111. 

4.2.1 Principles of Regression Analysis 

Models of aerodynamic force and moment 
coefficients, as for instance in equations (2.2-2) 
and (2.2-3) can be restricted to the following 
general form: 

r 
y(i) = ak.xk(i) + E(i) , (4.2-1) 

k=l  
for i=l(l)N, in which y(i) denotes a n  aerodynamic 
force or moment coefficient, a,., k=l(l)r denote 
aerodynamic model parameters b be estimated and 
xk(i) are airplane state and control variables. The 
variable E(i) denotes modelling errors accounting 
for all unmodelled effects like turbulence in the 
propeller slipstream and in the boundary layer, fuel 
sloshing, atmospheric turbulence, etc. These errors 
are treated as stochastic contributions to the force 
and moment coefficients and satisfy 

= o ,  
E{ E(i) *EO) } = VF *a,, . 
E{E(i)) (4.2-2) 

That is to say that we postulate some assumptions 
that the equation error diagnostics are o f  the type: 

E(i) is a stationary vector, 
E(i) is uncorrelated with xk(i), 
E(i) is identically distributed and uncorrelated 
with zero mean and variance c?, 
E(i) has normal distribution so that confidence 
intervals for the estimates can be found and 
regression hypothesis tesls can be employed. 

The integer i in equation (4.2-1) refers to a 
particular time instant t=ti during a dynamic tlight 
test manoeuvre. Models of this form are the subject 
of classical regression analysis. The variables xk(i) 
are called independent variables. These variables 
are assumed to be known exactly while y(i), called 
the dependent variable, is assumed to be measured 
with finite accuracy according to: 

where v(i) represents a random measurement error 
whose characteristics are similar to E(i) with: 

= o ,  
(4.2-4) E { v(i) 1 

E{v(i)*v(i)} = VV*aij  . 

The problem of regression is to calculate an 
estimate of the parameters ak given N sets of 
values of the independent variables xk(i) and 
measurements of the dependent variable yll,(i). 

Equation (4.2-1) can be written in terms of a 
parameter vectorg=col[al,a2, ..., ar] and a l x r  matrix 
x( i)= [ xl( i),x2( i), ... ,xr( i)] according to: 

y(i) = x(i)-a - + E(i) , 

for i=l(l)N. 

(4.2-5) 

Equation (4.2-5) can be substituted in (4.2-3) 
which may then be written in the following 
compact form: 

and X denotes a matrix of independent variables: 

I i I  

The vector of residuals corresponding to a 
particular estimate f of the parameter vector 2 is 
defined as: 

A 

e = Y  - X - a .  
-111 - (4.2-7) 

The least squares estimate f minimizes the sum of 
the squares of the residuals e(i), i=l(l)N, 

A N 

(4.2-6) 
A -  

- 
A 

= iiiiii ( Y - x ..)"' (I,,, - x -a 
L -111 -) 
a 

The necessary conditions for the existence of a 
minimum are: 
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A -  - (4.2-9) 

Substitution of 2 results in the so callcd normal 
equations: 

A 

[X T - ~ ]  a = x '-Y . - 111 - (4.2- 10) 

A unique solution exists if  and only if [XT*X] is 
positive definite. That is if  i ts  inverse exists. Then: 

(4.2-1 1) 

An unbiased estimate of the variance of (V,+V,) 
can be calculated with : 

A e T * e  
V e = = .  

N - r  
(4.2- 12) 

It is not difficult to show that under the 
assumptions made above the least squares estimate 
in (4.2-11) is unbiased: 

A (4.2- 13) E(2)  = [X"*X]-I X'"*E(Y ) = a . 
111 - - 

The covariance matrix of parameter estimation 
errors is: 

A A  

V(a") - = E((; - - E(i i ) ) - ( i  - E(;))') - . 
Substitution of (4.2-1 1) and (4.2-13) results in: 

A 

V(a)  - = vc [x ~r*x]-I (4.2- 14) 

Since V, is usually unknown, it is customary to 
substitute instead V, as calculated with (4.2-12). 

The goodness of f i t  of the perfect model: 

r 
Y(j> = ak'xk(i) (4.2- 15) 

k = l  
to the measurements y,Ji), i=l( l ) N  may bc 
expressed in terms of thc simple correlation 
coefficient between ylll(i) and f(i)=x(i)i.  This 
correlation cocfficient is usually rcfcrred to a s  the  
multiple correlation coefficient R and R' is called 
the measure of fit. 
Now define Ay& and Af(i) as deviations of yll,(i) 
and y(i) from the mean y, i.e. 

- 

AYlll(i) = YlIl(i> - 7 
Ay(i) = y(i) - 7 

. N  

Then the multiple correlation coefficient R follows 
from: 

/ N  A 

c (Ylll(i) -!I2 c (YO) -7>2 
i=l i= l  

(4.2- 16) 

A 

(AY -111 ' *AY)Z - - - 
A A .  

where: 

AY - 111 = ~ O I ( A Y ~ J ~ ) ,   AY^^^(^), ... , AY~JN)) , 

AY - 
A A A A 

= col(Ay(l), Ay(2), ... , Ay(N)) . 

I t  may- easily be verified with (4.2-7) that 
AY+,,=A+g. Substitution of this result in (4.2-16) 
and using the fact that and AX are orthogonal, 
i.e. g T - A I = O ,  R2 can be written as: 

e " -e R 2 = 1 -  - - 
AY' *AY 

-111 -111 

based on the assumption that E=Q. 

(4.2- 17) 

A general remark about the least squares at this 
stage is necessary. In an actual experiment, the 
above assumptions may not be generally met. 
Because of the measurement errors in the 
independent variables, the least squares estimates 
are asymptotically biased, inconsistent and 
inefficient [ 157,1591. However, as a result of high 
accuracy instrumenkition used and independent 
variables reconstructed from slate estimation, the 
expericnce shows that these errors are quite small. 
The computed least squares estimates are accurate 
and comparable to those obtained for example from 
an output error method. 
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4.2.2 Characteristics of Simplified Models 

In Equation (4.2-1), each term akxk(i) corresponds 
to one term of a multiple Taylor series expansion 
representing the aerodynamic model (section 2.2). 
Under certain conditions these Taylor series 
expansions can be assumed to be close 
approximations to the actual aerodynamic 
phenomena. 

Let r denote the corresponding number of terms. In 
practice, the maximum number of parameters 
which a n  be estimated from a given set of 
measurements is much smaller than r. Let r l  denote 
this a priori number of parameters. The 
corresponding model is: 

(4.2- 18) 

Since (4.2-18) probably contains only a small 
subset of the set of parameters in the perfect model 
(4.2-15), it is called a simplified model. A 
characteristic property of simplified models is that, 
in general, their parameter estimates are biased. 
This can be shown as follows. For a given set of N 
data points, the perfect model (4.2-15) can be 
written as: 

- Y = X.5 = X,.al + X2Yl2 . (4.2-19) 
in which denotes an r l  dimensional parameter 
vector of the simplified model and 3 an (r-rl) 
dimensional vector of the remaining parameters. 
Each column of the matrix X, can be decomposed 
in a vector contained in the column space o f  XI 
and a vector perpendicular to this column space. 
This means that X, can be written as: 

X, = X,.C + AX, (4.2-20) 
A *  

in which C denotes an rlx(r-rI) matrix. Let ;'I 

denote the least squares estimate o f  in the 
simplified model x=X-a , .  According to (4.2-1 1): 

-I a^*  = [X,T-X,]-l X,1'.Y -111 . (4.2-21) 

From equation (4.2-1Y), i t  can be shown tha t  this 
estimate is biased: 

E(;) = [X,1'.X1]'I XIT E(Y Ill ) 

= [x,TX,]-I XIT (X,.a+ + X2*C2) 

= a + [x , '~ -x~]- '  X , T - X , * ~ ~  . 
-1 

I t  can be shown that: 

cj = [x:.xl]-' X,T.X -2 j 

where the index j refers to the j-th column of C 
and X, respectively. The expected value of 2; is 
therefore: 

A 

E(::) = cl + C-a 
-2 * 

(4.2-22) 

In general %#Q and G O ,  thus c; is biased. 
I t  is important to note here that this bias is not 
conskint but rather depends on the strucfure of the 
matrix X .  This means in the case of dynamic flight 
test manoeuvres, the parameter estimation bias of 
simplified models depend o n  the form of the flight 
lesl manoeuvre. 

The covariance matrix of i; is: 

. .  
Substitution 'of (4.2-21) and (4.2:22) leads to an 
expression similar to (4.2-14): 

V ( 2 )  = ve [x,l'*xl]-I . 

4.2.3 Mode! Developinent via Residual Analysis 

In aerodynamic model idcntification it is often 
possible to specify an a priori model containing 
those terms which are known to be indispensable 
from experience or from theoretical considerations. 
Next, the model fil is improved by selecting 
additional terms from a set of so called candidate 
variuhles. This can be done in successive steps via 
res id uii 1 ii 1x1 I y s is. 

Thc proccdurc described below is called forward 
selection in the literature, because at each step one 
vari;ible is added tu the model. An alternative 
procedurc is backward elimination where one starts 
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with a model with many variables already included 
and a t  each step the least important variable is 
eliminated. Finally one can combine the two 
procedures and at  each step include the most 
important variable and subsequently eliminate the 
least important variable, this procedure is called 
stepwise regression. In actual practice all 
procedures work well, but they need not 
necessarily lead to the same model. For instance, it  
may occur that one variable has a high correlation 
early in the forward selection procedure and 
therefore is included, but its contribution may 
become insignificant after a few other variables 
have been included. The stepw ise regression 
procedure will in this case eliminate this variable, 
while the forward selection procedure will retain it. 

Let the initial model contain r l  parameters. The 
corresponding least squares estimate 4; can be 
calculated with (4.2-21). The remaining model 
residuals are: 

= [1 - x, [x:'.x,]I X:'] - Y 111 . 

(4.2-23) 

Next, each member of the set of candidate 
variables is evaluated with respect to its capability 
to improve the fit of the model. Let such a variable 
be x,(i), i=l(l)N. Then a column vector & can be 
defined as &=col[x,(l),x,(2), ..., x,(N)]. If  one uses 

as the vector of the indcpcndent variables in a 
model for the least squares residual vector 2, 
according to: 

-1 e = X . a 2 + e  -2 -2 ' (4.2-24) 

the corresponding least squares estimate of a2, 
indicated as ;;, is now 

(4.2 - 25) 

and the 'new' least squares residuals & are equal 
to: 

A 

e ' = e - X -a2' 
-2 -I -2 

(4.2- 26) 

According to (4.2-20), &, can always be 
decomposed into components along and 
perpendicular to the column space of X,: 

X = X , - c  + AE2 (4.2-27) 
I 

in which c denotes a column vector. By 
substituting equations (4.2-27) in (4.2-25) it is 
noticed that if A&=Q then also $;=0, and from 
equation (4.2-26) we get &=e,. That is, adding this 
candidate variable does not improve the goodness 
offit. In general, &0 and with equations (4.2-26) 
and (4.2-25) the following expression may be 
derived for ~ ' 6 :  

In the analysis here, A& is used as a candidate 
variable instead 3. The reason for this can be 
ascertained from equation (4.2-28). Since XTX, is 
positive definite, we have: 

where g2 denotes the vector of the smaller 
res id uii Is: 

A 

e = e - A z 2 - a ;  
-2 -1 

The least squares estimate .;; is calculated as: 

(4.2 - 29) 

The vector c in equation (4.2-27) is equal to: 

c = [XI  1' .xl]-I x,'*x 
-2 . - 

This is easily proved by showing that: 

T XIT*AZ2 = X I  X - X , * c  = 0 
(-2 -1 - 

(4.2-30) 

The procedure fo r  modcl dcvelopment via residual 
analysis is to calculate Crom a given set of 
candidate variables (stored in the form of column 
vectors &) the orthogonal components with respect 
to the columns of X,. Next, one of the orthogonal 
candidate variables, in general the one which 
generates the smallest value of &%, is included 
in the model. Then this selection procedure is 
repeated for the set of remaining candidate 
variables, where the orthogonal components of the 
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andidate variables are calculated with respect to 
the new (extended) matrix of independent variables 
of the form [X1.A&]. This only requires 
orthogonalization with respect to the new column 
A&, since all candidate variables were already 
orthogonal with respect to the columns of X,. 

The improvement of the goodness of f i t  in the 
subsequent steps of the model development can be 
described by the multiple correlation coefficient 
given in equation (4.2-17): 

e T * e  
2 4 4  R, = 1  - 

A Y T - A Y  ' 
(4.2-31) 

-111 -111 

in which Q refers to the Q-th step. 

Each addition of a new candidate variable,  result^ 
in a reduction of the sum of squares of model 
residuals g:% and a corresponding increase of 
multiple correlation coefficient R,. This makes it  
difficult lo decide when to stop the process of 
adding candidate variables to the model. Therefore, 
we need to define additional statistical criteria to 
decide this issue. 

One possibility is to test the statistical significance 
of each new parameter estimate by the sequential 
F-test and to test the statistical significance of all 
model parameters simultaneously by the total 
F-test. The feature of sequential F-test is that it  can 
be used as a criterion for adding o r  removing terms 
from the model when it is being 'built'. For 
application of the sequential F-test one calculates: 

e' -e - eT-e  

eT.e 
(N - r,) 1 

- 4 - 1  4 - 1  4 4 
Fseq - 

4 4  

in which fp denotes the total number of parameters 
in the new model. F,, can also be written in terms 
of multi p I e corre la t io n coe ffic ien ts accord ing to : 

(4.2-32) 

At this stage it is convenient to introduce the 
partial correlation coefficient R; being the simple 
correlation coefficient between and A&. The 
partial correlation coefficient c a n  be written as: 

e'-e 

e' .e 
R t 2  = 1 --. 4 4  (4.2-33) 

4 - 1  4 - 1  

The relation between the multiple correlation 
coefficients R, and Ro-1 and the partial correlation 
coefficient R; is: 

R, 2 = 1 - ( 1  - R,-])-(l 2 - R t 2 )  . (4.2-34) 
Substitution of (4.2-34) in (4.2-32) results in: 

R;2 - (N - r,) . 
Fseq - 12 

1 - R, 
(4.2-35) 

The null  hypothesis Ho:ap=O is rejected at a 
chosen confidence level a in favour of the 
alternative hypothesis H,:a,#O i f  

Fscq ' F,( 1 7 N - r,) I 
(4.2-36) 

in which F, denotes the value of Fisher's 
distribution function with 1 and N-r, degrees of 
freedom; a=Pr{H,IH,}. 

The combination of equations (4.2-35) and (4.2-36) 
allows us to bring the sequential F-test in the 
following form: 

accept HI if : 

*2 k R, > - ,  
1 + k  

1 
where k = -.Fa( N - r, 1 , N - r f )  

This is depicted in fig. 4-1. 

(4.2-37) 

For application of the total F-test one calculates: 

in which denotes the residuals of the most 
simple model with only one parameter 21, and 
independent variable xo(i)=l, i= l ( l )  N. F,,, can 
also be written as: 

(4.2-39) 

0 

e 

The null  hypothesis HO:ai=O, i=l( 1)rp is rejected 
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and the alternative hypothesis H, is accepted at a 
chosen confidence level a if: 

0 

F,, > Fa(r,-l  , N - r , ) ,  (4.2-40) 

where F, denotes the value of Fisher's distribution 
function with r,-1 and N-r, degrees of freedom; 
a=Pr{H,IH,}. 

Combining equations (4.2-39) and (4.2-40) allows 
us to bring the total F-test in the following form: 

accept HI if : 

R:>-, k 
1 + k  

r, - 1 

N - r, 
where k = --Fc,(rt - 1 , N - r,) . 

(4.2-41) 

An important characteristic of a model is its 
capability to predict aerodynamic force and 
moment coefficients for other data sets then was 
used in the determination procedure itself. The 
Prediction Sum of Squares (PRESS) criterion is 
often used to test for this characteristic, see Allen 
[229]. The prediction crror for one data point is 
calculated by omitting this data point from the 
regression and then cdculating the difference 
between this data point and the prediction by the 
model based on the remaining data points. The 
PRESS criterion is then calculated by repeating this 
procedure for all data points and summing the 
squared prediction errors. This criterion is 
recommended by Klein [ 1501. A disadvantage of 
this criterion is that  if sequential correlation is 
present in the data, a s  is often the case with actual 
tlight test data, this criterion will not be effective. 

In order to negate the shortcomings of the PRESS 
criterion, the Predict criterion was introduced by 
Mulder (141. This criterion uses a second dataset, 
which is not used in the parameter estimation at 
all. The model as estimated from the first data set 
is used to predict the model output for the second 
data set. The Predict criterion is then defined as: 

N A -  

(4.2-42) 
If T2,(i) denotes the estimate of y2(i) of the second 
data set, then 921(i) can be calculated according to: 

A A 

Y2,(i) = X20) *a; , 
where ii is the parameter estimate based on the 
first data set and X, is the data matrix for the 
second data set. The first term in equation (4.2-42) 
is the estimated value of the prediction RSS 
calculated from the parameter estimation errors of 
1, calculated as V( F2 i))= X,( i) *V&ii) *X>( i), 
while the second term is the actual prediction RSS. 
When the number of included variables increases 
in the aerodynamic model the f i t  error in the first 
data set will decrease and as a consequence the 
first term in equation (4.2-42), which is the 
predicted f i t  error for the second d a h  set, will 
decrease as well. As long ;IS variables are added 
which improve the prediction the second term and 
the criterion its a whole will decrease as well, but 
soon variables will be added which happen to 
improve the fit  to the first data set, but which 
actually degrade the prediction error for the second 
data set. In that case the second term will usually 
cause the Predict criterion to increase rapidly and 
thus give a good indication of the predictive 
capability of the model. 

- *  

For more details on statistical tests the reader is 
referred again to [73,75,228J. In  section 4.3 we 
will discuss the application of sequential and total 
F-tests and of the Predict criterion while 
developing longitudinal and lateral aerodynamic 
models from dynamic tlight test dah .  

The final step in the model determination 
procedure is the ualidatiott o f  the model using 
independent dah  se&. I t  is very important to set 
aside extra recordings dedicated for validation 
during the planning of a flight test program. This 
is of course closely linked to the Predict criterion 
approach, although strictly speaking the second 
data sets used in this criterion are not independent 
any more. 

4.2.4 Data Collinearity 

I f  there is a high correlation between measured 
variables in the data matrix, this condition is called 
data collinearity. The matrix [XT-X] in the normal 
equations (4.1-3) or (4.2-10) becomes very ill- 
conditioned and as a result some parameters or 
combination of parameters become nearly 
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unidentifiable. An example of collinearity is a 
highly manoeuvrable aircraft whose stability 
augmentation system deflects various control 
surfaces in concert thus causing near linear 
dependence among their deflections. One should 
recognise the collinearity problems as  a data 
problem rather than 21s ii statistical problem. 

The condition may even further degrade when 
actually computing numerical values due to round- 
off and truncation errors in digital computation, 
Conversely, the same type of errors may also make 
a singular matrix appear to be just ill-conditioned. 
This points out the need for accurate numerical 
methods. 

Some well-known numerical methods which iire 
successful in dealing with ill-conditioned matrices 
iire Householder's transforma Lion, Given's rotation 
and singular value decomposition. For more details 
the reader is referred to Lawson and Hanson (721. 

Some of the sources of collinearity problems can 
result from: 
a) a flight experiment where certain independent 

characteristic modes determined by some of the 
regressors are not excited by the input signals, 

b) over parameterization o f  thc model o r  
c) constraints in the data, c.g. due to stability 

augmentation systems. 

The detection of these collinearities can be made 
by inspecting: 
a> correlation matrix [x~-xI ,  
b) eigen system analysis and singular value 

decomposition o r  
c) para meter va ria nce d eco m pos it ion . 
A good theoretical discussion on these topics can 
be found in [74,75 and 2283. Some very interesting 
discussions with respect to sources of collinearity, 
diagnostics and adverse effects in the light of 
estimating parameters of modern high performance 
aircraft with high augmentation can be found in 
Klein [62,125,156 and 1571. 

4.3 Practical Aerodynamic Model Identific a t' ion 

In section 4.2, aerodynamic model development 
from tlight test data begins lrom relatively simple 
a priori models containing only those variables 
which iire known to be itidupetisable from theory 

or from experience. Next, a set of candidate 
variables is postulated, from which a limited 
number is selected to be included in more refined 
versions of the aerodynamic model. 
To begin with, a priori models of the longitudinal 
and lateral aerodynamic force and moment 
coefficients are shown in table 4-1. The 
aerodynamic force and moment coefficients are 
initially assumed to depend linearly on the selected 
sets of independent variables, except for the terms 
with a2 in the models of Cx and C,,,, which were 
known to be indispensable from earlier flight test 
experience [ 14,151. In  addition, it is initially 
assumed that  no aerodynamic 'cross coupling' 
effects are present. That is to say, the longitudinal 
aerodynamic force and moment coefficients are 
assumed to depend only on variables related to 
strictly longitudinal manoeuvres, while the lateral 
aerodynamic force and moment coefficients are 
assumed to depend only on variables related to 
strictly lateral manoeuvres. 

The result of the wind tunnel experiments as 
presented in fig. 2-1, however, indicate that 
aerodynamic cross coupling effects do exist and in 
facl iire rather pronounced. The longitudinal 
coefficients C ,  and C,,, depend on p and the lateral 
cocfficienL\ Cy, C ,  and  C,, depcnd on U a s  well as 
o n  Ap,/%f)V'. The cross coupling effects and also 
the relation between C ,  and p as seen from fig. 2-1 
are clearly tionlittear. 
In  this case i t  appears that the aerodynamic 
coefficients are continuous functions of APJXPV~, 
a and p. It is possible therefore to approximate 
these functions by means of truncated Taylor series 
expansions. The models in table 4-1 are in fact 
examples of such approximations in which, except 
for  the quadratic terms in a, only terms up to the 
first order are retained. More accurate 
approximations will result if  terms of higher order 
than the first are added to these a priori models. 
This leads, therefore, to the so-called candidate 
variables. 

For example, it is important to notice the form of 
the term (Bp,l!4pV2)'*uj-pk. In  the present section 
2111 these variables, up to the third order, i.e. 
i+j+ks3, were included in the set of candidate 
variables. Also included in the set of candidate 
variables, were the control surtace detlections bi,, be 
and b, a s  well as produck of these control surface 

0 
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deflections and first  and second order powers of 
ApJ%pV2,a and p. These latter products were 
included to account for the variation of control 
derivatives, as was already indicated by the wind 
tunnel experiments (fig. 2-1(c)). The set of 
candidate variables was extended further by adding 
the dimensionless body rotation rates pb/2V, q?V 
and rb/2V and the dimensionless time derivatives 
az/V and )b/V. In general, body rotation rates are 
included in aerodynamic models to account for the 
effect of curvature of the streamlines on the 
aerodynamic force and moment coefficients [ 101. 
The body rotation rates in the aerodynamic models 
of table 4-1 are used to model the effects of the 
dimensionless body rotition rate qz/V related to 
longitudinal manoeuvres on the longitudinal force 
and moment coefficients, and to model the effects 
of the dimensionless body rotation rates pb/2V and 
rb/2V related to lateral m;inocuvres o n  the lateral 
force and moment cocflicients. By including a l l  
dimensionless body rotation rates in the set 0 1  
candidate variables, i t  is possible to ;iccount for  
hypothetical aerodynamic cross coupling effects. 
That is, the effect of q?/V on the lateral, and the 
effects of pb/2V and rb/2V on the longitudinal 
aerodynamic force and  moment coefficients. The 
dimensionless time derivatives aT/V and Bb/V 
were included in the set of candidate variables to 
account for nonstationary ;ierodyn;imic effects and 
the effects of the finite time needed for  the vertical 
and lateral air  velocity componcnls induced by the 
wing and the fuselage to reach the horizonla1 and 
vertical aircraft tail surfaces [ lo] .  
The nonlinear dependence of the aerodynamic 
force and moment coefficients on ~p,/1/2pv’, a, and 
p, the variation of the control derivatives, and the 
hypothetical effect\ of the body rotation rates and 
the time delays a s  described above, all amounted to 
a total number of 40 candidate variab1e.s. 

The above consider;itions clcarly illustratc tha t  the 
selection of candidate v;iri;ibles is to ii ccrtriin 
extent arbitrary, even i f  supported by restills from 
quite extensive wind tunnel expcrimenls, as in the 
present case. 

The process of sequential selcction of candidate 
variables for improved modcl f i t  will be 
demonstrated now. Rather than ii single 
longitudinal or lateral tlight test manoeuvre, ii data 
set consisting of 3 longitudinal and 3 later;il 

67 

manoeuvres a t  3 different values of nominal True 
Air Speeds of 35, 45 and 55 m/s respectively, will 
be used for this purpose. In such a data set, the 
range of variations of variables such as ApJ%pV2, 
a and is considerably larger than in a single 
longitudinal or lateral manoeuvre, as  can be seen 
from fig. 4-2. The longitudinal and lateral 
manoeuvres lasted 10 and 16 seconds respectively. 
Combined with a sample rate of 10 Hz, this 
resulted in a joint data set of 786 data points. 

Starting from the a priori models above, the models 
are sequentially extended with those candidate 
variables corresponding to the largest value of the 
partial correlation coefficient R;, which is 
equivalent to minimizing the residual sum of 
squares gp -I. 3. 

Fig. 4-3 show.\ two typical examples of the 
variation o f  the dilfcrent criteria lor  model 
development as a function o f  the number of 
candidate variables added to the a priori model. 
The criteria shown are the performance index (P.I.) 
g : ~ ,  the total F-value Flat, the partial correlation 
coefficient R; and the PREDICT function. In these 
examples, both the total and the sequential F-tests 
lead to inclusion of ;it least 6 additional terms. 
Acceptance by the F-tests means that  each of these 
terms yielded ii significant contribution to the 
goodness of f i t  of the aerodynamic model to the 
actual measurements. The Predicf function, 
however, is shown to be a much more severe 
criterion in this respect. A large increase of the 
predict function indicates that the larger models are 
inferior to more simple models in predicting the 
force or momcnt coefficient using a second, 
independcnt dah  set. Compared to the a priori 
models, the models as selected with the predict 
function are shown to contain only conditional 
vii ria blcs. 

For all aerodynamic forcc and moment coefficients, 
the selected candidate variables and corresponding 
improvements of the goodness of f i t  are shown in 
table 4-2. Here, the goodness of f i t  is expressed in 
terms of the multiple correlation coefficient R, and 

of \I, - Rf 

With respect to goodness o f  fit, considerable 
differences exist particularly between models of 
aerodynamic force coefficients and models of 

, expressed as  ii percentage. 
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aerodynamic moment coefficients. Accurate models 
could be developed for C, and C,. The fit of the 
models of C, and in particular C,, however, is 
rather poor. These rcsults are of course not general, 
but rather depend on the aerodynamic 
characteristics of aircraft, on the nominal flight 
condition and on the flight test manoeuvres. A 
comprehensive presentation of experimental results 
related to this aerodynamic model development can 
be found in Blok and Mulder [ 1781. 

4.4 Conclusions 

Several aspects of the regression technique have 
been described in this chapter. This technique is 
very efficient with respect to computing time and 
very convenient to apply when one wanLs to obtain 
the parameters of a given aerodynamic model. 
Moreover, i t  is also a very important tool for the 
determination of the structure of modcl. 

In this chapter a number of statistical tests for the 
validity of the identification resuILs were discussed. 
In addition, the use of a priori information in 
support of the model development was 
demonstrated. It is very important to stress, 
however, that the procedures that  we describe here 
are certainly not ‘black-box’ procedures, which will 
automatically produce the right answers. The 
aerodynamic insight o f  the ana lys t  is the best 
criterion for the validity of thc resulb. In this  we 
fully agree with the discussion by Maine and lliff 
[ W .  

Linear Regression lends itself well for 
implementation in an interactive program package 
and quite a number of these packages have been 
developed. The essential features o f  such a package 
are complete freedom for the choice of candidate 
variables, complete freedom of sclcctions within 
datasets and combinations of dataseL5 and extensive 
facilities for inspecting the model residu;ils using a 
large variety of statistical tests and graphical 
presentations. In  this way the ana lys t  is able to 
apply his engineering judgement in the best 
possible way. 

estimation errors) in the independent variables. In 
this case, the application of the Total Least Squares 
technique allows to take accountof these errors in 
the independent variables, see Golub and Van Loan 
[230] and Huffel [231]. Initial applications of TLS 
have shown significant improvements over the 
standard regression method [219]. 

Like any other estimation mcthod regression may 
give biased results when the statistical assumptions 
on which it  is based are violated, sec (4.1-2). In 
practice there is always measurement noise (or  
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Tnble 4-1: A priori longitudinal and lateral aerodynamic models. 
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0.999415 I 3.41 I 
r b /2V 0.999533 3.05 

0.999552 2.99 
ar (Apt/%pV2) 

0.999567 I 2.94 I 

0.999601 1 2.82 I R2 

0.999699 2.45 
Bz (Apt/%pV2) 

0.999712 2.39 

0.996999 7.74 

0.998327 5.78 

P 

,2 

0.998961 4.55 
Bz (Ap,/%pV2) 

0.999049 4.35 
(Apt/  Ih p V  ')z 

0.9991 17 4.20 
(Apt/ !4 p V ') 

0.999162 4.09 

0.999202 3.99 

0.986309 16.49 

P' 

a?/ V 

0.991233 I 13.21 I R2 

rb/2V 0.993302 11.55 

0.994284 10.67 R3 

0.995078 9.90 B 
0.995479 9.49 

0.995857 9.09 

pz (Ap,/%pV2) 

be (Ap,/%pV2) 

Table 4-2: Statistically signifcant steps in the development of m o h k  of the aerodynamic force 
and moment coefficients. Model developmeni is based on the combined data of longitudinal and 
lateral manoeuvres at three different nominal flight conduwns at 6000 f t  pressure altitude and 

TAS of 35, 45 and SS mls respectively. Asterh indicates the models as selected using the 
PREDICT function criterwn of sectwn 4.2. 
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0.9%551 8.29 

0.997119 7.58 

0.997571 6.96 

Bb/V 

bra 
- 

6.71 q c / v  0.997740 

0.997895 6.48 
actv 

0.997993 6.33 BZ 

b.B2 
0.998323 5.78 

0.954 197 29.91 

0.959872 28.04 

0.9645 16 26.40 

0.967861 25.14 

a3 

Bb/V 

b, a 
24.42 

(Ap,/ Hp V *) 0.969724 

0.972087 23.46 

0.973925 

0.960266 27.90 

19.48 
( A p , / ' / i f ~ V ~ ) ~  

0.980841 

I 

0.986839 16.17 qc/v 
0.990024 14.08 B" 

0.992961 11.84 

0.992129 12.52 
br (Ap,/HpV2) 

Bb/V 

Table 4-2: Continued. 
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Figure 4-3: Different criteria for model drvelopmenl for increasing nwnbcr of additional terms in a 
priori aerodynamic rnodc.0 of C, and C,. The open arrows indicate the selected number of additional 

terms based on the PREDICT function criterion. 
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5 OPTIMAL INPUTS FOR AIRCRAFT PARAMETER 
ESTIMATION 

In the estimation of aerodynamic parameters from 
flight tests the form of the flight test manoeuvre is 
vital for the accuracy of the parameter estimates. 
This naturally leads to the design of a t i m a l  input 
signals for flight test manoeuvres, which is the 
subject of the present chapter. 

Several factors must be taken into account in 
designing input signals for flight test manoeuvres: 

Model assumptions Input signal design must not 
result in violation of the assumptions underlying of 
the model description. In the case of  linearized 
models the inputs should not cause too large a 
deviation from the nominal flight condition. 

Flight test instrumentation The input signals must 
reflect the characteristics of the tlight test 
transducers and data logging system such as 
dynamic range, measurement accuracy and sample 
rate. 

Accuracies of parameter estimates The optimization 
of input signals should lead lo maximum ‘quality’ 
of the data acquired during a flight test manoeuvre. 

Length of individual flight test manoeuvres The 
flight test time should be kept as short as possible. 
This not only saves expensive flight testing time 
but also limits the volume of data storage and data 
processing. 

Pilot acceptability The dynamic range and 
maximum amplitude of control input signals should 
be acceptable to the pilot. Only very ‘simple’ input 
signals are suitable for manual implementation. 
Input signals should, of course, never manoeuvre 
the aircraft outside of its tlight envelope. 

Aircraft structural constraints Input signals for 
flight test manoeuvres should not lead to larger 
than the design structural loads. 

A fundamental problem in the design of input 
signals for system parameter estimation is that the 
design itself depends on the system parameters. 
Consequently, these parameters must be known 
before the actual flight tests are made. If they were 

known, however, then estimation would obviously 
no longer be necessary. This problem has been 
described as the circularity problem. Necessarily, 
the design of input signals must be based on a 
priori estimates of the actual system parameter 
values. The circularity problem can be addressed 
by calculating and implementing a sequence of 
‘optimal’ input signals. Input signal design is then 
seen as an integral part of the identification 
procedure as shown in fig. 5-1. Starting from 
windtunnel experiments or other sources, one may 
develop an aerodynamic model structure and select 
a set of a priori parameter values. Together with 
the estimation objectives and experimental 
conditions, one has the basic presumptions for the 
design of input signals. Next actual identification 
results may be used to ‘refine’ the preliminary 
input signal design. Now, optimal input design and 
parameter identification c a n  be used in an iterative 
manner until the desired objectives are met. Such 
an iterative procedure raises the interesting and yet 
unsolved question whether, and if so under which 
conditions, it will converge. 

Historical background 
In this section, we give a brief trace of the 
evolution of the theory of optimal input design. 
Starting with the work of Nahi et al., [159,160], 
the problem of deriving optimal input signals for 
the estimation of parameters in dynamical system 
models from response measurements has  been 
studied intensively by several researchers. A 
detailed survey has been conducted by Goodwin 
and Payne 11611 and Kalaba and Spingran [ 162). In 
the field of dynamic tlight testing, Gerlach 131 
appears to be the first to explicitly recognize the 
intluence of the form of input signals on the 
accuracy of estimated aerodynamic model 
derivatives. He proposed a qualitative method for 
the determination of ‘optimal’ frequencies in scalar 
input signals to linear second order systems 15). 
The significance of the work of Nahi stems from 
the idea to use a norm o f  Fisher’s Information 
Matrix (M) as a criterion for the optimization of 
input signals. The inverse of Fisher’s information 
matrix yields a universal lower bound on parameter 
estimation accuracies, called the Cramer Rao 
Lower Bound (CRLB); see appendix A. The idea to 
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base the optimization of input signals on a norm of 
the information matrix results in input signals 
which have a general significance, in the sense of 
being independent of the type of estimation 
algorithm applied. 

Important contributions to the theory and practice 
of the calculation of optimal aircraft input signals 
have been made subsequently by Mehra [164 to 
1661. Based on the work of Kiefer and Wolfowitz 
[ 1671, and Kiefer [ 1681, Mehra proposes algorithms 
for the design of scalar and multi-dimensional 
input signals in the frequency domain as well as in 
the time domain. 

The time domain optimization problem can be 
formulated in terms of a Nonlinear Control 
Problem with fixed end time [ 161 and 1661. These 
problems are notoriously difficult to solve [ 1691. A 
disadvantage of generating a solution in the time 
domain is that in practical applicaitions constraints 
on the frequency contents of input signals may be 
important. A typical example are the constraints 
imposed by the finite bandwidths of anti-aliasing 
filters. It is not clear how such constraints can be 
taken account of in time domain optimizations. 

As an alternative to the above formulation of a 
fixed-time control problem, one can specify the 
desired parameter accuracies and find those input 
signals which attain this goal in the shortest time. 
This time-optimal control problem has been studied 
by Chen [ 1141 and more recently by Morelli [ 1231. 
The resulting input signals are of the bang-bang 
type. Chen is using combinations of Walsh 
functions, while Morelli adopts dynamic 
programming techniques to  determine the optimal 
switching times. Morelli’s technique was recently 
applied by Cobleigh [ 1791 and the resulting input 
signals were applied by Noderer I1471 for 
validation using actual flight test data from an 
X-31 drop model. 

Optimization of input signals in the frequency 
domain is advocated by Mehra [ 1651. The resulting 
algorithms are very efficient with respect to 
computation time. Furthermore, the underlying 
optimization problem can be shown to be convex. 
In this context, convexity refers to the form of the 
object function or criterion for which the extreme 
must be located. Convexity is an attractive 

property, as  it implies just one global extreme 
rather than multiple extremes. The result of 
the optimization is in the form of line spectra 
consisting of a finite number of frequencies, see 
also [161]. 
Another approach in the frequency domain is by 
localizing ‘identifiability’ (in fact ‘sensitivity’) 
regions of individual parameters on the frequency 
axes of Bode diagrams. The diagrams indicate how 
‘identifiability’ of different parameters depends on 
frequency and which frequency regions should thus 
be represented in the input signals. A procedure 
that optimized a sequence of step functions was 
developed by Koehler [20, 651. The aim of the 
optimization was to find ii signal with a shape as 
simple as possible and power distributed uniformly 
over a wide range of frequencies. This resulted in 
the now popular 3211 signal, see also chapter 6. 

A different form of broad band test signals which 
have been used in recent years are the ‘frequency 
sweeps’ as proposed by Tischler [139, 140). Such 
signals are initiated by applying two sinusoidal 
cycles with a frequency corresponding to the lower 
end of the frequency range required. The frequency 
is then increased gradually while reducing the input 
signal amplitude. Next the input signal is returned 
to trim. The overall length of the test sequence is 
chosen ideally to allow good identification of the 
low frequency modes as  well as to give a proper 
excitation of the vehicle over the frequency range 
of interest. These sweep signals were also applied 
by Sridhar and Wulff I2321 in the evaluation of 
some of  the lateral handling qualities of the 
BO- 105 helicopter. 

DUT Approaches 
In this section we introduce two approaches 
developed at the Delft University of Technology 
(DUT) for the design of aircraft optimal input 
signals. Both approaches use a scalar norm of 
Fisher’s information matrix as  design criterion and 
exploit the advantages of parameter estimation via 
the two-step method, see chapter 4. 
The first approach is based on the representation of 
input signals by means of finite sets of 
orthonormal funcfions in the time domain. This 
leads to a conceptually simple method in which the 
input signal design problem is converted into a 
nonlinear optimization problem. The method 
applies to linear as well as  nonlinear systems. If 
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harmonic functions are used in the optimization 
there is ii (loose) relation with the frequency 
domain. By excluding harmonics above a certain 
frequency it  is possible to limit the frequency 
contents of the resulting input signals. 

The second approach is a derivative of Mehra's 
method in the frequency domain (215, 2161. I t s  
efficiency is enhanced by exploiting the two-step 
method for parameter estimation to reduce the 
information matrix to a block diagonal structure. 
Convex analysis is applied to minimize the number 
of harmonic signals in the input design. The 
optimization results in the optimal amplitude ratios 
and the frequencies of the harmonic signals 
selected by the algorithm. 

Optimization criteria 
Both DUT approaches use ii sciil:ir norm (J) of the 
information matrix M :is the optimization criterion. 
Different norms can be used in the optimization, 
however, the following norms iire frequently 
mentioned in the literature [ 15X,161]: 

tr M 
Maximization of the trace of the information 
matrix indeed maximizes in a certain sense the 
amount of information present in the measured 
responses, but does not take a n y  ;iccount of the 
condition of M. This means tha t  the optimized 
input signals will not necessarily lead to ;icccpt;ible 
parameter estimation accuracies, since the latter iire 

related to the inverse of M, i.e. the Cramer Rao 
Lower Bound. I n  spite of this rather unfavourable 
characteristic, the criterion has been used by some 
authors mainly o n  account of computational 
efficiency of the resulting algorithms [159 and 
163). 

In det M 
It can be shown tha t  the dcterminant of M is 
inversely proportional to the volume of the one- 
sigma ellipsoid of the Gaussian multi-dimensional 
probability density function of parameter estimation 
errors. Input signals which maximize In det M are 
called D-optimal [ 1611. 

tr M-' 
The resulting input signals iire called A-optitnu1 
[164], and minimize the sum o f  the varimccs 01 
the parameter estimation errors, i.e. the diagonal 

elements of the Cramer Rao Lower Bound. It  is 
possible to give priority to estimation errors of 
some parameters by multiplying M-' with a 
weighting matrix and taking the trace of the matrix 
product. 

A,,,,, of M-' 
Input signals are based o n  the minimization of the 
largest eigenvalue A,,,,, of M-'. This cost function 
is related to the maximum radius of the uncertainty 
ellipsoid. 

Fig. 5-2 shows the relationship between J and the 
one-sigma ellipsoid of the Gaussian probability 
density function of the estimates of a two- 
dimensional parameter vector 2. It can be seen that 
for strongly correlated parameter estimates, the 
maximization of  tr M does not necessarily shrink 
the ellipsoid to ;I point. 

Fisher's information matrix is not only influenced 
by the input signals, but also by the number of 
samples N, see appendix A. In order to eliminate 
this (trivial) effect on J, it is recommended to use 
M=M/N rather than M in the matrix norms defined 
above. 
The last three cost functions require M to be of full  
rank. Only i f  M is of fu l l  rank it  is possible to 
compute estimates of a l l  parameters from the 
measurcd system responses to the applied input 
signals. I n  this  case the parameters are called 
identijiahle. I t  follows from appendix A that the 
condition of M is influenced by the form of the 
(multi-dimensional) input signal. If M's rank is not 
full, and cannot be improved by manipulating the 
form of the input signals then one or more of the 
parameters are structumlfy unidentifiable. In that 
case one should omit as many rows and columns 
(corresponding to the unidentifiable parameters) as 
needed to make M's rank full. 

Constraints on input signials 
In practice it  will hardly ever be possible to apply 
input signals with maximum amplitudes 
corresponding to fu l l  deflections of control surfaces 
without exceeding the limits of the permissable 
tlight envelope. Another restriction on the 
amplitude of input  signals and responses is 
imposed by the calibrated measurement input 
ranges of the transducers in the measurement 
system. However, perhaps the most important 
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reason to restrict input signal amplitudes is to stay 
within that ‘small’ part of the flight envelope for 
which it may be assumed that the model structure 
as used for the optimization of the input signals is 
‘valid’. Since the present state of the art of input 
signal design is based on linearized models it 
follows immediately that only ‘small’ perturbations 
from a nominal flight condition are allowed. 
If input signals of given form are scaled up each of 
the design criteria above will improve. The 
physical reason for this is that the signal to noise 
ratio improves with higher input signal amplitudes 
and so it is possible to arrive at better parameter 
estimates. So, also for the sake of a meaningful 
optimization of input signals (i.e. not leading to a 
trivial result of input signals with infinite 
amplitudes) the input signal amplitudes must be 
restricted. 

While from the above i t  will be clear that 
constraints on input signal amplitudes are essential, 
a still open question is how these constraints must 
be imposed. Constraints can be imposed directly on 
the input signals themselves, but indirect 
constraints on one or more components of the state 
vector are feasible as well. Also, constraints can 
take the form of hard boundaries or may be 
specified in terms of inpiit signal power o r  energy. 
The approach taken in the remainder o f  the present 
chapter is as follows: 

Hard constraints are no1 very relevant in input 
signal design for  tlight tests. The reason is that 
hard constraints either on input signals or state 
components are much less severe (except in the 
rather hypothetical case of a tlight test 
manoeuvre planned o n  the very edge of the 
permissable tlight envelope) than the 
constraints resulting from the use of  ii 

linearized system model. 
A power or energy constraint is applied to the 
components of the (multi-dirncnsional) input 
signal. The resulting optimized input signals 
can subsequently be scaled-up o r  down as a 
compromise between large signal to noise 
ratios (input signal scaled up) and small system 
model errors (input signal scaled down). Input 
signals for flight tests should be designed for 
optimal shape. 

The total measurement interval time as well as the 
total number of discrete sample times play a major 

role in the attainable accuracies of the parameter 
estimates as expressed by the inverse of Fisher’s 
information matrix. For optimization of input 
signals in the time domain, one may specify a 
fixed total interval time and sampling rate. As 
mentioned before sample rate as a design variable 
may be eliminated by using an average Fisher 
information matrix defined as f i=M/N. The same 
average information matrix is also used for the 
optimization of input signals in the frequency 
domain. 

Organization of the chapter 
chapter 5 is organized as follows. In section 5.1 the 
time domain approach for the calculation of 
optimal input signals composed of orthonormal 
functions is described. I t  is shown, that the optimal 
input signals may be derived from the solution of 
ii nonlinear parameter oplirnizition problem. 
Slarting with thc general case o f  nonlinear systems, 
it is shown that for the case of linear systems, the 
necessary calculations turns out to be remarkably 
simple and computationally efficient. In section 
5.2, the method is applied to system and 
observation models which allow a decomposition 
o f  the parameter-state estimation problem as 
described in chapter 3 and 4. 
The frequency domain approach is discussed in 
section 5.3 to 5.5. First, Fisher’s information 
matrix is derived in the frequency domain, using 
the model for the decomposed parameter-state 
estimation problem. It is also shown that the 
information matrix can be represented as  a simple 
convex combination of a limited number of point- 
input information matrices which each correspond 
to a single harmonic in the input design. Finally, 
the reconstruction of the optimal input signal is 
performed from the harmonic signals. 

5.1 Optimization of Multi-dimensional Input 
Signals for Parameter Estimation of Nonlinear 
and Linear Systems 

The present section describes in detail a method for 
the optimization of multi-dimensional input signals 
for parameter estimation of  nonlinear and linear 
systems. The method is based on the representation 
o f  the components of multi-dimensional input 
signals by means of weighted sums o f  orthonormal 
functions [section 5.1.1 1. In  general, the numerical 
value of the criterion for optimality, i.e. a norm of 
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Fisher’s information matrix or of the Cramer Rao 
Lower Bound, depends on the energy and form of 
the input signals. Therefore it is a function of the 
weighting factors of these orthonormal functions. 
This allows the formulation of the problem of input 
signal optimization in terms of a nonlinear 
parameter optimization problem, in which the 
parameters are the weighting factors. This is 
discussed in section 5.1.2. I n  section 5.1.3 it is 
shown that in the case of linear systems, it is 
possible to apply the concept of so called 
elementary information matrices. It is argued that 
this results in significant savings of computation 
time. 

Initially, Powell’s direct search method [ 1701, was 
used to solve the nonlinear parameter optimization 
problems of section 5.1.2 and  5.1.3. The resulting 
algorithm was employed for  the optimization of the 
Delft University o f  Technology (DUT) control 
input signals of the tlight test program described in 
chapter 6. After completion of the tlight test 
program, however, a new and faster version of the 
algorithm was developed in which the Newton- 
Raphson method was used. This version of the 
algorithm is described in section 5.1.4. 

5.1.1 Representation of Multi-dimensional Inpiit 
Signals 

In the following, !(t) denotes a n  s-dimensional 
input signal with components u,(t), Q=l(l)s: 

(5.1-1) - u(t) = col( Ul(t) ,... , Up(‘), ... , U&)) . 

E [ ‘OJl]  

The crux of the present method for the 
optimization of input  signals lies in the 
introduction of certain constraints o n  form and 
energy of each of the components o f  the multi- 
dimensional input signal 1 in the time interval 
[to,$]. In section 5.1.2, i t  is shown how these 
constraints lead to the formulation of the paramcter 
optimization problem mentioned above. 

The constraints on thefilrm are the consequence o f  
an  approximation of the components u p  of 1 by 
means of a weighted sum of a finite number of p 
orthonormal functions ip,.(t), k= 1( l)p, according to: 

where PkP, k=l( l )p ,  denote a set of weighting 
factors. The functions vk(t) are assumed to be 
orthonormal on [b,tl], as defined by: 

where a,, denotes the Kronecker delta. The shape 
of the orthonormal functions vk(t) has still to be 
defined in more detail later on. 
The energy of the different components up(t) of 
- u(t) in the time interval [t&] is constrained to a 
set of fixed and a priori selected values. The 
energy E, of the component u,(t) in [to,tl] can be 
written as: 

11 P P  

c k = l  n = l  

(5.1-3) 

U 

k = l  

Equation (5.1-3) is in fact, a particular form of 
Parseval’s theorem (1711. It follows from here that 
for given energy E, in the time interval [to,tlJ, the 
component up(t) can be represented by a point P, 
on a hypersphere with radius R,=dE, in p- 
dimensional Euclidian space. The position of P, 
on the sphere can be expressed not only in 
artesian or rectangular, but also in spherical 
coordinates. The rationale behind the introduction 
here of spherical coordinates will become clear in 
the next section 5.1.2. The relations between the 
rectangular coordinates &, and the corresponding 
spherical coordinates @j, of P, c a n  be written as: 

[jlr = R,.siiit$l, , 
k - l  

P -1 

(5.1-4) 

j=l  

for k=2(l)(p-1), as depicted in fig. 5-3 for the case 
p=3. 

It will be convenient to define the vectors: 

(5.1-2) 
k=l  
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B( = m1(P,,3P2,....9PpJ , 

for P=l(l)s in which p is the number of individual 
orthogonal functions in up(t) and s denotes the 
dimension of i ( t ) .  

Next, the elements of all the vectors J& are 
arranged in one column, in the form of a new 
vector with elements J& as: 

e =  (5.1-5) 

If q denotes the dimension of then q=sp. 

Next, a set of .q so called elementary input signals 
is introduced. ‘An elementary input signal is an s- 
dimensional vector gi(t) defined as follows: 

e (t) = 
-1 

e .  = 
- 1  

v 1 (t) 

0 

0 

0 

0 

vk(t) 

0 

where k=l(l)p.  

, ... , e (1) = 
- q  

lJ,(t) 

0 

0 

0 

0 

I),,(‘) 

, ... , 

(5.1-6) 
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as defined in equation (5.1-5). 

In principle, any set of functions orthonormal on 
[t&] could be used in equation (5.1-2). If the set 
is ‘complete’ then any continuous function on 
[$,tl] can be approximated ‘to any desired degree 
of accuracy’ by increasing the total number p of 
orthonormal functions [171]. This means that for 
p + to, optimized input signals of the form (5.1-2) 
will be independent of which class of orthonormal 
functions is used. In practice, for reasons discussed 
in the following sections, p is limited to finite and 
relatively small values. In that case, it must be 
expected that the form of the optimized input 
signals will show which set of orthonormal 
functions is used in equation (5.1-2). For example, 
in Swick 11721 ii set of  orthonormal functions is 
described which consists o f  positive and negative 
steps to +1 and -1 respectively. Application of 
these so called Walsh functions, [fig. 5-51, would 
result in input signals consisting of a finite number 
of positive and negative steps of varying 
magnitudes. Input signals of this kind are 
considered to be less suitable for actual 
implementation in flight, see also section 6. 
However, for excitation of other types of systems, 
as for instance the pharmaco-kinetic system 
described in [173], such input signals would be 
very practical. 

An attractive property of sinusoidal functions is 
that their energy is ‘concentrated’ around discrete 
frequencies. This property can be exploited to 
‘influence’ the frequency contents of the optimized 
input signals by simply omitting functions outside 
ii certain frequency range. The following two sets 
of sinusoidal functions were employed for the input 
signal optimizations as described in chapter 6: 

set 1: 

The set of elementary input signals can be 
interpreted as the columns of a matrix D(t), as 
shown in fig. 5-4 for the case s=2 and p=4. 

The input signal ~ ( t )  can now be written in the 
following compact form: 

vk(t) = ,/$ sinw,t , 

wk = k - w  23c 
01 ’ w =  01 T ’ 

set 2: 

(5.1-8) 

(5.1-7) 
i = l  

in which fi denotes the vector of weighting factors 

(5.1-9) 
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in which k=l(l)p, tE[h,tl], and T=tl-h, see figs. Another possibility is to design input signals such 
5-6 and 5-7. I t  is noted that any input signal which that undesirable characteristic modes of the 
is composed of set 1 o r  set 2 functions will be zero dynamic system are not excited. A typical example 
at the start and end times. This is another of such characteristic modes are the high frequency 
advantage of sine functions as there will be no structural modes of flexible aircraft. 
discontinuities when input signals are superimposed 
on the steady state or trim dellections of control 5.1.2 Input Signal Optimization €or Nonlinear 
surfaces in the nominal flight condition. System Parameter Estimation 

The sine functions in both set 1 and set 2 are 
readily shown to be orthonormal over the time 
interval [+,,tl]. Set 1 consists of functions having k 
periods in [to,$], set 2 consists of functions having 
k-half periods in [b,t,]. Sets of only sine functions 
are not complete. It is possible to define a 
complete set of orthonormal functions by adding a 
constant and cosine functions to the sine functions 
of set 1. The resulting set of functions is indicated 
as set 3, see fig. 5-8: 

set 3: 

qJ*k(t) = /; C 0 S W k I  , 
(5.1-10) 

in which again k=l(l)p, t€[t,,t,] and T=t,-to. 

In the present context, functions o f  set 3 are of 
theoretical interest only. Input signals based on 
these functions will lead to discontinuities and 
consequently, are not be suitable for actual 
implementation in flight. 

As mentioned above, wk in equations (5.1-8), 
(5.1-9) and (5.1-10) is loosely related to the 
frequency contents o f  the particular function. As k 
becomes larger, the power of the corresponding 
sine or cosine function in a power spectral density 
plot is concentrated more closely around wk. This 
fact may be used by the designer to limit the 
frequency contents o f  input signals. In this  way it 
is possible, for  instance, to avoid measurement 
errors due to the finite bandwidth of the pre- 
sampling filters in the measurement system. 

In the present section it  is shown that the design of 
multi-dimensional input signals for nonlinear 
system parameter estimation may be formulated in 
terms of n nonlinear parameter optimization' 
problem. The nonlinear systems considered are of 
the following form: 

in which z(t) denotes a n  n-dimensional state vector, 
E(t) an s-dimensional input signal and e ii vector of 
r system parameters for which it  is assumed that a 
set of approximate a priori values is known. 
Furthermore, f denotes a real valued vector 
function of dimension n. Each of its components is 
assumed to be continuous, such that its partial 
derivatives with respect to &(t) and i ( t )  exist. 
The system is observed at discrete instants of time 
tiE[to,tl], i=l(l)N, according to the following - 
nonlinear observation model: 

Y N  = h(O 1 2 i N  7 EO)) (5.1-12) - 

in which y(i) denotes an  m-dimensional vector of 
observations a t  t=ti. The usual assumption is made, 
that observation measurement errors are adequately 
represented by additive stationary Gaussian 
sequences of stochastic variables, which are 
assumed to have zero mean values and to be 
uncorrela led in time. However, measurement errors 
pertaining to the same instant of time are not 
assumed to be uncorrelated. This leads to the 
following measurement model: 

(5.1 - 13) 

The input signal i ( t )  is also sampled at discrete 
instants o f  time. The corresponding measurement 
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e = & .  
--a 

... 

errors are assumed to be small enough to be 
negligible. This situation is considered to be quite 
representative for the case of dynamic flight tests, 
where control surface detlections can indeed be 
measured with h igh accuracy. 

The system model (5.1-11) is restricted to be 
deterministic. In the present context, this implies 
that the actual measurements arc made in a stable 
atmosphere, where turbulence is negligible. 
Furthermore, stochastic contributions to the. 
aerodynamic forces and aerodynamic moments, as 
generated for instance in the (turbulent) boundary 
layer, are also neglected. In general these stochastic 
contributions are very small, except in those flight 
regimes where appreciable flow separation occurs. 

With the assumptions made above, the solution of 
the system differential equations may, for  given 
values of the initial state vector 3=~((to) and the 
parameter vector be calculated according to: 

1 

- X(t) = 3 + p, 20) ,E@)) dl * 
(5.1-14) 

0 

The maximum likelihood (ML) estimate o f  e 
corresponds to the global maximum of the 
logarithm of the likelihood function In L of the 
observation measurements, see appendix A. For a 
given input signal time his tory g(t) in the time 
interval [lo,+], this likelihood func t ion  dcpcnds n o t  
only on the parameter vector but also on 3 and 
on the elements of the covariance matrix of 
measurement errors V,. The dimensions o f  the 
parameter vector and the initial vector & are r 
and n respectively. In the most general case, the 
total number of nonidentic;iI elements in the 
symmetrical covariance matrix V, o f  observation 
measurement errors is %m(m+l), i f  this matrix is 
assumed to be nondiagonal. In cases where 3 and 
V, are unknown, they must be estimated in 
addition to e. The solu t ion  of the M L  estimation 
problem then involves locating the global 
maximum in the r+n+%m(m+ 1)-dimensional space 
o f &  3 and the upper triangular elements of V,. 
For convenience the elements o f  V,-' rather than 
of V, are chosen as the unknowns to be estimated, 
see appendix A. The upper triangular elements o f  
VW-' can be arranged in ii new parameter vector TJ 
of dimension %m(m+ 1). 
Next we compute the covariancc matrix of 

v,, i v I Veq 
0x0 

..I.. .i. ...... .i. ...... 

" X O O  VXOXO VXOl, 
..-.. .i. ..*.. .i. ..".. 

(5.1 - 15) 

The important role of Fisher's information matrix 
in M L  estimation theory stems from the fact that 
its inverse, C called the Cramer-Rao lower 
bound (CRLB), constitutes an asymptotic limit for 

ea%' 

a s  N goes to infinity [53]: v,,o, 

The information matrix M is ii positive, semi- 
definite and symmetrical matrix which can be 
partitioned as: 

,,,,, 

[Moo I M . I Moll 
xO I ..".. .i. ..̂ .. .i. ..-.. 

According to appendix A the blocks Mh, M,,,, 
Mxol, and Mqx, are empty: 

MO, i MOxO i 0 

..".. . i .  ..-.. . i .  . .I..  

..".. .i. ..".. .i. ...... 
0 i 0 i 

(5.1 - 16) 



- -Me0 i MeXO- -I 

'eaea - M~~~ i M~~~~ a.-.. 

0 - 
...... .i. ...... .e.... 

- 
0 .  

0 i 0 i M,; 
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a) J = t rMee  = trM + trM,,, 
a a  

b) J = lndetMo e = In(detM - detM,,l,) 

= IndetM + IndetM,,, 
a a  

c) J = trMe-', = t rM + tr M,, - 1  

a a  

I t  is shown in appendix A that the elements of M 
depend on ~ ( t ) ,  t€[t&]. The elements of M,, 
however, are shown to be fully independent of g(t). 
If we omit the terms containing M,,,, the following 
simplified criteria result: 

- 1  
Vee Vexo 

Vxoe VyoxD 

...... .i. ...... 

lini v ~ , ~ ,  = M,;~: , 
N - m  

Mee i MexO 
...... .i. ...... 

w o e  Mxox0 

liiti 
N - m  

a) J = trM , 
b) J = IndetM , 

c) J = trM-' . 
liui Vel, = lim Vllo 

N - m  N - . m  
= o ,  

lim V = litu V,,xo = 0 . 
N -. m '0" N d m  

J may now be written as a nonlinear scalar 
function of q=sp weighting factors &,: 

J = J@ = J((e ,,..., & ..... E - )  . (5.1-20) 

where: The upperdiagonal block of Moa, in equation 
(5.1-16) represents the combined information 
matrix on the parameter vector and the vector of 
initial conditions 3. For convenience this matrix is 
writter 

M =  

below as: 
According to section 5.1.1, the components of the 
s-dimensional input  signal with prescribed energies 
E,, Q=l(l)s, can also be represented as  s points 
P, o n  hyperspheres in a p-dimensional space with 
radii r,=t/E,. Let @, denote the vector of 
spherical coordinates of one of these points P,, as  
defined in (5.1-4) and fig. 5-3, then J in (5.1-20) 
can be written in an alternate form with a smaller 
number, viz. s(p-1), of spherical coordinates as 
a rg u men ts : 

Mee Mex0 
(5.1 - 17) ..".. .i. ..".. 

MxOe MxOxO 

With (5.1-17), i t  is now possible to write M 
(5.1-16) and C, , as follows: 

in 
0, 

a i l  

(5.1 - 18) 

J = '(9 ,'"" % ..... 9)) . 
where 

(5.1-21) 

1M-I i 0 1 
I ..".. .i. ...... 

0 i M,;: 

(5.1 - 19) 

With (5.1-20) o r  (511-21) it is possible to formulate 
the input  signal design problem in terms of a 
parameter  op t imiza t ion  problem. The  
correspondence between (5.1-20) and (5.1-21) is 
that J in  both expressions depends on a finite 
number of arguments or parameters. There is, 
however, a n  important difference when applying 
(5.1-20) and (5.1-21). Equation (5.1-20) needs an  
additional set of constraints on input signal 

Three matrix norms for the optimization of input  
signals, as  defined earlier, may now bc applied to 
equations (5.1-18) and (5.1-19). The resulting 
criteria can be written as  follows: 
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energies in order to obtain a meaningful 
optimization problem. However, optimization of J 
in (5.1-21) directly leads to optimal input signal 
components up(t) of prescribed energy E,. 
Therefore, optimization of (5.1-21) rather than 
(5.1-20) allows us to solve an unconstrained 
optimization problem, which is much easier to 
solve than an optimization problem with 
constraints. 
In principle, a variety of algorithms may be applied 
to solve such optimization problems [174]. If 
partial derivatives of J with respect to its 
arguments &,, ...,&,, are not available, it may be 
appropriate to apply one of the direct search types 
of optimization methods, which depend only on the 
feasibility to calculate the value of the function J 
for given values of the arguments in (5.1-21), e.g. 
Powell's algorithm [170]. 
It is noted here, that each evaluation of the 
function J in (5.1-21), requires the numerical 
solution of the system differential equations in 
(5.1-11), and the solution of a set of sensitivity 
differential equations for  the calculation of the 
information matrix. Therefore, the optimization o f  
input signals as described above, must be expected 
to be rather time consuming. In the next section, it 
is shown that in the case of linear system and 
observation models, the repeated solution of system 
and sensitivity equations for every function 
evaluation can be avoided. 

5.1.3 Inpiit Signal 0ptimiz;itinn fnr Linear 
System Parameter Estimation 

The method, described in the previous section 5.1.2 
for the calculation of optimal input signals for 
nonlinear system parameter estimation, is now 
applied to the more restricted case of linear system 
parameter estimation. The systems considered are 
of the following form: 

- i ( t )  = F@s(t) + G@l(t) , (5.1-22) 

in which as before x denotes an n-dimensional 
skite vector, 1 an s-dimensional input signal and e 
a vector of the r paremetcrs which are to be 
estimated. F(8) and G(8) denote constant matrices 
of appropriate dimensions. At N discrete instants of 
time tiE[b,tl], i=l(l)N, the system is observed 
according to the following model: 

(5.1-23) 

in which y denotes an m-dimensional observation 
vector, H(8) and J@ denote constant matrices of 
appropriate dimensions, and L,, denotes the 
measurement of y. The measurement noise l ( i )  is 
assumed to be zero mean, uncorrelated in time and 
Gaussian as  in equation (5.1-13). It is assumed 
again, that g(t) is known exactly and that equation 
(5.1-22) is deterministic, i.e. the system (5.1-22) is 
not subjected to unmeasurable stochastic inputs. 
The performance criterion for input signals is again 
a scalar norm J of M, the joint information matrix 
of and 3: 

M =  .....* .i. ..".. (5.1-24) Mexol . 

The general expression for M, as derived for the 
case of nonlinear systems, is still valid in the 
present u s e  of linear systems [29]. In this 
expression, M is described in terms of sensitivity 
matrices S(t). The elements of these sensitivity 
matrices are partial derivatives, representing the 
sensitivity of the components of the observation 
vector y with respect to the components of the 
parameter vector e and the vector of initial 
conditions h. The information matrix M for 
observation measurements at discrete instants of 
time ti can be written as: 

N 
M = s ~'(i) .vV;l .s(i) , (5.1-25) 

i=l 
in which the index i refers to the discrete time 
instant ti and V, represents the not necessarily 
diagonal covariance matrix of the vector l ( i )  of 
observation measurement errors. The matrix S(i) in 
equation (5.1-25) represents the sensitivity matrix 
S at the discrete sampling time ti. The sensitivity 
matrix S(t) can be partitioned as follows: 

S(t) = [S&) SXO(t)] (5.1-26) 
The partial derivatives of the components y with 
respect to the components of r are contained in the 
matrix S,(t), while the partial derivatives of the 
components of y with respect to the components of 
3 are contained in the matrix S,(t). 
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First the matrix S,(t) is partitioned in terms of 
column vectors as follows: 

&,(')I ' 

where the j-th column vector &.(t) is defined as  

Next, the partial derivatives of the matrices of the 
system and observation model in equations (5.1-22) 
and (5.1-23) respectively, with respect to the 
component €Ij of €J are defined as: 

ayia ej . I 

where j=l(l)r. 
It is to be noted that these matrix partial 
derivatives are constant for  a given parameter 
vector €J i.e. independent of the state vector x(t) 
and the input signal u(t). 
In a similar way, the partial derivatives of the state 
vector x with respect to the components €Ij of  e are 
defined as: 

a X(t) x (1) = A . 
*J a eJ 

These vectors of partial derivatives vary as a 
function of time depending on 3 and E. This 
follows directly from the particular form of the 
sensitivity differentia I eq ua tions used to ca Icu la te 
these vectors of partial derivatives 1531. 
The sensitivity equations are readily derived from 
equation (5.1-22) by partially differentiating both 
sides of this equation with respect to €Ij, and 
subsequently changing the order of the 
differentiation with respect to €Ij and t, for which,it 
must be assumed that is analytic [171]. The 
resulting sensitivity equations of 3 iire constant, 
linear and of the following form: 

(t) = F a x  (1) + Fej@z(t) + G o j  @u(t) - , 
*J *J 

(5.1-27) 
with initial conditions: 

x (to) = 0 7 

* j  
where j=l(l)r .  

The vectors of partial derivatives yo. iire calculated 
with the following relation, resultiilg from partial 

differentiation of both sides of equation (5.1-23) 
with respect to 8,: 

bj(i) = H@x (i)  + H e j  @x(i) - + J e j  @u(i) - , 
(5.1-28) 

+j 

where j=l(l)r, and the index i refers to the discrete 
sample times ti€[b,tl]. 

The second matrix of partial derivatives in S(t) is 
S,&t). I n  a similar way to S,(t) above, Sx0(t) may 
also be partitioned in terms of column vectors 
according to: 

Next, analogous to x above, the partial derivatives 
of the state vector with respect to the 
components x of the initial state 3, j=l( l )n ,  are 
defined as: 

3 

Oj 

a X(f> x (t) = L . - 
XO j dXOj  

The vectors o f  partial derivatives x-~, may also be 
calculated with a set of sensitivitl, differential 
equations, in a similar way as the vectors x + above. These sensitivity equations are derived by 
partially diflerentiating both sides of equation 
(5.1-22) with respect Lo xo., and subsequently 
changing the order o f  differenfiation with respect to 
x and with respect to time of the term in the left 
hand side. The resulting sensitivity equations of 
x 

'4 

A O j  
are o f  the following form [46]: 

x (1) = F@x (1) 
XO j - q j  - 

with initial conditions: 

(5.1-29) 

where j=l( l )n .  
It is noted that these sensitivity equations are 
constant and linear similar lo the sensitivity 
equations in (5.1-27). 
Finally, partial differentiation of both sides of 
equation (5.1-23) with respect to x results in the 
following relation for the vectors of partial 
derivatives y, : 

9 

0. 
J 

y "0 ( i )  = H@x - '0 (i) (5.1-30) 
1 J 

where j=l( l )n ,  and the index i refers again to the 
discrete sample times ti€[ b,t,]. 
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By solving the sensitivity differential equations in 
(5.1-27) and (5.1-29), and subsequently applying 
the relations (5.1-28) and (5.1-30), i t  is now 
possible to compute the vectors of partial 
derivatives in the matrices S,(i) and S ,  (i), 
i=l(l)N. Subsequently, these matrices are use3 to 
compose the sensitivity matrices S(i) according to 
equation (5.1-26). Finally, the information matrix 
M of fi and & is computed with equation (5.1-25). 

It is noted that the solution of the system 
differential equations (5.1-22) is needed for the 
solution of the sensitivity differential equations 
(5.1-27) in which appears a s  a forcing function. 

In a manner, completely analogous to the nonlinear 
case discussed in section 5.1.2, we may now 
formulate the problem of optimizing input signals 
up(t), kl(1)s of given energy E, in [t,,t,] in 
terms of an  unconstrained nonlinear parameter 
optimization problem. The problem is to calculate 
the global extreme of the criterion J with respect to 
its arguments, the elements of the vectors of 
spherical coordinates, 

J = J(& l ' . * . '  $$ ,..., &J . 
As mentioned before, application o f  direct search 
methods will be time consuming since every 
function evaluation requires the solution of the 
system and sensitivity differential equation, 
(5.1-22), (5.1-27) and (5.1 -29). In the present case 
of linear system models, however, the repeated 
integration of differential equations for every 
function evaluation can be avoided. To this end a 
set of so called elementary information matrices is 
calculated instead. Each of these matrices 
corresponds to particular elementary input signals 
defined by equation (5.1-6). 

Now it  is shown that M can be determined directly 
from these elementary information matrices. As 
discussed above, the information matrix M is 
computed from the sensitivity matrix S ,  which is 
composed of the sensitivity matrices S, and S, ,  for 
the parameter vector e and the initial condition & 
respectively. The sensitivity matrices S,(i) a t  the 
discrete sample times ti€[ tg,tl 1 are derived from the 
solution of the system differential equations 
(5.1-22) and the sensitivity differential equations 
(5.1-27). The solution of these differential 
equations is the response to a given initial 

condition and given input  signal l ( t ) ,  t€[b,tl]. 
I t  is readily ascertained that  the relations (5.1-22) 
and (5.1-27) represent ii set of nonhomogeneous 
linear ordinary differential equations. This means 
that the solution of these differential equations is in 
fact a superposition of the response of the 
homogeneous equations to the initial condition s, 
and the response of the nonhomogeneous equations 
to the forcing function 1 with zero initial condition. 

According to equation (5.1-7), the forcing function 
or input signal 1 is composed of linear 
combinations of elementary input signals 2: 

Due to the linearity of the nonhomogeneous 
differential equations (5.1 -22) and (5.1-27), the 
response to 1 is in fact identical to a superposition 
o f  elementary responses to elementary input signals 
- e;. This allows the total sensitivity matrix S,(t) to 
be written as follows: 

q s,(t) = 8, *S,(t, i )  , (5.1-3 1) 
1 = 1  

in which index i rekrs to the elementary input 
signal 3. The matrices S,(t,i) are, for obvious 
reasons, called here elementary sensitivity matrices. 
Turning now to the sensitivity matrix S(t) in 
equation (5.1-26) it should be remarked that ~(0 ,  
although assumed zero in the manoeuvre 
optimization process, has still to be estimated from 
the actual tlight test data. Keeping this in mind, 
S(t) may be written as: 

(5.1-32) 

This expression for the sensitivity matrix may be 
substituted in Equation (5.1-25) for the information 
matrix M of the parameter vector 9 and the vector 
of initial conditions %. 

The result is tha t  the information matrix M can be 
expressed as: 



M =  

where 
(5.1-33) 

the following so called elementary 
information matrices are introduced: 

and where: 

(5.1-35) 

It is noted that the elementary information matrices 
introduced in equation (5.1-34) are not information 
matrices in the sense of Fisher because, in general, 
they are not symmetrical. I t  follows from equation 
(5.1-34) that: 

(5.1-36) 

For the computation of the elementary information 
matrices in equation (5.1-34), the input signal 5 
that is the values of the parameters pi in equation 
(5.1-7), may be yet unknown. This means that, 
these elementary information matrices may be 
computed prior to the actual optimization of the 
object function given by the criterion in (5.1-21). 
It should be noted that the asymmetrical relations 
(5.1-36) and (5.1-37) may be employed to reduce 
the total number of different elementary 
information matrices to he computed. 
The information matrix M in relation (5.1-33) can 
be calculated from these elementary information 
matrices for a n y  set of values of the parameters pi, 
that is any input signal g of the form (5.1-7). 

Accordingly, the elementary information matrices 
are computed only once for a given set of 
elementary input signals e;. 
In cases where direct search methods are applied 
for the optimization of the object function, it is not 
uncommon that the function has to be evaluated in 
a very large number of points in the space of its 
arguments. In those cases, the calculation of M 
with relation (5.1-33) instead from relation 
(5.1-25), will result in a considerable reduction of 
computation of time needed for the optimization of 
J. 

5.1.4 Application of the Method of Newton and 
Raphson 

Experience gained in the course of the work with 
Powell’s direct search method [170], showed that 
convergence became progressively slower as the 
total number of spherical coordinates in equation 
(5.1-21) increased. This limited the number of 
arguments for practical purposes to approximately 
20. 
A very attr;ictive characteristic of Newton-Raphson 
methods, [ 1741, is that  the sequence of steps to a 
local extreme may be given a simple geometrical 
interpretation. Furthermore, the original method 
may readily he modified in order to assure 
convergence in cases of large numbers of 
arguments [130 and 1731. 
The slightly disappointing performance of Powell’s 
direct search method and the attractive properties 
of Newton-Raphson methods led to the application 
of these latter methods to the present problem of 
input  signal optimization. 

For application of Newton-Raphson methods it is 
convenient to introduce a new vector &of spherical 
coordinates which conhins all vectors Gp, Q=l(l)s, 
in (5.1-21), s denoting again the dimension of the 
input signal g. As explained earlier in section 5.1.2, 
each vector Gp is of the same dimension (p-1). 
This means that the new vector Q is of dimension 
s(p-1). Q can be defined similarly to e, as: 

L =  (5.1-38) 
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oo  i 0 - 
M = ...... .i. ...... 

r o  MkOAO- 

B 

. (5.2-1) 

Starting from a given approximation @(i) of @,,,, a t  
which J attains a shtionary and therefore extreme 
value, the Newton-Raphson method of calculating 
a closer approximation @(i+l) is: 

assuming, that the Hessian matrix d2J/(d@3&') is 
either positive or negative definite. 
The Newton-Raphson method requires calculation 
of the first and second order partial derivatives of 
J,  with respect to its arguments, the elements of &. 
It is possible to derive analytical expressions for 
these derivatives in terms of the elementary 
information matrices Moo(i,j), Moxo(i) and Mxqo(i). 
This leads to significant savings in computing time, 
as the elementary information matrices are 
calculated only once for a given set of elementary 
input signals. 
The Newton-Raphson method itself is discussed in 
more detail by Schmidt [ 1741. The original method 
was modified, in order to assure convergence in 
cases where the Hessian matrix was ill-conditioned 
[173]. 

The Newton-Raphson method was applied to the 
optimization of rudder and aileron input signals for 
the aircraft and flight conditions in chapter 6. 
Present experience is that  the algorithm quickly 
converges even in cases with up to 62 arguments 
( ~ = 2 ,  p=32) [29]. 

5.2 EtFect of Decomposition of System 
Parameter-State Estimation Problems 

The subject of section 5.1 was the optimiuition of 
input signals for nonlinear and linear deterministic 
systems with respect to different scalar norms of 
Fisher's infc>rm;ition matrix M. According to 
equation (5.1-U), the information matrix could be 
partitioned as: 

Mee i MexO 
M = l  .._.. .i. ......I, 

in which the subscripts 0 and & refer to the r- 
dimensional parameter vector e and the n- 
dimensional vector of initial conditions 
respectively. The particular form of M rellects the 

fact that the parameter vector as well as  the 
initial state vector s, are to be estimated 
simultaneously from given sets of observation 
measurements of the response of the system to a 
given input signal 1 and initial condition &. 
Therefore, it would perhaps be appropriate to call 
M as  defined in equation (5.1-17), the joint 
information mztrk of e and 3. Correspondingly, 
the estimates and & arise as the solution of what 
is called a joint parameter-state estimation 
problem. 

I t  can be seen that in correspondence with the 
results of section 5.1.2, the class of deterministic, 
linear system and  observation models considered 
here, the parameters to be estimated are absent in 
the system matrices F and G [equation (5.1-22)j 
but present only in theamatriceb H and J 0 1  the 
observation model [equation (5.1-23)j. 
Interestingly, these parameters appear only in some 
part of the total number of rows of these 
observation matrices. This permits the separation of 
the elements of the observation vector y into two 
different groups, as elements of the vectors y, and 
&. The elements ofyl  correspond to the rows in H 
and J containing no parameters to be estimated, 
while the elements of y2 correspond to the rows of 
matrices H and J which contain one or more of 
those parameters. The corresponding system and 
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observation models may now be written as: 

z(t) = F&(t) + GZ(t) , 
y,(i) = H,Z(i) + J&) , (5.2-2) 

y2(i) = H2@z(i) + J 2 @ l ( i )  . 

in which the index i refers to discrete instants of 
time t,€[b,t,], i=l(l)N, E again denotes the n- 
dimensional state vector and 1 the s-dimensional 
input signal. yl and b denote the components of 
the observation vector y of dimension m, and m2 
respectively. The separation of the elements of y 
into two groups corresponds, of course, to the 
following partitioning of the original observation 
matrices H and 

1 5 2 0  I 

in as: 

(5.2-3) 

L J 

It is assumed that the components y1 and b of the 
observation vector are corrupted by additive 
measurement errors according to: 

(5.2-4) 

where vl(i) and %(i) are components of an m- 
dimensional vector l ( i )  with dimensions m, and 
m2. These measurement errors are represented by 
stationary Gaussian sequences of stochastic 
variables with zero mean and uncorrelated in time. 
In addition, it is also assumed that the elements of 
l l ( i )  are not correlated with the elements of >(i). 
The above assumptions correspond to: 

E{x(i)} = E 

(5.2-5) 

Now we compute the joint information matrix M in 
equation (5.2-1) for the system and observation 
models in equations (5.2-2) and (5.2-4) respectively 
and the measurement statistics in (5.2-5) as: 

N 
M = s "(i) .vV-,l .s(i) , 

i=l 
where the sensitivity matrix S(t) can be partitioned 
as : 

s(t) [se([) sX0(t)] . 
Each of the sensitivity matrices S,(t) and Sx,(t) can 
be partitioned next according to the partitioning of 
Y(t> in Yl(9 and Y2N: 

Finally, the matrices S,,(t) and S,,(t) may be 
partitioned into column vectors for each of the 
elemenls Oj of the parameter vector S. In similar 
way, the matrices Sx0 (t) and S ,  (1) may be 
partitioned in column bectors foro%ach of the 
elements x of the initial state vector &. The 
constituting column vectors of partial derivatives 
obey the following relations which are readily seen 
to be equivalent to relations in (5.1-28) and 

Oj 

(5.1-30): 
= 0 ,  - 

(5.2-7) 



(5.2-8) 

The matrices H, and J ,  do not contain any 
elements of the parameter vector e. This means 
that the partial derivatives of H, and J ,  with 
respect to €Ij are zero: 

which simplifies the first o f  two relations in (5.2-7) 
to : 

Y1 (9 = 0 
e j  (5.2-13) 

Y%j(i) = HGj@E(i) + 5% .@Mi) . 
J 

It is not possible, to simplify the relations in 
(5.2-8) for the partial derivatives of yl(i) and k(i) 
with respect to the elements x of the initial state 
vector 3. Substituting F@=F, the sensitivity 
differential equations (5.1-29) as derived in section 
5.1.3 can be written as: 

x (t) = F x  (t) , (5.2-14) 
-x0 j -x0  j 

with initial conditions: 

The partial derivatives of the state vector with 
respect to €Ij obey the sensitivity differential 
equation (5.1-27) derived in section 5.1.3 for the 
case of linear system models. In the present case, 
the partial derivatives of F and G with respect to €Ij 
are equal to zero: 

F = 0 ,  G = O .  (5.2- 10) 
e j  e j  

Now the simplified sensitivity equations are: 

x (t) = FX (t) , 
* j  *j 

with initial conditions: 

(5.2-1 1) 

It can be seen that these simplified sensitivity 
equations are homogeneous, as the two forcing 
terms containing the state vector and the input 
signal 2 have disappeared. For the given set of 
initial conditions the solution of these sensitivity 
equations is readily seen to be: 

x (t) = 0 7 

-1 
for t2t, and j=l(l)r. 

(5.2- 12) 
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(5.2-9) 

Substitution of equation (5.2-9) and (5.2-12) in 
(5.2-7) results in the following simplified 
expression for the partial derivatives of yl(i) and 
h ( i )  with respect to Oj: 

for j = l ( l ) n .  

It may be concluded from the above that, for the 
present class of system and observation models, the 
calculation of the sensitivity matrices S(i) as 
defined in (5.2-6) is significantly simplified. This 
is due to the fact, that the sensitivity matrix Se (i) 
is equal to zero and that for the calculation of the 
sensitivity matrix S i) it is no longer necessary to 
solve the corresponding sets of sensitivity 
differential equations (5.1-27). 
I t  is possible, however, to simplify the calculation 
of the joint information matrix M in (5.1-17) still 
further. This next simplification exploits the 
decomposition o f  the joint parameter-state 
estimation problem into independent slate and 
parameter estimation problems. The feasibility of 
such a decomposition arises when the system 
model and the first part of the observation model 
presented in equation (5.2-2), viz: 

e*( 

z(t) = Fz(t) + Gu(t) - , 

y,(i) = Hlz(i) + J l i ( i )  . 
result in a reconstructible state vector 170). This 
implies that the following information matrix: 

(5.2- 15) 

is of fu l l  rank n, and that all components of can 
be estimated from the set of N observation 
measurements yl (i). Neglecting the information 

111 
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contained in the observation measurements k(i) 
concerning the initial state vector & is equivalent 
to substituting: 

S (i) = 0 (5.2-16) 
v2 

in the partitioned sensitivity matrix S(i), as defined 
in (5.2-6). If in addition, 

Sel(i) = 0 (5.2- 17) 

is substituted in (5.2-6), the result is: 

0 i Sxol(i) 

s(i) = 1 ...... .i. .._.. 1 (5.2- 18) 

and (5.2-5) in (5.1-25) 
leads to the following form for the joint matrix M: 

i o  
M =  (5.2-19) 

where: 

When the three criteria J for the optimization of 
input signals are applied to M, lhey can be written 
as : 

a) J = trM = trM,, + trMx , 

b) J = IndetM = IndetM,, + IndetM, , 
c) J = trM-' = trM,, + trM, , . 

0 0  

0 0 '  
-1 

0 0  

The matrix M, cannot be influenced by form or 
energy of the system input signals [29]. This means 
that in the expressions for the three criteria above, 
the terms containing MXoxo are constant. 
Consequently, the optimization of input signals 
may be based on one o f  the following simplified 
criteria : 

0 0  

a) J = trM,, , 

b) J = IndetM,, , 

c) J = trM,-,' . 

It may be concluded that for the present class of 
system and observation models, the optimization of 
input signals requires computation of only one of 
the matrices in the partitioned joint information 
matrix M in (5.1-17), i.e. MO,, the information 
matrix for the parameter vector e. 
Analogous to section 5.1.3, the information matrix 
M, above a n  be computed from a set of 
elementary information matrices M,,(i,j). 
According to (5.1-33), M,, c a n  be written as: 

(5.2-21) 

in which pi denotes again a weighting factor in the 
s-dimensional input signal 1 and q=sp, p denoting 
the selected number of orthonormal functions in 
(5.1-7). The general form of the elementary 
information matrix Mee(i,j) is given by: 

N 
M,,(i ,j) = s;(k, 1) -vV;l *S,(k,j) , (5.2-22) 

k=l 
where the index k refers to the discrete sample 
time t,E[t,,,t,], and S,(k,i) denotes a n  elementary 
sensitivity matrix for the elementary input signal 9. 
S,(k,i) is the result of the response of the system to 
this elemenkiry input signal 5, starting from the 
initial condition &,=e at time b. 
The elementary information matrices may be 
written as: 

where the sensitivity matrices SO2(k,i) are 
independent of the solutions of sensitivity 
differential equations, just as  S,,(k). The only 
difference is in the input signal and the initial 
condition, i.e. 3 and &=Q for S, (k,i) rather than 2 
and an arbitrary 5 for S,(kj. No sensitivity 
differential equations need to be solved when 
computing the elementary information matrices 
M,,(i,j) in equation (5.2-23). This leads to 
considerable savings in computing time. 

The results of the present section were applied to 
the optimization of the longitudinal and lateral 
control input signals for the dynamic flight test 
manoeuvres as described in chapter 6. 

In section 5.1.3 the optimization of input signals is 
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based on scalar norms o f  the information matrix M 
in (5.1-33). In the present section it was shown that 
for the system and observation models given in 
equation (5.2-2), simplified criteria c a n  be used 
based on the information matrix Me, given in 
equation (5.2-21). 

5.3 Input Signal Optimization for Linear 
Systems in Frequency Domain 

The present section describes a method for  the 
optimization in the frequency domain of multi- 
dimensional input signals for parameter estimation 
of linear systems [215,216]. The method was 
initially developed by Mehra [ 164,1651 and is also 
discussed by Goodwin and Payne [ 1611. It can be 
shown that in the frequency domain each Fisher 
information matrix is a n  element o f  a convex set of 
point-input information matrices which encloses all 
realizable input power constrained information 
matrices. With this property, the optimal 
information matrix and the optimal input signal can 
be expressed as  a linear combination o f  point-input 
information matrices and harmonic input signals 
respectively. The efficiency of the method is 
enhanced by taking account of the application of 
the two-step method for parameter estimation, see 
chapter 4. This leads to a reduction of the 
minimum number of harmonic signals in the 
optimized input signal. Convex analysis is used 
later on to prove the global optimality o f  thc input 
design. 

5.3.1 Fisher's 1nform;ition Matrix in the 
Frequency Domain 

In the present section, Fisher's information matrix 
is derived for the class o f  linear system- and 
observation models as defined in section 5.2, which 
allows decomposition of the joint parameter-state 
estimation problem. For input optimization it is 
sufficient to consider only the following system 
and observation model: 

z(t) = F@ L(t) + G@ !(t) 

Y2(t> = H2@ m + 5 2 0  !(t) (5.3-1) 
Ym,(i) = Y 2 N  + 12(9 

i = l(1 N 
where E[t) denotes the n-dimensional shte vector 

and i ( t )  the s-dimensional input signal of either the 
longitudinal or the lateral-directional linearized 
equations of motion, see chapter 2. The m2- 
dimensional observation vector h ( t )  belongs to the 
second part of the observation model which 
contains all parameters to be estimated. These 
parameters are collected in the r-dimensional 
parameter vector 8. The observations of y, 
belonging to the first part of the observation model 
are only used in the state estimation problem. 
These latter observations do not contribute to the 
information matrix of fi if state estimation errors 
are small enough to be negligible. Additive 
measurement and/or model errors are assumed with 
a Gaussian distribution: 

= o  E {12(i) 1 - 

E { L~(~)L:o) } = v v 2 v 2  '6ij (5.3 -2) 
2 2  = diag(cr, , ..., CT,,,~) *hij 

The - average information matrix* per sample 
M=M/N may now be written as, see also (5.2-20): 

For what follows i t  will be convenient to write 
(5.3-3) in continuous, rather than - in discrete time. 
The resulting expression for  M is: 

T (5.3-4) 
1 

= - I S,l'(t) -V;:,2*SoZ(t) dt 
1, - 

The frequency domain representation of M is 
obtained by applying Parseval's theorem: 

+m 
1 1  
T 2n w=-m 

(5.3 -5) 

* 

MOO for the parameter vector e in the remaining. 
The matrix M denotes the information matrix 
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In the frequency domain L ( w )  can be obtained 
from Fourier transforming the system equations 
(5.3- 1): 

Y (w) = H2@X((o) + J2@Y(co) 

= [H2@T((o,€J + J,@] - U(co) 
(5.3 -6) - -2 

where: 

T(w,€J = [jwI - F@]-' G@ (5.3 -7) 

The columns of the sensitivity matrix S ,  (0) follow 
from partial differentiation ofY,(w) w i d  respect to 
individual elements of E: 

The above expressions implicitly assume a steady 
state response of the system, so the system should 
be stable and the observation time interval T large 
enough for the effect of transients to be negligible. 
From (5.3-7) it  follows that the frequency response 
matrix T(w,B) depends on the parameter vector e. 
In the two-step method, however, the state is 
reconstructed in the first  step using a kinematical 
model, see chapter 3, while the second step in 
which the paramcters are estimated has no 
influence on the first step. I n  the present context 
this means that the dependence of T(w,0) on the 
parameter vector 0 should be disregarded. This is 
expressed in what follows by writing T(w) rather 
than T(w,€IJ. Substituting dT(w,B)/d0,=0 in (5.3-8) 
results in: 

(5.3-9) 
Each of the elements of the matrices H2@ and 
J2@ corresponds to one of the stability and control 
derivatives in the parameter vector B. If no 
derivatives would be excluded from e (i.e. e 
contains m2(n+s) derivatives) then by substituting 
the partial derivatives of the matrices H2@ and 
J2@ into equation (5.3-9) it  is readily seen that the 
senstivity matrix So,(w) can be written a s :  

UT(o)TT(o) - - UT(w) 0 

0 - UT(to)T T(o) - U(o) 
(5.3- 10) 

Noting that VV2,,* is a diagonal matrix, one can 
easily verify by substituting (5.3-10) in (5.3-5) that 
the average information matrix takes a block 
diagonal structure: 

(5.3-11) 

in (5.3-11) can be written as: 

*m A 1 1 "  
1 1  M j  = - - J M(co) tr{  S,,(o)) do 
o; 2x w=-m 

(5.3-12) 

j = 1(1)iii2 

where: 

A 

M(w) = Re{ [T H((o) i I] } 

1 ' 1  
(5.3-13) 

1 
T -  

SU,(S) = - U(-co)UT(o) - 

and the subscript denotes the conjugate transpose. 
I f  the pararneters in each output equation are with 
respect to tke same state variables and inputs, then 
the blocks Mj in (5.3-11) are identical e x g p t  for a 
scalar factor l/c.;. Otherwize, each block Mj can be 
derived from the matrix M(w) by omitting rows 
and columns form M(u) corresponding to the 
excluded derivatives in the j-th output equation. 

M(w) in (5.3-12) may be expressed as a function 
o f  numerator and denominator polynomials in the 
frequency response matrix T(w) and the power 
spectral density matrix S,,(w) of the input signal 
- U('). By representing each element o f  the frequency 
response matrix [T(w)],, as  a rational function 
with varying polynomials n(k9(w) in the numerator 
and a common polynomial d(w) in the denominator 
according to: 



k=l(l)n , Q=l(l)s 
one obtains: 

n n 

Re { N(w) S i ( w )  N "((0) } M(o) = - 1 

I d ( 4  I*  

where: 

(5.3-14) 

(5.3-15) 

(5.3 - 16) 

5.3.2 Representation of the Information Matrix 
in Information Space 

The average information matrix as defined in 
(5.3-1 1)  may be represented by an informalion 
vector 9 with components 'pi in an information 
space % spanned by basis vectors 5: 

d 

2 = 'Pi '2; (5.3-17) 
I=]  - 

The vector representation of M is intelligently 
chosen so that the dimension of is as small - as 
possible. As shown in the previous section M may 
completely be reconstructed via the block matrices 
I$j where each block is derived from the matrix 
M(w). The information vector is the_refore compiled 
from the independent elemen? of M(w). It follows 
from equation (5.3-15) that M(o) is a symmetric 
(nts)x(nts) matrix. This means that 2 may be 
composed of just the_ d=!h(nts)(nts+l) upper 
triangular elements in M(w): 

- 
where Mj follows from: 

1 - 
M . = -  

J 2  
U. 

J 
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(5.3-18) 

(5.3-19) 

Power constraints on input signals may be written 
in the frequency domain as: 

(5.3-20) 

The geometric interpretation o f  a power constraint 
is a (d-1)-dimensional hyperplane in the d- 
dimensional information space &. A Consider the 
lower s diag2nal elements of M(w), i.e. the 
elements (M(u)lkk,  k=(n t l ) ( l ) (n ts ) .  By 
substituting (5.3-15) in (5.3-18) it is readily shown 
that the sum of the corresponding components of 9 
is equal to P,: 

+m 

+m n+s n 

+m 

- (5.3-21) 
Now, M may be represented in terms of (d-1) 
basisvectors 9 and &-5) in the hyperplane which 
is positioned by the vector P u s :  



d-1 d-1 

2 = pu.e -d + vi *ei + lpi -(ei -ed) 
i =I i = l  
i @ I  iEI 

(5.3 -22) 
I = { i  I i=d+I-%jjCi+l) , j= l ( l ) s }  

5.4 Calculation of Optimal Input Signals using 
Convex Analysis 

The criterion for optimal input signals is? scalar 
norm J of the average information matrix M. From 
section 5.3 above i t  follows that J becomes a 
vector function in the (d-1)-dimensional hyperplane 
of &. The optimal input signal go(t) consists of a 
finite number of harmonics and willproduce the 
optimal average information matrix MO. 

5.4.1 Application of Convex Analysis 

The actual optimimlion is performed by applying 
convex analysis. If  one defines the set M of all 
average information matrices corresponding to 
power constrained input designs, then M is a 
convex set. Convexity means that for two elements 
belonging to a set, any element on the line segment 
between those elements also belongs to the set. The 
property of convexity thus implies that any 
information matrix - in M, including the optimal 
information matrix MO, can be obtained from other 
information matrices in M. We will use this 
property by composing the input signal g(t) of 
elementary signals g(z(t) in such a way that the 
information matrix M from g(t) is a convex 
combination of information matrices M(k) from 
- dk)(t). G or its representation as information vector 
y can thus be written as: 

(5.4-1) 
k 

1 = a ( k )  , a ( k )  > o 
k 

A necessary condition for this composition is that 
the power spectral density matrix S,,(w) is a 
convex combination of the power spectral density 
matrices s,,(~)(w) of g(k)(t): 

Suu(to) = a ( k )  s::)((o) 
k (5.4-2) 

1 = C a(‘) , a(k) > o 
k 

The above equation automatically implies that the 
elementary input signals g(k)(t) also have power P,, 
just as  the input signal g(t) itself. 
The maximum number o f  matrices I$k) to realize 
any in M follows from the dimension of the 
smallest linear variety in which M m a y  be situated. 
As stated by the theorem of CarathCodory, see 
Rockafellar [221], the required number is at  most 
that dimension plus one. Locating the set M in a 
(d - 1 )-d imens iona 1 hype rpla ne o f the in forma tion 
space G, the number of required elementary 
signals i (k)(t)  in the input signal becomes d, i.e. the 
dimension o f  &. 

5.4.2 Harmonic Input Signals 

Now that the information matrix - fi is obtained in 
terms of information matrices M(k) from the signals 
- dk)(t), the problem is to find g(k)(t). In principle, 
the signals l(‘)‘(t) should make the whole set 544 
realizable so that the matrices fi(k) constitute the 
convex hull of M. The set M is specified by all 
information vectors y which satisfy the integral 
equation (5.3-18) and the power constraint 
(5.3- 20) : 

+m 

1 
2Jc 

A 

2 = - 2((.) tr{Suu((o))dw 
w=-m (5.4-3) 

+m 

Pu = - tr { Su,(co)} do 
2x l I ’  w=-m 

11 can be shown that the whole convex set M is 
realizable by the choice of single harmonics with 
power P, for the elementary signals l(k)(t). These 
single harmonics have a power spectral density 
matrix S,,,(k)(w) whose trace is a Dirac pulse with 
magnitude nPu at  their - frequencies w=ok. The 
information matrices M@) become point-input 
information malrkes and they are represented by 
the information vectors P,%(oJ. The s- 
dimensional elementary input signal g(k)(t) is now 
de fi ned by : 
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S 

p=l(l)s , tE[O,T] , okT/2n€N,  x p & = 2 P U  
p= 1 

where pkp and cpkp are the amplitude and the phase 
of the p-th component o f  !(')(t). The power specral 
denstiy matrix of g(k)(t) is given as: 

(5.4-5) 

( c 4 v k p  -0kq) -.iWvb -vkq)) 
If the harmonics are combined into the input signal 
- u(t), then the resulting input signal ~ ( t )  is given by: 

U(') = e J*.) U(k)(t)  (5.4-6) - - 
k=1 

The average information matrix can be derived 
from (5.4-1) via substitutkn of the above S,,(w) in 
equation (5.3-12) for Mj and subsequently in 
(5.3-11) for M and in (5.3-18) for 2. For input 
signals formulated in the above way, the average 
information matrix and information vector become: 

d 

M = P" a(k) 
k= 1 

d 

y = P, a(k) 
k=l  

d 

A 

0 1 

'I 

- M((iik) 

A 

, dk) > 0 

(5.4-7) 

5.4.3 Global Optimality of Input Design 

The global optimalgy of the optimal average 
information matrix MO is examined by verifying 
whether the gradient of the optimization crigrion 
J along a line segment in M starting from MO in 
any direction is positive anywhere. If there is 

another (local) minimum for J ,  then there must 
exist a line segment from MO which has negative 
gradients. 
Consider an arbitrary information matrix M* in M. 
The complete line segment between io and M* 
lies in M due to - the convexity of M. Any 
information matrix M on the line segment is given 
by: 

M = ( l - a )Mo + aM* , Osasl (5.4-8) 

The gradient of J along the line segment is given 
by: 

aJ - aJ ak } = -tr{-[M'-M']} a J  - - - - tr{.- 
a a  aM aa aM 

(5.4-9) 
The matrix dJ/dM can be obtained from 
differentiating the optimLation crceria as defined 
earlier with respect to M. With M being a con- 
negative symmetric matrix, it follows that dJ/dM is 
a non-positive symmetric matrix and thus has non- 
positive real eigenvalues. Let now D represgnt the 
diagonal matrix with eigenvalues p of dJ/dM, and 
let P denote the unitary matrix with the 
corresponding orthonormal eigenvectors E as 
columns. Then the gradient satisfies: 

aJ  [-. -*I - = -tr{PDPH M - M  } 
aa 

= -hL(k [P H[M"-M*]P]u, 
k=l  

(5.4-10) 

The above expression_comprises_the complete line 
segment, including MO. Since MO is - th_e optimal 
information matrix, the gradient fcr M_=M" is non- 
negative. This implies that tr{M"-M'} is non- 
negative, so that dJ/da is non-negative along the 
complete line segment. Therefore, for  all line 
segments in M skirting from io, - the gradients are 
non-negative anywhere and MO is the only 
minimum and thus the global minimum. 

5.5 Optimization of Harmonic Input Signals 

The optimization of the input signal corresponds to 
the search of the optimal coefficienk a(k) and the 
power spectral density matrices S,,(k)(~) of the 
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elementary signals g(,)(t>. By restricting the X(,)(t) 
to single harmonics with power P,, the variables to 
be optimized are the frequencies w, in l("(t), and 
the amplitudes pkp and phase shifts cp,,,, p=l(l)s, 
between the components of g(k)(t). For single-input 
designs, pkl follows directly from P, while q~,, is 
cancelled out by the Fourier transformation. It is 
possible to specify- additional constraints on the 
frequencies of the harmonics, for instance by 
choosing allowable discrete frequencies or a 
frequency range in the input design. 

5.5.1 Application of the Gradient Method 

As algorithm for the optimimtion, the gradient 
method - is most attractive due to the formulation of 
M as  convex combination. The optimization of 
each harmonic input signal corresponds to the 
search of the minimal gradient o f  the optimization 
criterion J. This leads to  the frequency wk and the 
power spectral density matrix s,,("(w) of a n  
additional elementary signal. The matrix S,,(k)(w) 
is later on converted to the amplitudes p,, and 
phases rp,, for the signal components. 
For finding the minimal gradient from the present 
iteration point, let the average information matrix c be positioned - on a 'line segment' between the 
present - iterated M' and the point-input information 
matrix M(,). Because of the convexity, always 
belongs to the set of information matrices - M. The 
gradient for the criterion function J for M* along 
the line segment 

(5.5-1) 

d M  

Because of the-application of the two-step method, 
the matrices M* and io have a block diagonal 
structure, see equation (5.3-1 1). With this property, 
the above equation can be rewritten as: 

aJ(M*) 

(5.5-3) 
a dk) j = l  

j-1 a M j  

where dJ/dMj, j=l(l)m2, are the block matrkes on 
the diagonal of the matrix derivative dJldM. The 
first term on the right hand side is a constant 
which is determined by the present iteration point. 
The second term is influenced by the additional 
harmonic input signal and it has to be minigized. 
The matrix multiplications of dJ/dMj and Mj are 
now expressed as a function of the power spectral 
density matrix S,,('))(w)_by subsequently usin& the 
equations (5.3-12) for  Mj and (5.3-15) for M(w). 
This leads to: 

dJ(M') - ( k )  tr{- M j  } = 
aMj 

Re { N(o) ik)T(o) N "(w)} } x 1 

Id((U) l 2  

dw 

(5.5 -4) 

X 

(5.5-5) 
The matrix Q,(w) is ii hermitian matrix which 
follows from the symmetric property of dJ/dM and 
the properties of the polynomials in N(w), see 
equation (5.3-16). 
Now, the minimal gradient can be found by 
substituting the functions for the power spectral 
density matrices of the harmonic signals. With the 
hermitian property of Q,(w) one gets with equation 
(5.4-5): 
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5.5.2 Combination of Harmonic Input Signals 

- 
1 T tr{ aJ(M') $k'} = -Retr{Q(tok)ik} tr{Sk} 
n aG 

I l l *  (5.5-6) 

j=l  
Q(o) = Qj(o) 

Since the matrices Q(co) and S, are hermitian, their 
eigenvalues are real. Furthermore, s k  is non- 
negative definite. Let now D(w) represent the 
diagonal matrix with eigenvalues p(w) of Q(w), 
and let P(w) denote the unitary matrix with the 
corresponding orthonormal eigenvectors p(w) as 
columns. Then: 

dJ(G*) - ( k )  tr{- M } = 

1 
a i i  

A 1 'I 
= - Re tr { P(wk) D(wk)P '.'(ok) S } tr { Sk}  
n 

l P  A 

= - c & ( o k )  [' H(ok) s: p(ok)lPP t r { s k }  
JI. I=1 

1 ' - 
Jc 

tr{sk} = &in(('k) 'U 

(5.5 -7) 
The equality occurs for S~=~PU~l l ;n(wk)I l l , l ;n(W,) ,  

' where ~l l in(wk) is the normalized eigenvector 
associated with the minimal eigenvalue pillin(wk) of 
Q(o3.  This eigenvector is directly related to a 
harmonic signal as can be seen from (5.4-5): 

H 

I (5.5-8) 

It is to be noted that the above specified 
eigenvalues and eigenvectors are functions o f  
frequency. One therefore needs to search for those 
frequencies wk which result in matrices Q(wk) for 
which the smallest eigenvalue p,llin(w,) is minimal 
for all frequencies. This search is conducted by a 
standard one-dimensional search method. 

To determine the optimal ratio between an input 
signal u*(t) resulting from the optimization in 
section 5.5.1 above and an additional harmonic 
input signal ~ ( ~ ' ( t ) ,  a standard one-dimensional 
search method is again applied. Along the line 
segment between M' and this leads to a 
coefficient for which the optimization criterion 
is minimal. This coefficient a n  now be applied for 
the new iterated input signal, see equations (5.4-6). 
If z(k)(t) comprises a new frequency, then i ts  power 
spectral density matrix S,,(k)(w) can directly be 
joined with the other power spectral density 
matrices in S,,,,*(w). As they also consist of Dirac 
pulses. This leads to: 

S,,(UJ) = (1  S,:(W) + tX(k)S::)(W) 

where: 

a(4 = (1 -u(k) ) (X* (P)  s,, ( 8 )  ((0) = suu *(')(o) , Q * k  

,(O = ($4 , Si:)(co) = S;i)(o) , Q = k  
(5.5- 10) 

If the frequency in the addtional z(,)(t) is already 
present in z*(t), say in @(t), then E(,)(t) and 
S,,(k)(~) have to be linked with zG)(t) and S,,:)(w) 
respectively. This now le. '1 d s to: 

I= I 
(5.5-1 1) 

where: 
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, P=j 

(5.5-12) 
The coefficient and harmonic signal &t) can  
be found by representing the power spectral density 
matrices of the harmonics as a multiplication of 
normalized vectors, see equation (5.5-8). In this 
way one obtains: 

Hence, the addtional harmonic input signal is 
included in an already existing harmonic input 
signal which is modified by solving an eigenvalue 
problem. The eigenvalue results in the modified 
coefficient ct6) and the eigenvector is used for the 
determination of S,>)(w) and gG)(t) according to 
equation (5.5-8). 

5.5.3 Elimination of Superfluous Harmonic 
Input Signal 

Each iteration step is concluded with a check if 
one harmonic input signal can be expressed in 
terms of other harmonic input signals so that it 
may be eliminated. With the above procedure, the 
input signal is extended with an ;iddtional harmonic 
resulting in an additional point-input information 
matrix M@) with vector representation I$'"). After a 
number of iteration steps, the number of harmonic 
signals may become larger than the dimension of 
the hyperplane of f& in which the average 
information matrices are situated. This means that 
the vectors ~ ( ' " 1  become dependent and that one 
vector can be expressed as a linear combination of 
the other vectors. The procedure results in: 

0-1 

&p&@)-lp) = - 0 , p 5 d 
k=l  

The upper bound on psd is specified by the 
dimension d of the information space G. At this 
stage, one a n  see how a reduction of d, 
established by applying the two-step method in 
combination with convex analysis, leads to a 
reduction of the number of elementary input 
signa Is. 

5.6 Conchisions 

In this section we have explained that input design 
is essential for accurate estimation of parameters. 
A brief survey of different approaches available has 
been given. We have described in more detail two 
approaches developed at the Delft University of 
Technology. In the time domain approach, we have 
shown that multi-dimensional input signals for 
parameter estimation of nonlinear and linear 
dynamical systems can be represented in terms of 
sets of orthonormal functions or elementary 
signals. Input signals described in this way may be 
optimized with respect to one of several 
optimization criteria based on Fisher's information 
matrix, by solving a nonlinear optimization 
problem. Linear dynamical systems allow a more 
efficient computation of the information matrix if 
a set of elemenlary informalion malrices is 
computed and stored beforehand. A special class of 
linear systems was introduced allowing a 
decomposition o f  the joint parameter-state 
estimation problem. For this class of systems, the 
elementary information matrices take a remarkably 
simple form. 
In the frequency domain approach, we have shown 
that convex analysis leads to computational 
efficiency in the design of input signals, in 
particular for the case of parameter-state estimation 
problems which allow decomposition. We have 
also shown that such estimation problems lead to 
more simple input signals consisting of a fewer 
number of harmonic signals. 



99 

L 

- EXPERIMENTAL CONDITIONS 
__c * I  INPUT DESIGN 

0 Data length and sampling rate 
I 
I 0 Constraints on inputs / outputs 

0 Available instrumentation I 

ESTIMATION OBJECTIVES 
0 Selected parameters 
0 Required accuracies h 

A PRIORI 
PARAMETER VALUES 

1 

1 0 Available hardware / software for analysis 1 1 

EVALUATION I OF INPUTS 
I 1 1  

1 
IDENTIFICATION 

1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 1- --- - --- - -- 

PARAMETER ESTIMATES 

Figure 5-1: Optimal input design within idenfijicafion procedure. 
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Figure 5-2: Probability density function and uncertainty ellipsoid for a two-dimensional gaussian 
distribution of the paramter estimates. 
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Figure 5-3: Rectangular and spherical coordinates of PA in p-dimensional 
Euclidian space representing U,, with energy EA=R: in [totl]. 

is O ( t I =  

Figure 5-4: Definition of matrix D(t) of a two-dimensional input signal (s=2) consisting 
of four orthonormal functions (p=4). Shaded areas denote nonzero elements; 

i refers to a particular column of D(t), Le. the elementary input signal eJt). 
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Figure 5-5: Example of orthonormal Walsh functions in the time interval [O,T]. 
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Figure 5-6: Orthonormal functions of set 1, Eq. (5.1-8), in the time interval /O,T]. 
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Figure 5-7: Orthonormal functions of set 2, Eq. (5.1-9), in the time interval [O,T]. 
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Figure 5-8: Orthonormal functions of set 3, Eq. (5.1-lo), in the time interval [O,T]. 
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6 DESIGN 
SIGNALS 

AND EVALUATION 

In earlier chapters, we have discussed the 
theoretical aspects of Flight Path Reconstruction, 
Aerodynamic Model Identification and Optimal 
Input Design. In this chapter we lay emphasis on: 

Optimization of Longitudinal and Literal Input 
signa Is. 
Evaluation of different types of input signals 
with respect to parameter estimation accuracy. 

We discuss DUT approaches in the time and 
-frequency domain. 

The DUT approach in the time domain considers 
the results of the tlight Lest program with the De 
Havilland DHC-2 Beaver experimenta 1 ii ircra ft. We 
focus our attention o n  the design of longitudinal 
and lateral input signals using the theory developed 
in section 5.1. We also brietly describe other well- 
known signals for the purpose o f  comparison. The 
main basis for the comparison of results from flight 
tests will be centred around the sample covariance 
matrices of estimated parameters corresponding to 
the different types of longitudinal and lateral input 
signa Is. 

The DUT approach in the frequency domain 
considers the results of simulated experiments only. 
The optimal input signals are obtained by the 
method developed in section 5.3 to 5.5. The results 
are presented for a case study of designing elevator 
control input for estimating short period parameters 
of the C-8 Buffalo aircraft. The performance 
evaluation of the derived optimal signal is done 
against the results of Mehra [ 1651. Some results are 
also presented for designing simultaneous optimal 
rudder and aileron inputs. In  this case the Beaver 
example is chosen for the purpose of comparison 
with well-known Douhlef and 3211 signals. The 
basis for the comparisons in both the case studies 
are in terms of standard deviations of the parameter 
estimates. Additionally, some useful quantities of 
interest like norms of Fisher's information matrix 
and aircraft response to the optimal signals are 
presented. 

OF OPTIMAL 

6.1 Input Design in Time Domain 

INPUT 

For the design of the longitudinal and lateral DUT 
input signals, use was made of the method 
developed in section 5.1 and in particular, the 
version for linear system and observation models 
as described in section 5.1.3 based on the concept 
o f  elementary information matrices. As discussed 
earlier, the two step method was applied to the 
analysis of the actual tlight measurements. This 
means that the reconstruction of the state is 
separated from, and independent of the estimation 
of  the aerod y na  m ic model parameters. According 
to section 5.2, this leads to significant savings in 
the computation time for  the elementary 
information matrices. The actual optimiaition of 
the input signals was initially performed by 
applying Powell's algorithm and later by a more 
powerful Newton-Raphson algorithm. 

The input designs depend on a priori values of the 
parameters. These values were determined from 
results of earlier measurements in strictly 
longitudinal dynamic flight test manoeuvres [4]. 
The a priori values of the lateral stability and 
control derivatives were obtained from the results 
of wind tunnel experiments, see fig. 2-1. The 
derivatives with respect to pb/2V and rb/2V were 
determined from measurements in stationary 
horizontal turns. The derivatives with respect to 
Bb/V were set equal to zero. For a condition of 
nominally steady rectilinear tlight at a TAS of 45 
m/s and altitude of 6000 fl, the resulting set of 
values has been listed in table 6-1. The tlight tests 
reported here were the result of a cooperation of 
three organisations namely DLR Braunschweig, 
Delft TU and NLR Amsterdam. 
The comparison of the performance of the different 
types o f  input signals, was agreed to be based on 
the traces of the covariance matrices of the 
estimated parameters. The corresponding criterion 
for  the optimization o f  the input signals is: 

J = trM -' 
in which M denotes the information matrix. 
The longitudinal manoeuvres were assumed to be 
tlown via the elevator control only, while the 
lateral manoeuvres were assumed to be tlown via 
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both the aileron and rudder controls 
simultaneously. 

6.1.1 Design of DUT Longitudinal Input Signals 

The longitudinal input signals were designed to 
minimize the trace of the covariance matrix of the 
estimated longitudinal stability and control 
derivatives in the linear equations o f  motion. In  the 
body-fixed reference frame F,, these linear 
derivatives are, see (2.2-4): 

c z u  ’ czu ’ (6.1-1) 

The dimension of the information matrix 
corresponding to these 15 derivatives is 15x15. In 
section 4.1 i t  is shown, that in the case o f  
nominally horizontal tlight, which is considered in 
the present section, this information matrix is never 
of full rank due to the presence of the derivatives 
with respect to &z/Vo. These derivatives could be 
eliminated by rewriting the linearized equations of 
motion in an appropriate form. With respect to the 
information matrix this means that the 
corresponding rows and columns must be omitted. 
The resulting reduced information matrix is of 
dimension 12x12 and is, in general, of fu l l  rank. 
The dimension of the information matrix was 
further reduced, on the basis of the sufficiently 
wide separation of the two characteristic 
longitudinal motions. The weakly damped low 
frequency motion or phugoid had a period of 
approximately 25 seconds. The period of the 
heavily damped short period motion was 
approximately 1.7 seconds. The wide separation 
between the two characteristic motions allowed the 
omission of the rows and columns in the 
information matrix of the derivatives with respect 
to airspeed. An explanation for  this is that airspeed 
variations are significant only in the phugoid. The 
input signal optimizations in the present section 
were based on the idea to combine the information 
matrices obtained in relatively short dynamic 
manoeuvres, a t  different values of the nominal 
airspeed. These latter, short manoeuvres may then 
be optimized with respect to estimation accuracies 
of only those stability and control derivatives 

which are strongly related to the short period 
characteristic motion. As a consequence, the 
estimation accuracies of the derivatives with 
respect to airspeed should not be taken into 
account in the design of such short dynamic 
manoeuvres. Eliminating the corresponding rows 
and columns in the information matrix, all 
longitudinal dynamic manoeuvres were ‘assigned’ 
a relatively short time interval of 10 seconds which 
should be long enough for a proper excitation of 
the short period characteristic motion having a 
characteristic period of only 1.7 seconds. It should 
be quite feasible to combine the information 
matrices of manoeuvres at different airspeeds. In 
practice, however, it would introduce additional 
data management problems. In addition, differences 
in centre of gravity locations during the various 
manoeuvres must be carefully corrected for. In 
order to avoid such complications, it was decided 
to base the comparison of the longitudinal input 
signals on single longitudinal manoeuvres, at  
nominally constant airspeeds. The corresponding 
results are presented in section 6.2. As a 
consequence, a11 longitudinal manoeuvres should be 
expected to be sub optimal compared to longer 
manoeuvres, optimized for the estimation of all 
longitudinal stability and control derivatives, 
including those with respect to airspeed. 
Finally, the derivatives C and CXbe, were 
considered of minor importance only. They also 
were not Laken into account in the design of the 
longitudinal manoeuvrc. This was accomplished by 
eliminating again the corresponding rows and 
columns in the information matrix. It is noted that 
this may have produced another contribution to the 
sub optimality of the longitudinal input signals, as 
in the actual analysis of the flight tests these two 
derivatives were found to be of some importance 
for a proper model fit. 
The remaining information matrix is of dimension 
7x7. The corresponding 7 stability derivatives are: 

xq 

cxu ’ 

czu ’ c z q  ’ C q e  ’ (6.1-2) 

Cmu ’ CInq ’ C”I* . 

According to section 5.1, multi-dimensional input 
signals are represented in terms of finite series of 
orthonormal functions. They are written as: 



(6.1-3) 

in which 4 refers to the 4-th component of the s- 
dimensional input signal ~ ( t )  and i/~,,(t) is a member 
of a set of p orthonormal functions in the interval 
( t&].  Different kinds of orthonormal functions 
were discussed in section 5.1. The performance 
index J depends on the coefficients PI;. Input 
signal optimization is equivalent to minimization of 
J with respect to the coefficients &(, see section 
5.1. 

In the present section, 4=1 since only elevator 
inputs are considered. The length of the  input  
signal was selected to be T=t,-t,=lO sec. For this 
value of T, the elevator input  signals may now be 
optimized for diffcrcnt valucs o f  p and different 
sets of orthonormal functions i l~~( t ) .  Two different 
sets of orthonormal functions were used. They 
were indicated as  set 1 and set 2 in section 5.1.1. 
Both sets of functions consist of sine functions of 
the form: 

vk(t) = sintokt , 

in which k=l( l )p  and t belonging to the interval 
[to,+], see equations (5.1-8) and (5.1-9) and figs. 
5-6 and 5-7. The frequencies wk of the first  set of 
functions correspond to those in a Fourier series: 

2n o k = k -  
T 

In the second set of functions the frequencies are 
chosen to be: 

n 
= T . 

The functions of both set 1 and set 2 are 
orthogonal in the interval [tu, t I ] ,  a s  can easily be 
shown; see also section 5.1.1. 

Fig. 6-1 shows the relative performancc index and 
the relative standard deviations of the estimated 
parameters of optimal input signals consisting of 
varying numbers p of set 1 or set 2 orthonormal 
functions. The relative performance index J,,, is 
defined as: 

J 
J, = - ’ 

J n  

in which J ,  denotes the performancc index of an  

optimized input signal consisting of 2 orthonormal 
functions of set 1. In a similar way, the relative 
standard deviation U,, of an  estimated parameter is 
defined as: 

U 
Urel = - ’ 

On 

in which on denotes the standard deviation of an 
estimated parameter resulting from the 
implementation of an  input signal consisting of 2 
orthonormal functions of set 1. 
The relative performance index and the relative 
standard deviations appear to depend strongly on 
input  signal ‘bandwidth’ fp=wd2n, where f, 
denotes the highest frequency of any  of the 
orthonormal sine functions in set 1 or set 2. In 
particular as long as f,, is below the short period 
characteristic frequency J,, decreases markedly 
with increasing f,. Fig. 6-l(a) shows that  J,, 
decreases monotonically with increasing values of 
p. This holds true f o r  input  signals consisting of set 
1 lunctions :IS well as lor input  signals consisting 
of set 2 functions. Figs. 6-l(b) and (c) show that 
the relative standard deviations of the estimated 
derivatives with respect to a depend in a q@e 
different way on p. The standard deviation of CXu 
increases with increasicg value: of p, while the 
standard deviations of CG and C,,lu decrease with 
increasing values of p only for f, below the 
characteristic frequency of the shori pe!iod 
o_scillatio;. The standard deviations of Czs, Clllq, 
C,,, and Clllbe in fig. 6-l(a) behave similarly to J,, 
in fig. 6-l(a), i.e. a monotonic decrease with 
increasing values of p. 
Furthermore, for a given value of f,, input signals 
consisting of functions of set 2 prove to be 
superior to input signals o f  functions o f  set 1 with 
respect to the performance index as well as with 
respect to each ot the standard deviations of the 
estimated parameters. 
Results for p>20 are not shown since for these 
high values of p the convergence of Powell’s 
algorithm was very slow. 
Plots as shown in fig. 6-1 allow a deliberate 
selection of the number and type of orthogonal 
functions from which to compose the input signal. 
For the actual flight tests the input signals were 
prerecorded on an  FM tape recorder connected to 
the electro-hydraulic control system. These input 
signals had to be generated, therefore, in real time 
on a digital computer. The software was designed 
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such that three input signals, for the aileron, 
elevator and rudder channel respectively were 
simultaneously generated. In the case of a 
longitudinal manoeuvre, the coefficients Pk, of the 
aileron and rudder input signals were set equal to 
zero and conversely, in the case of a lateral 
manoeuvre the coefficients Pk, of the elevator 
input signal were set equal to zero. The input 
signal values were calculated a t  a rate of 20 times 
per second. The maximum number of sine 
functions which could be calculated simultaneously 
in real time turned out to be equal to 24. Therefore 
each of the 3 input signals could maximally consist 
of only 8 sin functions. 
Fig. 6-1 indicates that the potential improvement of 
input signal performance resulting from selecting f, 
in excess of about 0.8 Hz is only marginal. This 
corresponds to 8 functions in set 1 o r  16 functions 
in set 2. Considering the limitation o n  p mentioned 
above, the best input signal for implementation in 
the present tlight tests can be seen to consist of 8 
functions of set 1 .  

From the viewpoint of safety and economy, it is 
essential in the design of input signals for dynamic 
tlight tests to take into account the aircraft’s 
terminal flight condition a t  t=t, It should not be 
‘too far’ from the original, nominal tlight 
condition. The deviation of’ the terminal from the 
nominal tlight condition can explicitly be kiken 
account by adding ii penalty function to the 
performance index, according to: 

J = J + x T ( t f ) - W * ~ ( t f )  , (6.1-4) - P 
in which &(tf) denotes the linearized state vector a t  
time t=tf and W denotes a positive semi-definite 
weighting matrix. It is understood that z(to)=Q. 
Minimization of J ,  rather than of J leads in general 
to a different input  signal and therefore to ii highcr 
value of J .  The input signills calculated in fig. 6-1 
turned out to result in rather large deviations from 
the nominal flight condition. The input  signal 
selected for implementation in the tlight tests was, 
therefore, slightly adapted, by adding a penalty 
function as in equation (6.1-4). It was found that a t  
the cost of a relatively minor increase of J ,  in the 
order of 15%, the terminal tlight condition a t  t=tf 
could be moved closely to the original, nominal 
tlight condition. 

The resulting input  signal a s  actually measured in 

flight, is shown in fig. 6-3(e). 

6.1.2 Design of DUT Lateral Input Signals 

The design of the DUT lateral input signals was 
also based on linear equations of motion and 
minimization of the trace of the covariance matrix 
of the estimates of the lateral stability and control 
derivatives. In the body-fixed reference frame F, 
these derivatives are, according to (2.2-9): 

The dimension of the corresponding information 
matrix is 18x18. 

Before the actual flight tests were performed, the 
stability derivatives with respect to Ob/V were 
expected to be of minor importance only. These 
derivatives were therefore not taken into account in 
the input signal optimization. This was 
accomplished by omitting the corresponding rows 
and columns in the information matrix, reducing its 
dimension to 15x1 5.  
The lateral motions arc dominated by the Dutch 
roll periodic motion and the roll aperiodic motion. 
The Dutch rol l  motion had a period of 
approximately 5 seconds. The time constant of the 
roll motion was approximately 1.4 seconds. As a 
consequence, the length of the lateral input signal 
was chosen to be 16 seconds which is about 3 
times the period of the Dutch roll characteristic 
motion. Such fairly long input signals compared to 
the period of the Dutch roll motion were 
considered to guarantee ii proper excitation of the 
dominant c ha rii c Le r is tic la tera I mo t ions . 

Fig. 6-2 presents the results of the optimization of 
the lateral input bignals. Two sets of orthogonal 
functions as mentioned in the previous section 
were used to calculate the optimal performance 
index and corresponding square roots of the 
diagonal elements of the covariance matrix for 
increasing values of’ p. 
Analogous to the longitudinal case, Powell’s 
algorithm was lound to convcrgc more slowly if p 
was larger. This prevented in fact thc optimization 
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of input signals consisting of more than 10 
orthogonal functions per input  signal component. 
All curves of fig. 6-2 clearly suggest that an 
additional increase of p and therefore higher 
'bandwidth' f, would probably have resulted in 
slightly better input  signals. 
As mentioned earlier, in the practical 
implementation, each input signal component could 
consist of maximally X functions of set 1 or set 2. 
Given this restriction on p, the best practical input 
signals consisted of the maximum number of 8 
functions of set 1. 
The resulting optimized input signals were slightly 
adapted again, by adding a pen;ilty function to the 
original performance index J ,  ;is in (6.1-4). Thc 
adapted input signals were found to result in 21 

terminal tlight condition a t  t=t,. which was very 
close to the original, nominal flight condition a t  the 
cost of only a negligible increase of J .  

The resulting aileron and rudder input signals, as 
actually measured in flight, are shown in fig. 
6-3(e). 

6.1.3 Doubler, 3211, Mekru and Schdz  Input 
Signals 

The Doublef, 321 1, Mehra and Schulz longitudinal 
and lateral input signals are shown in fig. 6-3. The 
rationale behind these signals is given below. For 
a more detailed description,the reader is referred to 
reference [ 201. 

Doublet 
The Doublet input signals are of the 'bang-bang' 
type, switching between plus o r  minus the signal 
amplitude Aa. For a signal length o f  261, the 
instant to switch from +Aa to -Aa is a t  time t=At. 
This type of input signal has been, and probably 
still is, widely used for excitation of aircraft 
longitudinal and lateral characteristic motions. In  
the present case, different t-values were used for 
the elevator, aileron and rudder input signals. 
These At-values were selected to result in a proper 
excitation of the short period, roll and Dutch roll 
characteristic motions respectively. 
As mentioned betore, all 5 types of elevator input  
signals as well as all 5 types of aileron and rudder 
input signals were scaled to have the same energy 
in the longitudinal and lateral time intervals of 10 
and 16 seconds respectively. Since A t  is rather 

small, this would in the case of Doublet signals 
have resulted in rather large amplitudes. It was 
decided, therefore, to implement the Doublet 
signals twice during each observation time interval. 
Actually measured time histories are shown in fig. 
6-3(a). 

321 1 
The 321 I input signal is also of the 'bang-bang' 
type. Let the signal length be 7At. The switching 
times are then a t  t=3At, t=5At and t=6At. The 
signal can be optimized with respect to parameter 
estimation accuracies by searching for the best 
value ol' At. Marchand 11801 has shown that a 
deliberate choice of A t  can be made through 
qualitative considerations in the frequency domain. 
In order to avoid too large amplitudes, the 3211 
signals were also implemented twice during each 
observation time interval. Actually measured time 
histories are shown in fig. 6-3(b). 

Mehra 
Mehra and Gupta 11641 propose the use of 
frequency domain techniques for the design of 
input  signals, see also chapter 5.  The result of an 
optimization in the frequency domain is a line 
spectrum which is subsequently approximated by a 
set of weighted sine functions in a finite 
observation time interval. Since the more general 
algorithm for multidimensional input signals was 
not available when the flight test program started, 
the aileron and rudder input signals had to be 
calculated separately, i.e. iis in the case of scalar 
input  signals. The resulting signals were 
nevertheless implemented simultaneously in each 
lateral manoeuvre. Furthermore, the criterion used 
f o r  the design o f  the Mehra input signals was the 
determinant of the information matrix, rather than 
the trace of the covariance matrix. Actually 
measured time histories are shown in fig. 6-3(c). 

Schulz 
Schulz [ 163) formulates the problem of designing 
a n  input  signal as  a n  optimal control problem in 
the time domain. In order to simplify the 
calculations, the criterion used is the trace of the 
information matrix, see chapter 5.  In the lateral 
case, the aileron and rudder signals were calculated 
separately, as one-dimensional input signals. 
Analogous to the lateral Mehra input signals, they 
were nevertheless implemented simultaneously in 
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each lateral manoeuvre. Actually measured time 
histories are shown in fig. 6-3(d). 

All longitudinal and lateral input signals were low- 
pass filtered, before being recorded on tape for use 
with the electro-hydraulic control system. The filter 
used consisted of two identical second-order fi l ter  
with undamped natural frequencies of 19 rad/s 
(corresponding to approximately 3 Hz) and 
damping ratios of 0.691. The filtering caused some 
significant distortions, in particular of the block 
type Doublet and 3211 input signals, see fig. 6-3. 
The distortion of the input signals of the Mehra, 
Schulz and DUT type proved to be negligible. 

Even after filtering, sign i ficant d i fferences 
remained in the frequency contents o f  the different 
types of input signals. This is illustrated by the 
power spectral densities of the elevator input 
signals of the longitudinal and the aileron and 
rudder input signals o f  the  lateral miinocuvres in 
fig. 6.4. It follows that o n l y  the Doubfef and 3211 
input signals contain ii significant amount of power 
above 1 Hz. A considerable difference in 
bandwidth appears to exist between these two input 
signal types. Compared to the Doublef signals, the 
3211 signals contain much higher frequcncies. 
Compared to the two block type input signals, the 
remaining input signals may be classified as low- 
frequency-type input signals. Of these input 
signals, the Schulz input signals ;rppcar to contain 
the lowest frequencies. 

6.2 Performance Evaluation of Longitudinal 
and Lateral Inpiit Signals 

In the present section a comparison is made of the 
performance of the different types of longitudinal 
and lateral input signals. The calculation o f  sample 
statistics of the estimated parameters is discussed 
in section 6.2.1. The actual comparison of' input 
signal performance is made in section 6.2.2. 

6.2.1 Sample Statistics of the Estimated 
Parameters 

One set of computer programs was used for the 
calculation of all longitudinal and lateral parameter 
estimates from the 47  flight test manoeuvres at the 
nominal steady rectilinear tlight condition of 45 
m/s TAS and 6000 f t  SA. The programs were 

implementations of the algorithms described in 
section 3.3 and 4.3. However, rather than applying 
the model development procedure of section 4.3, 
fixed and a priori specified longitudinal and lateral 
aerodynamic models had to be used for the 
estimation of the aerodynamic derivatives. The 
reason for this was that different flight test 
manoeuvres usually led to the selection o f  slightly 
different sets of candidate variables. This prevents 
the calculation o f  sample statistics of the estimated 
parameters. 
The specified longitudinal and lateral aerodynamic 
models are shown in table 4-1. It is noticed that, in 
accordance with the identifiability analysis in 
section 4.1.1, the variable a?/V is not present in 
the model. On the other hand, a nonlinear variable 
a' in the models o f  C, and C,,, was found to be 
indispensable for  an acceptable model fit. This is in 
agreement with the nonlinearity o f  the Cx-a and 
C,,,-a relationships a s  manifested in the wind 
tunnel results of' fig. 2-1. Inclusion, however, of 
derivatives with respect L o  a2 affects the estimation 
accuracies of the derivatives with respect to a. The 
estimated derivatives with respect to a and a* 
were, therefore, 'combined' into one 'linearized 
derivative' according to: 

A 
A A 

(6.2-1) - - 
CXU - Cl,lU + *U 'CIl,<,L 

in which a denoted the mean value of a during the 
flight test manoeuvre. 
Thc estimates were obtained by the two step 
method and subsequently used to calculate sample 
s t? nda rd d evia tic) n s  . 
One set of derivatives relating to the C,- and C,- 
equations are plotted in fig. 6-5. In figs. 6-6 and 
6-7 the sample standard deviations o f  the Doubfef, 
321 I, Mehra and Schulz manoeuvres are plotted, 
relative to the standard deviations of the DUT 
manoeuvrcs in order to expose more clearly the 
existing differences. For comparison, the same is 
done with respect to the theoretical standard 
deviations, as derived from the theoretical 
covariance matrix v&): 

v& = ve [xI"xI]-I . 
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6.2.2 Comparison of Input Signal Performance 

The results of fig. 6-5 allow a comparison of the 
different manoeuvre types with respect to sample 
means and sample standard deviations o f  estimated 
aerodynamic derivatives. 

The large differences between corresponding 
sample means, show that most of the estimated 
aerodynamic derivatives are strongly biased. 
Furthermore, biases prove (0 depend on manoeuvre 
type. The expected value of an estimated parameter 
in simplified models is given by equation (4.2-22): 

A 

E@;) = al + C*a2 

where 

c = [x,T.x,]-' X,TX2 (6.2-2) 

The phenomenon of estimation bias in regression 
analysis is often connected with the existence of 
additive measurement errors in the independent 
variables [182]. In the present work, the 
independent variables are either measured directly 
or derived from a tlight path reconstruction and 
thus corrupted with measurement or reconstruction 
errors respectively. These errors, however, are 
much too small to be held responsible for the 
observed differences between samples means. A 
more plausible model for the observed estimation 
biases is given in section 4.2.2. Aerodynamic 
models, as defined in table 4-1 comprising a 
limited number of independent variables, will only 
approximate thc underlying much more complex 
aerodynamic mechanisms. These models are 
therefore always simplified versions of hypothetical 
'perfect models'. 

Following chapter 2, aerodynamic models are 
represented here as Taylor series expansions of a 
given set of variables and their first and higher 
order time derivatives. Simplified models contain 
finite subsets of these variables. The simplified 
models used in the present section are linear with 
the exception of a' terms in the models of C, and 
C,,,; see section 4.2. The variables in X, include, 
therefore, nonlinear products of the variables in X. 
This means, that those elements in C which are 
related to these nonlinear products will depend on 
the magnitude of the deviations from the nominal 

tlight condition. A measure for these deviations, as 
occurring in the course of a tlight test manoeuvre, 
is the root mean square deviation: 

(6.2-3) 

in whici X,=X,-X,. In the present flight test 
program it was found that different types of input 
signals resulted in different values of d. This is 
clearly shown in table 6-2. It follows, that in 
particular the longitudinal and lateral Schulz input 
signals produce large values of d. This is not 
surprising, as these input signals were designed to 
maximize the trace of the information matrix, see 
section 6.1.3. I t  is noted that 321 I manoeuvres on 
the other hand, result in rather small values of d. 

Fig. 6-5 shows striking differences between sample 
standard deviations of the estimated parameters of 
different types of input signals. This holds true for 
the longitudinal as well as the lateral input signals. 
Since the present work is focused on the design of 
DUT input signals, the sample standard deviations 
of the 3211, Doublet, Mehra and Schulz input 
signals were expressed in terms of the 
corresponding sample standard deviations of the 
DUT input signals in figs. 6-6 and 6-7, see also 
section 6.2.1. 
In tables 6-3 and 6-4 the observed differences of 
sample standard deviations were tested for 
statistical significance. The results indicate tha t, 
even for a fairly high value o f  a=Pr{H,IH,}=5%, 
rela tivel y few statistically significant differences 
exist. This is a direct consequence of the fact that 
the sample sizes are relatively small. Even less 
statistical I y signi fica n t differences would have 
resulted, i f  the actually observed differences in 
sample standard deviations were identical to the 
differences as predicted by theory in figs. 6-6 and 
6-7. These predicted statistically significant 
differences are also shown in tables 6-3 and 6-4. 
The sample standard deviations of the 3211, 
Doublet, Mehra and Schulz manoeuvres relative to 
the corresponding DUT values were subsequently 
tested for statistically significant deviations from 
the corresponding theoretical results, see again 
tables 6-3 and 6-4. The tests show that statistically 
significant deviations from theory do  indeed exist. 
It is noted that, with only one exception, all these 
deviations resulting from Doublet, Mehra and 
Schulz manoeuvres are positive, i.e. the relative 
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sample standard deviations are larger than  
predicted by theory. On the other hand, also with 
only one exception, all  skitistically significant 
deviations resulting from the 321 1 manoeuvres turn 
out to be negative. 

The results for the experimental and theoretical 
sample relative standard deviations can be 
expl a i ned ;is fol lows . The thco re t ica I covii ria nce 
matrix VGi) for biased estimates in simplified 
models is based on the assumption tha t  C in (6.2-2) 
is deterministic. For the calculation of a sample 
variance matrix of zl, C must, therefore, be 
constant. From (6.2-2) it  follows tha t  C depends on 
the form of the tlight test manocuvre, i.e. the Lime 
histories of the independent variables in X, and X,. 
The use of an electro-hydraulic control system for 
the imp 1 em en ta t io n o f p re- recorded in p ti t signa Is, 
as in the present work, result!! in highly 
reproducible tlight test manoeuvres. Yet, two Ilight 
test manoeuvres 01' the same type will never be 
exactly identical, due to Ihr instance small 
deviations from the init ial  nominal flight condition, 
differences in aircraft weight and centre of gravity 
location and non-reproducible components in the 
CO n tro I system 011 tp 11 L$. F 11 r t h er mo re, d 11 ring the 
execution of the longitudinal manoeuvres, the pilot 
would manually add sm;iII lateral control inputs to 
keep the wings level. During the lateral 
manoeuvres the pilot would iidd small longitudinal 
control inpuk, in order t o  prcvcnt too large pitch 
and airspeed variations. These ;iddition;il control 
inputs generated by the pilot were non-reproducible 
and turned out to be largest in the case of the 
Schulz manoeuvres, while virtlliilly nonexistent in 
the case of the 321 1 m;inoeuvres. 
I t  follows from equation (6.2-2), t h a t  differences 
between longitudinal or lateral manoeuvres of the 
same type will result in C being not exactly 
constant. The matrix rather depends on the 
particular realization of the manoeuvre. Different 
biases may, therefore, he expected to exist in the 
estimated p;ir;imetcrs ;1,, :is calculated from ;I set of 
realizations o f  a particular type of flight test 
manoeuvre. The effect of this  is a n  increase of 
sample variance. 
The root mean square deviations d in table 6-2 are 
loosely connected to the magnitude of the 
parameter bias in simplified models. There exisls ii 

marked difl'crcnce in this respect between for 
instance 3211 iind other manoeuvres. Furthermore, 

A. 

* *  

it follows from the above, tha t  due to the smaller 
pilot implemented control inputs, 321 I manoeuvres 
can, compared again to the other manoeuvres 
types, be reproduced more accurately. 

The above reasoning may now serve to explain, 
although rather tentatively the results of the 
statistical tests in tables 6-3 and 6-4. For example, 
the negative deviations of relative sample standard 
deviations of the 3211 miinoeuvres may be 
attributed to the parameter biases being smaller and 
the flight test manoeuvre reproducibility being 
higher than the DUT manoeuvres. 

For a comparison of only the input signal 
performance, in terms of variances of parameter 
estimates, perhaps ii clearer picture results if the 
parasitic effects of parameter bias and manoeuvre 
reproducibility are ignored. This would indeed 
indicate t h a t  the comparison should be based on 
the theoretical, rather t h a n  on the sample relative 
standard deviations. These theoretical standard 
deviations, in relative rather t h a n  in absolute form, 
were presented in figs. 6-6 and 6-7. 

The relative theoretical standard deviations of the 
estimated longitudinal parameters are shown in fig. 
6-6. Perhaps the most remarkable result is the 
relatively poor performance of Schulz manoeuvres, 
in particular with respect to the qF-/v and 6, 
derivatives. The differences between the remaining 
types of input signals seem to be less marked in 
the sense of one type of input signal being 
markedly superior to the others. This does not 
imply, however, t h a t  variations in parameter 
estimation accuracies would exist. The theoretical 
standard deviation of, for example, the 6, 
derivatives of the Double1 manoeuvres prove to be 
more than 135% of the corresponding results of the 
DUT manoeuvres, while the theoretical standard 
deviations of Ap,l'/ZpV* derivatives of the 321 I 
manoeuvres are found to be less than 70% of the 
cor res po nd ing res ii  I k o f D U T ma n oe u v res . 

The relative theoretical sbndard deviations of the 
estimated lateral parameters are shown in fig. 6-7. 
Remarkable is again the poor performance of the 
Sdiulz manoeuvres. Also the Mehru manoeuvres 
can, however, for a l l  derivatives be seen to result 
in relatively large standard deviations. Only small 
differences prove to exist between the standard 
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deviations of the remaining Doublet, 3211 and 
DUT manoeuvres, although the Doublet manoeuvre 
is seen to be slightly superior. 

In the comparison made above, the Schulz 
manoeuvres shown were optimized with respect to 
the trace of Fisher's information matrix. The 
relatively poor performance of these manoeuvres 
indicates that this criterion does not guarantee good 
performance in terms of standard deviations of the 
estimated parameters. 
In the longitudinal case, the performance of the 
Mehra manoeuvres is of approximately the same 
level as the performance ol' DUT manoeuvres, 
although both manoeuvres types were optimized 
with respect to different criteria, see section 6.1.1 
and section 6.1.4. However, as  mentioned above, in 
the lateral case the performance of the Mehru input 
manoeuvres is considerably lower. Since the 
longitudinal Mehru input signal performed quite 
well, the cause of the relatively low performance in 
the lateral case is thought to be the separate 
optimization of the aileron and rudder input 
signals. Compared to the corresponding DUT input 
signals, this resulted in a relatively low frequency 
aileron signal for proper excitation of the Dutch 
ro I 1 S i m u I ta n eous 
optimization would probably have 'assigned' 
excitation of the Dutch roll motion to the rudder 
control, which is in this respect much more 
efficient. The multidimensional version of Mehra 's 
algorithm might, therefore, be expected to result in 
improved input signals, sec [ 16-51. 
The differences with respect to theoretical skind;ird 
deviations between the remaining types of input 
signals, i.e. the Doublef, 3211 a n d  DUT signals 
appear to be less pronounced although significant 
differences exist for individual derivatives. 
The Doublet and 3211 manoeuvres appear to result 
in relatively high estimation accuracies of the 
control derivatives with respect to b, and b, in the 
lateral case. In the longitudinal case, the 3211 
signal results in ii higher estimation accuracy o f  the 
control derivative with respect to be compared to 
the DUT signal. The Doublet signal, however, 
results in a lower estimation ;iccur;icy. In fig. 6-4 
it may be seen that estimation accuracies of control 
derivatives in general appear to depend on the 
bandwidth of the input signal, in the sense that a 
higher bandwidth resulL\ in ii higher estimation 
accuracy. This beneficial effect of higher 

c ha ra c te r is tic mot io n . 

frequencies o n  the estimation accuracies of control 
derivatives is also evident in figs. 6-1 and 6-2. In 
the lateral case, the Doublef manoeuvre results in 
slightly higher estimation accuracies of all 
derivatives compared to the DUT manoeuvre. The 
321 1 manoeuvre results in higher estimation 
accuracies of the control derivatives, but in lower 
estimation accuracies of the derivatives with 
respect to the side slip angle fJ and the 
(dimensionless) rotation rates p and r. In the 
longitudinal case, it is the 3211 manoeuvre which 
results in the higher estimation accuracies 
compared to the DUT manoeuvre. The Doublet 
manoeuvre rcsulLs in higher estimation accuracies 
of the derivatives with respect to Ap,l'/4pV2 and 
angle of attack a, but in lower estimation 
accuracies of the derivatives with respect to the 
(dimensionless) rohtion rate q and the control 
angle be. 

6.3 Input Design in Frequency Domain 

This section illustrates the results of the input 
design technique in the frequency domain 
described in section 5.3 to 5.5. The input design 
for  the estimation of parameters in the model of 
the short period mode of the C-8 Buffalo aircraft is 
discussed in section 6.3.1. Section 6.3.2 presents 
the simulation results for the designed input signal. 
Input  signals of Mehra discussed in Gupta and Hall 
[lSX], Chen [ 1141 and Morelli I1231 are also 
briefly discussed. Section 6.3.3 illustrates the 
design technique li)r thc estimation of the 
parameters in the lateral model of the DHC-2 
Beaver aircraft. In section 6.3.4, the evaluation of 
the results o t  the designed aileron and rudder 
inputs is discussed. 

- 

0 

6.3.1 Design of' Longitudinal Input Signal 

The input design for the estimation of the short 
period mode parameters is previously investigated 
by Mehra, Chen and Morelli. The applied model is 
given by Gupki and Hall [ 1581: 
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"I 1 q  1.1 
where a is angle of attack, q is pitch rate and 6, is 
elevator deflection. The parameters are specified in 
table 6-5. The output signals consist of a and q 
which are measured at a sampling rate of 25 Hz. 
The measurement errors are zero mean and 
uncorrelated. Their standard deviations are given in 
table 6-6. 
With respect to the application of the two-step 
method, the system is replaced by 

(6.3-2) L -J 

where the parameters in the differential equations 
are not treated as parameters any more. The 
differential equations are only used for generating 
the state trajectory. The standard deviations of the 
'measured' time derivatives can be constructed via 
five-point Taylor polynomials of a and q. The 
values are also listed in table 6-6. 
The replaced model is only used for the 
optimization o f  the input signals. For the 
evaluation of the optimal input signal and for 
uniform comparison with other optimization 
techniques, the derived input signal is submitted to 
the original system. 

The optimal elevator control is dereed via a search 
of the optimal information matrix M_" in the convex 
set M of information matrices M with power - 
constrained inputs. As explained in section 5.3, M 
has a block diagonal structure structure where*each 
matrix block is constructed from the mat ix  M(o). 
Via the independent elements of M(w), M can be 
represented by the information vector 2 in the 
information space G. The number of independent 
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elements can be restricted to (n+l) for single input 
systems, see [216], where n is the numb%r of 
independent state variables. The elements of M(o) 
are hereto expanded as  a power series of 
02(i-1) / ld(o)12,  i = l ( l ) ( n + l ) .  T h e  te rm 
02"/ Id(o) 12, however, only appears in the bottom 
diagonal element of M(o) which is equal to unity 
by the imposed power constraint; see equation 
(5.3-21). This now puts the set M in a n- 
dimensional linear variety Q. As the system 
(6.3-2) has only one input and two state variable3 
M c a n  be situated in a two-dimensional plane. M 
can thus be represented by the information vector 
3 with two independent components I#, and v2 
and the scalar norms J ,  defined earlier as 
optimization criteria, become two-dimensional 
vector functions. The two- and three-dimensional 
views of the matrix norms are shown in fig. 6-8 
and fig. 6-9. In fig. 6-8, the contours represent 
constant values of the norms, while the depths in 
fig. 6-9 correspond to $e values of the norms. 
The location 2' of M O ,  i.e. the location with 
minimal value of the norm, can be_seen in these 
figures. The different norms locate MO more or less 
in the same position. This may lead to the 
conclusion that one may expect similar 
performances for the input designs optimized to 
different criteria. 

The elevator - control is optimized for the criterion 
J=tr  M-' as used by other investigators. Let the 
elevator control be composed o f  harmonic signals 
whose power is set to P,=16.667 deg' for the 
purpose of comparison. The frequencies of the sine 
functions are set to specified values wE[O, 1.5,4.5] 
rad/s and they are optimized within the range 0 to 
4.5 rad/s. The first iterations of the optimization 
process with optimizing frequencies are shown in 
fig. 6-10. 
The average information matrix is represented in a 
two-dimensional plane in the information space !& 
as described above. The point-information matrices 
fi(k) are first calculated from the harmonic signals 
- dk)(t) of which the input signal ~ ( t )  is composed. 
It follows frgm equations (5.3-18) and (5.4-5) that 
the set of M(k), represented by w ( ~ )  in &, is a 
curve depicted by the dash-dot arc in fig. 6-10. 
This curve determines the convex hull of M. Each 
point on the curve corresponds to a single 
frequency in the input signal. By cclmposing i ( t )  
from i(k)(t) the information matrix M becomes a 
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convex combination o f  M(k) for power constrained 
input designs. In vcctor rcprcscnkition, the 
information vector 9 is situated in ii polyhedron 
where the vertices are specified by $I. By 
connecting all vertices one may find the sufficient 
2(k) to attain 2. The sufficient number of 
harmonics is three, since the set fh4 lies in a two- 
dimenional plane. 
The initial harmonics &)(t) are choscn so that the 
evaluated information matrix is nonsingular. At 
each iteration, the minimal gradient of J with 
respect to the power ratio of a n y  harmonic signal 
is searched. This resulk in a direction indicated by 
the dashed line in fig. 6-10. The crossing o f  this 
line with the curve for Q(~) now represents a new 
harmonic in the input signal. If the frequencies are 
fixed, then the resulting harmonic is one of the 
specified harmonic signals. If the frequencies are 
optimized, the resulting harmonic is a n  additive 
harmonic signal. The amplitude of the new 
harmonic is calculated by ii direct search of the 
minimal value of J along the direction of the 
minimal gradient. The location of the minimal 
value represents the power ration between the 
previous iterated input signal and the new 
harmonic. It can be seen that after some iterations, 
this leads to supertluous usage of harmonic signals. 
Therefore, by applying Caratheodory 's  theorem, the 
new iterated input signal can still be represented by 
three harmonic signals, dispensing one of the 
harmonics when the new information matrix is 
found. The iterations are continued until the 
gradient becomes larger than - O . ~ % J ,  indicating ii 

flat surface and small changes in estimation errors 
for successive input designs, o r  unt i l  the sh i f t  o f 2  
becomes smaller - than 0.1%, indicating a small 
change only in M and a small contribution of new 
harmonics in the input design. 
The schematic sketch of the optimal harmonic 
signals for the optimal elevator control is shown in 
fig. 6-11 for both specified and optimized 
frequencies. One c x n  see that  the frequencies do 
not differ much for both cahes and result in close 
approximations for the location o f  the optimal 
information matrix. The derived optimal signals, 
however, are not unique. Several other 
combinations of harmonic signals are possible. For 
the present case, even an optimal signal consisting 
of only two harmonic signals is possible. This is 
&?used by allowing a n  arbitrary choice o f  input 
frequencies. It also follows from the figure that for  

a limited frequency range, which corresponds - to a 
restricted segment of the hu l l ,  the optimal Ma may 
not be atkiinable. Furthermore, in order to keep the 
highest input frequency limited, the input signal 
must be allowed to have very low frequencies. 

The time history of the DUT elevator inputs with 
fixed and optimized frequencies are shown in fig. 
6-12 for a time length of T=6 sec, together with 
their power spectral densities. The corresponding 
frequencies, amplitudes and powers of the 
elementary signals are presented in table 6-7. 
The optimal input  with optimized frequencies does 
not differ much from the input with specified 
frequencies. Both input signals contain one high 
frequency, and two low frequencies. One frequency 
is close to the natural frequency of the short period 
mode (0,=1.32 rad/sec). This is logical since 
around this frequency the input is generally 
amplified most, which results in higher signaI/noise 
ratios for the outputs. The other two frequencies 
make the regression equations from which the 
parameters can be identified in the frequency 
domain less dependent on each other, see Gerlach 

The optimal input time histories according to fig. 
6-12 are not unique because of the phase shifts in 
the elementary signals. These phase shifts do not 
follow from the synthesis in the frequency domain. 
In order to avoid disturbancies at  t=&, the phases 
are set to zero. 

131. 

6.3.2 Evaluation of Longitudinal Input Signal 

For the evaluation of the DUT signal, the original 
system (6.3-1) is driven with the DUT elevator 
input for specified frequencies. The generated angle 
of attack and pitch response are given in fig. 6-13. 
The original system is also driven with the DUT 
signal to evaluate the average Fisher's information 
matrix M for each of the scalar norms J mentioned 
earlier. The average information matrix M=M/N is 
computed as ii function of the measuring time 
interval T with ii constant sampling interval set to 
At=0.04 sec. The resulting criteria J are plotted in 
fig. 6-14. 
It can_ be seen that;iround T=4 sec, the criteria 
J=tr M-', J=-In det M and J=l/(eig M),,lin become 
stable. This means that larger measuring time 
intervals yield little or no gain in accuracy. 

- 
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The present short period mode is also investigated 
by Mehra, presented in Gupta and Hall [158], Chen 
[114] and Morelli [123]. These optimal inputs are 
shown in fig. 6-15. 
The optimal elevator input derived by Mehra in the 
time domain technique started from a doublet 
input. The applied optimization criterion is J=tr M-’ 
at a measuring time interval T=6 sec. Maintaining 
the same energy over the measuring time interval, 
the doublet input is optimized by adding new 
elementary signals which are eigen functions of a 
matrix function of Fisher’s information matrix. 
The optimal elevator input derived by Mehra in the 
frequency domain technique started from a signal 
with two frequencies with equal power. Tke signal 
is now optimized for the criterion J=t r  M-’. The 
optimization technique is equal to the present 
technique but with the parameters occurring in the 
differential equations, the model in equation 
(6.3-l), and without reducing the number of 
elementary signals. The input signal has a total of 
eight frequencies in the input spectrum. 
The optimal elevator input by Chen is a member of 
an orthogonal set of Walsh functions with full  
positive and negative amplitude. From functions 
with different block lengths, the function which 
results in the shortest time to achieve all specified 
parameter standard deviations is regarded as 
optimal. The optimal input signal thus  depends on 
the goals for the parameter accuracies. 
The optimal elevator input by Morelli also 
minimizes the measuring time interval to attain 
specified parameter standard deviations. The input 
may also be optimized for a apecified measuring 
time interval by setting the desired parameter 
standard deviations to zero. The input consists of 
a sequence of zero and full positive and negative 
amplitudes where the  block lengths are optimized 
via dynamic programming techniques. This entails 
that for regular time instants the input signal is 
continued with an amplitude resulting in the lowest 
optimization criterion at the next time instant. 

The DUT optimized input signal is compared with 
the optimal input signals from the Mehra 
techniques which are based on the same conditions. 
The elevator inputs have input power constraint 
P,=16.667 deg’ and they are submitted Lo the 
original system (6.3-1) with same noise 
characteristics (hble 6-6), sampling rate (25 Hz) 
and measuring time interval (6 sec). The signal 

- 
performance is evaluated via the criterion J=tr M-’ 
and the parameter standard deviations U@. The 
results are presented in table 6-8 and fig. 6-16. It 
can be seen that the DUT input signals perform 
well. 

6.3.3 Design of Lateral Input Signal 

The input design for the estimation of the lateral 
control and stability derivatives is based on the 
same model and flight conditions as in section 
6.1.3 for the time domain approach. The applied 
model is obtained by merging the kinematic lateral 
tlight path model (2.1-16) and the lateral 
aerodynamic model ( 2 . 2 9 :  

(6.3-3)s 

where: 

and where the matrix elements yp, ...’ nSr are 
functions of the control and stability derivatives. 
The element functions are listed in table 6-9 and 
the derivatives are listed in table 6-1. I t  should be 
noted that ye, ..., nbr are regarded as independent of 
the parameters since the shite estimation is 
decoupled from the parameter estimation. 
The aileron input bi, and rudder input 6, are 
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simultaneously optimized for the estimation o f  the 
following parameters: 

CYp ’ CYp ’ CY, ’ CY*, ’ CY*, ’ 

(6.3-5) 

The output signals consist o f  the specific lateral 
force and moment coefficients which are computed 
from acceleration and body robition measurements 
at a sampling rate of 10 Hz. The errors are zero 
mean and uncorrelated with standard deviations 
listed in table 6-10. These standard deviations are 
derived from the skindard deviations of the 
measured specific lateral force and constructed via 
five point Taylor polynomi;ils 01‘ thc roll  and yaw 
rates. The output signals become mutually 
uncorrelated by approximating the product of 
inertia I,,=(), see equation (4.1-15). The - criterion 
for the optimization is specified as J=tr M-’. 

The optimal aileron and rudder inputs are again 
derived via - a search for the optimal information 
matrix MO. Because of the zero values o f  
derivatives with respect to p and by approximating 
the product o f  inertia lLx=O, the inlormation matrix 
M has a block diagonal structure where all blocks 
are identical except f o r  ii scalar factor I/$, 
J=1(1)3. The input design can therefore be 
restricted to one block corresponding to the 
derivatives in one output equation. The five state 
variables in equation (6.3-3) ciin - be reduced to the 
four independent state variables p, @, 6 and r. With 
two input signals b,, and b,, M can - be situated in ii 

20-dimensional plane & wherc M is represented 
by the vector 9. The number of sufficient 
harmonic signals is t h u s  at most twenty-one. 
However, the optimal inpuh may generally be 
approximated by fewer harmonic input signals. 

- -  

The aileron and rudder inputs are optimized for  a 
total power P,=18.75 deg’ as in section 6.1.3. The 
inputs consist of harmonic signals whose 
frequencies are set to specified values and are 
optimized as well. Thc frequcncy range o f  the sine 
functions is restrictcd from 2 2 to c) 2 rad/s. The 

initial signal h a s  frequencies ;it the specified values 
w= k 2 rad/s, k=2( I)‘), where the aileron power is 
uniformly distributed over the four  upper 
frequencies and the rudder power over the four 
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lower frequencies. This choice was made because 
the low frequency Dutch roll is most efficiently 
initiated by a rudder input, while the highly 
damped aperiodic roll is best initiated by an aileron 
input. 
The optimal inputs are again derived via the 
gradient method. At each iteration, the input signal 
is either added with a harmonic incorporating a 
new frequency, or the amplitudes and phases of the 
harmonics at  the existing frequencies are modified. 
The derived aileron and rudder inputs with 
specified and optimized frequencies are shown in 
fig. 6-17 by their time histories and power spectral 
densities. The corresponding frequencies, 
amplitudes and powers of the harmonic signals for 
both cases ;ire presented in table 6-1 1. 
I t  can be seen that the  power is almost entirely 
concentrated at  the highest frequency for the 
aileron input. Furthermore, the rudder input 
remains concentrated at the low frequencies around 
the natural frequency of the Dutch roll motion 
(wo=1.22 rad/s). I f  the frequencies are optimized, 
the rudder input gets additional frequencies around 
this natural t‘requency. I t  ciin be seen from the 
phase shifts that only the harmonics with 
frequencies around the natural frequency of the 
Dutch roll and at the highest frequency are 
modified. 

6.3.4 Evaluation of Lateral Input Signal 

The evaluation of the DUT input signal is carried 
o u t  for the aileron and rudder inputs with specified 
frequencies. The generated state variables are 
shown in fig. 6-18. It ciin be seen that the yaw 
angle 111 has ii strong deviation from the nominal 
condition. The deviations of the other variables 
remain limited. Furthermore, the roll rate strictly 
follows the aileron input, where the other output 
and state variables contain lower frequencies from 
the rudder input. 
The average Fisher’s information matrix and its 
norms are also calculated for the DUT inputs. The 
norms J of the matrix M=M/N are shown in fig. 
6-19 as a function of the measuring time interval T 
with a sampling rate At=0.1 sec. The norms 
become stable around T=7.5 sec. This is about one 
and half the period of the Dutch roll motion. 

- 

The performance of the DUT input signals is 
compared with Doublet and 321 I inputs. These 
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latter two heuristic input signals are described in 
section 6.1.4. For the purpose of comparison all 
inputs have the same total power P,=18.75 deg2 
and they are submitted to the original system. - The 
comparison is made via the criterion J=tr M-' and 
via the standard deviations C T ~  of the parameter 
estimates. The results are presented in fig. 6-20 and 
table 6-12. 
The comparison of the different input signals sow 
contrasting values for J and crO. The DUT aileron 
and rudder inputs perform relatively better than 
3211 inputs. 

6.4 Conclusions 

When we look at the theoretical results for the 
performance of input signals optimized in the time 
domain, there are n o  large differences between the 
results of the different types o f  input signals 
(except for Schulz). Certainly improvement5 of  20- 
50% in the parameter standard deviations hardly 
seem to be worth the trouble of optimal input 
design. 

It is even more surprising that in the case o f  the 
actual flight tests a simple heuristic input signal 
such as a Doublet or a 3211 can perform as  well as 
and sometimes even better than one of the optimal 
signa Is. 

For the DUT input design in the frequency domain, 
the estimation results of the short period and lateral 
stability and control derivatives gave a good 
comparison with other input signals. 

Representing the optimal information matrix via a 
vector in the information space can be used to 
evaluate the mutual performance of different input 
designs and design criteria. I f  the locations are very 
close to each other one may expect equal 
accuracies of the parameter estimates. The input 
designs from different optimization criteria yields 
almost similar locations for  the information vector 
and provided equivalent input designs and 
performances. 

It must be kept in mind, however, that these 
conclusions hold for the simple aerodynamic model 
used in the examples and they may n o t  be true for 
a more complicated modcl. In any case, if the 
aircraft to be tested is as simple as thc one 

presented here, one c a n  feel reassured by the 
knowledge that it  is difficult to do  better than a 
multi-step input with a well-chosen step length. 
This has the added advantage that these inputs are 
easy to fly manually. 

On the other hand the aircraft to be tested may be 
more complicated, for example it  may have some 
(combination of) parameters in its model 
description which are nearly unidentifiable, but 
which are nevertheless required for a certain 
application. For the Beaver example the a- 
derivatives are a case in point, because one may 
not be content to remove those parameters from the 
model and in that way introduce an error may 
become noticeable in certain tlight manoeuvres. In 
this case it  is certainly worthwhile to apply one of 
the described optimal input signal design methods 
and find an input signal that allows the 
identification of all parameters. 

The optimal input signals have the advantage that 
their frequency contents are much lower than the 
multi-step signals and do not contain 'superfluous' 
frequency components. This can be of great 
importance, e.g. to avoid structural modes being 
excited by the input signal or to avoid the 
in tluence o f  the frequency-dependence on the 
aerodynamic model. The aerodynamic model 
description in terms of Taylor polynomials, as used 
in this volume, is really only a low-frequency 
approximation of the (infinite-dimensional) 
physical system. Exciting the aircraft with higher 
frequencies will therefore yield different parameter 
estimates in the approximate model than exciting 
the aircraft with lower frequencies. This effect is 
responsible for some of the systematic differences 
shown in the previous section. Ideally one should 
identify the aircraft model using the same input 
signal frequency content a s  in the application for 
which it  will be used, i.e. with a low frequency 
content for a commercial training simulator or with 
high frequency content for a n  air-combat simulator. 

Some of the practical advantages of using higher 
frequencies can also be achieved with the optimal 
input signals by specifying a higher frequency 
content, for  instance by using a weighting function 
in the criterion which emphasizes the 'higher- 
frequency ' parameters (e.g. the control derivatives) 
or by choosing higher t'rcqiicncy elementary signal 
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components (sinus or square wave) which can be 
done quite easily using the DUT methods. 

Even if we intend to apply multi-step input signals, 
e.g. because the signals have to be flown manually, 
the amplitude, duration and relative phase of the 
multi-step input signals can be inspired by the 
optimal design. The analysis will also show how 
much you may be losing in theory by applying a 
multi-step input signal. Furthermore, the extra 
effort spent on optimal input design yields 
important extra information for the planning of the 
flight tests, such as safe input amplitudes, 
minimum required manoeuvre times, etc. 

Finally, it must be said that the instrumentation and 
the algorithms to accomplish the parameter 
identification task have now ;idwinced to  the point 
where the choice of optimal control inpub may be 
the only and ultimate limiting factor in the 
attainable accuracy o f  these stability and control 
para meters. 
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Table 6-1: Nominal flight condition and a priori values of longintudinal and lateral stability and 
control derivatives as used for the design of longitudinal and laleral inpul signals.. 

DOUBLET 0.0605 0.1115 

0.0497 0.0728 

MEHRA 0.0569 0.1169 

SCHULZ 0.0620 0.1488 

0.0578 0.1070 

Table 6-2: Roo1 mean square deviation d h o m  a nominal rectilinear flight cvndilion, at 45 mls 
TAS and 6000 fl, during diflerenl types of longitudinal and laleral flighl lesl maneouvres. 
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-0.737 l/sec Ma -0.562 l/sec2 

-1.588 l k e c  

I -1.660 l/sec2 I 0.005 l/see 

V = 41.2 m/sec 
h = S e a  Level 

Table 6-5: Parameter values and flight condition for short period mode 
of C-8 Buffalo aircraft. 

1 ;: 11 ; 1 1.00 deg 11 I23.75degJsec 1 
0.70 deg 16.62 deglSec* 

Table 6-6 Standard deviations of measurement errors for short period 
mode models of C-8 Buffalo aircraft. 
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1 y, I I0.0014 m/sec2 11 I 1.288 lo4 1 
- 

Y2 0.0032 deg/sec2 7.993 10“ 

0.0032 deg/sec2 
- 
C” 1.477 10” 

Table 6-10 Standard deviations and non-zero correlations of 
measuremenl errors for lateral mode model of DHC-2 Beaver aircrajl. 



3.142 0.024 0.448 0.946 0 

9 3.534 0.717 13.435 5.184 0 0.013 0.159 0.195 

126 

0.785 0.048 0.896 

0.966 1.390 

1.201 1.550 

1.339 

0.008 11 3 I 1.178 I 0.052 0.070 

-1.125 It4 i 1.571 0.064 0.016 
I1 I I 

1.339 1.964 

2.356 

0 0 0 0.896 

0.448 0.946 0 0 0 

DUT signals with specified frequencies 

0.048 1.341 71 
0.195 

0.048 1.341 

0.754 

0.146 

0.016 

0.001 c 0.048 1.341 

1.964 

2.356 

2.749 

3.142 

9 3.534 

0.048 

0.024 

1.341 

0 

0.024 0 

0 0.024 

0.710 0.162 

DUT signals with optimized frequencies 

Table 6-11: Optimal aileron and rudder inputs with harmonic input signalsfor lateral 
mvde parameters o/ DHC-2 Beaver aircrafi. 
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Table 6-12: Comparison of Cramer-Rao lower hounds for T=16 sec (N=16]2 for 
heuristic and optimal aileron and rudder inputs wifh design criteria J=tr M' 

for lateral mode parameters of DHC-2 Beaver aircrafi. 
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Fire 6-1: The relative performance index J,d and relative standard deviations a,& 
of the estimated longitudinal parameters as a function of the total number of 

orthonormal functions p in set I (-) and set 2 (- -). 
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Figum6-2: The relative pe$omnce in& .Jd and relative standard deviations a, 
of the estimated longitudinal parameters as a functwn of the total number of 

orthonormal functions p in set I (-) and set 2 (- -). 
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Figure 6-6: Relative (with respect to corresponding results from DUT manoeuvres) theoretical and 
sample standard deviations [JJ ustimaled lonaifudinal aerodynamic derivatives of 5 differenl types of 

longitudinal dynamic flight test manoeuvres; sample results are shown immediately above each 
aerodynamic derivative, corresponding theoreficaf results are presented as the Iefl most group of bars. 
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Figure 6-1: Relative (with respect to corresponding resuits from DUT manoeuvres) theoretical and 
aerodynamic derivatives of 5 different @pes of lateral sampie standard deviations of estimated 

dynamic flight test manoeuvres; sample results are shown immedialely above each aerodynamic 
derivative, corresponding theoretical results are presented as the left most group of bars. 
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specified frequencies optimized frequencies 

Figure 6-11: Reconstrucfion of optimal information matrix from elementary signals (0) and as a 
function of 9 (+) for elevator input for crilerion J=lr M'. 

spccifkd frequencies optimized frequencies 

Figure 6-12: Tim, history and normalized power spectral density of DUT - elevator input with 
specified and optimized frequencies for criterion J=n M". 



Figure 6-13: Time history of angle of aftack and pitch response from DUT elevator input with 
specifEd frequencies. 
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elevator input by Mehra 
from time domain technique 

t (W 

elevator inpuf by Mehra 
from frequency domain technique 

elevator inpuf by Chen 

t 1-4 

elevator inpuf by Morelli 

Figure 6-15: Optimal elevator inputs from dflerenf optimization techniques. 
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2 Mehra (1975;freq) 
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Figure 6-16: Comparison of Cramer-Rao Lower Bounds. 
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Figure 6-17: Time histories and normalized power spectral densities of DUT aileron and rudder 
inputs with specified frequencies for criterion J=tr G'. 
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Figure 6-18: Time histories of state variables from DUT aileron and rudder inputs with specifiid 
frequencies. 
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Figure 6-19: Optimization criteria as function of measuring lime interval (Ak0.1 sec). 
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Figure 6-20: Comparison of Cramer-Rao Lower Bounds. 
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7 PRACTICAL ASPECTS OF FLIGHT TESTS 

In this chapter the instrumentation, flight test 
design and execution, the dah  processing and the 
data quality evaluation iire discussed. All of these 
topics are present in all flight tests, but parameter 
identification tests add special requirements. 
In addition the software development will be 
briefly described, because this is a n  area that  can 
be very expensive both during development and 
during use, especially when the software fails to 
perform according to specifications. 

7.1 Flight Test Instrumentiition 

For the purpose of parameter identification llight 
tests, the inertial transducers, the pressure 
tra nsd U cers a n d the ii n g U I ii r pos it i o n t rii n sd U cc rs ii r c 
the most important. Other transducers such iis 

temperature and outputs from navigation systems 
will also be discussed. Some aspects of signal 
conditioning will be covered. Finally the 
characterization of measurement channel will be 
described. 

7.1.1 Inertia I Tm nsdiicers 

As discussed in chapter 3 the accurate 
measurement of specific forces and angular rates is 
very important for a n  accurate tlight path 
reconstruction, because these measurements form 
the components of the input  vector to the system 
model describing the aircraft's flight path. In  
particular it is important that the bias, scale factor 
and alignment do not change. For instance a bias 
variation over the range 01. c)pcretion;il conditions 
should be in the order 01' (l.001 m/s' for the 
specific forces and 0.001 degh for the angular 
rates. This level of accuracy leads to the use of 
'inertial grade' transducers. I t  is possible to build 
an inertial sensor package o f  this accuracy from 
components, as described by van Woerkom [ 161 o r  
Breeman [22]. However, i t  may be preferable to 
buy an existing inertial sensor package of the shelf. 
Such packages iire produced f o r  missile guidance 
and often include gyroscope drive electronics, 
signal conditioning and accurate A/D converters. 

Another possibility is the use of ii commercially 
available Inertial Navigation System (INS) o r  
Inertial Reference System (IRS). The term INS 

usually refers to a system with transducers 
mounted on a stabilized gimballed platform, while 
the term IRS always refers to a system with 
transducers rigidly mounted to the case. In civil 
aircraft these systems are likely to be already 
available onboard. Although these systems are 
more expensive than separate transducers or a 
simple inertial sensor package, their superior 
accuracy, stability and reliability imply that they 
are much cheaper to operate, because calibrations 
or repairs will be very infrequent. 

On the other hand, ;I gimballed platform INS is not 
very suitable for  parameter identification flight 
tests, because there are no body referenced specific 
forces o r  angular rates directly available. In 
addition the resolution o f  the attitude angles is 
usually poor and the accuracy is further degraded 
by the internal shock mounting that is used to 
protect the sensitive transducers. 

A strap down IRS is much better in this respect. 
All IRS's built today use laser gyroscopes. The 
advantage of the laser gyroscope is the excellent 
stability of bias, scale factor and alignment and the 
inherently small time delays. The main 
disadvantage is the ;imount 01' noise in the outputs, 
which is caused by the need for dithering to 
prevent lock-in (see Aronowitz 12241). In 
commercially available IRS's the signal outputs are 
heavily l'iltered, which leads to signal distortion 
and timc delay. Furthermore the lack of adequate 
;in ti-a1 iasing filtc ring com b ined with low sempl ing 
rate lead to problems with aliasing, especially in a 
high-vibra Lion environment, in practice the 
sampling rates used in commercial IRS's iire about 
50 Hz. Most of the above-mentioned problems cm 
be eliminated by having the manufacturer modify 
the IRS specifically for  tlight test. NLR has 
operated modified IRS's successfully during the 
last eight years for a number of  tlight test 
appl ic?t' ions. 

The mounting o f  inertial transducers requires 
special care. The sensors should be accurately 
aligned with respect to the aircraft body axes or, 
equivalently, the misdignments should be 
measured very accurately. This also means tha t  the 
mounting of the sensors in the box as well as the 
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mounting of the box to the airframe should be very 
rigid and stable. 

the delays are dependent on the pressure in the 
tubing, so t ha t  the ground measurement has to be 
performed for several skitic pressure levels. 

7.1.2 Presslire Transducers 
7.1.3 Angular Position Transducers 

As discussed in chapter 3 the accurate 
measurement of static and dynamic pressure is very 
important for an accurate flight path reconstruction, 
because these measurements form the primary 
components of the observation vector of the system 
model describing the tlight path. 

The required absolute accuracy is about 20 P a ,  but 
a differential accuracy o f  better t h a n  5 P a  is very 
desirable. This last number translates to about 0.5 
m accuracy in the change in altitude, which is the 
important quant i ty  for the reconstruction of altitude 
variations. Any errors here will affect the 
reconstructed state trajectory directly. 

This level of accuracy is obtainable by modern 
high quality pressure transducers, but o n l y  i f  the 
temperature of the transducer is either kept 
constant or me;isured and accounted f o r  in the 
calibration. The approach of keeping the transducer 
at  a constant temperature was applied in the system 
described in section 7.1.5 below. Modern air data 
computers (ADC) normally measure the transducer 
temperature and account for it in an  internal 
calibration procedure and in this way can be about 
as accurate as temper;iture-skibilized transducers, 
however, without the operational difficulties 
associated with tempera tu re ski b i l  ization. This 
makes ADC's attractive a s  [light test transducers 
and NLR has applied thesc tr;insdiicers successfully 
for tlight test application for a number of years. 
Time delays in the pressure measurements are 
mainly due to the pressure tubing connecting the 
sensing port to the transducer. The small internal 
volume of modern pressure transducers has helped 
to reduce this effect, but i t  still pays to keep the 
length of the pressure tubes as small a s  possible by 
placing the transducers near the sensing port\. 

The effect o f  time delays in the pressure 
measurements on the flight path reconstruction is 
generally not very large, although they show up 
very clearly in the residuals. I t  is in a n y  case ii 

good idea to measure the time delays on the 
ground [208 and 2141 and correct the tlight data 
for the time delays. I t  must be kept in mind tha t  

Angular position transducers are needed to measure 
the air flow angles and the control surface 
deflections. For the air  flow angle transducer (a 
and p) a n  accuracy of about 0.02 deg is required. 
The stability of the alignment of the air flow vanes 
with respect to the body axes is more important 
than the absolute accuracy, because the angle of 
attack and angle of sideslip resulting from the 
llight path reconstruction can be used to obtain an 
accurate calibration o f  the air  flow vanes 1208 and 
2131. Ideally, this calibration will take into account 
the upwash and sidewash effects discussed in 
chapter 2, as well as the effect of structural 
deformation of the boom or the aircraft. It is 
important to check the alignment of the vanes with 
the aircraft on ii regular basis, before each tlight i f  
possible. For the control surface detlections the 
accuracy requirement\ arc somewhat less, about 
0.02 degrce. In this  case the correct mounting of 
the deflection transducer to the airframe is very 
important, because the structure of the aircraft as 
well as the control surface will deform significantly 
under loading. A good design of the mounting will 
minimize this effect [207]. In any  case the 
detlection of the aerodynamic surface itself must 
be measured and not the pilot stick detlection or 
the cable displacement. 

The time delay of the control surface deflection 
measurements is very important for aerodynamic 
model identification, see Iliff [2]. Especially the 
rate derivatives are very sensitive to this delay. The 
time delay between the deflection measurements 
and the inertial measurements can be checked 
directly hy  mounting an accelerometer to a control 
surface and moving the controls at  different 
frequencies. I f  the same dah  acquisition chain is 
used as for the flight tcsb, this test can readily 
exhibit the delay of the detlection measurements 
relative to the inertial measurements to a n  accuracy 
o f  about 1 ms. 
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7.1.4 Signal Conditioning Characterization 

As described in chapter 3, slate reconstruction can 
be used to obtain accurate reconstructed variables 
using the redundancy present in the measurement 
data set. In  order to apply this  technique it is 
necessary to formulate ii precise and complete 
characterization of the measurement system. In the 
past a characterization of a measurand could 
consist of accuracy and bandwidth of the sensor. 
Nowadays most measurands iire the result of a 
complex sequence of processing steps in the flight 
hardware. In this subsection ii general framework 
is proposed for specifying the chiir2icteristics of 
measurands. This general framework can then be 
filled in for each of the meiisiir;rnds used lor slate 
reconstruction. We will begin by introducing the 
following definitions: 

Definitions 
Translation The desired physical quant i ty  often 
cannot be sensed directly but must first be 
translated to the transducer. Examples iire the pitot 
probe and the pressure tubing lor a i r  d a h  and the 
mec ha n ica I gea ring for rota r y pcw i Lion . 

Transducer The translated physical quantity is 
transformed into a secondary physical quant i ty  (the 
transducer output) which can be measured more 
easy or more accurately. Nowadays the secondary 
physical quantity is usually ii voltage, ;I current o r  
a n  impedance change. 

Signal conditioning The transducer output is not 
directly suitable for conversion, because the signal 
level is not compatible with the A/D converter o r  
because the frequency content would cause aliasing 
errors. Consequently thc transducer output must be 
bias shifted, amplified and filtered. 

A/D converter After signal conditioning the signal 
is converted to a digital code. There are two 
common conversion techniques: successive 
approximation converters yield ii number which 
directly represenls the signal amplitude a t  the 
sampling instant and integrating converters, which 
yield a number representing the analog integral of 
the signal over the last sampling interval. 

Digital processing The digitized transducer signals 
are in many cases not the desired results. 
Therefore, modern sensor systems contain digital 
processing. In simple cases this involves 
calibrations, corrections and digital filtering, but i t  
can also involve a complex calculation based on a 
number of different transducer signals. 

Data transmission The processed digital data must 
be finally transferred to the user equipment, in the 
present case the flight control computer. This 
involves formatting the data and transmitting the 
d a h  over a digital data bus. 

The proposed framework is just ii subset of the 
characteristics that  come into play in the selection 
of transducers. Only the characteristics that are 
judged relevant for the application must be 
included. In figure 7-1 the general structure for a 
measurement channel is shown. It consists of 
translation, transducer, analog signal conditioning, 
analog to digital conversion, digital processing and 
data tr;insmission. For each of these elements 
characteristics can be specified. Taken all together 
these specifications determine the overall response 
of the measurement channel. 

A complicating factor is that in modern 
measurement systems the output measurand often 
depends on more than one sensor. In the simple 
case the output of one sensor is corrected for a 
sensitivity for mother physical quantity, e.g a 
pressure sensor is corrected for temperature. In this 
case only the remaining sensitivity after 
compensation is relevant. More complicated is the 
case where the me;isur:rnd is derived from a 
number of sensors, e.g. groundspeed from body 
accelerations and gyroscopes. This can be treated 
by defining the transfer characteristics from each 
sensor to each measurand separately. 

For simplicity the characteristics of the translation 
of the physical quant i ty  to the sensor input might 
be included in the transducer characteristics. 
Examples ;ire the pneumatic tubing between the 
sensing hole and the pressure sensor and the shock 
mounting of :in inertial sensor. A list of 
characteristics is: 



1. Translation 
(a) Transfer function 
(b) Time delay 

2. Transducer 
(a) Range 
(b) Bias 
(c) Scale factor 
(d) Resolution (sensitivity) 
(e) Sensitivity to temperature, off-axis signals 
( f )  Hysteresis 
(g) Transfer function H(o) 
(h) Time delay 
(i) Electric;?I noise spectrum 

3. Analog signal conditioning 
(a) Range 
(b) Bias 
(c) Scale factor 
(d) Transfer function H(o)  
(e) Time ,delay 
(t) Electrical noise spectrum 

4. Analog to Digital conversion 
(a) Range 
(b) Accuracy 
(c) Resolution 
(d) Sample rate 
(e) Sample instant jitter 
(f) Digital noise spectrum 

5.  Digital processing 
(a) Amplitude limitation 
(b) Digital transfer function H(z) 
(c) Time delay 
(d) Round-off 
(e) Numerical noise spectrum 

6. Data transmission 
(a) Truncation 
(b) Transmission rate 
(c) Transmission delays 
(d) Transmission delay jitter 

To reduce the amount o f  work, characteristics tha t  
are judged less important can be left blank. For 
example, the analog signal conditioning may have 
a negligible bias compared to the sensor. I n  other 
cases it may be impossible to tell whether the error 
must be attributed to the sensor o r  to the signal 
conditioning. This is also true lor sensors which 

form part  of a feedback loop. 

In the above list time delays are listed separately 
from the transfer functions. This implies that the 
transfer functions are defined to have no fixed 
delay components. An alternative is to list the 
complete transfer function and to incorporate the 
delays in factors like e-jw' or z in the transfer 
Functions. 

The next step in this activity is the drawing up of 
ii list of physical quantities of measurand transfer 
characteristics that could be of interest to the 
project. Subsequently this list cm be filled in with 
information obtained from vendor brochures, by 
questioning vendors or by direct measurements in 
the laboratory or in tlight. 

7.1.5 Example of Flight Test Measurement 
System 

The general arrangement of the flight test 
instrumentation system as used in the tlight test 
programs with the DHC-2 Beaver aircraft is shown 
in figure 7-2. A dehiiled description of the 
predecessor of this tlight test measurement system 
is given in Van Woerkom [ 161. The present system 
like its predecessor was designed and built by the 
Faculty of Aerospace Engineering of the TU Delft. 

The transducers o f  the instrumenkition system are 
listed in table 7-1. The first set of these 
transducers, mounted in the so-called Inertial 
Measurement Unit  (IMU) are shown in figure 7-3. 
Three accelerometers were positioned such that 
their axes of sensitivity were mutually 
perpendicular inside a temperature-controlled box. 
The effect of temperature on the characteristics of 
these accelerometers was eliminated by maintaining 
a fixed temperature inside the box during 
instrumentation calibrations as well as in flight. 
Three rate gyros were mounted outside on the box. 
Their axes of sensitivity were mutually 
perpendicular as well. 

The second set of transducers, used to measure 
various total and static pressures, consisted of one 
absolute and four differential pressure transducers 
which were also pohitioned in ii temperature 
controlled box lor  the same reiisons as stated as 
above. This c a n  be seen in figure 7.4. 



This box contained in addition ii vacuum bottle 
with which the reference static pressure a t  the start 
of a flight test manoeuvre could be sampled. I t  
further contained a heater and fan, a set of two- 
way valves and the necessary electronics. More 
details are given in Van Woerkom [205]. 
All transducer outputs were converted and scaled 
to a range from 0 to 10,000 mV dc. Ncxt,these 
outputs were filtered by identical 4th order low- 
pass anti-aliasing filters. Each filter consisted of 
two identical second order filters with undamped 
natural frequencies of 19 r;id/s and damping ratios 
of 0.691. These damping ratios were selected so as 
to obtain an  approximately constant gain and linear 
phase characteristics in the region of low 
frequencies. The only effect on the low frequency 
components of the transducer oulpuLs wiis, 
therefore a common time delay. This in turn led to 
CO ns  ide ra b I e simp I i fica tic) ns o 1' t he CO m p ti I;i t ions 
required for 'e1ement;iry d a h  processing' [ 1761. 
The resolution of the an;ilog to digital converter 
was equal to '1 mV o r  0.01% of fu l l  scale. Each 
channel of the system was scanned a t  ii rate of 10 
times per second. The multiplexer comprised 40 
channels and the system was capable of digitizing 
and recording 400 samples per second. The number 
of transducers in the instrumentation system (26) 
was smaller than the number of multiplexer 
channels (40). The excess channels were used lo 
sample the ;iccelerometers, rate gyro's and elevator, 
aileron and rudder deflection lransduccrs a t  the 
double rate of 20 samples per second. 

The instrumentation system was repeatedly 
calibrated before, during and afkr the tlight test 
program. These repeated calibrations made it 
possible to monitor variations of instrumenlation 
and transducer characteristics with time, in the 
course of the tlight test program. The calibrations 
comprised the complete measurement channels, 
from the transducers up to the output$ of the 
analog to digital converter, rather than  just the 
individual components in each channel, because it 
was thought that the results of calibrations of 
complete channels would be the most 
representative for the ;ictual in-llight performance 
of the measurement system. Some typical 
calibration resiil~s are shown in figure 7-5. 
Especially the ca1ibr;ition of the pressure 
transducers show bias changes with time. 

Electro-hydraulic control system 
A diagram of the electro-hydraulic control system 
which was used to generate the optimal input 
signals is shown in figure 7-6. The system included 
three elcctro-hydraulic actuators for control of the 
ailerons, rudder and elevator respectively. The 
;ictuators were coupled via pilot controllable 
clectro-magnetic couplings and safety shear pins to 
the existing m;inual control system. Hydraulic 
power wiis generated by a n  auxiliary hydraulic 
pump which wiis fitted to the engine. In order to 
eliminate the possibility of hydraulic fluid spillage 
in tlight, the system was designed to have no open 
connections with the outside air. Therefore it was 
not possible to use ;in open reservoir for hydraulic 
lluid storage and a so-called compensator was 
used, this is in essence ii cylinder and piston 
providing ii variable volume. Together with a n  
iiccii m ti 1 ii tor, fi I Le rs it nd h yd rii u I ic va Ives, the 
compensator wah mountcd in ii hydraulic power 
prick installed in the back 01' the Beaver passenger 
cabin. The electro-hydraulic control system was 
operated by the pilot via ;in overhead control panel. 
The actuator servo valves could be commanded by 
means of a three-axes side stick controller, by three 
trim wheels or by input signals recorded on a 
multi-channel FM tape recorder. 

7.2 Ground Preparations 

Before the ;ictual tlight tests ii number of activities 
have to be performed on the ground. The 
instrumentation system must be calibrated and it 
must be installed and aligned with the aircraft axes 
and finally the aircraft's weight, center of gravity 
and moments of inertia must be determined. 

7.2.1 Calibrations 

Analysis of the ca1ibr:itions consisted o f  fitting 
polynomials o f  degree appropriate to the calibration 
data, using regression ;in;ilysis. For each channel, 
this appropriate degree of the polynomial for a n  
adequate f i t  to the calibration data was determined 
in a rather qualitative way, based on the root mean 
square of the residuals. These rms-values are 
subsequently taken as a measure of the accuracy of 
the channels of the measurement system. 

An impression of the iiccuracy, as defined above, 
of some of the transducers (channels) of the 
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instrumentation system can be deduced from 
figures 7-5(;1) through (d). These figures show the 
residuals resulting from fitting one polynomial to 
several sets of calibration data resulted from 
calibrations made a t  different calender dates. Figure 
7-5(a) shows the residuals of four tilting table 
calibrations of the longitudinal accelerometer 
instrumentation channel. The relative rms-values 
(rms divided by the calibrated input range) of these 
particular residuals amounted to 0.0023%, which is 
equivalent to 0.00046 m/s'. Still lower relative 
rms-values, when the polynomi;ils were fitted to 
each of the calibration data sets individually. This 
clearly indicated a change of characteristics from 
the first calibration to the next calibration. Figure 
7-5(a) shows that i t  is in particular the constant 
part of the channel outputs which appears to vary 
with time. This is quite typical characteristic of 
inertial transducers I i ke accelerometers and rate 
gyros. This is the basis for the inclusion of 
corresponding zero shifk a s  unknown parameters 
in the flight path reconstruction problem. 
The residuals of five calibrations of the roll rate 
gyro channel are shown in figure 7-5(d). The rms- 
value was 0.0035 deus.  Also in these calibrations, 
a variation of the constant part of the channel 
output over successive calibrations appeared to 
exist. When polynomials were fitted to individual 
ca 1 i bra t io ns, r ms -va I lies o f ii pp rc)x i ma tcl y 0.0020 
deg/s resulted. The instrumentation system used 
high qua I ity d i fferen tial-pressure tr;i nsducers. In  
terms of  relative rms-value 01' c;ilihr;ition residuals, 
they proved to be of the same level of accuracy as 
the high quality accelerometers and  rate gyro's 
discussed above. This is illustrated by figure 
7-5(c), showing the residuals of two calibrations of 
the ~ p ,  differential pressure channel. The rms- 
value of the residuals wiis 0.6 N/m2. 
Figure 7-5 (d) shows the residuals of four 
calibrations of ps,, the absolute pressure channel. 
The rms-value of the residuals wiis 81 N/m'. This 
relatively high rms-value was obviously caused by 
deterministic differences between successive 
calibrations, due to variations with time of the 
transducer input-output relationship. Figure 7-5(d) 
clearly demonstrates the advantage of multiple 
calibrations in the course of a tlight test program. 
It was possible to f i t  ii calibration polynomial to 
each of the calibrations individually and to 
determine for each tlight thc probably best 
polynomial by interpolation in time. Examples of 

calibration results of other types of transducers, 
such as control surface angle, air flow angle, 
temperature and engine rotation rate transducers are 
presented by Kranenburg [ 1761. 

7.2.2 Measurement of' Moments and Products 
of Inertia 

The total aerodynamic moments acting on the 
aircraft cannot bc measured directly in tlight. They 
must be determined indirectly from the equations 
of motion. For the case of a rigid aircraft, this 
leads to a set of relations for L, M and N as given 
in chapter 2. These relations hold for a symmetrical 
aircraft for which the products of inertia I,, and I,, 
are equal to zero. It follows, that the angular 
accelerations and angular velocities must be 
measured and tha t  the moments of inertia I,, I, and 
I, a s  well as the product of inertia I,, must be 
known. This motivated the design o f  ii rig for the 
cxperimental determination o f  aircraft moments and 
product of inertia, shown in figure 7-7. A detailed 
description of the rig has been given by 
Kranenburg [ 1751 and De Jong (2231. 
Depending on the configuration of the rig, the 
aircraft could be oscillated about either the 
longitudinal, lateral or vertical axis. In the case of 
oscillations about the longitudinal and lateral axes 
the aircraft mass center was below the axis of 
rotation, while lor  oscillations about the vertical 
axes thc aircraft was suspended as ii bifilar 
pendulum. All these oscillations are readily 
recognized a s  being inherently stable. This 
eliminated the need for the application of external 
stabilizing springs. The rig was carefully designed 
such that mechanical friction would be as small as 
possible. This was obtained, among other things, 
by the application of high precision knife-edge 
bearings. The damping of the roll, pitch and yaw 
oscillations about the longitudinal, lateral and 
vertical axis respectively proved to be very low. 
Evidence for the low damping of these oscillations 
is provided by table 7-2, showing typical values of 
period and damping 01 the roll, pitch and yaw 
oscillations respectively. 

The virtual absence of mechanical friction was 
thought to be essential for accurate moment of 
inertia measurements, tor  the following reasons. In 
the first place, weakly damped oscillations allow 
ample opportunity to :iccur;rtcly determine period 
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and damping. I n  the second place, the absence of 
mechanical friction and in particular Coulomb 
friction, will permit the use of linear equations of 
motion for oscillations with sufficiently small 
amp1 i tu des. 

The moments and producls of inertia can be very 
easily calculated from the observed oscillation 
periods, but this can also be formulated in terms of 
a system parameter estimation problem. At first 
sight, this might seem to lead to unnecessary 
complications, because the application of e.g. 
maximum likelihood estimation as  discussed in 
Appendix A implies solving a nonlinear 
minimization problem. There arise new 
possibilities, however, when the rig configuration 
is designed to allow more complex oscillations for 
instance involving translations as well as rotations 
about different axes. 

7.3 Flight Test Design and Execution 

The design and execution of parameter 
iden ti fica tion tl ight tesLs rcq ti ire careful pla nning 
and organization. This process has to begin with ii 

definition of the goals of the Ilight test program. 
These goals can be specified as to the different 
topics to be covered (e.g. aerodynamics, engine, 
flight control), to the desired coverage of the tlight 
envelope and to the desired confidence level of the 
results. Next a detailed tlight test plan ciin be 
written, flight test cards can be drawn up and the 
tlight test program can be executed. 

7.3.1 Flight Envelope 

As far  as the number of topics and the coverage of 
the flight envelope are concerned, parameter 
identification in general places no special 
requirements other t h a n  those of other type of 
tlight tests. Special care is required, however, a t  
the boundaries of the flight envelope. For inskince 
during dynamic manoeuvres ;it low speeds the skill 
boundary may easily be crossed. I t  is also 
necessary to take into account tha t  the dynamic 
stall boundary usually is a t  a different angle of 
attack than the static stall boundary. Also a t  high 
flight speeds the Mach buffet boundary is usually 
very close to the steady-state tlight condition. One 
result may be that undesired effects are introduced 
into the parameter identification due to the 

unmodelled effect of stall. An even worse result 
may be that the pilot loses control of the aircraft. 

The tokil number of recordings is determined by 
the requirements of parameter identification on the 
one hand and by budgetary constraints on the other 
hand. In the end a compromise between these two 
factors has to be found. 

7.3.2 Experimental Design 

The identification of a complete aerodynamic 
model often requires more information than is 
present in any  single manoeuvre. This can be 
solved by combining recordings of different 
manoeuvre types during the daki processing (multi- 
manoeuvre analysis). The intended use of 
combined recordings has to be taken into account 
during the tlight planning. Although it  is possible 
to correct for the differences in e.g. centre of 
gravity or moments of inertias between recordings, 
these v;iri;itions may still introduce ii degree of 
uncertainty into the analysis. The best approach 
may be to execute all manoeuvres which are going 
to be combined a s  closely paced in time as 
possible. This does, however, have the operational 
disadvantage of forcing the pilot to execute all the 
different manoeuvres types in sequence, which is 
more difficult than  executing a l l  recordings of one 
manoeuvre type before skirting the next. 

The resulk from parameter identification will 
always show a cerl;iin scatter due to a number of 
effects, such as  atmospheric disturbances and 
instrumentation errors. The confidence in the 
identification results ciin be improved markedly by 
repeating individual manoeuvres or sequences of 
manoeuvres. This allows us to obtain experimental 
standard deviations of parameter estimates which 
may be ii much more reliable indication of the 
accuracy o f  these estimates than  theoretical 
standard deviations a s  resulting from the Cramer- 
Rao lower bound or the covariance matrix from 
regression analysis, see also 121. The number of 
repetitions can be limited to two o r  three in most 
cases, but i t  is necessary to use a t  least five 
repetitions for ii few reference conditions and 
configurations. The conclusions from the larger 
number of repetitions can then be extrapolated to 
the other cases. A minimum number of repetitions 
for all other u s e s  will ensure that no unique 
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effects will be missed, as for example the cross, ; 
of a stall boundary which will show up as,iyp 
increase the scatter of the parameter estimates. ; 

results of parameter identification can also S'J, ' 
variations from tlight lo tlight or even betweer',t! 
beginning and the end of the same tlight. Thir :,. 
be caused by a number of factors such as: ,it, 

the accuracy of the calculated centre of g~ , 
position, mass or moments of inertia, 
changes in the instrumentation (alibi . 
shifts, instrument exchange), 
changes in the weather conditions a t  diff , 
altitudes or on different days. 

It is very important to schedule extra rc ' I (  

recordings of a chosen rclerencc conligiiration ;,nd 
condition to evaliiatc these 1;ictorx. Thew repeat 
recordings should prcfcr;ibly be distributed over the 
flights in a quasi-random fashion. 

r 

The task of the pilot can be lightened by utilizing 
a Stability Augmentation System (SAS) if present. 
The SAS can be used to stabilize those axes which 
are not excited during the flight tests. One has to 
be very careful, however, tha t  the SAS does not 
contribute a n  effective input  signal to the excited 
axes, because this may introduce correlated inputs 
into the system. The result of  correlated inputs is 
a significant decrease in identifi;rbility. 

7.3.3 Test Plan 

The total test plan should be approved by the 
analysts, the pilots, the tlight test engineer and the 
flight instrumentation engineer. Subsequently the 
test plan has to be divided in parts which ciin be 
executed in one flight. Careful planning can siivc 
tlying time by finding the best sequence of 
manoeuvres. These savings are often negated by 
the demands of experimental design, however, 
because this may require either a more random 
sequencing of recordings or the execution of 
related tests in a prescribed sequence. 

Each of the separate testc should be summarized on 
a tlight test card. This card should contain all  
necessary information to execute the test, but 
nothing more. I t  should a t  least define initial 
conditions, aircraft configuration and  input signal. 
For manual test inputs ii simplified graph may be 
very helpful. The flight test card could also list 
hints, warnings, desired final conditions or possible 

excursion limits. It c a n  be very useful to have 
alternate flight test cards on hand, for example in 
the case tha t  the weather or air traffic control 
precludes the execution of the original flight plan. 

The execution of the tlight lest plan requires the 
full  attention of a flight test engineer. He has to 
select the items to be covered during a particular 
tlight, prepare flight test cards, brief the pilots, 
conduct the tests during flight and finally document 
all  the relevant parameters, such as  weight, c.g., 
fuel load, etc. All observations made by the pilot 
or by the other members of the crew should be 
recorded, possibly on audio tape. 

7.4 Flight Test D;rta Processing 

The tlight lest data processing involves more than 
just the implementation of the algorithms presented 
in the earlier chapters. It involves transcription of 
tlight tapes, data storage and data management, 
calibration, processing, analysis and presentation. 
All of these steps are not unique to the processing 
of parameter identification tlight tests and normally 
will already be av~iilable in your organization, but 
the use for parameter identification imposes special 
requirements with respect to d a h  management, 
accuracy and time correlation. This may necessitate 
a significant effort to upgrade the existing system 
or the bold decision to develop a new system from 
scratch. In the following subsections the special 
requirements for parameter identification will be 
discussed for each of the data processing steps. 

7.4.1 Data Man;rgement 

Large amounts of d a h  iire gathered during 
parameter identification tlight tests in a variety of 
conditions and configurations. The subsequent 
processing of the data involves a large number of 
steps. The data management requirements are 
therefore twofold: 

The administration of the original measured 
recordings This should describe of the purpose and 
the execution of a recording, together with the 
aircraft configuration (flap angle, gear position, 
engine setting) the flight condition (altitude, 
airspeed). In addition all the reference data needed 
lor the data processing should be included, such as 
aircraft weight and centre of gravity position, 



instrumentation settings, etc. The importance of 
this administration lies e.g. in the possibility to 
select recordings which contain information which 
pertain to a specific condition and use these 
recordings in a combined (multi-manoeuvre) 
analysis. 

The administration of intermediate and final results 
This should describe the precise meaning of each 
calculated variable, such as the program which 
created the variable, the date and time of the 
calculation and the unique identification of the dah  
sets on which the calculation depended. In 
particular the ability to identify the source of a 
final result is essential. This allows e.g. the 
reinterpretation of final results in the light of later 
changes in data processing parameters or in model 
structure used for parameter identification. 

7.4.2 Acciiracy 

Parameter identification and in p;rrticular the Two- 
Step method places special demands on these 
processing steps in terms o f  accuracy. As 
mentioned earlier it may be necessary to perform 
special calibrations before and after a tlight test 
program. In addition it  may be necessary to use 
more sophisticated calibration procedures, e.g. to 
incorporate additional terms in the calibration 
formulae. The precise correction for instrument 
sensitivities also demands extra ;ittention. Examples 
are the correction of  accelerometers for off-axis 
sensitivity or the correction of a i r  dah  lor Pressure 
Error Correction. 

7.4.3 Time Correlation 

A time correlation accuracy in the order of 
1 millisecond is essential for PI. Numerical 
experiments have shown that  a sh i f t  of a 10 ms in 
dynamic measurands may give errors of 50% in 
some parameter estimates. In a n  ideal data 
acquisition system a l l  measurands are recorded by 
the same measurement chain. In actual practice the 
measurands are derived Crom different systems with 
different sample rates, filter characteristics and 
internal delays. Very often a special 
synchronization signal (e.g. a Time Code) is 
recorded by all channels, so t h a t  i t  can be used to 
restore the synchronizrition. The actual restoration 
may require very difficult software algorithms. 

Very often it is necessary to filter and re sample 
the data to reduce high-frequency noise in the data. 
The use of nonrecursive filter techniques (see 
Oppenheim and Schafer [225] or Rabiner and Gold 
(2261) will ensure that no additional time delays 
are introduced. Another aspect is that some 
calculations in the processing are actually filter 
operations (e.g. interpolation, differentiation or 
integration). Again it  is necessary to use 
formulations that do not introduce a phase 
distortion. An example is calculating the numericzil 
derivative of a signal where the use of ii central 
difference formula will ensure zero time shift.  

7.4.4 Presentation 

A good presentation is very important for the easy 
interpretation o t  intermediate iis well as final 
results. Although tables have their place for precise 
documenla Lion, especia I I y graphical presentation 
can give enhanced insight, e.g. to highlight trends 
in the data. Flexible interactive plotting procedures 
are needed here allowing for different plot styles 
(e.g. X-Y, T-Y, bar chartc, box- and-whisker plots), 
line styles and plot symbols. Special care is needed 
lo label the d a h  clearly and unambiguously and to 
identify the plots with date and time. Easy change 
of scaling is also required. 

7.5 Flight Test Data Quality Evaluation 

The quality of the measurement data is defined 
here as the degree o f  absence 0 1  all factors that 
would detract Crom its usability for the intended 
purpose. I t  is obvious tha t  this quality will directly 
determine the accuracy of the parameter 
identification results. Therefore it  is of utmost 
importance to ensure the dah  quality before any 
attempt at identification is made. In principle the 
best time to perform dabi quality checks is in 
dedicated tests before o r  during the actual tlight 
tests: in the instrumentation laboratory, on the 
tlight line and during instrumentation check-out 
tlightc. Accurate determination of each individual 
error effect can also be done best in a dedicated 
test. These tests are ideally performed with a 
computer on-line in the aircraft to reduce the loss 
of time and the cos1 o f  tlight k s k  with inaccurate 
meas u rem en Ls . 

The evaluation o f  the data quality from existing 
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flight test data, as sometimes the case, is generally 
much more difficult. But it is still very important 
to do this evaluation for the following reasons: 

1. A particular measurement channel may 
deteriorate or fail during the course of a flight 
test program. 

2. A specific error effect may only be present 
during actual flight tests, such as static 
pressure distortions in dynamic flight 
conditions. These effects can only be 
determined from the flight tests. 

Another good reason is the fact that the evaluation 
of the data quality also gives a good feel for the 
data contents. It gives a first indication of the 
actual accuracy of the measurements and it can 
clear up misunderstandings in the definition of 
measured variables (e.g. sign conventions). Apart 
from complete failure, which is often (but not 
always!) easy to spot there are a number of errors 
that can occur during all stages of the measurement 
channel as described in section 7.1.4. 
Some examples are: 

Sensing The transducer may not sense the desired 
quantity directly, for example a static pressure may 
be distorted by the flow around the aircraft. 

Transducer These could be changes in bias or scale 
factor, sensitivity to temperature, vibration or 
electromagnetic radiation. 

Data acquisition system These could be changes in 
the analog components, such as amplifiers, pre- 
sample filters and A D  converters, or bit errors in 
the recording chain (dropouts) or time shifts and 
other phase errors. 

Because of the large number of possible error 
sources, an intimate knowledge with the 
characteristics of the instrumentation system is 
absolutely necessary for successful correction of 
data errors. 

7.5.1 Data Inspection 

Visual inspection of data plots is an important first 
step in the evaluation of data quality. The 
measurements can be scrutinized for obvious errors 

such as wrong signs, excessive measurement noise, 
data dropouts, spikes and missing (or even 
exchanged!) data channels. 
In addition frequency domain techniques can be 
very useful for data quality evaluation. Examples 
are: 

1. 

2. 

3. 

4. 

Time shift of a signal can be determined by 
examining the slope of the phase response of 
the signal with respect to a reference. This 
method is very sensitive, but it is most useful 
in ground checks as it may be difficult to find 
a suitable reference measurement in flight. 
Time domain modelling can also be used to 
determine time shift. 

Initial checks of compatibility between 
variables may be quickly perfomied in the 
frequency domain. For instance it can be 
verified that q/0 has a l/s frequency response 
characteristic. Sign errors are also easily 
detected by inspecting the phase response. 

Coherence functions can be used to ensure that 
both input and output signals have low noise 
contents and are well correlated with each 
other. 

The noise spectrum can give an indication of 
the correct functioning of a transducer 
(channel). Excessive noise (perhaps in part of 
the frequency spectrum) can give an indication 
of malfunction in sensing, transducer or data 
acquisition. For example discrete frequencies in 
a gyroscope signal could indicate a bearing 
failure, noise spikes could be a vibration 
problem or faulty wiring or connectors. Noise 
analysis also gives vital information for the 
design of data processing filters, which remove 
the measurement noise and allow the sampling 
rate to be reduced. 

This may also be a good place to warn for the 
effect of pre-sample filtering. If a failing transducer 
has high-frequency noise or sudden steps in its 
output, the pre-sample filters will transform the 
signals in smooth signals, thus masking the 
problem. In nomial operation pre-sample filters are 
essential to prevent aliasing errors, but it may be a 
good idea to record the unfiltered signals as an 
instrumentation test. Another important point is the 
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negative effect of phase errors in the analogue 
filters on the parameter identification. Some 
authors even recommend dispensing with ant i -  
aliasing filters altogether. I f  recording techniques 
permit it, i t  is therefore recommended to use the 
highest possible sampling rates (and pre-sample 
filter bandwidth) and to reduce the sample rate in 
the analysis by linear-phase digital filtering in the 
ground processing. This has the added advantage of 
allowing a more considered choice of sampling rate 
in the data analysis. 

7.5.2 Compatibility Checking 

Any redundancy in the measured variables ciin be 
exploited to verify the d a h  quality. There iire ii 

largc number of techniques in use fo r  the purpose 
of data quality ev;iluation. 

A simple example is the measurement of a single 
variable by two different transducers. If  the 
transducers are of the same type, then the outputs 
of the two measurement ch;innels can be directly 
compared to find discrepancies in sensing, 
transducer or data acquisition. I f  the two 
transducers use ii different measurement principle, 
then the comparison is not sc) straightforward. 
However, the characteristic errors will bc different. 
If these differences are kiken into account properly, 
comparison of the two transducers can still yield 
important information. 

In practice it  is rare that two redundant transducers 
are used, but it is not uncommon to have ii 

standard aircraft instrument a s  well as ii flight test 
instrumentation sensor. I n  this  case i t  is strongly 
recommended to record the aircraft instrument 
output as well. The disadvantiigc is not so much 
the extra data channel to be wired in the aircraft, 
but rather the extra effort needed to calibrate and  
evaluate the aircraft instrument, which is necessary 
to allow its use for dah  quality checks. 

Partially redundant meiistiremenk can also be used 
in a complementary filter approach, thus making 
the best use of all av;iil;iblc information. Such a 
filter can be designed using the KaIman filter 
approach. For example, rate gyro data ciin be used 
for the low frequency range and angular 
accelerometer dah  can be used tor  the higher 
frequency range. However, i t  is very important that  

undesirable error characteristics of one of the 
transducers, such ;is hysteresis, nonlinearities or 
spurious responses, do not destroy the quality of 
the overall result. 
A special case of compatibility checking is 
Kinematic Compatibility checking. Here the 
kinematic relationships that exist between the 
different measured variables iire used. The 
procedure can be applied in many forms: from the 
simple comparison between two signals to the 
complete six-degree-of-freedom flight path 
reconstruction described in chapter 3.  The 
procedure is also called Kinematic Consistency 
checking o r  Flight Path Reconstruction. The chosen 
name rcflecls whether the procedure is seen as an 
independent check o r  a s  a n  integral part of the 
process ing. 

The set of equations describing the six-degree-of- 
freedom kinematic equations were given in 
chapter 2. In  practice these equations are extended 
with terms describing the navigation over a 
spherical and rotating earth. 

In principle a n y  mcasurement which depends on 
the slate vector defined in chapter 3 ciin appear in 
the observation equation, for example air speed or 
doppler velocity, pressure or radio altitude, angle 
of attack or angle o f  sideslip, latitude and longitude 
from Inertial Navigation Systems, VOR/DME or 
the Global Positioning System. The error in the 
meaaurcmenb, whether in the input  or in the 
observation vector, ciin be modelled a s  bias (A), 
scale factor error (k), time shi f t  (t) and white, 
Gatishian random noise (n), see for instance 
Blackwell and Feik 1230j. I t  th is  random noise is 
not white it  may be necessary to augment the state 
vector with ii model 0 1  the noise characteristics. 

With modern inertial sensors the measurement 
errors are very smsll. As ii consequence the 
variations in the wind components during a 
recording become the dominant error source. This 
makes it  possible as well iis desirable to estimate 
these wind variations. The estimation of the 
absolute wind components requires the presence of 
absolute position or velocity references of 
reasonable accuracy, e.g. from an INS, VOR/DME 
or GPS. However, i t  should be noted that in 
general only the variations in the wind speed 
components are of interest for flight mechanics, 
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because constant wind components only affect the 
error in the absolute velocities in earth-fixed 
coordinates. This means that  absolute position 
references are not strictly required, although they 
can be of great use. 

One simple way of modelling the wind variations 
that works very well in practice describes the wind 
variation as a linear trend in time and as 
proportional to altitude. A more sophisticated 
description may use a Markov model (see 3.1.4), 
but the parameters in such a wind model will 
depend on the weather conditions. The estimation 
of wind component$ is a n  example o f  the use of 
estimation procedures LO reconstruct an unmeasured 
state component. Another practical example is the 
estimation of the angle of attack in the case tha t  n o  
direct measurement is av;iil;ible or the direct 
measurement is unusable. 

It  is in general not poshible to identify the large 
number of parameters in the described error 
models, because the basic observability and 
identifiability theory is applicable here. I f  too many 
error components are included the standard 
deviations of the estimates increase rapidly and the 
correlation coefficienk approach one. The degree 
of correlation is also dependent on the type of and 
shape of the manoeuvre, so i t  is feasible to perform 
specially designed manoeuvres for the purpose of  
identifying the error components, but thesc 
manoeuvres will not necessarily be optimal for 
parameter identification. I t  may be more I ru i t fu l  to 
combine several ditfercnt manoeuvrcs in ii multi- 
manoeuvre analysis and then chtimate a n  error 
model which is valid for ;ill the recordings (see 
section 7.5.3). 

As mentioned above, a simple example of 
compatibility checking is the comparison of ii rate 
gyroscope and a n  attitude gyroscope. The rate 
signal can be integrated and compared with the 
attitude signal. Error models for each o f  the two 
types of gyroscopes can be defined, e.g. bias and 
time s h i f t  for the rate gyroscope and linear drift 
and time shift for the attitude gyroscope. The 
difference between the signals can then be 
attributed to various errors sources and the 
parameters of the error model can be estimated 
using parameter identification. 

Even this  simple example already points out a 
common problem, i.e. the bias of the rate 
gyroscope has exactly the same effect as the linear 
drift of the attitude gyroscope and the same is true 
for time shifts. This means that the errors in the 
different measurements must have different 
characteristics in order to be useful for 
compatibility checking. If  i t  could be assumed that 
the attitude gyroscope has negligible drift and the 
rate gyroscope has a negligible (or perhaps known) 
time shift, then rate gyro bias and the time shift of 
the attitude gyro can be put in the error model and 
values for these parameters can be found. But in 
general thesc assumptions are difficult to make and 
need the advice o f  the instrumentation department. 

The bias in the rate gyro will always have the same 
effect, a linear increase o f  the error with time. But 
ii scale factor error, e.g. in the attitude 
measurement, will only be noticeable if larger 
excursions are present. Even in the case of large 
excursions, the estimiite of bias and scale factor 
may be highly correlated, e.g. when the attitude 
angle happens to increases linearly with time. This 
demonstrates the dependence of identifiability on 
the manoeuvre shape. 

7.5.3 Use of Error Corrections 

After all error corrections have been determined as 
far as possible, the question remains what to do 
with this information. There are two extreme 
philosophies: 

The identified error componenls are put in a n  error 
model, which is added to the aerodynamic model. 
The parameter identification procedure is then 
performed o n  the combined model, using the 
or ig ina I nieiisu red va ria b I es as observations. 

Finally the instrumentation department should 
always be asked to verify the estimated instrument 
errors. I t  may turn out that  a n  error which seems to 
have been successfully modelled in one way, 
should be actually attributed to a n  entirely different 
error source which happens to have the same 
effect. 

When a large number of manoeuvres are conducted 
in a particular flight and in one tlight condition, 
the error model identified for each of the 



manoeuvres should ideally be the same. This 
makes good physical sense since the calibration of 
the instrumentation will change very little during 
one particular tlight. Failure of ii sensor o r  other 
instrumentalion componenk during the Ilight 
would, of course, be an  exception. 

This suggests that when a sufficient number of 
recordings is available, mean values of the biases 
and scale factors should be used as corrections for 
the whole flight. Simple statistical analysis can be 
performed to establish if  the sample is large 
enough so that skitistically significant values can 
be determined. If only some o f  the estimated error 
components are significant, i t  may be necessary to 
reduce the size of the error model u n t i l  only 
significant parameters remain. 

7.5.4 Final Remarks 

It can be concluded t h a t  d a ~ i  qLiiility evaluation is 
a necessary step in the process leading t o  
successful parameter identification. However, the 
f ina l  test of the validity ol this procedure lies in 
the qual i ty  o f  the par;imcter idcnti1’ic;ition restill\. 

7.6 Computer Software Development 

The cost of developing complex software systems 
has increased. enormously in the last decades. 
Moreover, the resulting programs often are full of 
errors and perform miserably. This is the reason 
that the discipline 0 1  Soltware Engineering has 
generated ;I tremendous interest. Every few years 
completely new approxhes iire proposed, become 
popular and are in turn replaced by newer ideas. 
Nevertheless ii consnsus on general principles 
seems to have arrived, the so-called Structured 
Analysis 1 1831 and Structured Design I 1841 
approaches. 

This approach states that  the software development 
process should be divided in ii number ol’ strictly 
separated stages. In  each shge o n l y  ii limited 
number of concerns lire addressed: 

User requirements In  t h i s  stage the user 
requirements are spelt out in detail. The most 
important point here is that this specification 
should be complete, all relevant details should be 
included. 

System analysis Based on the detailed specification 
the user requirements ;ire analyzed and brought 
into a structured form. The use of Computer Aided 
Software Engineering (CASE) tools can be of 
benefit here. This stage concentrates on what is 
needed. 

Technical design On the basis of the previous 
analysis, the program is designed. This stage 
concentrates on how the problem is solved. 

Implementation On the basis of the technical 
design the computer program is written. 

Testing Using the test data sets defined during the 
earlier stages, the program is tested. This stage 
should benefit the most from the structured 
development approach. 

In our opinion the sepmition between these stages 
is ii helptul way to kecp the development process 
organiLcd and to prevent mixing solutions into the 
problem analysis. Howcver, we think that  this 
seperation cannot and should  n o t  he rigidly 
enlorced. For instance, i l  the person writing the 
user requirement?\ is already considering possible 
design solutions, this may prevent the drafting of 
requirements, which are impossible to meet. But 
then the suggested solutions should not be mixed 
with the requirements, but confined to a final 
section with recommendations. 

A dis;idvantage o f  the structured techniques is that 
lhey iire based on generating multitudes of abstract 
charts, which are very hard to understand for 
anybody but the analysts themselves. The newer 
Object-Or ien Led Ana I ys is and Design techniques 
1237,2381 promise Lo be much better in this 
respect, among others because they concentrate 
more useful information into fewer charts. 

In  principle tlight data processing software has no 
special distinguishing characteristics with respect to 
sol twarc engineering. Most  programs run  non real- 
time and in ii strict input-processing-c)utput 
sequence. This is even true tor  interactive programs 
where the user interaction is mostly limited to the 
overall control over complete software modules. 
However, for Real-Time software implemented in 
onboard computers the story is completely 
different. Here the possibilities for testing under 
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realistic circumstances is limited and structured 
approaches, in particular those developed for real- 
time use [185], should be of benefit. 

The development of  processing software for 
parameter identification demands a considerable 
effort. It may be wiser to buy software off the 
shelf. Unfortunately not too much is available. 
What is available may not run on thc available 
computer system. Conversion of software from one 
computer to another c a n  also be a major effort 
depending on the differences between the 
computers. The latter situation is mitigated 
somewhat by the general trend towards thc use of 
graphics work skitions running U N I X .  Another 
trend is the use of  X-windows for uscr interfacc 
and graphics and the usc o f  graphics standards 
such as PHIGS. 

Even under UNIX not all problems are solved, the 
data management systems, graphical libraries and 
user interfaces may vary considerably among 
systems. There is also some software developed by 
institutes and universities, such as M M L E 3  or 
pEst/GetDahRHPlot (NASA), M A N S  (RAE) and 
FTDA (TUD). One should also look seriously at 
commercially available softwiire, because this 
software may be better supported. 
In the end it  may be cost effective to first select 
software purely on the basis of requirements and 
financial possibilities and then to buy the requisite 
hardware to match this software. 

7.7 Conclusions 

In this chapter sevcral practical aspccls o f  llight 
testing were discusscd with special emphasis on the 
requirements for p;ir;imeter identification. The 
tlight test instrumentation was discussed and the 
need for a detailed knowledge of each 
measurement channel was shown. The ground 
preparations involving the transducer calibrations 
and the determination o f  the moments of inertia 
were discussed. The tlight test design and 
execution are very important to the success of ii 

tlight test program. Several aspects of the tlight 
test d a h  processing werc discussed such as dah  
ma nagemen t and graph ica I presen h lion, while 
accuracy and time correlation were emphasized. 
The evaluation of the quality o f  the tlight test data 
is a necessary step to ga in  confidence in the results 

derived from this data. Finally the systematic 
development of the d a h  processing software is 
important to insure reliable results. 
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about longitudinal axis 

about lateral axis 

about vertical axis 
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- I  
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3.92 0.0083 52 13 

4.19 0.0040 116 28 

7.51 0.0040 207 28 

Table 7-2: Typical values of period (P), damping ratw (s), and lime and number of 
periods to damp to one hay  of the initial amplitude (T,,2 and C,,, of the three different 

types of oscillation of the 'Beaver' DHC-2 exjxrimental aircraft in the rig for the 
measurement of aircraft moments and products of inertia. 
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Figure 7-3: Inertial measuremenl system consisting of 
three accelerometers and three rate gyros. 

Figore 7 4  Temperature controlled box containing 
one absolute and four differential pressure transducers. 
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Figure 7-7: Rig Jor the measuremen1 of uircrufr motnenfs und products of inerfiu. 
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8 CONCLUDING REMARKS 
This volume is brought out as  a sequel to the two 
earlier volumes already published in the AGARD 
Flight Test Technique Series, volume 2 on 
'Identijiation of Dynamic Systems' iind volume 3 
on 'Identification of Dynamic Systems - 
Applications lo AircrafI Par1 - I :  The oulput error 
approach' both written by R.E. Maine and K.W. 
Iliff. The present part 2 of volume 3 has examined 
in some detail the practical application of the Two 
Step Method fvr estimating iiircraft aerodynamic 
model parameters from llight test data and has 
discussed in some detail the practical aspecb of 
control input design for estimation of stability and 
control derivatives. Two different DUT approaches 
for control input optimization were presented. 

The identification o f  aervdynamic models from 
measuremenk of dynamic llight test miinoeuvres 
requires the solution of a sequence of nonlinear 
state-parameter estimation prohlems in which ii set 
of aerodynamic model structures is tested with 
respect to model fi t  and parameter identil'iabilily. I f  
accurate measurements are made of specific 
aerodynamic forces (outputs ofaccelerometers) and 
angular rates, the par;imeter-state estimation 
prohlem may then he decvmposed i n t o  two park 
i.e. a slate reconstruction prohlem, called llight 
path reconstructiim and a parameter estimativn 
problem which is 1ine;ir-in-the-p;ir;imetcrs. 

It was noted that since the system and ohservalion 
models of the llight path reconstruction problem 
are known in much detail, it is not necessary tu 
evaluate different model structures, and the llight 
path reconstruction problem needs only to be 
solved once for  each llight test manoeuvre. This 
means that the identification of acrvdyniimic 
models is considerably simplified because linear in 
the parameter estimation prvblems are much easier 
to solve than nonlinear slate-parameter estimation 
problems. 

In the linear case the llight path reconstruction 
problem (a nonlinear stale estimation problem if  
based on nonlinear equations of motion) separates 
into two independent linear state cstimation 
problems of the Ivngitudinal and hkral  
componenb of  the s&ik vcctor respectively. The 
linearity cif t h e w  estimativn problems can he 

exploited in a reconstructihility analysis. The 
results of such an analysis may be used to compare 
different observation model configurations with 
respect to the dimension and character of the 
reconstructible subspace of the state space. 

Nonlinear syslem and observation models are used 
kir actual flight path reconstructions of the 
dynamic llight lest manoeuvres executed in the 
course of a flight test program. Well-known 
extended Kalman filtering and smoothing 
algorithms a n  he successfully applied. The 
selection of the variables to be reconstructed as 
componenls of an augmented state vector was 
made using the results: of the linear 
reconstructibility analysis for the chosen 
observation contiguration. 

After the tlight path reconstruction, it has been 
shown that the aerodynamic model identification 
can be formulated in terms o f a  linear least squares 
pryblem. This permils the application of powerful 
numerical techniques for the calculation of 
parameter estimates. The resulting algorithms turn 
vu1 to hc vcry computer time efficient, which paves 
the way fvr the development of  an interactive 
identilication computer program. Combined with 
extensive computer graphics facilities, this program 
allows the analyst to rapidly evaluate alternative 
model structures on a few selccted measurements. 
Also the possibility exists: to combine measurement 
data from several different tlight test manoeuvres 
fcir the purpvse of aerodynamic model 
identification. 

Analogous tu thc recunstructihility analysis of the 
llight path reconstruction problem we have 
discussed that it is possible to analyze the 
identifiability ( 1 1  the slability and control 
derivatives, i.e. the parameters in the linearized 
aerodyniimic models. We have shown that not all 
longitudinal skibility and control derivatives were 
identifiable i f  the nominal flight condition was 
straight horizonlal tlight. On the other hand, all 
lateral skihilily and control derivatives were shown 
to he idenlifiahle il- the llight test manoeuvre is 
executed such that independent roll angle 
excursions occur. 

. 
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Since the parameter estimation problem of the 
second step of the analysis was linear-in-the- 
parameters it is possible to develop aerodynamic 
models stepwise via residual analysis. I n  each step 
the best of a set of candidate model extensions was 
selected. The problem was Lo decide how many 
model extensions should be included in the model. 
To this end a new criterion was proposed based on 
the theoret id  accuracy of a predicted model 
output and its actual deviations from a second 
independent set of measurements. 

We have then turned our attention to a most 
important aspect of flight test techniquc namely, 
the optimal input design. We havc discussed that 
the accuracy of aerodynamic model parameters 
estimated from measuremen& of dynamic tlight 
test manoeuvres depends, among other things, on 
the control input signals, i.e. the shape of the 
control input time histories. This means that 
different control input signals result in  different 
parameter estimation accuracies. In order to express 
the theoretical performance of control input signals 
with respect to parameter estimation accuracy 
several performance indices ciin be based o n  the 
theoretical covariance matrix o f  parameter 
estimation errors (the Cramer-Rao Lower Bound). 
It follows that control input signals may be 
optimized with respect to each one of these 
performance indices. 

Two new techniques were presented with which 
such optimizations may be carried out .  The first 
technique is based on the represenhition o f  multi- 
dimensional control input signals in terms o f  a 
finite number of orthonormal functions. The second 
technique is based o n  the application of convex 
analysis in frequency domain for the optimization 
of input signals. We have shown that when energy 
constraints were imposed o n  the control inputs, 
constrained optimization problems which lire 

generally difficult to solve ciin be translormcd in to  
an unconstrained optimiz;ition problem. This makes 
the optimization problem easier to solve. 
Next we have pointed out thiit the optimizition ol 
control input signals is meaningful o n l y  i t  
theoretical performance indices are adequate 
predictions of corresponding actual or sample 
performance indices. While theoretical performance 
indices are based on the CRLB, actual performance 
indices must be judged o n  sample covariance 

ma trices. 
In order to determine sample covariance matrices 
of parameter estimation errors corresponding to 
particular types of control input signals, an 
automatic (open loop) tlight control system was 
installed in the De Havilland DHC-2 Beaver 
aircraft to allow precise repetition of control input 
signal in a series of (almost) idential manoeuvres. 
As an important result from the described flight 
test program it  was observed that in relative, rather 
than in absolute terms, theoretical performance 
indices were adequate predictions of sample 
performance indices. This result is the experimental 
foundation for the application of control input 
signal optimization techniques. 

I n  the present part 2 of volume 3 of the AGARD 
Flight Test Techmiques Series we have also 
discussed in some depth, the aspects of 
instrumentation, llight test design and execution, 
the data procc>\ing and d a h  quality cvaluation 
which arc all very imporhnt, and which will be 
present in a l l  flight test programs l o r  aircraft 
pa rii me te r id en t i L ica t i o  n i r respec live o 1 which 
methods are to be used l o r  the identification of the 
aerodynamic model parameters. 
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APPENDIXA - A BRIEF SUMMARY OF MAXIMUM 
LIKELIHOOD ESTIMATION THEORY 

In this appendix a brief overview will be presented 
of Maximum Likelihood estimation theory and its 
application to the solution for the parameter-state 
estimation problem of dynamical systems. The 
concepts as presented here are referred to in 
chapter 3 to 5. 
A summary of general properties of maximum 
likelihood estimates is presented in section A.l; see 
Eykhoff [76] or Nahi [53]. In sections A.2 and A.3 
the theory is applied to the solution of the 
para me ter-sta te es ti ma t io n problem c) f non 1 i neii r 
and linear systems respectively. 

A.l General Properties of Maximum Likelihood 
Estimates 

The joint conditional probability density function 
of a set of N random vectors L,,(i), i = l(1) N,  can 
be written as: 

P(YllI(1) >Y,]](2) 7 ... >Y,]JN) I E) ' (A.1-I) 

where e denotes the parameter vector of the 
conditional probability density funclion. 

When sample values o f  y,,, (i), i=l(l)N, are 
substituted (A.1-1) is called the likelihood A function 
L@. Then a parameter estimate e may be 
calculated A by maximizing (A. 1 - 1) with respect to 
- 8. When the absolute o r  global maximum of the 
likelihood function is reached, the resulting 
estimate is called the Maximum Likelihood (ML) 
estimate hL of e. Instead of maximizing L@ i t  is 
common practice to maximize In L@ instead, 
usually resulting in ;in optimization problem which 
is easier to solve. Since the logarithm is ii 

monotonic function this  leads to the same value of 
~ M L .  

A 

A 

The necessary conditions for  ;I maximum lead to 
the following set of so-called likelihood equations: 

(A. 1-2) 

These equations correspond to the normal 
equations of linear regression theory. Maximum 
likelihood estimates have the lollowing attractive 

properties: 

i) ML estimates are asymptotically unbiased, 

A 

l i i u  E { S L }  = s  
N + m  

(A. 1-3) 

ii) ML estimates are asymptotically efficient, 

(A. 1-4) 
N - m  

in which C,, denotes a symmetrical semi 
positive definite matrix. This matrix is called 
the Cramer-Rao Lower Bound (CRLB). 

iii) ML estimates are consistent; see Eykhoff 1761. 

Eq. (A.l-4) shows that the covariance matrix of a 
ML estimate is the best of all conceivable estimates 
for large sample sizes. 

For unbiased estimates the CRLB is: 

CO" = M"; , (A. 1-5) 

where M,, is the Fisher information matrix which 
can be written in two equivalent forms according 
to : 

where the conditional expeckition is kiken over the 
sample space of y,,,(i), i= l ( l )  N. Me, is 
symmetrical and positive semi definite. The 
importance of the Fisher-information matrix in 
estimation theory stems from the fact that ils  
inverse yields ii lower bound, i.e. a maximally 
;ichicvable accuracy l o r  any conccivable type of 
estimate of e. 
In  the literature on estimation theory the notion 
'identifiability' o f  ii parameter vector is defined 
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in several ways. Here 'identifiability' is related 
directly to the rank of the information matrix as 
follows: 

The parameter vector fi is ident$able from lhe set 
of measurements L ( i ) ,  i =  1(1 )N,  if and only if Moo 
Is positive definite for any in a neighbourhood of 
hL in parameter syuce. 

A.2 Continuous Time Nonlinear Systems 

Let &(t) be the n dimensional state vector and i ( t )  
the s dimensional input vector of the following 
nonlinear system: 

with initial condition: 

(A.2- 1) 

- x(0) = x+ 
where f denotes a nonlinear vector function, and e 
an r dimensional system parameter vector. 

It is assumed that !(t) is known for  tE[t,,t,]. At N 
uniformly spaced time inst;rnb tiEI tO,tl], i=  1( 1)N, 
the m-dimensional system output is sampled 
according to the following model': 

(A.2-2) 

where l ( i )  represents an additive gaussian 
measurement error with the following statistics: 

(A.2-3) 

for i j  =1(1)N and in which V, denotes the 
covariance matrix ofx(i). It is assumed that for any 
&€R" and &ER', Eq. (A.2-1) possesses a unique  
solution, indicated as ~ ( t )  and y(t), t€[t,,,tl]. 
At one particular sample time instant ti the 
conditional probability density function of LJi) is: 

p(ylll(i) I 2, s ,  vVv) = (2n)-y2111 (det v,,)-' x 

* Note that z(i), y(i), etc. are simplified notations 
for &(ti)> Y(ti). 

Because of (A.2-3) the joint probability function of 
L~~(~),LJ~),...,L,,(N) is the product of the marginal 
probability density functions. The logarithm of the 
likelihood function can then be written 21s: 

1 N 
2 

N i u  In(2n) - - Indet(VVv) - 

(A.2-4) 
For a given set of observation measurements, the 
arguments of the likelihood function are the 
elements of €I, & and V,. I t  will be convenient to 
lake the elements of Vvv.l, rather than the elements 
oC V,, as arguments of the likelihood function. 
This means that the logarithm of the likelihood 
function will be written below as: 

According to (A. 1 -2), the necessary condition for 
the logarithm of  the likelihood function to have a 
maximum value is that al l  first order partial 
derivatives with respect to ib arguments are equal 
to zero. Analytical expressions lor  these derivatives 
o f  the log likelihood tunclion with respect to i ts  
arguments are equal to zero. Analytical expressions 
f o r  these derivatives o f  thc log likelihood function 
with respect to 3 and V, can be obtained from 
(A.2-4) by applying the rules for differentiation 
with respect to vectors and matrices as given in 
Deskins [ 1861. The results are as follows: 

(A.2-5a) 

(A.2-5b) 

(A.2-5~)  



The so called likelihood equations for & & and 
V,-' result when each of these derivatives is set 
equal to zero. The m;iximum likelihood estimates 

equations. 
It is possible to interpret & & and the elements of 
v,-' as components o f  a n  'augmented' parameter 
vector & according to: 

LL, e A  sML and (Vw-l)Ml, satisfy the likelihood 

in which 9 contains the upper or lower triangular 
elements o f  V,-'. The Fisher information matrix as 
defined in (A.l-6) may now be partitioned a s :  

- 
- 

Moo Mex,, Moll 

..̂ .".. .i. ......... .i. ..* ..... 
%,,e i Mxnxn i Mxnll 

.." ..... .i. .." ..... .i. .." ..... 

MllO Mqxn MI111 

(A.2-6) 

Using either the first or the second dcl'inition of the  
information matrix in (A-h) it is possible to show 
that the individual b lock  in (A-1 2) can he written 
as: 

(A.2-7~) 

(A.2-7e) 

Let the elemenls q,, and q, o f  11 correspond to the 
elements [v,-' lb l  and 1 v,-' I,,,,, of v,-' 
respectively. The clement [ M I , , ,  I,,, o f  M,, , ,  may then 
be written a s :  

(A.2-7f) 

in which vkln, vln, vkn en vI,,, denote the elements 
[vwlkln, [VwJln, [VwJkl, and [Vw]lll, respectively of 
the covariance matrix V, of observation 
measurement errors. 

With (A.2-7c) and (A.2-7e) the CRLB can be 
written as: 

- 
co303 - 

..... .i. ..... ..... 
(A.2-8) 

According to (A.l-4), the variance matrix of ML 
estimation errors approaches asymptotically the 
CRLB. Eq. (A.2-8) shows that in addition to the 
estimation errors of the elements of V,-' are 
asymptotically tincorrelated with the estimation 
errors of8;ind h. li'l'€J~(t),t~(t)) and h(€l,x(t),g(t)) 
are continuously difl'erentiable with respect to fi 
and ~ ( t ) ,  the partial derivatives dy(i)/da'' and 
dy(i)/d& in (A.2-7) can be lound by solving the 
lollowing set o f  differential equations, the so-called 
sensitivity equations; see Nahi [53]: 

(A.2-9) 

x(00 
i) T 
- = l .  

-0 

The scnsitivity equations (A.2-Y) can be derived by 
p;irtiaIly differentiating both sides o f  the system 
differential equation in (A.2- 1). Subsequently, the 
order of dil'ferentiation in the left hand side of the 
equation with respect to e or & and t respectively, 
is reversed, for which it must be assumed that is 
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analytic; see Arken [171]. 
Next, partial differentiation of the observation 
equations in (A.2-2) leads to: 

(A.2-10) 

According to (A.2-7), Moo, MoxO and MXOx, are 
composed of the latter two derivatives a t  the 
sampling times ti. This means tha t  the CRLB for 
hL and depends on the system input signal 
- u(t) in [b,tl]. On the other hand the CRLB for the 
elements of VW-' depends only on the number of 
samples taken, and cannot be intluenced by LI(~). 
This property of the CRLB may readily be deduced 
from (A.2-8) and (A.2-7f). 

A.3 Continuous Time Linear Systems 

As shown in the previous section, the ca1cul;ition 
of the information matrix of nonlinear systems 
requires the sol U tion t) f non1 inear sensitivity 
equations. In the case of linear systems, these 
sensitivity equations reduce to linear equations. 
Let the deterministic linear and constant system: 

(A.3- 1) - i ( t )  = F(0)-x(t) - -  + G(O).u(t) - -  , 

with initial condition: 

?(to) = ?() 
be observed at discrete inskin& of time according 
to the following observation model: 

systems are identical to the expressions given in 
(A.2-6) and (A.2-8) for the case of nonlinear 
systems. The sensitivity equations of linear 
systems, however, are readily seen to be also 
linear. Furthermore, i f  the system and observation 
models in (A.3-1) and (A.3-2) are constant, i.e. F, 
G, H and J do not depend on time, then the 
sensitivity equations are also conskint. The 
sensitivity equations may be written as: 

(A.3-3) 

for J=l ( l ) r  and with initial conditions: 

- 
- - 1 .  a s r  

The solution 0 1  (A.3-3) is used to calculatc the 
dcrivativeh of  y with respect to e and & according 
to : 

for j = l ( l ) r .  

in which x(i) represenh again  a n  additive giussian 
measurement error (A.2-3). Thc paramctcr vector 
- 8 contains the unknown clcmcnls o f  the matrices F, 
G, H and J.  The Fisher inlhmation matrix and 
CRLB for €J 3 and Vw-' o f  constant linear 

(A.3-4) 

(A.3-2) 

C =  

I t  is worth noting that in case e is known, the 
estimation problem reduces to a state estimation 
problem. The corresponding CRLB is: 

.." ..... .i. ..I ..... . 

0 i Mil-,: I (A.3-5) 

According to chaptcr 3, M, )i has  full rank if and 
only i f  the system (A.3-1) is reconstructible. 
The information matrix of the state vector K(i) at 

O U  
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time tiE[$,,t,] can be written analogously to 
(A. 2-7d): 

(A.3-6) 

It is possible to express the information matrix 
Mx(ilx(i) in terms of the information matrix of the 
initial state &, MxOxO. 

The matrix of partial derivatives dy(i)/dx"(i) can be 
written as: 

'I' in which the matrix 01' partial derivatives d&(i)/ihU 
may be computed with the sensitivity equations 
(A.3-3). Substitution of dy(i)/d&T above in the 
information matrix M,,i,,,i, results in: 

I 

From (A.3-3) and (A.3-4) i t  Iollows that partial 
derivatives of y(i) with respect to & are 
independent of ~ ( t ) .  This means that the M L  state 
reconstruction accuracy a s  expressed in terms of 
the CRLB Mx(ilx(il-' is also independent of the time 
history of the input signal, see (A.3-6). 

However, if one or more of Ihe syslem and 
observation model parameters must be estimated 
simultaneously with the reconstruction of the slate, 
the system slate reconstruction accuracy is no 
longer independent o f  LI(~). This phenomenon is 
caused by the fact that the p;ir;rmcter and initial 
state estimation errors are in principle not 
u ncorre la ted i .e. : 
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APPENDIX B - CALCULATION OF RECONSTRUCTIBILITY 

In this appendix, the reconstructibility matrices Qi of the longitudinal and lateral linear flight path 
reconstruction problem will be derived for the case of a non-horizonhl stationary rectilinear nominal flight 
condition, y , N .  

B.l Reconstructibility Matrices of the Longitudinal Flight Path Reconstruction Problem 

From (4.1-21) and (4.1-22) it follows that the linear system matrix F of the longitudinal tlight path 
reconstruction model consists of the following elements: 

F =  

It is eas 

0 -g:cosy, 0 0 1 0 0 0 0 l o  
6 '  1 0 --slily" 0 0 0 - 1 0 0 l o  vo v, 

and: 

0 0 0 

cosyo Vosinyo -Vosinyo 

s i n y o  Vocosyo -Vocosyo 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 
ly verified that: 

0 0 0 0 1 0 0  

0 0 0 0 0 1 0  

0 0 0 0 0 0 1  

0 0 0 0 0 0 0  

0 0 0 0 0 0 0  

0 0 0 0 0 0 0  

0 0 0 0 0 0 0  

0 0 0 0 0 0 0  

0 0 0 0 0  0 0 -gcosyo 0 0 

0 0 0 0 0  0 0 --slily" 0 0 g .  
vo 

0 0 0 0 0  0 

0 0 -6 0 0 cosyo 

0 0 0 0 0 s i n y ,  

0 0 0 0 0  0 

0 0 0 0 0  0 

0 0 0 0 0  0 

0 0 0 0 0  0 

0 0 0 0 0  0 

0 

sinyo 

cosy" 

0 

0 

0 

0 

0 

0 0 0  

0 0 0  

0 0 0  

0 0 0  

0 0 0  

0 0 0  

0 0 0  

0 0 0  

(B. 1-1) 

(B. 1-2) 
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The observation matrix H follows from (4.1-23) and (4.1-24) as: 

‘ 1  0 0 0 0 0 0 0 0 0 ’  

o c u 1 0  0 0 0 0 0 0 0 
H =  (B. 1-4) 

0 0 0 1 0 0 0 0 0 0  

0 0 0 0 1 0 0 0 0 0  

0 

0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 -6 

- O CUI 0 0 0 0  0 0 0 0 -  

0 0  6 1 
cu 1 

Q2 = v, v, , 
0 0 --C silly, 0 0 0 -CUI 

0 0  0 0 0 0 0 --C 6 siny, 0 0 
v, 

r o  0 0 1 0 0  0 0 0 0 ~  
0 

0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0  

0 0  

0 0  

0 0  

0 0  

0 0  

0 0  

0 0  

0 0  

0 0  

0 0  

- 1  0 0 0 0 0 0  0 0 0 -  

Q, = 0 0 -gCOSyo 0 0 1 0 0 0 0  

0 0  0 0 0 0 0 -gc0syo 0 0 

(B. 1-3) 

Q, = 

- 0  0 0 0 1  0 0 0 0 0 -  

-sinyo V0cosy, -Vocosyo 0 0 0 0 0 0 1  

0 0 0 0 0 -sinyo cosyo 0 0 0 

L o  0 0 0 0  0 0 - g o o ]  
and: 

(B. 1-5) 

(B. 1-6) 

(B. 1-7) 

(B. 1-8) 



B.2 Reconstroctibility Matrices of the Lateral Flight Path Reconstroction Problem 

F 3 =  

From (4.1-27) and (4.1-28) it  follows tha t  the lincar system matrix F of the lateral Flight path 
reconstruction model consists o f  the following elements: 

- 0 0 0 0 0  0 0 0 0 -  

0 0 0 0 0  0 0 0 0  

0 0 0 0 0  0 0 0 0  

0 0 0 0 0 gc'c'syo gsillyo 0 0 

0 0 0 0 0 0 0 0 0 ,  

0 0 0 0 0  0 0 0 0  

0 0 0 0 0  0 0 0 0  

0 0 0 0 0  0 0 0 0  

0 0 0 0 0  0 0 0 0  

F =  

It is eas 

6 1 0 -cosyo 0 - 0 lo vo vo 

and: 

0 0 0 0 0 0  

0 0 0 0 1  

0 0 0  

0 0 0 0 0 0  

0 0 0 0 0 0  

0 0 0 0 0 0  

0 0 0 0 0 0  

0 0 0 0 0 0  

l o  
v, vocosyo 0 

ly verified that: 

0 0 0 0 0 

0 0  0 0 0  

0 0  0 0 0  

0 0 gcosyo 0 1 

0 0  0 0 0  

0 0  0 0 0  

0 0  0 0 0  

0 0  0 0 0  

0 0  0 0 0  

-1 

1 
cos yo 

tallyo 

0 

0 

0 

0 

0 

0 

0 0  

0 0  

0 0  

0 1  

0 0  

0 0  

0 0  

0 0  

0 0  

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0  

0 0  

0 0  

0 0  

0 0  

0 0  

0 0  

0 0  

0 0  

(B.2-1) 

(B.2-2) 

(B.2-3) 
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-cp, 0 0 0 0 0 0 1 0 -  

H = 0 1 0 0 0 0 0 0 0 ~  

0 0 0 1 0 0 0 0 0  

0 1 0 0 0 0  0 0 0  

1 
C:OSyo 

Q 2 =  0 0 0 0 0 0 - 0  0 '  

With (4.1-25) this leads to the reconstructibility matrices (only the non-empty rows are shown): 

Q, = 

0 0 0 0  0 0 1 0  

0 0  

% 
0 0 -c 6 c:osyo 0 

0 0  0 0 0 -CP,cosyo 6 -CP 6 sinyo 0 0 

0 -cl% PI V" 

v,, V" 

and: 

Q, = 

0 0 0 1 0  0 0 0 0  
do vocosyo 0 0 0 0 0 0 1  

0 0 gcosy, 0 1 0 0 0 0  

0 0 0 0 0 gcosy" gsiiiyo 0 0 

B.3 Reconstriictible Sobspaces 

(B.2-4) 

(B.2-5) 

(B.2-6) 

(B.2-7) 

' 
A (non-unique) basis U ,, for the  reconstructible subspace corresponding t o  thc observation y ,  can be 
formed out of the independent rows in Q,. The results, in terms o f  ci)mponenL! 01 x i i  are, for yo=O listed 
in table 3-1 and table 3-3 lor the longitudinal and lateral linear llight path problem rcspcctively. 
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APPENDIXC - ALGORITHMS FOR FLIGHT PATH 
RECONSTRUCTION 

In this appendix more details are given on the 
algorithms discussed in chapter 3. In section C.l 
the Kalman filter and smoother is applied to a 
system model which is linearized around a nominal 
steady condition. In  section C.2 the Extended 
Kalman filter and smoother is applied to a 
nonlinear system model. Finally in section C.3 the 
Maximum Likelihood estimation is applied to a 
deterministic nonlinear system model. 
For more details o n  the algorithms the reader is 
referred to 171 and 761. 

C.l Kalman Filter/Smoother Applied to a 
Linear System Model 

In this section the kinematical model described by 
(3.1-4) and (3.1-5) is linearized around ii nominal 
steady flight condition. The linearized kinematical 
model can be written a s :  

z(t) = + G"!! Ill (1) + G W E N  
y(t) = Hz(t) + J U (t) (C.1-1) 

Ylll(i) = YO) + 1 0 )  

-111 

In these equations 5 L ~ ,  and sl, are actually 
replaced by their deviations from the constant 
nominal values. F, G,, G,, H and J arc the partial 
vector derivatives of l&~ll,wJ and h(x,uIII) with 
respect to K, !,,, and W. 

The system model may next be discretized as: 

- x(i+l) = @x(i) - + Tuu (i) + W- w(i) 

ylll(i) 
(C. 1-2) - 111 

= Hz(i) + J u  (i) + - v(i) - 111 
In which the transition matrix a, the deterministic 
input distribution matrix r,l and the stoch;istic input 
distribution matrix r, are calcuhtcd with: 

U .  

GuAt  (C. 1-3) 

where Q is chosen to be sufficiently large to 
guarantee the accuracy of the calculation. 

Assumptions 
1) The process and measurement noises are zero 

mean and white with: 

E{E(i)} = - 0 , E{E(i)K.I(i)} = Vww , 

E { l ( i ) }  = 0 , E{l(i)v'l'(i)} = Vvv , 

E{x(i)X"'(i) } = 0 . 

(C.1-4) 

2) The init ial  slate vector is a random variable 
vector and E(i) and i ( i )  are assumed to be 
uncorrelri ted with &: 

E{x+~ '~( i )  } = E{ - w(i)$'} = 0 , 
(C.l-5) 

E{x+l'r(i)} = E{i(i)$'} = 0 

The Kalman filter provides a way of estimating the 
state L(i) of the model (C.1-2). The filter has the 
10 I Io w in g two in te rp re ta t i0  ns . 

1)  I f  the process and measurement noises are 
Gaussian, t h e  tilter gives the minimum 
variance estimate 0 1  the st;ite. Tha t  is, it 
evaliiatcs the conditional mean o f  &(k) given 
the past measured d a h  {yJi-l), ~ , ] ( i -2) ,  ...}; 
see Sage and Melsa I 711. 

2) If the Gaussian assumption is removed, the 
filter gives the linear minimum variance 
estimate of the state [71] (i.e., having the 
smallest unconditional error covariance among 
all linear estimates), but this will not, in 
general, be the conditional mean. 

The Kalmirn filler has the following results; see 
[71]: 



i) The one-stage prediction algorithm: 

- x(i+1 Ii) = @x(i - Ii) + rU;uJ) 
A h 

(C.l-6) 
A 

- X(OI0) = E{&} 

ii) The prediction error covariance matrix 
a 1 go ri thm : 

(C. 1-7) 

D iii) The Kalman gain algorithm: 

K(i+l) = P(i+1 li)H T [HP(i+l li)H I' + Vvv]-' 

(C. 1-8) 

- iv) The measurement update algorithm: 

A A 

- x(i+l li+l) = z(i+l Ii) + K(i+l) x 
A 

[ylll(i+l) -Hx(i+l - Ii) -Jxlll(i+l) 1 
(C. 1-9) 

v) The posteriori covariance matrix algorithm: 

P(i+lli+l) = [I - K(i+l)H] P(i+l I i )  

= [I - K(i+l)H] P(i+1 Ii) [I  - K(i+l)H]I' + 

+ K(i +1) VvvK 'r(i +1) 
(C. 1-10) 

The second formula o f  Eq. (C.1-10) is 
considered to be numerically more robust than 
the first one as it cannot result in ii non- 
symmetric covariance matrix; see Bryson and 
Ho [233] .  

Once the Kalman filtering is performed, the 
Kalman smoother may be applied backwards in 
time to smooth the estimated state trajectory and to 
find the initial conditions of the system skrtc 
equation. 
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The so-called fixed interval Kalman smoother can 
be written in the following form [71]: 

KS(i) = P(i 1i)aTP(i+1 li)-' 

- x(i1N) = - x(i1i) + Ks(i) [z(i+llN) - - x(i+lli)] 

P(i1N) = P(i1i) + Ks(i) [P(i+l IN) - P(i+1 li)] Ks(i)' 

A A A A 

(C. 1-11) 

C.2 Extended Kalman Filter/Smoother Applied 
to a Nonlinear System Model 

Currcnl practice is to use the complete nonlinear 
kinematical system model of chapter 3 for 
nonlinear flight path reconstruction. The model can 
be written in the following general form: 

(C.2-1) 

YJi) = YO) + 10)  
where z(t) is an augmented state vector with the 
unknown parameters iis augmcntcd state variables. 

The discrete form 01' the extended Kalman filter is 
applied to estimate the state variables of this 
nonlinear system with the same assumptions as 
given in section C.l ,  sec also [71]. 

i) The one-shige prediction algorithm: 

'i.1 " 

where ~'(t) denotes a linear or higher order 
interpolation between u,,,(i) and sll( i+ 1). 

ii) The one-stage prediction covariance matrix 
ii Igorithm : 

P(i+I Ii) = Ct)( i+l , i )P(iI i )@(i+I, i )  + 

+ rw(i + I  ,i)Vww rw(i+l,i) 
I' (C.2-3) 
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in which the linearized transition matrix 
@(i+l,i) is calculated from: 

(C.2-4) 

and the linearized stochastic input distribution 
matrices rw(i+l,i) and Gw(i) are calculated 
from: 

G,(i)At 

w = o  - -  

((2.2-5) 
where Q again is chosen sufficiently large. 
It is important to note that F(i) and GJi) are 
calculated a t  &=i(i Ii), i.e. a t  the the last 
estimate of instead of on some nominal 
flight trajectory. This modified form o f  the 
Kalman filter is called the Extended Kultnuti 
Filter. 

iii) The Kalman gain algorithm: 

K(i+l) = P(i+l li)H T(i+l) x 

[H(i+l)P(i+l li)H T(i+l) + Vvv]-' 

(C.2-6) 
where the linearized observation matrix is 
ca 1 c ul a Led w i th : 

(C.2-7) 

iv) The measurement update algorithm: 

A A 

- x(i+l l i+l)  = - x(i+l Ii) + K(i+l) x 
A 

[y ( i + l )  - h x(i+l I i ) ,  - u l l , ( i + l ) )  - 111 4- 
(C.2-8) 

v) The posteriori covariance matrix algorithm. 

P( i+ l l i+ l )  = [I - K(i+l)H(i+l)] P(i+1 Ii) 

= [I - K(i+l)H(i+l)] P(i+lli) x 

[ I  - K(i+l)H(i+l)IT + K(i+l)VvvK ~r( i+ l )  

(C.2-9) 
Again the second formula of Eq. (C.2-9) is 
considered to be more robust than the first one. 

Also lor nonlinear system models an extended 
Kalman smoother may be applied backwards in 
time to smooth the estimated trajectory and to find 
the initial conditions of the nonlinear system state 
cq uii tions. 

The fixed interval cxtcnded Kalman smoother is 
written as, sec also 171 I :  

Ks(i) 

- x(iIN) = - x(ili) + Ks(i) [x( i+ l (N)  - - - x( i+l ) i ) ]  

P(i IN) --- P(i Ii) + K,(i) [P(i+l IN) - P(i+1 li)] K,(i)T 

= P(i li)@.r(i+l,i)P - '(i+l Ii) 
A A A A 

(C.2-10) 

C.3 Maximum Likelihood Estimation Applied 
to a Deterministic Nonlinear Model 

I f  the system noise ~ ( t )  is neglected, the llight path 
reconstruction problem reduces to an output error 
problem. This can be solved by a Maximum 
Likelihood algorithm a s  described below. 

In this  algorilhm, see also Eykhoff 1761, the 
unknown initial conditions &(tu) of the system and 
the me;rs;urement noise covariance matrix V, are 
also considered to be unknown parameters together 
with the set o f  unknown parameters e and the 
Maximum Likelihood estimate o f  these parameters 
is computed. The system model to be used in this 
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case is written in the following form: function decreases significantly . 

Experience is that from the computational point of 
i(t) = !(zW 9 !?) view the ML algorithm appears to be more 

expensive than the extended Kalman filter. Note 
that the M L  method will generate estimates of the 

YJi) = YG) + measurement error covariance matrix V, in 
addition to estimates of the transducer biases and 
scale factors and the initial state vector. The reader 
is referred to appendix A for more details of this 
algorithm. 

(c-3-1) 
Y<t> = .(d9 >U,(') !) 

where the parameter vector 2 consists again of 
unknown biases and scale factoh of the flight test 
instrumentation system, but now also includes the 
unknown initial value of E. 

The system is assumed to be deterministic, i.e. the 
assumption is made here of very small 
measurement noise from the inertial transducers. 
Then the joint state and parameter estimation 
problem a n  be formulated as a nonlinear 
optimization problem in which the function to be 
minimized with respect to &(to) and V,-' is the 
negative logarithm of the likelihood function: 

D 

N 
1 

A A 

= -E 2 i=l [Y"](i) - Y ( i > 9 ] T  viv' [YllJ9 - Y ( W ]  + 

N 
2 + - IndetVVv (C.3-2) 

where the covariance matrix of the measurement 
noise V, is estimated using: ' 

(C.3-3) 
The estimated output in Eq. (C.3-3) is obtained by 
integrating a set of deterministic state equations: 

A 'I A 

z(ti) = ~ ( G J  + [ i ( ~ ( t )  yxl1,(t) 92) dl 
n 

(c.3-4) 
A A 

Y W  = k ( d 9  ~ ~ 1 1 1 ~ ~ 1 ~  * 9) 
The solution algorithm slarls by assuming an initial 
value for and using (C.3-4) to _cilculate a first 
estimate of z(t) and i ( i ,B.  Then V, is estimated 
using equation (C.3-3) and the log likelihood 
function is calculated from (C.3-2). A search 
procedure, such as Gauss-Newton, is then applied 
to find a better estimate for 8. The above 
procedure is iterated as long as  the log likelihood 
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