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In October 1966 the AGARD Fluid Dynamics Panel published the AGARDograph 109 on the subject of 
“WIND TUNNEL WALL CORRECTIONS”. This comprehensive compilation of knowledge of wall corrections 
available at that time was edited by J. Garner (National Physical Laboratory, England) with contributions 
from E.W.E. Rogers, W.E.A. Acum also of NPL and E.C. Maskell (Royal Aircraft Establishment, 
England). Without doubt this AGARDograph 109 has been one of the most successful publications of 
AGARD and is still today the wind tunnel engineers most authoritative source of wall correction methods 
and data. 

The wall correction methods outlined in AGARDograph 109 are based on subsonic linear and inviscid 
aerodynamics. In most cases the wall effects are correlated with the measured total aerodynamic forces 
and simple image methods are used to calculate and correct for the wall effects. Most of these theories 
were published before 1950 and some appeared as early as the 1920’s. 

By the time of AGARDograph 109 the computer had not had a significant impact on the calculation of wall 
interference corrections. Computers had begun to be used for reducing raw wind tunnel data to 
dimensionless coefficients and for applying simple wall corrections. However, the wall correction methods 
themselves had not been influenced to any degree by advances in computer technology. 

Typical wind tunnel engineers are normally experimentally-minded people who are not really enthusiastic 
about computational fluid dynamics. A consequence of this is that the adoption of computational methods 
in practical wall correction schemes has been slow. Routine correction methods, such as those 
formulated by pioneers such as Prandtl, Glauert, Durand, Goethert, Riegels and Maskell have remained 
in use even in large high quality wind tunnels in the thirty years since these and other methods were 
described in AGARDograph 109. Nevertheless, during this period of large amount of theoretical and 
experimental studies of wind tunnel wall interference were done and these developments have been 
influenced by the rapid improvements that have been made in computing speed and power. Computer 
based methods that have been developed include : 

1) Panel Methods 

These methods have made it possible to represent more accurately than linearised theory methods 
subcritical flows over complex model configurations in the constraining presence of the tunnel walls, 
Panel methods have also permitted wind tunnels with working sections of relatively small and/or non- 
standard cross sections (not amenable to treatment by classical image methods) to be modelled. These 
methods require considerable computing power and for this reason have not yet found wide favour with 
the wind tunnel testing community. Further discussions of methods of this type will be found in Chapters 
2 and 3. 

2) Boundary-measurement methods 

These methods were developed to exploit information available from measurements of the flow at or near 
the tunnel walls. The general technique is not entirely new, as can be seen in AGARDograph 109, where 
reference is made to the use of wall pressure measurements to determine the blockage correction in 
solid-wall wind tunnels. The serious application of these techniques became possible by the development 
of computers during the ’60s and ’70s which enabled wall interference velocities to be computed from a 
large number of flow measurements. Methods of this type can be used to aid the modelling of the flow in 
the near region of the model for solid wall wind tunnels, for which the wall corrections are critically 
dependent on the model representation. For perforated or slotted wall wind tunnels, they can be used to 
provide information on the wall boundary conditions where suitable model representation is available. 



Finally, where both normal and streamwise velocity components are measured at the bounding surface, 
no model representation is needed. These methods and examples of their application are described in 
Chapter 4. 

3) Computational Fluid Dynamic (CFDJ methods 

The current generation of boundary-measurement methods is based on the assumption that the wall- 
induced flow field satisfies the Prandtl-Glauert equation. However, for many types of transonic flows, 
particularly those for which the supercritical flow reaches the walls , this assumption is no longer valid. 
Recognition of this problem led to the use of CFD methods able to model transonic flows and these 
methods are discussed in Chapter 5. 

The increased use of computational methods have arisen from a number of factors including : 

1. the growing need for accuracy in wind tunnel testing mainly for commercial transport aircraft 
development. 

2. the recognition that the ability to test at flight Reynolds Numbers in cryogenic wind tunnels, such as 
the National Transonic Facility at NASA, Langley Research Centre and the European Transonic Wind 
Tunnel at Cologne, is only valuable if the wall interference corrections can be estimated with sufficient 
accuracy. 

3. the need to perform accurate wind tunnel assessment of CFD methods. 

Several times in the past the complete breakthrough of Computational Fluid Dynamics was predicted with 
the automatic consequence, that the wind tunnel as a scientific tool in fluid dynamics will be obsolete. In 
this case, further work on wind tunnel wall corrections would be unnecessary. 

Today most scientists and engineers working in the field of aerodynamic aeroplane development agree, 
that the mystery of turbulence guarantees a long life of wind tunnels as an indispensable tool in fluid 
dynamics. Neither the wind tunnel nor computational methods are able to create progress in aeroplane 
aerodynamics on their own. Only an intelligent combination of both tools enable the aerodynamicist to 
create a successful new aerodynamic design. 

With these developments in mind the editor on the occasion of the Fluid Dynamics Panel Meeting at 
Turin in May 1992 proposed that a new AGARDograph on the subject of wind tunnel wall corrections 
should be produced not to supercede AGARDograph 109 but to complement it. This proposal was 
approved by AGARD, and during the Fluid Dynamics Symposium in October 1993 at Brussels on the 
subject of “Wall Interference, Support Interference and Flow Field Measurement” a small group Of 
specialists met for a preliminary discussion. From this group an international team of authors was formed. 
The aim was to produce an AGARDograph which provides the wind tunnel engineer with a 
comprehensive review of modern methods, mainly reflecting the new developments in wind tunnel wall 
corrections since AGARDograph 109. 

During the work leading to the AGARDograph 336 there was some controversy over the issue as how to 
correct data for buoyancy or pressure gradient effects. Chapter 1.2 presents a method due to Taylor. 
-Effectively this method ignores the influence of the wind tunnel walls on the development of the boundary 
layer on the model and it yields the correction to drag coefficient 

for low speed flow. For thin-wake flows Taylor has argued that the wake blockage component may be 
ignored so that the equation above may be replaced by : 

SC, = - CDS, 



where sufftx S refers to solid blockage. This is in agreement with the classical result for low-speed flow 
given in AGARDograph 109. 

Chapter 6 describes a method recently developed by Hackett [l], which gives a correction to drag 
coefficient 

SC, =-CD&++ 
where suffix w refers to wake blockage. Hackett’s method, like Taylor’s method, is based on concepts 
valid for inviscid flow, although both can make use of information provided by wall pressures which sense 
the behaviour of the real flow. Hackett’s method has been shown to be more accurate than the classical 
method or Taylors method for high blockage, high lift flows. However, neither method has been validated 
for flows in which viscous effects are significant but not severe enough to cause wholesale separation. 
Flows of this sort are of particular importance in aeronautical applications. The question of what needs to 
be done to resolve this issue is dealt with under the heading of “Future necessary work in Wall 
Corrections” by Steinle in Chapter 12. For more details on this wake drag controversy see also the 
detailed discussion between J.E. Hackett and several other authors of this AGARDograph in [2]. 
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