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2. CONVENTIONAL WALL CORRECTIONS FOR CLOSED 
AND OPEN TEST SECTIONS 

Investigations of boundary interference in aerodynamic testing date back to the 1920s and 1930s. 
Glauert’s classic monograph on the subject 1151 summarises this pioneering work and serves both as a 
basis for ensuing developments and as a touchstone for evaluating wall interference methods to this day. 
These early investigations address interference in both closed-wall and open-jet test sections and, to 
some degree, in test sections whose walls are a combination of these two types. This chapter briefly 
describes the basic principles of this classical wall interference theory, summarises some fundamental 
results, and traces several related lines of development since the publication of AGARDograph 109 (131. 

The fundamental problem of wall corrections concerns itself with the difference between the flow fields 
around a body immersed in a uniform oncoming stream of infinite lateral, upstream, and downstream 
extent, and around the same body in a stream confined or modified by wind tunnel walls. The 
streamlines around a body in a uniform subsonic onset flow depend on the shape of the body and on the 
aerodynamic forces acting on the body (which may be considered a result of its shape). In the 
interference-free case, as distance increases laterally from the body, the streamlines approach the 
straight and parallel flow of the onset stream. If the wind tunnels boundaries (the “walls”) are far enough 
away from a model being tested so that the flow perturbation due to the model is negligible, the same 
uniform parallel flow condition is obtained at the boundary and the flow around the model is therefore not 
affected by the tunnel boundaries. However, to the extent that the models influence is perceptible at the 
boundary, the flow within the tunnel (i.e., around the model) is different from that which would be 
obtained in an unbounded stream. Classical wall correction theory attempts to account for this difference 
under a set of simplifying assumptions and corresponding restrictions on the theory’s range of 
applicability. Fundamental to this approach are the concepts of primary corrections and residual 
variations discussed in Chapter 1. 

Elementary interference results for both 2D and 30 models are presented in this chapter. These include 
the interference of only the tunnel walls remote from the model. So-called sidewall interference, which 
may be a major source of three-dimensionality in 2D tests, deserves attention as a special interference 
topic and is beyond the scope of the current discussion. Most of the 3D interference discussion in this 
chapter addresses a rectangular test section of height, H, and breadth, B. with the test section aspect 
ratio defined as B/l-/. Although other test cross sections are in use (e.g.. octagonal, circular, elliptical) 
and interference methods have been developed for these situations, the rectangular section is used as a 
focus of discussion because of its commonality in practice and because of the similarity of rectangular 
section interference to that of other sections of equal area and aspect ratio. 



2.1 CLASSICAL WALL CORRECTIONS: BASIC PRINCIPLES, DEFINITIONS, 
AND ASSUMPTIONS 

As used here, the term “classical” refers to the results of the earliest analyses of wind tunnel boundary 
interference on models in closed-wall and open-jet wind tunnels. The assumptions underlying classical 
wall interference theory include: 

1. 

2. 

3. 

Linear potential flow 

Perturbation flow at the tunnel boundaries. 

Model whose dimensions generally are small relative to the tunnel and whose wakes (including 
both the viscous and vortex wakes) extend straight downstream from the model. 

4. Tunnel of constant cross-sectional area extending far upstream and downstream of the model, 
with boundaries parallel to the direction of the flow far upstream of the model, and whose boundary 
condition for a given wall is either no flow normal to the wall or a constant pressure at the wall 
location. 

“Conventional” is used as a further classification of wall corrections, which includes the classical. These 
corrections are based on classical concepts in that the perturbation flow assumptions are used, but 
model size, wake position, and tunnel boundary conditions are not restricted as above. For present 
purposes, the tunnel walls are restricted, however, to a fixed geometry with a known pressure-crossflow 
characteristic, Conventional wall correction methods do not then include specified boundary condition 
methods or adaptive wall methods. Much of the work reported in AGARDograph 109 [13] satisfies this 
definition of “conventional”, though specified boundary condition methods and adaptive wall methods 
have appeared in the literature since the 1940s and are included in AGARDograph 109 [I31 as well. 

2.1 .I CO-DRDINATE SYSTEM AND GOVERNING EQUATIONS 

The co-ordinate system is defined for a conventional wing-body model such that x is the streamwise co- 
ordinate, y is the lateral or spanwise co-ordinate, and z is the vertical co-ordinate corresponding to the 
direction of primary lift, Figure 2.1. The origin of the co-ordinate system is typically taken to be on the 
test section centreline, at the model centre. In 2D flow, the flow field is taken to be invariant with y. Far 
upstream of the model, the incoming flow is uniform. 

Although the definition of classical wall correction methods should properly be restricted to 
incompressible flows, as mirrored in the early literature, linearised compressibility is included here as a 
straightforward application of the Goethert transformation (see, for example, Ashley and Landahl, [5]). 
Thus, the starting point for the development of classical wall interference corrections is the assumption of 
linearised potential flow between the model and the tunnel boundaries (see Sec. 4.1). Streamline flow is 
assumed with no allowance for shock waves or separated wakes. The effect of fluid viscosity in the 
governing equations is ignored. Velocity at any point in the tunnel is the gradient of the potential function 
in the usual way: 

Pb,Y,Z) = WX,Y,Z) (2.1) 

The principle of superposition is a key feature of classical wall interference analysis. This allows the 
interference flow field to be considered as an incremental flow field to the interference-free flow around 
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Figure 2.1 : Co-ordinate System and Geometry 

the model. Thus, the potential, 0. is assumed to be expressible as the superposition of a uniform onset 
stream, the model potential, and the wall potential, 

@(x,y,r) = -v,x+cp,(x,Y,~)+cpv(~,Y,~) (2.2) 

In those regions of the flow away from the model where the flow perturbations to the uniform oncoming 
stream are small, the model and wall potentials can be considered perturbation velocity potentials. For 
small deviations from the nominal free stream, the effect of compressibility can be linearised in the full 
potential equation, resulting in the governing equation for the perturbation velocity potentials, 

P’rp, +qp +% =o (2.3) 

where @=I&. That part of the flow field due to the walls, the wall interference velocity field, is the 
gradient of the wall interference potential, 

J,(X,Y,Z) = 
& A & 1 acp, ^ $+$+ dr k=u,?+v,i^+w,k (2.4) 

The equation for the perturbation velocity potential can be reduced to the Laplace equation (V?p=O) with 
the co-ordinate transformation (as developed by Prandtl and Glauert for 2D airfoils and extended to three 
dimensions by Goethert): X=x, Y=py, and 2=/Q (see Sec. 4.1). This transformation relates the linearised 
compressible flow to an equivalent incompressible flow in stretched co-ordinates. 
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2.1.2 MODEL REPRESENTATION 

The combination of perturbation interference flow at the model and small model size (relative to the 
tunnel) implies that the variation of the interference velocity throughout the volume proximate to the 
model is small, so that the interference velocity may be considered a constant throughout the region 
affecting model aerodynamics. The primary corrections to stream magnitude and direction capture the 
greater part of the wall influence. The next order of corrections considers the linear streamwise variation 
of interference velocities (which result in streamwise buoyancy and flow curvature corrections). The 
interference velocities and gradients are typically evaluated at the model centre which, for simple model 
representations, is the location of singularities that approximate the flow field far from the model. 

Thus, the flow in the immediate vicinity of the model will appear as though the model is immersed in an 
unbounded uniform onset stream of perturbed magnitude and direction relative to the flow far upstream 
of the model, 

Eorr& = u,? + ct (O,O,O) = (u, + .,)i + vj + w,k^ 
This corrected onset velocity is characterised by streamwise and upwash velocity corrections (y and wJ, 
commonly referred to as blockage and upwash interference. respectively. For small models it is sufficient 
to evaluate the interference velocity and its spatial gradients at the model location. For symmetric 
models at zero yaw, sidewash interference at the plane of symmetry is identically zero. 

The magnitude of the streamwise gradient of u, (Ju,/Jx) is a measure of the convergence (or divergence) 
of the effective onset stream, resulting in a streamwise buoyancy force on the model. The streamwise 
gradient of w, (dv, /&) is a measure of the curvature of the effective onset stream, resulting in an 
additional apparent angle of attack (or equivalently, excess lifl at a given angle of attack) and pitching 
moment. 

The restriction on wakes extending straight downstream is in no way fundamental, but simply allows the 
use of simple, analytic solutions to the Prandtl-Glauert equation to represent the model aerodynamics: 
line doublet (or horseshoe vortex) for 30 lift and its vortex wake, and a point source for drag (2D and 3D 
viscous wakes). 

The assumptions of a small model and of perturbation velocities at the tunnel boundary mean that only 
the far-field flow around the model must be properly represented. That is, the details of the model are 
not important; only the integrated effects at the tunnel boundary of model geometry and loading are 
important to first order. 

The first-order far-field influence of the model arises from three independent features of a model’s 
aerodynamics: 

1. Model shape and volume, which causes a displacement or bulging of streamlines around the 
model, with the streamlines reconverging to unperturbated parallel flow downstream of the model. 

2. Model Iii, which in three dimensions results in a redirection of momentum of the stream, resulting 
in a downwash field that persists to downstream infinity. 

3. Model parasite drag (i.e., not including induced drag or drag due to separated wakes), which 
results in an outward displacement of streamlines around the viscous wake that also persists 
downstream of the model. 
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For small models, these three characteristics are represented by elementary analytical singularities 
placed at the model location. The requisite singularities derive from potential flow theory and are 
summarised in Figure 2.2 : line (or in 2D flow, point) vortex to represent lift, source doublet to represent 
model volume, and point source to represent the displacement effect of the wake. The far field of virtually 
any flight vehicle of interest can be represented by an appropriate superposition of these singularities at 
the model location. The effects of finite model extent may be investigated using multiple singularities of 
these types, though the main features of model size are illustrated by the finite-span horseshoe vortex for 
wing span and a source-sink combination for body length. Expressions for the potentials of these 
singularities are given in subsequent sections. 

Voltex (ra at a point) lntinkslmal horseshoe ntex (Ml at a point) 

Finite-span horseshoe vortex 
(unswept wing wkh uniform span load) 

c-3 
Source doublet (cylinder) 

0 . 
Source doublet (sphere) 

Source-sink with finite separation (Rankine oval) Source-sink with finite separation (Rankine body) 

x x 

Source (displacement of viscous wake) Source (displacement of &scous wake) 

Figure 2.2 Elementary Singularities Used for Model Representation in a Uniform Stream 

With the interference velocities at the model location being small, resulting model loading changes 
(relative to the interference-free case at corrected freestream conditions) are likewise small. This permits 
the use of singularity strengths taken to be the same as for the interference-free model flow, that is, o,,, is 
known or specified. For example, a 3D source doublet in a uniform onset flow produces a closed 
spherical stream surface; thus it represents the potential flow around a sphere. For a sphere in a 
constrained flow, as in a wind tunnel, this same singularity will produce the same closed spherical stream 
surface only in the limit of zero model size. Otherwise, the wall potential perturbs the effective closed 
surface around the doublet; the larger the model size, the greater the deviation, Similarly, use of a 
specified wing lift distribution (represented by a spanwise distribution of horseshoe vortices) will not fully 
capture the effect of wall interference on wing loading unless an iterated solution is sought, If model 
loading changes are not small, due to either model size or sensitivity of the flow to small changes in 
stream velocity or angle (as at transonic speeds or near stall), classical methods can provide only 
qualitative guidance, and advanced methods should be considered. 



The interference velocities are usually nondimensionalised by the velocity magnitude far upstream of the 
model, 

It is convenient to define an upwash interference parameter (8) and its streamwise gradient (6,) 

w3) 

where C is the test section cross-sectional area, and L is a typical length scale (often taken as the height 
of the test section). 

Similarly, the streamwise gradient of blockage interference is of interest because it affects model forces 
in addition to the change in the effective freestream velocity given by E. This gradient imposes a 
streamwise pressure force, or buoyancy drag, on the model that would not be present in the interference- 
free flow and that must be subtracted from the measured model drag in the tunnel. 

As long as there is a region between the tunnel boundaries and the model satisfying the perturbation flow 
equations described above, the flow at the tunnel boundaries due to only the model is a perturbation 
flow, even though the model representation may result in large velocity changes (relative to the free 
stream) close to the model. Conversely, the flow at the model location due to only the walls will likewise 
be a perturbation flow, even though the flow close to the walls may be subject to large deviations relative 
to the oncoming free stream, as in the case of flow through longitudinal slots or in the vicinity of holes. If 
the wall boundary condition is spatially homogeneous, however, the flow at the wall will satisfy Equation 
2.2. This is the case for the closed-wall and idealised open-jet test sections. 

It should be noted that even for apparently large models, small model results can provide estimates of 
the adequacy of applying only primary corrections, based on the magnitude of spatial variations of the 
interference flow field at the location of the model. Such estimates can then guide the decision on the 
need for more accurate flow modelling. 

2.1.3 TUNNEL WALLS 

The condition of tunnel walls extending far upstream and downstream (doubly infinite in streamwise 
extent) permits the application of the method of images with its corresponding set of analytic results. The 
method of images is a simple yet powerful technique for the evaluation of interference in tunnels with 
either closed-wall or open-jet boundaries. 

The boundary condition for a closed wall is no flow normal to the wall, given exactly in terms of the 
perturbation potential, 

acp 0 -= 
an 

where cp = (pm + oW 



Allowing the velocity at the tunnel boundaries to differ from the onset stream velocity by only a small 
amount (the perturbation velocity) also means that these boundary conditions can be linearised if 
necessary. The boundary condition for an open wall (or free jet) is a constant pressure equal to the static 
pressure far upstream of the model; in linearised form, 

d’p=O dx (2.11) 

Finally, the assumption of a tunnel of constant cross section (and constant homogeneous boundary 
conditions for a given wall) extending to infinity both upstream and downstream of the model provides the 
simplifications (symmetries and asymptotic boundary conditions) permitting the application of analytic 
techniques, such as the method of images. Because most wind tunnel tests involve a model located on 
the centreline of the test section, this symmetry condition can be used to advantage both to simplify the 
analysis and to permit a convenient decoupling of upwash interference from model volume and wake 
characteristics, and of blockage interference from model lifl. 

Consider, for example, a planar closed wall extending to infinity in all directions in proximity to an isolated 
point singularity whose velocity potential is given by cp(x. y, z). Figure 2.3 illustrates this situation in two 
dimensions for the point vortex and source singularities. The desired boundary condition at the wall is 
&@% = 0. If the velocity potential of the singularity is such that zip/an is an odd function of the co-ordinate 
n normal to the wall (i.e., rp is even with respect to n). then by symmetry, the velocity normal to the wall 
due to this singularity is identically cancelled by placing a so-called image singularity of the same 
magnitude and strength on the other side of the wall, at the same distance from the wall, on the line 
normal to the wall and passing through the original singularity. Conversely, if &plan for the original 
singularity is an even function of the w-ordinate n (i.e., 9 is odd with respect to n), the normal velocity at 
the wall due to the original singularity is cancelled by an image singularity of equal magnitude and 
opposite strength. Thus for a planar closed wall, the 2D point vortex requires an image of the opposite 
sense, while a point source requires an image of the same sense. 
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Figure 2.3 Method of Images for a Planar Closed Wall 

Similarly, replacing the planar closed wall by a planar free-jet boundary requires satisfying the linearised 
constant pressure boundary condition. For the streamwise co-ordinate x parallel to the boundary, if Zi+Yax 
of the original singularity is odd in x, then the image singularity must be of the same magnitude and 
opposite strength. Conversely, if %/ax of the original singularity is an even function of x. then the image 
singularity must be of equal magnitude and strength. Figure 2.4 illustrates the method of images for a 
planar free-jet boundary. 

It is readily apparent that the method of images is not limited to single point singularities, but can be used 
for any collection of singularities. Nor is it limited to planar wall boundaries; conformal transformations 
have been used to develop image systems for octagonal and elliptical tunnels as reported in 
AGARDograph 109 1131. The objective is merely to cancel a component of velocity (either normal or 
streamwise) due to the model at the specified boundary by an appropriate choice of image(s) on the 
other side of the boundary. 
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Figure 2.4 Method of Images for a Planar Free-Jet Boundary 

The application of the method of images to wall interference involves the development of the set of 
images required to represent all the wall surfaces of a given test section and summing their effect to 
determine the interference at 
the model. Symmetry 
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Figure 2.5 Classical Wall Interference Correction Factors for Small 
Models in Closed-Wall and Open-Jet Rectangular Tunnels 



2.2 CLASSICAL CORRECTIONS FOR CLOSED TEST SECTIONS 

Test sections with closed, planar, and aerodynamically parallel walls an? perhaps the easiest to 
understand and analyse. The boundary condition for each wall lends itself to treatment by the method of 
images. The qualitative effects of these walls are predictable based on physical arguments alone, thus 
providing a common-sense validation of the analytic results. To be sure, the presence of more than one 
wall requires the use of multiple images. In fact, an infinite array of singularities is required even in the 
simplest case of two walls, Nonetheless, as has been shown in the literature, the infinite series 
representing the interference potential for small models in such tunnels converges quickly enough for 
ready calculation, especially given current computational capabilities. 

In two dimensions, the closed-wall boundary condition can be satisfied on the upper and lower walls by 
using a single row of image singularities both above and below the test section. In constructing the 
image system each wall initially requires an image outside the test section of the model within the test 
section. However, the presence of the first-order singularity for the lower wall violates the parallel-flow 
boundary condition on the upper wall, thus requiring a second singularity above the ceiling, and similarly 
for the floor. For a model placed midway between the floor and ceiling this results in an infinite set of 
singularities, all at the same station as the model, equally spaced in z, aligned above and below the test 
section as indicated in Figure 2.6. A single infinite summation expresses the interference in the test 
section. This image system is readily generalised to the case of asymmetric model location. 

- l (+) 

+ l (+) 

Point singularity 
‘P (x.z) = K f(v) 

K = strength of singularity 

) (typical) 1 

+ l (+) 

Legend: 
-I + = Image strengths for o odd in z 
(+) = Image strengths for cp even in z - l (+) 

Figure 2.6 Image System for a Singularity at the Centre of a 2D Tunnel with Closed Walls 

For the 3D testing situation in rectangular test sections, the image system becomes doubly infinite 
because of mutual interference of vertical and horizontal walls, which requires images along the 
diagonals, Figure 2.7. In general, this results in a double summation for the interference in the test 
section. 
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Figure 2.7 : Image System for a Model Singularity in the Centre of a 3D Rectangular 
Tunnel with Closed Wails 

A particularly elegant image system in the crossflow plane far downstream of the bound vortex satisfies 
the boundary conditions for a closed-wall tunnel of circular cross section, Figure 2.8. This image system 
has been used to predict the upwash interference at the model, reasoning that the interference at the 
model location is half the interference value evaluated far downstream. 

‘P, = Radial velocity = 0 

.- 

Figure 2.8 Image System for Trailing Vortices in a Tunnel of Circular Cross-Section 

Early recognition of the limitations of single-singularity representations of model aerodynamics stimulated 
the development of multiple-singularity methods and applications, wherein elementary singularities are 
used as building blocks to represent the finite physical extent of the model. For a closed-wall rectangular 
tunnel, a complete image system can be specified for each singularity. By superposition, the collection of 
model singularities along with the corresponding sets of images will satisfy the wall boundary conditions. 

All results presented in this section are for model singularities located on the centreline of the test 
section. Off-centreline model location involves appropriate generalisations of the image systems, 
resulting in both streamwise and upwash interference at the model location for any single type of 
singularity. 2D interference results are given throughout the test section, including both streamwise and 
upwash interference velocity components to highlight the qualitative features of interference variation that 
a large model at high incidence might experience. These features are mirrored in 30 testing, so that a 
large 3D model (length and span) may be viewed as immersed in a variable interference flow field. 
Tunnel users should be alert to the possibility that remote locations of a large model (e.g., outboard wing, 
body nose, and tail) may experience significantly different interference than predicted at the model 



nominal reference location (often taken as the quarter-chord of the mean aerodynamic chord of the 
wing). 3D interference results presented here are limited to the main results: streamwise interference for 
the source singularities and upwash interference for the vortex singularities. 

2.2.1 CLASSICAL CORRECTIONS FOR LIFT INTERFERENCE 

Lift interference is defined to be that part of the wall interference due to circulation (i.e., corresponding to 
a force normal to the oncoming stream direction) generated by the model. For a small model centrally 
located in a test section, the model lifl results in primarily an upwash interference in the vicinity of the 
model. Typically, this change in effective freestream direction directly modifies the model aerodynamic 
angle of attack and requires the resolution of force balance measurements relative to the corrected wind 
axis direction. 

2.2.1.1 20 LIFT INTERFERENCE 

In 2D flow, a point vortex singularii is used to represent the lifting effect of an airfoil. The potential for a 
point vortex located at x=z=O is 

where y, the vortex strength, is l/2 U- CC, and c is the airfoil chord. Defining nondimensional spatial co- 
ordinates &x&Y and &=z/H, the upwash interference anywhere in the tunnel for a model centrally 
located between closed upper and lower walls is given by 

Figure 2.9 Upwash Interference of a 2D Vortex in a Closed-Wall 
Tunnel 

The upwash interference 
throughout the test section is 
shown in Figure 2.9. It is zero at 
the model station as expected. 
since the velocity due to each 
image singularity is in the 
streamwise direction at this 
station. The upwash gradient, 
however, is not zero. so that a 
model will experience additional 
lift due to this induced camber 
relative to the interference-free 
case. The streamwise curvature 
interference parameter at the 
model location (E,=<=O) is 



Since the upwash gradient is proportional to CL, the uncorrected lift curve will be steeper. 

For convenience, a streamwise interference parameter (due to lift) can be defined as 

(2.14) 

(2.15) 

By symmetry, the streamwise interference is identically zero along the tunnel axis, being positive above 
the axis and negative below the axis at the model station (for positive lift), Figure 2.10. Far upstream and 
downstream of the model, both the streamwise and upwash interference velocities approach zero. 

Although these results are strictly 
applicable only to a small model, 
the implications of finite model 
size are apparent from 
consideration of the spatial 
variations of interference velocities 
in Figures 2.9 and 2.10. A model 
centred between the walls at zero 
incidence may have a chord 
length that places leading and 
trailing edges beyond the region of 
“constant” interference. Further, 
rotating such a model through a 
range of incidence angles moves 
both leading and trailing edges 
away from the centreline and into Figure 2.10 Streamwise Interference of a 2D Vortex in a 
regions of variable upwash and Closed-Wall Tunnel 
streamwise interference. The 
limits of linear streamwise upwash along the centreline are no more than about x@/i _cf 0.4, Figure 2.10. 
Deviations of both upwash and streamwise interference from the centreline value are small for z/H _c? 0.2. 

For a small model centrally located between two closed parallel walls, Allen and Vincenti [3] provide the 
following corrections due to flow curvature. These take account of the actual centre of Ii8 of the model 
through inclusion of the pitching moment, CM. 

(2.16) 

(2.17) 

xc= 
da= ---(CL +4G) 96jH2 

(2.18) 



These results were derived for an arbitrary chordwise loading (expressed in terms of a Fourier sine series 
plus a cotangent term to represent the flat plate loading), and are based on the idea of matching suction 
peaks in the tunnel and in free air. Aa is evaluated at the midchord; AC‘ and ACM represent the 
linearised loading changes due to the upwash variation over the chord. These corrections are consistent 
with the classical result of evaluating the angle of incidence correction at the % chord for a set of 
corrections at constant lift (i.e., A&=0). Alternatively, for no change in pitching moment (ACpO), the 
angle of incidence correction should be evaluated at the trailing edge of the airfoil. 

The case of off-centre model vortex location is summarised in Chapter II of AGARDograph 109 [13]; 
quoted results are based on Batchelor [El. The upwash interference for a vortex located at x=x, (c-k,) 
and z=d-H/2 (a distance dfrom the floor) in a 2D closed-wall tunnel is given as 

At a small streamwise distance, t-5,. from the vortex, ignoring terms of order (E,-k$. this can be 
approximated as 

If the vortex represents the lift of an airfoil acting at the centre of pressure, then for pitching moment 
defined about the quarter-chord, the centre of pressure is located at a distance downstream of the 
leading edge, 

XI 1 CM -=--- 
c 4 C‘ 

and the upwash interference can be expressed as 

Batchelor also derives the streamwise interference velocity at the vortex as 

(2.21) 

(2.22) 

(2.23) 

Thus, the streamwise interference is identically zero only for a centrally located vortex. Otherwise. it is 
either positive or negative according to whether the vortex is above or below the test section centreline 
(as can be inferred from consideration of the incremental effects of the nearest image vortices). These 
results are analogous to the interference of a centrally located vortex evaluated off-centreline, Figure 2.9. 

The above summarises corrections due to lifl in a 2D closed-wall tunnel to order (c/H)‘. AGARDograph 
109 [13] includes a discussion of higher order correction theory (to order (c/H)‘), concluding that the 
lower order results are inaccurate for c>O.4@/. For a model centrally located between two closed walls, 
the following corrections are presented based on Havelock [17], ignoring terms of order (c/8/-/)‘, 

(2.24) 



+ (2.25) 

(2.26) 

The general problem of a thick airfoil has been solved by Goldstein [16] as a power series in (cnr) by 
transforming the airfoil to a circle, and is summarised in AGARDograph 109 [13]. This solution is 
consistent with the above results when second-order terms in thickness, camber, and incidence are 
ignored. 

2.2.1.2 3D LIFT INTERFERENCE FOR SMALL WINGS 

The lift of a small model can be simulated using an elementary horseshoe vortex of span 2s (equivalent 
to a line doublet), whose potential is given by 

(2.27) 

where the vortex strength (rs) is l/4 U- S CL, S is the reference area of the wing, and r is the radial 

cylindrical co-ordinate, ,/&?, The upwash velocity field is then 

In the plane of the bound vortex normal to the oncoming stream (that is, for x=0) the upwash takes on the 
simple form 

l-s y’-2 
W(O,Y,Z) = n ty2 +z2)2 { 1 (2.29) 

For rectangular tunnels, the image system is a 2D array as discussed in Section 2.1.3. Defining the 
aspect ratio of the tunnel as A=B/H and evaluating the upwash interference at the model location, 
x=y=z=O, the classical result is recovered: 

6, = ~(O,O,O) = 4 -“T mz (- 1)” m2 A2 -2 * 
n----m e$$“, m=-m [m*A* +nq 

(2.30) 

Differentiating (with respect to x/p/-f) the expression for upwash interference due to the infinitesimal 
horseshoe vortex, the analogous expression for upwash gradient at the model location is derived: 



(2.31) 

As developed by Theodorsen [34], similar expressions apply to the upwash interference in rectangular 
tunnels having all open walls, open sides and closed floor and roof, and closed sides and open floor and 
roof. Because the image systems for these cases require only appropriate sign changes (see Glauert. 
Figs. 7 and 8) the factor (-7)” should be replaced by (-7)“. (-f)m”, and (I), respectively; see Section 
4.1.2.4 (Fig. 4.4). 

Along the centreline of rectangular tunnels, the upwash interference asymptotically approaches zero in 
the upstream direction and a constant positive value in the downstream direction, Figure 2.11. The 
interference upwash far downstream of the model is due to the image trailing vorticity, which (at this 
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Figure 2.11 Centreline Distribution of Upwash Interference of an Elementary 
Horseshoe Vortex in Closed-Wall Rectangular Tunnels 

location) extends effectively to infinity in both directions. At the model location, the image bound vortex 
segments do not induce any upwash (as in the 2D case). Because the image trailing vortex segments 
extend only downstream from the model location, by symmetry the upwash interference at the model is 
therefore exactly half the value of the downstream asymptotic interference. The spanwise variation of 
upwash interference, Figure 2.12, is significantly greater for tunnels having A > X2. The magnitude of 
interference at the model location increases for A < 1. From the standpoint of both small magnitude and 
minimum spanwise variation, near-optimum upwash interference is obtained for 1 < A _C 3i2. These 
small-span results indicate the nature of the interference-gradient problems that will occur for finite-span 
wings. 
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Figure 2.12 Spanwise Distribution of Upwash Interference of an Elementary 
Horseshoe Vortex in Closed-Wall Rectangular Tunnels 

2.2.1.3 3D LIFT INTERFERENCE FOR WINGS OF FINITE SPAN 

The effect of finite span of the horseshoe vortex on upwash interference provides the next logical 
approximation to the interference of a wing. A straight unswept wing having a small chord, finite span 
and uniform span loading can be represented by a finite-span horseshoe vortex, whose velocity potential 
is (see Ashley and Landahl, [5]) 

where R(y) = x2 +p2y2 +p’z’ 

Differentiating this expression, the upwash velocity is 

Y-S Y+s 

Jrp rs 
(y-s)* +2 -(y+sy +r2 

-=~ 
& 2n(l,~+x(y-S)(X2+pl(y-s)*+2~~~Z)~X(y+S~X~+~~(y+S)2+2~~ZI)~ (2.33) 

t’(R(y-&o-s) z’(R(y+s))b(y+s) 

where T is defined as 



z-20 

T(y)=l+ .*y* 
22(,2+ (2.34) 

For a finite-span 3D wing it is convenient to define nondimensional co-ordinates using the tunnel breadth: 
&=xlpB, n=y/S, and &=.?B, and a nondimensional semispan, o=siS. In the plane of the bound vortex, 
<=<=O, the upwash interference of a finite-span horseshoe vortex in a rectangular tunnel (A=B/H as 
before) is given by the double summation of the image system, 

(2.35) 

n=m=o 

For wings of finite span, upwash interference along the centreline of rectangular tunnels, Figure 2.13, 
qualitatively mirrors the interference of models of small span. Upwash interference variation along the 
span of the bound vortex in a square closed-wall tunnel is shown in Figure 2.14. As span increases, the 
average upwash interference at the centre of the model (t=n=&=O) increases. More important, however, 
is the increased spanwise variation of interference due to span. This is manifested as increased upwash 
on the outboard wing with increasing span ratio (due to the increasing proximity of the first set of image 
trailing vortex segments). The effect of span can be ignored for span ratios less than about 0.5. 

Figure 2.13 Streamwise Interference of a 2D Source Doublet in a 
Closed-Wall Tunnel 

An extensive series of lifl interference charts for rectangular and elliptic closed-wall tunnels, including the 
effects of finite span, uniform versus elliptic span loading, and off-centre wing location, are presented in 
Pope and Harper [31]. The rapid rollup of trailing vorticity of a finite-span wing into two concentrated 
trailing vortices duplicates the trailing vortex pattern for uniform loading. The distance between these 
concentrated trailing vortices, the so-called vortex span, is given as a function of wing aspect and taper 
ratios. The interference at the wing can be estimated using an effective vortex span smaller than the 
physical span, but larger than the rollup vortex span. For wings of small span to tunnel width ratio, a 
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simple average of the physical and rollup vortex span results in negligible error. Large span wings or 
very exacting correction requirements may demand the consideration of actual spanload. 
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Figure 2.14 Upwash Interference of a 2D Source Doublet in a Closed-Wall Tunnel 

2.2.1.4 APPLICATION OF UPWASH CORRECTIONS 

Additional upwash at the model location due to the walls requires corrections to angle of attack and drag 
(due to the change in effective stream direction at the model location, and to pitching moment and lifl (or 
to pitching moment and angle of attack) due to the streamwise gradient of the interference upwash). For 
a small model and small upwash angle, the corrections to lifl and drag due to the former (i.e., rotation of 
wind axes) are 

c Lean = C,,, cos Aa - C,, sin Act z C,, (2.36) 

C aco,, = CT,,, cos Aa + C,, sin Aa B C,, + C,, Aa (2.37) 

where Aa is evaluated at the model centre of lift (nominally the wing quarter-chord location) 

Though the above relationships define a corrected onset stream direction, the model angle of attack must 
additionally be adjusted for interference stream curvature. Because the wing is immersed in an 
interference flow field characterised by increasing upwash with x, it appears to have an increased 
effective camber (in a closed-wall tunnel) compared to an unbounded flow. Corrections for this flow 
curvature may be applied to pitching moment and to either (or both) lift coefficient or angle of attack. It is 
perhaps most convenient to consider this flow-induced camber as an additional model incidence (though 
not to be included in the stream angle change for redefining wind axes) with no adjustment to lift and an 
additional pitching moment due to this camber that would not occur in an unbounded stream. For a 
linear longitudinal variation of interference upwash, and relying on linearised airfoil theory results for a 



circular-arc airfoil (see Glauert, [15]; or Pope, [31]). the effective increase in incidence is accounted for if 
the upwash is evaluated at the 3/4-chord location (rather than the quarter-chord, which coincides with the 
centre of lift in linear theory). In terms of Aa, S,, and 6, evaluated at the location of the bound vortex, 

The pitching moment correction is 

(2.40) 

For the 2D case, S and Care replaced by c and H respectively. 

For wings of finite span and arbitrary spanwise loading, the average interference upwash (S,, in 
nondimensional terms) can be taken to be the loading-averaged upwash as given in AGARDograph 109. 

(2.41) 

2.2.2 CLASSICAL CORRECTIONS FOR BLOCKAGE INTERFERENCE 

Blockage interference is that part of the wall interference due to the displacement of streamlines around 
a body that carries no lift or side force. Solid blockage represents that part of the blockage due to the 
volume of the model in the tunnel. This is usually taken to be a closed body, though if the effect of a 
support sting is sought, under certain circumstances modelling of its volume might take the form of a 
semi-infinite body which can be represented by a source. A source flow is similarly used to represent the 
displacement effect of a viscous wake from the model. 

2.2.2.12D SOLID BLOCKAGE FOR SMALL MODELS 

As discussed by Glauert [15], the flow field around any nonlifting body may be represented by a power 
series in the inverse of the complex spatial co-ordinate. At a large distance from the body, the leading 
term (of the form of a source doublet) dominates. In 2D flow, the potential of a source doublet is 

(2.42) 

In a uniform unconstrained stream, the potential of a source doublet aligned with the oncoming stream 
represents the flow around a cylinder whose radius (a) is related to the doublet strength, 

(2.43) 

The far field of any nonlifting body is approximated by this first-order term if p is taken as AU& where A 
is the effective cross-sectional area of the model. It is the sum of the model volume (per unit span) and 
its virtual volume (per unit span) for accelerated flow in the streamwise direction. Using nondimensional 



co-ordinates {=x/pH, [=zIH, and summing the effect of all the image doublets, the streamwise 
interference anywhere in the tunnel for a model centrally located between closed upper and lower walls is 
given by 

It should be noted that at any value of 5, the interference is a maximum at the model location, Figure 
2.15. which increases the effective freestream velocity felt by the model. However, due to the 
streamwise symmetry of the interference, there is no pressure buoyancy force on the model. 
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Figure 2.15 Streamwise Interference of a 2D Source Doublet in a 
Closed-Wall Tunnel 

At the model location, c=c=O, the interference is given by 

(2.45) 

As for the point vortex, interference at the model station is a minimum on centreline, with interference 
velocities for z/H <0.2x/B/-/ very close to centreline values. 

In a manner analogous to the point vortex, an upwash interference parameter for a nonlifting body can be 
defined : 

(2.46) 
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Figure 2.16 Upwash Interference of a 20 Source Doublet in a Closed-Wall Tunnel 

By symmetry, the interference upwash due to solid blockage is zero along the axis of the tunnel, Figure 
2.16. Off-centreline the interference upwash has a character similar to the upwash interference of a 2D 
vortex (Fig. 2.9). 

Following Glauert [15]. the effective cross-sectional area of any 2D body may be written in terms of an 
equivalent cylinder by defining a body shape factor, h, 

p=p m (2.47) 

so that the body is represented as an equivalent cylinder of diameter tfi Values of h as a function of 
fineness ratio (c/t) are given by Glauert for several shapes: Rankine oval, ellipse, Joukowski section, and 
a modified Joukowski section. Pope 1311 provides shape factors for several NACA airfoil series as well. 
The shape factor for an ellipse is described by a simple analytic expression, 

An alternate body shape factor may be defined by taking the effective cross-sectional area (A) to be KAo. 
where K is a nondimensional factor depending on body shape and A0 is the actual cross-sectional area. 
For an ellipse, 

K=l+; (2.49) 

As fineness ratio increases, K approaches 1 and effective area is essentially the actual cross-sectional 
area. The more blunt the body, the larger is the effective area. A circle, for example, has an effective 
area twice its actual cross-sectional area. 
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In general, the effective cross-sectional area can be calculated for a symmetrical body from the surface 
velocity distribution, V(s), 

(2.50) 

Glauert also provides a useful first approximation to h, for cases when more reliable values are not 
available, 

(2.51) 

The effect of thickness and angle of attack on blockage interference may be estimated using a general 
relationship suggested in AGARDograph 109 based on theoretical and empirical investigations, 

(2.52) 

2.2.2.2 2D RANKINE OVALS 

A source and a sink located a finite distance apart (2s) on a line parallel to the oncoming stream have a 
streamline forming a closed body known in 2D flow as a Rankine oval (in 3D the analogous closed 
stream surface is referred to as a Rankine body). This simple superposition of singularities illustrates the 
effect of body length on solid blockage. The potential is given by 

In terms of nondimensional co-ordinates <=x/b/-/, <=z/H, and defining o=a@H, the streamwise 
interference is the sum of all images in the usual way, 

The streamwise interference of Rankine ovals having a maximum thickness t/H=0 1 is shown in Figure 
2.17. At small length ratios the interference is indistinguishable from that of a source doublet. Two 
features characterise the interference as the length of the model increases. First, the interference at the 
model leading and trailing edges decreases relative to the interference at the model centre. Second, the 
interference at the centre decreases as the flow in the tunnel approaches the ID limit for very long 
models. 
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Figure 2.17 Streamwise Interference of Rankine Ovals (t/H = 0.1) 
in a Closed-Wall Tunnel 

2.2.2.3 2D WAKE BLOCKAGE 

In 20 flow the potential of a point source located at the origin is 

(2.55) 

where m, the source strength, is 112 U-c Co. In terms of nondimensional co-ordinates c=x/pH and <=z/H, 
the streamwise interference anywhere in the tunnel for a model centrally located between closed upper 
and lower walls is given by 

c,c- 5 --c E=47CP’ H;;,“,$+(<-n)2 
(2.56) 

The streamwise interference attains its maximum value far downstream of the model location, Figure 
2.18. Its magnitude is consistent with ID streamtube considerations: downstream of the model, the 
tunnel cross-sectional area is decreased by the equivalent displacement area of the viscous wake plume, 
so that the flow external to the wake must increase proportionately. In total, the image sources add 
additional mass to the oncoming stream, so that the uniform velocities far upstream and downstream 
cannot be equal. An interesting result for this singularity set is the non-zero interference far upstream of 
the model. Formally, this physical paradox can be alleviated by providing each source with a 
corresponding sink far downstream of the model, thus closing off each “wake body”. This array of sinks 
produces an equal and opposite interference flow far upstream that restores the undisturbed onset 
stream velocity. 
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Figure 2.18 Streamwise Interference of a 2D Source in a Closed-Wall 
Tunnel 

A practical approach to wake blockage corrections takes the upstream interference to be zero. Because 
the setting of tunnel speed commonly relies on a wall static pressure measurement upstream of the test 
section, the influence of the model at this location is automatically included in the definition of 
uncorrected tunnel speed. Therefore, the wake blockage interference at the model location should be 
taken as the difference between the interference at the static pressure reference location and the 
interference at the model location in Figure 2.18. If the upstream asymptote is used as a reference, the 
interference at the model is 

The streamwise gradient of wake blockage interference is a maximum at the model location and results 
in a buoyancy force on the model. Differentiating the series expression for E due to the source 
representing the displacement of the wake, the same series appears as for solid blockage of a source 
doublet, so that 

(2.58) 

At the model location, <=<=O, 

By symmetry, the interference upwash is zero along the axis of the tunnel and, in the vicin’ky of the 
model, the interference upwash is directed from the walls toward the tunnel axis. 



2.2.2.4 3D SOLID BLOCKAGE FOR SMALL MODELS 

In 30 flow, the potential of a source doublet is 

(2.60) 

where r* = yz +z2 and the doublet strength, m. is U-V, where V is the effective volume of the model. 
Analogous to the 2D source doublet, superposition of a 3D sck~rce doublet and a uniform oncoming 
stream represents the flow around a sphere whose radius (a) is related to the doublet strength by 

p = 2du m 

The streamwise velocity due to this singularity is 

(2.61) 

(2.62) 

For a rectangular tunnel, an array of image doublets placed as for the lifting case (but, unlike the lifting 
case, all having the same sign) satisfies the closed-wall boundary condition at the walls. Using 

L,r, = &? as the reference length for nondimensional w-ordinates (<=x/pLnr, n=y/!-,r, <=z&,r), the 

streamwise interference anywhere in the tunnel for a model located in the centre of a rectangular test 
section is given by 

A+ v 

& = 5 = - 47cp (BHy “=--m 

nz y 2t2 -(q~-n~A)~ -(<-/Ii-n’)* 
(2.63) 

g$f=- 
1 

[p +(.rlLi-mA)2 +(JJ;i-.)‘I’ 
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As for the 2D case (Fig. 2.15) the streamwise interference is a maximum at the model location, Figure 
2.19, which increases the effective free stream, but with no consequent pressure buoyancy effect on the 
model. By symmetry, the interference upwash is zero along the axis of the tunnel. 

Evaluating the interference at the model location, <=n=<=O, the classical result is recovered, 

(2.64) 

For an arbitrary axisymmetric body, a body shape factor, h, is defined (per Lock 1221; also Glauerl [15]) 
so that the blockage velocity is 

A 
( 1 

312 
E. =za y” (2.65) 

where C = tunnel area (= 6H for a rectangular section), r depends on the shape of the tunnel and h on 
the shape of the body. Using this definition of h, the far field is approximated by the flow around an 
equivalent sphere of diameter ta”‘, where t is the maximum body thickness. 



Figure 2.19 Centreline Distribution of Streamwise Interference of a 3D Source 
Doublet in Closed-Wall Rectangular Wind Tunnels 

The effective volume can be calculated from the surface velocity’ distribution, V(s), using 

(2.66) 

Glauert provides an approximation for the 3D case corresponding to Equation 2.51 in two dimensions, 

(2.67) 

where V, is the body volume. 

2.2.2.5 3D RANKINE BODIES 

The effect of body length is illustrated by results for the Rankine body, which is formed by the 
superposition of an upstream source and downstream sink (of equal strengths) located colinearly with the 
oncoming free stream. As in 2D flow, the source doublet is the limiting case as the source-sink 
separation distance (2s) approaches zero. Keeping source strength constant, a closed body of 
increasing fineness ratio results with increasing separation distance. The velocity potential of a source 
and sink located on the x-axis at x=fs is 

(2.66) 

where r2 = yz +zz The streamwise velocity due to these singularities is given by 
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(2.69) 

Using L,~ = .& as the reference length for nondimensional co-ordinates (5,=x/&r, n=yIL,r, <=zL,r) 

and for the singularity half-distance (cr=s/&r), the streamwise wall interference for a Rankine body of 
revolution on the centreline of a closed-wall rectangular test section is found by summing all the image 
potentials, 

At 
&= 

“=- m=m [(*+cq +,qJz:::y +(K4-$1” 

qF&.=g c. 
(2.70) 

m 
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The longitudinal distribution of blockage interference along the centreline of the tunnel for several 
Rankine bodies having a maximum diameter ratio V&r =O. 1 is shown in Figure 2.20. 

Figure 2.20 Streamwise Interference of Rankine Bodies 
(r/,&i = 0.1) in a Closed-Wall Square Tunnel 

The effect of large body length may be understood by considering the limiting case of a very long body. 
The flow between such a model and the walls is effectively ID so that the interference at any station is 
approximately the velocity corresponding to the decrease in flow area due to the model cross section. By 
continuity, 

(2.71) 



For small E and A-& the blockage (to first order) at the centre (assuming the maximum body diameter 
occurs here) of a very long body is 

In AGARDograph 109 the effect of body length on peak interference is given for a Rankine body in a 
circular tunnel in terms of a modified tunnel shape factor. Figure 2.21 compares those results with similar 
calculations for Rankine bodies in a square tunnel. The square and circular tunnel results correspond 
very closely. The peak interference decreases significantly for model length ratios of practical interest. 
Typical large models may approach and even exceed length ratios of 1. Reflection plane models (so- 
called half-models) may approach length ratios of 2. The one-dimensional flow approximation is the 
interference asymptote for large model length and corresponds very closely to the 3D interference results 
for body length ratios above about 3. Results for a family of 2D Rankine ovals (M-/=0.1) are shown in 
Figure 2.21 for reference. 
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Figure 2.21 Effects of Body Length on Streamwise Interference 



2.2.2.6 3D WAKE BLOCKAGE 

In 3D flow, the potential of a point source is 

where m, the source strength, is l/2 U- S Co. The streamwise velocity due to this singularity is 

(2.73) 

(2.74) 

As in the previous section, a 2D doubly infinite array of image singularities (see Fig. 2.7) satisfies the 
boundary conditions for a rectangular closed-wall tunnel. Using ~,~f = fi as the reference length for 

nondimensional co-ordinates (<=x@L,,, n=y/L,,, <=ti,r) as before, the nondimensionalised streamwise 
interference anywhere in the tunnel for a model located on the centreline of a rectangular tunnel is then 
given by 

(2.75) 

As for the 2D case, this formulation results in s=O at the model location and a finite (negative) blockage 
far upstream of the model, Figure 2.22. The interference at the model location relative to the velocity far 
upstream is 

CDS 
6 = 4p’BH 

(2.76) 

Along tunnel centreline (q=<=O) the buoyancy due to the longitudinal gradient of wake blockage is found 
(as for the 2D case) to be related to the solid blockage distribution, 

(2.77) 

The relationship between the longitudinal gradient of wake blockage and the value of solid blockage is to 
be expected considering that the source doublet point singularity is the x-derivative of the velocity 
potential of a point source. Thus, the second derivative (with respect to x) of the velocity potential of a 
point source is the same as the first derivative (with respect to x) of a source doublet, except for the ratio 
of the respective singularity strengths. Because the image systems are identical for the wake and solid 
blockage cases, the interference flow fields will be related in this way. 



Figure 2.22 : Centreline Distribution of Streamwise Interference of a 
3D Source in Closed-Wall Rectangular Tunnels 

2.2.2.7 APPLICATION OF BLOCKAGE CORRECTIONS 

The change of effective freestream magnitude at the model location necessitates correction of flow 
reference quantities: velocity, Mach number, dynamic pressure, static pressure, temperature, density, 
and Reynolds number. For small E (taken to be the sum of all model elements contributing to blockage) 
and y=ratio of specific heats=1.4, linearised corrections are as follows: 

u corn = u,, 0 + 4 (2.78) 

A4 cwr = M,,[l + (1 + 02Mm2)&] 

4, =s,$+(2-~2)~] 

(2.79) 

(2.80) 

P an = p,(l - 1.4M,c2&) (2.81) 

T,, = L(l - 0.4KncZ&) (2.82) 

P corr = Pm, (1 - %cZ&) (2.83) 

Re cOR =Re,[l+(l-0.7h4,,“)E] c-4) 

where the uncorrected flow parameters (subscript “one”) are identified with the remote upstream 
parameters (subscript “CO”) in the tunnel. 
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For small models in a linear streamwise static pressure gradient, the pressure buoyancy force acting on 
the model in the tunnel is simply the product of the effective model volume and the gradient, 

(2.85) 

where <=,@I+, and dCddx is the externally imposed streamwise pressure gradient at the model location 
and, consistent with the perturbation assumptions, C, is expressed as -PuJu,. For a closed-wall tunnel, 
the measured drag of the model is increased, so that the necessary correction to drag is the negative of 
the above incremental buoyancy force. 

For the 2D situation, the corresponding buoyancy drag force per unit span is 

(2.88) 

where {=x/B/# and A is the effective cross-sectional area of the model. 

2.2.3 WAKE BLOCKAGE CORRECTIONS FOR SEPARATED FLOWS 

The problem of separated wakes, characterised by a free shear layer surface bounding a separation 
“bubble” behind the model, was recognised by Glauert [15]. who accounted for the increased drag 
(attributed to blockage interference) due to separated wakes using an empirical factor n, which 
represents the size of the separated wake. Investigation of the effect of separated wakes was stimulated 
by the observed failure of classical interference theory for predicting tunnel constraints for flat plates at 
large incidence. The model that forms the theoretical basis for this correction is shown in Figure 2.23 (for 
2D flow). For incompressible flow, Glauert’s corrected dynamic pressure is 

(2.87) 

where t is the thickness of the blunt base. In three dimensions, t and H are replaced by the size of the 
separated wake at the body and C. For this case, Glauert quotes values of n as a function of VC based 
on experiments with three Joukowski sections, a Rankine oval, ellipse, circle, and a flat plate. 

Maskell [25] revisited the problem in trying to resolve differences in high-lifl characteristics of delta wing 
models tested in different wind tunnels, especially beyond the onset of stall. For a flat plate normal to the 

Figure 2.23 Model of Separated Wake Flow in a 2D Closed-Wall Tunnel 



flow (similar to the situation of Fig. 2.23). the corrected dynamic pressure is derived as CDS 4cm = 4, [ 1 1+e- 
C 

where 8, the blockage factor for bluff-body flow, is given by 

1 
rj=---- 

kc2 -1 

The parameter k is related to the base pressure coefficient, C,. 

and the subscript “c’ refers to corrected quantities. Maskell suggests use of the iterative formula 

(2.88) 

(2.89) 

(2.90) 

(2.91) 

to determine kc, where subscript “n” denotes the nth estimate of k0 For flat plates of aspect ratio 
between 1 and IO. a value of Q a 512 is given as unlikely to result in serious error. This appears to be a 
consequence of the observed tendency of separated wakes behind rectangular flat plates toward axial 
symmetry. For this value of 8, the resulting blockage interference is five times greater (in terms of 
dynamic pressure correction) than if classical source-derived interference corrections were applied. 

The extension of the above theory to a wing relies on the principle of superposition: it is supposed that 
the effect of the separated wake of the wing can be treated incrementally in a manner analogous to the 
normal flat plate The most difficult part of determining this correction is evaluating the separated wake 
drag contribution. That is, the model drag can be considered to be the sum of three contributions, 

c DlOlo, = cDwrteJ + cEpr*j,e + CDqwd (2.92) 

where the first term is the inviscid induced drag due to ill, the second is the attached boundary layer 
profile drag, and only the third term is to be used in estimating the dynamic pressure correction due to 
separated wake blockage. Determination of the separated wake term requires determination of the onset 
of stall and a bookkeeping of profile drag and drag due to tii beyond stall. 
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2.3 PANEL METHODS FOR CLOSED-WALL TUNNELS 

Advances in computational fluid dynamics (CFD) have paralleled the phenomenal increases in 
computational capability over the past 30 years. Even for simple model configurations in rectangular 
tunnels, it may be argued that solution of the boundary value problem with specified normal flow at 
control points at the wind tunnel wall is quicker and easier than calculation of the double summations of 
the previous sections. Continuing advances in computing power have put simple panel solutions within 
the capability of low-end engineering workstations and even personal computers. 

With the maturation of production CFD codes and the development of custom wall interference codes, 
the calculation of wall interference for large models within test sections of arbitrary shape (including the 
effects of finite length) and with increasing accuracy with regard to the accounting of compressibility and 
viscous effects has been made possible and, in many applications, routine. Further, it is but a short step 
from the closed-wall boundary value problem to the ideal ventilated-wall boundary conditions (Sec. 3.23) 
and next, to use of measured wall boundary conditions (Chapter 4). 

This section is limited to the application of CFD to wall interference for inviscid. linear compressible flows 
in closed-wall tunnels. As intended here, a “panel method” is any method in which the tunnel walls and, 
in many cases, the model are represented by singularity distributions on their surfaces. The singularities 
are fundamental solutions of Laplace’s equation. Commonly used singularities include vortex lines for 
vortex lattice codes, constant strength source or doublet panels for simple panel codes, and higher order 
source or doublet panels for higher order panel codes. 

The multitude of panel code applications to problems of wind tunnel interference precludes any attempt 
of an exhaustive review. In this regard AGARD R-692 [I] contains comprehensive review articles 
describing the wide range of interference problems and approaches in both Europe and North America. 
Although dated, this reference accurately reflects accomplishments and future directions of interference 
study in the premier aerospace laboratories of the participating countries The problems identified at that 
time have since been pursued with ever more powerful computational tools. This section reviews some 
general principles of current CFD approaches, and provides a few examples that are indicative of typical 
results. 

2.3.1 GENERAL CONSIDERATIONS 

Evaluation of wind tunnel wall interference using a panel method provides advantages over classical 
methods based on the method of images with regard to both model and tunnel representation. First, the 
analysis of large and complex models is possible, though calculation of vortex wake trajectories and 
modelling of large separated wakes remain as areas of difticulty. Second, a panel approach to modelling 
the wind tunnel can directly address arbitrary cross-sectional shapes, streamwise variations of tunnel 
area, arbitrary wall boundary conditions (both in form and spatial variations), and the presence of support 
systems. The two main disadvantages (relative to simpler methods) are an increased complexity of 
analysis, involving more effort for preparation of analysis inputs, and the requirement for perhaps 
substantial computational resources. 

A secondary disadvantage of panel solutions is the particular nature of each solution. That is, each flow 
condition (Le., model configuration, position, attitude, and onset Mach number) requires separate 
analysis; generalisation of results is not immediately possible from a single analysis. Although in many 
cases linear theory may be used to establish typical parametric variations from the results of a single 



solution for small changes of configuration or flow condition, a number of analysis cases may be needed 
both to verify classical trends and to capture variations of wall interference over the range of desired test 
variables (angle of attack, lift coefficient, Mach number). 

The basic principles regarding the use of panel methods for interference calculation parallel those for the 
method of images. That is, the potential at any point in the flow is the sum of the potentials of all the 
panel singularities. The panel code solves for the strengths of all these singularities, subject to boundary 
conditions at each panel control point. The interference velocity potential of the walls is the sum of all the 
wall panel potentials. The wall panels thus produce the same incremental flow field as the entire 
collection of image singularities in the method of images. Zero interference around the model is obtained 
in the degenerate case of zero panel strengths everywhere on the wall. This will occur if closed-wall 
panels (with a acplan=O boundary condition) are disposed on an interference-free streamtube around the 
model. Alternatively, zero interference is obtained if the boundary conditions at each panel provide the 
interference-free velocity vector (i.e., due to the model alone), or simply if the walls are “far enough” away 
so that disturbances at the model due to the wall are negligible. 

Figure 2.24, Vaucheret [35]. provides model representation requirements in terms of wing geometry for a 
given error (0.03 deg/CL) in interference upwash prediction for a square test section with closed sidewalls 
and porous floor and ceiling. This work indicates that a large range of sweep and span ratios are 
adequately represented by an infinitesimal horseshoe vortex (2sB=O. h=O). Representation of finite 
wingspan captures a significant additional portion of the model wing design space, with wing sweep 
modelling required only for very large sweep or span ratio. Boundaries excluding models of large 
blockage and span ratios are also indicated. 

0, A = 0 SulRcient 

Figure 2.24 Modelling Requirements for Wings (Vaucheret [35]) 

Representations of the test model have increased in complexity concurrently with computational 
capability. The effects of finite model size can be represented by distributions of the fundamental model 
singularities within the test section. In general, any body shape can be generated by a distribution of 
source singularities. Similarly, any lift distribution can be approximated by a distribution of horseshoe 
vortex singularities. The strengths of these singularities are specified for a given flight condition, 
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Alternatively, model singularity strengths may be left as unknowns (requiring a corresponding set of 
boundary conditions or constraints), so that the effect of wall interference on model loading is explicitly 
calculated along with the interference field itself. Hybrid approaches are possible as well, wherein part of 
the model aerodynamics may be specified, such as the net source strength corresponding to skin friction 
drag. 

For specified singularity methods, the model may be represented by a lumped parameter collection of 
singularities or singularity distributions that mimic the theoretical far-field interference-free flow around the 
model. To the extent that the distribution of singularity strengths represents the salient characteristics of 
the test article in the tunnel (volume distribution, lift, drag, pitching moment, span loading, etc.), this 
approach can be used to predict the interference of models that are not small. Complete image systems 
are usually not used explicitly. Rather, the tunnel walls are represented by a distribution of singularities 
located at the walls: source or doublet panels, or vortex lines, depending on the method. The closed-wall 
boundary conditiin (acplan=O) is enforced at control points at the wall, resulting in a set of linear equations 
for the wall singularity strengths. The wall interference flow field is that part of the flow field due to the 
wall singularities only. 

If the model is panelled, model panel strengths add to the number of unknowns subject to satisfying 
boundary conditions at the model surface. Leaving model aerodynamic loading as unknown is more 
exact than a priori specification of model aerodynamics, because satisfaction of the boundary conditions 
at the model includes the effect of the tunnel walls. In principle, this influence can include a change in 
separated wake shape if an appropriate wake model is implemented (Chapter 6). If model panelling is 
sufficiently dense, leaving model singularities as unknowns also permits the evaluation of interference 
from integrated model characteristics calculated both in the tunnel and in free air. Panel generation for 
straight, closed-wall tunnels with parallel walls is straightforward; panelling of the model, a variable- 
section tunnel, or a support system may require significant effort. 

The issues facing an analyst using a panel method for wall interference prediction may be categorised as 
relating to: 

1) Problem formulation: specification of boundary conditions may put the existence or uniqueness of 
a solution in jeopardy. 

2) Tunnel panelling: tunnel length, circumferential and longitudinal panel density. 

3) Model representation: number and distribution of singularities; panel density. 

The computational approaches to wall interference calculation described here are in large part based on 
the use of flow codes developed for the analysis of so-called external flows. Their application to internal 
flows, such as the wall interference problem, usually involves embedding the tunnel in a uniform onset 
stream. As discussed by Holt and Hunt [19], using these methods to solve for the flow with both internal 
(the model) and external (the walls) boundaries cannot be done with impunity. Indiscriminate application 
of boundary conditions can result in uniqueness and existence problems for the sought-after solution. 
For example, a tunnel having closed and parallel walls may be modelled as a panelled prism with 
upstream and downstream faces normal to the tunnel axis. However, the normal flow on each of these 
faces cannot be independently specified. The panels representing the tunnel walls have a specified zero 
normal flow, so continuity of mass requires that integrated inflow to the tunnel must equal integrated 
oufflow. Holt and Hunt address this problem by placing the wind tunnel, modelled as a long openended 
tube, in an external uniform flow field and parallel to it. Other variations on this approach may be code- 
dependent, but typically involve specification of flow at one end of the tunnel, either explicitly or implicitly. 
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Figure 2.25 summarises the boundary conditions for a wind tunnel analysis using a panel code similar to 
PANAIR (Magnus and Epton [24]). 

Tunnel walls 
$n=OorR~x+~n=O 

Tunnel well 
trailing wakes (to m) 

I I I I 
I I I 

Inlet barrier 
(a) Complete tunnel \ 

i Plane of symmetry 

(b) Inlet barrier (c) Test section 

Figure 2.25 Boundary Conditions for a Tunnel Analysis Using PANAIR 

Tunnel panelling should be guided by the usual common-sense panelling rules. Panelling should be 
dense enough to capture the flow features of interest. A simple check consists of increasing panel 
density until the solution stops changing. To represent the theoretical infinitely long tunnel, a panelled 
tunnel must be long enough that flow perturbations due to the model are negligible at the upstream end. 
Inspection of wall panel strengths and verification that they approach the desired zero upstream 
asymptote of the ideal long tunnel are recommended checks of any new solution. Evaluation of the 
uniformity of the incoming flow field at the upstream end of the tunnel is an additional check of the 
adequacy of upstream tunnel length. Downstream of the model similar considerations apply, though flow 
perturbations due to the model cannot be expected to disappear because of the convected model wakes 
(both vortex and viscous). However, the flow should approach an asymptotic state in the downstream 
direction as well. Again, inspection of wall singularity strengths or the flow field can indicate the 
adequacy of downstream tunnel length. 

Similar considerations govern the specification of model singularities or panels. The safest approach is 
to increase model singularities (panels) until the calculated interference stops changing. If details such 
as changes in spanwise or chordwise wing loading are desired, model panelling must be as detailed as 
would be required of a free-air analysis. 

Besides comparison of interference results from a panel method to classical results, other common- 
sense checks can lend credence to a particular panel solution. For closed-wall tunnels the walls should 
not leak: the massflow entering the tunnel at the upstream face plus any flow added at the model location 
should equal the massflow leaving the tunnel at its downstream end. Loss (or gain) of mass through the 
tunnel walls may be due to insufficient wall panel density, an error in panelling such as a reversed 
specification of panel normal vectors (conventionally, positive normal vectors point into the flow of 



interest), or an improperly specified wall boundary condition. Another global “reasonableness” check of a 
closed-wall solution is the expected relationship of model lifl to integrated pressure force on the walls: 
these should be equal and opposite. For ventilated walls similar considerations apply, but the 
momentum flux of the flow through the walls must also be included. 

2.3.2 2D INTERFERENCE 

Many advancements in wall interference technology were pioneered in the 2D domain due to its relative 
simplicity before similar techniques and approaches were applied to 3D flows. Analytic methods for 2D 
flows are more tractable; for example, complex variable techniques may be applied. For panel methods, 
the main advantage of 2D flows is computational simplicity due to greatly reduced problem size (i.e., 
number of unknowns). From the experimental standpoint, the primary advantage (for wail interference 
purposes) of the ideal 2D test set-up compared to a 3D test set-up derives from the fact that 
measurements and wall boundary adaptations are functions of only the streamwise co-ordinate. Thus 
both the number of measurements and the computational requirements to assess and reduce 
interference are typically at least an order of magnitude smaller than for a 3D test set-up. 

Unfortunately, two factors conspire against the apparent simplicity of a 2D test: two-dimensionality of 
model disturbances and the model interaction with tunnel sidewall boundary layers. In two dimensions, 
flow disturbances due to a source doublet. for example, decrease as the square of the lateral distance 
from the model, compared to the cube of the lateral distance for a 3D doublet (see Sec. 2.2). Thus, the 
flow perturbations at the walls are larger for typical 2D cases than typical 3D cases, resulting in larger 
interference, and requiring the use of non-linear flow equations at much lower upstream Mach numbers. 
The sidewall boundary layer is more insidious because its response to the model pressure distribution 
can result in effectively a wavy sidewall, thus violating the required symmetry condition for planar flow. 
This issue is discussed in GARTEUR [14] and Mokry et al. [26]. Barnwell [6], Barnwell and Sewall (71 
and Mm-thy [27], [28], [29] and [30] describe flow models for estimating the interference effects of the 
sidewall boundary layer. 

Holt and Hunt [I91 describe several applications of panel methods to wind tunnel interference problems. 
For 2D flows, a direct panelling approach was abandoned (due to “leakage” problems, unless a very 
dense panelling was used) in favour of a panel method using a standard Schwartz-Christoffel 
transformation. The airfoil has a 2-g chord, a thickness ratio of 7%, and a chord-height ratio of 2/i’. For 
2D high-lift testing, it is shown that the lift curve of a clean airfoil is adequately corrected to interference- 
free conditions using classical corrections. With flaps deflected, however, classical corrections are 
shown to result in lift corrections 2-5 times greater than corrections deduced using a panel technique. In 
these calculations, leading-edge flap incidence was explicitly varied to match leading-edge pressure 
peaks to free-air calculations in order to produce an incidence scan at fixed flap angle. 

2.3.3 3D LIFT INTERFERENCE 

Joppa [20] describes a vortex lattice method for the calculation of upwash interference in closed-wall 
tunnels of arbitrary cross section, Figure 2.26. The walls are represented by a tubular vortex sheet 
composed of a network of square vortex rings. Results are shown for a uniformly loaded, finite-span 
horseshoe vortex centrally located in circular, square, and rectangular (B/7-/=5/3) tunnels. The longitudinal 
variation of interference essentially duplicates the result from the method of images for the square tunnel. 



Figure 2.26 Vortex Lattice Representation of a Rectangular Tunnel with Corner Fillets (Joppa 
WI) 

A panelling density consisting of 16 segments to represent the tunnel cross section was found to be 
adequate. Consideration of the longitudinal variation of calculated vortex strength at the walls suggests 
that the presence or absence of tunnel walls more than about a diameter upstream or downstream of the 
wing contributes little to the solution at the model. It is concluded that a length to diameter ratio of 3 to 4 
is ample (for a vortex span ratio, 2a5=0.4). The method is used to calculate the upwash wall 
interference downstream of the wing, with stations above and below tunnel centreline representing typical 
tail locations (Joppa 1211). The effect of wake displacement was investigated and found to be significant 
with regard to upwash at the tail. It is concluded that wall-induced velocities cause the vortex wake to be 
deflected less than in free air, with the direct result that the upwash change at the tail due to the in-tunnel 
wake position may be of the same order as the usual wall interference upwash. This effect may be either 
positive or negative depending on tail location. 

Holst [IS] presents results comparing upwash variation as a function of wing sweep angle for constant 
and elliptic lifl distributions using the method of Joppa [20]. Increasing root-to-tip upwash variation with 
increasing sweep angle, Figure 2.27, is expected given the longitudinal variation of upwash interference 
in closed-wall tunnels. 

Holt and Hunt [IQ] give an example of a typical panel analysis of a tapered swept wing at 15 deg 
incidence of span ratio 213 in a rectangular tunnel. Their results illustrate both the effect of wall 
interference and of wake relaxation on span loading. The suppression of wake downward drift by closed 
wind tunnel walls is recognised as a potentially significant source of interference, especially for close- 
coupled configurations (e.g., canard-wing). It is noted that proper comparison of in-tunnel and free-air 
panel solutions to extract wall interference depends on consistent assumptions for the wake modelling. 
This work also illustrates a logical extension of the use of panel methods for wall interference evaluation: 
analysis of the complete testing environment including model supports. 



Fgure 2.27 : Spanwiee Variation of Upwaeh Interference for swept 
Wing in a Closed-Wall Tunnel; 2eB = 0,6, S/H = 1.0 (Holet [IS]) 

Figure 2.26 Complete KKK Wind Tunnel Panelling (Steinbach [33]) 
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Steinbach [33] reports results of a panel analysis that further extends this approach in representing a 
complex test environment: the entire test leg, including aeroplane model and the sting support system, is 
panelled, Figure 2.28. The interference contributions of individual tunnel elements are compared. 
Calculated lift, drag, and pitching moment corrections due to the support system for a fighter model are 
found to be larger than corrections due to the walls. 

With regard to experimental validation of a panel method for lift interference prediction, Vaucheret [36] 
compares incremental wall pressures due to model lift for the ONERA M2 model and demonstrates good 
agreement with predictions at an upstream Mach number of 0.81. 

The interference of delta wings has been calculated using a free vortex sheet code (Frink [12]). The 
effects of span ratio and angle of attack are investigated. A dependence of lifl interference on angle of 
attack is found and shown to be the result of the nonplanar vortex wake. The effects of tunnel walls on 
vortex sheet position and on upper surface pressures are also calculated. 

A method exemplifying a hybrid of the method of images and panel methods is reported by Fiddes and 
Gaydon Ill]. The test model and its first few images are panelled explicitly, permitting a relatively coarse 
wail panelling (Fig. 2.29). Engineering Sciences Data Unit Item 95014 provides upwash interference 
factors calculated using this method for a wide variety of wing planforms and span ratios in closed-wall 
rectangular tunnels. Chordwise and spanwise variation of the upwash interference factors, as well as 
average values, are given for wings of zero thickness centrally located in the tunnel. Cases include span 
ratios, 2sB=O.4, 0.6, and 0.8, for tunnel aspect ratios, S/H=l017, 1. and 0.7. 

Figure 2.29 Hybrid Panel/Image Method (Fiddes and Gaydon [I I]) 

2.3.4 3D BLOCKAGE INTERFERENCE 

Vaucheret [36] presents interference results using a multiple-singularity method whereby the adequacy of 
model representation is evaluated by inspection of wall pressures. A rule of thumb is proposed for 
ellipsoids: the number of source doublets should be at least twice the fineness ratio. Good 
correspondence of measured and predicted Mach number at the wall is shown for a missile configuration 
represented by 30 doublets. The effect of the model support sting is evaluated by additional doublets. 
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The adequacy of modelling is validated by comparison of experimental and predicted wall pressures (Fig. 
2.30). 
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Figure 2.30 Wall Pressures due to Model and Sting in a Closed-Wall Tunnel (Vaucheret, 
[361) 

Figure 2.31 shows the panelling of several axisymmetric bodies used as validation cases of a panel code 
calculation of wall interference. The maximum diameter of the bodies is about one-fifth the height of the 
tunnel. Figure 2.32 compares the results of blockage calculations for a Rankine body in rectangular 
closed-wall tunnels using a higher order panel code (Magnus and Epton [24]) to the method-of-images 
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Figure 2.31 Rankine Body in Closed-Wall Rectangular Tunnels 



calculations. Both the maximum value of interference and the distribution along tunnel centreline are 
essentially identical for these two methods. Interference predicted by classical methods for small models 
(Glauert. [15]) also agrees with these predictions if the finite-length body correction (Fig. 2.21) is applied 
to the Rankine body. 

Figure 2.32 Blockage Interference of a Rankine Body in Rectangular Wind Tunnels, 
UH=1.5.M=0 

2.3.5 3D Wing-Body Combinations 

The magnitude and importance of upwash wall corrections have served to focus many analysis efforts on 
the lift interference problem in isolation. Thus, factors bearing on upwash interference, span ratio, span 
loading, wing planfon, and wake trajectory, have been reported extensively. The examples discussed in 
previous sections are representative but by no means exhaustive. Several citations also address lifling 
systems in combination with a blockage body and wake or sting system (e.g., Vaucheret and Vayssaire 
[35], and Vaucheret [36]. are exemplary in discussing the spectrum of wall interference corrections in 
both closed-wall and ideal ventilated-wall tunnels). 

High-lift testing of transport configurations is crucial for the development of multi-element high-lift 
systems. Lynch [23] gives an example of panel-code predictions of leading-edge slat pressure 
reductions due to the influence of closed wind tunnel walls. Because of the sensitivity of flow 
breakdown on the slat to this pressure minimum, wall interference can have a significant effect on 
maximum attainable lift. 



Figure 2.33 : Panel Study of interference in Closed-Wall Tunnels (Amonlirdviman [4]) 

A similar computational study of high-lift transport configurations in closed-wall tunnels 
(Amonlirdviman 141) Figure 2.33, quantified the spanwise interference variation at the wing for a 
variety of model-tunnel combinations. Both full and half-models were analysed. Full models were 
analysed with and without support strut fakings (shown in Fig. 2.33). Increased upwash and 
blockage interferences on the outboard wing are indicated for span ratios greater than 0.7, Figure 
2.34. 

A CFD study of a transport high-lift model in the Defence Research Agency (DRA) 5-meter, high- 
Reynolds-number wind tunnel was performed to validate the basic wall corrections used to reduce the 
wind tunnel data, to examine the spatial variation of the interference field, and to evaluate mounting 
system interference effects (Curtin A). The model is mounted at the tunnel centreline using a floor- 
mounted strut system and was analysed at two angles of attack, 6 and 15 deg. A side view of the 
panelling, Figure 2.35. shows the wing-body-nacelle model at 15 deg, the support strut, strut windshield, 
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, 

and floor and ceiling locations. The pitch link was not included in the panelling. The interference upwash 
angle and dynamic pressure ratio for a case with no mounting system, Figure 2.36, exhibit considerable 
variation over the wing planform. Upwash spans a range of over 1 deg from the leading edge of the wing 
root to the wingtip, with the tip at a higher angle of attack (therefore prone to premature stall in the tunnel 
relative to free air). The spanwise variation of blockage interference likewise increases the effective tip 
loading relative to free air. The span load in the tunnel reflects these effects, Figure 2.37. The 
interference velocity components, both streamwise and upwash, were evaluated at the 314 mean 
aerodynamic chord location. The streamwise interference velocity at this point was found to be different 
for the two angles of attack, with dynamic pressure ratios of 1.0093 and 1.0121, respectively. Using 
these values to compute model lift coefficient at each condition, the resulting lifl interference parameter is 
Sc=O.1394. These estimates compare to values of So= 0.1463 and dynamic pressure ratio=1.0147 
(independent of angle of attack) derived by classical means. 

An example of the use of CFD to evaluate test section design concerns the effect of corner fillets on wall 
interference The interference of a transport half-model in a proposed large low-speed tunnel was 
evaluated using a panel code, Figure 2.39. Interference at the model centre is reasonably represented 
by classical methods, Figure 2.39; even the incremental differences due to fillet size are qualitatively 
captured. Interference at the wing, Figure 2.40, shows significant deviation of interference from 



centreline values, especially for the wingtip tip. Interference along an axial line through the mean 
aerodynamic chord is very similar to centreline values. Interference along an axial line near the wingtip 
reflects the calculated spanwise variation of interference. 

Tunnel ceiling 

Figure 2.35 Panelling of Transport Model in DRA 5-m Wind Tunnel with Support Strut and 
Windshield (Curtin [Q]) 
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Figure 2.36 : Interference of Transport Model in DRA 5-m Wind Tunnel; 
Q2.3, M=0.25. 2s/B=O.76 (Curtin [9]) 
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Figure 2.37 Span Load of Transport Model in DRA 5-m Wind Tunnel: 
CLz2.3, M=0.25, 2s/B=O.76 (Curtin [0]) 
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Figure 2.38 Low-Speed Wind Tunnel Comer Fillet Study: 
B=40ft.H=24R 
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Figure 2.39 : Effect of Corner Fillets on Centreline Interference of a Subsonic Transport 
Model in a Closed-Wall Tunnel; B/H = 5/3, S = 129.43 ft’, 2slB = 0.8, CL = 1.86 



Figure 2.40 Wall Interference Variation at the Wing of a Subsonic Transport in a Closed-Wall 
Tunnel (No Corner Fillets); B/H = 5/3, S = 129.43 f?, 2slB = 0.8. CL = 1.88 
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2.3.6 SUMMARY OF PANEL METHODS 

Panel methods for closed-wall tunnels have been used in a broad range of applications, 
Correspondence of wall Interference from panel methods and classical methods has been demonstrated 
for small models. Unless extreme accuracy is required, classical methods are adequate for small 
models. The distribution of interference for large models (with no substantial separated flow) is credibly 
represented by panel methods at low subsonic Mach numbers, though in extreme cases the correctability 
of the flow field may be in question. The degree of correctability may be assessed by examination of the 
interference flow field. A computational approach for dealing with such issues has emerged as a force- 
correction method (Rueger et al. [32]) whereby CFD produces incremental corrections to model 
integrated forces and moments. To the extent that both the flow physics and the wall boundary 
conditions are accurately modelled, this approach can extend the correctability of model data beyond the 
boundaries of linear theory. 

The use of panel methods to predict wall interference has in many cases supplanted classical techniques 
for closed-wall tunnels. The use of CFD for wall interference evaluation has further evolved along two 
parallel and complementary lines: more accurate specification of the wall boundary conditions and more 
accurate representation of the fluid physics. Wall boundary condition descriptions have moved toward 
one- and two-variable methods described in Chapter 4. Improved flow physics modelling includes the 
treatment of separated wakes (Chapter 6) vortex wake relaxation techniques, and the inclusion of 
compressibility in the flow equations for high-speed flows (Chapter 5). Such advanced methods are 
required for accurate interference predictions when these flow phenomena dominate the flow near a 
model that is “not small” relative to the tunnel. These methods are characterised by increased 
computational complexity and the requirement of measurements at the walls. Their use may also 
surrender the simplicity of the principle of superposition, a significant feature of linear potential flow. The 
success of panel methods over a wide range of subcritical flow conditions suggests their use not only in 
routine testing applications within their accepted range of validity, but also as a touchstone against which 
advanced methods may be tested. 
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2.4 CLASSICAL CORRECTIONS FOR OPEN TEST SECTIONS 

2.4.1 INTRODUCTION 

When Ludwig Prandtl started scientific aerodynamic work in wind tunnels about in 1915 at Gdttingen. he 
designed his first wind tunnel with an open test section and a circular nozzle with 2.24 m exit diameter. 
Without doubt the open test section offers some advantages to the wind tunnel engineer. He enjoys the 
free accessibility to the test section flow, the easy installation of model suspensions and the simple 
installation of flow survey probes. 

Nevertheless some twenty years later a different and more modern wind tunnel design standard was set 
mainly by Frank Wattendorf in the United States, which heavily influenced wind tunnel design all over the 
world. The closed test section was introduced. The advantage of a reduced power consumption, 
improved flow quality due to the smooth flow at the walls and a more precisely defined boundary 
condition of the test section flow, which made more precise wall corrections possible, outweighed the 
disadvantage of less comfortable accessibility. So today the closed wall test section dominates at least 
the aviation wind tunnel design. For a long time in Germany this was not the case. The authorii of 
Ludwig Prandtl was so strong, that even the fkst low speed tunnels built in Germany after the war (and 
afler the death of Ludwig Prandtl I) in about 1955 still were designed with open test sections. 

For identical model dimensions generally the wall corrections are smaller (and have opposite sign) for 
open test sections than for closed wall test sections. Nevertheless the closed wall offers more precise 
wall corrections because of the more precise definition of the wall boundary condition. 

Open test sections are still widely used in the automotive industry. The simple reason for the preference 
of the open test section is that automotive engineers prefer to test full scale cars instead of down-scaled 
models, Nevertheless for financial reasons these automotive tunnels are built too small at least according 
to the standards of aeronautical aerodynamicists. In a closed test section this size of ,,models” would 
result in severe flow field disturbance or even flow breakdown. The open test section is more forgiving 
and allows meaningful measurements even with blockage ratios, which are never used for aeronautical 
testing. In consequence the automotive engineers have a lot of trouble with wall corrections for large 
blockage ratios with bluff bodies, but this is not the general subject of this AGARDograph. For a more 
detailed analysis of bluff body corrections see chapter 6 of this AGARDograph. 

In the recent past a new challenge in the wind tunnel technology brought the open test section back into 
the wind tunnel engineers’ field of vision. Aeroacoustic testing becomes a more and more important part 
of low speed wind tunnels work load. At least at the moment the open test section, which shows no 
reflection of acoustic waves from the test section walls, is superior for aeroacoustic testing. It is easy, to 
equip the plenum around the open test section with sound-absorbing walls, which results in a very quite 
wind tunnel. Fortunately these aeroacoustic tests do not require ultra-precise wall corrections. 

So the open test section wall corrections are less important at least for the aeronautical wind tunnel work 
and in this AGARDograph only a simple overview is given, which is more or less a condensed version of 
the open test section comments in the AGARDograph 109 [13]. 

In the wind tunnel literature sometimes the ,,% open wind tunnel” is mentioned. In most cases this term is 
used for automotive tests in open test sections with a closed floor, which represents the road. With 
respect to wall corrections the term .3/r open test section” is misleading. The closed floor of the test 
section is not a wall, which produces wall interference, but is part of the model configuration. So this test 
set-up is nothing else than an open test section. All formulas or methods for wall corrections can be 



applied to this test set-up, if the total arrangement is reflected against the floor. The resulting test section 
with twice the height and two cars and a horizontal symmetry plane in the middle of the test section can 
be treated with normal open test section correction methods. 

The basic principles of the classical wall corrections outlined in chapter 2.1 are valid for the closed 
test section and for the open test section as well. As mentioned already in chapter 2.1.3 the only 
difference is the wall boundary condition. The boundary condition of the closed wall is the non- 
existence of velocity components normal to the wall, which results in 

& -= 
an O 

The boundary condition of the open test section is a constant pressure at the jet boundary, which 
corresponds to the static pressure of the plenum surrounding the test section. This boundary 
condition results in 

*=o 
dx 

(2.94) 

In the AGARDograph 109 some remarks and formulas are given for the corrections of two 
dimensional wings spanning open test jets. Since test set-ups like this totally disappeared from the 
aeronautical wind tunnel testing practice, this case is not mentioned here. 

2.4.2 LIFT INTERFERENCE 

The equations 2.27, 2.29 and 2.29 are valid for open test sections as well. According to the work of 
Theodorsen (1931) the result for the upwash interference is 

(2.95) 

The analogous expression for the upwash gradient at the model location becomes : 

The application of upwash corrections is described in section 2.2.1.4. The correction formulas are : 

c Leon = C,, cos Aa - C,, sin Aa E CLvlc (2.1) 

C Dcorr = C,, cos Aa + CLwc sin Aa z C,, + C,, Aa (2.2) 

The additional correction for the streamline curvature is given by equation 2.39 for the angle of attack : 

a co,, =a,+Aa+Aa, =aw+(60+&6,)% 



and by equation 2.40 for the pitching moment : 

F SC ac AC, = ij, --.-@!!%L 
16j3H C da (2.5) 

Figure 2.41 [13] shows the lift interference on small wings in open and closed rectangular tunnels 
for comparison. In this figure the lift interference parameter is shown also for test sections with top 
and bottom wall only (type 3) and for test sections with side walls only (type 4). Such test sections 
are no longer used in wind tunnel practice. 

For wings with finite span the lifl interference parameter 6 is given in Figure 2.42 ‘. These data are valid 
for uniform spanwise loading of the wings. The lift interference parameter is plotted against the ,,Effective 
span/Tunnel width” ratio; the parameter h is the ,.heightlwidth” ratio of the ooen test section. 

Figure 2.41 : Lit? interference on small wings in 
rectangular tunnels 
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Figure 2.42 : Values for 6 for a wing with 
uniform loading in an open rectangular jet 

If the wing is displaced above or below the centreline of an open test section, the lift interference 
parameter may be taken from Figures 2.43 and 2.44. Figure 2.43 is valid for a square jet. Figure 2.44 
gives the lift interference parameter for an open test section with a height to width ratio of 0.5. 

’ The Figures 2.42 to 2.50 were taken from [31] 



-0.26 I 

I 

I. 

422 
-. 

1 -020 I I I I I I I I I 
8 
5 
E -O.lS 
i 

-a16 

-0.14 

412 
0 on4 om a12 al6 0.20 024 

vmticd dktulm rmm cuwii,,f 

Figure 2.43 : Lii interference parameter for wings displaced 
above or below the test section centreline. (Square jet) 

Figure 2.44 : Lii interference parameter 
for wings displaced above or below the 
tunnel centreline. Rectangular jet, h = 0.5 
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A limited number of old wind tunnels with open 
circular or elliptic test sections are still in 
operation. For wings on the tunnel centreline with 
uniform loading Figure 2.45 gives the lift 
interference parameter for this test section 
configuration. In this figure the parameter h = 1.0 
designates a circular jet. 

Figure 2.46 gives the lift interference parameter 
for elliptic open test sections with a width/height 
ratio of 2 : 1 for wings with uniform loading 
displaced from the centreline of the test section. 
Finally Figure 2.47 gives the lift interference 
parameter for wings with elliptic loading in 
circular and elliptic open test sections. 

Figure 2.45 : Lifl interference parameter for a wing 
with uniform loading in an open elliptical test section 
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Figure 2.46 : Lift interference parameter for a 
wing with uniform loading displaced from the 

centreline of an open 2 : 1 elliptic test section. 
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Figure 2.47 : Lift interference parameter for wings wtth 
elliptic loading in open drcular/elliptic test sections 

For the downwash correction at the tail of a model an additional correction factor r2 can be defined. At a 
distance I, behind the quarter-chord line of the wing the boundary induced downwash wk is : 

For open test sections, some doubts exist about the validity of this correction ti the tail length of the 
model is more than 40 46 of the test section width. 

Values for the downwash correction factor r2 are given in the Figures 2.48 to 2.51. 



Figure 2.48 : Correction factor Q for open and 
closed circular test sections 
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Figure 2.50 : Correction factor q for two open 
rectangular test sections, wing on centreline, tail 

Figure 2.51 : Correction factor rz for hvo open 

on centreline 
rectangular test sections, wing on centreline, but 

tail 0.1 b above or below centreline 

Figure 2.49 : Correction factor T* for open and 
closed elliptic test sections 
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2.4.3 BLOCKAGE CORRECTION 

As for a closed tunnel, the boundary condition of a small model at the centre of a square open jet can be 
represented by an infinite set of images. In this case the signs of the doublets alternate, so the 
interference velocity at the models position is smaller than in the case of closed walls and of opposite 
sign. For the square open test section case in (131 (after Lock [ZS]) equation (2.98) is given, which in 
terms of model volume and with allowance for compressibility effects results in the simple equation 
(2.99). 

A % 
ES = 

u $ 4 

E, =-0.211& 

For rectangular open test sections Wuest [37] evaluated values for T : 

The results are plotted in Figure 2.52’ 

I .2 I.4 14 
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Figure 2.52 : Tunnel-shape parameters for small models 
in open rectangular tunnels 

(2.98) 

(2.99) 

(2.100) 

’ The Figures 2.52 and 2.53 are taken from [13] 
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For circular open test sections Lock [22] gave an equation 

where hl is given in Figure 2.53. 

I, is defined in [22] 

(2.101) 

Figure 2.53 : Body-shape parameter 

A more simple equation for circular open test sections in terms of Mach number, tunnel diameter and 
model volume is 

E, = -0.0333~‘~ 
R3 /3’ 

(2.102) 

For the few tunnels with elliptical open test sections still in operation one may use the equation 

E, = (TR + 0.029 1 io %pJ 
- 

c P’ 
(2.103) 

where Ts can be taken from Figure 2.52 for a rectangular open jet with breadth/ height ratio equal to m/n 
and C= xzmn. 

2.4.4 WAKE CORRECTION 

Little is known about wake blockage effects in open test sections; in most cases they are considered to 
be negligible. A sophisticated theoretical investigation is hardly worthwhile, since in any case the wake 
blockage effects will be disturbed by the wind tunnels individual collector inlet effects. 
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NOMENCLATURE FOR CHAPTER 2 

A = 

A = 

Ao = 

A,,, = 

e = 

6 = 

c = 

co = 

Cd = 

C‘ = 

CLW = 
c, = 

CM = 

c, = 

c = 

c = 

d = 

f = 

H = 

K = 

k = 

k = 

L = 

M= 

m = 

m = 

” = 

n = 

P = 

9 = 
Re = 

&,x= 
r = 

s = 

s = 

s = 

effective cross-sectional area of 2D model = A0 + added-mass area 

rectangular tunnel aspect ratio = B/H 

dimensional cross-sectional area of 2D model 

maximum transverse cross-section of model 

body radius 

tunnel breadth 

cross-sectional area of test section 

drag coefficient 

drag coefficient for 2D model 

lift coefficient 

lift coefficient of wing 

lift coefficient for 2D model 

pitching moment coefficient 

pressure coefficient 

airfoil chord 

mean aerodynamic chord 

distance of 2D vortex from the floor 

body fineness ratio 

tunnel height 

nondimensional body shape factor; nondimensional factor for interference parameters; 

singularity strength 

base pressure parameter 

model span ratio ( ‘ficrive ‘p”) 
Tunnel width 

length; wing lift 

Mach number 

source strength 

major axis of elliptical tunnel 

spatial coordinate normal to the test section wall 

minor axis of elliptical tunnel 

static pressure 

dynamic pressure 

Reynolds number 

maximum body radius 

cylindrical co-ordinate = d + ?)ln 

wing reference area 

wing or vortex semi-span 

source-sink separation distance for Rankine ovals and bodies 



T = static temperature 
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t = maximum thickness 

u = streamwise velocity 
tJw = upstream reference velocity 

” = perturbation x-velocity 

v = total velocity vector = V@ for potential flow 

v = velocity magnitude 

v = effective model volume in 3D = V, + added-mass volume 

v, = dimensional volume of 3D model 

” = perturbation y-velocity 

w = perturbation z-velocity 

WI = downwash correction at tail position 

x = streamwise spatial co-ordinate 

Y = spanwise (or lateral) spatial co-ordinate 

z = vertical spatial co-ordinate 

Greek Symbols 

a = 
P = 
Y = 

l-s = 
s = 
so = 
6, = 
s, = 
E = 

ES = 

t; = 
e = 
A = 
?. = 
h = 
P = 
rl = 
tl = 
5 = 
P = 

0 = 
7 = 

aI = 

angle of attack 

Prandtl-Glauert compressibility factor = (1 - A#)‘” 

vortex strength in 2D = II2 U-c CL 

vortex strength in 3D = l/4 U-S CL 

lift interference parameter 

lift interference parameter evaluated at the model centre 

upwash interference due to blockage 

streamwise curvature interference parameter 

blockage interference ratio = u,/U- 

streamwise interference due to lifl 

nondimensional vertical co-ordinate = z/L,, 
blockage factor for bluff-body flow 

wing sweep angle 

body shape factor 

test section height/width ratio 

doublet strength 

nondimensional spanwise co-ordinate = y&r 

empirical factor for separated wake interference 

nondimensional streamwise co-ordinate = x/PL,, 
fluid density 

nondimensional wing or vortex semi-span 

tunnel shape factor 

total velocity potential 



cp = perturbation potential 

(Pm = perturbation potential due to the model 

VW Ta= perturbation potential due to the walls (= interference potential) 

Subscripts 

b = base 

c = corrected 

con= corrected 
i = interference 

m = model 

” = normal 

ref = reference 

uric= uncorrected 

w = walls 
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