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FOREWORD 

The present AGARDograph was sponsored by the Computational Fluid Dynamics (CFD) Committee of the Fluid 
Dynamics Panel recognizing the important role that mesh generation plays in Euler or Navier/Stokes finite difference 
calculations currently of interest. It has been amply demonstrated that the viability of a numerical solution depends directly on 
the quality of the mesh as measured by its spacing and orthogonality. Of particular interest is the mesh generation for complex 
configurations, such as advanced fighters or logistic transports, where a multiblock mesh, for example, is necessary. 

There exist numerous reports and books on the various methods of mesh generation giving examples of interest. The 
present AGARDograph therefore will be directed towards presenting detailed case histories of mesh generation over complex 
configurations to serve as a guide to users. In particular the emphasis will be on the difficulties encountered, and how they were 
resolved. 

Dr J.Steger, Senior Staff Scientist, at the NASA Ames Research Center and Dr J.Thompson, Professor of Aerospace 
Engineering at the Mississippi State University, served as the principal authors contributing the Background and Concluding 
Chapters. Both authors have contributed significantly to the mesh generation research and development. Dr Steger was 
responsible for the case histories from North America, while Professor Thompson coordinated the contributions from Europe. 

The CFD Committee and the Editor wish to express their appreciation to Dr Steger, Professor Thompson and the 
contributors and their organizations, who generously shared their valuable experiences. 

H.Yoshihara 
Editor 

* * * 

AVANT-PROPOS 

Le present AGARDograph a ete patronne par le Comite "Calculs de Dynamique des Fluides" (CDF) du Groupe 
"Dynamique des Fluides", en reconnaissant le role important que la generation de mailles joue dans les calculs des differences 
finies d'Euler ou Navier/Stokes qui presentent actuellement un grand interet. II a ete amplement demontre que la viabilite 
d'une solution numerique depend directement de la qualite de la maille mesuree par son espacement et son orthogonalite. La 
generation de mailles est d'un interet tout particulier pour des configurations complexes telles que les avions de chasse 
modemes ou les avions de transport logistiques, dans lesquelles une maille multibloc, par exemple, est necessaire. 

II existe de nombreux rapports et de nombreux livres sur les differents modes de generation de mailles qui donnent des 
exemples interessants. C'est pourquoi le present AGARDograph aura pour objet de presenter des etudes de cas de generation 
de mailles sur des configurations complexes destinees a servir de guide aux utilisateurs. L'accent sera mis en particulier sur les 
difficultes rencontrees et sur la facon dont elles ont ete resolues. 

Le Dr J.Steger, Maitre de Recherches au Centre de Recherche de la NASA-Ames, et le Dr J.Thompson, Professeur de 
Techniques Aerospatiales a 1'Universite de 1'Etat du Mississippi sont les principaux auteurs qui ont redige les chapitres 
"Donnees de base" et "Conclusion". Ces deux auteurs ont contribue considerablement a la recherche et au developpement de 
la generation de mailles. Le Dr Steger etait responsable des etudes de cas provenant d'Amerique du Nord, tandis que le 
Professeur Thompson assurait la coordination des contributions europeennes. 

Le Comite charge de la DFC et le Redacteur en Chef tiennent a exprimer leurs remerciements au Dr Steger, au Professeur 
Thompson, ainsi qu'aux autres collaboraleurs et a leurs organismes qui ont genereusement apporte une part de leur precieuse 
experience. 

H.Yoshihara 
Redacteur en Chef 

in 
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1. INTENT 

Over the last two decades efficient difference schemes for solving the nonlinear govern­
ing equations of aerodynamics have evolved for simulating the flow about relatively simple 
configurations. For the most part these procedures use structured body-conforming curvilinear 
grids, and are generally being extended to the treatment of more complex shapes by the use of 
a composite grid approach. However, the development of suitable grid schemes is still an on­
going process, and It is pot clear that routine computational fluid dynamics (CFD) solution 
procedures have evolved, especially for high Reynolds number viscous flow simulation. 

For this reason, this AGARDograph was initiated as an attempt to survey some of the capa­
bilities of the CFD community for griding complex three-dimensional configurations. The in­
tent of this AGARDograph is to provide some insight as to the present state of grid generation 
for aircraft configurations in order to help assess whether this task presents a long term 
stumbling block to routine use of CFD in aerodynamic applications. At the heart of this 
AGARDograph are solicited individual contributions describing experience in griding complex 
configurations for flow simulation. 

2. INTRODUCTION 

Fluid mechanics Is described by nonlinear equations which cannot generally be solved ana­
lytically, but which have been solved using various approximate methods including expansion 
and perturbation methods, sundry particle and vortex tracing methods, collocation and integral 
methods, and finite difference, finite volume and finite element methods. Generally the fi­
nite difference, finite volume and finite element discretization methods have been the most 
successful, but to use them It is necessary to discretize the field using a grid or mesh. The 
mesh can be structured or unstructured, but It must be generated under some of the various 
constraints described below, whioh can often be difficult to satisfy completely. 

The generated mesh must be sufficiently dense that the numerical approximation is an ac­
curate one, but It cannot be so dense that the solution is impractical to obtain. Generally 
the grid spacing should be smoothly and sufficiently refined to resolve changes in the gradi­
ents of the solution. If the grid is also body conforming and curvilinear, the application of 
boundary conditions is usually simplified. Body-conforming curvilinear grids may also allow 
the use of various approximate equations such as the boundary-layer equations. The grid 
should also be constructed with computational efficiency in mind. Various solution algorithms 
are often highly degraded on grids that are too skewed, too high in aspect ratio, or poorly 
organized. The accuracy of a numerical approximation can also be Impaired if a grid changes 
dlscontlnuously or Is too skewed. Various vectorized computers often require well organized 
data, and memory requirements can grow to impractical limits unless the data is organized. 
Finally, the choice of a grid should not lead to overly complex computer codes. 

The task of grid generation is not straightforward, given the algorithm and computational 
constraints imposed by current computers. It is necessary to adapt the grid to the problem at 
hand to achieve the best efficiency and accuracy. As a result the problem of grid generation 
can still be as much an art form as It Is a scientific discipline. 

This AGARDograph begins with a brief review of some of the techniques that are available 
for generating body-conforming curvilinear grids. In order to assess capabilities in grid 
generation, colleagues at selected Institutions were solicited to describe their experiences 
and difficulties in grid generation of complex configurations. The intent here was not to de­
scribe the very latest in grid generation procedures, but to solicit honest comments about 
what are the difficulties in generating practical grids and what steps are taken to meet these 
difficulties. These experiences, which comprise the heart of this AGARDograph, are presented 
as case histories in Section 4. 

3. REVIEW 

A cursory review of some of the techniques of numerical grid generation is presented be­
low. More information on numerical grid generation and its application to the numerical solu­
tion of partial differential equations is given in a recent text on the subject (Ref. 1). 
Several surveys of the field have also been given (Refs. 2-5), and four conference proceedings 
dedicated to the area have appeared (Refs. 6-9). The first of these proceedings also contains 
a number of expository papers and other sources on the subject. 

3.1 Grid Types 

In the figure below are shown three basic grid treatments for meshing a simple body—a 
rectangular or Carteslan-llke grid, a structured curvilinear body-conforming grid, and an un­
structured trlangularlzed grid. 



Each grid type has advantages and disadvantages. The rectangular grid is well-ordered, triv­
ial to generate, readily allows accurate Interior difference approximations, and the represen­
tation of a difference approximation requires the minimum work per step. However, boundary 
representation requires special logic, Is generally of poor accuracy, and the grid does not 
cluster to efficiently resolve viscous boundary layers on curved boundaries. The curvilinear 
body-conforming mesh is also well-ordered, allows higher order difference approximations, per­
mits simple and accurate boundary difference approximations, and can be clustered Into gradi­
ent regions. It is especially well suited for viscous boundary layer approximation. However, 
the governing equations are more complex to difference on a curvilinear grid (although body-
conforming grids often permit use of additional approximations), and grid generation, while 
not difficult for simple bodies, Is no longer trivial. The unstructured trlangularized mesh 
has good grid concentration (I.e., triangles can be readily deleted In smooth gradient re­
gions) and the shape of the boundary curve Is readily conformed to. However, such a mesh is 
poorly ordered and Is therefore less amenable to the use of certain algorithms (e.g. ADI) and 
vectorized computers. Mesh generation Is also not trivial. Moreover, triangular mesnes have 
not been used for resolving high Reynolds number viscous boundary layers of practical Inter­
est. 

For a simple body shape, the use of a single body-conforming curvilinear mesh leads to 
the most efficient solution procedure. As a result most current aerodynamic solution codes 
employ a body-conforming structured, curvilinear grid. Considerable effort Is now underway to 
extend these procedures for complex three-dimensional configurations, generally by using com* 
poslte grid techniques. 

3.2 Grid Structures 

A curvilinear structured grid can be represented by a rectangular array of position vec­
tors: 

r (1-1,2. — , I ; J-1.2. — ,J; k-1.2,—K). 

where the indices l,J,k are Identified with the three curvilinear coordinates. The position 
vector c Is a three-vector giving the values of the x,y,z Cartesian coordinates of a grid 
point. Since all Increments in the curvilinear coordinates cancel out of the transformation 
relations for derivative operators, there is no loss of generality In defining the discreti­
zation to be on integer values of these coordinates. 

Fundamental to a body-conforming curvilinear coordinate system is the coincidence of some 
coordinate surface with each segment of boundary of the physical region. This is accom­
plished by placing a two-dimensional array of points on a physical boundary segment and set­
ting these values In the array of position vectors with one index constant, e.g. in CJI^ with 
I from 1 to I and J from 1 to J. The curvilinear coordinate k Is thus constant on this physi­
cal boundary segment. With values set on the sides of the rectangular array of position vec­
tors in this manner, the generation of the grid is accomplished by determining the values of 
Cjik In the interior of the rectangular array from the specified boundary values on Its sides, 
e.g. by interpolation or a partial differential equation (PDE) solution. The set of values 
Ciif, then forms the nodes of a curvilinear coordinate system filling the physical region. A 
physical region bounded by six generally curved sides can thus be considered to have been 
transformed to a rectangular computational region on which the curvilinear coordinates are the 
independent variables. 
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3.3 Composite Block Grids 

Although In principle It is possible to establish a correspondence between any physical 
region and a single empty rectangular block for general three-dimensional configurations, the 
resulting grid is likely to be too skewed and irregular to be usable when the boundary geome­
try Is complicated. A better approach with complicated physical boundaries is to segment the 
physical region into subregions bounded by six curved sides (four in 2D). These subregions 
may or may not overlap (c.f. Ref. 10). Each sub-grid is transformed to a rectangular block in 
the computational region with its own curvilinear coordinate system irrespective of that in 
the adjacent sub-regions. 

-\Z 

- [ - J - -

This then allows both the grid generation and numerical solutions on the grid to operate 
In a rectangular computational region regardless of the shape or complexity of the full physi­
cal region. The full region is treated by performing the solution operation in all of the 
rectangular computational blocks. With the composite framework, CFD solution procedures writ­
ten to operate on rectangular regions can be incorporated into a code for general configura­
tions in a straightforward manner, since the code only needs to treat a rectangular block. The 
entire physical field then can be treated in a loop over all the blocks. Such a composite 
structure has been Incorporated In several recent grid codes (e.g. Refs. 11-20 and the papers 
Included In Section 1) of various degrees of generality (cf. also Refs. 9 and 6). 

The curved surfaces bounding the sub-regions In the physical region form Internal inter­
faces across which Information must be transferred, i.e., from the sides of one rectangular 
computational block to those of another. Regardless of whether the composite grid Is formed 
using contiguous sub-grids (i.e. a blocked grid) or from overset (or overlapped) grids, these 
Interface boundaries occur in pairs. For a blocked grid an Interface on one block Is paired 
with another on the same, or different, block, since both correspond to the same physical sur­
face. Grid lines at the Interfaces may meet with complete continuity, with or without slope 
continuity, or may not meet at all. The codes of Refs. 12, 11, 15, 17, 18, and 19 provide 
complete continuity, while those of Refs. 16 and 20 are based on slope continuity. 

3.1 Surface Grids 

The specification of the boundary point distribution is a two-dimensional grid problem in 
Its own right, which oan also be done either by Interpolation or a PDE solution. In general, 
this is a 2D boundary value problem on a curved surface, i.e., the determination of the loca­
tions of points on the surface from specified distributions of points on the four edges of the 
surface. 

This is best approached through the use of surface parametric coordinates, whereby the surface 
Is first defined by a 2D array of points, q^, e.g. a set of cross-sections. 



The surfaoe is then spllned, and the spline coordinates (u,v; surface parametric coordinates) 
are then made the dependent variables for the interpolation or PDE generation system. The gen­
eration of the surface grid can then be accomplished by first specifying the boundary points 
in the array Ci-i on the four edges of the surface grid; converting these Cartesian coordinate 
values to spline coordinate values"(U,.,v.,) on the edges; then determining the interior val­
ues in the arrays Uj, and v^. from the edge values by Interpolation or PDE solution; and fi­
nally converting these spline values to Cartesian coordinates CJI. 

Grid 

surface 

The specification of the ID point distributions on the edges oan be done using certain 
distribution functions based on hyperbolic functions which have been shown to give spacing 
distributions that are optimum In the sense of controlling the truncation error Induced by 
spacing changes (cf. Refs. 1,21,22). 

After the points on the physical boundary segments have been set on the sides of the rec­
tangular array, the grid is generated throughout the physical region by determlnig the Inte­
rior values in the arrays from the values set on the sides. This amounts to a boundary value 
problem which can be approached either through Interpolation from the boundary values, or 
through the numerical solution of a system of partial differential equations with c as the 
dependent variable and the set boundary values as boundary conditions. 

3.5 Orthogonality 

Coordinate systems that are orthogonal, or at least nearly orthogonal, near the boundary 
make the application of boundary conditions more straightforward. Although strict orthogo­
nality is not necessary, the accuracy deteriorates If the departure from orthogonality Is too 
large. The Implementation of algebraic turbulence models Is more reliable with near-ortho­
gonality at the boundary, since information on local boundary normals is usually required in 
such models. The formulation of boundary-layer equations is also more straightforward and 
unambiguous in such systems. It is thus better in general, other considerations being equal, 
for grid lines to be nearly normal to boundaries. 

3.6 Grid Cenerat1on Schemes 

The generation procedures for curvilinear grids are of two general types: (1) by numeri­
cal solution of partial differential equations, and (2) construction by algebraic Interpola­
tion. In the former, the PDE system may be elliptic, parabolic or hyperbolic. Included in 
the elliptic systems are both the conformal and the quaslconformal mappings, the former being 
orthogonal. Orthogonal systems do not have to be conformal, and may be generated from hyper* 
bollc systems as well as from elliptic systems. Some procedures are designed to produce coor­
dinates that are nearly orthogonal. The algebraic procedures include simple normalization of 
boundary curves, transflnite interpolation from boundary surfaces, the use of Intermediate 
interpolating surfaces, and various other related Interpolation techniques. 

The relative merits of the various types of grids and generation procedures have been 
discussed in the various surveys noted above, as well as in the works cited therein. 
Basically, the algebraic generation systems are faster, but the grids generated from partial 
differential equations are generally smoother. The hyperbolic and parabolic generation sys­
tems are faster than the elliptic systems, but are more limited in the configurations that can 
be treated. The elliptic systems are the most generally applicable with complicated boundary 
configurations, but transfinite interpolation is also effective in the composite grid frame­
work. 



3.7 Algebraic Grid Generation 

Algebraic grid generation consists of the determination of the interior values in the 
rectangular array c< < t, from the set values on the sides by interpolation. A number of dif­
ferent forms of interpolation are discussed in Ref. 1. Such generation systems are surveyed In 
Refs. 2,3 and 5 as well aa in Refs. 23 and 21. Here only one widely used procedure, trans-
finite interpolation, will be briefly described. 

A generally effective grid generation procedure Is provided by the transfinite interpola­
tion technique (Refs. 25,26), in which all of the boundary values are matched by the interpo­
lation function. Transfinite Interpolation in multiple dimensions can be built up of 
one-dimensional Interpolations as follows (cf. Ref. 1 for more details). 

One-dlmenslonal Interpolation between two boundaries on which the index i Is constant is 
given by 

r m t r 
-l.J.k 'i-I.J.k (1 V ^ i . j . k (1 ) 

where f, varies monotonlcally from f-i-0 to f,-1 for 1-1,2,...!. Analogous forms apply for 
interpolation In the J and k directions. Certain distribution functions based on hyperbolic 
functions have been shown to be optimal in the sense of reduced truncation error (cf. Refs. 
21,22). 

If the Interpolation operation given by Eq. (1) is defined as the "projector" P̂  ', I.e., 

r - P -IJk - f r + (1 - f )r 
i-IJk w 1 -IJk (2) 

then two-dimensional transfinite Interpolation on a surface on which k is constant is accom­
plished by the projector 

-IJk (3) 

where 

P ( 1 )P ( J ) - t . % £ . ^ • ( - IX - g j ) r I 1 k 

+ (1 -'i>Vwi_* (1 - f i ) ( 1 -sj'ciik 

and gi varies monotonlcally from g.j-0 to gj-1 for J-1,2, — ,J. 

(1) 

Analogous forms apply on surfaces on which 1 or J are constant. 

The three-dimensional form then Is given by the projector 

r . P(1) + P(J) + pdO _ p(Up<J) . p(J)p(k) . p(k)p(l) 

+ p(l)pCJ)p(k) (5) 

where 



p ( 1 ) p ( J V k ) • f i 8 j V : I J K
 + f i g j ( 1 - \ ) t u . 

• f l d - g j ) h k r I 1 K • r 4 ( i - g j ) d - h k ) E l 1 1 

• (1 - V S j V u K + ° " f i ) g J ( 1 ' V t l J I 

• (1 - f t ) ( 1 - 8 j ) h k r 1 1 K 

(1 - f j ) ( 1 - g j ) ( 1 - h k ) r n (6) 

Here hk varies monotonlcally from h.,-0 to hk-1 for k-1,2, — ,K. 

General algebraic grid generation codes have been reported in Refs. 13, 17, and 27. 

3.8 Elliptic Grid Generation 

Since elliptic partial differential systems determine a function In terms of its values 
on the entire closed boundary of a region, such a system can be used to generate the interior 
values In the array CIII, from the values set on the sides. The properties of elliptic grid 
generation systems are discussed in Ref. 1. The extremura principles that are exhibited by 
some elliptic systems serve to prevent the grid overlap that can occur with algebraic grid 
generation in some configurations. Grids generated from elliptic systems also generally tend 
to be smoother than those from algebraic systems. In fact, It can be shown by the calculus of 
variations that a grid generated as the solution of Laplace equations Is the smoothest possi­
ble grid. The lines of such a grid tend to concentrate over convex portions of the physical 
boundary and to be more widely spaced over concave portions, however. 

Control over the spacing of the grid lines can be exercised by incorporating non-zero 
Laplaolans into the generation system. The most common form at present is the following sys­
tem: 

r v mn r nn _ _ ._, 

m 1 r i r mr n „ i n cn 

m-1 n-1 5 C n-1 £ 

where the gmn are the elements of the oontravarlant metric tensor: 

gmn _ Je« . ? £n ( 8 ) 

and the Pn are the "control functions" which serve to control the spacing and orientation of 
the grid lines In the field. The gmn elements are more conveniently expressed In terms of the 
elements of the covariant metric tensor, g^: 

gm - r • r (9) 
mn - m - n 

which can be calculated directly. Thus 

gmn - i (gikgj*. - g n V ( 1 0 ) 

(m.l.J) cyclic, (n.k.l) cyclic 

where g, the square of the Jacobian, is given by 

g - det |g | - r • (r x r ) (11) 
J t V r 

In these relations, c Is the Cartesian position vector of a grid point (c - Ix • jy + kz), and 
the 5 (1-1,2,3) are the three curvilinear coordinates. 

Negative values of the control function Pn cause grid lines on which t
n is constant to 

tend to move in the direction of decreasing 5n, and this feature can be used to concentrate 
grid lines near other grid lines and/or points or In certain regions in physical space. How­
ever, a more automatic procedure Is to determine the control functions so as to reflect the 
boundary point spacing into the field. (Laplace equations, i.e., with zero control functions, 
tend to produce uniform grids in the field regardless of the concentration of points on '•he 
boundary.) This is accomplished as follows (cf. Ref. 1 for details of the development). 



In two dimensions, the projection of Eq. (7) along a coordinate line on which I (I.e. £1 ) 
varies yields the following equation for the control function P1 on this line: 

!___! 
P. - -s, + 

1 1 p , 
(12) 

The first term here, 

S1 " 

c.v 
V 

(13) 

contains only derivatives along the line, and hence can be evaluated from the point distribu­
tion on the line. This term is the logarithmic derivative of arc length along the line. In 
the last term p1 is the radius of curvature of the line on which C is constant that crosses 
the line on which the control function P., Is to be evaluated. This curvature is given by 

-1 

[-
2 2 

iXl 
Ic S 

( I D 

where _u i s t n e unit normal to the crossing line. Although |c i|, the arc length spacing 

along the line of evaluation, can be evaluated from the point distribution on that line, the 

radius of curvature requires derivatives off that line. Analogous equations apply for the 

p 
evaluation of the control function P2 on a line on which J, i.e., £ , varies. 

The aro length contribution, S,, and the arc spacing, |c il. of the control function P. 

are evaluated on the two edges (J-l and J-J) on which 1 varies. The radius of curvature, p2 

Is also evaluated on these lines. These evaluations use 

r ( J ) - l ( r - r ) 
- 1 2 -1*1 ,J -1-1 , j ' 

r ( J ) . r - 2r + r 
- 1 1 -1+1,J -IJ -1-1,J 

on the j-J line, with analogous expressions on the j-1 line. The normal, ne , needed for the 
evaluation of p2 Is 

°i • -k x TTJ 

where k is the unit vector normal to the surface. Similarly, the arc length contribution to 
P2, the radius of curvature p1 and the spacing |c 2|

 a r e evaluated on the other two edges (1-1 
and 1-1). 5 

s y Ii ,1 . 

V |r l|, p 

2 " pl 



The control functions in the interior are then evaluated by interpolating the components S,, 

|c i|i and p 2 one-dimenslonally In the J-dlrection from the two edges on which they have been 

evaluated, i.e., the J-l and J=J lines. Similarly S2, |c 2|, and p, are interpolated In the 

i-dlrection between the i-l and 1=1 lines. 

The control functions then are formed from these Interpolated values: 

lt.,1 
P. - -s. + — ^ 

1 1 Pi 
(15) 

I t . I 
' * * * > . 

(16) 

In three dimensions the arc length contribution, S, , and the arc spacing, |c 7 , are 

evaluated on the four sides of the computational block on which 1 varies, i.e., the sides J-l 

and J-J and the sides k-1 and k-K. The radius of curvature, p1t is evaluated on the two sides 

on which 1 Is constant (i-1 and i-I) from the relation 

5 2 • -.2_2 n3 " r~F3fm
 _1 

k 2 l 2 k 3 I 2 
(17) 

arc length contribution 
for P, 

curvature contribution 
for p, 

Analogous evaluations are done for S-> and |c 2| on the four sides on which J varies, for S,, 

and |c -si on the four sides on which k varies, for p2 on the two sides on which J is constant, 

for p-2 on the two on which k is constant. Then S1 and |c j| are interpolated two-dlmenslon-

ally in the j and k directions from the four sides on which I varies using transfinite inter-



polatlon, and p1 is Interpolated one-dlraensionally In the 1 direction from the two sides on 

which 1 is constant. 

The control function P. Is then evaluated from 

P. - -S, • 
1 1 p 

!___! (18) 

Analogous interpolations allow the evaluation of the other two functions. 

General codes based on such elliptic generation systems appear in Refs. 12, 11-20. The 
code of Refs. 16,20 uses an iterative adjustment of control functions to achieve boundary 
orthogonality, as can the code of Ref. 17, as follows: 

A second-order elliptic generation system allows either the point locations on the bound­
ary or the coordinate line slope at the boundary to be specified, but not both. It is possi­
ble, however, to Iteratively adjust the control functions in the generation system of the 
Poisson type discussed above until, not only a specified line slope, but also the spacing of 
the first coordinate surface off the boundary is achieved, with the point locations on the 
boundary specified (cf. Ref. 16). 

In three dimensions the specification of the coordinate line slope at the boundary 
requires the specification of two quantities, e.g., the direction cosines of the line with two 
tangents to the boundary. The specification of the spacing of the first coordinate surface 
off the boundary requires one more quantity, and therefore the three control functions In the 
system Eq. (7) are exactly sufficient to allow these three specified quantities to be 
achieved, while the one boundary condition allowed by the second-order system provides for the 
point locations on the boundary to be specified. 

To Illustrate this development, an Iterative procedure can be constructed for the deter­

mination of the control functions in two dimensions as follows (cf. Ref. 16). Consider the 
i ? 

generation system given by Eq. (7) in two dimensions (with t - t, t - n, x1 - x, and x2 - y 

here). On a boundary segment that Is a line of constant n, Cr and Crr are known from the 

specified boundary point distribution. Also |cn|, the spacing off this boundary, is speci­

fied, as is the condition of orthogonality at the boundary, i.e., Cr • Cn • 0, But specifica­

tion of |cn| - /xj: • y^, together with the condition Cr'Cn-XpX +yry_-0 provides two equations 

for the determination of x and y in terns of the already known values of the x, and y,. 

Therefore cn is known on the boundary. 

Because of the orthogonality at the boundary, Eq. (7) reduces to the following equation 

on the boundary: 

|r |2(r 
'-n1 -nn PCr> + ICrrI <C M ' • « 

QC,) (19) 

Dotting Cc and cn Into this equation, and again using the condition of orthogonality, yields 
the following two equations for the control functions on the boundary: 
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r • p 
-5 - « 
Ic.l4 

r, • r 
- t -nn 

k I2 (20) 

r • r r r_. 

Q._za—-JB.ZH—__|S (21) 

All of the quantities In these equations are known on the boundary except Cnn- (On a boundary 
that is a line of constant (;• the same equations for the control functions result, but now 
with r . . the unknown quantity. 

The Iterative solution thus proceeds as follows: 

(1) Assume values for the control functions on the boundary. 

(2) Solve Eq. (7) to generate the grid in the field. 

(3) Evaluate cnn on n-llne boundaries, and trr
 o n 5-line boundaries, from the result of 

Step (2), using one-sided difference representations. Then evaluate the control func­

tions on the boundary from Eqs. (20) and (21). Evaluate the control functions in the 

field by interpolation from the boundary values. 

Steps (2) and (3) are then repeated until convergence. 

The analogous procedure for three dimensions is given in Refs. 20, 17, and 1. 

3.9 Unstructured Meshes 

An alternative to the structured quadralateral meshes that are discussed in this report 
are the unstructured meshes composed of triangles In 2D or tetrahedrons in 3D (Ref. 28). The 
unstructured mesh requires less ingenuity to devise (though not necessarily to code) for com­
plicated regions than does the structured mesh, but requires considerably more computer time 
and storage, as well as a much more Involved data handling procedure. Combinations of struc­
tured and unstructured meshes can also be used, with structured meshes near the boundaries 
connected by unstructured meshes (Ref. 29). 

3.10 Adaptive Grid Schemes 

Finally, dynamically-adaptive grids continually adapt to follow developing gradients in 
the physical solution. This adaption can reduce the oscillations associated with Inadequate 
resolution of large gradients, allowing sharper shocks and better representation of boundary 
layers. Another advantageous feature is the fact that in the viscous regions where real dif­
fusion effects must not be swamped, the numerical dissipation from upwind biasing Is reduced 
by the adaption. Dynamic adaption is at the frontier of numerical grid generation and may 
well prove to be one of Its most important aspects, along with the treatment of real three-
dimensional configurations through the composite grid structure. 

There are three basic strategies that may be employed in dynamically adaptive grids (cf. 
Refs. 1,1) coupled with the partial differential equations of the physical problem. (Combina­
tions are also possible, of course.): 

(1) Redistribution of a fixed number of points. 

In this approach, points are moved from regions of relatively small error or solution 
gradient to regions of large error or gradient. As long as the redistribution of 
points does not seriously deplete the number of points in other regions of possible 
significant gradients, this is a viable approach. The Increase In spacing that must 
occur somewhere Is not of practical consequence If it occurs in regions of small error 
or gradient, even though In a formal mathematical sense the global approximation Is 
not improved. The redistribution approach has the advantage of not Increasing the com­
puter time and storage during the solution, and of being straightforward in coding and 
data structure. The disadvantages are the possible deleterious depletion of points In 
certain regions and the possibility of the grid becoming too skewed. 

Recent examples of this adaptive approach in CFD are Ref. 30 in 2D and Ref. 31 in 
3D. 
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(2) Local refinement of a fixed set of points. 

In this approach, points are added (or removed) locally in a fixed point structure in 
regions of relatively large error or solution gradient. Here there is, of course, no 
depletion of points in other regions and therefore no formal increase of error occurs. 
Since the error Is locally reduced In the area of refinement, the global error does 
formally decrease. The practical advantage of this approach is that the original 
point structure is preserved. The disadvantages are that the computer time and stoi— 
age Increase with the refinement, and that the coding and data structure are diffi­
cult, especially for implicit flow solvers. 

Recent examples of this adaptive approach in CFD are Ref. 32 and 33, both in 2D. 

(3) Local Increase in algorithm order. 

In this approach, the solution method is changed locally to a higher-order approxima­
tion in regions of relatively large error or solution gradient without changing the 
point distribution. This again increases the formal global accuracy since a local In­
crease is achieved without an attendant decrease in formal accuracy elsewhere. The 
advantage Is that the point distribution is not changed at all. The disadvantage is 
the great complexity of implementation in implicit flow solvers. 

This adaptive approach has not had any significant application In CFD in multiple 
dimensions. 

Adaptive redistribution of points traces Its roots to the principle of equldlstrlbutlon 
of error (cf. Ref. 1 ,1) by which a point distribution is set so as to make the product of the 
spacing and a weight function constant over the points: 

wAx - constant (22) 

With the point distribution defined by a function x(£), where 5 varies by a unit increment 
between points, the equldistrlbutlon principle can be expressed as 

wx - constant (23) 

This one-dlmenslonal equation can be applied in each direction In an alternating fashion, but 
a direct extension to multiple dimensions oan be made in either of two ways as follows: 

From the calculus of variations, Eq. (23) can be shown (cf. Ref. 1) to be the Euler 
variational equation for the function x(£) whioh minimizes the integral 

I - | w(Ox 2 d5 (21) 

Generalizing this, a competitive enhancement of grid smoothness, orthogonality, and concentra­
tion can be accomplished by representing each of these features by Integral measures over the 
grid, and minimizing a weighted average of the three. This approach was put forward in Ref. 30 
and Is discussed in detail in Ref. 1. 

The second approach is to note the correspondence between Eq. (23) and the one-dlmen­
slonal form of the following commonly-used elliptic grid generation system, Eq. (7). Here the 
"control functions", P , serve to control the grid line spacing and orientation. The ID form 
of this system is 

x + Px - 0 (25) 

Differentiation of Eq. (23) yields 

Then, from Eq. (25) and (26), 

wx + w x - 0 (26) 

! i i . -P . . !s (27) 

from which the control function can be taken as 

P - -i (28) 
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It is logical then to represent the control functions in 3D as 

w 
_n 

P„ - -=- n - 1.2,3 (29) 

n w 

This approach was put forward in Ref. 31 and has been applied In 3D in Ref. 31. 
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4. CONTRIBUTIONS 

1.1 Solicitation and Overview 

The essence of this AGARDograph is a compilation of case histories depicting the current 
state of the art In grid generation activities for complex configurations. Researchers who 
have been actively building and using grid generation codes for simulating 3D configurations 
were solicited to describe their experiences In this area. In addition to the usual method 
description, each contributor was asked to describe what grid topologies they have used and 
what steps they took to generate a grid for a particular application. The contributors were 
also asked to provide some details of what were the most time consuming tasks, what difficul­
ties they encountered and how these were resolved, and what steps they might take in the fu­
ture to improve matters or what software is needed to better generate grids. 

None of the papers contributed to this AGARDograph used unstructured grids or rectangular 
grids with unstructured boundary/interface elements. Nevertheless, they give a fairly accu­
rate picture of the capability for griding complex configurations as of about the first half 
of 1987. The overall impression drawn from these contributions is that considerable capabil­
ity exists to adequately mesh relatively complex shapes given adequate time (measured in 
weeks). This technology, or an alternative, must continue to Improve, however, or it will 
indeed Impede the long term goal of complete aircraft simulation. 

The papers contributed to this AGARDograph convey a wealth of information but here we 
wish to note only two points. The first point, mentioned in the Introduction, is that most of 
the contributed papers have adopted the composite grid approach to griding complex configura­
tions, thereby allowing an extension of existing single-grid curvilinear grid algorithms. 
Moreover, the most prevalent approach Is the blocked (i.e., non-overlapped) grid method. Nine 
of the eleven contributed papers deal with generating a grid for general purpose simulation of 
flow about complex configurations (the papers contributed by Yoshihara and by Sobleczky having 
more limited objectives). Of these, only the approaches described by Eberle and by Benek did 
not explicitly adopt the blocked grid approach, although the Benek approach can Include 
blocked grid boundaries. 

Among the advantages cited for the composite grid approach are the following: 
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(1) ease of treatment of complex configurations. 
(2) capability for local refinement and modification. 
(3) reduced core storage. 
(1) natural use of different flow equations in different regions. 

A second point is that because of the emphasis on composite grids, the tasks of sub­
dividing the grids, generating surface grids, and providing Interfaces have become more time 
consuming and critical than the task of generating the interior grids. The contributed papers 
on composite grids either strongly hint at, or explicitly note, that how a grid should be 
subdivided depends on the geometry, the numerical algorithm used, the flow features, etc. So, 
given a limited computer resource, the sub-grids of a composite grid must be selected with 
care. This Implies a learning process and a need for human interaction. Like geometry defini­
tion, the tasks of subgrldlng, interfacing, and surface grid definition are being assigned to 
Interactive workstations. Various levels of sophistication in treating these problems in this 
way are evident in the contributed papers. What is strongly implied is that these are not 
simple tasks or ones for which off-the-shelf software is available. This is evidently a pac­
ing area of research in complex grid generation. 

Surface grid generation Is seen to have a dominant effect on the quality of the volume 
grid, to be very time-consuming, and to be in considerable need of Improvement in regard to 
the specification of boundary data sets and the interactive manipulation thereof. There is a 
feeling that more emphasis should be put on the development of CAD geometry tools especially 
suited to the needs of CFD. 

The topological definition of the block structure is seen to require considerable experi­
ence and to be difficult to teach. There is a need for automation of this process, oerhaps 
through the use of artificial intelligence or other means. 

The critical need for graphical Interaction, especially In regard to surface grid genera­
tion, block definition, and grid control is evident. The process of grid generation for com­
plex configurations still requires too large an amount of man-time. 

It appears now that the theoretical developments necessary for effective grid generation 
are largely In hand, but that a very large amount of effort is still needed in the efficient 
Implementation of the processes. 
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4.2 LESSONS LEARNED IN THE MESH GENERATION FOR PN/S CALCULATIONS 

H. Yoshihara 
Boeing Military Airplane Company 

Seattle, WA, USA 

SUMMARY 

Experiences encountered in the 2D mesh generation with the elliptic differential 
equation method are described for the PN/S calculations over a generic fighter at a 
supersonic Mach number and for a wing/fuselage at hypersonic Mach numbers. Importance 
of the mesh quality is stressed, and the need of an improved cost-effective treatment 
of the shocks is pointed out. 

1. INTRODUCTION 

Experience has amply demonstrated that accurate finite difference solutions can only 
be achieved if the mesh is sufficiently refined and orthogonal. That Is, the quality 
of the mesh impacts both the stability and accuracy of the numerical solutions with 
the sensitivity depending on the difference equations and boundary conditions on hand 
and on the solution algorithm. An efficient mesh will finally Impact directly the 
computer costs. In the following we shall recollect the experiences encountered In 
the mesh generation for the parabolized Navier/Stokes (PN/S) calculations for the 
supersonic flow over a generic fighter (Ref. 1) and for the hypersonic flow over a 
generic wing/fuselage (Ref. 2 ) . Features of the solution and solution procedure 
relevent to the mesh generation will be described. 

The PN/S equations are based on the Reynolds-averaged thin-layer N/S equations in 
which the pressure is assumed to be constant across the subsonic portion of the 
boundary layer (the sublayer approximation). Closure is achieved using the 
Baldwin/Lomax mixing-length turbulence model. When the inviscid portion of the flow 
is supersonic, the solution can be obtained by a spatial marching In the free stream 
direction. In the cases to be calculated the nose shock from the fuselage apex Is 
fitted, but shock waves occurring further downstream are captured. In comparison to 
the the unsteady N/S procedure, with the PN/S procedure, the computer time is greatly 
reduced; but, more importantly, the mesh generation Is greatly simplified, requiring 
only a two dimensional (2D) mesh generation. The latter then permitted the treatment 
of the complex fighter configuration. There is however a disadvantage introduced by 
the sublayer approximation. There arises a numerical stability limitation requiring 
the streamwise marching step to be "much larger" than the height of the subsonic 
sub!ayer. 

For the 2D mesh generation, the Steger/Sorenson elliptic differential equation method 
was used. It entails the solution of two decoupled boundary value problems for the 
dependent variables r • r ( v , t ) and 6 = _•(»., t ) . Here r and 6 are the polar coordinates 
in a marching plane in the physical space, whereas i) and t are the cartesian 
coordinates in the computational plane in which the physical space in a marching plane 
is mapped to the interior of a unit square. (See Figure 1.) The two elliptic 
equations for r ( t ) , i ) and e ( V , t ) contain non-homogeneous terms which are chosen to 
impose orthogonality of the mesh in the neighborhood of the boundaries. Boundary 
conditions on the unit square are posed to obtain the desired mesh topology and 
spacing. The above boundary value problems were solved by a point-relaxation code 
furnished by Dr. Denny Chaussee of NASA-Ames. 

2. THE SUPERSONIC CASE-MODEL 350 GENERIC FIGHTER (REF. 1) 

Calculations were carried out on the configuration shown 1n Figure 2 for a free stream 
Mach number of 2.2, at 10 degrees angle of attack, and assuming a turbulent flow. The 
marching coordinate x was taken as the body-oriented axis passing through the fuselage 
nose. In general 91 mesh points were used on the half-circumference and 45 points In 
the radial direction. For the radial spacing, the location of the first point off the 
solid surfaces was chosen; and the spacing of further outboard points was 
geometrically stretched with a geometric ratio that located the outermost mesh point 
on the outboard boundary formed by the nose shock. The location of the first point 
and the total number of "radial" points were selected such that there was a minimum of 
five points within the subsonic portion of the boundary layer. With the height of the 
subsonic sublayer varying over a wide range along the configuration cut, the location 
of the first point off the surface should be correspondingly varied to achieve an 
efficient mesh. However In the above calculations, the location of the first point 
was fixed at the level to accommodate the smallest subsonic sublayer height, resulting 
in excessive refinement elsewhere. 

Selection of the Boundary conditions 

The selection of the boundary conditions for the mesh generation problem Is an 
important first step which establishes the topology and spacing of the mesh and 
indirectly affects the orthogonality of the mesh In the domain interior. In general 
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procedure to establish the boundary conditions is to locate the boundary mesh 
ts In the physical space to achieve the desired spacing. The resulting values of 
d 9 are then assigned as the boundary values at the corresponding points in the 
utational plane. (In the latter the mesh points are distributed uniformly along 
coordinate line.) Along the configuration cut (ABCD), the mesh points were 

rlbuted to fit the expected flow gradients. Thus for example the points would be 
tered about the sharp leading edge (Point C ) . Along the symmetry boundaries, AG 
D E , the mesh points were distributed with the geometric stretching described 
ier. Less obvious was the appropriate mesh placement along the shock EFG. Here 
mesh points were distributed with the same relative spacing used along the 
iguration cut ABCD. Some tuning of the above boundary conditions was usually 
ired to obtain the final mesh. 

The boundary conditions, as determined above, must be updated as the marching 
progresses downstream, since the configuration cut can change greatly, in general 
necessitating both an addition as well as a redistribution of the mesh points. 
Without adequate control, a clustered mesh about the wing tip drifted from its 
intended location about the tip to the wing surface, resulting in a severe skewing of 
the mesh by the misalignment of the end points of the radial mesh lines. 

The elliptic boundary value problems with the above boundary conditions were solved by 
point relaxation, and a typical mesh at a wing station is shown in Figure 3. Here the 
convergence of the relaxation process must be carried out to a point that the desired 
mesh orthogonality near the configuration surface has been achieved. 

Treatment of the Swept Canard Trailing Edge 

The marching plane used was a plane of constant x. The use of this marching plane 
offered no difficulties until the swept trailing edge was intercepted as at Station X 
of Figure 4. Here the configuration cut assumed the multiply connected domain shown 
on the lower left part of Figure 4. The mesh for this configuration can be generated 
in the usual way if the wake segment BD and GF are placed on the two sides of a slit. 
The corresponding computational plane assumes the configuration shown on the right 
part of Figure 4. The difficulty for the numerical formulation is that the flow 
continuity condition across the slit envolves two points lying on separate line 
segments. With an Implicit treatment of the continuity condition, the simple solution 
procedure used previously 1s no longer possible. 

The above difficulty can be circumvented in several ways. In the case of a modest 
trailing edge sweep, a shearing transformation can be made to unsweep the trailing 
edge. The usual marching procedure can then be used across the trailing edge. The 
procedure used in Ref. 1 however was to bridge the trailing edge by solving the 
intervening domain containing the trailing edge by the unsteady N/S code ARC3D. Here 
the solution at the slit points was determined using a one-sided difference, and the 
resulting unequal values at the corresponding slit points were simply averaged for use 
as Initial data for the next time step. Upon convergence, the continuity of the 
solution at the slit would be achieved. The supersonic outflow condition was 
prescribed at the downstream boundary. The 3D mesh for the ARC3D solution was 
generated by interpolating a sequence of 2D meshes, one of which shown In Figure 5. 
The ARC3D solutions on the two most downstream planes were discarded, and the solution 
on the next two further upstream planes were used as initial data for the further PN/S 
marching. 

Treatment of the Underwing Nacelles 

The inlet faces of the 350 configuration lie on a constant-x plane, so that no 
difficulties were encountered In the march onto the nacelle. The marching was first 
carried out downstream to the inlet face, yielding the solution on the mesh shown in 
the upper part of Figure 6 containing the nacelle centerbody. A new mesh was then 
generated at this station with the configuration cut now containing the nacelle 
highlight (lower part of Figure 6 ) . The solution on the upstream mesh (upper mesh) 
was then interpolated onto the downstream mesh (lower mesh) to yield the initial data 
for the further downstream marching. 

Mesh Refinement About the Wing Tip 

For the supersonic cases with the leading edge only slightly subsonic, the leading 
edge pressures, both on the upper and lower surfaces, should be reasonably well 
behaved without sharp suction or overpressure peaks. In Figure 7 the spanwise 
pressure distribution at Station D is shown where a sharp peak occurred on the lower 
surface near the leading edge. This Is to be contrasted to the expected smooth 
distribution obtained at Station B also shown in Figure 7. The cause of the suspect 
peak at Station 0 Is due to the truncation errors associated with both the flow 
solution and the numerical determination of the near-singular Jacobian in the 
neighborhood of the "pointed" leading edge. The sharp spike can only be removed by 
using a sufficiently refined orthogonal mesh about the leading edge. (Here a 
"conservative" differencing of the Jacobian offered no relief.) 
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3. THE HYPERSONIC CASE-GENERIC WING/FUSELAGE (REF. 2) 

PN/S calculations were also carried out for the generic wing/fuselage shown In Figure 
8 at Mach numbers of 10 and 25 and at zero angle of attack assuming the boundary layer 
to be turbulent. Fluid dynamically these hypersonic flows are more extreme relative 
to the previous supersonic cases due to the appearance of greatly strengthened shock 
waves and increased heating effects. In general the mesh generation procedure 
followed that used in the above supersonic case, but the requirements on the mesh 
quality were more stringent due to the Increased "severity" of the flow. A typical 
mesh of dimension 101 (half-circumference) x 60 (radial) generated with the above 
elliptic method is shown in Figure 9. The first mesh point from the surface over most 
of the configuration was located at 0.02 inches, but closer locations were used In the 
nose and wing leading edge regions. The axial marching step was 0.5 inches. (These 
dimensions are to be viewed relative to the fuselage length of 1235 inches.) In the 
following, additional facets of the mesh generation process arising by the increase of 
the Mach number are described. 

The Temperature Boundary Layer 

In Figure 10 radial profiles of the velocity and temperature at the crest point at 
Station 533 are shown for a turbulent flow at M = 10. Here a surface temperature of 
1800° R was prescribed. Of particular significance 1s the highly-peaked temperature 
overshoot arising In the lower part of the boundary layer generated by the intense 
eddy dissipation. It Is clear by examining these profiles that the adequacy of the 
mesh refinement In the boundary layer is dictated, not by the more customary velocity 
profile, but by the temperature profile. 

Shock Capture 

In the present calculations the nose shock from the fuselage apex was fitted, but 
shocks arising further downstream, as the wing bow shock, were captured. In the shock 
capture process an appropriately refined mesh must be used to obtain an acceptable 
shock thickness. In the case of an Inclined shock cutting across the mesh, a fine 
mesh must be used In all coordinate directions cutting across the shock. Thus If the 
shock is aligned with the "transverse" mesh lines, a fine mesh would be required only 
In the direction cutting across the shock. 

The leading edge radius of the wing was 0.5 inches (this to be contrasted to the wing 
root chord of the order of 500 inches). With a streamwise marching step of 0.5 
inches, the question then arises as to how the detached shock flow about the leading 
edge with a radius equal to the marching step could be adequately resolved. The 
answer is that the detached shock flow Is essentially "aligned" with the leading edge, 
and the marching in the computational plane takes place essentially in the direction 
of the leading edge. That is, the coordinate lines are aligned with the strong 
portion of the detached shock. The resolution of the detached shock flow Is then 
dictated, not by the 0.5 inch marching step, but by the more highly refined transverse 
mesh in the marching plane. Away from the leading edge region, this alignment no 
longer prevails and with the transverse mesh Itself coarsened, the shock will assume a 
much larger thickness. 

For the proper design of external compression Inlets, which might be incorporated on 
the wing lower surface of the above configuration, it is essential that the shocks 
from the compression ramps be captured with a sufficiently small thickness. Also to 
obtain the proper interaction of the wing shock on the thick fuselage boundary layer, 
It Is again important to capture the wing shock with a sufficiently small thickness. 
In a 3D problem, one would turn to a 30 adaptive mesh program to align the mesh with 
the shocks as well as bunch the mesh lines In the direction normal to the shock. The 
present PN/S procedure Is a 20 method, solving the flow only in a cross-flow marching 
plane. Use of an adaptive mesh program in this marching plane clearly would not 
achieve our goal completely. The x-marching would still cut across such aligned 
shocks, necessitating a refined marching step. 

Shock-on-Shock Interaction 

As one marches sufficiently far downstream, the nose shock from the fuselage apex will 
approach the wing leading edge and intersect the wing detached shock. A difficulty 
now arises as the 60 radial mesh points are squeezed into an ever-decreasing interval 
as the shock (the outer boundary) approaches the wing leading edge (the inner 
boundary). Moreover, computational difficulty can be anticipated as the fitted nose 
shock approaches and intersects the captured wing shock, and the treatment of the wing 
shock is switched from a capture to a fitting procedure as ft emerges as the most 
upstream shock. To circumvent these difficulties, the treatment of the nose shock was 
switched from a fitting to a capturing procedure just upstream of its intersection 
with the wing shock. In this switch, the outer boundary was selected parallel to the 
expected shock location and located sufficiently outboard to cover the upstream spread 
of the captured shocks. All 60 mesh points were employed in the greatly reduced 
radial interval . 
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4. CONCLUDING REMARKS 

In supersonic and hypersonic problems, the use of the PN/S method greatly simplified 
the mesh generation problem, reducing It from 3D to 20. However, the severe stiffness 
of the problem together with the extremeness of the flow, particularly the hypersonic 
case, placed stringent quality requirements on the mesh. The treatment of shock waves 
is still a serious problem. Use of an adaptive raesh in the PN/S cross-flow plane will 
still require a mesh refinement in one transverse direction and 1n the marching 
direction. Shock fitting of the interior shocks does not offer an attractive 
alternative. 
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Figure 3. Model-350 Mesh - Wing Station. 
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Figure 5. Mesh at Canard Station - Model-350. 
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Figure 6. Bridging Meshes at Inlet Face - Model-350. 
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INTRODUCTION 

The F-16 is widely employed in the US and NATO air forces, and that is the first 
of several reasons for the choice of that aircraft in this simulation. Secondly, many 
of its design features, such aa leading-edge extensions or strakes, appear on fighter 
aircraft currently under development. Additionally, a great body of wind-tunnel data 
for that aircraft already exists. Lastly, Reznick1 reports that there is work under way 
at present to expand the F-16's flight envelope to allow higher angles of attack. The 
propulsion system is capable of sustaining such attitudes, but certain undesirable 
flight characteristics prevent it. It is thought that computer simulation could aid 
that effort. 
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GRID TOPOLOGY 

A cylindrical grid topology about the fuselage 
is used because of its ability to treat a body with a 
sharp nose, as illustrated in Fig. 1. This topology 
also will facilitate the later addition of a grid 
zone for the exhaust plume. This fuselage grid is of 
the H-type as seen from the side or from the top. It 
appears to be of the 0-type when viewed from the 
front or rear, thus giving rise to the terminology 
H-O-type as describing this cylindrical grid. 

Further examination of Fig. 1 shows the grid 
above and below the wing, seen from the front, to be 
of the H-type, with the wing in a slit. The main 
advantages to the use of H-type topology in this 
coordinate surface are the ease with which it mates 
with the cylindrical fuselage grid, and its ability 
to provide an adequate number of points in the far 
field outboard of the tip. 

A cross-sectional view taken normal to the span 
direction, shown in Fig. 2a, reveals an airfoil 
section with the surrounding grid being of the 

Figure 1. Front-Quarter view 
of F-16, showing fuselage, 
symmetry-plane, and wing. 
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a) Coarse global grid only. 

b) Refinement zones added. 

Figure 2. Grid surface normal to span. 

capabilities of even the most powerful modern computers. 

H-type. This grid type could 
potentially waste many points upstream 
and downstream of the wing when the 
wing is embedded in a refinement zone, 
but the solution to this problem, shown 
in Fig. 2b, is to terminate that zone 
just upstream and downstream of the 
wing. Another disadvantage of this 
approach is that certain types of 
flow-solvers using H-type meshes have 
difficulties resolving a blunt leading-
edge. But the leading-edge of the F-16 
wing is very sharp, so this problem is 
minimized. The overriding advantage of 
this type of grid is the ease with 
which it can be mated to the fuselage 
grid. If the grid were of the 0- or 
C-type in this direction, great 
difficulties would be encountered in 
mating to the fuselage, and in 
achieving adequate resolution upstream 
of the wing. Since the wing grid 
appears to be of the H-type when viewed 
in both span-normal and flow-normal 
directions, its topology is referred to 
as H-H-type. 

When designing a mesh for a 
complex configuration such as this, it 
is difficult to quantify the effect of 
the chosen topolology on the serious 
matter of putting an adequate number of 
points where they are desired, 
principally near the fuselage- and 
wing-surfaces, while restricting the 
total number of points. Hoist and 
Thomas3 have attempted to clarify this 
matter with their Mesh Efficiency Ratio 
(MER). Reznick in Ref. 1 calculates 
that the MBR has very favorable values 
for the type of grid topology used 
here, H-0 on the fuselage and H-H for 
the wing. The efficiency of the mesh 
is important, since this flow solver 
challenges the speed and storage 

This flow simulation was first performed for a simplified version of the aircraft, 
consisting of the fuselage, strake, and main wing only, with the inlet fared over.4 

Later addition of the inlet provided a perplexing topological challenge, as illustrated 
in Fig. 3a. The solution5 chosen for this work was to introduce two warped wedge-shaped 
zones, shown in Fig. 3b. One wedge has its edge emanating from the lower side and 
bottom of the fuselage, upstream of the inlet, and its base at the face of the inlet. 
The other warped wedge-shaped zone nestles in the diverter region, between the top of 
the inlet and the bottom of the fuselage. The global grid wraps around the fuselage 
having these two zonal grids already attached. 

GLOBAL GRID GENERATION 
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The program for generating grids about simple analytic shapes, reported in Ref. 8, 
was the starting point for this effort. The first step was to convert the program from 

'Called GRAPE, an acronym for GRids about Airfoils using Poisson's Equation 
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a) Right half of forebody. 

The next matter to be addressed 
was the treatment of the axis upstream 
of the nose of the aircraft. In the 
region of the fuselage, one face of 
the computational cube warps to 
conform to that fuselage. But 
upstream of the nose of the aircraft, 
that face collapses to the axis line. 
The Poisson equations can be solved, 
and thus a grid generated, in that 

case. However, the GRAPE grid generation program and its three- dimensional versions 
also solve side-condition equations to find the inhomogeneous terms which give the 
required control of cell size and skewness at boundary faces. Those side-condition 
equations become undefined when the face collapses to a point or a line. 

b) Inlet and diverter zones added. 

Figure 3. F-16 with inlet. 
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The boundary condition arrangement in the grid generation to preserve the wing in 
its slit was made as simple as possible. Straightforward explicit boundary conditions 
were imposed on the upper and lower surfaces of the wing. It was felt that the ease of 
coding in this matter far outweighed any advantagea which might have accrued from more 
sophisticated implicit boundary treatments. 

However, in addition to instituting Dirichlet boundary conditions at the wing, it 
was necessary to add inhomogeneous terms to impose on the wing surfaces the same kind of 
control of cell height and skewness as is imposed on the fuselage. See Ref. 10 for a 
detailed treatment of those inhomogeneous terms, as well as the Poisson grid generation 
equations to which they are applied. Those terms are similar in form to the body's 
terms, but required some coding effort, since the wing surfaces are examples of a 
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different family of grid surfaces v i s - a - v i s the fuselage surface. The fuselage, in this 
effort, is a surface of constant computational variable zeta. The wing surfaces are 
surfaces of constant xi. Inhomogeneous terms were also added to cluster lines in the 
planform grid surface toward the leading-edge and trailing-edge of the wing. Those 
terms are degenerate two-dimensional versions of the terms on the body and wing surface, 
and are identical in form to the two-dimensional clustering terms in the GRAPE program. 

The attempt was also made to add similar terms to cluster lines outboard of the 
tip, to make lines in that region to be near—orthogonal as viewed from above. That 
effort was not successful, however. It is a fundamental trait of elliptic grid 

generation methods, including this one, 
that grid lines tend toward a uniform 
distribution. Thus, if points on a 
boundary are tightly clustered in the 
direction tangent to that boundary, and 
lines emanate from those tightly 
clustered points, those lines will tend 
to repel each other. That mutual 
repelling action can be so intense that 
the lines deviate greatly from being 
orthogonal to the boundary, regardless 
of the presence or absence of clustering 
terms. This problem was encountered 
when attempting to add inhomogeneous 
terms at the wing tip for the purpose of 
controlling spanwise lines proceeding 
outboard from the tip; see Fig. 4. A 
grid solution could not be obtained; the 
grid equation convergence history became 
oscillatory. The resolution of this 
problem was to extend the wing outboard 
with zero thickness all the way to the 
outer boundary. Thus spanwise lines in 
that region were defined as part of the 
initial conditions to the grid 
generation, and they remained in place 
for all computational time. 
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Distribution of body points is an area of concern, even under ideal circumstances. 
An elliptic grid generator is sensitive to not only the shape of the body, but the 
distribution of points on it. Consider a trace proceeding around the fuselage in a 
plane cutting it normal to the streamwise axis, with that trace proceeding across the 
edge of the strake. The body points on that trace must be clustered approaching the 
strake edge from both directions, with minimum tangential spacing immediately above and 
below the edge. (A two-dimensional analogy to this is that points must be clustered to 
the nose of a sharp-nosed airfoil when generating an O-type grid about it.) If these 
precautions are not taken, the elliptic grid generator will at best give a grid with odd 
angles at the edge, and at worst fail to converge. 

Distribution of body points is likewise critical for the flow-solver as well. In 
the early months of this effort, computer storage limited the number of grid points in 
the chordwise direction on the wing, which in turn limited how fine the spacing could be 
in that direction at the leading-edge. Thus the first effort failed to resolve the 
shape of the leading-edge, leading to a failure to correlate with test data at high 
angles of attack. This problem t-as resolved in later efforts with NASA/Ames' new CRAY 2 
computer, having 256 million words of high-speed memory. 

The resulting coarse global grid, illustrated in Fig. 5, has 26 points around one 
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half of the fuselage, from bottom to top, including the symmetry plane and the 
reflection boundary surfaces. The grid has 55 points in the streamwise direction, 
including 5 upstream of the nose and 5 downstream of the jet-exhaust. Twenty points are 
used in the radial direction, giving 28,600 total 
points in the coarse grid. Fifteen points are used 
in the chordwise direction on the wing, with 10 
spanwise stations. The minimum spacing normal to 
the fuselage surface, between the surface and the 
next point outward, waa controlled by the GRAPE-type 
terms to be approximately 4 inches on the real 
aircraft. Approximately the same spacing was 
required on the upper and lower surfaces of the 
wing. 
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CONCLUSIONS AND FUTURE PLANS 

The first and most obvious 
conclusion to be drawn here is that the 
above method works. Grids were 
generated, and flow-solutions to this 
very difficult problem were obtained, 
and they did agree with test data. See 
Refs. 4 and 5. 

But the call for this paper 
requested "...a description of what you 
did and what worked.... some details of 
what were the most time consuming tasks 
and what difficulties you had to 
overcome.... a brief written tutorial on 
how you generated the grid for your 
application." In accordance with that 
request the following observations are 
made. 

Figure 6. Streamwise-normal grid surface 
near wing, showing refinement zones. 

The most problematical part of this 
grid generation project was obtaining an adequate fitting of the body surface, and 
distributing points on it, i.e., obtaining an adequate surface grid. There were several 
contributing factors to this matter, including inadequacies and unreliabilities in the 
CAD/CAM software, and difficulties in obtaining time on the unique hardware on which it 
must run. Also contributing here was the marginal suitability of the "raw" body 
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definition which was input to the CAD/CAM, although this problem may be traced to 
incompatibilities between the different CAD/CAM systems here and at the airframe 
manufacturer. An effort is underway as of this writing to adapt the PATRAN software to 
this task, but results have not yet been obtained. 

But a more fundamental problem here may be the way surface-fitting is viewed, 
relative to other parts of the field of Computational Fluid Dynamics (CFD). Body-
fitting is not seen in some quarters as a "glamorous" career direction. Those 
performing these tasks sometimes move on to other regions of the field, leaving a lack 
of continuity, a lack of the easy expertise which comes with experience. A solution may 
be to recognize body-fitting for what it is: a major pacing item in modern application-
ally-oriented CFD, and to accord it the respect which it deserves. Another approach 
might be to have an easy-to-use "turnkey" CAD system, one which is o r i e n t e d t o CFD 
a p p l i c a t i o n s , and could be easily used as a tool by any CFD researcher to obtain 
auperior body fitting. 

Some significant grid generation technology has been developed in this work, 
specifically an extension of GRAPE to three-dimensions and the application of it to 

I — — m — '- I — — . - » — - . - . . . . . . - • _ _ _ . — .. m m . . . — , " . . . . . . . . 

the same program which does n o t have dimensions 100 x 100 x 100). The program will not, 
however, have any capabilities for fitting body surfaces or distributing points on them; 
it haa been (.and continues to be) the philosophy of the GRAPE grid generator that 
surface-fitting is a formidable problem in itself, and that the surface-grid is a 
boundary condition which ahould be an input to the grid generator. 
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FOR AIRCRAFT CONFIGURATIONS 

by 
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INTRODUCTION 

As numerical algorithms for the solution of the Full Potential and Euler 
equations mature there is an increasing demand to simulate the flow over complex 
aerodynamic shapes. However, of the many problems in engineering and the 
physical sciences which involve grid generation, the shapes and length scales 
encountered in aerodynamics are some of the most varied. The generation of 
a suitable set of points around an aircraft shape, therefore,affords a 
significant technical challenge and one which is currently being pursued by 
many groups. 

The concept of the grid generation technique adopted at the Aircraft 
Research Association was originally proposed by Forsey as discussed in Ref.l. 
The development of a general grid generation method applicable to a wide range 
of aircraft configurations, involves a block decomposition of the flow domain 
with grid points within each block computed by solution of a set of elliptic 
partial differential equations. This method enables grid structures to be 
constructed which are compatible with each separate component in a configuration 
while maintaining a globally smooth grid. This component adaptive grid 
generation technique has been applied to a variety of configurations and details 

of the method have been given elsewhere •4,-). it suffices, therefore, to give 
only a brief outline of our approach. 

The method utilises the basic concept of block structured grids. The flow 
domain is subdivided into a set of non-overlapping blocks. The arrangement 
of the blocks defines the grid structure cr grid topology which is appropriate 
for the geometrical configuration. The block subdivision is performed 
automatically by a block decomposition algorithm. Each block is chosen to be 
topologically equivalent to a cuboid in that it has six faces and eight corners 
and can, therefore, in principle, be mapped into a unit cube in computational 
space without change in topological structure. Cartesian grids in the unit cubes 
in computational space map to curvilinear grids in physical space. Many faces 
within the block structure are boundaries between blocks in the interior of the 
flow domain and as such are purely notional boundaries which have no physical 
significance. At such boundaries a continuity condition can be imposed which 
ensures grid lines pass smoothly through the interface of two adjacent blocks. 

Following the ideas of Thompson, Thames and Mastin , a set of elliptic partial 
differential equations have been used to generate grid point coordinates 
within each block. These equations can be written 

g1jXcicJ = - p \ i (1) 

where g1J are the metric terms, X the grid point coordinates and C the 
computational coordinates with the tensor notation ij taking values of 1,2 
and 3. The source terms pi are used to control the positioning of grid -, 
points and -their form is computed using the ideas of Thomas and Middlecoff . 
The continuity condition at block faces is applied by defining a computational 
molecule for points on the faces which is compatible with the finite difference 
solution of the elliptic equations (1). 

o 

Following the ideas of Coons the surface of each component of a 
configuration is modelled by a network of parametric bi-cubic patches. Any 
patch can be described by the matrix equations 

AMB"1 = X 

where X = (x.y.z), A = (s3.s2,s.l), B = (t3,t2,t,l) and M is a matrix 
containing the parametric derivatives of X and some blending functions. 
Grids on the surface of a geometry are computed in the parametric space (s,t) 
using the equivalent two-dimensional form of equation (1). 

Here we propose to discuss the application of these techniques to 
wing-body-canard geometries. These configurations are sufficiently complicated 
to highlight the difficulties inherent to grid generation and provide good 
test cases on which a more detailed discussion of our approach can be based. 



30 

TEST CASE 

The test case geometries are shown in Figures 1 and 2. The two afford 
interesting geometrical contrasts and represent two typical configurations 
which might be confronted in the Aerospace industry. Geometry A, shown in 
Figure 1, has a swept forward wing with the canard position at the body side 
approximately a canard chord forward of the wing. The canard elevation is 
higher than that of the wing. 

FIGURE I . GEOHETRY P. SUETT FORUBRD UlfIG UITM CPMflRD W(D BODY. 

Geometry B is shown in Figure 2 where it should be noted that the body has 
been extended far downstream to avoid problems with afterbody effects. At 
the bodyside, the x-value of the trailing edge of the canard is approximately 
equal to the x-value of the leading edge of the wing. Due to the sweepback 
of the leading edge of the wing, with respect to the trailing edge of the 
canard, the x-value of the trailing edge of the canard tip is several canard 
tip chords upstream of the leading edge of the wing. This spanwise variation 
of the relative positions of the wing and canard leads to a conflict in the 
appropriate chordwise topology for the body side grid and the canard tip grid. 
The elevation of the canard is above that of the wing. 

FIGURE 2 . GEOTIETRY B. UIMG-BODY-CRMBRD COMFIGURflT IOfi . 

TOPOLOGY DEFINITION 

In principle, the multiblock method described above allows a wide range of 
grid structures to be defined for a given configuration. However, the problems 
associated with grid control are strongly influenced by the choice of grid 
structure for a geometry. A wise choice of grid topology, which utilises the 
properties of the elliptic equations (1) used to generate the grid, can ease the 
requirements on the grid control technique. However, an inappropriate grid 
structure can lead to unacceptable demands on any coordinate system control method. 
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In addition to grid control requirements, the specification of any suitable 
topology can be problematic. The mechanics of defining a grid structure within 
the multiblock framework involves specifying, for each block, the number of grid 
points in each computational coordinate direction, and for each face the 
appropriate boundary condition type for the elliptic grid generation equations. 

For the continuity boundary condition it is necessary to specify the 
adjacent block, the appropriate adjacent face of that block and the 
orientation between the coordinate axes fixed in each block. The 
specification of this information although straightforward for a simple 
grid structure is time consuming and tedious. If one aspect of a 
configuration is changed, for example, the canard moved a small distance 
relative to the wing, then this may involve a significant modification to 
the topology. 

It is clear from these brief comments that the definition of a suitable 
topology for a given configuration requires expert knowledge. A grid 
generation technique, which is to be used by non-CFO specialists, must 
overcome the problem of topology construction. To this end, an automatic 
topology generator has been developed which, given a configuration, subdivides 
the flow domain into a set of blocks, the arrangement of which is consistent 
with a component adaptive grid structure. 

The ideas behind the automatic block decomposition algorithm are best 
illustrated in two dimensions. Consider an aerofoil in a finite two 
dimensional domain. In computational space U,n) the aerofoil coordinates 
map to a cut of constant n. In a block structured domain this cut maps to 
a side of a rectangular block. Assuming a unique boundary condition type for 
each side, a block decomposition of the domain would result in six regions, 
as shown in Figure 3a. Now introduce three additional cuts in the computational 
domain; two cuts of constant n, one above and one below the aerofoil and a 
third cut of constant c - upstream of the aerofoil. The resulting block 
decomposition is shown in Figure 3b. It is now possible to make a small change 
in the block structure to construct a grid topology in which a C-grid is locally 
embedded around the aerofoil within a global H-grid. Such a transformation 
is shown in Figure 3c. 
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FIGURE 3 . SLOCK DECOOfOStTtOCI FOR Ftfi AEROFOIL. 

Clearly the transformation performed around point A in Figure 3c could 
be applied around B to give a polar structure around the aerofoil. Other 
transformations are possible which give rise to other block structures and 
different singularities in the grid. One such example is shown in Figures 3d, 
e and f wherein the block decomposition gives rise to a six point singularity 
ahead of the aerofoil section. Experience in generating grids with singular 
points indicates that although the position of singularities is not easy to 
control, two five point singularities away from the aerofoil are preferred 
to a six point singularity positioned just ahead of the leading edge. The type 
of transformation shown between Figure 3a and 3c has been adopted in the 
automatic topology generator. 

The arguments presented here in two dimensions are applicable to three-
dimensional shapes like a wing, pylon, tail, body etc. In such cases the 
local block structure around each component is pseudo three-dimensional in the 
sense that the locally adapted grid structures shown in Figure 3c are repeated 
along the component. At the termination of the component the same grid 
structure continues but is constructed around a degenerate form of the 
component. For example, a locally embedded C grid around a wing is continued 
outboard of the tip where it is constructed around an imaginary extension of 
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the wing which has zero thickness. For a locally embedded polar grid around 
a body this degenerates into a polar grid encircling a singular line upstream 
of the body nose. 

AUTOMATIC TOPOLOGY GENERATOR 

Details of the configuration are input to the topology generator by 
means of a schematic of the geometry. Each component of a configuration is 
input as a plane of constant x,y or z and given the flow domain to be within 
the cube [0-1000, 0-1000, 0-1000],it is straightforward to generate the 
appropriate block structure for a Cartesian grid given the constraint of one 
boundary condition type per block face. Following the ideas sketched in 
two dimensions, a first step to the construction of a component adaptive grid 
topology is the addition of planar cuts in the domain. For a given isolated 
component the local embedding of a C or 0 structure is reasonably straightforward. 
The key to extending such an approach to multiple components is to ensure that 
the new blocks introduced to provide the C and 0 structures never map to other 
new blocks for different components. In other words, the introduction of the 
new blocks must always be performed in a locally Cartesian block structure. 

In practice, the use of the algorithm is straightforward. Given the 
geometry of Figure 1 it is clear that it is possible to construct several 
topologies within the class of topologies generated by the automatic approach. 
The freedom to construct different grid structures rests with the specification 
of the schematic. A study of the geometrical features could lead to the 
definition of the following schematic. 

Body: (300,0,300), (700,0,300), (300,0,700), (700,0,700) 
Wing: (500,0,500), (600,0,500), (500,400,500), (600,400,500) 
Canard: (400,0,550), (450,0,550), (400,200,550),(450,200,550) 

In this form the canard is upstream of the wing and lies above the wing 
elevation. Such a schematic (schematic A) would lead to a C-structure around 
the canard which continued above the wing. An outline of the expected grid 
structure at the body side is given in Figure 4. 

FIGURE 4. GRID STRUCTURE 0M THE BODY DERIUED FROn GEOMETRICAL SCHEMATIC fl. 

In contrast, it would also be appropriate for geometry A to define a schematic 
in which the elevation (i.e. z coordinate value) of both wing and canard were 
the same. In this case the schematic for the canard could be redefined to be 

Canard: (400,0,500), (450,0,500), (400,200,500), (450,200,500) 

This schematic, (schematic B), would then lead to a grid structure on the body 
side as indicated in Figure 5. Both topologies are sensible for the configuration 
and the better of the two can only be determined by viewing the grids generated 
by the two approaches. 

Having defined a schematic, the topology generator, which is executed 
interactively, performs the necessary planar cuts ready for the embedding of 
the C and 0 grid structures. The user is prompted for the block dimensions, 
which, since at this stage the block structure is Cartesian, requires the 
specification of IB+JB+KB values, where IB,JB and KB are the number of blocks 
in each of the coordinate directions. The transformations are applied to produce 
the final topology and the new blocks are assigned dimensions consistent with the 
existing structure. For the first schematic the total number of blocks in the 
construction is 430 (IB=9,JB=4.KB=11) and in the second 322 (IB=9,JB=4,KB=8). 
The topology generator also outputs auxiliary information for the post-processing 
of grids and flowfield solutions. The algorithm also outputs information which 
is used by the grid generators to assist with grid control. 
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The grid structure on the surface of each component and on the 
outer boundary is readily derived from the three-dimensional grid topology. 
The outer boundary is constructed from a number of different components. 
These components, which when combined form a rectangular box, are defined 
to be consistent with the field topology. For example, the planar cut in 
the topology at the wing tip extends to the outer boundary and forms the 
intersection between two parts of the boundary. It is consistent with the 
spanwise grid topology to set this intersection line to the y coordinate 
of the wing tip. A similar procedure is adopted on the cut at the 
canard tip. Each component of the outer boundary is modelled in a similar 
manner to a component of the configuration and the grids are generated in 
parametric coordinates. 

SURFACE GRIDS 

The grids on the surface of each component are generated in parametric 
coordinates and in an order which ensure that grid properties of one 
component can, if necessary, be used to ensure a consistent grid on another 
component. The grid topology for the body, consistent with the field 
topology generated from schematic A of the wing-body-canard configuration 
geometry A, is given in Figure 6. 
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FIGURE 6. BLOCK STRUCTURE FOR SURFACE GRID Ofl BODY USING SCHEMATIC fl. 

The contour path ABCDEA represents the body/plane of symmetry intersection 
line and the paths FGH, LMN the intersections between the wing/body and 
canard/body, respectively. To generate the grid in this block structured 
domain using the elliptic equations (1) the necessary boundary data must be 
defined on these paths. The appropriate point distribution is of considerable 
importance since, using the Thomas and Middlecoff approach to compute the 
control function p 1, it effectively determines the quality of the grid in 
the interior of the domain. Grid points on the paths FGH and LMN are computed 
from a geometrical intersection routine which ensures that appropriate grid 
clustering occurs at the leading and trailing edges. To ensure a suitable 
distribution of points along the path ABCDEA, information from ine automatic 
topology generator is utilised. Descriptors which are associated with features 
of the geometry and topology paths are assigned to particular blocks and edges. 
For example, the descriptor wingtex is a path of constant x associated with the 
trailing edge of the wing. As the contour path along ABCDEA is prescribed, the 
point distribution routine within the surface grid generator examines any 
topology path descriptor which crosses the contour path in a normal direction. 
When two such paths cross, grid points are attracted to both sides of the 
intersection. Additional attraction and repulsion of grid points occurs where 
corners in the contour path are detected. In this way appropriate grid point 
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clustering occurs on the path ABCDEA which is consistent with the configuration 
and the topology. In schematic form the idea is illustrated in Figure 6. This 
approach, outlined for the body, is applicable to the generation of all surface 
grids. 

Figure 7 shows a grid in the parametric coordinates for the body of 
geometry A using schematic A for the topology. Grid point clustering, so 
carefully constructed on the boundaries, can be seen to influence the interior 
grid points. The grid in physical coordinates along with the component grids 
on the wing and canard, is illustrated in Figure 8. The nose of the body is 
reasonably well defined using the polar structure in the field topology and the 
inserts show the locally embedded C grids around the wing and canard. Figure 9 
illustrates the effect of grid point clustering on the component parts of the 
outer boundary. This proves essential in achieving a good quality grid in the 
field. 

FIGURE 7. SURFACE GRID IM PARAMETRIC COORDINATES FOR THE BODY OF 
GEOMETRY A USIMG TOPOLOGY DERIUED FROM SCHEMATIC A 

FIGURE 8. GRID OM THE SURFACE OF GEOMETRY A SHOUIMG THE GRID STRUCTURE 
OBTAINED FROM SCHEMATIC A. 

FIGURE 3. GRID OM THE OUTER BOUNDARY OF THE FLOU DOMAIN. 

This method of grid point distribution is applicable to all grids 
generated from the automatic topology generator. To illustrate its use on the 
topology generated from schematic B, Figure 10 shows the grid on the surface 
of the configuration. The topological differences between grid structures in 
Figure 8 and 10 are evident. Both grids are of a high quality, but perhaps 
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the grid structure in Figure 8 results in slightly less skewed cells in the 
region between the wing and canard. In both cases, the forebody is well 
defined. 

FIGURE 10. GRID ON THE SURFACE OF GEOMETRY A SHOUING THE GRID STRUCTURE 
OBTAINED FROM SCHEMATIC B. 

FIELD GRID 

Once the grids on the surface of the configuration, the plane of symmetry 
and the outer boundary have been generated, the grid points in the field are 
derived by solution of equation (1). The source functions pi on the boundaries 
are computed from the fixed boundary data and interpolated through the field 
ensuring that the pMi =1,2,3) are consistent on block faces and edges. 

Grid control may be enhanced by fixing some internal block boundaries 
but this greatly increases the labour of grid generation. Sections of a 
field grid'generated using the topology of schematic A are shown in Figure 11. 
The component adaptive nature of the grid is evident with locally embedded C 
grids around the wing and canard and a polar grid around the body. The grid 
point distribution in the field can be modified by an appropriate choice of 
parameters which modify the grid control functions p^ in particular regions 
of the domain. 

FIGURE it. FIELD GRID SECTIONS HIGHLIGHTING THE COMPONENT ADAPTIUE 
TOPOLOGY STRUCTURE. 

As a final illustration of the power of our approach we will apply the 
method to geometry B. As was already noted, the spacing between the canard 
and the wing at the body side and the canard tip leads to a conflict in 
the appropriate choice of topology. The geometry at the body side would 
indicate a suitable schematic (schematic C) for the topology to be 
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Body: (300,0,300), (700,0,300), (300,0,700), (700,0,700) 
Wing: (500,0,500), (600.0,500). (500,400,500), (600,400,500) 
Canard: (400,0,550), (500,0,550), (400,200,550), (500,200,550) 

This implies that the trailing edge of the canard has the same x value as the 
leading edge of the wing. A schematic of the grid on the body side for the 
topology is shown in Figure 12. However, if the position of the canard with 
respect to the wing is noted at the canard tip, it would appear sensible to 
define the-canard trailing edge to be forward of the leading edge of the wing. 
This would lead to the schematic A and the appropriate grid structure for 
geometry B is given in Figure 13. 

FIGURE 1Z. GRID STRUCTURE ON THE BODY DERIUED FROM GEOMETRICAL SCHEMATIC C. 

FIGURE 13. GRID STRUCTURE ON THE BODY DERIUED FROM GEOMETRICAL SCHEMATIC A. 

The additional blocks of grid introduced between the canard and the wing 
prove necessary to resolve the region between the two surfaces in the region 
of the canard tip. Ideally, this region should be further resolved using a 
grid embedding approach or the introduction of regions of unstructured grid'9). 
However, the flexibility of our approach enables a wide range of grid structures 
to be investigated and the automatic nature of the procedure ensures that the 
process can be performed quickly and efficiently. 

Sections of the field grid, together with the grids on the configuration, 
are shown in Figure 14. As previously noted, the component adaptive nature 
of the grid structure is evident. 
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FIGURE ti. FIELD GRID SECTIONS HIGHLIGHTING THE COMPONENT ADAPTIUE 
TOPOLOGY STRUCTURE. 

FLOW CALCULATION 

In the absence of any strict criteria, the acceptability of a grid is 
judged firstly by eye and secondly by its performance with a flow algorithm. 
We have endeavoured to prove our grids by computing the flow over the 
wing-body-canard configurations using a numerical algorithm for the solution 
of the Euler equations. The algorithm, based on the ideas of Jameson, Schmidt 
and Turkel'0, was developed by the British Aerospace Euler Core Team at 
Filton, Bristol and accepts block structured grids. An example of theoretical 
predictions for the flow over the wing in configuration B is given in Figure 15 
in which the onset Mach number was 1.2 at an incidence of 6°. For comparison 
the experimental data is also presented. 

The good agreement with experiment for the two topologies generated by 
schematics A and C is evidence that, given an accurate flow solution algorithm, 
the grids generated from our method provide the basis for meaningful flow 
simulations. 

CONCLUSIONS 

A method has been presented which is capable of generating component 
adaptive grids. The approach has been illustrated using wing-body-canard 
geometries but is applicable to a wide range of complex aerodynamic configurations. 
The new method of topology generation, combined with the approach taken to grid 
control, provide a powerful means of exploring the most suitable topology for a 
given geometry. Grid control parameters are available to the user to modify the 
grids for particular geometries but the system does not require the user to 
partake in long interactive sessions on a work station to generate grids. The 

suitability of the component adaptive grids for flow simulation has been 
demonstrated by comparing theoretical predictions with experiment. 

BODY - CANARD COMPARISON OF TOPOLOGIES M=1.2 ALP=G.OO 

•»• EXPERIMENT 

EULER MULT I BLOCK 
• TOPOLOGY GENERATED 
FROM SCHEMATIC A. 

EULER MULTISLDCK 
. TOPOLOGY GENERATED 
FROM SCHEMATIC C. 
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FIGURE IS. PRESSURE DISTRIBUTION ON THE UIMG FOR GEOMETRY A. 
COMPARISON BETUEEN THEORY AND EXPERIMENT. 
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4.5 GENERATION OF MULTIPLE BLOCK GRIDS 
FOR ARBITRARY 3D GEOMETRIES 

J.P. Steinbrenner, S.L. Karman, Jr., and J.R. Chawner 
General Dynamics Fort Worth Division 

Fort Worth, Texas, 76101, USA 

SUMMARY 

A grid generation procedure has been developed to create complex block grid systems, 
beginning with the generation of block surfaces, up to the generation of the full block 
volume grids. The multiple block concept is shown to facilitate the gridding of very 
complex geometries and also to allow larger sized grids to be run with a multiple block 
Euler solver. The entire grid generation process is broken into logical steps, each step 
described in detail. Three examples of grids systems generated with these techniques are 
given, thereby validating the procedure. Finally, current research topics in grid 
generation and future plans are discussed. 

INTRODUCTION 

One of the traditional impediments to the computational fluid dynamic analysis of 
complex aircraft configurations has been the inability to generate a suitable three 
dimensional grid efficiently. A suitable grid is defined as one which accurately 
describes the configuration geometry and provides sufficient resolution of flowfield 
phenomenon (as determined by the local truncation error of the governing differential 
equations) while remaining consistent with computer core memory limitations. The 
material presented in this paper is the result of a three year effort at General Dynamics 
to develop a three dimensional grid generation package applicable to arbitrary 
configurations. Procedures developed during this period have met these goals to a 
certain degree, in that an arbitrary grid system may now be generated with the codes in 
an efficient amount of time. However, several problems still remain unresolved or 
unaddressed. 

This paper begins with a brief discussion of the multiple block philosophy used in 
the General Dynamics flow solvers. Following this is an overview of the methodology used 
in generation of three dimensional grids, including the generation of three dimensional 
surface grids, the assembly of surfaces into three dimensional volume grids, and the 
assembly of volume grids into multi-block grids systems. The utility of the grid 
generation procedure is then demonstrated through discussion of three dimensional grids 
surrounding three complex configurations: the F-16 fighter aircraft, a delta wing/body 
configuration, and an afterbody of a generic hypersonic vehicle. The nuances particular 
to each grid system are summarized, and any difficulties encountered in the overall grid 
synthesis procedure are explained. In closing, future requirements and in-work 
developments in grid generation are discussed. 

MULTIPLE BLOCK TECHNIQUE 

The underlying idea of the subject multiple block scheme is to reduce a 
geometrically complex region into several smaller, more manageable regions, referred to 
as blocks. Each block is represented mathematically by a number of discrete grid points, 
ordered in a three dimensional array of constant dimensions. The flowfield may be 
divided into any conceivable structure provided that cell to cell matching on block 
boundaries is maintained. This does not require that one wall of a given block match 
exactly with a wall of another block, only that each cell on an Interface wall match with 
a cell of an interface wall somewhere in the grid system. The requirement of cell to 
cell matching was chosen to eliminate complex interpolations between blocks and to 
circumvent flowfield conservation problems across boundaries. 

There are numerous advantages to multiple block schemes, and five of the more 
significant implications are summarized below. 

1. The domain surrounding a complete aircraft or aircraft component is generally 
too geometrically intricate to model with a single three dimensional grid. This is the 
case, for example, with the undersurface of an F-16 fighter aircraft. The vehicle 
topology in the inlet diverter region is such that use of a single three dimensional grid 
would result in considerable skewness of grid lines. By utilizing several separate 
blocks in this region, however, the aircraft geometry can be accurately modeled while 
maintaining nearly orthogonal grid lines. The F-16 grid is described in greater detail 
later and also in Reference 1. 

2. For increasingly many applications, a large number of grid points is needed to 
resolve accurately the most salient features of the particular flow field. This often 
creates storage requirements beyond the memory limitations of the computer. In these 
cases another advantage of the multiple block grid scheme becomes apparent. Since 
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multiple block flow solvers require that only one grid block occupy core memory at a 
time, while the remaining blocks reside on disk or in solid state storage, a greater 
total number of grid points may be used if they are divided into smaller, less memory 
intensive blocks. This advantage also holds for simple topologies where the grid 
generation is not complex but a large number of grid points is still required. 

3. Because boundary interfaces need to match on the cell level only, it is possible 
for two adjacent blocks to have different topologies. Therefore, a combination of grid 
topologies may be used to model a given geometry, with each block size and topology 
chosen to produce the relative grid resolution needed. Proper grid resolution is also 
more easily controlled by using a large number of blocks by effectively increasing the 
number of specified grid points in the system. 

4. By breaking the domain into a number of blocks, grid singularities can be placed 
on block boundaries and can sometimes be eliminated altogether. The branch cut for an 
H-grid about an airfoil, for example, becomes a block boundary if the flow field is 
divided into two blocks, one above the airfoil and one below. Hence, no special coding 
of the flow solver is necessary to handle the boundary conditions for an internal plane 
of the grid. 

5. Normally a flow domain is divided into segments which approximately correspond 
to a particular aircraft component such as the nozzle, forebody, wing, or tall. This 
simplifies post-processing of the flow field solution. In graphical display, for 
Instance, not all of the flow field domain must be displayed to view the flow phenomena 
about a given component. 

Along with the advantages of multiple block systems comes an Inherent disadvantage: 
that of the difficulty in dividing the domain into suitable blocks. Several competing 
considerations come into play when determining sub-domain boundaries, such as relative 
clustering, individual block dimensions, and physical block sizes and shapes. The fact 
that each block influences the remaining blocks only compounds the problem. Although 
work has begun in developing artificial intelligence techniques to aid In this process, 
currently no automated means of subdividing domains exists; the user must rely on 
experience, either acquired or borrowed. This continues to be a serious roadblock to the 
very fast general grid generation methods, and is one of the reasons why there is a steep 
learning curve for new users. For each of the applications to follow there was no 
definitive way to block the domain, and in the case of the F-16, several attempts were 
made before the eventual topology was determined. The multiple block technique is 
described in greater detail In Reference 2. 

AUTOMATED GRID GENERATION METHODOLOGY 

Assuming that blocking considerations, grid dimensions and the general topologies 
have been ascertained by some means, the grid generation process continues with the 
transfer of the ideas from concept to reality. Over the past three years, a series of 
computer programs have been developed at General Dynamics which take the grid system from 
beginning to end in a straightforward, logical process. The concepts built into these 
programs are described below. 

Typically there are several individual blocks in a given system, each block having 
three varying computational coordinates. On each block, then, there are six faces, each 
face with two varying computational coordinates. Furthermore, on each face there are 
four edges, containing only one varying coordinate. Grid generation proceeds from the 
inside out, starting with the generation of face edges, followed by the determination of 
face surface distributions, and ending with the computation of block volume 
distributions. Since each step is influenced by earlier steps, it is sometimes necessary 
to jump backward and forward in the process, until the desired grid system is obtained. 
Fortunately this is easily done with the existing methods. 

The first program used in the process, an interactive surface grid generator, 
performs two of the first three tasks. Originally written with a minimal amount of 
computer graphics, this program has recently been converted for use on a Silicon Graphics 
Iris Workstation, and has been updated considerably to take advantage of the machine's 
outstanding graphics capabilities. This improvement alone has cut the surface grid 
generation time by at least fifty percent, compared with earlier methods. 

In generating a surface grid, there is usually a constrained surface on which the 
resulting grid must lie. This is the case, for example, with the grid used to describe 
the external geometry of the F-16 aircraft shown in Figure 1, An exception to this is 
block interface surfaces interior to a flow domain, where only a degree of smoothness is 
necessary, and not a specific shape. The shape of the constrained surface is often 
difficult to represent analytically, and so numerical models are used. Suitable models 
consist of a number of patches, each patch containing an M x N number of well-ordered 
data points. Collectively these patches are referred to as database networks, and there 
are only a few restrictions on their form. Databases may overlap, have different 
dimensions, collapse to a point, or close on themselves. Furthermore, database 
interfaces do not need to match exactly or to be oriented consistently. Their sole 
purpose is to insure that resulting grid points adhere to the surface contour of the 
geometry. The F-16 depicted in Figure 1 is an example of a fifty patch database network. 
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This network was used to generate the F-16 grid system described later. 

Databases are proving to be a convenient method of surface definition, since design 
groups often have the ability to generate numerical models of their configurations. Work 
is currently underway to develop an efficient method of transferring configuration data 
on a CAD/CAM system to a form usable in the grid generation process, and has already met 
with a degree of success. 

With an acceptable database of the geometry to be modelled, the surface grid begins 
construction. As mentioned, the first grid points to be determined are edges of the 
block faces. After selecting one of the six faces to work with, one of that face's four 
edges is chosen. The physical shape of the edge is defined by a number of arc segments 
chosen by the user and pieced together to form one discrete representation of the 
boundary shape, made continuous through the use of exponential splines (Reference 3). 
Arc segments may be pulled from databases, input interactively, read from exterior files, 
or constructed as straight line or circular arc segments. The user then divides the 
continuous boundary into sub-boundaries, placing a chosen number of grid points into each 
sub-boundary. Points are distributed by any of several techniques, the most popular of 
which is a two-sided stretching function developed by Vinokur (Reference 4) 

When each of the four face edges have been constructed, the face interior points are 
given provisional values. Transfinite interpolation is used for this purpose, but with 
interpolant functions as suggested by Soni (Reference 5), which maintains clustering near 
boundaries to a higher degree than conventional interpolants. Although this technique 
provides a very good initial solution, it is still usually necessary to use an elliptic 
solver to smooth slope discontinuities and to enforce interior point clustering. The 
technique employed is the Thomas (Reference 6) scheme, which incorporates the standard 
Thompson (Reference 7) elliptic grid method in two dimensions with additional terms added 
to account for the curvature of the surface shape. This technique generally creates 
smooth distributions of grid points along the constrained surfaces, but the exact 
distributions are determined by the choice of weighting functions employed. Two 
techniques are available: the Thomas and Middlecoff (Reference 8) method; and a 
variation of the Sorenson (Reference 9) method, extended to three dimensional surface 
shapes, rather than planar surfaces. 

Successive over-relaxation is used to advanced the discretized equations toward 
convergence, and the program allows the user to view the grid as it converges, stopping 
the process at any particular time. As a fully three dimensional surface is created, x 
and y values are calculated directly from the grid solver, and surface-conforming 
z-values are updated through isoparametric interpolation from the database networks. 
Since most grids do not lie primarily in the x-y plane, it is possible in the grid 
program to rotate the grid interactively to an orientation which would allow the surface 
shape ( z ) to be calculated as a function of x and y. When the grid cannot be rotated 
to an orientation where the surface is not double valued anywhere (more than one z value 
for a given x and y), as is the case for many internal flow applications, two possible 
remedies exist. First, the user may subdivide the surface into a number of subfaces, 
solving on each subface in an acceptable orientation, until the entire face is 
sufficiently defined. Secondly, the user may engage an alternate elliptic solver - one 
written in parametric rather than physical variables - whose parametric coordinates 
correspond to the M and N indices of the database. This technique is described in detail 
in Reference 10. The latter method allows the entire face to be solved at once, and is 
considerably faster than the physical variable solver, because the time-consuming search 
algorithms in the z-interpolation routine are no longer necessary. Unfortunately, the 
utility of this technique depends on the ability of the surface to be represented by a 
single database, which is sometimes difficult. However, the combination of both 
techniques have allowed any surface grid encountered to date to be created without 
significant difficulty. 

There are many other features incorporated into the surface grid generation program 
which add to the code's speed and efficiency. For example, the latest versions allow all 
six walls of a given block to be generated in one interactive session, maintaining point 
continuity on all twelve block edges as the block is generated. This eliminates the 
cumbersome and confusing task of copying boundaries of one wall into a boundary of 
another adjacent wall and then assembling all six faces together properly. Also, as 
mentioned earlier, it is possible to break a face into any number of subfaces, which may 
either overlap, coincide or neither. By so doing a certain region of the face may be 
fixed in space while the other points move toward convergence, essentially allowing 
non-rectangular computational regions to be generated. 

Experience has shown that an interactive surface grid generation scheme affords the 
user a very high degree of control over grid point placement, and extensive graphical 
capabilities add to the ease in which a grid may be constructed. Message windows added 
in the latest versions display diagnostic information which reduces confusion and 
eliminates the duplication of work. A sample screen from an IRIS Workstation during a 
typical grid generation session is supplied in Figure 2 indicating the layout of the 
diagnostics. Output from this code are files which contain all six walls of a given 
block, and the entire process is repeated for each of the remaining blocks in the system. 
The interactive grid procedure is documented in Reference 11. 

Distribution of grid points on the interiors of each block grid is the final step in 
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the process. As in surface grids, it is necessary first to assign provisional values to 
interior grid points before an elliptic solver is called. Transfinite interpolation is 
again chosen, with interpolants calculated in the manner of Soni (Reference 5). Again, 
this scheme usually provides a good degree of clustering throughout the grid, but local 
regions of crossed grid lines, corresponding to negative values of the three dimensional 
Jacobian, sometimes result, particularly when there are sharp corners or very large 
degrees of clustering on the boundaries. When negative cell volumes exist, there are 
several options available, all of which utilize the three dimensional elliptic grid 
generation equations popularized by Thompson et al. (Reference 7). The first option is 
to calculate the cell volumes throughout the grid, flag the negative volumes and volumes 
which border the negative volumes, and to solve the elliptic equations at all of the 
flagged points. In this option, weighting functions are set equal to zero. This method 
will eliminate all of the negative Jacoblans, but will not eliminate discontinuities in 
grid line slopes which occur from transfinite interpolation. If the discontinuities are 
severe, a second option is used. Here, weighting functions which correspond to the 
current grid point locations are calculated, with the mixed-derivative terms eliminated 
to allow for a greater degree of smoothness. The equations are then solved iteratively 
towards convergence. Still another technique is used when neither method above proves 
adequate. The GRAPE technique, developed by Sorenson (Reference 9), will allow for an 
exact grid point spacing and transverse angle specification at the boundaries of the six 
walls of the block. This method is particularly attractive when strict orthogonality is 
desired at one or several of the block walls, or when very tight clustering is needed at 
the walls. All of the three dimensional techniques described employ an successive 
over-relaxation scheme as a means of advancing the numerical solution. An Approximate 
Factorization scheme is also available, but has not yet been found to be superior to the 
point relaxation scheme. 

None of the three dimensional schemes described above will produce acceptable 
interior grid point distributions for every conceivable set of block walls. In fact, it 
is doubtful that such a scheme will exist in the near future. For this reason, a greater 
emphasis is placed on careful generation of surface grids which will not force the 
interior grid lines to follow unreasonable paths. This is possible with the surface grid 
generation program, which allows boundaries or walls to be created and recreated quickly. 

The block grid generation process is repeated for each individual block in the 
system, each block generated independently. Consequently, the resulting block system 
generally exhibits slope discontinuities across block boundaries. The discontinuous 
lines can be controlled to some degree by judicious grid point distributions on adjacent 
faces, but it has been observed that slight discontinuities in slope present no major 
problems, particularly when using a finite-volume flow solver. Despite the efforts to 
develop an all-encompassing grid generation package, certain problems still exist, and 
are discussed later. Future research and development topics to further aid in the grid 
process are discussed later as well. 

APPLICATIONS 

The three examples in this section, presented in chronological order of generation, 
illustrate the class of configurations that can now be treated on a fairly routine basis. 
These examples were created as the grid generation programs evolved, and in fact 
influenced the structure of the programs as new problems were uncovered. 

F-16 Fighter Aircraft Grid 

A three dimensional grid was generated for an Euler analysis of the F-16 fighter 
aircraft. The grid, which models the left half of the aircraft, contains twenty blocks 
with a total of 530 000 grid points. All components of the vehicle are simulated 
including the wing, body, horizontal and vertical tails, inlet, nozzle and ventral fins. 
The wing tip missile and missile launcher, however, are not simulated. The database used 
to define the F-16 surface geometry is displayed in Figure 1. A detailed discussion of 
the grid generation and Euler analysis of this configuration can be found in Reference 1. 

The first step in generating this grid was development of the blocking structure. 
The geometry was easily divided into upper and lower domains, with the wing and 
horizontal tail residing in the interface plane between the two domains. In order to 
maintain cell to cell matching across this horizontal block boundary the grid topology 
for both domains needed to be the same. This became a considerable restriction in 
developing acceptable block arrangements for both domains. 

The H-grid topology of the lower domain was selected based on the blocking 
requirements of the inlet diverter and ventral fin regions. Just aft of the main 
inlet face the geometry was simulated as shown in Figure 3. The diverter section 
above the inlet was discretized with one very small block which collapsed into the 
environmental control system inlet. The H-grid which ran alongside the inlet 
continued down the fuselage to the ventral fin area where the fin was aligned with the 
block boundary. The entire lower domain, shown in Figure 4, contains thirteen 
blocks. Because of the complexities of the geometry, it could not be combined into 
one contiguous block. 

The upper domain, however, was generated in one contiguous block and then divided 
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into the seven blocks outlined in Figure 5. Generation of the upper domain H-grid was 
simplified relative to the lower domain because there were no fins or inlets in this 
region. The sizes of the blocks were chosen to optimize the core memory usage. A view 
of the upper surface grids is shown in Figure 6. 

When this analysis was begun, the surface grid programs were still under 
development. At that time, the code required that each face of a given block be made 
individually, and that shared boundaries be written to a file and read in for all 
adjoining faces. Also, the program had no substantial graphics capabilities. At the 
same time, the corresponding block Euler flow solver was under development. These 
problems combined with the geometric intricacies caused the grid to be generated at a 
very slow pace. Consequently, nearly a full-man year was needed to generate the complete 
twenty block grid system. 

Delta Wing/Body Grid 

Later, a three dimensional grid was generated for an Euler analysis of a supersonic 
delta wing configuration. This configuration, shown in Figure 7 was obtained from 
References 12 and 13. The geometry included a thin delta wing, slender body and a 
vertical tail. Lateral and longitudinal stability derivatives were to be computed from 
the Euler flow field solution. Since there was no left-right symmetry in the flow field, 
the entire aircraft was modelled. The complete multiple block system contains four 
blocks and 200 000 points. This configuration is geometrically simpler than the F-16 
aircraft, and at the time of generation, the grid generation codes were more advanced and 
the block Euler code was fully operational. 

The block arrangement was also simple compared to the F-16 due to the lack of 
propulsion system components and auxiliary control surfaces. The four blocks are 
arranged to discretize the four quadrants about the aircraft. The wings and the vertical 
tail are simulated as part of the interface planes between the upper and lower blocks and 
the symmetry plane is the natural boundary between the left and right blocks. The 
farfield boundaries were positioned close to the body because the Euler analysis was to 
be done at supersonic conditions. The outer boundary is extended upstream of the nose 
just far enough to capture the bow shock and the downstream face of the grids is 
positioned at the end of the body and vertical tail. 

Figure 8 shows the boundaries of the block of grid used to describe one of the upper 
quadrants. A location on the body at midwing is arbitrarily selected as a face boundary. 
The grid in the cross planes is then established as an 0-grid while the grid in the 
transverse planes is a C-grid. This type of topology results in a singular line of grid 
points extending forward of the nose. The complete grid on five of the six faces of this 
block is shown in Figure 9. Generation of the lower quadrant block proceeded in a 
similar manner. Then, the symmetrically opposite blocks were generated by reflection of 
the two existing blocks. 

Less than a man-week was needed to generate this block system, and there are several 
reasons for this significant reduction in manpower. The foremost region was the large 
amount of experience gained from generation of the F-16 grid which was directly 
applicable to this geometry. Also, an advanced version of the grid generation procedure 
was available which employed extensive interactive graphics on an IRIS Workstation. The 
biggest single reduction in manpower was due to the simplicity of the geometry, but the 
program enhancements helped considerably as well, probably speeding the entire process up 
by an order of magnitude. 

Hypersonic Vehicle Afterbody Grid 

A three dimensional grid was generated for Euler analysis of the afterbody and 
nozzle region of a generic hypersonic vehicle. The geometry of this symmetric region is 
defined by the database shown in Figure 10. The afterbody has a rounded cross section 
which necks down to a sharp trailing edge. The underside of the expansion ramp is 
aligned at twenty degrees with respect to the horizontal. The engine module on the 
underside of the afterbody has been approximated by a thin walled rectangle with 
sidewalls that extend approximately one half the length of the lower flap. The outflow 
boundary of the grid is located one afterbody length downstream of the ramp end and the 
farfield boundaries are conically shaped. 

The first step in generating this grid was to develop the blocking structure. The 
blocking arrangement that resulted was based on three considerations. The first issue 
dealt with was the differing shapes of the inside of the engine module and the exterior 
of the afterbody. The rounded afterbody shape made a C-grid in this region most 
advantageous. However, in order to avoid a line singularity at the center of the engine 
flowfield, an H-grid was chosen over a C-grid for the internal region. 

Having defined the blocking based on grid topologies the next issue considered was 
the block matching in the circumferential direction. The connection of a C-grid to an 
H-grid as shown in Figure 11 would require that the grid points used on the perimeter of 
the H-grid match with the inner radial boundary of the C-grid. The engine module 
presented a particular challenge here. Due to the requirement of point to point matching 
between blocks, block boundaries were set on the corners of the engine module and 
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extended radially outward to the farfield boundary. These block boundaries required that 
the number of points on the perimeter of the internal H-grid match the number of points 
on the inner radial boundary of the C-grid. Based on these considerations the external 
grid was blocked into three circumferential sections corresponding to the top, side, and 
bottom of the engine module. 

The final issue considered in blocking this afterbody grid was one of number of grid 
points per block. At this point the grid had been divided into a minimum of four blocks: 
a rectangular H-grid surrounded by three sections of C-grid. The total number of grid 
points was limited to 400 000 in order to keep flow solver run times at an acceptable 
level. Considerations of geometric accuracy led to the decision to use 12 6 points in the 
streamwise direction (96 points up to the end of the afterbody) , 81 points in the 
circumferential direction, and 21 points in the radial direction. In order to satisfy 
computer core memory limits the number of points per block needed to be approximately 
30 000. This was easily accomplished by adding block boundaries at two streamwise 
stations, namely at the end of the lower flap (46 points) and at the end of the upper 
flap (51 points). 

The grid for this afterbody has been divided into twelve blocks as shown in 
Figure 12; one radial block boundary separates the H- and C-grids, two circumferential 
block boundaries define the shape of the engine module, and two streamwise block 
boundaries enforce the limit of grid points per block. The blocking process described 
above was not very difficult but still consumed approximately two days since it was all 
done by hand. Much of the delay was a result of selecting the proper number of grid 
points per block. The blocking decisions were simplified by the smooth lines of the 
afterbody geometry. A graphical procedure on a workstation employing some form of 
artificial Intelligence could have cut the time for this task considerably. 

The next step In creating this three dimensional grid was generation of the two 
dimensional surface grids for each block. In order to assure grid line slope continuity 
across block boundaries the entire external C-grid up to the trailing edge of the 
afterbody (three of the twelve blocks) was generated as one block. At the time of this 
analysis a new feature had been added to the interactive grid generation procedure which 
allowed for all six faces of a block to be generated simultaneously. This feature proved 
to be extremely helpful in assuring point continuity on the face edges. The topology for 
the upstream outer block is shown in Figure 13 along with the associated grid indices. 
Specifically, generation of the upstream face will be described since it was complicated 
by the concentration of points in the engine sidewall region due to the internal H-grid. 

The boundaries of the upstream face are shown in Figure 14. The farfield and 
symmetry boundary shapes were selected based on consideration of farfield boundary 
condition Influence on the body whereas the engine module and afterbody shapes were 
obtained from the database shown in Figure 10. To Illustrate the evolution of a 
particular wall, a close-up of the circled region in Figure 14 is presented in 
Figure 15a, with only the boundary points displayed. The grid on this face was 
initialized using an algebraic transfinite interpolation scheme yielding the grid shown 
in Figure 15b. Obviously, the grid line crossing, lack of resolution of the corner, 
non-orthogonality at the corner, and small cell sizes are unacceptable. The reason for 
the problems in this case are the highly stretched and compressed boundary point 
distribution (multiple length scales) and the discontinuities in the boundary shape. 
Since boundary orthogonality and clustering in the corner were deemed necessary, the 
Sorenson weighting functions were used to solve the grid equations, and resulted In the 
grid shown in Figure 15c. Resolution of the corner and orthogonality has been obtained 
but severe pinching of the grid lines has appeared in the corner. This pinching was 
relieved by running the grid solver using the Thomas and Middlecoff weighting function 
resulting In the final grid shown in Figure 15d. Once this upstream face was completed 
work on the remaining five faces of this block continued. This process required several 
iterations with the grid solver, changing the weighting functions from one formulation to 
the next in order to obtain the described grid point distribution. The interactive 
graphics employed In the grid generation program allowed the user to view the grid as the 
solver progressed at each iteration. This avoided the continuation of bad solutions or 
gave the opportunity of stopping the solution when a good solution was obtained. 

As each face of the three dimensional grid was completed Its boundaries were written 
to the corresponding boundaries of the connecting faces, simplifying the generation of 
these grids. Eventually, then, the last face worked upon already had all four of Its 
boundaries defined by the completion of the adjacent faces. A view of the four of the 
six faces of this complete grid block Is shown in Figure 16. Generation of the remaining 
blocks of the twelve block grid proceeded in a similar manner. 

CONCLUSIONS 

The viability of the present methods to generate multiple block grid systems has 
been verified for only three geometries in this paper, but has been used to generate 
numerous other systems as well. Viability, of course, can only be ascertained after the 
grid is used in a flow solver, but with the techniques j.n this work, a reasonable degree 
of confidence can be obtained before the grid is taken to task. An additional program 
has been developed as a post-processing tool in grid generation to further increase the 
grid confidence. This program allows the operator to load in and scroll through a grid 
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block, one computational plane at a time, adjusting the scrolling speed as desired. This 
feature makes it possible to digest a large amount of Information about the grid in a 
short amount of time, without cluttering the screen with unneeded information. The 
general continuity of the grid lines can also be determined with this program in a short 
period of time. 

Although a grid system could be generated for almost any imaginable geometry with 
the present scheme, certain geometries still present a great amount of difficulty. 
Reasons behind the difficulties are stated below. First, the technioue of breaking a 
domain into blocks is not easily taught, and becomes a formidable task for complicated 
domains regardless of the user's experience. Secondly, the total time needed to generate 
a grid system has been reduced considerably over the past few years, but is not yet to 
the level that makes a very fast (2-3 days) analysis of a configuration possible. Part 
of this particular problem is due to the speeds of the computers used, but there is also 
a need for further automation of the grid generation process. Finally, when viewing a 
three dimensional grid, it is difficult to determine if everything is as it is expected 
to be, especially with grids of large dimensions. This becomes even more difficult with 
multiple block systems, where grid boundaries connect to others in a pre-specified 
manner. 

These problems have been the primary impetus for continued development of grid 
generation methods at General Dynamics. As mentioned earlier, artificial intelligence 
techniques have begun to be used to assist in the domain blocking procedure. These 
methods may not yet be ready for use in three dimensional block grids, but a set of rules 
in determining blocking boundaries are finally beginning to be formulated. Currently, 
after determining block boundaries, a file is normally created by the user which defines 
the connectivity of the block grid system. This file is then input to the flow solver, 
and the grid is generated independently. Work is already underway in developing a 
program to allow the connectivity file to be created in a interactive graphical 
environment. Conceptually, this program would output two files - one each for the flow 
solver and the surface grid generator. The corresponding connectivity file would be 
attached to the grid generator, and the entire block system would be generated, with 
connectivity automatically maintained as specified by the file. This alone would reduce 
the throughput time for grid generation considerably. By having a connection file, it 
would also be relatively easy to use three dimensional elliptic grid schemes in the 
entire domain, with continuity across block boundaries. Block continuity is a problem 
that has been addressed and solved by some other researchers, but has not yet been 
implemented into the present scheme. Finally, as the size and complexity of three 
dimensional grids increases, so will the reliance on graphical techniques to check and 
validate resulting grids. Consequently, work has begun in developing improved graphical 
programs to view grids. It is probably not unreasonable to expect implementation of the 
ideas above to result in another order of magnitude reduction in the time needed to 
create a complex block grid system. 
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ACTUAL SURFACE GRIDS 
GENERATED FOR INLET-
FUSELAGE SECTION 

3 BLOCKS SIMULATING 
THE BLOCKING OF THE 
INLET-FUSELAGE REGION 

Figure 3. F-16 Inlet Diverter region Grid and Multiple Block Structure 

Figure 4. F-16 Lower Domain Thirteen Block Structure 
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Figure 5. F-16 Upper Domain Seven Block Structure 

Figure 6. F-16 Upper Surface Grid 
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Figure 7, Delta Wing/Body Four Network Database 

Figure 8. Delta Wing/Body Upper Right Quadrant Block Face Boundaries 

Figure 9. Delta Wing/Body Upper Right Quadrant Grid (reduced) 
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Figure 10. Generic Hypersonic Afterbody/Nozzle Three Network Database 

Figure 11. Generic Hypersonic Afterbody/Nozzle H-Grid to C-Grid Interface 



52 

Figure 12. Generic Hypersonic Afterbody/Nozzle Twelve Block Structure 

Figure 13. Generic Hypersonic Afterbody/Nozzle Upstream External Grid Block 
Boundaries 

Figure 14. Generic Hypersonic Afterbody/Nozzle Upstream Face Boundaries 
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Figure 15. Generic Hypersonic Afterbody/Nozzle at Engine Module Sidewall Region 

a. Boundary Point Distribution 

b. Transfinite Interpolation Grid 
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c. Sorenson-type Weighting Function Grid 

d. Thomas and Middlecoff Weighting Function Grid 
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Figure 16. Generic Hypersonic Afterbody/Nozzle External Grid Block 

Boundary Point Distribution 
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SUMMARY 

This paper describes experiences at the NASA Langley Research Center generating 
grids about a cranked-wing fighter aircraft configuration. A single-block planar grid 
about the fuselage and canard and used with a finite-difference Navier-Stokes solver is 
described. A dual-block nonplanar grid about the complete configuration and used with a 
finite-volume Euler solver is described. The very important aspect of computing the 
aircraft surface grid—starting with a standardized model description—is also 
descr ibed. 

1. INTRODUCTION 

In 1984 an effort was initiated at the NASA Langley Research Center to compute 
grids and flow fields about a complex fighter-type aircraft configuration consisting of 
the following four components: 

1. an area-ruled fuselage with a canopy and integrated engine inlet, 

2. a bi-convex swept canard, 

3. a bi-convex 70-20 cranked wing, 

4. a swept vertical tail. 

An orthographic view of the four components is shown in Figure 1, where each component 
is described by an ordered set of cross sections relative to a primary axis. 

The initial step for flow field computation about a configuration such as the 
fighter model described above is to establish the number, placement and topology of grid 
blocks that cover the physical domain. In our experience the best way to approach the 
problem is to sketch the configuration and outlines of the physical blocks. In deciding 
on the block structure and topology, it is important to consider the type of flow calcu­
lations that are to be made and the characteristics of the solution algorithm. The grid 
itself with its concentrations and dispersions is not of great concern at this early 
stage, but the connecting of blocks and the singularities in the blocks are important. 

The second step is the detailed computation of the grid on the configuration 
surface subject to the chosen topology. This implies that grid points will likely have 
different locations from the defining cross section points. Also, grid curves on the 
configuration may have a different orientation from the defining cross sections. We 
have used a bi-cubic representation (Coons' patches) and corresponding software that has 
been developed at the Langley Research Center to mathematically represent aerospacecraft 
(Refs. 1 to 3). The intersection of components and the grid curves on the component 
surfaces are computed from patch-plane intersections where the planes are user pre­
scribed. The patch-plane intersection capability is also a part of the Langley surface 
definition software. In order to use the surface definition software for grid genera­
tion, it is necessary to write a driver code to call the surface generation code, and to 
manipulate and manage data for the chosen topology. 

Once the configuration surface grid is determined, the next step is the generation 
of the surrounding grid for each block. Our general approach is to work from the con­
figuration surface out to the exterior far field boundaries. The remaining steps are 
the flow field computations and their analysis. A point that must be considered here is 
that logic for the grid generation must be incorporated into the flow field solver and 
subsequent visualization or analysis programs. 

Two grid topologies are described herein. The first grid has a single block 
(Figure 2) with no singularities. This grid extends from a point just behind the nose 
of the configuration back to where the the engine inlet begins and is used with a 
finite-difference technique to compute viscous supersonic flow. The second grid 
(Figure 3) is a dual-block grid above and below the canard and wing. This grid topology 
which is the conception of the third author has a polar singularity at the nose of the 
configuration and a line singularity (Ref. 4) around the fuselage at the beginning of 
the engine inlet. This grid is used with a finite-volume technique to compute inviscid 
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supersonic flow about the complete configuration with flow into the inlet. Individual 
discussions are devoted to our experiences with each grid structure. The surface grid 
generation for the fighter configuration is similar for both grids, and a description of 
our experiences is presented. 

2. SINGLE-BLOCK PLANAR GRID 

A single-block planar grid is constructed. The grid is used with a finite-
difference Navier-Stokes solver (Ref. 5) to compute viscous supersonic flow over the 
forward part of the fighter configuration (fuselage and canard. Figure 2). The Navier-
Stokes solver integrates governing equations in a computational coordinate system 
related through the Jacobian transformation to the physical domain (Ref. 6). The 
solution procedure is a time-split MacCormack technique, and no singularities are 
tolerated since the Jacobian derivatives appear explicitly in the equations of motion. 
For this reason, planar grid surfaces are started downstream of the nose of the fuselage 
and continue past the canard. 

The computation of grid points on the fuselage and canard are discussed under 
boundary grid generation elsewhere in this paper. The outer boundary in each plane is a 
semicircle with increasing radius in the downstream direction (conical surface), and 
each plane is divided into an upper and lower part. The two-boundary technique (Ref. 7) 
with clustering distributions is applied to the upper and lower portions of each plane. 
The clustering is designed to concentrate grid points near the fuselage and canard sur­
faces and toward the canard-fuselage intersection. For the application of the two-
boundary technique, the inner boundary is at the fuselage and the outer boundary is the 
circular segment. The left boundary is the symmetry line and the right boundary is the 
surface containing the canard. The left and right boundaries are reversed for the lower 
grid. Figure 2 shows the grid topology and selected grid surfaces. Figure 4 shows a 
solution of the pressure on selected grid surfaces at Mach Number = 2.5, Reynolds 
Number • 65,000/Meter, and 0 degree angle of attack using 278,800 grid points. 

This grid topology and solution procedure were our first attempts to solve super­
sonic flow over the fighter configuration. There were many lessons learned. The first 
lesson is that the grid should not be planar. Grid lines should be aligned with the 
leading and trailing edges of the lifting surfaces. We believe that such grid alignment 
improves accuracy in the application of boundary conditions, relaxes the requirement for 
artificial damping, and decreases the coding complexity. A second lesson is that 
solving the Navier-Stokes equations with a large number of grid points (200,000 and 
more) is extremely taxing on the present generation super computers. At the present 
time there is much more potential for routinely solving the Euler equations about 
complex three-dimensional geometries as is demonstrated in the next section. 

3. DUAL-BLOCK GRID 

For the fighter configuration shown in Figure 1 a multiple-block Cl-continuous grid 
is constructed for inviscid compressible flow computations (Euler equations) using a 
finite-volume technique (Refs. 8 and 9). An initial requirement is for the grid to 
conform to the canard and wing edges. A single-grid topology would result in a highly-
skewed grid (Figure 5), and it would be difficult to concentrate grid points at the apex 
region of the wing where vortex flow is generated. A dual-block grid topology (Figure 
6), having an inner grid which covers part of the wing and fuselage, has a singularity 
grid curve on the fuselage and a bounding-block grid curve along the leading edge of the 
highly swept part of the wing. This topology is considered to be optimal for the flow 
field conditions and is suitable for the finite-volume technique. Once the topology has 
been chosen, the next step is the computation of the grid on the configuration surface 
which is discussed elsewhere in this paper. However, at this point, distributions for 
grid clustering on the configuration surface must be established. For the fighter con­
figuration there is clustering near the intersections of the lifting surfaces and the 
fuselage and the leading and trailing edges of the wing and canard. Also, there is a 
clustering on the wing surface from the wing crank to the trailing edge of the wing. 
Figure 7 shows the topology of the dual-block grid relative to the computational domain, 
and Figure 8 shows the surface grid in an exploded view. 

The exterior grid generation about the fighter configuration is based entirely on 
transfinite interpolation and is therefore computationally efficient. Transfinite 
interpolation is the Boolean sum of several univariate interpolations in which distribu­
tion functions can be embedded for grid clustering (Ref. 10). Usually the interpola­
tions are low order polynomial functions such as hermite cubic functions (Ref. 4). The 
process is to work from the configuration surface outward, computing subgrids and 
"gluing" them together with Cl continuity. For each subgrid, some of the six bounding 
surfaces are obtained from the configuration surface grid, some are obtained from 
previously computed adjoining subgrids, and some are constructed from simple analytic 
functions. Cl continuity is maintained by using derivative information as well as grid 
point locations, and Figure 3 shows selected grid surfaces. For the flow field computa­
tions that have been made thus far, there have been 264,000 grid points. A typical 
solution,showing the coefficient of pressure on selected surfaces at Mach number 2 and 
an angle of attack of 4 degrees, is shown in Figure 9. 
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AIRCRAFT SURFACE GRID GENERATION 

The fighter configuration shown in Figure 1 has a complex fuselage with sharp 
corners, a swept engine inlet and a deep cavity above the engine inlet (boundary-layer 
diverter region). The canard and tail geometries are simple, and except for the 
70-20 degree crank, the wing geometry is simple. An added complexity is that the root 
leading edge of the wing is near the center of the vertical side of the fuselage, and 
the root trailing edge is near the top. For the single block grid (Figure 2) the most 
complex part of the configuration is not considered. For the dual-block grid 
(Figure 3), the boundary-layer diverter region is omitted which requires the reconstruc­
tion of new defining cross sections in the engine inlet region. It is anticipated that 
the boundary-layer diverter region will be re-introduced in the future as an additional 
grid block. 

Each component (fuselage, canard, wing and vertical tail) is mathematically repre­
sented by ordered sets of Coons' patches as described in references 1 and 2. A Coons' 
patch is a bi-cubic function with two parametric independent variables. The defining 
parameters for a patch are: (1) coordinate positions of corner points; (2) derivatives 
of coordinates with respect to the parametric variables at the corners; and (3) cross 
derivatives of the coordinates with respect to the parametric variables at the corners. 
There is a maximum of forty-eight parameters for each patch. The input to the Langley 
surface definition software are coordinates along cross sections at stations along each 
component. Corresponding points on neighboring cross sections become the corners of 
patches, and it is advisable that the distribution of input points be approximately the 
same along each cross section. Cubic splines are fitted along the cross sections 
through the defining points and across the cross sections through the defining points. 
Also, the parametric variables are defined along and across the cross sections 
respectively, and derivatives with respect to the parametric variables are evaluated at 
the defining points. At the present time the cross derivatives are set equal to zero in 
the Langley software. Coordinate positions interior to a patch are computed by evalu­
ating along the parametric variables and Figure 10 shows an orthographic view of the 
fighter configuration which has been densely interpolated and presented as a solid. 
Grid points are computed along curves which are the intersections of planes and the 
patch definitions. A grid curve can cross several components if the grid topology 
requires it, and the parameters defining a plane (coordinates of three points) are 
software input. The intersection of components (fuselage-canard,. fuselage-wing, and 
fuselage-tail) are computed using the plane-patch intersection software, where the 
planes are made perpendicular to the x-axis. A search approach is used to find the 
beginning and end of the intersections. Figure 11 shows the fuselage grid and inter­
sections for the canard and wing, and Figure 8 shows the entire surface grid from an 
exploded view. 

Following are two important lessons that were learned during the modeling of the 
fighter configuration. 

1. The initial input description was too sparse for the complex detail of the 
fuselage. More cross sections, particularly in the canopy region and engine inlet 
region, were required. Also, more defining points per cross section than initially 
thought were required. 

2. It was necessary to break the fuselage and wing into three sub-components and 
two sub-components, respectively. The fuselage was divided at the cross section where 
the canopy starts to appear and the cross section where the engine inlet begins to 
appear. The wing was divided at the crank. These divisions were made because of the 
first derivative discontinuities on the surfaces that are not acceptable in a cubic 
spline computation. 

The decision to make these changes was reached by observing plots and images that 
showed bulging where it should not be and smearing where there should be a sharp change 
in curvature. It should be noted that using a high order model representation such as 
the Coons' patch description is an effort to minimize the amount of information that 
must be user provided and discretely stored. This is constrained, however, by the 
complexity of the model and the level of detail that is required. Also, it should be 
noted that computer graphics is an essential tool for evaluating the grid generation on 
the configuration surface. 

The grid topology requirements on the fuselage and canard are similar for both the 
single-block grid and the dual-block grid. Grid curves on the fuselage are in planes 
parallel to the defining cross sections. For the single block grid topology, grid 
curves across the canard are in parallel planes and are oblique to the canard leading 
and trailing edges. For the dual-block grid topology, grid curves conform to the 
leading and trailing edges of the canard and the grid surfaces are not planar. This is 
also true for the vertical tail. 

Grid curves are obtained using the plane-patch intersection capability of the 
Langley surface definition software. A grid curve consists of a set of points collected 
from the entire array of patch intersections with a plane. Duplicate points are 
removed, the points are ordered and their approximate arc lengths along the grid curve 
are computed. Note that the number of points to represent a grid curve is user con­
trolled and usually should be greater than the number of grid points that is desired 
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along the curve. Computation and clustering of grid points is obtained through an arc 
length redistribution along the grid curve followed by interpolation. The process is 
repeated for each grid curve. 

5. CONCLUDING REMARKS 

Based on our experience with the cranked-wing fighter configuration and other 
recent investigations (Refs. 12 to 14), it is presently feasible to generate composite 
block grids and compute Euler flow computations about complex three-dimensional con­
figurations. The grid generation procedure that we and the investigators in reference 
13 have used is totally algebraic. Other investigators have used a combination of 
algebraic and differential grid generation (Refs. 11,12 and 14). The grid generation 
software for our computations is experimental and aimed at one geometry type. Efforts 
are under way at Langley and elsewhere (Ref. 15) to generalize three-dimensional grid 
generation software. 

Planning the block structure and topology is the most important grid generation 
step. Both the physical requirements (shocks, boundary layers, separation, etc.) and 
the solution technique requirements (singularities, skewness, etc.) must be resolved. 
Also, the alignment of grid curves with boundary surfaces can affect the accuracy of 
boundary conditions and the complexity of solution software. In our planning we have 
attempted to minimize the number of grid blocks to cover a domain and consequently 
simplify the software logic. 

The configuration surface representation must be accurate and robust for extracting 
grid data. We have found that a large percentage of the overall effort must be devoted 
to surface representation and grid computation on the configuration surface. 

Generating the surrounding grid for a three-dimensional configuration using trans­
finite interpolation is straight forward after proper planning and configuration surface 
grid generation. The primary aspects to keep in mind are the clustering of grid points 
and the continuity of grid curves across grid blocks. We have found that computer 
graphics is an essential tool in generating both the configuration surface grid and the 
surrounding grid. Our direction is to move toward doing these tasks in a workstation 
environment. 

The finite-volume technique is very suitable for Euler flow computations on 
multiple-block grids. Solutions for the dual-block grid (264,000 grid points) about the 
fighter configuration can be obtained on the VPS-32 (CYBER 205) in less than one hour. 
Our experience with a finite-difference Navier-Stokes solver about a part of the fighter 
configuration is that it is extremely time consuming and appeared to be very grid sensi­
tive. The availability of computer memory is adequate for Navier-Stokes solutions of 
complex three-dimensional grids, however, the CPU speeds are not adequate. In our case 
many hours were required to obtain only one solution over a part of a configuration. 
Consequently, we feel that we can make the most progress in the near future by pursuing 
geometric complexity of configuration surfaces and Euler flow computations. 
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Figure 1 . - Orthographic View of Cranked-Wing A i rc ra f t , 
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Figure 2.- Single-Block Grid-Forward Region. 
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Figure 3 - Dual-Block Gr id . 

Figure 4 . - Pressure Solut ion on Single-Block Gr id . 
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Figure 5 . - Topology f o r a Single-Block Grid w i th Gr id-L ine 
Alignment w i th L i f t i n g Surfaces. 
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Figure 6 . - Topology f o r a Dual-Block Grid w i th Gr id-L ine 
Alignment w i th L i f t i n g Surfaces. 
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Figure 7 . - Topology of Dual-Block Grid Relat ive to the 
Computational Domain. 
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Figure 8.- Surface Grid in Exploded View. 

Figure 9.- Pressure Coefficient on Selected Surfaces for Fighter 
Configuration. 
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Figure 10.- Shaded Orthographic View of Fighter Configuration. 

Figure 11.- Fuselage Grid and Intersections. 
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SUMMARY 

The grid generation process for a realistic and complex fighter type aircraft will 
be described. The method is based on the solution of biharmonic equations and uses a 
single block concept. Only a few user specified input parameters are necessary for the 
construction of the space grid and therefore this grid generation system is very simple 
to handle. The grid is intended for calculations with an Euler code at transsonic and 
supersonic speeds. 

1. INTRODUCTION 

The automatic generation of computational grids around aerodynamic configurations 
becomes more and more important the more complex the body immersed in the fluid is. 
While the flow algorithm remains principally unchanged, the grid has to be adapted pro­
perly to every new geometry. Therefore, the grid generation process is the most time-
consuming part of a flowfield calculation for a realistic and complex configuration, 
not in terms of computer time but in terms of man power. 

A grid generation system for general, complex geometries should be reliable and 
simple to handle. This means that grids of reasonable good quality can be generated 
automatically with only a very small number of user specified parameters. From expe­
riences with grid generators for automobiles, ducts, wings, wing-fuselage combinations 
and multi-finned missiles it seems that this can be done by using the biharmonic equa­
tion as a grid generation system. The whole grid construction is controlled only by the 
boundary conditions at the surface of the configuration and at the farfield boundaries. 
This formulation simplifies the procedure considerably and as far as we know, it is the 
simplest method reported so far. 

To show the capabilities of this concept, the grid generation process for a real­
istic fighter type aircraft will be explained. The main features of this configuration 
are a fuselage with belly intake, cranked delta wing, canards and two lateral stabi­
lizers. Because of computer storage limitations, a fine modelling of the intake region 
(boundary layer diverter, horizontal splitter plate and vertical plate, separating the 
left and right engine duct) and installed external stores are not included. This grid 
with approx. 500 000 points was subsequently used for several flow calculations with an 
Euler code at transsonic and supersonic speeds. 

2. GRID STRUCTURE 

The first step in every grid generation process is the choice of the grid topology 
best suited for the given configuration. While C-type or 0-type grids are ideal for 
simple wings, it becomes more difficult or even impossible to treat complex geometries 
with this grid types. For this reason, we decided to use an H-type grid structure which 
is very flexible and can be adapted to very complex configurations by the use of inte­
rior branch cuts or by using a multi-block approach. Figure 1 shows the general lay-out 
of the grid where the outer.boundaries are a simple rectangular box. 

There are two different concepts for the generation of grids around complicated 
configurations. In a multi-block approach (cf. /I/, /2/, /3/) the entire flowfield is 
subdivided into a number of simple blocks and the grid is generated separately in every 
block. The main problem of this method is the treatment of the block boundaries. At the 
present time there seems to be no automatic scheme for the subdivision of the domain, 
and therefore the exact location of the block boundaries has to be evaluated in a time 
consuming trial and error process. To avoid these difficulties, we decided to use a sin­
gle block grid structure. To resolve the complex configuration properly, several inte­
rior branch cuts had to be introduced. This leads to a number of singular points called 
lost or fictitious corners (cf. /4/) on the surface of the configuration. Figure 2 
shows the structure of the surface grid in the computational space. We can see, that in 
this concept the configuration and not the whole flowfield , has to be divided into 
several blocks. The computational domain is a single block from which the cells, which 
lie inside the configuration, have to be excluded. 
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3. SURFACE GRID GENERATION 

3.1 GEOMETRY INPUT 

The input requirements are as simple as possible. Since the configuration is 
assumed to be symmetric about the plane y = 0, only one half is considered. 

Fuselage: 

The fuselage is given by wire frames expressed by coordinates x, y, z for each 
frame. Usually these frames are given at x = const, stations. In order to identify the 
intake geometry correctly, the fuselage is divided into two parts, the forebody and the 
afterbody (Figure 3). The last cross section of the forebody is partly identical to the 
first section of the afterbody. The latter consists of the last section of the forebody 
with the addition of the wire frame forming the intake. 

Each cross-section is accompanied by two integers marking the lower and the upper 
fuselage block boundary points of the section. The lower block boundary line of the 
forebody ends at the last section of the forebody and should coincide there with the 
corner formed by the intake frame cutting point with the identical part of the fore-
and the afterbody. The upper block boundary line should not have a jump at the common 
part of the fore- and the afterbody. The lower block boundary line of the afterbody 
should start at the corner of the box type intake. We decided to place the upper block 
boundary line outboard of the vertical V-stabilizer. Finally the coordinates x, y, z of 
the fuselage nose cap are given in random ordering by input. In the present case the 
fuselage is pointed, and the nose cap can be prescribed by a plane of a triple of coor­
dinates, all with x = x n o s e. 

Lifting Surfaces: 

It has proven practical to prescribe the planforms of the canard, the wing and the 
stabilizer first. The airfoil inputs are simply functions z(x). Each airfoil is accom­
panied by four numbers: the desired y-station in the planform, a twist angle, a point 
of rotation as fraction of cord length and an elevation Az. Then the airfoils are 
adjusted to the given planform. An array of y-stations allows inserting additional air­
foils which are generated from the linear interpolation of the two neighbouring air­
foils. Finally the lifting surfaces are shifted and rotated to their final position at 
the fuselage. The final input wire model is shown in Fig. 4. 

3.2 LIFTING SURFACES 

The present goal is to obtain an equal number of coordinates for each airfoil of a 
lifting surface. Therefore a distribution of n abscissae for the lower and upper side 
of the airfoils is generated the following way. 

a) Fix the nosepoint abscissa x^ and the trailing edge abscissa xn 

b) Attract the new leading edge abscissa X2 and the near trailing edge abscissa x n - \ 
to the nose respectively to the trailing edge by the formulas 

x_ = x + a(x,-x..) (!a) 

Xr. 1 = Xr, + a < X „ 1-Xre- t l b ' 

n—i n n—2 n 

where 'a' is a global attraction parameter (0 <a< 0.5). 
c) Calculate boundary sources 

P2 = x, • x3 - 2x2 (2a) 

Pn-1 • xn-2 + xn " 2xn-1 ( 2 b ) 

d) Calculate new abscissae by 

xi = •_;'xi+1+xi-1~Pi' ' i = 3 t h r o u 9 h n - 2 (3* 

e) Calculate source distribution by 

Pi = I*P_L*.**i-1J ' L = 3 t h r o u < 3 h n _ 2 (4) 

f) Repeat step 2 through 5 until convergence 

Ix -x ,,I < e 1 new old'max 

with e being a small user specified number. 
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g) Interpolate airfoils at the new abscissae x; i » 2 through n-1, by a third order 
polynomial. 

3.3 WING-FUSELAGE INTERSECTION 

There remains to find the intersection of the lifting surfaces with the fuselage 
skin. Since most of the available CAD-systems are not capable to calculate the coordi­
nates of the intersection from two pointwise defined surfaces an algorithm was included 
which does this work. It is baaed on solving the problem of finding the point of inter­
section of a straight line with a plane spanned by three coordinate triples in space. 

For this purpose the fuselage wire frame model is interconnected contiguously by 
triangular finite elements (no overlaps, no gapsl). Upon that the intersection point of 
the quasi spanwise grid lines at near equal percentage with each of the linear triangu­
lar finite elements is calculated. If now one of the three baricentric triangle coordi­
nates is negative, this triangle is discarded and the next one is taken for the inter­
section. Note that for each fuselage network there is only one triangle admissible for 
an intersection point. Finally the spanwise airfoil stations of the lifting surfaces 
are shifted by a prescribed ratio along the lines of equal percentage towards the fuse­
lage surface to make them fit better with the curvature of the latter, see Figure 5. 

3.4 FUSELAGE 

The goal of the surface grid generation on the fuselage is mainly to cluster coor­
dinates at the cuts formed by the intersections of the lifting surfaces with the fuse­
lage. Figure 6 clears up the geometric situation, here for the fuselage side wall. 

First the coordinates are attracted to the wing cut, e.g. 

x = x + a(x3-x..) (5a) 

z2 = z . + a(z3-z1) (5b) 

where 'a' is the global attraction parameter. Upon that the source boundary condition 
for the Poisson coordinate smoother is calculated, e.g. 

P2 = x1 + x3 + x4 + x5 - 4x2 (6a) 

R2 = z1 + z 3 + z4 + z5 - 4z2 (6b) 

The Poisson solver which generates the x,z aide wall projection grid is 

xi,k = l(xi-1,k + xi+1,k
 + xi,k-l + xi,k+1 "

 Pi,k> (7a) 

zl,k = 4"(zi-1,k + zi+1,k
 + zi,k-1 + zi,k+1 "

 Ri,k> (7b) 

Pi,k = 4-(Pi-l,k + Pi + 1,k
 + Pi,k-1 + Pi,k+1>

 (8S) 

Ri,k = I(Ri-1,k + Ri+1,k
 + Ri,k-1 + Ri,k+1>

 (8b) 

The steps 
a) attraction 
b) coordinate smoothing 
c) boundary source calculation 
are repeated till convergence. The Poisson operators are also applied along the block 
boundary lines such that the points on this lines float along them. The coordinates are 
linearly interpolated from the block boundary specificaton of the fuselage input. 

After the fuselage projection grids are set up, the missing coordinate is interpo­
lated from the fuselage input frames using linear triangular finite elements. At holes 
in fuselage geometry such as the intake and the nozzle exit, no surface interpolation 
is possible. In this case the Poisson smoother is applied on all three coordinates. It 
proved to be necessary to solve the Poisson equations simultaneously on all fuselage 
projection grids (bottom, ceiling, side wall, intake, nozzle) with the freedom that the 
grid points may float along the edges of the configuration, be they real edges or fic­
titious corner lines. In this particular way jumps in the curvature of the grid lines 
belonging to one family are brought to a minimum. Figure 7 shows the final surface grid 
with approx. 15 000 points. 
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SPACE GRID GENERATION 

4.1 GENERAL DESCRIPTION 

The grid generation for the flowfield follows the same concepts which were used 
for the distribution of the abscissae for the point distribution on the lifting surfa­
ces and the generation of the two-dimensional projection grids forming the walls of the 
fuselage. As explained in Ref. /5/, the method is based on the solution of the bihar­
monic equation 

Vr o. 
(9) 

which is actually implemented as a system of two second order partial differential 
equations (Poisson type) 

V2r = 5 

v22 = o 

(10) 

(11) 

where r is the position vector 

and S is the vector of the control functions (or source terms) 

After the introduction of central difference approximations for the second deriva­
tives, equation (10) and (11) can be rearranged easily to yield the final expressions 
for the calculation of the coordinates r and the control functions s" for a given 
node (i,j,k): 

• * . - • • * • * • * • . " * 

ri,j,k = 6(ri+1,j,k + ri-1,j,k + ri,j+1,k + ri,j-1,k + ri,j,k+1 " ri,j,k-1 

- S i,j,k' 
(12) 

f - I<? + ? + 
'i,j,k 6* i+1,j,k ai-1,j,k 'i,j+1,k ai,j-1,k •?. • I . t + ^4 i w .) < 1 3) i,],k+1 1,],k-1 

Boundary conditions 

Grid control is exercised via the boundary conditions for r and s at the inner 
boundary. This is done by the attraction of points towards the surface of the configu­
ration as shown in Figure 8: 

r2 = r1 + a ( r 3 _ r 1 ) (14) 

with the global attraction parameter 'a' 

With the help of eq. (11), this coordinates can be used to calculate the boundary 
values for the source terms at these points {cf. Fig. 8) 

S2 " "I 
+ r3 + r4 + - er­ as) 

At the farfield boundary, an orthogonal intersection of the gridlines is imposed 
and the source strength is put to zero. At the symmetry plane, the point coordinates 
and the corresponding source strengthes are calculated by using a symmetry condition 
for equation (12) and (13). 
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For the numerical solution of this grid generation system, a simple Gauss-Seidel 
or SOR scheme can be used. Each iteration consists of the following steps: 

a) Attraction of points towards the body surface (eq. 14), 

b) Calculation of the new source terms at these points (eq. 15), 

c) Calculation of the source terms in the flowfield (eq. 13), 

d) Calculation of the point coordinates in the flowfield (eq. 12), 

e) Orthogonal intersection of gridlines at the farfield boundaries. 

4.2 SPECIAL REGIONS 

Due to the complex structure of the configuration, several regions need a special 
treatment. The resolution of the region near the wing leading edge is very important 
for the accuracy of the subsequent flow calculations. For a sharp leading edge, it is 
sufficient to have a single grid point in the nose region as shown in fig. 9a. For 
wings with a blunt leading edge, this would lead to a grid with rather skewed cells in 
the nose region. In this case it is better to have more lines ending on the surface as 
demonstrated in fig. 9b. The same assessment is true for all similar edges on the sur­
face of an aircraft, like wing tips and wing trailing edges. The wings, canards and 
stabilizers of the presented aircraft configuration have rather sharp leading and 
trailing edges and therefore a grid structure similar to figure 9a was used. 

Another difficult region is the pointed fuselage nose. The grid in physical space 
has only one point in this region but in the computational space, there is a surface 
block boundary where about 250 grid lines end (cf. fig. 2). This means that all these 
lines have to end in one point (the fuselage nose) forming tetrahedral type grid cells 
in this region as shown in Figure 10. 

Figure 11, 12, 13 show some surfaces of the resulting grid for the advanced 
fighter aircraft with approx. 500 000 points. 

5. FLOWFIELD CALCULATIONS WITH BOX-TYPE H-MESHES 

The grid used for the present aircraft code is in principle a single block grid 
with the body being carved out. This is a philosophy which differs from multi-block 
grids where after the surface specification of the configuration many blocks are fitted 
to the aircraft skin. The same philosophy also is traced in the implicit Euler code 
used for the flow calculations. The entire grid box is taken as a large 3D-DO-loop. The 
aircraft configuration is identified by a logical array saying 'no' for each dummy cell 
inside the aircraft and saying 'yes' in the cells where physical flow exists. 

If a 'yes' ('no') follows a 'no' ('yes') then the code automatically sets the cha­
racteristic solid body boundary condition using the positive (negative) characteristic 
field for the flow value extrapolation to the boundary. This procedure is repeated 
three times, first for all i-lines, then for the j-lines and finally for the k-lines. 
The dummy cells inside the aircraft are included in the calculations in order to keep 
the vector lengths as long as possible. Each line algorithm is followed by the evalua­
tion of the Euler flux differences. The flow variable update is performed by an impli­
cit point Gauss-Seidel Newton type residual driver. Again the whole grid box is taken 
as a large 3D-DO-loop. Thia time, however, the DO-loop is performed twice in steps of 
two in order to avoid recursive formulae. The implicit solid body boundary condition is 
entered the same way as for the Euler flux differences. 

This formulation - single block grid together with a single block Euler solver -
seams to be the simplest way to treat the flow field past a complex configuration such 
as the present. The whole computer program consisting of 

a grid generator, 

a grid geometry plot software, 

an Euler flux subroutine, 

an implicit residual driver, 

an Euler result plot software 

contains 7 000 FORTRAN statements. 

A more detailed description of this algorithm and several results from flow calcu­
lations are included in Ref. /6/. 
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CONCLUSION 

The described grid generation system is a simple and reliable method for the con­
struction of grids around complex configurations. The single block concept avoids the 
difficulties involved in the subdivision of the flow field into several blocks, which 
is necessary for the multi-block system. This problem has been reduced to the correct 
construction of a surface grid with the appropriate location of the block boundary 
lines on it. The disadvantage of the single block concept is the limited grid size due 
.to computer storage limitations and furthermore it is not possible to introduce embed­
ded and refined subdomains. But nevertheless the resulting grids should be sufficient 
for most applications, at least for Euler calculations. 

Starting from the surface grid, the space grid can be generated easily by the use 
of the described biharmonic grid generation system. Although it is simple to handle 
because it requires only a few number of input parameters, there are some cases where 
you want to exercise more influence on the grid, at least in some regions. Therefore 
some kind of postprocessing would be desirable. This could include algebraic subdivi­
sion of cell layes (/6/) or even an interactive grid optimization concept (/7/). 
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Figure 1: Grid Structure (Physical Space) 

Figure 2: Surface Grid in Computational Space 
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forebody 

afterbody 

(T) upper crown line 

(2) upper fuselage block boundary 

(3) lower crown line of forebody 

(V) lower forebody block boundary 

(s) lower afterbody block boundary 

(fT) intake wire frame 

(T) identical cross sections of fore- and afterbody 

(¥) lower crown line of afterbody 

Figure 3: Connection of Fuselage Fore- and Afterbody 

Figure 4: Complete Surface Geometry Input 



73 

equal 
partition 

fuselage sidewall 

original y-statlon 
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new airfoil cuts 

Figure 5: Wing-Fuselage I n t e r s e c t i o n 

i,k+1 

upper fuselage 
block boundary 

lower fuselage 
block boundary 

wing Intersection 

Figure 6: Surface Grid Generation on Fuselage Sidewall 
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Figure 7: Surface Grid 

body surface 

Figure 8: Attraction of Grid Points towards the Surface of the Configuration 

b) 

Figure 9: Different Grid Structure for Airfoils with 
a) Sharp Leading Edge 
b) Round Leading Edge 
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Figure 10: Details of Mesh near Fuselage Nose and Intake 

Figure 111 Surface j = const. (Symmetry Plane) 
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Figure 12: Surface i = const, 

Figure 13: Surface k = const. 
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4.8 Algebraic Grid Generat ion for 

Fighter Type Aircraft 

by 

John Steinhoff 

Department of Engineering Science and Mechanics 
The University of Tennessee Space Institute 

Tullahoma, Tennessee S7S88 

A systematic procedure Is presented for synthesizing a complex computational grid for fighter type aircraft 
out of a number of simpler "elementary" grids. This method is useful when a grid is required over an object 
which, though complex, consists of a number of simpler pieces, such as an aircraft with a number of lifting 
surfaces. The procedure presented allows a smooth complex grid to be generated which becomes exactly equal 
to each elementary grid as the surface corresponding to that elementary grid is approached. In this way, 
methods which may have previously been developed for each piece do not have to be changed and can be used 
as "black boxes," whether they are algebraic, partial differential equation based, or whether the grids are just 
given numerically. This blending technique is only one of several tools which we use to generate effective grids. 
Other techniques include projection methods for generating surface grids. Some advantages and limitations of 
the method are discussed and examples are given of its use in generating complex fighter grids. 

1. I N T R O D U C T I O N 

For many aircraft geometries, the computational domain can be decomposed into a number of pieces each 
of which is fairly simple. Also, often an adequate grid can be easily generated' for each of these pieces, if 
considered by itself. Our basic method involves blending these "elementary" grids into one smooth composite 
grid. This technique can be used over an entire aircraft, where simple methods exist for generating grids 
individually over each of the lifting surfaces and the pieces of the body. An important feature of the concept 
is that it can be used recursively; Composite subgrids can first be formed from elementary grids, using the 
method. Then, the same method can be used to form larger composite grids out of these individual subgrids. 
If algebraic methods are used to form each elementary grid, which can often be done since each piece is simple, 
then the entire grid generation procedure is algebraic, since the blending is non-iterative and involves no partial 
differential equation solutions. Accordingly, where applicable, it is a fast method suitable for interactive use. 
Also, if a partial differential equation is to be solved for some physical quantity and an iterative method is 
used to solve a set of discrete equations on the grid, which is usually the case, then at each iteration the grid 
can be quickly regenerated and there is no need to store the entire grid system. This feature can be especially 
important for large three-dimensional problems. This method is very different from other algebraic methods, 
such as those of Eiseman [lj. Each elementary grid is taken to be previously determined, either by algebraic 
methods, partial differential equation solution [2], or any other means. These grids can be defined over the 
entire space, rather than just on surfaces as in "transfinite Interpolation'' schemes. 

An important feature of the method is that it allows the grid designer to use software packages and 
methods already developed or being developed by others (which can be quite sophisticated and complex) for 
the elementary grids about each piece of the problem. These can be used as "black boxes", and after each 
elementary grid is generated the grid designer can blend them together. Also, after a composite, complex grid 
is generated, if one of the pieces is later modified, only the single new elementary grid need be recomputed and 
blended into the composite grid. 

Since the method is local, and each piece only influences the grid in its vicinity, local methods of controlling 
the grid can be formulated. This could be required, for example, if resolution were inadequate or if grid lines 



78 

were to cross. It will be seen that advantages of the method include simplicity and speed, even for complex 
geometries. Disadvantages include the lack of guarantees against line crossing (although this can be made 
unlikely), possible skewness (although this can be corrected) and the requirement that each elementary grid 
locally have the same topology. Also, for the three dimensional problems described here, other techniques are 
required which include projection of the wing grids onto the body surface. 

2. B A S I C M E T H O D 

The basic grid generation method involves the blending technique of Ref. 1, described in the next section. 
Generation of a grid is recursive: First, a 3-D grid is computed about the aircraft body alone (denoted G%), 
Then, an "elementary" grid is developed in a region about the wing (denoted Gw) . This is then blended with 
the body (Gi) grid to form a smooth wing-body grid (G_). As we approach the wing surface in grid G . in 
computational («, j , k) space, the values ( i , y and _r) of the physical coordinates of the nodes smoothly approach 
the values of the elementary grid (Gw) coordinates, and are exactly equal to them on the wing surface. As we 
approach the boundary of the grid Gw in computational space, the composite (G_) grid coordinates approach 
the original grid coordinates (G\). In the wing-body junction region the elementary Gw grid is projected onto 
the body surface and then blended. 

Other elements of the aircraft are similarly incorporated in a recursive way: the canard is first used to 
generate an elementary canard grid Gc. This is then blended with the wing-body grid, Gj , to form the wing-
body-canard grid G3. The blending is such that as we approach the canard in computational space, the grid 
approaches Gc. The tail is similarly incorporated by blending an elementary tail grid, G., with G3 to form the 
final grid, G-. 

The basic topology is cylindrical about the body, as shown in Fig. 1. In each cylinder-like surface the 
lifting surfaces are mapped using special "H" grids. These H grids are singularity-free. A detailed study of the 
accuracy of these grids for airfoils for compressible flow computations was presented in Ref. 3 and found to be 
comparable to conventional * 0 ' and "C" grids. 

A very important feature of our data management is that the geometric data defining each element is kept 
in a separate file. Each set has the same format except for the body, which is only slightly different. This has 
led to considerable simplifications. For example, simple grids can easily be generated for diagnostic purposes 
by incorporating only one of the elements at a time. 

3. B L E N D I N G T E C H N I Q U E 

Consider a set of .V grids, each spanning the same computational space and approximately the same 
physical space. For simplicity, we define the computational coordinates to be just the (integer) indices of the 
grids. Thus, in n dimensions we have an n component vector, rm(l)(__ (xm(I), j /m( l ) , zm(l|) for n = 3) 
defined on each grid (labeled m) as a function of the indices 1(= (1,7, k) for n = 3). It is important to think 
of the n components of r m as ordinary smooth functions defined in the computational (1) space. Defining non-
negative weighting functions P m ( l ) , the physical coordinates of the composite grid are then simply weighted 
sums of those of the elementary grids: 

rjl) = f£Pm(l)rm(l)]/i £>" ( . ) . 
m m 

The weighting functions are, in general, functions of all of the indices 1. and are a function of how close 
in computational space the point 1 is to the elementary surface segments. When 1 approaches some surface 
segment, say mi , then P m i W must approach 1 and all the other P's must approach 0 since there we must have 

r _ ( l ) - r m . ( l ) . 

Some of the "art" of using the method resides in the determination of the functions P m ( l ) . Since values of 
rm(l) which define smooth grids are determined separately about each elementary surface, the P m ( l ) do not 

continuation of body 

-oi_..»n. i , ; lino eomunt . , * line. 

Figure I Definition of Grid Topology 
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have to do as much work as in an interpolation method where they typically completely determine one of the 
coordinates. It will be seen that very simple functions are sufficient. The main problems arise when grids must 
be blended with very different values of r in certain regions of 1 near an elementary surface. Then, care must 
be taken that a number of derivatives of P m ( l ) are 0 as 1 approaches the elementary surface (mi), in addition 
to the value of P m i (1) approaching 1. As more derivatives are made to go to 0, the region in 1 space where 
rc(l) approaches r m , ( l ) becomes larger. 

We choose a distance function from point I to each segment. 

i m = |(maz(0, i - i f , i f - i))2 + (maz(0. j - j ? , i T - J.) 

f (max(0,k - k? ,k? - k))2]1 '2 

where we take the segment to lie in the region 

>7 <•< »T ; J T < j < i-T i *T ^ k S *_"• 

Each zm vanishes on segment m. We define a "global" distance function, zm , for each segment (m) that is 1 
when 1 approaches the segment (zm -* 0) and 0 when 1 approaches any other segment ( i m —• 0, m' ^ m): 

E*l/ i 

Then, we simply have 

P™{\) = t [ l + cos{nzm)\. 

With this definition the weighting functions approach the correct values on the segments and the first derivatives 
vanish. 

In two dimensions the method, as described, is applicable even if the boundary segments are contiguous. 
In three (and higher) dimensions the method is directly applicable only if the boundaries are not contiguous. 
In the fighter geometry treated in this paper, some of the pieces (such as wing and body) are joined. In the 
junction region, the surfaces of one grid (wing) have to be projected onto the surface of the other (body) before 
they can be blended. 

The particular type of blending region that we have for the aircraft grid involves three dimensional rect­
angles in (i, j , k) space representing the region where the new elementary grid is generated. Embedded in this 
region are flat rectangular surfaces with one of the indices (j) fixed, which correspond to the lifting surfaces. 
A set of typical cross sections in (i. j) space is shown in Fig. 2. There are two types of surface; On one, 
representing the new lifting surface that we are adding into the grid, the composite grid coordinate (x, y, z) 
values must approach the new elementary values. The other surfaces represent either lifting surfaces already 
added to the previous grid which intersect the region of the new grid, or the outer boundaries of the elementary 
grid region. On all of these surfaces, the composite grid coordinate values must approach the previous grid 
values, so that previously included surfaces are not changed by the inclusion of the new surface. Thus, the new 
lifting surfaces correspond to one set of coordinates (the new elementary grid) and all others correspond to the 
original grid from the previous step. 

4. SEQUENTIAL G R I D G E N E R A T I O N 

The grid is generated in a sequence of steps, each of which incorporates another element of the fighter, 
while keeping the same topology, as follows: 

Figure 1 t - J Index S t ruc ture for Grid 

J_(S) 

.-(<) 

i,(5) is.*) 
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4.1 Body 

A "body" grid (Gi) is generated which conforms to the body at k = 1 between two i values (ii(l) and 
•»(!))• The entire grid is defined to lie in the region 

»o(i) < « < •• ( ! ) ; M . ) < j < >3(i) ; fe. < fe < M i ) . 

We take 

i 0 ( l ) = j o ( l ) = M l ) = l-

This mapping involves defining a set of (1,7) lines which emerge from the body on constant 

normal within those surfaces at angle 4>\, and change azimuthal angle 4> according to 
-1 surfaces, but 

where 

and the weighting function 

*i^) 

fn = 

k>3(l) -

1 

2 ' r l - l 
k - l 

1 - l J J 

The radial (r) coordinate of each point is a simple function of it and the initial radius at k = 1, and the axial, 
or 1 value is chosen to approximately match the mean sweep of the wing. 

•4.2 Main Wing (Wing 1) 

This step involves first computing an elementary three dimensional grid about the main wing and then 
blending it smoothly into the existing body grid (Gi). The wing is assumed to be defined at "span stations' 
or constant z, planes, where z. is the distance along a rotated 1 axis approximately aligned with the wing. 
First, the Gi grid is rotated so that the wing is along the z axis. Then. Gt. is stretched and sheared to a new 
coordinate system where the wing has a constant cross section in the root region (see Figure 3). With this 
transformation, a single 2-D airfoil grid can be used in this entire region. This grid is defined in an 1 - y plane 
using a 2-D H-grid method described in Ref. (2). This grid has been developed for accurate airfoil solutions 
and is designed to be singularity-free at the leading edge by analytically removing the singularity there. This 
2-D grid is first blended into the G\ grid as described below, and then projected onto the constant-/, surfaces 
of the rotated and stretched G\ grid in the root region. The stretching and rotation are then reversed so that 
the original coordinate system is restored. The wing grid is then projected and blended onto the other fe-
surfaces in the root region. The exact z values obtained above are used for fe = 1 so that the exact body shape 
is retained but now with a wing-fitted coordinate system. The values of z for subsequent fe values are weighted 
sums of these computed, projected z values and blended z values, so that at the end of the root region, and 
beyond, each 2-D wing grid surface in the final system for this step, is at constant z. This allows us to have 
more control over the wing grids away from the body. The results of these operations is the grid C j . 

The blending is accomplished as described above and in Ref. (1.) 
wing grid system defined in a region of i . j .k space around the wing: 

We have our projected "elementary" 

«o(i) < ' < »s(L),j)(L) < 7 < j3(L);feo(L) < fe < k3(L) 

where L = 2.3,4 denotes either the main wing, canard, tail or other surface. Each wing is defined by 

• i(L) < « < « _ ( £ ) ; fei(L) <fe<fe_(L) 

with 7 = 7i(L) for the lower surface and 7 = 72(L) = ji{L) +• 1 for the upper surface. We let the values of x.y 
(and z outside the root region) at each node in the final grid for this step (G2) be a weighted sum of the x.y 

\Y 

V •an < | M < c—trn'tmi 

• ' 
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and z values at the same node for G, and the wing grid described above. This weighting becomes zero for the 
wing grid (1 for G2) at the outer boundaries of the wing grid and 1 (0 for G2) at the wing surface. The result 
of this blending and projection is a smooth grid containing the body and first wing. The first wing is typically 
the main wing (L = 2),L = 3 corresponds to the canard and L = 4 to a tail. 

4.3 Canard (Wing 2). 

The generation of the elementary canard grid and blending into the main grid is done exactly as the wing 
in step 2. The fact that the main grid now has a wing makes no major difference, even if it intersects the box 
defining the elementary canard grid. It also makes no major difference if the canard intersects the original wing 
grid box. In fact, the original wing grid box boundaries are not used after step 2. If the wing intersects the 
canard box we merely have an additional constraint on the blending function: the weighting function for the 
canard grid must vanish on the wing surface where the weighting function for the main grid (now G2) must 
approach 1. The distance and weighting functions are structured to easily accommodate these constraints for 
am arbitrary number of surfaces (see Figure 2) 

4.4 Tail (Wing 3) 

This step, as well as any subsequent ones involving additional surfaces, is done in the same way as above, 
where all previous surfaces that intersect the new elementary grid box are taken into account and the elementary 
grid weighting function made to vanish there. Again, no constraints are imposed on possible intersections of 
the various elementary grid boxes. 

5. RESULTS 

In Figure 4 a top view of the total configuration for a typical "generic" fighter is shown, with surface lines 
of constant j (body) or fe (wings) depicted. It can be seen that the first wing sections conform to the body and 
gradually conform to constant l planes as the tip is approached. In Figure 5 a side view of the configuration 
is presented. 

The surface grid on the body (fe = 1) is shown in side view in Figure 6 and the grids on shells fc = 3 and 
fe = 5 are presented in Figures 7 and 8. The last can be seen to be near the tip of the canard. Figures 9. 10 
and 11 present the same surfaces but rotated by 45 about the body axis to depict the tail region. 

Figure 12 depicts an unblended ("elementary") main wing grid for shell 1. This is generated independently 
of any other elements, as are the canard and tail grids. 

Figures 13 and 14 present top view of j = 28 and j = 34 surfaces, which contain the lower surfaces of the 
main wing and canard, respectively. The constrained outline of each can be seen. 

Figures 15, 16 and 17 depict a front view of a contant —t plane that contains the canard, wing, and 
wing/tail respectively. These elements can clearly be seen. 

The grid depicted in the above figures contains approximately 173.000 points. Its generation required 
approximately 16 minutes on a VAX 11 785 minicomputer. 

A grid similar to that described above, but with bunching near the lifting surfaces was used in a potential 
flow code to generate a subsonic solution. The code involved a conservative finite volume difference scheme and 
an ADI solution method. 

A configuration similar to the EFA was treated next. The inlet was plugged giving a smooth body surface. 
The side view of the body surface grid is presented in Figures 18 and 19. The side view of shell number 16 
near the wing is presented in Figure 20. Constant j-planes containing the wing (j = 26) and canard (j = 32) 
are presented in Figures 21 and 22, respectively. In Figure 23 a constant-i section near the nose cutting the 
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canard is presented. Figure 24 depicts a constant-i section near the middle and cutting the wing. In Figure 25 
a similar section is shown, but near the aft section cutting both the wing and (vertical) tail. It can be seen in 
this figure that the wing is low on the body and almost tangential at the junction. In spite of this, the wing 
grid projection method was able to treat this case and map an adequate surface grid onto the body. 

6. C O N C L U S I O N S 

The blending method together with the projection technique appears to offer a relatively simple, fast 
and economical method of generating complex grids. The method has been implemented in a computer code, 
H P L A N E . As yet the selection of the some indices of the elements has not been automated, but the code 
is still relatively easy to use for configurations similar to the one presented. A number of configurations have 
been treated including forward swept wings and cases with canards near an inlet "shelf" such as the JAS-39. 
Presently, it appears that smoothly varying canards, wings and tails can be handled by adjusting the input 
data to our present code. Other features such as fillets, discontinuities in lifting surfaces and inlets require 
special treatment. Although a combination of blending, projection and ordinary shearing can apparently still 
be used successfully to generate good grids, these features are highly individualized and some new programming 
is needed for new cases. A very importanat feature appears to be the ability to generate new grids quickly 
and cheaply, so that changes can be implemented in a short amount of time. The modularity utilized in our 
method, together with the algebraic approach accounts for this. With more experience with a number of 
different geometries, it may be possible to develop a single, general code for a wide range of configurations. 
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i t . 9 Composite Grid Generation for Aircraft Configurations 
with the EAGLE Code 

Joe F. Thompson Lawrence E. Lljewski 
Department of Aerospace Engineering U.S. Air Force Armament Laboratory 
Mississippi State University Eglin AFB, FL USA 
Mississippi State, MS USA 

SUMMARY 

A general three-dimensional grid generation code based on a composite block 
structure la discussed. The code can operate e i the r as an algebraic generation 
system or as an e l l i p t i c generation system. Provision i s made for orthogonality 
a t boundaries and complete continuity a t block Interfaces. The code can operate 
in two or three dimensions, or on a curved surface. The input i s structured to be 
user-oriented, and arbi t rary block configurations can be t rea ted . 

INTRODUCTION 

The construction of computational fluid dynamics (CFD) codes for complicated 
regions Is great ly simplified by a composite block grid s t ruc ture since, with the 
use of a surrounding layer of points on each block, a flow code Is only required 
basical ly to operate on a rectangular computational region. The necessary cor re­
spondence of points on the surrounding layers (Image points) with in ter ior points 
(object points) is set up by the grid code and made available to the CFD solution 
code. 

The present grid code, developed for the U.S. Air Force, is a general th ree -
dimensional e l l i p t i c grid generation code based on the block s t ruc ture . This code 
allows any number of blocks to be used to f i l l an a rb i t ra ry three-dimensional r e ­
gion. Any block can be linked to any other block (or to i t s e l f ) , with complete (or 
lesser) continuity across the block interfaces as specified by input. This code 
uses an e l l i p t i c generation system with automatic evaluation of control functions 
ei ther d i rec t ly from the i n i t i a l algebraic grid and then smoothed, or by interpo­
lat ion from the boundary point d i s t r ibu t ions . In the l a t t e r case, the arc length 
and curvature contributions to the control functions are evaluated and interpo­
lated separately Into the field from the appropriate boundaries. The control func­
tion at each point In the field Is then formed by combining the Interpolated com­
ponents. This procedure allows very general regions, with widely varying boundary 
curvature, to be t reated. 

The control functions can also be determined automatically to provide or tho­
gonality a t boundaries with specified normal spacing. Here the i t e ra t ive adjust­
ments In the control functions are made by Increments radiated from boundary 
points where orthogonality has not yet been a t ta ined. This allows the basic con­
t r o l function s t ructure evalulated from the algebraic grid or from the boundary 
point d i s t r ibu t ions to be retained and thus re l ieves the i t e ra t ive process from 
the need to es tabl ish th i s basic form of the control functions. 

Alternatively, boundary orthogonality can be achieved through Neumann boundary 
conditions which allow the boundary points to move over a surface spl ine , the 
boundary point locations being located by Newton I te ra t ion on the spline to be a t 
the foot of normals to the adjacent f ield points . Provision is a lso made for 
mirror-image re f lec t ive boundary conditions on symmetry planes. 

Although writ ten for 3D, the code can operate In a 2D mode on e i ther a plane 
or curved surface. In the case of a curved surface, the surface Is splined and 
the generation Is done in terms of surface parametric coordinates. 

The code includes an algebraic three-dimensional generation system based on 
t rans f in i te interpolat ion (using e i the r Lagrange or Hermite Interpolation) for the 
generation of an i n i t i a l solution to s t a r t the I te ra t ive solution of the e l l i p t i c 
generation system. This feature also allows the code to be run as an algebraic 
generation system If desired. The Interpolation, though defaulted to complete 
t rans f in i te interpolat ion from a l l boundaries, can be r e s t r i c t ed by input to any 
combination of di rect ions or lesser degrees of Interpolation, and the form 
(Lagrange, Hermite, or Incomplete Hermite) can be different In different d i r ec ­
t ions or in different blocks. The blending functions can be l inear or, more ap­
propriately, based on Interpolated arc length from the boundary point d i s t r i b u ­
t ions. 

The composite s t ructure I s such that completely general configurations can be 
t reated, the arrangement of the sub-regions being specified by input, without 
modification of the code. The input i s user-oriented and designed for brevity and 
easy recognition. For example, the establishment of correspondence, I . e . , a branch 
cut, between two blocks requires only the simple Input statement 
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$INPUT ITEM 
ISTART = 

"CUT", START -
, , IEND -

_ , END 
IBLOCK 

, BLOCK -

where START and END g i v e t he t h r e e i n d i c e s of two o p p o s i t e c o r n e r s of t h e c u t 
s e c t i o n on one b lock (BLOCK), whi le ISTART and IEND g ive t he c o r n e r s of t h e 
c o r r e s p o n d i n g s e c t i o n on t h e o t h e r b lock (IBLOCK). The code s e t s up the p o i n t 
correspondence on the surrounding layers for complete continuity without 
addi t ional Input ins t ruc t ions . 

The features of t h i s code and i t s use are discussed in Ref. 1. Detailed d i s ­
cussion of both the use and the operation of the code i s given in Ref. 2, and some 
examples of appl ica t ions have appeared in Ref. 3 and Ref. <.. The setup of general 
muIti-blocked configurations i s t reated in Ref. 5. 

The code i s wri t ten In modular form so tha t components can be readily r e ­
placed, and /-an adaptive version of the e l l i p t i c generation subroutine has a lso 
been wr i t ten . The code Is vectorized (CRAY-XMP) wherever p rac t i ca l and Includes 
provision for separate storage of each block on the CRAY s o l i d - s t a t e disk (or con­
ventional disk) to allow very large gr ids to be generated. 

CODE STRUCTURE 

Composite Grid Structure 

The grid is s t ructured as follows: The en t i r e three-dimensional physical r e ­
gion i s f i l l ed with a set of interfacing hexahedrons, each of which corresponds to 
a rectangular computational block. Each of these computational blocks has I t s own 
set of right-handed curvi l inear coordinates, 5 (1 - 1,2,3): (Independent of those 
In the other b locks) : 

Each block i s ident i f ied by a number ( s t a r t ing with 1) , and the s ize (the number 
of grid points In each curvi l inear direct ion) of a block i s set in the integer a r ­
ray 

CMAX(i, block number) 1.2.3 

The curvi l inear coordinates of the grid points in the block thus assume the integ­
er values 

1,2 CMAXd, block number) 1.2,3 

at the grid points in t h i s computational block. The blocks do not have to be a l l 
of the sane s ize , and the s ize of each Is specified by input. I t i s a lso not ne­
cessary for an en t i r e side of one block to correspond to an en t i r e side of an ad­
jacent block. I t Is only necessary that a l l of the corresponding blocks f i t t o ­
gether to f i l l the physical region. 

Each conputational block i s surrounded by an extra layer of points in order t o 
allow connections across the interfaces in the physical region to be formed. All 
arrays that contain values for each grid point in a block are therefore dimen­
sioned from 0 to one grea ter than the maximum number of points allowed In the 
block. Thus the surrounding layer of points outside the block corresponds to 
.1 0 on one side of the block and to E. - CMAX(i, block number)+1 on the o ther : 

(Actually, provision i s made for 
-i . ._.- d 

s t i l l another surrounding layer of points , 

corresponding to 5 ' • -1 and f7 • CMAX+2, In order t o provide connections for use 
in flow codes using two-point one-sided differences . ) 

Block Interfaces 

The grid can be generated such that the grid l ines cross the Interface from 
one block to the next with complete cont inui ty, with slope cont inui ty, with only 
l ine continuity or discontinuously. With any degree of cont inui ty, i . e . , in a l l 
but the l a s t case, adjacent blocks must, of course, have the same number of points 
on t he i r common Interface. 

In the case of complete continuity, the Interface is a branch cut , and the 
code es tab l i shes a correspondence across the interface using the surrounding layer 
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of points outside the blocks. This allows points on the interface to be treated 
Just as a l l other points , so that there i s no loss of continuity. The physical 
location of the Interface is thus to ta l ly unspecified in t h i s case, being deter ­
mined by the code. 

The case of slope continuity i s accomplished simply by requiring the grid 
l ines to in te rsec t the Interface orthogonally on both s ides. This can be done 
ei ther through Neumann boundary conditions, in which case point locations on the 
Interface are determined by the code (with the shape of the interface specified by 
input), or by i t e r a t i ve adjustment of the control functions with the points on the 
Interface specified by input. 

Line continuity requires only that the same physical points be specified on 
the interface on each of the two blocks i t Joins, so that the points on the in te r ­
face are completely specified by input. No continuity a t the interface requires 
nothing at a l l , of course, and the adjacent blocks do not even have to have the 
same number of points on the interface In that case. 

Sub-Block Structure 

Blocks can be divided into sub-blocks for the purpose of generation of the 
algebraic grid and the control functions. Here point d i s t r ibu t ions on the sides 
of the sub-blocks can e i ther be specified or generated by t rans f in i t e interpola­
tion from the edges of the s ide. This allows addi t ional control over the grid In 
general configurations and is pa r t i cu la r ly useful in cases where point d i s t r i b u ­
tions need to be specified in the in t e r io r of a block, or to prevent grid overlap 
highly curved regions. 

Fundamental Arrays 

In the following discussion the f ie ld arrays (which contain values a t each 
grid point in a block), such as R given below, include the block number as a sub­
sc r ip t . The code actually operates with data from only one block a t a time in 
these arrays and hence th i s subscript i s always unity in the code. The present 
explanation of usage i s greatly simplified by the Inclusion of the block number as 
a subscript, however. 

The three Cartesian coordinates x. ( i - 1,2,3) of the grid points in a block 
are In the r ea l array 

R(l, block number, £1 , £2 , C3) i - 1,2,3 
1 2 3 where (f. , £ , 5 ) are the three curvi l inear coordinates of the grid point in the 

computational block. 

Each grid point in a block i s given a c lass i f ica t ion set In the array 

TYPE(block number, £1 , t } , £3) 
This array, which i s set up by the input, contains a t each grid point one of the 
following alphanumeric values (the default i s "FIELD" except on the surrounding 
layer where the default i s "OUT") 

TYPE - "FIX": indicates a point for which the Cartesian coordinates are 
be changed, e .g . , a fixed point on a physical boundary. 

not to 

TYPE - "FIELD": indicates a grid point for which the Cartesian coordinates are 
to be calculated by the grid generation system, e .g . , a general 
in te r ior point . 

TYPE - "IMAGE": Indicates an image point, i . e . , a point on a block boundary or 
surrounding layer of points , for which the Cartesian coordinates 
wil l be kept equal t o those at another (object) point in the 
same or another block. 

TYPE - "REFLECT" indicates a point on the surrounding layer which i s the 
mirror-image ref lect ion in a plane physical boundary of a grid 
point Just Inside the boundary. 

TYPE - "AVERAGE": indicates a special grid point on a block boundary 
the average of a l l the adjacent grid points . 

which i s 

TYPE - "NEUMANN" indicates a grid point on a boundary at which the grid l ines 
are to be orthogonal to the boundary by the application of 
Neumann boundary conditions. (Such a point moves along the 
boundary.) 

TYPE - "ORTHOG": indicates a grid point on a boundary at which grid l ines are to 
be made orthogonal to the boundary by i t e r a t i ve adjustment of 
the control functions. (This leaves the boundary point fixed.) 
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TYPE - "OUT": indicates a point completely out of the computation, e .g . , inside 
a body in the in t e r io r of a block. 

The correspondence across the interfaces between the hexahedrons in the physi­
cal region i s establ ished in the .nfpcrer arrav 

1 2 ^ 
IMAGE( , block number, 5 . 5 . 5 ) 

where the f i r s t subscript assumes the values 0 ,1 ,2 ,3 as explained below. The 
Cartesian coordinates of points having TYPE - "IMAGE" (an image point) are kept 
equal t o those of some other (object) point In the same or another block. The 

block nuntoer and curvi l inear coordinates (5 ) of t h i s object point are in the a r ­
ray IMAGE, where 

image point 

1 2 3 
block number - IMAGE(0, block number, 5 ,5 ,5 J ) 

object 51 - IMAGEO, block number, 5 1 .5 2 .5 3 ) 
point 

52 > IMAGE(2, block number, 5 1 .5 2 .5 3 ) 

53 - IMAGEO, block number, 5 1 .5 2 .5 3 ) 

Here the l a s t four arguments of the array identify the image point , while the four 

values of the array identify the corresponding object point . This array i s se t up 

by the code. As an example of the function of the IMAGE array, if 

TYPE(IB,IC1 .IC2.IC3) - "IMAGE", then the point with 51 -IC1, 52-IC2, 53-IC3 in 
i ? 

block IB i s an image point . The corresponding object point , say 5 -Cl, 5 -C2, 
5^-C3 in block B, i s obtained from the IMAGE array as 

B - IMAGE(0,IB,IC1 .IC2.IC3) 
Cl - IMAGE(1,IB,IC1,IC2,IC3) 
C2 - IMAGE(2,IB,IC1 ,IC2,IC3) 
C3 - IMAGEO,IB,IC1.IC2.IC3) 

Then the Cartesian coordinates a t the Image point are set equal t o those a t the 
object point by 

R(1,IB,IC1,IC2,IC3) - R(1,B,C1,C2,C3) 
R(2,IB,IC1,IC2,IC3) - R(2,B,C1,C2,C3) 
R(3,IB,IC1,IC2,IC3) - R.3.B.C1.C2.C3) 

Block Storage 

The code is set up to t r e a t one block at a time, and hence the subroutines op­
era te with only a s ingle block in the field a r rays . The blocks are stored e i t he r 
on disk f i l e s , one block to a f i l e , or in the core storage ar rays . The code keeps 
the number of the block presently in core and only accesses the storage when the 
next block to be t reated i s d i f ferent from the l a s t . All the f ie ld arrays a re In 
one-dlmenslonal form. 

ALGEBRAIC GENERATION SYSTEM 

Values of the Cartesian coordinates for grid points on any section of a block 
can be Interpolated from already-specif ied values on the section boundary by 
t r ans f in i t e interpolat ion . This Interpolat ion can be used to set points on 
boundaries for which the ac tua l shape i s not important, e .g . remote boundaries a t 
' i n f i n i t y ' , or t o se t point d i s t r i bu t ions on interfaces between the blocks in the 
physical region for calcula t ion of the control functions. This same type of in­
terpolat ion i s used by the code to generate an algebraic grid within each block, 
e i t h e r as a f ina l grid or to s t a r t the i t e ra t ion for the e l l i p t i c system. In t h i s 
case the section i s the en t i r e block. 

Interpolat ion Type 

The interpolat ion can-be from the s ides , edges, or corners of a section of 
block, corresponding to the portion of the sect ion boundary to be matched by the 
t r ans f in i t e in terpola t ion . Cartesian coordinate values for a l l points on the sec­
t ion boundaries that are to be matched must have been se t , of course. I t i s also 
possible to r e s t r i c t the in terpola t ion to l ess than the fu l l dimensionality of the 
sect ion. 

The Interpolat ion may be e i the r Lagrange or Hermite, Individually In each 
d i rec t ion . For the Hermite case, the slope i s made orthogonal to the boundary 
with a spacing determined e i t he r through specif icat ion, or through Lagrange t r a n s ­
f i n i t e interpolat ion from the point d i s t r i bu t ion on the section s ides : 
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Finally, the blending functions for the Interpolation can be l inear or can be 
based on an interpolated arc length d i s t r ibu t ion constructed from the point d i s ­
t r ibut ion on the section boundary, a lso as in the above figure. 

Interpolation Projectors 

The t r ans f in i t e interpolat ion i s done by the appropriate combination of ID 
projectors for the type of Interpolation specified. (Each projector i s simply 
the ID Interpolat ion in the di rect ion indicated.) For interpolat ion from a l l s ides 
of the section, If a l l three d i rec t ions are indicated and the section i s a volume, 
th i s interpolat ion Is from a l l s ix s ides , and the combination of projectors i s 

v + F + F - F F r1 r 2 r 3 1 2 F2F3 
p p ( F F F r 3 1 1 2 r3 

while if only the two direct ions J and k are Indicated, or if the section i s a 

surface on which 5 1 i s constant, the Interpolation i s from the four sides on which 

ei ther 5 J or 5k i s constant 

&v 
F + p - F F 

j k r j r k ( i . j . k ) cyclic 

With only a single direct ion 1 indicated, or if the section Is a l ine on which 5 

varies , the interpolation Is between the two sides on which 5 I s constant; 

IZ. 

using only the single projector f.. 

With Interpolat ion from the edges of the section, with a l l three di rect ions 
indicated and the section a volume, the interpolat ion i s from a l l twelve edges: 

using the combination 

F1F2 + F2F3 + F3F1 2 F1F2F3 

With only the two direct ions i and J indicated, the interpolat ion i s from the 

eight edges on which e i ther 5 or 5 J vary: 

t ' } e2Y 

with the combination 

FkF t • F » F n - F 1 F 2 F 3 

. l .k.f .) 

(J.m.n) 
cyclic 
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With only the single d i rec t ion 1 Indicated, the in terpolat ion is from the four 

edges on which 5 va r i e s : 

^CT 
_k 

using only F,Fk , ( i . J . k ) cyc l i c . 

Interpolat ion from the eight corners of the section 

Is done using F^pF- . 

ELLIPTIC GENERATION SYSTEM 

Tne code can function as e i t he r an e l l i p t i c generation system or an algebraic 
generation system. An algebraic grid is generated in any case to serve as a 
s t a r t i n g solution for the i t e r a t i v e solution of the e l l i p t i c system. 

E l l i p t i c System 

8.9 The e l l i p t i c grid generation system ' i s 

3 3 
r 

m-1 n-1 5 5 

3 rere 

}.S'*\* (1) 

where the g"11 are the elements of the contravariant metric tensor: 

im „ m n.n g - 75 • V5 

These elements are more conveniently expressed in terms of the elements of the co-
variant metric tensor , g : 

« - r • r mn - m -_n 

which can be calculated d i r e c t l y . Thus 

(. ( g ikgJS, g u g j k ) / g 

(m, l,j) cyclic, (n.k.i) cyclic 

where g, the square of the Jacobian, is given by 

g - det |g | - r (r p x r ,) 

In these r e l a t i ons , c i s the Cartesian posi t ion vector of a grid point 

(c - ix • Jy + kz), and the 5* (1-1,2,3) are the three curvi l inear coordinates. 

The Pn are the 'control funct ions ' which serve to control the spacing and o r i en ta ­

t ion of the grid l ines in the f ie ld . 

The f i r s t and second coordinate der iva t ives a r e normally calculated using 
second-order cen t ra l d i f ferences . Provision i s a lso made, however, for one-sided 
differences dependent on the sign of the control function P (backward for P < 0 

and forward for P > 0 ) . This feature i s useful only to enhance convergence with 

very strong control functions. Provision is a lso made for skewed c ross -
der iva t ives , but t h i s has been of l i t t l e use. 

The e l l i p t i c generation system i s solved by point SOR i t e r a t i o n using a f ield 

of locally-optimum accelerat ion parameters. These optimum parameters make the 
solution robust and capable of convergence with strong control functions. 
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Control Functions from Algebraic O ld 

The three components of the e l l i p t i c grid generation system, Eq. (1 ) , provide 
a set of three equations, that can be solved slnultaneously a t each point for the 

three control functions, P (n-1 ,2 ,3) , with the derivat ives here represented by 
central differences. This produces control functions which wi l l reproduce the 
algebraic grid from the e l l i p t i c system solution in a s ingle I te ra t ion , of course. 
Thus evaluation of the control functions in t h i s manner would be of t r i v i a l Inter­
est except tha t in the code these control functions are smoothed before being used 
in the e l l i p t i c generation system. This smoothing is done by replacing the con­
t ro l function at each point with the average of the four neighbors In the two cur­
vi l inear d i rec t ions (one in 2D) other than that of the function. Thus P. Is 

1 k 
smoothed in the 5 J and 5 d i rec t ions , where l , j , k a re cyc l ic . No smoothing i s 
done in the di rect ion of the function because to do so would smooth the spacing 
d i s t r ibu t ion . 

The code generates an algebraic grid by t rans f in i t e Interpolation from the 
boundary point d i s t r ibu t ion , as discussed above, to serve as the s t a r t i ng solution 
for the SOR i t e ra t ion for the e l l i p t i c system. With the boundary point d i s t r i b u ­
tion set from the hyperbolic sine or tangent functions, which have been shown to 

11-12 give reduced truncation error , t h i s algebraic grid has a good spacing d i s t r i ­
bution but may have slope breaks propogated from corners into the f ie ld . The use 
of smoothed control functions evaluated from the algebraic grid produces a smooth 
grid that r e ta ins essent ia l ly the spacing of the algebraic gr id . 

Control Functions from Boundary Point Distributions 

Control functions can be evaluated on the boundaries using the specified 
boundary point d i s t r ibu t ion in the generation system, with cer ta in necessary a s -
sunptlons (orthogonality at the boundary) to eliminate some terms, and then can be 

1 3 
Interpolated from the boundaries Into the f ie ld . Ear l ier approaches Interpo­
lated the en t i r e control functions from the boundaries in t h i s manner. More gen­
e ra l regions can, however, be t reated by interpolat ing elements of the control 
functions separately. (Some re la ted work along these l ines has appeared In Ref. 
11). 

The control functions on a l ine on which 5 n varies can be expressed as 

*h + (2 ) 

where A i s the logarithmic der ivat ive of the arc length, s i s the arc length 

spacing, and p Is the radius of curvature of the surface on which 5 i s constant. 

The arc length spacing, a , and the a rc length contr ibution, A , to the 

control function are Interpolated Into the inter ior of the block from the four 
sides on which they are kncwn by two-dimensional t r ans f in i t e interpolat ion using 
l inear blending functions: 

Ai ,H 

Ai ,s i 

- A l , * ! 

The radius of curvature, p , is interpolated into the in te r ior from the two sides 

on which i t Is known by one-dimensional Interpolation using blending functions on 
the hyperbolic s ine. 

s 
i ' 

A 
1 

;:: ___7 e • 

i 

r2 
! y 

J 
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The control function i s f ina l ly formed by adding the arc length spacing divided by 
the radius of curvature t o the arc length contr ibut ion according to Eq. (2 ) . 
(This procedure is discussed in more d e t a i l In Ref. 9.) 

I t e r a t i v e Adjustment of Control Functions 

A second-order e l l i p t i c generation system allows e i ther the point locat ions on 
the boundary or the coordinate l i n e slope a t the boundary to be specif ied, but not 
both. I t i s poss ib le , however, to i t e r a t i v e l y adjust the control functions in the 
generation system u n t i l not only a specified l i n e slope but a l so the spacing of 
the f i r s t coordinate surface off the boundary i s achieved, with the point loca­
t ions on the boundary specif ied. In previous appl icat ions the re la t ions have 
been applied on the boundary, and the control function increments generated a t the 
boundary have been interpolated into the f i e ld . In the present code, these r e l a ­
t ions are applied on each successive coordinate surface off the boundary, with the 

11-12 off-surface spacing determined by a hyperbolic sine d i s t r ibu t ion from the 
spacing specified a t the boundary. The control function increments are attenuated 
away from the boundary, and contr ibut ions are accunulated from a l l orthogonal 
boundary sect ions . Since the I t e ra t ive adjustment of the control functions i s a 
feedback loop, i t i s necessary to l imit the accelerat ion parameters for s t a b i l i t y . 
(More d e t a i l i s given in Etef. 9.) 

BOUNDARY CODE 

An auxi l l l a ry front-end code has a l so been wri t ten to se t up boundary data 
for input to the grid code. This aux i l l l a ry code bui lds boundary segments In r e ­
sponse to a se r ies of input commands which again are designed to be user-or iented, 
brief, and eas i ly recognized. The following features a re included: 

( 1 ) . generation of generic plane conic-sect ion or cubic curves. 
( 2 ) . generation of cubic space curves. 
( 3 ) . generation of generic conic-sect ion surfaces. 
( 4 ) . generation of cubic surfaces. 
( 5 ) . generation of surfaces by stacking, ro ta t ing , or blending curves. 
( 6 ) . extract ion and concatenation of surface segments. 
( 7 ) . transformation of surfaces by t rans la t ion , ro ta t ion , and scal ing. 
( 8 ) . reversal or switching of point progressions on surface. 
( 9 ) . establishment of point d i s t r i bu t i ons by curvature and with specified end, 

or in t e r io r , spacings. 
(10) . establishment of surface parametric gr ids by t r ans f in i t e in terpola t ion . 
(11). generation of tensor-product surfaces. 
(12) . generation of surfaces by t r ans f in i t e in terpola t ion. 
(13). generation of g r ids on curved surfaces. 

APPLICATIONS 

In general the following d e t a i l s have been found to be advantageous. During 
the i t e r a t i on , cuts on block sides are updated iimiediately a f t e r the block has 
been swept, since updating a l l of the cuts together a f te r a l l of the blocks a re 
swept can lead to o s c i l l a t i o n s near the cut . The SOR i t e r a t i o n is implemented In 
a s y m e t r i c manner, reversing the sweep di rec t ion a f t e r each i t e ra t ion since t h i s 
gives be t t e r symtietry, pa r t i cu la r ly with Neumann boundary condit ions. The optimum 
accelera t ion parameters are e s sen t i a l t o making the system robust. Mien the con­
t r o l functions are i t e r a t i ve ly adjusted for boundary orthogonality, the use of 
one-sided, directed f i r s t der iva t ives i s "poroprtate since the changes in the con­
t r o l functions can i n i t i a l l y be qui te large. Central differences are used in a l l 
other cases. The skewed cross de r iva t ives , however, have shown l i t t l e value. 
Final ly, the evaluation of the control functions from the algebraic gr id , followed 
by smoothing, has proved to be the most generally applicable approach, pa r t i cu l a r ­
ly in complicated configurations. Some examples appear below from Ref. 5: 

The following figure shows a 27-block s t ruc ture for a pylon-store, constructed 
so as to t r ans i t i on from an 0-type grid on the s tore t o a rectangular macro-block 
that can be inserted into a C-grid about a wing. 
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The next figure shows an exploded view of the physical region: 

Finally, a cut-away section of the grid i s shown: 

The insert ion of t h i s macro-block in the overal l wing-body in the overal l 
wing-body grid Is indicated in the next f igure : 
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Finally, some surfaces from the resul t ing composite grid are shown: 

The following figure shows the block s t ruc tu re for a 12-block system about a 
wing-cornered s t o r e : 

and a section of the grid follows next: 

Final ly, a 21-block s t ruc tu re for one of a pai r of s tores Is shown (the bottom 
l ine Is the symmetry p lane) : 
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followed by a section of the grid: 
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4.io ANALYTICAL SURFACES AND GRIDS 

Helmut Sobieczky 
DFVLR Institute f. Theoretical Fluid Mechanics 

Gottingen. F. R. Germany 

Summary 

The use of analytical shape generation is decribed for wing-body configurations 
and flow boundary conditions. Flexibility in geometry definition allows for sim­
ple computational grid interpolation. A test case for experiment and code vali­
dation is illustrated. 

I n t roduc t ion 

The use of computers has become essential for an efficient development of 
research tools in fluid dynamics. Large computers are needed to solve equations 
modelling fluid motion, smaller computers create graphic display of calculated 
physical phenomena. Flow field discretization is necessary for numerical sol­
ution methods: Model equations are solved within discretized portions of space 
surrounding the flow boundaries. Numerical flow solver techniques of various 
complexity - depending on the degree of simplifying the equations of motion -
need computational grids of different properties defining resolution of space. 
Many grid types for flows past wings and bodies have been developed, the quality 
of flow solvers for practical applications is already measured by an ability to 
work with relatively simple grids formed around configurations of increasing 
complexity. Grid generation has therefore become a large part of the whole compu­
tational effort to model flows: equations and iteration techniques are used to 
find grid coordinates similarly as the subsequent effort needs to find the prop­
erties of the flow. 

It has been found that the economics of grid generation is very much dependent of 
an ability to control surface metrics. Usually the surface is given by a more or 
less complete set of coordinates data providing supports for spline interpo­
lation to obtain a surface grid. A much more precise definition of surfaces is 
possible if the shapes may - piecewise - be described by analytical relations. A 
modelling of a given configuration by analytical relations is of course tedious, 
but in design aerodynamics data generation with such methods is highly welcome 
because of the value of parametric studies. 

We have developed a surface generator originally for wings designed for opera­
tion in transonic flow, stimulated by the sensitivity of the flow past given 
geometries to variations in transonic Mach number and lift. The design of air­
craft primarily requires wing design concepts but we see that the fuselage and 
the wing-body junction influence the properties of a wing substantially. 

It is intended here to show that, at least for the purpose of developing aero­
dynamic analysis codes and design concepts, surface generation is the most 
important part of grid generation and an analytical approach seems most useful 
for many applications, especially if workstations may be used for rapid interac­
tive design and analysis. A strong connection to practical CAD/CAM and to exper­
iment may also be established as will be illustrated here for a simple test wing 
configuration. 

Development of a geometry generator 

The beginnings of various users' geometry software were a necessity to define 
boundary conditions for their problem case studies. We recall the time when com­
putational methods, e.g. for fluid mechanics, had to be tested with academic 
examples like the parabolic are airfoil, the circle or sphere and ellipsoid, or 
similar. These examples are not too simple for practical flow studies, quite the 
contrary they include phenomena very difficult to model, but sometimes these 
phenomena are not relevant for practical cases, or they are not scaled properly 
compared to the topology of the flow past a more practical configuration. We -
like others - had to solve therefore the problem how to define test cases for CFD 
as easy as defining a circle or an NACA 0012 airfoil but with intended local com­
plexities to enforce occurrence of some aerodynamic phenomenon. The same 
approach should be of practical use to the designer in industry - at least there 
should be a straightforward way to extend software to practical tools. Presently 
we have a quite flexible family of codes able to generate a wide variety of 
wing-body configurations (Ref.l). To arrive there and continue toward complete 
aircraft we need a mathematical, an aerodynamic and an engineering background. 
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Mathematical r e l a t i o n s 

There are some very simple relations describing analytical functions connecting 
two given points in space. We may use algebraic and other analytical functions 
depending on additional quality requirements like tangents and curvature pre­
scribed at the end points, or instead of smooth curvature some weakly singular 
behavior (Fig. 1). An exponential growth rate of the function may be of use as 
well as the simple parametric definition of parts of a circle by trigonometric 
relations. Another technique to generate discrete distributions, like grid 
points between given boundaries, makes use of a vector direction blending, based 
on the abovementioned functions used for distributions, clustering and con­
nections. These explicit analytical basic tools are, of course, fast and simple 
which should be quite useful for large overall iteration loops, taking into 
account the whole design or analysis strategy. 

A e r o d y n a m i c k n o w l e d g e 

Wings, bodies and their combinations for aerodynamic design, especially in the 
high speed regime may successfully use some geometry software package but for 
refined investigations - and these are what's needed by an already experienced 
community of design engineers - a flexibility to influence shapes, their gradi­
ents and their curvatures locally is essential: shape smoothness is necessary 
but not sufficient e.g. in transonic design where curvatures of wing upper sur­
faces need to be carefully balanced according to Mach waves of the flow field in 
two or three dimensions (Ref. 2). Computational grids should also be dense in 
regions of high or singular curvature, or where shocks are expected to occur. 

Airfoil sections traditionally form a basic element of wing definition; our 
geometry code allows for given airfoil input data. We blow the sections up to 
give shapes with softened curvature peak at the leading edge, then we use a 
spline redistribution to uniformize point number and clustering of all sections 
serving as supports for a wing. The other possibility of a totally analytical 
geometry is to define airfoil generation by characteristic parameters, but their 
number might get too large for achieving desirable pressure distributions. 
Direct and inverse design methods, on the other hand, are available for transonic 
flow so that a resulting optimal 2D airfoil should be taken as a set of input 
data. 

Less experience exists with optimal planforms and wing-body junctions so that,-.̂  
our effort to generate these shapes analytically is intended to provide a multi- ^ 
plicity of variations for optimization strategies. A first application of com* 
bining this geometry generator with a fast transonic analysis code to find 
optimal wings is described in Ref. 3. X _____ 
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The resulting shapes, though analytical and of arbitrary data density include 
realistic basic shapes with simple straight, uniformely rounded or other ele­
ments which allow a comparison with known case studies as well as they include 
simplifications dictated by engineering constraints. 

Input for the generator code has been developed to control a selection of func­
tion parameters: besides coordinates these parameters include tangents and cur­
vature or singularity exponents, controlled by a curve key and function 
identifier. The key identifies the parameters supporting a special curve like a 
leading edge shape or a body crown line, the function identifier selects a cer­
tain function formula to model a portion of the special curve. The resulting set 
of data for all definition curves in 3D space is useful for interactive work on a 
graphic work station: Axonometric or perspectivic views and selection of grid 
portions allows for high productivity because of the extremely fast explicit 
computation. 

For wind tunnel model production the surface normals are used with a given tool 
radius to define the cutter path for NC milling (Fig. 2). Surface undercuts at 
concave portions are monitored, so the maximum tool radius for smoothest sur­
faces at the different milling steps is found. 

Surface generation 

Some elements combined to form a configuration are of prime importance and so we 
focused our efforts to generate fuselages, wings, flow wake sheets and flow field 
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boundaries including internal flow in nozzles and diffusors. A generalization 
of superelliptic quarter arcs gives smooth cross sections, with curvature singu­
lar, finite or vanishing, depending on the exponents used. Restrictions to shape 
complexity led to adding an ability to define basically rectangular cross sec­
tions with rounded corners. These cross sections - defined by half axes and 
corner radii - are thread onto a curve in space, given by x,y,z as functions of 
its arc length. Function subroutines provide first and second derivatives, so 
the normal plane to a curve in 3D space can easily be given. These shapes are 
applied to generate fuselages and channels (Fig.3). 

Coordinates of a body surface grid may be defined now in various ways but most 
useful sceems an explicit definition of the spanwise coordinate as function of 
streamwise and vertical coordinate: we use this for smoothly fix the wing root 
onto the body. 

Wing parameters require a definition of selected spanwise section stations, 
leading and trailing edge shape, dihedral, twist axis, twist distribution, air­
foil thickness variation and parameters to blend-interpolate the given support 
airfoils between their spanwise locations. We presently treat the fairing of a 
wing root, or the fillet, like airfoil sections. An isolated wing with a fillet 
opens therefore like a trumpet at its root (Fig. 4). Wing sections are thread 
onto a 3D twist axis allowing for applying section angle of attack and a vertical 
bending of the wing. The wing root area may now be projected toward the body so 

that no gaps are left between body and wing. If wing fillets are provided we may 
form a completely smooth w.ing-body junction. 

Many present flow analysis computer codes require a suitable choice of a computa­
tional wake sheet, possibly adjusted to the flow wake iteratively. We have there­
fore provided parameters to continue the wing sections beyond the trailing edge, 
downstream toward an exit plane. Vortex roll up at the tip and near the body may 
be modeled. Finite trailing edge thickness results in two parallel sheets suit­
able for inserting a fine additional grid block essential to model viscous flow 
from a blunt base downstream. The wake of the root section is projected toward 
the body surface, allowing to interpolate a simple C-type body surface grid 
between upper and lower crown lines and the wing root section plus wake. Body and 
wing have now one type surface metrics with sections from the plane of symmetry 
to the wing tip (Fig. 5) . 

Similar to wake sheets we treat far field boundaries like body geometries. Among 
the many possible grid topologies we had priorities for CO-type 3D grids for our 
analysis codes. So we generate a body with round nose and C-type spanwise sec­
tions. CO grids allow for a refined wing tip analysis, the tip far field C section 
is reduced to a cut in the rounded side. CH grids need a wing tip extension and an 
open far field. Both types of grids are generated automatically by the grid 
interpolation routine (Fig. 6). 

Grid interpolation 

In this paper we stress the importance to achieve a maximum flexibility in gener­
ating surface grids (including wake and far field) as the best prerequisite to 
define mesh distributions in space. With bounding surfaces given, an interpo­
lation may be carried out in many ways depending on configuration complexity. 
Many authors use partial differential equations. We have provided surface grids 
to serve as boundary conditions for elliptic grid generators, e.g. to obtain a 
grid in a channel. Here we restrict a description of our experience to grid 
interpolation by analytical methods, added as a subprogram to the surface gener­
ator. 

A simple vector combination technique is used in this code, it requires start and 
end point in space, a starting direction and a clustering function for the 
interpolated points. The problem of intersecting grid lines is relatively easily 
controlled and avoided for the configurations studied. A recent addition con­
firms this easy control: We place the "far field" boundary relatively close to 
the body, with sections and points distributed so that surface normals pass end 
points of the interpolated grid close enough to avoid too strong turns and inter­
sections. This boundary has turned to a near- or midfield boundary; from there 
starting with end point directions, grid trajectories may continue to a new real 
far field boundary, far away in free stream and with coarse mesh near this outer 
surface (Fig. 7). 
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This continuation may also be used to change from a C- to an H-type grid for flow 
analysis codes handling block-structured grids. An application is the grid 
around a wing or wing-body combination in a rectangular channel, where the 
near-field C type boundary is surrounded by an H type block conforming with the 
channel walls and also allowing a grid clustering at the walls for modelling vis­
cous flow or ventilation at wind tunnel walls. 

An Application: DFVLR-F5 Configuration 

In our effort to improve numerical methods in CFD, precisely defined test cases 
are needed. The geometry generator developed here offers many possibilities to 
provide configurations for such purpose. A first example was chosen carefully 
between two extremes: Creating the model of only a "bump" body forming some 3D 
displacement in the flow certainly already allows for complicated viscous flow 
phenomena experiments, their physical interpretation and computational verifi­
cation. Designing a realistic wing-body configuration with a supercritical 
lifting wing, on the other hand, is already possible with this generator using 
present aerodynamic experience. The goal was the compromise of trying to define a 
"clean experiment", avoiding uncertainties of wind tunnel corrections but still 
obtaining data related to typical measurements on swept wing configurations for 
transport aircraft. Using half model technology in a 1x1 m transonic tunnol 
allowed for a larger wing but required a careful flow control at the splitter 
plate leading edge, to avoid the thick boundary layer on one of the tunnel walls. 
The slotted walls were completely closed, just suction in the splitter plate 
bypass channel was provided - among other devices - for controlling the plate 
leading edge flow (Fig. 8). 

The configuration presented as a test case is a non-lifting wing with pronounced 
fairing on the splitter plate wall. The surface generator provided data for NC 
milling of the model. Geometry accuracy achieved by this approach was remarkably 
high, confirming the possibility to use the code for model production. 

Airfoil design and wing geometry definition, model production and the wind tun­
nel experiment were the first part of the DFVLR-F5 project. The second part is a 
data evaluation and offering geometry and flow boundary conditions from the 
experiment (Ref. 4) to interested partners in the CFD community, followed by a 
workshop to compare computational results. The test case lends itself to the 
development of various computational analysis codes, these will use grids with 
different topology. Measured flow data (pressure, temperature and velocity com­
ponents) were modeled analytically to a reasonable accuracy defining flow 
quantities on any chosen computational grid in inlet and exit planes (Fig. 9). 
Accepting these boundary conditions as good models for measured values, we have 
completed a precise geometry input by an equally precise flow boundary. 

Our own efforts to improve potential, Euler and boundary layer codes as well as 
develop new solvers for the Reynolds averaged Navier Stokes equations add to 
experience how to choose grid topology, density and clustering. Potential flow 
results give a first insight into flow quality at wing root and tip, N/S analysis 
of 2D airfoil flow past the swept wing section gives information about required 
grid quality subsequently applied to a 3D version of the N/S code in free stream 
and in channel flow (Fig. 10). The goal is finally to learn about a most economic 
use of all codes in global and zonal approaches: all of them require rapid and 
flexible handling of geometrical problems. 

Further use of this wing is, in combination with a generic body, the development 
of design and optimization strategies: studying the reaction of flow quality to 
the changes in geometry by a systematic variation of certain parameters leads to 
a better understanding of flow sensitivity and consequently to better tools for 
design aerodynamics. 

Concluding remarks 

The use of analytical geometry and grid generation was illustrated by definition 
of wing-fuselage and other configurations. Flexibility in shape definition and 
surface metrics generation includes a large part of the work necessary for 
obtaining acceptable computational grids. The fast solution of explicit analyt­
ical relations invites to the interactive design of geometries and grids on a 
graphic work station. A generated example was used to precisely define a tran­
sonic flow experiment for analysis codes development. 
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FIGURE 6. FAR FIELD SURFACES FOR CO- AND CH-GRIDS 
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A . 1 1 Mesh Generation for Industrial Application ol 
Euler and Navier Stokes Solvers. 

W. Fritz. W. Haase. W. Seibert 
Dornier GmbH, Theoretical Aerodynamics, Friedrichshalen, F. Ft. Germany 

1. Introduction 

In recent years, there has been a considerable increase in the ability lo compute flow fields about three-dimensional configurations. 
The level of the field equations which could bc considered has increased from the small disturbance potential methods in the early 
seventies over full potential and Euler methods lo Navier-Slokcs methods. The complexity of the geometry which could be con­
sidered has also increased from isolated wings over wing-fuselage representations to wing-body-tail geometries and more nearly 
to complete aircrafl geometries. Because of Ihe great generality of Ihe mosl commonly used finite volume technique the flow field 
around any configuration can be solved if it is possible to map the configuration and the surrounding field into the rectangular 
computational space. This mapping is done by the grid generation in the physical space. 

Already in 1974 Thompson, Thames and Mastin [ I ] described a method whereby a grid could be generated around an arbitrary 
two-dimensional body. This technique which involves the solution of non-linear elliptic partial differential equations for the grid 
points, readily generalises lo three dimensions, and in principle, provides the means of grid generation for complex shapes. Me­
anwhile this technique is well known as the 'Standard Thompson Approach' and is the basis of mosl of Ihe grid generation 
techniques. In the past len years or so, grid generation has been of secondary importance, bul the fact remains, that for the flow 
solvers lo reach their full potential, robust grid generation techniques for complicated aerodynamic configurations must be devel­
oped. 

To this end we present 3 different methods which can be characterized as automatic grid generation for complete aircrafl config­
urations, completely interactive grid generation and generation of solution adaptive grids for Navier Stokes calculations. 

2. Block Structured Grid Generation around Complete Aircraft Configurations 

The block structured grid generation technique as it is given for example in the references [2], [3] or [4] divides the computational 
domain into multiple rectangular blocks, which can bc defined arbitrarily to produce surface-fitted grids whose structure follows 
the natural lines of the configuration. The Figure 1 shows in principle such a block structuring of the grid around an aircraft. 
Such a subdivision of the physical space, when properly carried out, can adapt to complex configurations with multi-components 
in such a way as lo reduce grid skewness near the boundaries and provide good grid behaviour around the surface slope discon­
tinuities. It undergoes also the storage restrictions of existing computers for fine 3-D grids because during the grid generation as 
well as during the flow solution, only part of the complete 3-D field has must be present in the main storage 

The typical block-structured grid generation process can be described as follows: 

• Definition of the overall block structure according to the natural lines of the configuration. (Definition of the block corner 
points). 

• One-dimensional block perimeter discretization. (Connection of the block comer points). This can be done in the simpliesl 
way, connecting the block comer points by straight lines and taking an evenly spaced point distribution along those lines. 
But such a perimeter discretization can produce large discontinuities in the spacing and in the slope of the coordinate lines 
accross the block boundaries. The presented method makes large efforts to gel smooth perimeter lines accross the block 
boundaries. 

• Two-dimensional grid generation for each block surface. Such block surfaces can be pysical surfaces (fuslage. wing etc.). free 
surfaces and far field surfaces which are bounded by the block perimeter lines. This block surface discretization can be done 
either by algebraic interpolation or by the solution of an elliptical PDE. 

• Three-dimensional grid generation for each block. A block here is a subdomain of the 3-D grid, bounded by ihe block 
surfaces. This also can be done in 3 levels: 

-Algebraic interpolation. 
-Section wise solution of a 2-D PDE. 
-Solution of a 3-D PDE 

where each level can be the initial solution for the next level. 

The partial differential equations which are solved for 2-D and 3-D grid optimization are derived from the Poisson equation of 
the form: 

. „ + i f y + {„ = Pd.ij.l,) 

lex + 1y, + l a " 0({,IJ.?) 

. „ + .y y + . „ = FI(i.ti.Q 

where ({,f),0 are the computational, and (x,y,z) the physical coordinates. P, Q and R are source terms which conlrol the interior 
grid spacing. The above equations can be transformed lo the computational coordinates ({,»;,.) by interchanging the role of de­
pendent and undependent variables. This leads to a quasi-linear elliptic system of equations: 

A X*. -y B X . . + C X U + D X , + E X . + FXr = 0 (1) 
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wherein the X = (x,y,z) are the cartesian coordinates of the grid points. These equations are solved for each block by succesive 
line over relaxation (SLOR). The coefficients A lo F are constant or specified functions used for grid control. The grid control 
terms arc defined along each block boundary and then interpolated across Ihe interior grid. At the boundaries, Ihe values arc es­
timated by the condition, lhal all derivatives normal lo Ihe boundary in equation (I) vanish. It is also possible, to modify the 
conlrol functions in an interactive way. 

The method generales a block structured grid of the H-type and uses a coordinate system as follows: The X-coordinate direction 
is the cenlcrline of the fuselage with the positive direction running from Ihe nose lo ihe tail. The Z-coordinale direction is in the 
spanwise direction (left wing), while Ihe Y-coordinate points upward from the fuselage cenlerline. 

One main difference to other existing methods is the fad, that the grid is nol divided into blocks al the beginning of the grid 
generation process with following grid generation for each block. As far as possible, the subdomains are kept as large as possible 
during the grid generation. So the complete grid generation is splitted into 3 separate parts: Surface grid generation, block surface 
discretization and volume grid generation, where Ihe surface grid generation and the block surface grid generation arc performed 
independently of the final block structure. By doing this, it is possible to get grids with very smooth gridlines across the block 
boundaries. Only al the end of the grid generation process, after the volume grid generation, the grid is divided into the final block 
structure. 

The first step in the generation of the grid is the input and the preparation of the configuration geometry. Figure 2 shows a typical 
geometry definition. Fuselage wings and tail are defined by some definition sections. As the fuselage will be mapped into a hex-
adron in the index space, the perimeter lines have lo be found in the physical space. This is done automatically (Figure 2), but the 
block perimeter lines can be corrected by the user. Wing fuselage intersections can be included in the geometry definition, but it 
is not mandatory. 

The next step is the generation of the surface grids. First the surface grids for the wing, the canard and the vertical tail are gen­
erated separately using a square rool coordinate transformation. The fuselage surface grid is built up starting at the different 
wing-fuselage intersections. If the wing-fuselage intersections are not included in the geometry definition, they are caluclaled 
projecting the inboard wing sections on the fuselage surface. After the discretization of the block perimeter lines Ihe surface grid 
points are optimized by the solution of a 2-D version of the PDE (I) on Ihe fuselage surface. This optimization can be done in­
teractively, thereby modifying Ihe source terms in equation (1) for the grid spacing. Furthermore it is possible lo select arbitrarily 
bounded regions in which the surface grid can be smoothed by the solution of the PDE (1) So it is possible, lo gel smooth grid lines 
across the block boundaries by selecting regions which overlap the block boundaries. To do this, the fuslage is transformed into 
a coordinate system wilh the coordinate x in slreamwise direction, a coordinate B in circumferential direction which can be either 
the arclenglh or the local angle, and a coordinate r in radial direction. Now the distribution of the x- and 8-coordinales is opti­
mized by Ihc solution of Ihc 2-D PDE. The radial coordinates of each surface grid point are obtained by a bi-cubic spline ap­
proximation of Ihe input geometry. 

During this surface grid generation, only the surface grids of each component are stored separately as two dimensional arrays 
(x(ij), y(ij) and z(i.j), where i and j are the two characteristic computational surface coordinates). 

Figures 3 and 4 show two typical surface grids. 

The third step is the transfer of the surface grids into the 3-dimensionaI index space and the definition of all block boundary points 
in the far field planes, the discretization of those far field planes, which is very simple, as in the far field planes very regular grids 
(straight, paralell lines) are used in those planes. If this has been done, the grid is stored sectionwise from inboard to outboard 
on an external dalasel as it is indicated in Figure 5 for the index space. (In the index space, the index i runs in slreamwise direction 
starling at the upstream far field, the index j runs from bottom lo lop and k from inboard lo outboard). In each k-scclion, the 
point distribution along the outer boundaries and along the the surface grid lines is known, all the other coordinates are still un­
known. 

Next is the discretization of the internal block surfaces. This is done in 3 steps; 

• Discretization of the block surfaces k = constant. 

• Discretization of the block surfaces i • constant. 

• Discretization of the block surfaces j = constant. 

As it is shown in Figures (6) (7) and (8). In each of the above steps, only one block surface is required during the discretization. 
Again each block surface k = const., i • const., or j = const, is stored as two dimensional arrays X(i j ) for block surfaces k = const., 
X(kj) for block surfaces i = const. and X(k,i) for block surfaces j = const. Each block surface is updated as follows: First the 
perimeter lines which divide each block surface into sub-blocks are estimated. These lines are taken as cubic parabolas with spe­
cified slopes al the end points. For the one-dimensional discretization along these block perimeter lines arithmetic or geometric 
or user specified stretching functions are used as weighting functions. Then the grid of each subdomain is generated either by al­
gebraic interpolation or by solution of the 2-D version of the PDE (1). To get smooth grid lines, those subdomains arc chosen 
as large as possible. For example the block surface grid in Figure 9 is divided into the following 4 subdomaines: 

• The complete region between fuselage upper side and the upper far field from the upstream far field boundary to the 
downstream far field boundary. 

• The complete region between fuselage lower side and the lower far field from the upstream far field boundary to the down­
stream far field boundary. 

• The region between upslrem far field and the beginning of the fuselage from the lower to the upper far field. 

• The region between end of the fuselage and the downslrem far field from the lower to the upper far field. 

For each of those subdomaines the PDE (1) can be solved. As the subdomaines are overlapping across ihc block boundaries, the 
block boundaries are also smoothed by the solution of the PDE (1). Finally the block surface grids can be optimized in an inter­
active way by applying equation (1) for aritrarily defined subdomaines and modifying the source terms for equation (I). Due to 
this block surface grid generation, all the block suface grids have 

• continuity of coordinates 

• continuity of slopes 

• and as far as possible continuity of cell size 

across Ihe block boundaries. 

Figures 9 and 10 show two of such surface grids. 
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As the surface grids for each sub-region now being generated, the volume grids can be generated for each sub-block separately 
cither by algebraic interpolation, seclionwise solution of a 2-D PDE or by the solution of the 3-D PDE for each block. Similar 
to the block surface grid generation the subdomains for the volume grid generation, for which the grids arc generated separately, 
are defined as large as possible. Therefore the volume grids arc very smooth across the block boundaries. Figure 11 gives an 
impression of the 3-D grid arrangement. 

The final grid is arranged blockwisc wilh uniform boundary conditions for each block, so that it can be used by a block structured 
flow solver. Details of an Euler solution in the above grid are given in ref [S]. it can be seen, that the block structure allows the 
generation of fine grids for realistic aircrafl configurations which seems lo bc important for future Navier-Slokes calculations. It 
furtcr avoids the storage restrictions of existing computers for fine 3-D grids. Because of the small main storage requirements of 
the surface and block surface discretization (less than I MB on the IBM OS/MVS system) this part of the method can run inter­
actively and therefore allow interactive conlrol and optimization by the user. It is then possible lo generate grids with a total 
number of 4.9 million grid points wilh this version. 

3. Graphic Interactive Grid Generation 

While observing the developmenl of hard- and software within the CAD/CAM area or in computer graphics generally, the decision 
arises almost mandatorily lo rearrange the entire geometric preprocessing to a graphic-inleraclive solution. 

The advantages are obvious: within a dialog and under permanent visual control slep by step (and even backwards) a basic ge­
ometry can be upgraded lo a final network within one session. Errors can be cancelled immediately since they are easy to recognize 
and possible variations can be tried al smallest expenditure of lime. In addition, the comprehensive possibilities of 3D-represen-
lalion of modern workstations with local intelligence, today with smallest CPU-usage, supply picture sequences, which some years 
ago were only possible wilh complex trick film techniques. 

With this basic objectives the approach described in the following is only one of several possible ways, however the principles of 
a necessary new concept are explained. The entire procedure of the grid generation, independently of the supplementary aids with 
which it is accomplished, can be divided into two sub-tasks: geometry-preparation and grid-generation. The first part leads to a 
configuration description by means of suitable geometrical elements, the second contains the algorithms which are necessary for 
the discretization. 

Since for pure geometrical tasks several interactive program systems exisl already within the so called Compulcr-Aided-Dcsign 
area, for the solution of the first task, existing software and an appropriate installation should be used. For the execution of the 
actual grid-generation some new programming had lo be done since appropriate lools are not yet on Ihe market. Of course a 
certain number of routines approved in batch operation could be integrated. 

3.1 Geometry Preparation 

The expenditure of necessary geometry editing depends on the form of the basic geometry, to be supplied is in any case one dalaset 
per block, which contains all necessary geometrical data for the grid-generation. For handing over the data, an interface was de­
fined, where all the information about the geometry is traced back to Ihe most simple element - the 3D-point. All block edges as 
well as possibly necessary surface lines will be transfered in form of identified point sequences. All actual examples were developed 
wilhin CADAM by means of 3D-spIincs - however handing them over was done also exclusively wilh poinl sequences. With ihis 
reduction no additional specifications about the geometry type is necessary. The system is open thereby for coupling to any 
CAD-syslcm, and in addition, to the transfer of geometries, developed originally with help of closed functions, model-picked or 
NC-data, output of digitizers or data coming from a drawing board. Handing over geometries is independent of curve- or surface-
algorithms. Only a few input conventions are necessary to identify the point-sequences. 

3.2 Description of the Topology 

A prerequisite for ihe correct interpretation of the transferred data is a unique relation between the counter directions I. J. K and 
the 6 blocksides. Consequently, for each point sequence the following must be specified: 

• the block affiliation (block number), 
• a characterisation, for block edges it is a side affiliation, surface lines additionally need specification of counting direction 

and position within a set of lines. 
• finally the number of points. 

A consistent order of the points wilhin a sequence is assumed. The conventions at the interface between geometry preparation 
and grid generation is illustrated in Figure 12. 

3.3 Mesh Generation 

During the process of mesh generation first of all the poinl sequences are used as input to evaluate 3D-parametric cubic splines 
After establishment of the appropriate coefficients, calculation of a first surface grid is done using an algorithm for ihe redistrib­
ution of points on given curves. This is done on all block surfaces twice in different counting directions. The used routine was 
developed originally for the generation of NC-dala but it proved to be very flexible in its application. 

If certain peculiarities of this approach are considered already when subdividing the tolal configuration into blocks, this 
starling solution will be already good enough in most cases so lhal il can be used directly as a final mesh. 

If the obtained results of the redistribution are not satisfying, a Poisson-solver wilh variable source strength is available. 
Hereby the grids of the block surfaces can be adapted corresponding lo the given block edge lines. 

After completion of the (block-) surface grid, discretization of the volumes is done by means of the same procedures. Within 
integer-planes (index 1, J or K = consl.) starling solutions are established, which are optimized alternatively by redistribution or 
use of the Poisson-solver. 

The whole process runs interactively and menue-dciven at a graphic screen, all steps belween basic geometry and final volume 
distribution can be repealed or varied or cancelled. The results of each action can be controlled and improved immediately if ne­
cessary. 

Advantages of the used approach are: 

• minimal computational expense, whereby an interactive operation is enabled, 
• a very good reproduction of the described surfaces also of" complicated configurations using the redistribution procedure. 
• high flexibility wilhin block-arrangemenl, i.e. arbitrary structuring for complex configurations is supported, 
• easy handling of various grid specialities, for example Ihe bisection of the meshwidth when passing lo an adjacent block wilh 

use of mulligrid logics within the solver. 
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3.4 Visualization 

The visualization of the established grids is mentioned separately, because here a further, substantial advantage of the interactive 
approach becomes obvious. Even the illustration of block surface grids only in batch operating already requires several individual 
ploljobs - rotations in space and selection of the surfaces to be shown usually is done in a lime consuming trial-and-error proce­
dure. Sequences of plotjobs finally become necessary, if one tries to represent also the volume grids. 

Use of a workstation with local intelligence (e.g. special processors for translation, rotation, scaling and clipping) will enable 
working at a continuously rotating wire frame model, where arbitrary parts can be shown or no-shown, so that at each time a 
complete overview of the current status is guaranteeed. The whole volume grid can be downloaded omo the workstation and re­
presented there e.g. by a set of integer-planes. If their visibility is coupled with a suitable criterion to a valuator, then the user can 
walk through the volume-grid step by step and thereby gain a good impression of the cell distribution. 

The process of visualization and control of Ihe grids, which is necessary in any case, is reduced hereby to a fraction. Without 
these supplementary aids it is tedious and often only possible in iterative manner. 

3.5 Examples 

The first example in Figure 1 3 - 1 5 shows a configuration where the grid has been built up by a global H-H-slructure of 3x3x4 
blocks. Three of these - around, in front of and behind the store are replaced by a local H-O-mesh with 5x5 blocks. The combi­
nation of two different grid types in that case provides a good geometry representation of the wing as well as of the pylon and the 
external store. Results of Euler-computalions using the shown grid are are given in [6]. The second configuration, given in Fig­
ures 16 -18 consists of a combination of internal and external flow in the case of a fuselage with a sidemounted inlet, whereby 
the channel is also modelled up to the compressor entry plane. In this case a H-O-struclure was used, 18 blocks with a total 
number of 236.000 volume cells are forming the computational grid. Computational results and a comparison wilh experimental 
data is discussed in [7]. 

3.6 Necessary Hard- and Software 

The program development described here as well as the presented examples were carried out on a SPECTRAGRAPHICS 1500 
workstation. Both main parts of the grid-developemcnt can be accomplished at the same screen using different possible operating 
modes of the equipment. In the so-called emulation mode (unit operates like an IBM 5080) the basic geometry is established by 
means of the commercial software package CADAM. The mesh generation lakes place in the native mode by means of special 
application programs, which permit the direct access lo the graphic abilities of the equipment with the device-specific soft- and 
firmware called PRISM. 

As far as wilhin the first step commercial CAD-soflwarepackages are used, because of the reduction of the interface data to 
poinl sequences, any similar systems could be coupled to the method. • 

Concerning the necessary application software within the second section, there are several other 3D-extensions of GKS (the 
GRAPHICS KERNEL SYSTEM) available, but each package is restricted to its special corresponding hardware. 

Thais why some standards would be desirable, which enable an easy transfer of a non-trivial graphic-interactive application 
program from one workstation lo another. 

4. Solution Adaptive Meshes 

In numerical fluid dynamics the equations governing fluid motion are often approximated by the means of difference equations, 
solved at discrete locations in ihc finite problem space. Associated wilh these approximations is a certain amount of numerical 
error (e. q. truncation error) which we desire to keep as small as possible. In general, if the higher order derivatives associated 
wilh truncation errors are negligible, then the error itself is negligible. If this is nol the case, then the step size between adjacent 
points must be decreased. 

Numerical solutions of the Reynolds averaged Navier Stokes equations require a very fine grid resolution in all those regions where 
viscous effects are dominating, as long as no wall functions are used. For flow fields wilh large separated regions which very often 
are highly influenced by those separated regions, it is impossible to prescribe correct wall functions. It is also impossible lo predict 
the position and the shape of all the separated regions and the position of all ihe free shear layers. So al the grid generation for 
such flow fields the regions, where very fine grid resolutions are needed, are still unknown. If constant step sizes are used, this 
means an increase in the number of grid points over the entire space, which for most problems becomes prohibitively expensive. 
Some other, more practible solutions to this problem are: 

• The use of local grid refinement. This approach uses a coarse global grid with embedded fine sub-grids in regions of interest, 
which is principally possible within the framework of the block structured concept. 

• The use of solution adaptive grids. In this approach, the grids are adapted to the solution during the solution process. 

In the following sections there are described two different methods for the generation of adaptive single block meshes and adaptive 
block structured grids with local grid refinement. 

4.1 Mesh Adaption in Single Block Meshes 

If the computational grid is adapted to preliminary results in such a way as lo minimize the aforementioned error term, we can 
expect the final solution to be an improvement in terms of accuracy over the solutions obtained in uniform or arbitrary grids. In 
addition, one would expect the same accuracy for this, a so called 'solution adaptive grid' as for a uniform grid having many more 
ponts. 

ll is assumed thai the redistribution of grid points should be based on the distribution of the curvature of a typical, the flow field 
describing function u (for example: surface pressure distribution). The curvature is obtained at each poinl; by the central differ­
ence approximation 

^• t . -^-^H*' . - ' . ) (2) 

using forward and backward difference operators. For sake of simplicity we may set a{ = a2 and aN = aN_1. By nomalizing the 
curvature wilh the constant slep size h, 

h=^-SlL (3) 
N — 1 

we obtain a weighted measure ;., of curvature at each point: 
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In order to damp extreme values in curvature and lo increase the interval of influence, a new measure of curvature. 
w 
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is introduced for inner points. Al boundaries a similar but one-sided formula is used. In all cases described here, a value of 
n = 1 was used, resulting in smoothing three points. 

The transformation function is finally obtained from the integration of alpha (see Figure 19): 
/ 
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with Se = 0. One notices that the transformation function .S'U, l has its maximum slope where the curvature of u( v,) has its maxi­
mum curvature, and its minimum slope where the curvature of u(x sub i) is also minimal. The table of values obtained from 
Sj = S[Xj) can also be used in its inverse form JC, = x(5,). By dividing the interval 

<. 1 f *N 
f i * (8) 

into N -I subintervals. 

i - I 
S t = S n j r j e i = 2.i....N, 

one can obtain through interpolation the new distribution JC, • *('S.+). In order lo guarantee monolonicily this interpolation must 
bc linear, then from ihe existence theorem the inverse function exists because SN is continous. 

The new slep sizes found by the procedure just described depend completely on the behaviour of the function u(x,). If this function 
is piecewise linear, some of the or, become zero. This can lead lo uncontrollably large slep sizes. Since however, the accuracy of 
numerical methods always depends on the chosen slep size, an additional condition must be introduced, controlling the maximum 
interval between two adjacent points. The slep parameter P is defined as 

"mm* = r h (9) 

Where h is again the step size for uniform poinl distribulion. The gradients of S(x) are now compared against a minimum value 

1 = ,„ * + 0 (10) 
( " - ""max 

which is controlled by P. Therefore it proves neccessary to use an additional linear transformation in order lo ensure such a mi­
nimum gradient of value q. 

Figure 20 shows an example for this adaption techique for a C-type mesh around an airfoil. 

The initial point spacing (lower mesh in Figure 20) is already non-uniform, having more concentrated points al Ihe leading and 
trailing edges; in these regions a pressure distribution is assumed a priori showing larger curvature. The adapted grid in the upper 
part of the same Figure is based on the surface pressure distribution calculated by means of the initial mesh. Therefore concen­
trations of mesh points al the approximate middle of the upper and lower surface as well as at the trailing edge are due lo the 
curvature of the pressure distribution. The influence of the grid adaption on the flow solution is given in reference [8]. 

4.2 2-D Adaptive Block Structured Grids with Local Grid Refinement 

The use of adaptive grids in combination with local grid refinement combines the advantages and cancels the disadvantages of each 
method. So the use of adaptive grids requires a high number of grid points to avoid jumps in the grid spacing. On the other hand, 
the use of fine subgrids would be a very good approach for viscous flows, if the boundaries of those subgrids could be adapted to 
the structure of the flow field. If additionally a block structure, which is adapted not only at the geometric requirements but also 
ai ihe structure of the flow field, is used, we will have a very effective discretization of the flow field; (adaptive grids with local grid 
refinement) and also a very effective procedure for the flow solution by the use of zonal approach (Eulcr/Navier Stokes) which 
due lo the block structure can be done very simply. 

The basic idea for the method described here has been given by J. Thompson in [9]. Following a method for generating 2-D 
adaptive grids with local grid refinement for Navier Stokes calculations is described. 

A constant dicretizalion along the i direction in the index space is discribed by the relation: 

A*; = const. 

Which can be written in the computational (index-) space as: 

*{ = const. 

or 

x i ( = 0 

which is a one dimensional Laplace equation. It can easily be seen, that the relation for a two dimensional, constant discretization 

is: 

where X = (x,y) are the cartesian coordinates. If not the geometric distance but the product of a weighting function and the ge­
ometric distance is kept constant in the discretization, this can be expressed by the relation: 

H-Ax, = const. 

Where W is any weighting function. In the computational space this yields lo : 

H'j^ • const. 
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or 

Wxii+Wixi = Q (11) 

which is a one dimensional Poisson equation. Again, the relation for 2 dimensions is: 

WiXfe + WtXm + WQX- + WjX. = 0 (12) 

Where Wj and Wj are the weighting functions for the two computational coordinate directions. The above equation is an elliptical 
partial differential equation which is commonly used for grid generation. If now characteristic properties of the flow field are taken 
as weighting functions Wj and Wj , the above PDE will generate adaptive grids. The weighting function for Ihe computational 
i-direclion should be coupled with the pressure distribution, and the weighting function in j direction, which is the direction normal 
10 the main flow direction, should be coupled with any indicator for viscous effects. Numerous experiments with different 
weighling functions have shown thai the best weighting function for the computational i-direction is given by the relation: 

dp e 2
P 

W t ~ * T - + P~T (13) 
dx d x2 

So the weighling function is a combination of the first and the second derivative of the pressure distribution. This gives a grid 
adaption lo pressure gradients and extreme values, a and p are weighting parameters by which the user can make the first or 
second derivative more dominating. Both derivatives are normalized in such a way that the absolute values move between 0 and 
1.0. In the j - direction, possible weighling functions may be the total pressure loss- or the vorticily distribution. It was however 
found oul, that the tolal pressure loss is the most suitable parameter to drive the grid adaption to any flow field discontinuity, 
because its values move wilhin a small range whereas the values of the vorticity spread over several powers often. So the weighting 
function for Ihe j-direclion has been choosen as: 

"5-*!-£* HO 
Where y again is a scaling parameter. The grid adaption can be performed in 3 levels: 

• Adaption of the surface poinl distribution along the surface lo the surface pressure distribution. 

• Adaption of Ihe field grid points normal to the flow direction. 

• Adaption of the field grid points in flow direction. 

The perimeter adaption along the surface is done by the solution of a one dimensional poisson eqation 

•|r*tt+*-« (15) 

If the above equation is approximated by finite differences in the index space this leads lo a simple tridiagonal equation system. 
The weighting function is given by equation (13). For this surface pressure adaption, only Ihc surface pressure distribution is re­
quired. For the field adaptions the weighting functions according to eqs. (13) and (14) are taken. Those weighling functions are 
introduced as source terms into the elliptical PDE for grid optimization. In order to get smooth adapted grids across the block 
boundaries, ihe field is divided into sub-regions which are as large as possible and which are overlapping. Only at the end of the 
grid generation process, the grid is split up into the final block structure. 

The local grid refinement is treated as follows: First the uniform, finest grid is generated. Then the coarser blocks are obtained 
by dropping each 2., 4., 8. gridpoinl in i- and/or j-direclion. Figure 21 shows such an unadapted grid. Here again, the initial grid 
is already non-uniform. Along the surface the grid points are concentrated at the leading edge and at the trailing edge. For the 
grid adaption, Ihe weighling functions of the flow solution are interpolated into the uniform fine grid. Then ihe grid adaption is 
performed for the uniform fine grid and finally the coarse subgrids are generated. The best strategy for the use of such adapted 
block structred grids seems to be the following: 

• Make an Euler calculation in a coarse mesh to get the significant surface pressure distribution. (Position of the extreme 
values and gradients). It is nol necessary that the solution is converged, it is only important, lo have a significant pressure 
distribution. 

• Next, a Navier Stokes grid adapted to this surface pressure distribution is generated. This grid can have coarse mesh sizes 
in j-direction in order to accelerate the time development of the solution. 

• Start the Navier Stokes solution. 

• During the solution process, the field grid is adapted from time to time by the use of the total pressure loss as weighling 
function. So the grid points are automatically concentrated in regions with highly dominating viscous effects. 

Figures 22 and 23 show a significant pressure distribution and the tolal pressure loss contours which are obtained during ihe sol­
ution process for the geometry of Figure 21. In Figure 24 the surface pressure adapted grid is presented. Compared with Figure 
21, it can be seen, that the grid points are concentrated in regions with gradients and wilh extreme values. Figure 25 finally shows 
the adapted grid. Now the viscous regions can be recognized in the grid. 

The field adaption to the tolal pressure loss distribution is very stable and can be done automatically during the flow solution. 
11 was also found, that the field adaption to the field pressure distribution has no advantages as long as there are no pressure 
discontinuities in the flow field. The adaption of the grid to the surface pressure distribution is sufficient and can be done once 
at ihe beginning of the calculation. 

5. Conclusions 

Although all the presented grid generation techniques use only elliptical grid generation (hyperbolic and parabolic grid generation 
is also widely in use), they show already, that there is no unique grid generation technique. 

All automatic grid generation procedures have the advantages that the grid can be described by a few grid generation parameters 
and by ihis, the complete grid can be modified or changed very fast. But the automatic grid generation has its limitations in the 
complexity of the geometry. For each new geometry, the automatic grid generation procedure has lo be extended lo the new con­
figuration. 

The graphic interactive grid generation avoids the difficulties with the complexity of the geometry. On priniple. each grid can be 
'constructed" by Ihe user, where automatic subsystems (algebraic or elliptical grid generation techniques) can be used. 
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Two- and three-dimensional viscous flow compulations of complex configurations require a very large number of mesh points lo 
resolve all Ihc gradients properly. Here the block structuring in combination with mesh concentration and adaptive grid generation 
can help lo provide the required flow field accuracy. 
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7. Figures 
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Computational Space 

Figure I: Block Structuring of a Complex Configuration 

• ^ v . 

Figure 2: Geometry Definition of a Fighter Type Aircraft 

Figure 3: .Surface Grid for a Fighter Type Aircraft 
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Figure 4: Surface. Grid for a Transport Type Aircraft 
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Figure 5: Sectionwise. .Storage Arrangement of the Complete Grid 
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Figure 6: Block Surfaces k = const. 

Figure 7: Block Surfaces i — const. 
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Figure 8: Block Surfaces j = const. 

Figure 9: 
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Figure 10: 

Figure. I I : 3-D Grid Arrangement 
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A Counter directions I, J, K 
and identification of 
the block-sides 

B Characterisation of 
the block-sides 

C Characterisation of 
the surface-lines 

Figure 12: Conventions at the Interface between Geometry 
Preparation and Grid Generation 

u 

Figure 13: Wing-Pylon-Store Combination, 
Surface Mesh and Plane of Symmetry 
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Figure 14: Wing-Pylon-Store Combination, 
Block Structure of Global Arrangement 

Figure. 15: Wing-Pylon-Slore Combination. 
Local Block Structure 
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Figure 16: Fmelage. with Inlet, Mesh on Body Surface, 
Plane of Symmetry and within Fngine Channel 

Figure 17: Fuselage wilh Inlet, 
Block Boundaries near Inlet 
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Figure 18: Fuselage with Inlet, 
Block Boundaries at 
Far Field 

Figure 19: Distribution of aluncliortu(x) 
and the Appropriate Trans­
formation Function S(x) 
Normalized lo Unity 

N points - adopted grid 

N Initially spaced point* 

Figure 20: Grid Structures for RAF 2822 Using 83 Points 
for Surface discretization in a .Single Block Mesh 
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Figure 21: Non-Adapted Block Structured Grid 

0 50 

Figure 22: Significant Surface Pressure Distribution. 
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Figure 23: Total Pressure Loss Contours. 

Figure 24: Surface Pressure Distribution Adapted Grid. 

* - • - • • 

Figure 25: Surface Pressure Distribution and Tolal 
Pressure Loss Adapted Grid. 
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4.12 EXPERIENCE WITH THREE-DIMENSIONAL COMPOSITE GRIDS* 
by 

J. A. Benek, T. L. Donegan, and N. E. Suhs 
Calspan Corporation/AEDC Division 

Arnold Air Force Station, Tennessee 37389-9998 

ABSTRACT 

Experience at the AEDC with the three-dimensional (3-D), chimera grid embedding 
scheme is described. Application of the inviscid version to estimate wind tunnel wall 
interference on a wing/body/tail configuration is described. Applications of the vis­
cous version compute a 3-D cavity and a multiple-body configuration. A variety of grid 
generators is used, and several embedding strategies are considered. 

1.0 INTRODUCTION 

In the last ten years. Computational Fluid Dynamics (CFD) has evolved from an 
academic enterprise into a necessary, if not integral, part of aircraft design and devel­
opment. Two circumstances have stimulated this change: the maturation of fast numerical 
algorithms for solution of the Euler and Navier-Stokes equations and the reduction of the 
price of the large supercomputers required to perform the computations. As the entry 
costs decrease and the value of flow simulations becomes more widely recognized, the de­
mands for even more complex simulations increase. The heightened level of expectation 
also increases pressure to produce "timely" solutions. This pressure can only be ex­
pected to increase as CFD becomes more closely coupled to the design and development 
processes. Frequently, the most critical phase in meeting the demand for computations is 
the construction of a suitable mesh. To ameliorate the difficulties experienced with 
grid generation, alternative computational strategies are being explored. Basically, 
they can be divided into two categories: global approaches and domain decomposition ap­
proaches. 

The global mesh approach uses a single computational net to discretize the geometry 
and flow field (e.g., Thompson (Ref. 1), Rubbert and Lee (Ref. 2), and Shang and Scherr 
(Ref. 3)). Complex geometry frequently requires the introduction of internal boundaries 
(e.g., cuts) into the domain and may result in very skewed grids and regions of unac-
ceptably low spatial resolution. The introduction of internal boundaries increases the 
bookkeeping required in the flow solver and can require modifications to the solution 
algorithm. One novel approach utilizing a global mesh is described by Jameson, Baker, 
and Weatherhill (Ref. 4). The major thrust of this work is to use a finite volume algo­
rithm based on tetrahedrons and eliminate the requirement for an ordered mesh. A complex 
data-structure is required to define the relationships among the grid points comprising 
the volumes. 

Domain decomposition includes many techniques: zonal or grid patching [e.g., 
Hessenius and Pulliam (Ref. 5), Rai (Ref. 6), and Hoist, et al. (Ref. 7)], and grid em-
bedding/oversettings [e.g., Atta and Vadyak (Ref. 8), Benek, et al. (Ref. 9), Venkatapathy 
and Lombard (Ref. 10), and Berger (Ref. 11)]. The basic idea of this strategy is the 
subdivision of the computational domain into regions (not necessarily disjoint) that can 
be more easily meshed. An additional advantage is that each subdomain may be treated 
separately and a different flow model or solution algorithm used in each. Such flexi­
bility provides economies in computer resources as the more expensive viscous flow 
solvers can be confined to regions where viscosity dominates the flow. The key to suc­
cessfully implementing this strategy is provision of a means of intergrid communication. 
This is the point at which the various techniques differ most widely. All these tech­
niques require additional bookkeeping beyond that required for the basic flow solver to 
facilitate communication. 

Presently, no one method has been demonstrated to be clearly superior. It seems 
likely that some synthesis of the various strategies will become the method of choice. 
In the meantime, we have chosen the grid embedding approach as it includes grid patching 
as a special case and thus provides a flexible method for accomplishing a broad range of 
flow simulations. In this paper we will describe our experience with the chimera scheme 
which was first developed by Benek, Steger and Dougherty (Ref. 9). The three-dimensional, 
color graphics code required to support this effort was developed by Buning and Steger 
(Ref. 12). 

2.0 DESCRIPTION 

The chimera grid embedding technique is a domain decomposition strategy and has two 
principal elements: (1) decomposition of the domain into subdomains which typically 
overlap and (2) communication among the grids. The selection of subdomains is arbitrary; 

*The research reported herein was performed by the Arnold Engineering Development 
Center (AEDC), Air Force Systems Command. Work and analysis for this research were done 
by personnel of Calspan Corporation/AEDC Division, operating contractor for the AEDC 
aerospace flight dynamics test facilities. Further reproduction is authorized to satisfy 
needs of the U. S. Government. 
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the major considerations are the identification of regions that may be easily meshed, the 
isolation of special regions of the flow (e.g., where viscous effects are important), and 
the available computer memory (which determines the maximum number of points in each sub-
domain) . Theoretically, this means the total number of mesh points in the entire domain 
is unlimited. Intergrid communication is established by the transfer of boundary data 
among the subdomain grids. The data for embedded grid boundaries are obtained by inter­
polation of the independent variables in the mesh in which the boundary is embedded. 

There are two types of interpolation boundaries: (1) outer boundaries and 
(2) artificial boundaries. Artificial boundaries are produced whenever a solid surface 
is embedded in or overlaps another subdomain. Figure 1 depicts a flapped airfoil where 
the flap mesh lies within the airfoil mesh. Points of the airfoil mesh are contained 
within the solid boundary created by the flap surface, and therefore lie outside the 
computational domain. A portion of the airfoil mesh in the neighborhood of the flap is 
excluded from the airfoil grid (i.e., the shaded area around the flap within the airfoil 
mesh). The boundary of this excluded region of the airfoil mesh is an artificial 
boundary. 

The computational procedure can be illustrated as follows: The solution is 
advanced on the airfoil mesh. Outer boundary data for the flap mesh are interpolated 
from the solution on the airfoil mesh and transferred to the flap solution. The trans­
ferred data are used as boundary conditions to advance the solution on the flap mesh. 
Data for the artificial boundary of the airfoil mesh (dashed line on the flap grid) are 
interpolated from the solution on the flap grid. The interpolated data are transferred 
to the artificial boundary in the airfoil mesh and the process repeats until convergence 
is obtained on each mesh. 

The chimera procedure naturally separates into two parts, (1) generation of the 
composite mesh and associated interpolation data and (2) solution of the flow model or 
models on each mesh. Each part is embodied in a separate computer code, PEGSUS and 
XMER3D. PEGSUS takes independently generated component or subdomain grids and the em­
bedding specifications as input and automatically constructs the composite mesh and com­
putes the interpolation data which are output. XMER3D takes the PEGSUS output and flow 
specifications as input and solves the appropriate flow model on each grid. 

2.1 PECSUS 

Automatic generation of a composite mesh from the input component grids requires 
PEGSUS to (1) establish the proper lines of communication among the grids through appro­
priate data structure, (2) construct holes within grids, (3) identify points within 
holes, (4) locate points from which boundary values can be interpolated, and (5) evaluate 
interpolation parameters. In addition, PEGSUS performs consistency checks on the inter­
polation data to assure their acceptability and constructs output files with the data 
structures appropriate to XMER3D. The most recent version of PEGSUS allows very general 
interactions among grids as indicated in Fig. 2. In addition, any grid may introduce a 
hole into any other mesh. Details of the hole construction process, and associated data 
structures, are provided by Benek, et al. (Refs. 9, 13, and 14). A trilinear interpola­
tion is used to obtain boundary data. 

2.2 XMER3D 

The implementation of the chimera scheme must provide for the use of multiple flow 
models. The current choice of models is the 3-D Euler equations for inviscid flow and 
the 3-D thin-layer Navier-Stokes equations for viscous flow. The algebraic model of 
Baldwin and Lomax (Ref. 15) is used to simulate turbulent flow. The implicit, approxi­
mate factorization scheme of Beam and Warming (Refs. 16 and 17) is used to solve the 
model equations. The implementation follows that of Pulliam and Steger (Ref. 18) and 
uses explicit boundary conditions. Modifications to accommodate the chimera scheme are 
described by Benek, et al. (Ref. 14). 

3.0 APPLICATIONS 

A major motivation for the development of the chimera scheme at the AEDC was the 
requirement to provide routine computational support to testing. Estimates of the ef­
fects of the wind tunnel environment on aerodynamic data are of particular interest. 
Typically, lead times are short and grid generation is usually the pacing item in per­
forming CFD simulations. Also, there is the requirement to compute time-dependent flows 
involving aerodynamic configurations in relative motion as exemplified by the space 
shuttle booster configuration and store separation from military aircraft. 

The 3-D chimera scheme has been used to compute both viscous and inviscid flows 
over a variety of configurations. These include a wing/body/tail, bodies of revolution 
in close proximity, cavity flows, and base flows for Mach numbers spanning the range from 
subsonic to supersonic. The following sections will illustrate some of these applica­
tions of the chimera scheme. 

• 

3.1 Inviscid Flows 

One of the intended uses of the chimera scheme at the AEDC is the computation of 
wind tunnel wall and support interference (e.g., Kraft, et al. (Ref. 19) and Suhs (Ref. 
20)). A version of the chimera scheme was developed for this purpose. The model shown 
in Fig. 3 was designed for assessment of wind tunnel wall interference. It consists of 
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a blunted ogive-cylinder and a mid-mounted wing and tail. The wing and tail are constant 
chord planforms swept back at 30 deg and have no twist or taper. Cross sections parallel 
to the plane of symmetry are NACA 0012 airfoils. Initial, free-air solutions for the 
configuration were reported in Refs. 13 and 14. 

For the tunnel calculations the outer boundaries of the grids about the fuselage, 
a portion of the sting support, wing, and tail for this model are illustrated in Fig. 4. 
The wind tunnel walls are represented as shown in Fig. 5 with the model embedded in the 
tunnel mesh. The region devoid of mesh lines on the tunnel symmetry plane in Fig. 5 
represents the hole in the tunnel grid introduced by excluding points from the solution 
on the tunnel grid in the vicinity of the model. 

Figure 5 illustrates the flexibility inherent in the chimera scheme. The model 
geometry and sting grids were constructed by adding a mesh containing the sting to an 
existing mesh used to model the fuselage. The component-by-component construction 
process is particularly useful for wall interference calculations because no additional 
grid generation is required to change model angle of attack. All that is required is 
that the grids representing the wind tunnel model be rotated relative to the tunnel mesh 
and be re-embedded in it. PEGSUS performs such transformations on component grids by a 
single change of input. 

Several grid generators were used to construct the component grids shown in Figs. 
4 and 5. They are a two-dimensional (2-D) grid generator developed by Sorenson (Ref. 21), 
and the three-dimensional generators developed by Soni (Ref. 22), and Thompson (Ref. 23). 
There are a total of 250,445 grid points in five meshes for this configuration. 

The wall interference model was tested in the 1-ft Aerodynamic Wind Tunnel (IT) and 
in the 4-ft Aerodynamic Wind Tunnel (4T). Tunnel IT has a one-foot-square test section, 
and 4T has a four-foot-square test section. The model has 2.5-percent blockage in IT but 
only 0.16-percent blockage in 4T, so the 4T data are considered to be interference-free 
over the range of test conditions presented. Measured static pressure data were obtained 
on the model surface and at an interface near the Tunnel IT walls at a radius of 5 inches 
(see Fig. 6). Static pressures along specific streamwise lines at the interface were 
measured by a two-component static pipe technique (Ref. 24). For the comparisons here, 
data were obtained at angular locations, 9, of 15, 85, 95, and 165 degrees as shown in 
Fig. 6. 

Calculations were made to compare the computed pressures with the measured pres­
sures and to determine the quantitative effects of wall interference on the model. The 
calculations were made using the chimera technique and the application at the tunnel 
walls of a porous wall boundary condition developed by Jacocks (Refs. 19 and 25). The 
conditions chosen for comparison were a Mach number, M„,, of 0.9 and an angle of attack, 
a, of 4 deg. The tunnel porosity is uniform at three percent. 

The pressure coefficient comparisons at the interface (Fig. 7) show good agreement 
and correctly predict the trends. The expansions near the wing and tail locations are 
evident, especially near the side wall. The wall interference effects on the model sur­
face may be seen by comparing the computed and experimental pressure coefficient distri­
butions on the wing, fuselage, and tail for both the tunnel and free-air cases (Fig. 8). 
The free-air solution computes a shock further downstream than the tunnel solution. This 
is consistent with the tunnel data, assuming the 4T data are interference-free. The ab­
sence of the viscous effects in the calculations result in the shock wave location being 
aft of the experimental shock. However, the trends are the same. 

Mach number contours on the wall interference model are presented in Fig. 9. The 
contours join smoothly across mesh boundaries. The shock wave on the wing can be seen to 
continue around the fuselage. The figure illustrates the effect of decreasing spatial 
resolution in high gradient regions. The shock wave can be seen to be smeared on the 
fuselage compared to the wing because of the decreased resolution in the fuselage grid. 

The success of the chimera scheme in providing realistic estimates of transonic 
wall interference has made its use for test planning and data analysis routine at the 
AEDC. Detailed descriptions of the wall interference calculations may be found in Ref. 26. 

3.2 Viscous Flows 

Cavity Flow 

Interest in the flow in and around cavities has increased with the need for ad­
vanced aircraft to carry stores internally. Benefits from such configurations include 
increased range, better maneuverability, and reduced detection signatures (Ref. 27). 
Still, difficulties arise when attempting to safely eject a store from a weapons bay. 
In order to understand these difficulties a computational effort to determine the loads 
on, and trajectories of, stores in weapons bays is being pursued at the AEDC. As a first 
step, an empty 3-D rectangular cavity is modeled. 

Using the grid overlap capabilities of the chimera scheme, two grids were developed 
to define the rectangular cavity in a flat surface. The first grid is a Cartesian grid 
defining the cavity and a region above the cavity. In Fig. 10, a sidewall plane of the 
cavity grid is shown. The cavity grid has a concentration of points along all solid wall 
surfaces and in the region of the shear layer. This grid extends above the cavity by 20 
points in order to capture the entire shear layer in one grid. The cavity grid has a 
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total of 79,002 points. Also shown in Fig. 10 is a side plane of the Cartesian grid de­
fining the region exterior to the cavity. Again, points are concentrated along the solid 
wall. This grid also extends in front of the flat plate in order to allow the flow to 
stagnate on the leading edge and allow a boundary layer to grow. The grid above the 
cavity has 78,625 points. These two grids overlap with a common region above the cavity 
and match point for point. 

Comparisons of computations were made with experimental data taken at the Trisonic 
Gasdynamic Facility of the Air Force Wright Aeronautical Laboratories (Ref. 28). The 
Trisonic Gasdynamic Facility is a closed-circuit, continuous-flow wind tunnel with a two-
foot-square test section. The Mach number range is 0.23 to 3.0. The rectangular cavity 
tested has a length-to-depth (L/D) ratio of 5.6 and a width-to-depth (W/D) ratio of 1.7. 
The dimensions of the cavity and flat plate are shown in Fig. 11. Pressure data were 
taken along the plane of symmetry of the cavity on the front, bottom, and aft walls, as 
well as on the sidewall and on the flat plate surface as illustrated by Fig. 11. Two 
types of data, steady and fluctuating static pressures, were made. The steady measure­
ments were made using standard pressure transducers connected to static orifices and the 
fluctuating (or unsteady) measurements were made with flush mounted Kulite® pressure 
transducers. The unit Reynolds number was 2.31 x 10& per foot. 

Experimentally, cavity flows have been shown to be unsteady with large temporal 
pressure fluctuations (Refs. 29 and 30). Therefore, the flow solver was run with global 
time stepping. The characteristic time for the flow, tch, is defined as the time for the 
flow to traverse the length of the cavity at free-stream velocity, approximately 0.85 ms. 
Typically, the calculation is run for 5 tch to permit the initial starting transient to 
decay. After the initial startup, the steady pressure coefficients are calculated from 
time-averaged pressures for the succeeding 6 tcn- Comparisons of data and calculations 
for fluctuating pressures are made in terms of the sound pressure level (SPL). SPL in 
decibels (db) is defined as 

SPL (db) = 180 + 20 log (Prms/Pref> 

where P r m s is the root mean square of the pressure in psi and Pref is 2.90075 psi, a 
standard reference pressure. As with the pressure coefficient results, the SPL is calcu­
lated over the same 6-tch interval. 

In Fig. 12 calculated centerline pressure coefficients at M^ = 0.74 are compared to 
data for the front, bottom and aft walls of the cavity. The comparisons in Fig. 12 show 
good agreement between calculation and data. Of particular note is the good agreement on 
the aft wall where the shear layer stagnates. Comparisons of data and calculation for 
the SPL are shown in Fig. 13. The difference between calculation and data ranges from 2 
to 5 db; still, the general trend is represented by the calculation. 

In Figs. 14 and 15 representative details of the cavity flow are shown at four dis­
crete time slices. The time differences between each time slice is 0.4 tch- 1° Fig. 14, 
Mach contours are shown for the cavity plane of symmetry. At t = 11.0 tcjj» the shear 
layer across the cavity opening is stagnating on the back wall and is in the process of 
moving out of the cavity. The shear layer is shown to have moved out of the aft end of 
the cavity at t = 11.4 tch- At t = 11.8 tch» the shear layer begins to move back down 
into the cavity setting up a separation region downstream of the aft edge of the cavity. 
Finally, at t = 12.2 tch/ the shear layer at the aft end of the cavity has moved back in­
to the cavity as the separation region past the aft edge increases in size. The shear 
layer at the front portion of the cavity shows relatively small changes in the flow. 

Another way to look at this complex flow of the cavity is shown in Fig. 15. For 
this figure the mass flux across the cavity opening is plotted as a 3-D surface. If the 
surface bulges upward, mass is flowing out of the cavity. The three-dimensionality of 
cavity flow is illustrated by the changes in the mass flux distribution at different 
locations and times. The mass flux shown at the front edge of the cavity is caused by 
vortices that are generated in this region. With the exception of the front-edge com­
plexity, the flow is shown to have a greater amplitude at the aft end of the cavity which 
is consistent with the large SPL distribution of Fig. 13. Details of this work can be 
found in Ref. 31 along with results for M„ = 1.5. 

Three-Body Configuration 

Flow about an aerodynamic configuration consisting of three identical bodies of 
revolution was computed. Each body (Fig. 16) consists of a 3.333-caliber cylindrical 
centerbody and a 1.667 tangent-ogive forebody and afterbody. The afterbody is truncated 
to join a 0.7-diameter sting. Details of the model and a discussion of the experiment 
are given by Cottrell, et al. (Ref. 32). The body axes are arranged in an equilateral 
triangle shown in Fig. 17. The spacing in the figure is given in model diameters. The 
right, left, and bottom designations are consistent with Ref. 32 and were established by 
looking upstream. The composite grid about this configuration consists of ten grids with 
a total of 627,172 points. The outer mesh Gi is a hemispherical shell whose polar axis 
is the x-axis. Grids G2, G3, and G4 (Fig. 18) are cylindrical grids whose axes coincide 
with the polar axis of Gi. These three grids have continuous grid lines and slopes 
across the grid boundaries. Each grid is "blocked" with two viscous grids. Grids 65, 
G7, and Gg are hemispherical viscous grids representing the three forebodies. Grids Gg, 
Gs, and Gig a re cylindrical grids representing the aft portion of the three bodies. Fig­
ure 18 shows the three bodies and their grids embedded within the three cylindrical grids, 
G2/ G3, and G4. Figure 19 shows a cross-section of the composite mesh in a vertical 
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plane through the x-axis (see Fig. 17). The overlap regions among the grids can be seen 
in the figure. The flow field was computed for the three-body configuration at 
Mo, • 0.95, Rep = 2 x 105, and a = 0 deg. This flow was assumed to be turbulent from the 
nose. The Baldwin-Lomax (Ref. 15) algebraic turbulence model was used to simulate the 
effects of turbulence. 

Figure 20 shows axial distributions of C p at several azimuthal locations on the 
lower body. Because of the 120-deg flow symmetry (Ref. 32) only one body need be 
examined. The agreement between the calculation and experiment is generally good on the 
forebody. The comparison becomes less favorable as separation is approached but again 
becomes generally good over the afterbody. The data indicate that the interior flow 
(i.e., within the "channel" formed by the bodies, e.g., -60 <. $ <. 60 deg on the lower 
body) is accelerated compared to the exterior flow. The computation predicts the in­
terior shock too far upstream and does a poor job of predicting the exterior separation/ 
shock interaction. Such behavior is not unexpected as the Baldwin and Lomax turbulence 
model does not predict separated flows well, especially as the separation becomes mas­
sive. Modifications suggested by Degani and Schiff (Ref. 33) are being investigated to 
determine if they will improve agreement in the separated regions. 

Figure 21 shows computed particle paths near the model surface and experimental oil 
pictures. Figures 21a and b compare "computed" and measured oil-flow patterns as seen 
from above, and Figs. 21c and d make a similar comparison as seen from the bottom of the 
configuration. In general, the basic features of the experimental oil flows are cap­
tured. Kaynak, et al. (Ref. 34) discuss the difficulty of comparing and interpreting 
oil-flow patterns and particle streamlines. We will not endeavor to analyze the flow 
patterns in more detail here. 

The flowfield was also computed for the three-body configuration at a = 4 deg and 
M^ = 0.95. These results are presented in Ref. 35 along with computational results for 
an isolated body at H^ = 0.95 and a = 0 and 4 deg. 

U.O DISCUSSION 

Sections 2 and 3 described our experience with the chimera scheme. However, there 
are several other aspects of its use that cannot be as clearly documented and several 
questions that remain unanswered. Perhaps, the most significant change that was made 
from the 2-D work reported by Benek, et al. (Ref. 9) was a change from the mixed 2nd/4th-
order accurate approximations of Pulliam and Steger (Ref. 18) to a consistently 2nd-
order approximation. Large oscillations in the solution with the mixed-order scheme oc­
curred when grid boundaries crossed high gradient regions. Switching to a 2nd-order 
scheme has eliminated this problem. 

Another question that commonly arises involves the interpolation at grid boundaries. 
Is the boundary approximation conservative? Our experience indicates that the major 
factor affecting accuracy at the boundaries is the resolution between the grids in the 
neighborhood of the boundary. Whenever there is a "large" mismatch in resolution, con­
vergence slows and large oscillations in the solution are evident near the interface. 
Should the mismatch occur where the interface crosses a high gradient region, the situa­
tion is exacerbated. A more detailed and systematic study of this aspect of domain de­
composition techniques is in order. 

The chimera scheme was designed to function independently of the particular genera­
tion scheme used to construct subdomain grids. Our experience with grid generators in­
clude 2-D and 3-D elliptic codes, 3-D algebraic codes, and a hyperbolic code. The 
chimera scheme has successfully combined subdomain grids from several grid generators and 
many different topologies and has provided the basis for routine calculation of transonic 
interference effects from tunnel walls and model support structure at the AEDC. 

SUMMARY 

We have described our experience with the chimera grid embedding scheme. The 
method was applied to the computation of transonic wall interference with particular suc­
cess and is being used routinely for support to testing at the AEDC. Experience with the 
viscous version is still being accumulated, but the potential to compute a wide range of 
flows has been demonstrated. Component grids have been generated by several 2-D and 3-D 
grid codes which employ algebraic and partial differential equations as generators. We 
experienced no difficulties combining grids constructed by the various methods into a 
composite mesh. 
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Fig. 1. Transfer of Information 
Between the Grids. 
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Fig. 2. Structure of Embedded Grids. 
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Fig. 3. Wing/Body/Tail Configuration. Fig. 4. Composite Grid for Fuselage, 
Sting, Wing, and Tail Grids. 
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Fig. 5. Model Grids Embedded in 
the Tunnel Grid. 
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Fig . 9. Mach Number Contours for Tunnel Solu t ion 
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Fig. 21. Comparison of Computed and Measured 
Oil Flows for M,,, = 0.95, a = 0. 



139 

4.13 GRID GENERATION AROUND TRANSPORT AIRCRAFT CONFIGURATIONS 

USING A MULTI-BLOCK STRUCTURED COMPUTATIONAL DOMAIN 

R. Radespiel 

Deutsche Forschungs- und Versuchsanstalt fur 
Luft- und Raumfahrt e.V. 

Institut fur Entwurfsaerodynamik 
D-3300 Braunschweig-Flughafen 

F.R. Germany 

SUMMARY 

A new grid generation code is described which is based on the multi-block approch. 
Grid generation around three-dimensional configurations is divided into three major 
parts, namely surface definition, surface grid generation and field grid generation. 
Coons' patches are used to define the surfaces and their intersection lines. Surface 
grids and field grids are generated using the numerical solution of an elliptic system. 
An effective means for the control of the grid spacing has been developed which is based 
on an iterative determination of the source terras in the elliptic system. The code is 
used to generate grids around a wing-body combination and a high bypass nacelle confi­
guration. 

1. INTRODUCTION 

Many codes for the computation of three-dimensional flows use rather simple grid 
generation procedures, such as stacking two-dimensional grids. These codes cannot be 
expected to resolve accurately regions of three-dimensional geometry, for example the 
vicinity of the wing tip or complex intersections of aerodynamic surfaces. 

Essentially three-dimensional generation methods can suffer from problems due to 
overlapping of grid lines in the physical domain and may generate grids with discontinui­
ties of the metrics in the field as often occurs in the case of algebraic generation 
systems. Codes based on differential equation systems require much more computing time 
and often there are no means available for a direct control of the grid density every­
where. 

We postulate that the first requirement of a 'good' grid generation method should be 
user friendliness. The user should be able to cluster grid points in regions where he 
expects the flow gradients to be high. The code should be robust, which means it should 
be applicable to a wide range of configurations without changing the numerical parameters 
of the method. Secondly the code should be at least one order of magnitude faster than 
the flow solver under consideration. We believe no grid generation code would ever give 
the optimal distribution of grid points with its first run. After visual inspection of 
the grid the user will decide either to change the input of the grid generation code and 
makes a new run of the program or to use the grid for flow computations. Thirdly the part 
of the computer program, which depends on the specific configuration under consideration 
should be as small as possible. This requirement leads to the concept of generating block 
structured grids as used 

isible. This req 
in [l, 2. 3, 4] 

The present report describes recent work to meet these requirements. First the prob­
lem of grid topologies around aircraft configurations is discussed in some detail. In 
section 3 the surface equations which are used to define arbitrary, intersecting surfaces 
are given according to Coons [5j. The generation of both two-dimensional surface grids 
and three-dimensional field grids is based on the numerical solution of an elliptic 
system as outlined in [6]. An effective means for the control of the grid point distribu­
tion in the field has been developed which uses an iterative determination of the source 
terms in the elliptic system. This procedure will be described in section 4. The computer 
program is based on the multi-block approach. Therefore, the mayor part of the program 
will be independent of the problem under consideration. An outline of the computational 
procedure will be discussed in section 5. Finally, the results of the generation of grids 
around a wing-body and a high bypass nacelle configuration are given. 

2. GRID TOPOLOGIES FOR TRANSPORT AIRCRAFT CONFIGURATIONS 

It is well known that there does not exist an optimal grid topology for arbitrary 
aircraft configurations. Each aerodynamic component of an aircraft may have its own natu­
ral grid structure and usually these natural structures of the components can not be 
patched with each other. For a given configuration one has first to decide about the 
global grid topology. The global grid should be compatible with all local subgrids, which 
are used for resolution of the individual components. 

For the particular configuration of a transonic transport aircraft the following 
main components have to be considered: Large aspect ratio, moderately swept wing, blunt 
fuselage, moderately swept empennage, engine nacelle mounted on strut. If all these compo­
nents have to be integrated into the grid an H-type sectionwise global grid seems appro­
priate. For H-sections one family of grid lines will approximately follow the streamlines 
so that the lifting surfaces can be represented as interior slits. In the spanwise 
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direction the grid lines should enclose the wing forming an "0". Compared with an H-type 
spanwise grid, an 0-grid will save 25-30% of the grid points and thus computer time. In 
conclusion, the global grid now has an H-0-structure with respect to the wing. The addi­
tional components of the aircraft can be integrated into the mesh as follows: 

• The fuselage can be mapped directly into the global grid. The grid structure with re­
spect to the fuselage is then H-H. Another possibility is to embed a local 0-0 grid 
around the fuselage into the global grid. This grid arrangement is sketched in 
Figure 1. Compared to the first alternative the arrangement with the embedded subgrid 
will save 40% of the grid points when generating grids for a numerical solution of the 
Euler equations. For a numerical solution of the Navier Stokes equations the total 
number of grid points may be reduced by 60%. 

• The horizontal tailplane can be represented as an interior slit in both the global H-0 
grid and the subgrid of the fuselage. If the resolution of these grids is not good 
enough in the region of the tailplane a local 0-0 subgrid can be embedded into the 
slit. The same procedure can be followed in the case of the vertical tailplane. 

• For the integration of the engine nacelle, a portion of the global grid below the wing 
can be replaced by a polar subgrid, whose singularity is on the axis of the nacelle. 
The resolution of the strut may give problems if it is highly swept. In this case it 
should be advantageous to use additional singular grid points on the strut surface to 
avoid highly skewed grid lines on it. 

3. SURFACE DEFINITION 

One of the basic requirements of a grid generator is to allow a complete mathemati­
cal description of all the aerodynamic surfaces under consideration. In practice, aerody­
namic surfaces are given by using cross sections; i.e., a fuselage is described by cross 
sections along the body axis and a wing is given by airfoil sections in the spanwise 
direction. The first step of the computational procedure is thus the generation of a 
mathematical description of the surfaces which fits the input cross sections and provides 
at least continuous derivatives up to first order. The description should contain the 
intersection lines of the aerodynamic surfaces. A convenient method of surface definition 
which meets these requirements uses Coons'patches [5]. 

Using the input cross sections any surface can be covered with a grid of patches. The 
distribution of the cartesian coordinates over a single patch is considered now. For this 
purpose two independent coordinates u, O S u S 1 and w, 0 s w __. 1 can be defined accor­
ding to Figure 2. Following Coons a surface equation can be derived which gives ooth 
continuous coordinates and continuous slopes across the boundaries u = 0 , u = 1, w » 0, 
w = 1. Defining the boundary curves of the patch as cubic polynomials the surface 
equation can be written as 

i = a M wT ( i ) 

where x = [x(u,w), y(u,w), z(u,w)] contains the components of the cartesian coordinates, 

u = [u3, u2, u, 1] ; w = [w3, w2, w, 1] 

and M is a matrix containing the parametric derivatives of i combined with blending func­
tions to provide continuity across the boundary curves. For each patch the elements of M 
only need to be calculated once and stored. 

Once the patches of all the surfaces have been defined, intersections of any two 
surfaces can be calculated. A point x lying on the intersection line of two patches must 
satisfy equation (1) for each patch. Then, setting these equations equal, three non-line­
ar algebraic equations for the four parametric coordinates of the two patches are genera­
ted. If one of the parameters is fixed, i.e. percent line of the wing, the equations can 
be solved to give the corresponding point on the intersection line. 

In conclusion, all the aerodynamic surfaces are continuously described by dividing 
them into a number of Coons' patches, which use two parametric surface coordinates u and 
w. Hence, a unique transformation $ = _:(u, w) has been established for each patch. In 
addition to the possibility of calculating intersections between any two surfaces, this 
transformation can also be used for the generation of surface grids. This is described in 
section 4. 

4. GRID GENERATION SYSTEM 

At the present time the choice of a specific grid generation system seems to be 
based more on the engineer's intention and his particular experiences than on established 
theorems. In our case it is felt that an elliptic generation system offers the most fle­
xibility to treat complex three-dimensional geometries. In particular, for H-topologies, 
is seems to be rather difficult to use algebraic generation equations to generate smooth 
grids without any overlap of grid lines. 
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For the numerical solution of an elliptic system in a three-dimensional computatio­
nal domain, the definition of the grid point distribution at the boundaries of the domain 
is required. Hence, a three-dimensional field grid generation system and a two-dimen­
sional surface grid generation system have to be specified. Surface grids must be genera­
ted at the farfield boundaries of the computational domain and on the surface of the 
aircraft configuration. The grids on the surface will in turn influence the field grid 
close to the surface, where high flow gradients are expected. Hence, the generation of 
proper surface grids is an important aspect of the total problem. In the following we 
will first introduce the generation system for three-dimensional fields and then discuss 
the surface grid generation system. 

4.1 Generation System of Field Grids 

Thompson et al [6] have given an elliptic generation system 

! + | + | = ? J A (2) 
xx syy ^zz v ' 

for the curvilinear cqodinates % = [£, r\, C] • Here J denotes the square of the Jacobian 
and the elements of A = [ Bc] are functions of the transformation coefficients. The 
Laplace operator on the left hand side of system (2) will provide a smooth distribution 
of the coordinates t in physical space. Furthermore, it has beeen shown [7], that the 
system (2) exhibits an extremum principle, if the inhomogenuous functions P = [P, Q, R ] T 

vanish, i.e. the generation system then guarantees a one-to-one mapping for boundary-con­
forming curvilinear systems on general closed boundaries. However, this condition with 
respect to P is not necessary to generate non-overlapping grids and, in practice, the 
source terras P which are used to control spacing and orientation of grid line will have 
to be large and change their sign within the field in order to generate suitable grids. 
The determination of these terms will be discussed in section 4.3. 

In order to obtain the location vector x = f i t ) it is convenient to interchange the 
role of dependent and independent variables in equation (2), which gives a quasilinear 
elliptic system for the cartesian position vector x: 

A ( x , , + P x . ) + B ( £ + Qx ) + C ( x _ . + R x . ) + 2 ( D x , + E x . . + Fx . ) = 0 ( 3 ) 
f,f. f, I " TI C Q C 5 T I £C TJC 

The coefficients A to F are related to the transformation coefficients i . , i and i . . 
Equation (3) can be solved in the computational domain to yield the location vector i at 
each discrete value of %. For this purpose a conventional successive line relaxation 
method is currently used. 

4.2 Generation System of Surface Grids 

Surface grids are generated using two parametric coordinates. In the most simple 
case the surface lies in a plane in physical space, i.e. z = const. In this case the 
other two cartesian coordinates x and y can be used as parametric coordinates. A typical 
application of this is the generation of a surface grid in the symmetry plane of a wing. 
If a grid has to be generated on the surface of an aircraft configuration it is clear 
that the parametric coordinates u and w of the Coons' patches from section 3 can be used. 
For example, the parametric coordinates u and w on a fuselage may be defined as sketched 
in Figure 3a. The problem is now, the generation new curvilinear coordinates £, n on this 
surface (Figure 3b) which conform to the intersection between fuselage and wing. 

Thompson et al [6] have derived a general elliptic surface grid generation system 
which takes into account the partial derivatives of the transformation i = t { u , w ) , rela­
ting to curvature, skewness or stretching of the Coons' patches. Using this generation 
system the surface grid will be virtually independent of the original definition of the 
Coons' patches. In our particular case, generating a surface grid on an aircraft fuse­
lage, there are no problems associated with the metrics of the parametric coordinates. On 
most of the fuselage surface the new curvilinear coordinates will follow the parametric 
coordinates closely. Furthermore, the coordinates u and w of the Coons' patches and the 
new curvilinear coordinates ? = [ t , , n ] will both have two singular points, one at the 
nose of the fuselage and one at the tail. 

In the present work the surface grids are therefore generated using simply the two-
dimensional version of system (2): 

+ Sww = P J2 A 
2 

= Q J B 
(4) 

in the parametric u-w domain. The source terms P and Q are used to control the spacing of 
the surface grid. Their determination is given in section 4.3. 
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4.3 Iterative Grid Control 

The source terms P" = [P, Q, R] can be used to control spacing and orientation of the 
curvilinear coordinates * in physical space. A user of the grid generation code usually 
wants to cluster grid lines in regions where he expects the flow gradients to be high. 
For example he may wish to specify a certain grid spacing close to the aerodynamic sur­
face. As an alternative the user may choose a particular plane in the computational do­
main for which a point distribution is to be prescribed. This certain plane may be a 
boundary of the computational domain or it may be an interior plane, at which a desired 
point distribution is to be specified. Thompson [6] has given a relatively simple esti­
mate of the source terms in order to achieve a desired point distribution. For example, 
let T) = const, be the plane under consideration. Assume that the coordinate line on which 
n varies crosses that plane orthogonally and that the curvature of the coordinate line on 
which ri varies is zero. The source terms P and R then may be written 

P - i f • »--if (5) 
where s denotes the arc length distribution along the coordinates t, and C• Similar ex­
pressions can be given for source terms on planes £ = const and C = const. Once the sour­
ce terms have been evaluated on certain planes they can be interpolated in the whole 
region. Generally, the resulting grids will not exhibit the desired point distribution on 
the planes which were initially used to evaluate equation (9), because both skewness and 
curvature of the lines crossing those planes are not taken into account. The grid lines 
will move toward convex boundaries and they will move away from concave boundaries. This 
tendency is sketched in Figure 4 for the case of a C-grid around a highly cambered air­
foil. Thompson et al [8] have given expressions which take into account the curvature of 
the boundaries of the computational domain. However, the curvature of the boundary will 
not necessarily reflect the curvature of the grid lines in the field. Furthermore it may 
be difficult to evaluate the curvature at boundaries of an H-type topology as shown in 
Figure 5. 

As both curvature and skewness of the grid lines come out as a part of the solution 
and therefore cannot be calculated beforehand, an iterative determination of source terms 
has been developed. In order to obtain a desired point distribution on certain planes of 
the computational domain the source terms are adjusted throughout the whole solution 
process. From here on, these planes will be called target planes. On a target plane 
T) = const target values of the grid stretching ( S ^ ^ / S F ) 0 and ( s ^ ! - / s ! - ) 0 can be calcula­
ted from the desired point distribution on that plane. The iterative solution of the 
elliptic system (5) yields new values of the coordinates after each iteration n. From 
these new coordinates actual values of (spF/spin c a n b e computed. The difference between 
target values and actual values of the grid stretching can be used to adjust the source 
terms on the target plane as follows: 

Pn+1 = Pn + C
P l[*]- -[*].] 

To obtain a stable iteration scheme it was found necessary to add a damping terra 
such as the derivative of the difference between target values and actual values with 
respect to the iteration number. The final iteration formula then reads: 

' . . . - . * - , [ [ i f ] _ - [ i f ] o]«i [[if]„-[_«-]__*] in 
Analogous expressions follow for the iterative determination of R. Once the source 

terms P and R have been obtained on the target plane, they can be interpolated in the 
entire domain and the solution algorithm can proceed to the next iteration. The converged 
solution will yield a coordinate grid for which (a-./s-) = ( 3 r S 3 F ' o is valid on the 
target plane and which is smooth in the entire domain. In the case of generation of two-
dimensional surface grids, the target planes reduce to target lines on which one source 
term can be evaluated from the arc length distribution. 

Values of the coefficients c = 0.1 and cT= 0.2 have been determined empirically. It 
has been found that the convergence behavior of the numerical solution with iterative 
grid control is not very sensitive with respect to cpand cT. 

5. MULTI-BLOCK STRUCTURED COMPUTATIONAL PROCEDURE 

In order to enable the treatment of complex configurations a multi-block structured 
grid generation code has been developed. In the multi-block approach a complicated multi­
ply connected computational domain is split into a number of simply connected cubes. The 
solution algorithm is completely independent of the specific configuration under conside­
ration. The definition of the information which is necessary to describe a general block 
structured domain has been fixed in cooperation with DORNIER Company and SUPRENUM Company 
and has already become a software standard [8]. This definition of the block structured 
domain is given in the following subsection. Afterwards a brief outline of the computer 
program is given. This subsection is illustrated by the results for a typical wing-body 
combination. 
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5.1 Definition of Block Structured Domains 

A single block is formed by a right-hand system of the computational coordinates 
i=l,IL, j=l,JL, k=l,KL. The six block boundaries are numbered according to Figure 7a. 
The connection of blocks to form general regions is completely arbitrary and does not 
depend on the numbering of the blocks. The information necessary to define general re­
gions is stored as follows: 

• Each block boundary can be divided into an arbitrary number of segments, which either 
correspond to a segment of a neighbor block (inner cut) or are a part of the outer 
boundary of the computational domain. The dimension of the segments is fixed by a regu­
lar, non-equidistant segment grid on each block boundary. The segment grid is defined 
by an integer number IJKL for each block boundary 

IJ Number of segments in first cyclic direction at the block boundary 

KL Number of segments in second cyclic direction at the block boundary 

and an integer array MNOPQR (0:ID) with IDS MAX(IJ, KL) for each block boundary 

MNO(I) Value of block coordinates in first cyclic direction at the segment grid 
lines. 

PQR(I) Value of block coordinates in second cyclic direction at the segment grid 
lines. 

The use of IJKL and MNOPQR is illustrated in Figure 7b. 

• The neighbors of the blocks are defined using the integer numbers IJKLMN (ID, ID) 
and OPQR (ID, ID) for each block boundary. IJKLMN is coded for each segment as 
follows: 

U K Number of the neighbor block. For U K • 0 the segment is a part of the boundary of 
the computational domain. 

L Number of the neighboring block boundary 

MN Definition of the index orientation of the neighboring segment according to 
Figure 7. 

The integer array OPQR is coded for each segment as follows: 

OP Number of the neighboring segment in first cyclic direction of the segment grid. 

QR Number of the neighboring segment in second cyclic direction of the segment 
grid. 

Using the integers IJKL, MNOPQR,IJKLMN, OPQR arbritrarily connected block structures 
are completely described. 

5.2 Outline of the Grid Generation Code 

The present grid generation code can be divided into three major parts, namely sur­
face definition, surface grid generation and field grid generation. The results of each 
of the three mayor parts of the code are stored in a file. Therefore, the code can be run 
step by step, which allows the user to check the results of each step before proceeding 
to the next. 

5.2.1 Surface Definition 

The starting-point for the definition of the aerodynamic surfaces is the input of 
discrete surface sections. These input sections are shown for a typical transport confi­
guration in Figure 8a. Cubic splines over arc length distributions are used to interpola­
te a smooth grid of Coons patches on the fuselage. On the wing cubic splines in the sec-
tionwise direction and linear interpolation between the input sections in the spanwise 
direction are used. A smooth and closed grid around the wing tip is generated. For this 
purpose a series of superellipses is applied to the planform and the thickness of the 
wing in the region near the tip. The grids of Coojis' patches for both the wing and the 
fuselage are shown in Figure 8b. The elements of M are calculated according to equation 
(1) and stored for all the patches. Finally the values of u and w at the intersection of 
wing and fuselage are calculated for fixed percent lines of the wing grid (see section 
3). For each intersection point the system of three non-linear equations is solved by a 
library secant method for simultaneous non-linear equations [9], It was found to give 
rapid convergence for all the configurations analysed to this point. 
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5.2.2 Surface Grid Generation 

In the present version of the program the surface grid generation step contains 
those parts of the code which depend on the particular configuration under consideration. 
In the future, however, it is intended to generate the surface grids interactively on a 
work station. The choice of an appropriate grid topology for wing-body combinations has 
been discussed in section 2. Obviously surface grids have to be generated on the wing, 
the body, the farfield boundaries, in the symmetry plane of the grid and on all the fic­
titious inner cuts between the blocks. There are upper and lower blocks for the global 
H-0 grid around the wing and upper and lower blocks around the fuselage. Note that gene­
ration of surface grids on fictitious inner cuts is necessary only to provide an initial 
grid for the field grid generation step. However, sometimes it may be useful to fix the 
coordinates at inner cuts. (See section 5.2.3). 

Initially, algebraic grids are generated for all boundary segments of the three-di­
mensional domain. For any of these segments, the surface grid can be improved by solving 
the elliptic system (4). In this case a two-dimensional counterpart to the logic for the 
field blocks (see section 5.1) is provided automatically from the block structure of the 
field grids. To control the grid spacing at the boundary segments, target lines may be 
specified for each two-dimensional surface block (see section 4.3). The present code 
provides two options to determine target values of (stt/3;)0 along a coordinate line on 
which i varies: 

• Option INITIAL DISTRIBUTION 
(s^^/s^)0 is calculated from the arc length distribution of the algebraic grid 

_ 2
 8i-l ~ 2 si + si-t-l 

si+l si-l 

• Option GEOMETRIC PROGRESSION 

From a specified grid spacing at i=l. As and the distance sjr - s^ the ratio r of suc­
cessive grid intervals is calculated, so that Srr - s, = AsTr -l)/(r-l). The finite 
difference approximation of (s,./s,)0 is 2(r - l)/(r + 1 ) . It is constant along i. 

Now the solutions of the two-dimensional elliptic system can be calculated. All the 
2-D grids are stored end-to-end in singly- dimensioned arrays in the main program. The 
corresponding arrays of the subroutines are multiply-dimensioned with their size and 
starting location passed through COMMON and arguement lists. Therefore, no I/O-work is 
required when the algorithm passes from one block to the next. The improvements of grid 
quality which can be obtained using iterative grid control are displayed in Figure 9. 
Figure 9a shows the surface grid of a fuselage without any source terras. A surface grid 
with the sources determined according to equation (5) is shown in Figure 9b. Iterative 
grid control has been used for the surface grid of Figure 9c. The resolution of this grid 
is much better in the leading edge and trailing edge regions where large gradients of the 
flow are expected. 

In the present example of a transport configuration elliptic grid generation is 
performed on the fuselage surface, the symmetry plane and the upstream and downstream 
farfield boundaries. 

5.2.3 Field Grid Generation 

Once the block-structured domain has been defined and the surface grids have been 
generated and stored (see section 5.2.2) grid generation proceeds in a manner independent 
of the particular configuration. 

To initiate the numerical solution of the three-dimensional elliptic system all the 
surface grids of the boundary segments are collected from file. Then trilinear transfini­
te Lagrange interpolation is used to generate the initial grids in the interior of the 
blocks. To control the grid spacing, target planes may be chosen for each three-dimensi­
onal field block (see section 4.3). On each of these target planes two source terms may 
be specified which are determined from the distribution of arc length in the two coordi­
nate directions of the plane. For example, on a plane on which j = const the source terms 
P and R are determined from the arc length distributions in the i- and k-directions, 
respectively. The present code provides three options to determine the target values of 
the source terms. In the case of the source term P there are: 

• Option INITIAL DISTRIBUTION PLANE 
(sgr/3r)0 is calculated from the arc length distribution of the initial grid 

= 2 'i-l ~ 2 si * 8i+l 
'i+1 " si-l 

• Option INITIAL DISTRIBUTION BOUNDARY 
(srE/sr)0 is calculated from the arc length distribution of the initial grid at k=l and 
k=kL and is linearily interpolated for intermediate values of k. 
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• Option GEOMETRIC PROGRESSION 
From a specified grid spacing at i=l, As and the distance s I L - s^ the ratio of 
successive grid intervals r is calculated, so that STT - Si = As(r - l)/(r-l). The 
finite difference approximation of ( S £ £ / 8 E ) 0 is 2(r - l)/(r + 1 ) . 

When specifying the source terms P, Q and R care must be taken that the sources are 
not overspecified. Each source term must be specified using one family of target planes 
only. For example, the sources P may not be specified using both target planes i=const 
and j=const. Furthermore, care should be taken that the specified target values of the 
source terms are physical, which means one can expect a numerical solution of equation 
(3) to exist which fulfills the target values of the arc length distributions without 
excessive skewness or cross-over of grid lines. 

Now the solutions of the three-dimensional elliptic system can be calculated. As in 
the surface generation step singly-dimensioned arrays in the main program and multiply-
dimensioned arrays in subroutines are used to store the grids. However, due to the limi­
ted amount of main memory of the Cray 1-S computer used in the present work, only one 
field block is kept in the main memory at a time. At each iteration step of the solution 
algorithm each block is read from disk (BUFFER-IN), the iteration is executed and the 
block is written back to disk (BUFFER-OUT). The Record-Addressable READMS/WRITMS package 
is used for the exchange of the grid points on fictitious inner cuts. The ratio between 
I/O and CPU-time is about 3. 

In order to reduce the computational expense of the grid generation method, succes­
sive grid refinement can be used in the field grid generation step. The solution of the 
coarse grid is interpolated and used as input for the refined grid calculation. Using 
this strategy, the iterative determination of the source terms, which can require several 
hundred iterations, can be done mainly on the coarsest grid. The task of the iterations 
on the finer grids is to smooth the intial interpolated grids, which only requires seve­
ral dozen iterations. The convergence of the field grid generation method may be affected 
by the problem of cross-over of grid lines near singular points or lines of the grid. The 
H-O-topology of the present global grid shows two parabolic singular lines emanating from 
the wing tip. There is a natural tendency of the grid lines running around the singular 
lines to move very close to these lines. Although the continuum equations (2) possess a 
maximum principle under certain conditions this property does not apply to the discrete 
equations. Furthermore the initial solution with respect to both * and P may be so far 
away from the final converged solution, that cross-over of grid lines without recovery 
occurs near the singular lines even if a converged solution without cross-over does 
exist. The cross-over problem has also been addressed by Weatherill et al [10]. In the 
present work converged solutions for H-O-topologies have been obtained by 

• generating a smooth surface grid on the last spanwise plane k=KL in the surface grid 
generation step and then fixing the coordinates on this plane in the field grid genera­
tion step, 

• solving the elliptic system first with the source terms in quasi-spanwise direction R=0 
for some hundred iterations on the coarse grid and then introducing the complete itera­
tive grid control. 

Clearly, the problem of grid cross-over near singular lines has not been solved 
satisfactorily with the present work and will require future effort. 

To demonstrate the capabilities of the present method, field grids around a typical 
wing-body combination have been generated using 92 x 40 x 12 cells in the global H-0 grid 
around the wing and 76 x 24 x 4 cells in the local 0-0 grid around the body. The numeri­
cal solution of the elliptic system was obtained using one grid refinement. Several views 
of sections of the final grid are shown in Figure 10. Both the wing and the fuselage are 
well resolved. 

As a second application a grid around an isolated axisymmetric nacelle has been 
generated using the two dimensional part of the grid generation code only. In this case 
three blocks have been used to form an H-grid sectionwise and a polar structure in cir­
cumferential direction. Figure 11 shows, that all components of the configuration are 
well resolved. 

6. CONCLUSIONS 

A new grid generation code has been developed which is based on the multi-block 
approach. Grid generation around complex three- dimensional configurations is divided 
into three major parts, namely surface definition, surface grid generation and field grid 
generation. Surface definition is done using Coons' patches. Surface grids and field 
grids are generated using the numerical solution of an elliptic system. The elliptic 
system provides smooth grids in the interior of the computational domain, even if the 
distribution of grid points at the boundaries is not smooth. An effective means for the 
control of the grid spacing in the field has been developed which uses an iterative de­
termination of the source terms in the elliptic system. 
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The code has been used to generate a grid around a wing-body combination which is 
typical for transport aircraft. As a further step towards the representation of complete 
transport aircraft, a grid around an isolated nacelle has been generated. The grids show 
a good resolution of the aerodynamic surfaces. 
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a) Grid in symmetry plane and on body surface b) Grid in spanwise section 

Fig. li Grid topology for wing-body combination 

Coons' patch 

Fig. 2: Definition of Coons' patch 

a) Distribution of the parametric coordinates u and w 
on a fuselage 

b) Curvilinear surface coordinates t, and C on a fuselage 

Fig. 3: Surface grid generation 
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Spacing smaller 
than specified 

Spacing Larger 
than specified 

Fig . 4; Inf luence of sur face cu rva tu re 
on g r i d spacing 

F ig . 5: H-type g r i d around a i r f o i l showing 
d i s c o n t i n u i t y o f s lope a t t he 
leading edge 

a) Numbering of the block boundar ies 
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Fig. 7: Definition of index orientation of 
neighboring segments 

b) Definition of segment grid at block 
boundary i=l 

Fig. 6: Definition of block boundaries 
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s 

a) Input sections for wing and fuselage 

b) Grid of Coons' patches on wing and fuselage 

Fig. 8: Surface definition of the DFVLR-F4 Wing-Body 

a) Laplace grid on fuselage 

Fig. 9: Surface grid generation for DFVLR-F4 Wing-Body 
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b) Grid on fuselage with source terms evaluated 
from equation (6) 

c) Grid on fuselage with iterative grid control 
using the options INITIAL DISTRIBUTION in 
streamwise direction and GEOMETRIC PROGRESSION 
in normal direction 

d) Final surface grid of wing and body 

Fig. 9; continued 
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a) Sectionwise grid at the root of the wing 

b) Sectionwise grid at the kink of the wing 

Fig. 10: Views on field grid around DFVLR-F4 Wing-Body 
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c) Spanwise grid around the fuselage upstream 
of the wing 

d) Spanwise grid at midchord station of the wing 

Fig. 10: continued 
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c) Grid in the leading edge region 
with coordinates fixed on the cut 
upstream of the nacelle 

a) Nacelle and grid in the symmetry plane 

b) Enlarged view of nacelle and grid in the symmetry plane 

Fig. 11: Coordinate grid around nacelle 
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