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4. BOUNDARY MEASUREMENTS METHODS 

The importance of measuring flow conditions at outer boundaries has been known for some time, 
particularly for solid-wail wind tunnels. However, it has only been in recent years that sufficient computing 
power has become available to make use of this information. Thus lt is no coincidence that the increase in 
interest in boundary-measurement methods has occurred during the last decade or so when the rate of 
development in computing technology has been so rapid. This Chapter begins with a review of fundamental 
theories of boundary-measurement methods (Chapter 4.1) and then describes the application of the 
methods to closed-wall tunnels in Chapter 4.2 and to ventilated test sections in Chapter 4.3. 

4.1 FUNDAMENTAL THEORIES 

After basic issues are considered, the various classes of methods are reviewed, and the relative 
advantages and disadvantages of the methods are discussed. 

LIST OF SYMBOLS for chapter 4.1 
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breadth of working section of equivalent wind tunnel of rectangular section 

statiopressure coefficient 

Green’s functions 

height of working section of equivalent wind tunnel of rectangular sectlln 

Mach number 

normal inward towards working section in transfomxd (Prandtt-Glauert) space 

point within region bounded by S 

fictitious region outside the region bounded by S 

measurement surface in transformed space 

wall shape factor for doublet 

streamwise vekxity perturbation 

stream speed 

model volume 

cartesian co-ordinate system (Fig 4.1) 

transformed coordinates, = (x, by, pz) 

angle of incidence 

Prandtl-Glauert factor, = J(l - Mr’) 

lii interference parameters 

increment due to wall effect 

Laplace operator 

velocity potential 

perturbation velocity potential 
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SUFFIXES 

F 

I 

ii 
R 

S 

T 

u. D 

VO 
co 

equivalent free-air flow 

wall-induced flow 

differentiation with respect to either x,y or z in either case 

fictitious region outside region contained within S 

measurement surface 

adjacent to wind-tunnel walls 

upstream and downstream faces 

volume integration in the fictitious region R 

conditions far upstream 

4.1 .I BASIC CONSIDERATIONS 

Consider the flow about a model of an aircraft in a wind tunnel (Figure 4.1) with sub-sonic con&ions far up- 
stream. Suppose, initially. that the flow everywhere in the working section is irrotational, implying that any 
shock waves are weak and that the turbulent shear layers are thin. The flow may therefore be defined 
uniquely by the velocity potential UI or the perturbation velocky potential cp = Q - U, x, where U, is the speed 

F/cfltfour regh R 

t+sv for rotattonat flaws) 

Figure 4.1 : Wind Tunnel Test Section with Model 

of the notional flow far upstream, usually determined by calibration of the empty test section. This flow 
satisfies the exact potential equation (Kuchemann, [27]). which may be written in the form : 

P’rp, + ‘p, + cp, = f (@8,.a$>u,; MF) > (4.1) 

where p* = 1 - Mr’ and Mr is the Mach number corrected for blockage, i.e. the free-stream Mach number of 
an equivalent ‘free-ak flow. The corrected Mach number and the corresponding corrected free-stream speed, 
Ur, are preferred in Equation (4.1) to the corresponding conditions far upstream because the former quantities 



determine the character of the flow in the near field of the model. Sufkes i and j, respectiiiy, refer to 
differentiation with respect to either x, y or z. The function f is a term that is non-linear in the derivatii of F 
and which becomes significant in transonioflow regions near the modal. 

The Prandtl-Glauert transformation may be used to replace Equation (4.1) by 

( 4.2) 

where 

(X K Z) = (x, PY, Pz). 

Consider now the ‘free-air’ flow about the same 
model at the free-stream speed UF and at an 
angle of attack differing from the geometric 
angle of attack of the model in the tunnel by k 
(Figure4.2). For flows and models with a 
vertical plane of symmetry this flow is 
characterised by the perturbation potential 

rpF = rDF - UFx- UFAaz 

and satisfies the equation 

Fig 4.2 Free-air flow about same model 

If either 

a) the two flows are identical (‘D = U+) in the region near the model, so that the tunnel flow may be 
corrected to an equivalent Tree-air’ flow, 

or b) the perturbations in the flow induced by the model are ‘small’ everywhere, 

or c) the Mach number of the flow is everywhere close to zero, i.e. the two Rows are essentially 
incompressible, then the right-hand sides of Equations (4.2) and (4.3) are either ktentical but non-zero, 
or negligible. This being the case, subtraction of Equation (4.3) from Equation (4.2) leads to the 
expression 

(4.4) 

where VP, = rp - rpF 
is the wall-interference potential. Since, by Equation (4.4) this potential is harmonic within the working 
section, it is possible to use Green’s formula (Weather-bum, [51]) to write for the point P in the (transformed) 
working section 

4xcp, (P) = - s ~G+]dS, = -4([g - %]G - (cp- qF)g]&. I[ (4.5) 
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Here n is the normal inward towards the working section and the integration is performed over the 
measurement or boundary surface S. comprising a surface at or close to the walls, ST, with faces at the 
upstream and downstream extremtties of the working section, Su and Sc, (Figure 4.1). G is a Green’s function 
that is harmonic everywhere within the measurement region except at the point P. Near this point G behaves 
like l/r. where r is the distance between the point P and a variable point in the region. 

For the wall interference potential to be harmonic everywhere within the volume bounded by S the quantity (q~ - 
eF) must be single-valued there. This means that the difference in circulation between the two flows around 
any circuit within the working section must be zero and, also, 

i.e., to the accuracy of linear theory, the net flux of the wall-induced flow across S must be zero. These 
conditions need to be borne in mind in any numerical method for determining wall interference based on 
Equation (4.5). 

The analysis above may, with certain restrictions, be extended to rotational flows. The first restriction is that 
the vorticky is confined to a region surrounding the model, as illustrated in Figure 4.1, where it is shown to be 
bounded by the surface S,. The surface S in Equation (4.5) then has to include the surface S,. However, if it 
is possible to correct the wind tunnel flow to an equivalent free-air flow, the analytical continuation of the 
wall-interference potential is harmonic within the rotational-flow region. Hence, by Green’s theorem 
(Weatherbum, 1511) the contribution of the extra term vanishes. Thus, in this circumstance Equation (4.5) 
applies to rotational flows as well. 

To determine the wal!-interference potential at a point in the working section by using Equation (4.5) it is 
necessary to know both the wall interference potential itself and its normal gradient at the measurement 
surface. This, in turn, means that perturbation potential of the wind-tunnel flow and its normal gradient have to 
be determined at the surface; furthermore, a satisfactory representation of the free-air flow around the model 
has to be derived. This implies that three independent variables are required, two from flow measurements at 
the surface S and a third, defining the model free-air flow, by calculation. However, the number of variables 
needed can be reduced to two by using the freedom to choose an appropriate Green’s function for the 
boundary-value problem. Depending on the choice of Green’s function, the two variables can ekher comprise 
one defining the flow at any one pad of the measurement surface and another specifying the free-air flow or 
two defining the conditions at the measurement surface. Kraft [25] suggested that a measure of merit of any 
technique is how well the two independent quantities are evaluated. Krafl proposed that the two classes of 
method should be, respectively, called ‘one-variable’ and ‘two-variable’ methods, As its name implies. the 
former class needs the measurement of only one flow variable at the measurement surface, but it does 
require a representation of the model free-air flow. The second class, on the other hand, requires two 
variables to be measured, but it does not need a simulation of the model flow. A third, hybrid class uses a) a 
complete knowledge of one flow variable, or an assumed relationship between the two flow variables, at the 
measurement surface, and b) limited measurements of a second flow variable on the same surface. In these 
‘wall-signature’ methods, a model representation is used, and the ‘signature’ of the second variable is used to 
define either the strengths of the singularities representing the model or the values of a parameter linking the 
two flow variables. In the remainder of this Chapter the three types of methods are reviewed. Discussion of 
one-variable methods (Chapter 4.12) is followed by a review of ‘wall-signature’ methods (Chapter 4.1.3). 
Finally, two-variable methods are discussed in Chapter 4.1.4. 
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4.1.2 ONE VARIABLE METHODS 

4.1.2.1 DIRICHLET PROBLEM 

For the Dirichlet problem, where the interference potential is specified on S, the appropriate Green’s function 
is one that vanishes on the measurement surface leaving 

With the appropriate Green’s function, Go, defined. the integral can, in principle, be evaluated once the 
perturbation potentials ‘p and (pr are known on S. The perturbation potential ‘p can. in principle, bs inferred 
from 

i) measurements of static pressure at the outside surface Sr by appropriate integration of the linearised 
version of Bernoulli’s equation, 

aq -= _ u.z CP 
ax 2 ’ (4.7) 

provided that the pressure coefficient C, is of sufficiently small magnitude for second order terms in Bernoulli’s 
equation to be ignored ‘, and 

ii) a knowledge of the way the perturbation velocity potential vanes across the upstream and downstream 
faces Su and So. If these surfaces are perpendicular to the tunnel axis this variation can be determined by 
measurement of the upwash component of velocity at these faces. However, for sufficiently long working 
sections, where the two faces are far removed from the model, this is probably unnecessary because the 
contributions of the integrals over these faces can reasonably be ignored. 

The integration of Equation (4.7) has been avoided in existing methods of the ‘Ditichlet’ type, which are based 
on the streamwise velocity increment u = 8+x instead of the perturbation velocity potential ‘p. However, in 
these methods, a further integration is needed to determine the wall-induced upwash. and the constant of 
integration is determined from a measurement of the upwash at the upstream measurement station. The 
alternative expressions have been derived for cylindrical boundary surfaces. For these types of surfaces, a 
comparable expression may be derived from Equation (4.6) by differentiating each side of this equation by X. 
Mokry and Ohman [36], in two dimensions, and Mokry [38], in three dimensions, used Fourier transform 
techniques, in effect, to determine the required Green’s function. Later, Mokry et al [40] used a doublet-panel 
method, in which the doublet distribution on the measurement surface is determined satisfying the boundary 
condition for the wall-induced increment in streamwise velocity. In all these methods, the influence of the 
upstream and downstream faces can, in principle, be accommodated provided information about the variation 
of the streamwise increment in velocky across them is available. In an analysis of the two-dimensional 
problem in a working section of infinite length, Capeliir et al r/l used complex-variable theory to solve the 
equivalent Schwarz problem (Mokry et al 1391). An extension of this method to the case of a semi-infinite 
working section was later developed by Paquet [43], who specified boundary conditions for the streamwise 
velocity increment on an upstream measurement face. 

’ If these terms cannot be neglected then it will, in general. be necessary to determine the streamwise velocity 
increment and hence the perturbation potential at the measurement surface by integrating the Euler equations in 
the direction of the tunnel axis (Ashill and Keating [Z] and Maarsingh et a1 [34]) 
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Methods using either the wall interference potential or the streamwise velocity increment are ‘autocorrective’. 
This means that calculations by them of corrected stream speed are automatically compensated for errors in 
the reference-pressure measurement (Capeliir et al [7] and Paquet [43]). 

4.1.2.2 NEUMANN PROBLEM 

For the Neumann problem the normal gradient of the interference potential, or the normal component of the 
wall-induced velocity, is given on the boundary. The required Green’s function, GN, is one with vanishing 
normal gradient on S giving 

(4.8) 

The term acp/an in Equation (4.8) implies that the normal component of velocity or the flow angle has to be 
speciried on S. The measurement of flow angle causes no significant problems for wind tunnels with solid. 
though possibly, flexible walls, since the flow angle is essentially defined by the condition of no flow through 
the wallsz. On the other hand, for porous or slotted walls, flow angle needs either to be measured or to be 
deduced from wall and plenum pressure measurements by using elaborate theoretical models. Measurement 
of flow angle with the required accuracy is extremely difficult. For this reason, methods of the ‘Neumann’ type 
am not favoured for porous or slotted-wall wind tunnels. Indeed, the use of the wall-induced streamwise 
velocity as a boundary condition, was originally proposed by Capelier et al [7] with just this problem in mind. 

Where the difference in normal velocity is used as the boundary condition, as for Equation (4.8) the technique 
is autowrrecttve in that errors in measurements of normal velocity or flow angle far upstream of the model are 
compensated for by the method. 

4.1.2.3 MIXED PROBLEM 

In some cases, where the normal velocity is well defined on parts of the boundary and the streamwise velocity 
increment or the perturbation potential on other parts, a mixture of typas of boundary condition may be 
appropriate. An example of where such a treatment might be used is for a case with solid sidewalls and upper 
and 1-r walls that are either perforated, slotted or flexible. In such cases, the boundary Sr may be divided 
into S, and Ss, on which conditions of the ‘Dirtchler and ‘Neumann’ types are, respectively, applied. If, for 
example, the upstream and downstream faces are sufi?ciently remote from the model for their effects to be 
ignored, the solution for the interference potential may be expressed as: 

to be cylindrical and of infinite length; the wall-interference potential, 9, was expressed as the sum of 
contributions due, respectttely, to the model. an infinite array of images of the model simulating the solid 
sidewalls and a remainder to allow for the flexible roof and floor. The last contribution was determined by 
separation of variables and Fourier transforms of the resutting set of two-dimensional, partialdiierential 
equations. Smith [47j.[4g] used mixed boundary conditions in his treatment, by a panel method, of wall 

’ It may be necessary to allow for the effect on normal velocity at the measurement surface of the change in wall 
boundary layer displacement thickness between the empty tunnel and the model-in-tunnel cases (see Chapter 
4.2). 



interference on the flow over two-dimensional aerofoils in a working section that was slotted in one part and 
solid upstream and downstream of it. Boundary pressures were measured only over a part of the working 
section, which extended beyond the slotted region. He applied conditions of the ‘Dirichlet’ type to this part (S,) 
and ‘Neumann’ type conditions to the solid regions upstream and downstream of it (S2). 

Mokry at al [39] noted that some care needs to be taken with mixed boundary conditions at any line or point 
where the conditions change from one sort to another. They also raised concerns about the uniqueness of 
the solution which, in the case considered by Smith [47], is presumably ensured by satisfying the condition of 
smooth flow at the two joins. 

4.1.2.4 MODEL REPRESENTATION ERRORS 

As noted in Section 2.1 one-variable methods require some form of model representation. In principle, the 
simulation may be achieved with suitable distributions of potential singularities so long as the flow is subcritical 
at the tunnel walls. The problem is to determine the strengths of the singularkIes. Smith [471 noted the 
importance of accurate model representation, arguing that errors caused by inaccurate modelling could be as 
large as the interference quantity Itself. For subcritical flows over wings or bodies at low angles of incidence 
linear theory can be used with allowance for model thickness or cross-sectional area (Gamer et al [15]) and 
with other modifications, as described below. However, for transonic flows or for flows with large regions of 
separation, the problem is much less easily solved owing to the non-linear character of the flow in the near 
feld of the model. Numerical methods have been developed, in which various approximations to the Navier- 
Stokes equations have bean solved for aerofoils and wing-body configurations (Kemp [23]. Newman et al [42] 
and Rizk and Smithmeyer [45]). These methods require both the wind tunnel and ‘free-air flows to be 
calculated and are expected to be of particular value when there are supercritical-flow patches at the wall, but 
it is unlikely that it will be possible to correct such flows to ‘free-air’ conditions except in adaptive-wall tunnels 
(see Chapter 4.1.4). It would appear that these methods have not been used to calculate the strengths of the 
equivalent potential-flow singularities. However, Mokry [41], applying a suitable contour integration to 
numerical coupled solutions of the Euler and boundary-layer equations, has determined doublet strength 
for transonic flows over aerofoils with supercritical flows contained within the working section. 

If numerical calculations of transonic flows, or, indeed, any other complex flows, are to be avokded, three 
possible approaches may be used to minimise errors due to model representation: 

0 Exploit an &sewed tendency for different types of boundary condition to have different 
levels of sensitivity to model representation errors. 

It may be noted that the contribution of the model representation term to the wall interference potential can be 
determined for each type of boundary condition by setting q = 0 in Equation (4.6) and &+Y% = 0 in Equation 
(4.6) while, for Equation (4.9) it follows by setting ‘p = 0 on S, and &J&% = 0 on S,. This implies that, for wind 
tunnels with long, cylindrical working sections, the respectlie contributions due to model representation in 
methods of the ‘Ditichlet’ and ‘Neumann’ type can be inferred from classical results for tunnels with open-jet 
and solkl walls and, for mixed boundary conditions, by a combination of wall types. In this respect, 1 is useful 
to think of a wind tunnel having a working section with the same cross section as the measurement surface 
and with classical wall boundary conditions, hereafter referred to as the ‘equivalent wind tunnel’. 



The observations in the last paragraph are not merely of academic interest, since they allow extensive 
experience with classical wall-interference methods to be used to assess the contribution to wall-induced 
velocities from imperfect model representation. In the past, particular emphasis has been placed on 
determining the strength of the doublet representing the volume effect of the model and its associated 
supercritical flow in the far field. The reason for this is that non-linear effects of compressibility affect doublet 

Fig 4.3 Wall shape factor T 

strength in a way that is not represented in linear 
theory, and, consequently, this is a possible 
source of error. It is therefore interesting to 
compare the wall corrections associated with a 
source-sink doublet placed on the tunnel axis in 
various equivalent wind tunnels of rectangular 
cross section. Results for the wall shape factor for 
the doublet 

are plotted in Figure 4.3 against (effective) working 
section breadth to height ratio B/Ii, where urm is 
the wall-induced or blockage increment in 
streamwise velocity at the model for 
incompressible-flow conditions and V is model 
volume. 

Shown in the figure are cases with working sections that are i) fully-closed (Neumann), ii) fully-open (Dirtchlet). 
iii) mixed, open sidewall and closed roof and floor and iv) mixed, open roof and floor and closed sidewalls. 
Results for the fully-closed and fully-open cases have been gleaned from information given by Gamer et al 
[15], while the resuits for the two ‘mixed’ cases have been calculated for this study. For values of B/H close to 
unity, the ‘Dirichlet’ case gives a wall shape factor that is only 28% of the magnitude of that of the ‘Neumann’ 
approach, indicating that the ‘Dirichlet approach is to be preferred to the ‘Neumann’ approach from the point 
of view of minimising model-representation errors. For B/H = 1 the ‘mixed’ approach gives an even lower 
value, wtth a magnitude of only 10% of that of the ‘Neumann’ value. The ‘mixed’ approach also yields zero 
blockage (due to model representation) for mixed conditions of type iii) above with B/H = 1.17 or of type iv) 
with B/H = 111.17 = 0.85. These are significant results which could have an important bearing on where and 
how to apply wall boundary conditions with one-variable methods and possibly also on the design of any 
future wind tunnels. 

Similar wnclusions have been reached in calculations performed for ‘long’ bodies simulated by an axial 
distribution of sources or sinks, results of which are given by Ashill (1994) who presents a fuller account of a 
study of effects of types of boundary conditions on model representation errors. 

It should be remembered that the porous or slotted region does not necessarky occupy the whole length of the 
working section. It may, therefore, be possible to exploit this feature by using, as Smith [47],[49] has done, 
boundary conditions which differ from one part of the working section length to another. It may be possible to 
decrease the open-area ratio of the equivalent wind tunnel by applying ‘Neumann’ type conditions where the 
wall is solid upstream (and downstream) of the slotted or perforated region. For slotted-wall tunnels, it may be 
possible to apply the solid-wall condition on parts of the slats between the slots to reduce the sensitivity to 
model representation errors. Kemp [22] applied boundary conditions in this way in his method for 



three-dimensional models in a sJotted-wall tunnel, but ta 
for the different reason that he was limited by the 
number of slat pressure measurements that were 
available. 

/cl 
0, - 

.+q- 
Results for B-interference parameters of a ‘small’ o , .H L, 4 
wing are shown in Fture4.4 for various types of \,0.75/LOO I.25 LJO l.75g,H2.00 

classical boundary conditions (Gamer et al [15]). For -0.1 ;/ ‘1 
a square tunnel the smallest values of the classical 

*c----w-. 
/ --L- 

parameters S, and 6, are obtained with the walls of -0.2 - !::I I.&l 
the equivalent wind tunnel open at the stdes and 
closed in the roof and floor, for which S, = 0. This -0.3 

means that, lf an accurate estimate of BT interference 
is the overriding conskleratlon and there are doubts 6t 
about the accuracy of the representation of the 
model f#t distribution. ‘Dirtchlet’ type conditions should 

z/- , , ;, 

.-- 
be applied at the sidewalls and ‘Neumann’ type mN 

.I 
conditions at the roof and floor. Plainiy. this is an o ’ .A 

unattractive option for tunnels with a slotted roof and o,*“~50,~jl~~~~~,25 L50 L754” eOo 
floor such as ETW and NTF. Fortunately, the lit 

1 

I’ 
distribution of models is usually determined from ---- 

---_ 
measurement or can be estimated with some -0.4 

confidence. Consequently. errors from this source Fig 4.4 Lift interference for ‘small’ wings on 
are unlikely to be serious. axis of equivalent wind tunnel of 

rectangular cross section 
Basing his ideas on the earlier work of Davis [II], 
Schairer (461 developed a method for two-dimensional tests in which the influence of model representation 
was eliminated altogether by using measurements of one flow variable, nolTnal velocity, at two separate 
surfaces. Schairer found that he was unable to obtain wall-induced velocities of adequate accuracy owing to 
the limited range of the measurements along the working sectiin. The method does not seem to have been 
adapted to three-dimensions. but studies by Davis [l l] suggest that the method ls much more complicated for 
three-dimensional flows. 

ii) Make use of experience from testing in solid-wall wind tunnels. 

Evans [12] was able to make signtfkcant progress using measurements of wall pressures. As well as drawing 
attention to the importance of representing body length for typical models. he showed the significance of using 
the corrected Mach number in the Prandtl-Glauert factor when determining the strengths of the sources and 
sinks representing a body. This important point, which does not appear to have been fully grasped in some 
later work, is illustrated in Fiiure4.5 showing comparisons between calculation and measurement of wall 
pressure measurements in the RAE 1Oft x i’ft Tunnel for a series of bodies. Since the correction is not known 
a phi, this implies an iteration process. However, ir, as is often the case, the corrections are calculated ‘on 
line’ during the test, the nominal Mach number can be adjusted until the corrected Mach number corresponds 
with the desired value. Evans concluded that an error in the solid blockage at drag-rise conditions could be 
reconciled wkh an increase in the effective volume of the model, and he suggested that this error is directly 
proportional to the rise in drag coefficient.. Aithough plausible and based on comparisons with wall pressure 
measurements, this result does not have a rigorous theoretical basis. 
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Fig. 4.5 Comparison of measured and calculated 

peak increments in wall Mach numbers for 
three bodies after Evans (1949) 

4.1.3 WALL-SIGNATURE METHODS 

iii) Obtain more accurate estimatea of 
singularity strengtha using asymptotic 
expansion or other approximate methods. 

Using the method of matched asymptotic 
expansions, Chan [E].[S] established a correction 
for compressible non-linear effects to doublet 
strength for two-dimensional aerofoils. For the 
same problem, Smkh [48] used Green’s formula 
to obtain an estimate of the doublet strength. 
Mokry [41] showed that doublet strength 
depends on aerofoil camber and angle of 
incidence as well as thickness. It would appear 
that these approaches have not yet been 
extended to three dimensions. No correction is 
needed to vortex strength for compn?ssibiBy if the 
spanwise distribution of local lii wafficksnt of a 
wing is known either from pressure measurements 
or can be inferred from overall-force 
measurements. 

As noted earlier, there are two variants of the wall-signature method. In the first, one component of velocity is 
known and the other is measured at a limited number of points on the measurement boundary. By matching 
calculation to measurement at this boundary it is then possible to detenine the strengths of the singularities 
representing the model. The best known application of this type of method is to solii-wall wind tunnels, for 
which the normal-velocity component may be taken to be zero at the walls. Therefore, with the measurement 
boundary taken to coincide with the walls, the solution to the Neumann problem, Equation (4.8) may be used 
to obtain: 

After differentiation by X, Equation (4.10) may be reexpressed as: 

I~[u(P) - UF (P)] = - Js% s dS, 

or as 

(4.11) 

Here the differentiation with respect to X has been taken under the integral sign because Ga is smooth and 
continuous within the region of integration. If the point P is taken to be limkingly close to the walls, the 
lefl-hand side of Equation (4.11) may then be defined by static-pressure measurements at the walls, together 



with the linear Bernoulli Equation (4.Q at N points. Thus, if the model is represented by a distribution of N 
singularities, Equation (4.11) may be regarded as a linear (integral) equation for the unknown .singularity 
strengths. For a wind tunnel with a cylindrical working section of length that is sufficiently large to be assumed 
infinite, the integral in Equation (4.11) may be replaced by a doubly-infinite sum for each singularity, 
representing the image effect of the tunnel walls. 

The idea behind this approach, which is 
illustrated in Figure4.6, goes back to ///////////IuHLWun 
the 1940’s when the problems of testing 
at high subsonic speed in solid-wall N rhgularltler 
tunnels were first addressed. Mokry et al 
[39], reviewing various early methods for 
two-dimensional flows, described a 

-_ _- 

simple procedure to determine the 
strengths of a doublet, vortex and source N msasursmsnt pohfs 
representing a liiing aerofoil from / 
static-pressure measurements at three 
points on both the roof and floor of the 
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two-variable methods, to be described Point sink 
later, which need no model 

x 

representation. A contrary view is that Fig 4.6 Sketch illustrating ‘Wall signature method” for solid 
wall-signature methods are to be wall wind tunnels 
preferred in some applications because 
they need relatively-few measurement points compared with mvariable methods. Smith [47], using a 
method similar to that described by Mokry [37], suggested that an aerofoil with a chord to working section 
height ratio of about 0.2 could probably be represented adequately in the far field by about ten singularities 
placed at a single point, requiring ten measurement points. Evans [12] found that it was possible to represent 
a body of revolution by a point source and point sink, in each case placed at a fixed distance from the centre 
of volume of the body on its axis, indicating the need for two measurement points. These numbers of 
measurement points would be considered much toa I& for a two-variable method. However, where the 
model Row field is complex and not easily represented by singularities, two variable methods are probably to 
be preferred (see Section 4.2.4). Nevertheless, the wall-signature strategy has been used to determine wall 
corrections for models with separated flows (Hackett and Wilsden [18], [19] and Ha&ett et al [20]) and jets in 
cross flow (Wilsden and Hackett [52]). 

Le Sant and Bouvier [29] found that the matrix inversion needed to solve equation (4.11) is ill-conditioned 
owing to the insensitivity of the flow at the walls to details of the model. They suggested that this problem 
could ba overwme by gathering singularities into groups with fixed relative strengths. A method similar to this 
is routineiy used to determine the blockage for tests at subsonic speeds in the 8ft x 8ft (solid-wall) Wind 
Tunnel at the Defence Evaluation and Research Agency (DE!%), Bedford (Isaacs [21]). The axial source 
distribution representing model volume is assumed to be represented adequately by linear theory and the 
theory is used merely to determine the ratio between the mean value of the streamwise vekzily increment at 
four points on the walls (two on the roof and two corresponding ones on the floor) and the blodtage increment 
at a reference point on the model. Measurements of the change in static pressure coefficient between the 
empty tunnel case and the case with the model in the wind tunnel at these same points provide sufficient 



information to determine the blockage at the model reference point. Experience has suggested that the 
method is reliable (Isaac-s [21]). 

If comprehensive measurements could be made of static pressures at the measurement boundary, a similar 
procedure to that described above could, in principle, be developed using, instead, the ‘Dirichlet’ approach, 
together with limited measurements of flow angle to give normal velocity at the boundary. This approach may 
be useful for wind tunnels with perforated or slotted walls but it has not yet been tried as far as is known. 

The second variant of the method uses a ‘wall’ pressure signature to establish or check the value or values of 
a parameter linking the flow variables at the measurement surface. This approach has been used by 
Vaucheret [50], who combined a validated model representation with wall pressure measurements, to infer the 
porosity of the roof and floor liners of the ONE!% S2Ma Tunnel. In a similar way, Goldhammer and Steinle 
[IS] made static pressure measurements on four rails to verify the porosity factor used in a simulation of 
slotted walls. As with Vaucheret’s method, a model representation is used. 

4.1.4 TWO-VARIABLE METHODS 

In section 4.1.2.4 k was shown that the contribution of the model representation term to a particular 
component of wall-induced velocity at a point on the model could be eliminated by a suitable mixture of types 
of boundary condition on S. Equation (4.5) indicates that the contribution of model representation terms 
vanishes identically when 

0 = J, (2 G - cpF g) dS. (4.12) 

This suggests that the Green’s function satisfying this condition is that for an interference-free, equivalent wind 
tunnel. In turn, this suggests that the appropriate Green’s function is: 

the free-space Green’s function (Mokry et al, [39]), which, in aerodynamic terms, may perhaps be called the 
free-air’ Green’s function. For this Green’s function, Green’s fonula gives 

dS - jy, i A2qF dJ’ = 0, 
r 

(4.13) 

where V, refers to volume integration in the fictiious region, R, outside the measurement region (Fig 4.1). 
Thus, provided that the perturbations in the free-air flow outside the working section are ‘small’, the 
perturbation potential (pr may be considered harmonic in this region with the consequence that 

acp 1 +& “(‘))dS=O. - CpFjg ; 

Thus, for flows of this type, the Green’s function Gr satisfes equation (4.12) to give, in place of equation (4.5) 
an expression no longer containing model-related terms 

(4.14) 
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This expression was derived by Ashill and Weeks [4] in a somewhat different way to the way presented here 
and it appears in a number of references (Kraft [25], Mokry [35] and Labrujere [28]) giving a particularly 
elegant derivation. Corresponding expressions have been obtained for plane, two-dimensional flows, using, 
variously, Fourier transforms (Lo [33]), Green’s formula in the plane (Ashill and Weeks [5] and Labrujere [28] 
and Cauchy’s integral formula (Ashill and Weeks 151, Kraft and Dahm [26] and Smith [49]). 

A consequence of not having to know anything about the flow around the model is that it is necessary to 
measure both components of velocity at all parts of the measurement boundary. The first term under the 
integral sign in equation (4.14) recognised as the contribution of sources of strength &$a~, requires the 
normal component to be known at S, while, for the second term which is the contribution of source doublets, 
the streamwise velocity increment on S is needed. For solid-wall tunnels, including certain types of 
adaptive-wall wind tunnels wkh flexible liners, this poses no significant problems, since the normal component 
is effectively defined by the condition of no flow through the walls?. For other types of walls, however, the 
measurement of normal velocity over the whole measurement boundary is much more dtcult. As a resutt, the 
method has largely been restricted, up to now, to solid-wall tunnels (Ashill and Weeks [4] and Ashill and 
Keating [Z]. [3]). although some progress is being made in determining the normal component in perforated 
and slotted wall tunnels (Freestone and Mohan [13] and Mohan and Freestone [14]). 

A major enhancement that became possible with two-variable methods is the calculation of wall interference 
for complex flows in solid-wall tunnels, e.g. those for high-la configurations, helicopters and other VlSTOL 
aircrafr. The facility to ignore the flow around the model is an important advantage. One area which has been 
known to cause difficulties in the past is the calculation of blockage for aircraft configurations at high angles of 
attack, where the flow over the fling surface is partially separated. In particular, experience in various 
establishments with the semi-empirical method due to Maskell for calculating blockage was not entirely 
favourable. However, it was found that, in many cases, Maskell’s method gives an overestimate for blockage 
correction with a consequential underestimate in maximum Iii coefficient. This view was wnfimvsd for a 
combat-aircraft configuration (Ashill and Keating 121, [3]) and for a civil transport model (Kirkpatrick and 
Woodward [24]) by comparisons between results from Maskelf’s method and of calculations using a 
two-variable method. A careful and thorough assessment of a two-variable method for tests at low speed and 
high lift has been made by Maamingh et al [34]. 

Another area where two-variable methods have been used is in the calculation of residual wall interference in 
adaptive-wall tunnels (Lewis et al [32] and Lewis [31]), where, as noted before, it is routinely necessary to 
measure both flow angle and static pressure at the measurement boundary. Mokry [35] showed how 
equation (4.14) may be manipulated to give a convergence formula to allow the shape of the of the walls of an 
adaptive-wall wind tunnel to be altered in one step to give nominally interference-free flow. He also showed 
that two-variable methods are autowrrective in character, 

Since the Green’s function in equation (4.14) is known, special techniques for determining the function, or 
equivalent techniques, are unnecessary in two-variable methods. Methods of this type can, therefore, be 
applied to measurement boundaries of irregular shape with relative ease. In this respect, two-variable 
methods may be favourably contrasted with one-variable methods. 

If the free-air perturbation potential in the fictitious region R is not hanonic, then the volume integral in 
equation (4.13) can no longer be ignored and equation (4.14) is replaced by 



hcp, (p) = - J, ( $; - T$f ( ) ) ds + ly, (;) A2T dV. (4.15) 

It may be thought that this is an extreme situation and, as mentioned before, that it would not be possible to 
correct such flows to equivalent free-air conditions. However, flows of this type are found in adaptive-wall 
tunnels at high subsonic speeds (Lewis et al [32] and Lewis [30]), and it has therefore been necessary to 
establish the magnitude of the residual corrections for wall constraint (Lewis [30]). For practical reasons, it 
might be convenient to avoid eliminating tunnel-wall interference altogether in adaptive-wall wind tunnels, 
concentrating, instead, on ensuring that the wind-tunnel flow may be wrrected to equivalent free-air 
wndkions. 

A problem with equation (4.15) is that it requires the source term or volume integral in the fictiiius region R 
outside the measurement region to be calculated. This requires a (transonic) flow-field calculation as well as 
the evaluation of the integral. To avoid the latter di~wky it is useful to think of a flow in the fictitious region R 
with a velocity potential 0s that is identical to the free-air flow velccky potential in the near field of the model. 
This implies that the dtfference in perturbation potentials ((pr - (PR) is harmonic in this region. Thus, if Green’s 
formula is applied to the perturbation potential (PR in the same way as was done to obtain equation (4.13) and 
the resuiting expression is wmbined with equation (4.19, it is found that 

Mokry 1351 refers to this variant of the twovariable approach as an ‘interface - discontinuity method’, 
expressing the fact that the equation contains diswntinuitiis in the normal velwtty and perturbation potential 
across the measurement boundary. 

For a solid-wall tunnel 

and thus equation (4.16) reduces to 

This expression is recognised as the potential at P due to a distribution of source doublets of strength (9 - 
rps) on S, and, for a cylindrical measurement surface, the integral may be rewritten in terms of a distribution of 
horseshoe vortices (Ashill and Keating [3] and Mokry [35]). The strength of each of these vortices is directly 
proportional to the local wall loading. Judd (unpublished research, Southampton University) derived the 
corresponding expression for two-dimensional flows which was used by Goodyer and Woif 1171 to detenine 
residual corrections in the flexible-wall tunnel at Southampton University. This method was later extended to 
three dimensions by the Southampton-University group (Lewis [31]). For the study of aerofoils at transonic 
speeds in the same wind tunnel, Lewis [30] performed calculations of the fictitious flow (effectively to 
determine either rqR or @&x) using a transonic small-perturbation method. Since the boundaries of the 
fictitious flow are cylindrical or planar, this calculation is less demanding than that for the free-air flow about the 
model at transonic speeds, particularly in three dimensions. 



If the external flow is solved as a Dirichlet problem so that 

at the measurement surface, equation (4.16) reduces to 

which is the potential due to a distribution of sources of strength (&+%I - +&I). This approach was 
suggested by Rebstock and Lee [44]. 
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4.2 CLOSED TEST SECTIONS 

LIST OF SYMBOLS for chapter 4.2 

B 

C 
D 

H 

M 

N 

S 

TOLC 

P 

A 

6 

6’ 

0 

n 

working section breadth 

Working section cross-sectional area 

Hydraulic diameter 
working section height 

free-stream Mach number 
parameter defined by Adcock and Barnwell (1984) 

Model reference area 
merance for Columns 

Prandtl-Glauert factor, p = m 

Increment due to presence of model 

Lift interference parameter 

Wall boundary layer displacement thickness in empty tunnel at model station 

Wall boundary layer momentum thickness in empty tunnel at model station 
Ratio of solid blockage in a wind tunnel of given height to breadth ratio with wall boundary 
layers to the maximum value of solid blockage in the same wind tunnel without boundary layers 

4.2.1 BACKGROUND 

The possible benefits of using measurements of wall pressures to calculate wall-interference corrections 
in closed-wall test sedions were realised in the early 1940’s when compressibility effects on the flows 
over wings and bodies were first observed (G8thert [13], Thorn [32]). A review of this early work is given 
in Section 5 of AGARDograph 109 by Garner et al [II]. It was appreciated early on that linear-theory 
descriptions of the near-field flow around the model are increasingly inadequate as free-stream Mach 
number increases towards unity. This led to the idea of using wall pressures to determine the strengths of 
the singularities representing the model. This was justified on the grounds that the flow satisfies the 
linearised potential equation in the far field. Methods of this type are known as wall-signature or wall 
pressure signature methods, the undertying theory for which has been described in Section 4.1.3. 

In the 1970’s an analogous problem was discovered with the representation of wind-tunnel models at 
high lift, in which flow separation may occur on part of the model (Hackett and Wilsden [14], [16]. and 
Hackett, Wilsden and Stevens [17]). For flows of this type linear theory is totally inadequate for modelling 
the near field. Hackett and his colleagues used wall pressures to determine the strengths of singularities 
representing the model flow in the far field. This aspect is considered in more detail in Sections 4.2.5 and 
4.28, and in Section 8.3. The usual Neumann condition of zero normal velocity at the walls was applied 
by using the classical method of images. Hackett’s group was able to demonstrate the application of the 
wall signature method to a wide range of flows, including wings with jet flaps. A related approach has 
been adopted by Ulbrich. Lo and Steinle [33], Ulbrich and Steinle [34], [35]. 

The development of the two-variable method in the late 1970’s provided a further technique for calculat- 
ing wall interference in closed-wall tunnels. The derivation of this method has been given in Section 4.1.4 



and in this approach wall interference is defined by the distributions of two flow variables on a surface 
surrounding the model - the streamwise and normal components of velocity. No model representation is 
needed. If the surface is taken to coincide with the wind-tunnel walls, the normal component is usually set 
to zero to satisfy the condition of no flow through the walls, as with the wall signature method. However, 
where there are significant interactions between the constrained flow over the model and the wall bound- 
ary layers, allowance may need to be made for the change in displacement effect of the wall boundary 
layers. This aspect is discussed further in Section 4.2.2. This leaves only one variable to be determined - 
the streamwise velocity - and this can be inferred from Bernoulli’s equation so long as the velocity pertur- 
bations at the wall are small compared with free-stream speed. This question is considered further in 
Section 4.2.4. 

4.2.2 BOUNDARY CONDtTlONS 

The assumption usually used in both the wall signature and two-variable methods that the normal 
component of velocity is zero at the walls is equivalent to neglecting the interaction between the inviscid 
flow-field and the wall boundary layers. The validity of this assumption needs to be carefully assessed in 
each case. At one extreme where the flow perturbations are small, as for example in low-speed flows 
over a model at low lift, the effect on the wall boundary layers can be demonstrated to be negligible by 
simple one-dimensional considerations. At the other extreme, where flow perturbations are ‘large’, the 
interaction cannot be ignored. Examples of the latter type include flows were shock waves reach the wall 
(Lewis, 1988) and where the wall boundary layer separates as a result of large adverse pressure 
gradients induced by high-lift models (see Section 8). 

Berndt [7] appears to have been the first to draw attention to the effect on blockage and the choking 
Mach number of the interaction between the inviscid flow-field associated with the model and wall inter- 
ference and the wall boundary layers. He used a simplified method to calculate the effect. More recently 
a theoretical method with some simplifications has been presented by Adcock and Barnwell [2] for 
tunnels of rectangular cross section. This method is based on approach of Pindzola and Lo [26] for 
slotted-wall tunnels to solve the boundary-value problem for the perturbation potential. The simplifications 
made include the neglect of the change in wall shear stress due to the presence of the model and the 
assumption that the transformed shape factor is unity. Both these assumptions are justified for the high 
Reynolds number conditions of wind tunnels. In addition it is assumed that, in the empty tunnel, 8’ and 8, 
the wall boundary-layer displacement and momentum thicknesses may both be taken constant and equal 
to the values at the model station. It is further supposed that the wall boundary layer is twodimensional 
in character so that its development when the model is in the working section can be described by the 
Von Kanan momentum integral equation. As well as studying the effect on blockage, Adcock and 
Barnwell also considered the extent to which lift interference is influenced. For this purpose they 
represented model volume by a source doublet and the lifting effect by a vortex doublet. For the analysis 
they found it convenient to define a parameter 

(4.17) 



Results for the ratio of the solid blockage in a wind tunnel of given height to breadth ratio with wall 
boundary layers to the maximum value of solid blockage in the same wind tunnel without wall boundary 
layers, Q, and the lift interference factor 6 are shown in Figure 4.7 and 4.8 for working sections with H/B 
= 1. Charts such as these and others given by Adcock and Barnwell provide a useful guide as to the 
likely magnitude of the effect both on blockage and on angle of incidence in the absence of wall-pressure 

measurements (see below). 
Adcock and Barnwell observed 

l.O- 
that, owing to linearisations in 
the method, results obtained 
with it should only be used for 
values of N down to about 213. 
For the typical values 26*/B = 
0.01, S’/9 = 1.4 and M = 0.8, N = 
0.95 and, it may be inferred 
from Figure 4.7, that the 
maximum value of R is 0.85. In 
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other words, for this case, the 
maximum blockage is 85% of 

-.4L the value predicted by classical 
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inviscid theory. Regarding the 

JmH effect on lift interference, Figure 

Figure 4.7 Calculated effect of wall boundary layers on blockage 
4.8 shows that, at the position 

(after Adcock and Bamwell [Z]) of the doublet, the wall 
boundary layers only affect the 

streamwise gradient of wall- 
HA -1.0 induced upwash, the gradient 

becoming less as the parameter 
N decreases. 
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---mm A combined experimental- 
theoretical study has been made 
of the effect of wall boundary 
layers on the blockage of bodies 
at high subsonic speeds (Ashill, 
Taylor and Simmons [5]). Results 
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Figure 4.8 Calculated effect of wall boundary layers on lift 
interference (after Adcock and Barnwell, 1983) 

tunnel conditions, at the roof and 
floor of the working section for an 
axisymmetric body at .zero angle 
of incidence are shown in Figure 

4.9. In this figure the measured data are compared with results of a classical inviscid theory and those of 
the same theory but including allowance for the wall boundary-layer effect. The viscous theory gives 
improved agreement with measurement, particularly at the highest Mach number shown, M = 0.93. This 
theory differs from that due to Adcock and Barnwell in that a viscous-inviscid iteration process and a 
more-accurate form of the normal-velocity condition are used. As in the treatment of Adcock and 
Barnwell, Ashill et al solved the Von Karman momentum equation and, to simplify the boundary-value 
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problem, took the normal velocity to be 
constant around the working section at a 
fixed streamwise or axial station’. 
Furthermore, based on assessments of 
calculations of two-dimensional boundary 
layers by the method of Green, Weeks 
and Brooman (1973) they took the 
boundary-layer shape parameter to be a 
constant. With these assumptions the 
expression corresponding to equation 
(4.17) is: 

“=& (4.16) 

Equations (4.17) and (4.16) give results for 
N that become increasingly close as Mach 
number and shape parameter S*/9 both 
tend to unity. 

Similar values for the change in blockage 
due to the wall boundary layers are 
obtained by the two methods. Figure 4.9 
shows that the effect of the interaction is 
significant. Fortunately, methods that 
make use of wall-pressure measurements, 
such as those referred to above, account 
for a major part of the effect. This remark 
is supported by the results of calculations 
by a two-variable method for transonic 
flows over an aerofoil where the wall pres- 
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Figure 4.9 : Axial distributions of increment in wall static 
pressure coefficient due to the presence of 
the model : comparison between measure- 
ment and viscous and inviscid theories 

sure gradients were mild (i.e. the supercritical region was contained within the working section). These 
calculations (Ashill and Weeks [6], Rueger et al [26]) indicate that, when use is made of wall-pressure 
measurements in a two-variable method, the boundary-layer effect is not significant. The reason for this 
is that the wall pressures contain some information on the effect of the wall boundary layer on the 
flowfield. However, more recent work by Ashill et al [5] suggests that the effect needs to be allowed for 
with wall-pressure methods as Mach number approaches unity when the pressure gradients at the wall 
induce larger changes in boundary-layer thickness than at lower speeds. Similarly, the effect may well 
need to be represented for flows over high lift wings at low speeds where the pressure gradients induced 
at the walls can be relatively large. 

In summary, for models at cruise conditions, the effect on calculated wall-induced velocities of the inter- 
action between the inviscid flowfield and the wall boundary layers is likely to be insignificant except at 
high subsonic speeds, provided that a method based on wall-pressure measurement is used. More 
generally, the effect is likely to be important when the wall boundary layer is close to separation and may 
therefore be important for high-lift models at low speeds. Care should therefore be taken to monitor wall 
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pressure distributions so that, if in doubt, calculations can be made of wall boundary layer development 
relative to empty-tunnel conditions. 

4.2.3 NUMERICAL APPROXIMATIONS 

Provided that the effect of the wall boundary layers can be ignored the effect of the walls may either be 
represented by the classical method of images (as in the wall pressure signature method) or by a distri- 
bution over the walls of elementary source doublets or horseshoe vortices (as in the two-variable 
method). In the former case consideration needs to be given to the numerical convergence of the doubly- 
infinite series and methods of accelerating convergence may need to be considered. One such, which 
has been applied by lsaacs [I91 to the case of sources within wind tunnels of rectangular cross section, 
involves replacing the source images far from the walls by a source sheet. Analytical relationships may 
be used to replace double summations by rapidly convergent single series (Glauert [12], Garner et al 

I111). 
A method of representing the elementary source doublets by constantdensity panels in the two-variable 
method is described in Section 4.3. An approximation to the alternative horseshoe-vortex approach is 
described by Ashill and Weeks [S]. So long as wall interference is not required close to the wind-tunnel 
walls a simple numerical integration procedure may be used to evaluate the integrals (e.g. Simpson’s 
rule). However, if this is not the case special treatment of the singular integrals will be required. This may 
be done by using a panel method analogous to that described in Section 4.3. 

4.2.4 CHOICE OF METHOD 

Faced with the choice of the two wall-pressure methods, the wind-tunnel engineer needs to know their 
relative advantages or disadvantages. For attached flows typical of transport aircraft models at cruise 
conditions the wall-signature method is easy to apply and requires only a small number of wall-pressure 
measurements (lsaacs [19]). The model may be represented without difficulty by distributed singularities. 
The two-variable method, on the other hand, needs no model representation, as noted before, but 
requires many wall pressure measurements, typically of the order of 100 (Ashill and Weeks [S]). For this 
reason, a wall-signature method has been favoured for correcting data for blockage in tests on con- 
ventional aircraft models at high subsonic-speed cruise conditions in the 88 x 8ft Tunnel at DRA Bedford. 

For flows over aircraft models at high lift, the problem of model representation is more difficult and 
requires some experience in determining suitable distributions (see Section 4.2.6 and Section 8). 
However, as for high-speed testing, only a small number of wall-pressure measurements is needed. This 
contrasts with the two-variable method, which, as at high speed, needs a large number of wall-pressure 
measurements (Ashill and Keating [4]). On the other hand, for complex flows, such as those as studied 
by Ashill and Keating over a combat-aircraft model at high lift, the ability to obtain wall-interference 
without the need to know anything about the flow over the model is a clear advantage of the two-variable 
approach. 

Wall boundary condition methods need only be used where classical methods, based on linear theory, 
cannot be applied or are expected to fail. However, where possible, calculations should be performed by 
a classical image method, if only as a check that the results obtained from a wall boundary condition 
method are sensible. As a general rule, it is recommended that wall-induced velocities should be 
calculated by more than one method. 
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4.2.5 MEASUREMENTS AND ANALYSIS OF WALL PRESSURES 

4.2.5.1 WALL PRESSURE-SIGNATURE METHODS 

It is self evident that success in using the wall pressure signature approach rests in measuring the signa- 
tures properly. The signal level can be small for small or low-drag models and imperfections in the tunnel, 
its instrumentation and its operation can easily compromise the pressure-signature measurements. 

An ideal pressure signature requires: 

a) A test section length of 2.5 to 3.0 hydraulic diameters. This is rarely achieved in existing general 
purpose tunnels. The pressure signature peak, which typically lies afl of the model, should be 
between 35% and 40% of the test section length from the start of the test section. 

b) Smooth data with local inconsistencies and errors due to orifice and test section surface 
characteristics removed. This involves referencing all signatures to the appropriate ‘empty-tunnel’ 
condition, which might include model supports (sting, mounting struts, etc., as discussed in section 
1.2, see also section 53.2). 

c) High quality pressure instrumentation and proper transducer ranging. 

4 Well-defined asymptotes at the upstream and downstream ends of the signature. The front of the 
signature should asymptote to the test section reference pressure. An offset asymptote can be 
handled successfully provided that it is well defined. 

Figure 4.10 shows three pressure orifice distributions used in the Lockheed wind tunnels and a 
suggested distribution that will be discussed below. All four examples involve tunnels with B/H = d2. The 
orifice X-locations are normalised on working-section width, B, and a sub-scale based on hydraulic 
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Figure 4.10 Typical orifice locations for the pressure signature method 
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diameter, D, is provided. Four-wall application is preferred but practical considerations may preclude 
floor-mounted orifices, particularly in large tunnels. This is discussed further in Section 8.3.2. The first 
distribution (the upper set) was employed in the (previously) Lockheed 30” x 43” MTF Wind Tunnel during 
the development of the wall pressure signature method for powered models (see for example Hackett 
and Boles [15]. To provide sufficient length for large wakes to develop, the test section length was 
doubled, leaving the model in its original position. This placed the model at approximately a quarter of the 
test section length from the entry point. The second example shows the system originally installed in the 
Lockheed 231/a R x 18114 fl Low Speed Wind Tunnel. There are too few orifices and the signature is too 
short for general purpose testing but, with care, the system can be used for car testing. The greatest 
difficulty with this particular arrangement lies in obtaining sufficiently accurate wake source values and 
there is likely to be an adverse impact on calculations of the wake-induced drag increment (see Section 
8.2.8 and 8.3.1.5). The third example shows a preferred arrangement for this tunnel. The last example is 
a further orifice arrangement suggested for test sections of insufficient length. Point concentration has 
been increased towards the end of the signature in an attempt to capture the asymptotes more 
successfully. The added points should be used as part of a larger array when ftiing the asymptotes. 

When setting up a tunnel system to measure pressure signatures, the following additional sources of 
trouble should be borne in mind: 

0 bad readings from failed or failing pressure transducers. 

ii) influence of the model and its images beyond the walls on the reading of the tunnel reference 
pressure. This problem can sometimes be corrected by regarding the reference pressure reading 
as part of the wall pressure signature. 

iii) interference from model-induced distortions (relative to empty test section conditions) of the wall 
boundary layers. In extreme cases, where a high energy jet hits a tunnel wall, for example, flow 
control may be needed at that wall (see Section 8.3.1). 

iv) insufficient sensitivity and/or accuracy of the pressure instrumentation. 

v) an insufficient number or poorly selected distribution of pressure orifices. 

Human monitoring of each pressure signature is an unrealistic and costly burden, and computer monitor- 
ing has not been used, as far as is known, because of the difficulty of doing so. This is a fertile area for 
the use of intelligent systems. 

4.2.5.2 Two VARIABLE METHODS 

Most of the points made above in connection with the measurement of wall pressure signatures apply to 
two variable methods. However, there are considerations special to two variable methods which need to 
be borne in mind, as discussed below. 

As noted before the streamwise velocity required as a boundary condition is usually determined from wall 
pressure measurements using the linear form of Bernoulli’s equation. This may be justified if the pertur- 
bations in streamwise velocity at the walls are small compared with free-stream speed. If these perturba- 
tions are not ‘small’, it may be necessary to solve Euler’s equation for the flow at the measurement 
surface given the pressure distribution (Ashill and Keating [3] and Maarsingh et al [23]). The use of a 
non-linear relationship to determine streamwise velocity can only be justiiad at low speeds when the 
governing equation for the inviscid flow, Laplace’s equation, is ‘exact’. At high subsonic speeds, where 
the linearised potential equation is solved, no increase in accuracy can be expected from refining the 
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For the application of the two variable method it is recommended that the choice of wall orifice locations 
should be determined and perhaps optimised* by prior calculation using ‘exact’ solutions from classical 
linear theory. In these calculations an effort should be made to simulate as closely as possible the flow 
around the models, bearing in mind the different types of flows likely to be studied. Such a procedure 
was described by Ashill and Weeks 161 for a wind tunnel of square cross section and later applied to a 
low-speed wind tunnel of rectangular (b = 4m x h = 2.7m) cross section by Ashill and Keating [4]. 

Results of such assessments are shown as test cases in Figures 4.11, 4.12 and 4.13 for a floor mounted 
half model in the rectangular working section noted above. In the first test case the model wake is repre- 
sented by a point source (Figure 4.11): in the second test case model volume is simulated by a source 
and sink (Figure 4.12) while, in the third test case, the lifl is simulated by a horseshoe vortex (Figure 
4.13). Linear theory is used to supply values of streamwise velocity at the positions of the wall orifices 
and this information is then used in calculations of wall-induced velocities at and along the model axis by 
the two-variable method. These comparisons confirmed the suitability of the choice of orifice number 
which, as noted in Section 4.2.1, was about 100, the orifices being placed about one tunnel breadth 
upstream and downstream of the model centre-line. However, these studies and others described by 
Rueger et al [26] suggest that the two-variable method is ‘robust’ in that pressure orifices can be 
removed without significantly affecting the accuracy of the method. Sensitivity studies such as these 
should be performed before any test and should form the basis for the assessment of the requirements 
for new wind tunnels. For existing wind tunnels, any shortfall in the number of wall holes can be made 
good with static tubes or static rails attached to the tunnel walls. 

-0.8 -0.6 -0.1 -01 0.2 0‘ 06 ail uB 1.0 

Figure 4.11 Test case 1. Point source. Blockage at ‘floor’ line 

* Here ‘optimised’ is used in the sense of meamng minimising the numbs of cm&s for a certain level of acwracy 
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Figure 4.12 : Test case 2. Point source and sink. Blockage increment of velocity at ‘8001 centre line 

Figure 4.13 Test case 3. Horseshoe vortex. Wail-induced upwash 
at centre-span of vortex 

An alternative approach, used by Ashill and Weeks [S], Ashill and Keating [4] and more recently by 
Rueger et al [28], assumes the working section to be of infinite length. The effects on the induced 
velocities in the region of the model of the singularities on the upstream and downstream faces are then 
ignored. The upstream value of the pressure increment is taken to be zero while the downstream value 
can be determined from momentum considerations (Ashill and Keating [4]). The blockage in the region of 
the model (O<x/B<O.6) is not sensitive to errors in the far-downstream value of the increment in pressure 
coefficient or velocity increment, u,. as may be inferred from Figure 4.11. Here an error of as high as 
50% in this value causes errors of only about 5% in the blockage increment in the vicinity of the model. 
The pressure increments between either the most upstream or most downstream orifices and the limiting 
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values are obtained by interpolation assuming an exponential variation as expected from classical linear 
theory of wall interference for solid-wall wind tunnels, Calculations using classical linear theory (Ashill and 
Keating [3]) suggested that the length upstream and downstream of the model where wall pressures are 
measured should be approximately one working section breadth. Again, however, the suitability of the 
choice should be checked for individual cases. 

The measurements of wall pressures should be referred to empty-tunnel conditions3. This needs to be 
done to allow for: 

a) the likely non-cylindrical nature of the tunnel walls and the growth of the wall boundary layers in the 
empty tunnel; 

b) imperfections in the wall holes; and 

c) static-pressure errors due to hole size (Shaw [29] and Franklin and Wallace [Q]) 

Wind-tunnel users should not be surprised to find that, before being referred to empty-tunnel conditions, 
wall pressure distributions contain a significant degree of scatter, due mainly to effect b). However, when 
‘tared’ to empty-tunnel conditions, smooth distributions may be expected. Where a two-variable method 
is used, the pressures should be checked for any faulty readings and removed prior to interpolation of the 
pressure data. 

Consideration needs to be given to the interaction between the model supports and the tunnel walls. In 
some cases, the supports may intersect the tunnel walls. This poses problems because of the need then 
to measure a large number of pressures in the region of the supports where pressure changes rapidly. 
One possible way of avoiding this difficulty is to define the ‘empty tunnel’ as the wind tunnel including the 
supports but excluding the model, as previously suggested in Section 1.2. This glosses over the problem 
of allowing for any interaction between the model and support flowfields which has to be considered 
separately. 

Ideally, the reference pressure should be measured sufficiently far upstream not to be affected by the 
presence of the model. Fortunately, for solid-wall tunnels, the combined direct and wall interference 
effect decays exponentially with distance, as implied before, so that the effect on the reference static 
pressure is likely to be negligible, at least for a wind tunnel with a working section of reasonable length. If, 
for any reason, the reference wall hole is affected by the presence of the model, it may be possible to 
invoke the auto-corrective character of the two-variable method (Mokry [25], see also Section 4.3). What 
this means is that the method substantially corrects for any error in reference pressure, a small residual 
error remaining owing to extrapolation to a ‘false’ zero far upstream. 

Owing to the fact that the two variable method involves integrations, wall-induced velocities determined 
by this method tend to be insensitive to random errors in wall pressures. Nevertheless, wall-pressure 
distributions should be carefully monitored to ensure that the calculations of wall-induced velocities are 
not corrupted by erroneous pressure measurements. As mentioned in Section 4.251. this suggests the 
need for intelligent systems to remove such data before the calculations are performed. 

Systematic errors will arise from inaccuracies in transducer calibrations, but these can be estimated by 
applying the errors as small perturbations to the pressure or streamwise velocity distributions in the 
method. Such studies are an important prerequisite for establishing the errors in the method. 

3Empty-tunnel wall-pressure data till normally be taken dung the cakbrabon of the wind tunnel. Details of the calibration procedure 
for testing at high subsonic speeds in a solid-wall tunnel are given by 18aacs [I91 He demonstrated the importance of allowing for the 
direct and blockage effects of the calibration probe when determining ‘empty-tunner stabc pressures at high subsonic speeds. 



4.2.6 MODEL AND TUNNEL REPRESENTATION WHEN USING THE ,,MATRIX” VERSION OF 
THE WALL PRESSURE SIGNATURE METHOD. 

4.2.6.1 INTRODUCTION 

Section 4.2.5.1 gave general guidance on the installation and use of wall pressure orifices and their 
application to pressure-based wind tunnel correction methods. The recommended geometries were based 
largely on ad hoc experience, extending in some cases over a decade or more. However there was no 
reference to the relationship of the orifice configuration to the model under test and no indication of how an 
orifice system might be optimised for a given model. The present section will address these and other 
practical issues in a systematic way, including reviews of which walls should be instrumented, length of 
orifice rows and oriice spacing. 

4.2.6.2 BASIC APPROACH 

The ‘matrix’ version of the pressure signature method employs vortex, source and doublet singularities on 
the model at fixed locations that correspond to matrix columns (see Hackett et al [18]). Sensing locations on 
the tunnel walls (pressure orifices) correspond to the matrix rows. The form of the equation is shown below: 

Influence 
Coefficients for 
U-component 

at walls 

Measured or 
reference 

0 
Singularity _ 
strengths - U-components 

at walls 

The matrix elements are the U-component interference coefficients for the model singularities, with their 
tunnel images, at the orifice locations on the tunnel surfaces (see Equation 4.11 and the subsequent 
discussion), In practice it is found that matrix conditioning is poor and solution oscillations that propagate 
into the interference field are not unusual. Since matrix conditioning depends on the particulars of both rows 
and columns, it is difficult to make recommendations concerning orace spacing, for example, without 
reference to what the model is and how it is represented. Model representation and orifice geometry will 
therefore be addressed using an example derived from an actual test. The approach that will be described 
below may be applied to other geometry’s, as needed. 

The example cases will be limited to axial velocity interference, which is found to be more challenging than 
upwash interference in problems of the present type. Experience shows that, when the axial flow 
interference is calculated correctly. the upwash interference is reliable. 

4.2.6.3 MODEL GEOMETRY AND ITS REPRESENTATION 

The test example involves a flat plate model that represents the plan view of a modem fighter aircraft. Such 
a model was tested and wall pressure data and analyses are available, though they will not be employed 
directly here. Figure 4.14 shows the model and tunnel details. The model was mounted with its trailing edge 
0.99 ft above the tunnel centre plane and its nose 3.45 ft below the tunnel roof. The cross-effects between 
lift and blockage were therefore very significant. The program is fully three dimensional and off-centre 
effects are included in all analyses. The model angle-of-attack was near stall and the measured wind-axis 
CL and Cowere 1 .I7 and 0.91 respectively. 



Figure 4.14 includes a sketch of the model with line 
singularities at seven locations along the chord. A horseshoe 
vortex, a line source, and a forward-directed line doublet were 
placed at each location, giving a total of twenty-one elements 
for the case shown. Line doublets, which were not used in 
previous solutions of this type, have been included to improve 
the representation of flow closure. 

4.2.6.4 REFERENCE CASE 

To provide a well-controlled example, a reference case was 
generated using a theoretical, uniformly loaded model with the 
CL and Co values quoted above. The lifl and drag loads were 
distributed uniformly, using the seven vortex and seven 
source elements shown in Figure 4.14. Line doublet strength 
was selected by subtracting the calculated vortex-plus-source 
signature from measured data and matching the residue. 

For the studies below, a reference wall signature was 
calculated using the reference singularity strengths just 
described. This becomes the column vector on the right-hand 
side. A corresponding reference interference curve was 
calculated at positions along the model centreline. As a first 
check, the solution singularity values are compared with the 
reference values. Exact agreement is desirable but not 
essential for good interference solutions. However, excessive 
oscillations in singularity strength lead to incorrect 
interference. The obvious second check is to ensure that 
interference distribution calculated using the returned 
singularities agrees with the reference interference curve. 

TUNNEL : 
B = 23.25 R, Ii = 16.25 ft 
Orifices from -18 to + 20 ft. 2 ft spacing 
Model TE 0.99 R above tunnel oenterline 
Model nose 3.45 ft below tunnel roof 

MODEL : 

Doubledetta planform 
Span = 5.56 fl, Length = 6.36 ft 
a = 35.34 DEG CL = 1.17, Co = 0.913 
Ref Area = 15.63 sq ft. SIC = 0.0414 
7 Horseshoe vortices 
7 Linesources 
7 x-directed Line doublets 

Figure 4.14 Model and tunnel details for 
baseline case 

4.2.6.5 THE SOLVER 

A solver is used that employs a proprietary orthonormalisation scheme. Its major advantage is that it 
detects near linear dependence between columns and rejects the appropriate column. This process is 
controlled by a user-defined variable TOLC’ (TOLerance for Columns). A zero value of TOLC leaves the 
original matrix intact. Least-squares solutions are obtained when the row and column counts differ. 

4.2.6.6 WALL ORIFICE CONFIGURATIONS 

The left-hand side of Figure 4.15 defines orifice configurations evaluated in the present study. Case 1. the 
baseline, has orifices on the centrelines of the roof, floor and left wall of the tunnel. The right wall data is 
redundant for the present unyawed cases. For Case 1, some twenty orifices per wall extend from about one 
tunnel diameter ahead of the model to one diameter behind it. Cases 2 and 3 explore the effects of 
shortening all signatures. Cases 4 and 5 investigate the effects of doubling the orifice spacing, while 
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case 85,. Orifice Configuration Matrix R x C Sig RMS Error Interfer. RMS Error 

BASIC OPT BASIC OPT BASIC OPT 
RxC RxC x103 x103 x IO3 x103 

, Basehe: mof, lsflvmll&lkr, 
X = - 18.0 to + 20.0 fl by 2.0 ft 80x21 80x14 0.388 0.015 0.0082 0.0488 

2 x=-10.0t0+10.0 33x21 33x 14 2.792 0.012 4.7418 0.0497 

3 b(=-4.0to+4.0 1 15x21 1 15x10 1 0.719 1 0.015 I13.85001 0.0147 

4 IBaselinewith odd pointsonly 1 30x21 1 30x II 1 0.122 I 0.019 I 0.2773 I 0.0542 

5 Baseline with even points only 1 30 x 21 1 30x 12 1 2.134 1 0.015 1 4.8750 1 0.0485 

8 II four walls 1 78x21 1 78x 14 1 1.291 1 0.014 1 1.5135 1 0.0488 

7 Roof and left wall 1 40x21 1 40x 13 1 0.125 1 0.009 1 0.0980 1 0.0512 

8 Roof only (C>R) 20x21 20x10 0.018 0.004 1.0890 0.1537 

Fig 4.15 Effect of column optimisation for 7+7+7 initial elements and 
various wall orifice configurations. 

retaining the baseline total length. The effect of adding back the right-hand wall is explored in Case 8. 
Cases 7 and 8 investigate roof-and-left wall and roof-only cases. 

4.2.6.7 CASES WITH NO ELEMENT OPTIMISATION (TOLC = 0) 

The “7 + 7 + 7” case reproduces the reference solution only for the baseline oritice confguration. Earlier 
studies, employing a similar “5 + 5 + 5” element arrangement closely followed the original input for all cases 
except the very short signature, Case 3. The singularity strengths in the 5 + 5 + 5 Case 3 oscillated strongly 
and the interference results were useless. This is probably attributable to the shortness of the signatures. 

Repeating the same exercise for the 7+7+7 geometry gave noticeable RMS errors for the signature fk 
(Figure 4.15, column 5) and mainly oscillating singularity solutions. Case I, the baseline, gave good 
interference results (Figure 4.18, upper plot) and Case 7 (roof and left wall) was probably acceptable. of the 
remaining solutions, only Case 4 (doubled orifice spacing, “odd” points) was “on the page.” However Case 
5 (“even” points) displayed matrix instability and, like the remaining orifice configurations, gave interference 
values that were several times too high. Many of these curves oscillated and were obviously wrong, but 
those that were smooth could have been misleading had the reference curve not been available. 

4.2.6.8 CASES WITH ELEMENT OPTI MISATION 

On increasing the control parameter, TOLC, the column count for the baseline wall orifice confguration 
decreased monotonically from 21 to 12 over the range constiered. The amount of column reduction 
depends upon the orifice configuration. As TOLC was increased, two minima occurred in the RMS error of 



the fitted wall signature: experience has 
shown that the second gives superior 
results. The right half of Figure 4.15 
summarises the RMS errors in the wall 
signature and interference curve tits. The 
column count at the optimum varies 
between ten and fourteen elements 
depending upon the orifice configuration. 
The optimised results show a very 
significant improvement in the signature 
fitting errors compared with the basic 
solution with the full 7 + 7 + 7 element 
count. 

The lower plot of Figure 4.16 shows U- 
component interference curves at the 
model centreline for the optimised cases. 
The corresponding RMS errors are given 
in Figure 4.15. Most of the interference 
solutions are bunched at a level 
approximately 0.0002 higher than the 
reference curve. This represents 
acceptable accuracy and the fact that the 
curves are tightly grouped is probably the 
more important. Case 6. with only roof 
orifices, gave the only unsatisfactory 
solution. Case 3 was in close agreement 
with the reference curve but this is 
considered coincidental. 

Figure 4.16 Interference for unoptimised and optimised 
cases (7 + 7 + 7 initial elements) 

The fact that the unoptimised Case 6 gave a low RMS error for the signature fit yet a high interference RMS 
error requires comment. If the influence matrix is square and is solved successfully, the signature fs RMS 
error will be near-zero (by definition) whether or not the reference singularity values are returned. If fact, the 
singularity strengths may oscillate and produce an unacceptable interference result. This is what happened 
for the unoptimised Case 6, for which the influence matrix is nearly square. Obtaining a good signature fti 
does not guarantee good interference values, particularly if the matrix is near-square. 

Figure 4.17 identifies the singularities retained for the various 7 + 7 + 7 solutions. Most of the vortex 
elements were usually retained and most of the doublet elements were usually rejected. The sources and 
doublets just ahead of the trailing edge were aiways retained, as were the sources near the apex of the 
delta. The consistent pattern of singularity locations in Figure 4.17 suggests that such a pattern might be 
used successfully without an optimiser for this confyluration and angle of attach. 

Increasing the column count first to 10 + 10 + 10 and then to 15 + 15 + 15 was beneficial. The eight cases 
were increasingly tightly grouped and the groups lay increasingly close to the reference curve. Evidently, 
with a larger choice of element locations afforded by the larger element counts. the optimiser can choose a 
better element arrangement. 
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Fig 4.17 Element disposition for optimised cases 
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It was shown above that there are two practical approaches to configuring the model elements. If “straight” 
solutions are to be used, with no column optimisation, then the element count must be kept low (5 + 5 + 5 in 
the case above) and the singularity solutions must be watched carefully for undue oscillation. In cases of 
doubt, the element count should be reduced. If an optimisation scheme is used the number of elements can 
be increased significantly (to 15 + 15 +15, say). An increase is not essential when using an optimiser but, 
as was shown above, a better fti to the reference solution is obtained. Whichever strategy is adopted, 1 is 
important to ensure that the elements are placed appropriately to capture the model’s loads. It is also 
beneficial to employ “over square” matrices with significantly more rows (orifices) than columns (model 
elements). This makes the RMS errors in fkting the wall signatures more meaningful. 

The baseline case, above, is a good orifice arrangement for the model configuration employed here. Having 
a lifi coefficient that is close to the maximum , it is one of the most important low speed cases and may also 
be among the most demanding. The first optimum for the 7 + 7 + 7 wnfyuratiin (not shown) was helpful in 
identifying marginal wall wnflgurations. Cases 2 and 3 showed that it is inadvisable to shorten the 
signatures below the Case 1 value. Cases 4 and 5 showed that orifice spacing should not be reduced. 
Omission of the orifices on the floor centreline (Case 7) gave surprisingly good results, which is helpful 
because of the vulnerability of instrumentation placed there, particularly in a large tunnel. The fact that Case 
6, with roof-only data, was the weakest (Figure 4.16) wmes as no surprise, since the program is being 
asked to distinguish between IR and blockage effects using a single signature. 



4-35 

4.2.6.10 Other Model Configurations 

Various pressure orifice geometry’s have been reviewed for an unyawed model at a single angle-of-attack 
and one height in the tunnel. The present study does not address the needs of other data points or other 
configurations. However, the baseline orifice configuration selected above is generally similar to a layout 
that has been used successfully in the Lockheed Low Speed Wind Tunnel for many years. In that tunnel, 
the wall orifices are above the centreline, to avoid windows, there are extra orifices opposite the model, and 
there are no floor orifices. 

Despite the above, there will be occasions when more assurance is required. In such cases, a study similar 
to the one described in the main body of this section should be carded out. This would involve a simple 
theoretical model, placed at the appropriate position and attiiude in the tunnel and carrying the correct 
loads. Wall signatures and reference interference curves should be calculated, as described above, and 
trial runs performed to find the best oriice and model element configurations. In facilities with an existing 
orifice system, its suitabilii can be assessed in a similar way and any additional orifices that are needed 
can be identified. 

4.2.6.11 Three-way Interactions 

Tunnel Interference is usually thought of in terms of the classical vortex, source and doublet theoretical 
representation of the model and its tunnel image system. Not a lot of attention has been paid, until recently, 
to the possibility that the model support system may also become involved in the interference process. Two 
examples of this surfaced during the tests upon which the above example is based. Both involved the sting 
support system and both represent ongoing work. The comments below should therefore be considered 
provisional. 

In the first example, a study of model absent (sting present) and model-present pressure signatures 
suggested that the sting immediately aft of the model was experiencing model-induced download. Extra 
model elements were therefore added to those shown here to represent the forward part of the sting. 

The second example involves a large floor-to-roof tower that supports the base of the sting and carries a 
carriage that moves vertically as the sting pitches, Being in the wake of the model, it was found that the 
loads on the tower, too, changed with the model present. Analyses based solely on model out datum 
corrections were inadequate, even though the tower was present for the datum measurements and the 
sting pitch setting was appropriate. In fact, the tower appeared to the flow as a vertical line source whose 
presence destabilised the pressure signature solutions. Adding a floor-to-roof line source, of unknown 
strength, improved the solutions. The lesson learned was that, if the model flow interferes with tunnel 
components and/or the model supports and the wall signatures are affected, then it is essential to represent 
those components in the influence matrix. 
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4.3 VENTILATED TEST SECTIONS 

Contemporary developments in wall correction methods for ventilated wall test sections have shown an 
increasing reliance on measurements of wall boundary data. An excellent work recognising these new 
trends in two-dimensional testing has been produced by the Group for Aeronautical Research and 
Technology in Europe (GARTEur [26]). 

Although it has been demonstrated both experimentally (Chen and Mears 1121. Jacocks [33]. Matyk and 
Kobayashi [45], and Crites and Rueger [15]) and computationally (Chan [l I]) that the cross-flow 
properties of ventilated walls are non-linear (even strongly) and dependent on the wall boundary layer 
development, the correction techniques based on idealised, linear boundary conditions have retained a 
great deal of appeal. The main reason is that the parameters in the empirical boundary conditions 
(porosity or slot parameters) can usually be tuned so as to provide correlation of key aerodynamic 
quantities for two or more different-scale calibration models in the same facility (Firmin and Cook [20]). 
An approach less sensitive to wall Reynolds number effects (Aulehla [6]), is to adjust the boundary 
condition parameters in such a way that the corrected data agree with those measured on the same 
model in a very large facility, assumed to be interference free (Binion and Lo [S], Starr [72]. and Sickles 
and Erickson [66]). The obtained values of these parameters may then used to correct the wind tunnel 
data of other models which are similar to the calibration models in shape and size. Besides simplicity of 
application, the most appealing aspect of this (classical) approach is that it generates consistent, smooth 
corrections: if the measured dependence of C, on a or Co on C, is smooth, so will be the corrected 
one. The corrections are predictive, which means that if we can estimate what the measured forces will 
be, we will also be in position to predict the corrections, in advance of a wind tunnel test, see Chapter 3. 

A practical advantage of the classical methods is also that there is no need to measure quantities other 
than those directly related to the test model. However, if the static pressures at the test section walls 
happen to be measured and compared with those predicted using the idealised boundary conditions, 
substantial differences are likely to be uncovered. One of the possibilities to reduce this inconsistency in 
wall interference evaluation is to locally modify the wall boundary conditions in such a way that they 
provide the best possible agreement with the measured wall data (Mokry et al. [47], Jones, D.J. [34], 
Vaucheret [77], and Piat [56]. The values of the parameters in the boundary conditions will of course 
differ from test to test. Using this approach, the modified boundary conditions, regardless of their 
possible physical significance, provide no more than a fit of the measured boundary data. From here on 
it is only a small step to realise (Capelier et al. [IO]) that the measured boundary data can directly be 
used as input. One is not limited to measuring data from the boundary. Pressure measurements on the 
model can be used similarly in conjunction with calibration of selected pressures for Mach and angle of 
attack effects and then employing closed wall and open wall settings. The closed wall settings in 
conjunction with a suitable means of estimating displacement thickness and any wall divergence effects 
then represent a boundary condition that is sufficiently known. Corrections to the closed wall case then 
form a reference to the open wall case. Variation of parameters in the boundary condition for the open 
wall case will permit finding the parameters that produce corrections which will best satisfy the corrected 
closed wall results in say, a least squares sense. These results can then be compared with those 
determined from matching measured wall data, or vice-versa for improved confidence. 

In spite of the fact that much of the empiricism of the classical correction methods is eliminated by the 
boundary measurement methods, it is the latter ones that are under steady scrutiny. Their general 
acceptance is hindered by the fact that making the required flow measurement in ventilated test sections 
can be a very complex task and evaluation of corrections from a larger boundary input requires a small- 



scale numerical code rather than a simple fonula or chart. In addition, the corrections can only be used 
in the “post-test assessment” mode. It is no longer possible to predict the corrections by specifying the 
aerodynamic forces: a wind tunnel experiment with actual wall pressure measurements needs to be 
performed first; and only then the corrections can be evaluated. Also, a larger experimental data input 
produces corrections which are “scattety” in comparison with the classical ones (Labrujere et al. [40]). 
This is not to say that global corrections to tunnel reference conditions can’t be determined in advance. 
Any prior post-test corrections are candidates for developing a library of corrections with a suitable 
empirical analysis. In many cases, global corrections are sufficient (e.g., Goldhammer and Steinle [28]) 

4.3.1 ONE-VARIABLE METHOD 

The method proposed by Capelier et al. [IO], and in a simpler form also by Blackwell 191. is the most 
popular technique for the post-test assessment of subsonic wall interference from boundary pressure 
measurements in wind tunnels with ventilated walls. It is assumed that the velocity disturbance potential 
near the walls is governed by the linear Prandtl-Glauert equation, 

(4.3.1) 

and that it may be split into the free air and wall interference parts, 

4 = &+@I. (4.32) 

The only difference from the classical wall interference approach is in replacing the idealised wall 
boundary condition by the “measured” one, namely by 

a -=u 
dX 

(4.3.3) 

where 

is the measured streamwise component of perturbation velocity. 

Unlike flow near the model, where stagnation and locally supersonic regions may exist, flow near the 
wails is significantly less perturbed so that linearisation may apply up to quite high subsonic Mach 
numbers. If the model is small relative to the test section and sufficiently remote from the walls, it is only 
when free stream Mach number is close to unity that portions of the walls become near critical or 
supercritical, making the assumptions of Eqs.(4.3.1)-(4.32) invalid. 

The way Eq.(4.3.2) is usually interpreted is that qF is a disturbance velocity potential that would be 
generated by the model if loaded by the same aerodynamic forces in free air, and 9, is the wall 
interference potential induced by the walls. In other words, I$, is an increment to OF that makes the total 
satisfy the (measured) wall boundary conditions. 

Provided that eF satisfies Eq.(4.3.1) near the walls, it can be represented there (and in the infinite 
exterior region) by internal singularities. In contrast, I$, can be represented by external singularities 
(images). An equally justifiable assumption is that r$, be non-singular, but discontinuous across the 



interface between the interior and exterior flow. This latter approach is used when evaluating #, by a 
panel method. Regardless of the representation of the exterior fictitious flow, the key premise of 
subsonic wall interference theory is that 4, is non-singular in the interior (including the volume occupied 
by the model), allowing to evaluate the velocity corrections to (uniform) wind tunnel stream as the 
components of grad$, Although an application of this concept is almost axiomatic in both the classical 
and the boundary measurement methods, one should remember that it is merely an engineering 
approximation, even for low-speed (incompressible) flows. 

The assumptions upon which the one-variable method is based are thus the following: the axial 
component of wall interference velocity 

u I = &I 
ax 

satisfies the differentiated Eq(4.3.1) that is 

p&+z%+T3 = 0 

(4.3.4) 

(4.36) 

in the entire test section interior (including the volume occupied by the model). 
Using Eq.(4.3.2), the boundary values of u, are evaluated on the measurement surface as 

u , = u-uF (4.3.6) 

Here uF is the axial component of disturbance velocity that would be induced at the location of the 
measurement surface by the same model in free air, at the same stream velocity, U, , and the same 

aerodynamic forces. Provided that the measurement surface is sufficiently remote from the model, we 
only need to know the far-field approximation of uF. 

Equations (4.35) and (4.3.6) specify an interior Dirichlet problem and there are a large number of 
methods available to solve it analytically or numerically. For simpler geometry’s, closed-form solutions 
are obtainable using integral transforms (Capelier et al. [lo]) or the Fourier method (Mokry and Ohman 
[49], Mokry [50], and Rizk and Smithmeyer [61]). A detailed description and coding of two of these 
techniques in Fortran are given by Gopinath [29]. 

The Dirichlet problem for Laplace’s equation, to which Eq(4.3.5) is reducible (by a co-ordinate 
transformation) is known to have a unique solution inside a region, provided that the boundary values are 
specified everywhere on its bounding surface. This guarantees that there is only one solution to u, for 
the given prescribed values of u, on the boundary. As we shall see below, the same cannot be said of 
the interference velocity components Y, and w,, evaluated from the same boundary values of u,. 

A natural approach (e.g. Stakgold [71]) to solving the Dirichlet problem for Laplace’s equation is to 
represent u, by the double layer potential : 

(4.3.7) 

where f is the doublet density and r is the distance between the fixed observation point x,,,y,,z, 
(where u, is being evaluated) and point x,y,z, which runs over the surface S in the course of 
integration. The derivative a/ an is taken in the direction of the inward normal, that is pointing into the 
test section interior. 



If the observation point is on surface S, the integrand becomes singular, because r appearing in the 
denominator will be zero when the running point reaches the observation point. Nevertheless integral 
(4.3.7) exists; but, because of its singular nature, its value depends on which side of the integration 
surface the observation point lies. In other words, u, is discontinuous across S. Taking the limit as the 
observation point becomes a point on the inner (flowfield) side of surface S, we obtain 

(4.3.8) 

where a small circular neighbourhood of the observation point (where r = 0) is considered removed 
from the surface integration; its contribution has already been accounted for by the isolated term f / 2. 

With respect to the unknown density f. Eq.(4.3.5) can be interpreted as a Fredholm integral equation of 

the second kind. The solution can be obtained numerically by dividing S into panels of (piecewise) 
constant density f, applying Eq(4.3.5) at panel centroids and solving the resulting system of linear 
algebraic equations (Mokry et al. [52]). If the walls are straight, the matrix is easily assembled using the 
contribution of a rectangular panel of unit doublet density, elaborated in the Appendix. The isolated term 
S / 2 in Eq(4.3.5) provides the diagonal element, or contribution of the panel to its own centroid. 

The major source of inaccuracy, which is common to all wall interference methods based on boundary 
measurements, is incompleteness or sparseness of the experimental pressure data. The boundary 
values of u, have to be interpolated or extrapolated over a complete boundary (finite or infinite), in order 
to make the Dirichlet problem fully defined. More specifically, the panel method will require the 
knowledge of u, at all panel centroids, as shown schematically in Figure 4.15. The crosses indicate the 

measurement points and the solid and open circles are the panel centroids on measurement and non- 
measurement surfaces respectively. A variant of the panel method which does not require extensive 
pressure measurements or interpolation has been reported by Ulbrich and Steinle [75]. [76] for full-span 
and half-span models with an image plate. The method employs precalculated influence coefficients for 
both wall panels and singularities used to represent the model at a few control points on the tunnel 
boundary. Known strengths of 
singularities from measured force and 
moment data and assumed distribution 
of loading are taken into account in 
determining the strength of the 
remaining singularities (equivalent to two 
unknowns) by satisfying the measured 
pressures in a least squares sense. The 
method is designed to compute global 
blockage and angle-of-attack corrections 
in near real-time. In effect, it combines 
the features of a direct method and a 
one-variable method. The application 
reported is for a solid wall tunnel. 
However, the influence method is more 
general and can be applied to either a 
porous or a slotted wall, providing that a 
reliable measurement of pressure at the 
boundary is obtained. 

m*.mumnsnt point8 
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a) finite SUAce b) infinite surface 

Figure 4.10 Illustrating measurement and input 
of boundan data 



The simplest way to tell how well a proposed interpolation scheme works is to test it on a theoretical 
example: generate a, by external singularities or images (Holst [32]) and check how faithfully the 
method reproduces u, inside the test section from the known boundary values at the measurement 
points. 

By nature of the solutions to elliptic equations, such as Laplace’s or Prandtl-Glauert’s, the evaluation of 
subsonic wall interference corrections from the boundary data is a smoothing operation. Unless the 
corrections are required to be known in the vicinity of the walls, pre-smoothing of the boundary data is 
unnecessary. Elimination of grossly erroneous boundary input points is an entirely different matter: 
although an individual disturbance will smooth out and will not likely be detectable as a localised 
perturbation at the model, it will influence the overall level of calculated wall interference. Another 
characteristic of linear subsonic wall interference, following from the so-called “max-min” property, is that 
the corrections at the tested model can neither be greater nor smaller than their respective maxima or 
minima attained at the walls 

Compensation for errors of the reference velocity or pressure is another important feature of the method. 
An uninitiated experimenter may find it quite amazing that if we change the reference pressure on which 
the stream Mach number A4 is based slightly, then recalculate the wall C,s and evaluate a new 
A M, the same corrected Mach number, M+ A M, is found. Actually, the principle is nearly self- 
evident: if the error of the (upstream) reference velocity U- is sum,, then the boundary perturbation 

velocities U -(U, +6U,) will be offset by -6U, from their true value U-U, However, since 
-NJ,= constant is also a solution of Eq.(4.3.5). the incremental correction, being of equal magnitude 
but opposite sign to the reference velocity error, restores U, as the true reference velocity. Naturally, 

the relationship between pressure and velocity requires linearisation, so that the principle is restricted to 
small errors (Paquet [56]). The principle may also be compromised if extrapolation of U towards the 
“false” upstream reference U, + 6 u_ is used (GARTEur [26]). 

Similarly, in ventilated test sections the autocorrection principle establishes the correspondence between 
the velocity based on plenum pressure, Um + 6 UrnI and the actual stream velocity U, In this context 

each wind tunnel test with wall pressure measurements in effect is also a calibration test. Empty wind 
tunnel calibration, as used in the classical wall interference approach, is a poor substitute since the 
model influences not only the wall pressure, but also the plenum pressure (Smith [67]. Aulehla [6]. and 
Everhart and Bobbitt [IS]). 

A related question often asked is: if small errors of the reference Mach number don’t matter is it also true 
that small errors of CL and CD don’t? Unfortunately they do. Accuracy of the one-variable method is 
greatly dependent on accuracy with which the free air potential qF can be predicted along the boundary 
surfaces (GARTEur [26]. Chevallier [13]). At low subsonic flow conditions, the far-field can be generated 
fairly well by internal singularities, determined from the model geometry and measured loading (Binion 
and Lo [8], Rizk and Smithmeyer [61]. Vaucheret [77] and Mokry [Sl]). This approach becomes less 
reliable at high incidence cases, where the extent of separated flow regions is generally unknown. Model 
representation by subsonic-flow singularities needs also to be modified near critical flow conditions, see 
Cole and Cook [14], Kemp [37] and Al-Saadi [2]. However, when the supersonic flow regions become 
extensive, perhaps even reaching the wind tunnel walls, the superposition principle, on which Eq.(4.3.6) 
is based, will no longer apply. The linear correction method may even then go on producing numbers; 
nevertheless, alternative wall correction methods which respect the true, non-linear nature of transonic 
flow should be applied (see Chapter 5.) 



In the one-variable method the transverse velocity components 

a 41 w, = - 
aZ 

(4.3.9) 

are obtained from U, by integrating the irrotational-flow conditions 

av, _ au1 --- 
ax ay 

and 

a~, _ au, --- 
ax aZ (4.3.10) 

The flow angle corrections are thus determined up to (unknown) integration constants. This is somewhat 
disappointing; however, the variations of wall induced angularity over the model can still be evaluated 
and a case made whether the H - 0.7010 AH - -0.0004 
wind tunnel test is correctable or a - 2.740’ Aa - -0.154’ 
not (Steinle and Stanewsky 6 TUBES CL - 0.5350 

1731). 9 215 PRNELS co - 0.0289 
o- 

In Figure 4.19 an example of 
corrections evaluated by the AM 

one-variable method is given for x 
the Canadair Challenger half- 2 
model tested in the IAR ; o 
Blowdown Wind Tunnel. The R 
boundary pressures were 
measured by 6 static pressure 
tubes (2 on top, 2 on bottom E 
and 2 on the sidewall) and the -75.0 -50.0 -25.0 0.0 as.0 50.0 . . . . 
division of the test section 

x ,bra, 
2 - 0.0 in 

boundary box in the X,Y,Z :- 
directions was 11 x5x 5, giving 
a total of 215 panels. The Aa - 
A M and ha correction 

contours were plotted in the 7 
t 

horizontal plane (wing 2 -5 
planform). There is no “; B 
ambiguity in the interpretation of 
the A M correction but, as we 
have indicated above, the : n- 
absolute level of the Aa -75.0 -so.0 -25.0 0.0 25.0 
correction is not known with x linl 

certainty. Figure 4.19 Wall corrections for a Canadair Challenger 
half model test in the IAR Blowdown Wind 
Tunnel, produced by the one-variable method 
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Values to the unknown angular constants can be assigned (as has been done in Figure 4.19) by 
assuming that flow enters the test section parallel to its axis. This is accomplished by imposing the 
conditions 

v,+v,=O and w,+w,=O (4.3.11) 

at an upstream axial point. If we instead imposed a condition that Y, and w, vanish there, we would in 
effect assume that far upstream flow angles are the same as they would be in free air. Simple theoretical 
analyses contradict the latter assumption by showing that under the confinement of a constant cross- 
section channel the flow angles upstream of the model decay much faster with the distance from the 
model than they would in free air. 

We can illustrate this on a simple example, which is of some relevance to testing of high-aspect ratio 
wings. Consider a two-dimensional vortex placed midway between two walls, as shown in Figure 4.20. 

The free-air potential of the vortex is -.-._ -c C.-.-.-. QF = zrctan~. 
2A x 

. . . . . . . . v, 

~~.~~~~I 

a) solid walls (x=0) 

b) porous walls (u*v=O) 

c) open jet walls (u=O) 

Ftgure4.20 Upwash velocity along the axis 
of a test section induced by a 
point vortex 

compare Eq. (2.12). The vortex induces along the x-axis 
the normal velocity 

V 
34, -Y -Y --= 

F- -= 
JZ 2nx 
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The normal velocity along the axis of a closed-wail wind 
tunnel, as obtained by the method of images 
(Theodorsen, 1931) is 

v = v,+v, = 

Evidently, the test section height h plays a key role here: 
if h + 00, then Y -+ vF. However, if h is finite, then 
according to the I’Hospital rule 

lim v = 0 , 
‘+-== ‘F 

which says that with increasing the upstream distance, v 
tends to zero much faster than vF. This is also well 
apparent in Figure 4.20a, where both velocities are plotted 
as functions of axial distance. 

The question what happens if a portion of the wall is 
ventilated is more difficult to answer since, as we have 
pointed out before, the ventilated wall boundary conditions 
are generally unknown. It seems that the principle still 
holds, at least for “passive” wind tunnel walls where no 



forced blowing or sucking is employed. In Figure 420b the same vF as before is compared with v 
calculated using an assumption that v = -u on the upper wall and v = u on the lower wall. This 
relationship is a special case of the ideal porous-wall boundary condition Y f Pu= 0 with porosity 
(permeabilll) parameter P = 1. The formula which was used to generate the axial values of v was 
again obtained using the method of images (Ebihara [17]). We see that porosity P> 0 makes 
convergence upstream of the vortex more rapid and downstream slow. If P + cc, corresponding to 
approaching the open jet condition u = 0, the convergence of v upstream of the vortex improves 
further, but downstream of the vortex the flow becomes permanently deflected, see Figure 4.20~. Based 
on these and similar observations, the upstream conditions described by Eqs.(4.3.11) appear to be quite 
acceptable. It is of course realised that these conditions may lead to serious errors if imposed too close 
to the model (Akai and Piomelli. 1984). A more rigorous approach (at least on paper) is to actually 
measure the flow angles at some point, preferably non-intrusively, 

As a point of interest, we may also mention that the 
complex-variable treatment of the 2D problem leads to 
the Schwarz problem (Smith [69]), consisting of 
determining an analytic function inside a domain from its 
defined real part on the boundary. Theory (e.g. Gakhov 
[24]) shows that the integration of the Cauchy-Riemann 
equations introduces an unknown imaginary constant 
that needs to be specified in order to make the solution 
unique. Translated into the language of aerodynamics: 
the flow angle constant is again unknown. 

Last but not least in order of importance are the 
methods of measuring the perturbation u-velocity 
along the test section boundary. Since the wall 
correction method is based on potential-flow theory, the 
measurement should not be made on the wall itself, but 
at a distance where the effect of the wall boundary layer 
on static pressure is negligible. The simplest way to 
obtain u is by measuring static pressure on a plate (rail) 
instrumented with pressure orifices, as illustrated in 
Figure 4.21a. The plate is mounted on the wall in the 
direction parallel to mainstream. For isentropic flow in 
the &z-plane it follows 

W pipe 
Figure 4.21 Schematic of devices with a 

single row of pressure orifices 

where C, is the measured pressure coefficient and U= (U-Um)/Um and w = W/U, are the 

components of the disturbance velocity in the x and z directions. the first-order approximation, valid 
throughout the whole subsonic-supersonic regime, is : 

1 
u=--cp 

2 
(4.3.12) 
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If there is a lateral component of velocity (in the y-direction), the plate interacts with the flow and the 

measured pressure may no longer represent the local stream static pressure. For three-dimensional 
flows, a more suitable device is a pipe with a row of pressure orifices facing the test section interior, 
Figure 4.21b. The pipe also interacts with the ambient flow, but in a more predictable manner. Using 
slender body theory, Nenni et al. (1982) derived for a pressure coefficient on a circular cross-section pipe 

C, =-2u-p2u2+2d 

z 

w 

:-\ 

Y v 0 

P 

d 

Figure 4.22 : Cross-flow 
plane of a circular pipe 

where u, v,w are the components of disturbance velocity, d is the pipe 
diameter, and w is the azimuthal angle of the pressure oriRce P, as 
defined in Figure 4.22. For the orifices shown in Figure 4.21b the 
corresponding azimuthal angle is w = 3n/ 2. However, regardless of the 
azimuthal location of the pressure orifices, the transverse components of 
velocity v and w need to be known, in order to retrieve u from 
Eq.(4.3.13). This may be possible if the wall interference evaluation is 
arranged in an iterative fashion. The contributions of v and w and their 
derivatives can of course be eliminated by using several rows of pressure 
orifices (Nenni et al. [53]). A more serious objection to using Eq.(4.3.13) is 
that it has been derived for inviscid flow and would not apply should the 
pipe be immersed, partly or totally, in the wall boundary layer. In contrast, 

@I Turn tw”“UIl a, r&II IUIUI”, 

Figure 4.23 IAR Static pressure devices 

the linear approximation, as described by 
Eq.(4.3.12), may hold even then. Assuming that 
C, is constant across the boundary layer in the 

direction normal to the wall, then the evaluated 
u represents the perturbation velocity on the 
outer edge of the boundary layer. Provided that 
the boundary displacement is small compared to 
the dimensions of the test section, the 
displacement may be neglected in routine wall 
interference computations. 

A practical implementation of these static 
pressure devices is illustrated in Figure 4.23. 
The “rail” was the initial design used in early lwo- 
dimensional measurements in the High Speed 
Wind Tunnel in Ottawa (Peake et al. [57]). The 
impetus for its development came from an idea 
to supply the CFD method by Magnus and 
Yoshihara [44] by a pressure boundary condition, 
in an attempt to simulate computationally flow 
past an airfoil under the constraint of wind tunnel 
walls. Similar rails were subsequently built in a 
number of other facilities (Blackwell (91. Sawada 
[63], and Smith [SS]) and used even for half- 
model (Pounds and Walker [59] and Hinson and 
Burdges [31], Goldhammer and Steinle [28]) and 



full-model testing (Mokry and Galway [48]). Later, the rails were superseded by pipes (tubes), as they 
were easier to manufacture and also more suitable for three-dimensional testing. As discussed by 
Galway [25], the number and location of these pressure pipes depend upon the test section and model 
configuration, so that adequate definition of the pressure at the boundaty surface through interpolation 
and extrapolation is possible. In the examples shown in Figure 4.24, a slightly irregular placement of the 
pipes was enforced by wall structural supports on the plenum side of the test section. 

For slotted walls, where the mean-flow boundary conditions are established at greater distances from the 
walls, installation of pressure tubes or rails becomes less practical, although still feasible (Smith 1691). The 
inviscid slot flow analyses suggest that the pressure orifices need to located at least one slot spacing 
distance from the wall, in order not to be adversely affected by the rapidly varying flow in the slot (Smith 
[SS], Kemp [36] and Steinle [73]). This hypothesis was verified experimentally by Everhart and Bobbitt [18]. 
For longitudinally slotted walls it is oflen more convenient to measure the boundary pressures using orifices 
installed directly in the slats, usually along or close to their centrelines (Sewall [64]). In determining the 

w PERFORATED WALL l STAllC PRE88URETUBE 
N- NothWsll s-saunlwan c - celllrg F-Floor 
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HALF-MODEL 3-D PLATE MOUNT 

Figure 4.24 Lo&on of sMc pressure tubes (pipes) for d&rent modes of testing 



streamwise component of perturbation velocity, U, it is necessary, in principle, to apply a correction to the 
value obtained from Eq(4.3.12) when slat pressure coefficient is used as input. Based on the inviscid 
slot flow analysis by Berndt [7]. Freestone et al. [22] deduced that for typical slotted wall geometry’s the 
error of the mean value of u would not exceed 0.004 (0.4% of freestream velocity). This error estimate 
is consistent with earlier tindings of Smith [S9] and Firmin and Cook [20]. implying that the pressure 
measurement made over the centre of the slat may be used as a reasonable approximate to the local 
mean static pressure at subsonic speeds. Unfortunately, there is also contradicting experimental 
evidence (GARTEur [26], and Everhart and Bobbitt [18]) that, depending on slot geometry and orifice 
locations, the differences between the slat pressures and mean static pressures can be more substantial. 
The conclusion to be drawn from this discussion is that, unless supported by supplementary flow 
measurements, pressure measured on the slats should not be presumed equal to the mean static 
pressure at the wall. A positive aspect of slat pressure measurement is that it is non-intrusive, in contrast 
to that provided by a static pressure pipe. Unfortunately, the effects of viscosity and vorticity in the 
immediate vicinity of the slotted wall generate very complex cross-flow patterns (Wu et al. [79]) that make 
a rigorous interpretation of the measured pressure data difficult. 

Concerning the perforated walls, the measurement of pressure by orifices installed directly in the walls is 
even more problematic. For closely-spaced perforation holes the measured pressure suffers from a 
great deal of scatter even when the pressure orifices are positioned exactly at the same locations with 
respect to the surrounding perforation holes (Ohman and Brown [54]). This poses a problem especially 
for three-dimensional testing, where the pressure disturbances generated by the model are generally 
weak and hidden in the scatter generated by the holes. Since the scatter is spatially fixed, a partial 
remedy is in calculating the wall interference correction as an incremental one, using the differences of 
boundary pressures measured with model in and model out. Another possibility is to plug the perforation 
holes surrounding the pressure orifice, but this of course changes the local permeability of the wall. A 
variant of the perforated wall which avoids this problem is a porous-slotted wall comprised of a sufficient 
number of lines of porosity as to behave closely as a uniform porous wall such as the NASA Ames 1 l-by 
1 l-Foot Transonic Tunnel. In this case, static pressure measurements can be made without affecting 
local porosity. 

4.3.2 TWO-VARIABLE METHOD 

The first successful evaluation of the 2-D interference flow field from two flow variables measured at the 
control surface was reported by Lo 1421. Both numerical demonstration and experimental verification are 
given in the same paper. The method uses the Fourier transform solution (Lo and Kraft [43]) for 
linearised subsonic flow past a nonlifiing airfoil. A more straightforward Cauchy’s integral approach to the 
two-variable method was subsequently described by Kraft and Dahm [38], Smith [69], and Amecke [3]. 
The general formulation of the method for 3-D flows, based on Green’s identity, is due to Ashill and 
Weeks [4]; for more discussion see also Ashill and Keating 151. A Fourier transform solution for the 
blockage interference, obtained as a function of two velocity components measured at a circular-cylinder 
surface, has recently been given by Qian and Lo [60]. 

The two-variable method for the ventilated-wall test sections is essentially the same as for the closed-wall 
test section described in Chapter 4.1.4 and 4.2.5.2. The only difference lies in the fact that the normal 
velocity at the solid wall is known, whereas for the ventilated walls it needs to be measured. 



The wall interference potential obtained from Eq.(4.14) is 

@, = -1 
U 

a4J 1 a 1 & 
4x an r 4-l] dn r 

s 

(4.3.14) 

where 4, is to be evaluated at an interior point P(x,,y,,z,) and r is a distance between this point 
and point Q(x,y,z) that identifies the location of the surface element dS. The “observation” point P 
is held fixed, whereas Q is a “running” or “dummy” point in the integration’s on the right-hand side of 

Eq.(4.3.14). As in Chapter 4.1, the normal derivatives are taken inward towards the working section. 
Physically, Eq.(4.3.14) can be interpreted as a surface distribution of sources of density r&p/ dn and a 
surface distribution of doublets of density (-4). 

The two-dimensional analogue of Eq.(4.3.14) is (Labrujere et al., 1986) 

(4.3.15) 

where ds is the element of arc length of the boundary contour C In two dimensions, 0 can be 
differentiated in the direction tangent to the contour, so that the specification of $I is equivalent to 
specifying the tangential component of disturbance velocity, a@/ 3s An alternative Cauchy-integral 

formulation of the two-variable method (Smith [SS]) uses the complex disturbance velocity u - iv. 

The number of velocity components needed to be measured in order to implement the two-variable 
method in three dimensions is again as the name of the method suggests: two. From $ defined on the 
bounding surface two components of tangential velocity can be derived; yet, if one of them is measured, 
the other is determined by integrating the irrotational-flow conditions. The second velocity component 
that needs to be measured is the normal one, &#I/ an. 

As discussed in Chapter 4.2, the two-variable method is most easily applied to solid wall test sections, 
where the normal velocity component, &$ / an, can be determined from the local slope of the boundary- 

layer displaced wall surface. If the test section walls are straight and the boundary layer growth is 
neglected, @/an = 0. In that case the source distribution drops out of Eq.(4.3.14) and the 
implementation of the method is particularly simple. 

Before discussing the techniques for measuring &#r/ an in ventilated-wall wind tunnels, we shall set up 
a simple numerical model to illustrate how the method is supposed to work when both Q and &#r/ an 
participate. Integral (4.3.14) and its derivatives will be approximated as sums of contributions of 
constant-density panels, into which the boundary surface S is divided. The closed-form solutions for 
the contributions of a rectangular, unit-density source or doublet panel are given in the Appendix. What 
remains to be done is to change the co-ordinates from the local (panel) co-ordinate system to the global 
(test section) co-ordinate system, multiply the contributions by the local source and doublet densities, and 
then sum up all panel contributions. There is no system of equations as such to be solved in the two- 
variable method. 

In the example shown in Figure 4.25a the test section is a simple right-angled box. The panels cover the 
top, bottom and side walls, and also the upstream and downstream faces. The plane y = 0 is assumed 
to be a plane of symmetry (a solid reflection plate in the half-model test arrangement). The division of 



a) Paneling of the test m&on; 
singular points and observation plane 

b) u-velocities inducad by a doublet at point 1 

c) u-velocities induced by a doublet at point F 

Figure 4.25 Processing of external and internal sin- 
gularities by the two-variable method 

the box in the x,y,z directions is 11 x5x 5, 
making a total of 215 panels. Symmetry is built 
into the scheme by supplementing the 
contribution of each panel by its reflected 
counterpart. 

Figure 4.2513 shows the effect of a point doublet 
in the x-direction, located at point I outside 
the box. Superimposed with the uniform 
stream, the singularity is known to model 
incompressible flow past a sphere. The broken 
lines are the u-velocity contours induced by 
the doublet at the interior plane z = 0. The 
solid lines are the contours produced by the 
two-variable method from the values of $ and 
J#/Jn generated by the doublet at the panel 
centroids. Apart from small numerical 
inaccuracies, the method is seen to have 
produced the effect of an external singularity 
9=9,. 

Figure 4.2% shows the effect of the same 
doublet placed the same distance from the wall 
at point F inside the box. The broken lines 
are still present, except that they are more 
dense because the doublet is now much closer 
to the observation plane than before. However, 
the solid lines have all disappeared. (Actually, 
there would still be numerical error contours: 
but the selected contour step was too large to 
capture them.) The two-variable method has 
thus eliminated the effect of an internal 
singularity, 4 = 4,. 

A question arises whether the same also 
applies to potential-flow singularities other than 
doublets. The answer, which follows from 
Green’s (third) identity, is affirmative. If we 
substitute in the integrand of Eq(4.3.14) 

$ = 4,. then the value of the integral will again be I$, because Q, is non-singular in the test section 
interior. However, if we set $= OF , then the integral vanishes since eF is non-singular in the test 
section exterior. Accordingly, if the model is represented by internal singularities and the wind tunnel 
walls by the external singulariiies. the method will automatically account only for the external ones. This 
is exactly what is done when evaluating wall interference using the method of images: the summation is 
carried out over the whole infinite array of singularities and then the internal ones are subtracted. An 
interesting point is that the two-variable method does it by processing the measured boundary values of 
r#~ and J$lJn , regardless of whether or not the internal and external singularities can be reconstructed 

from them. 



It is now also apparent that the above conclusions 
could have been obtained by examining Eq.(4.3.14) in 
the first place without resorting to any kind of 
numerical experimentation. However, the simple 
numerical box just described is in fact a prototype of a 
wall interference code that would, apart from minor 
geometrical modification, be used to correct 
measurements in an actual test section of a wind 
tunnel. The easiest way to check the code for errors 
and inaccuracies is by processing some well-defined 
singularities, exactly the same way as has been 
demonstrated. By further modifying this numerical 
experiment one can also determine how many panels 
are needed to represent the walls adequately, how 
many measurement points are required and where 
they should preferably be located, how the 
interpolations should be set up, whether the integrals 
over the upstream and downstream ends could 
possibly be dropped (Labrujere et al. [41]), and so on. 
As we have already mentioned, the method is simple 
in principle, but there are many possrbrlrtres of how it 
could be implemented, each of them giving somewhat 
different answers. 

The simplest device for measuring two components of 
velocity is a plate with two rows of pressure orifices, 
aligned with the direction of mainstream, as shown 
schematically in Figure 4.26a. Assuming that the 

a) plate 

Figure 4.26 Schematic of devices with hnro 
rows of pressure orifices 

plate is in the x, y-plane where the x-axis is parallel with the orifice rows, we obtain (for small pressure 

perturbations) midway between the orifices 

u = $u, +u2) = -$(cp, +cp2) 

and, from the irrotational-flow condition, 

JW au u2 -UI _ CP, -c,2 -=-=-_ 

ax iiZ d 2d ’ 

where d is the distance of the orifice rows. 

(4.3.16) 

(4.3.17) 

A better device, especially for three-dimensional testing, is the double-orifice tube, also known as the 
Calspan pipe (Nenni et al. [53], Smith [70]), see Figure 426b. The pipe is equipped with two 
diametrically opposing rows of orifices, one facing the test section interior and the other one the wall. 
Substituting W= Z/ 2 and W= 3x/ 2 in Eq.(4.3.13), we obtain respectively 

JW 
C,, = -2u-p2u2 i2d--4v2 

ax 
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ilW 
C,, = -2u - j3’u’ - 2d - - 4v2 

ax 

Adding and subtracting these expressions and retaining only the highest-order terms, we find that u is 
again approximated by Eq.(4.3.16); but, for the streamwise derivative of the normal velocity it follows: 

JW CP, - cm 

ax 4d 
(4.3.18) 

where d is the tube diameter. Comparing Eqs(4.3.17) and (4.3.18) we see that for the same &lax 
and distances, d, of the orifices, the Calspan pipe doubles the pressure difference which otherwise 
would be measured by the dual-orifice plate. This amplification is especially welcome when the 
measured pressure differences are of the same magnitude as the discrete perturbations emanating at 
the ventilated walls (Smith [70]), or in low speed wind tunnels, where the pressure differences are weak 
in general (Fernkrans [lg]). 

In either case, the w-velocity has to be obtained from its derivative by integration, and there re-appears 
again the familiar problem of determination of an unknown integration constant. Nenni et al. (1982) 
describe the steps to be taken as follows: assuming that w is known at a reference station xR , then 
aw /ax can be integrated to give 

(4.3.19) 

If w can be measured at a sriitable reference point, the pressure distributions along the top and bottom 
of the pipe can also be used to determine w , in addition to U. This supplementary measurement of 
w(xR) has to be made by an alternative measuring technique, or else xR has to be chosen where 
w(x,) is expected to be zero. As the major shortcomings of measuring flow direction by the Calspan 

pipe identified were: weak pressure differences and reliance on slender-body theory, which ignores the 
possible effects of viscosity and flow non-uniformity in the vicinity of the walls (Smith [70]). 

Because half the (diametrically opposing) orifices face the wall, the pipe has to be positioned some 
distance from the wall. A typical example is in Figure 4.27, showing an installation of a Calspan pipe in 
the NLR Pilot Tunnel (GARTEur [26]). An interesting concept for three-dimensional testing is the AEDC 
rotating pipe system (Parker and Erickson [55] and Sickles [SS]), shown in Figure 4.28. The system 
consists of two pipes and a mechanism that can rotate them about the centreline of the perforated-wall 
test section (AEDC Tunnel 4T). The pipes sweep out a cylindrical measurement surface, approximately 
one inch from the wall at the closest point. Each 5/E-inch diameter pipe is equipped with 40 pairs of 
diametrically opposing orifices, distributed more densely where large pressure gradients are expected. 
The pressure and the difference in the pressures for each pair are used to detenine the components of 
velocity in the streamwise and radial directions. The integration to determine the longitudinal distribution 
of the radial component of velocity is perfoned over two intervals: from upstream to peak suction 
pressure, and (backward) from downstream to peak suction pressure. The integration constants for the 
two regions are measured by upstream and downstream flow angle probes, also visible in Figure 4.28. A 
more detailed discussion of the apparatus and sample measurements can be found in Kraft et al. [39]. 

For slotted walls, it has also been suggested to measure or establish the mean flow boundary conditions 
from velocities measured by probes traversed inside the slots (Freestone and Mohan [23]). Provided that 
the streamwise variations of the mean normal velocity are relatively slow, as most experiments confirm, a 
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probe traverse could be substituted by a number of fixed flow angle probes (Mohan and Freestone, [46]), 
making the technique suitable even for production wind-tunnel testing. 

Figure 4.27 Calspan pipe and its mounting in the NLR Pilot Tunnel 

Figure 4.28 AEDC Two-Variable Measuring System 
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Figure 4.29 NASA/United Sensor flow angle probe 

Outer tubes are inclined in 

Central tube is gmund square 

Only outer sudaca of tubas shown 

Figure 4.30 Sketch of in-line probe to measure flow angle in 
presence of shear (Courtesy of M.M. Freestone) 

A typical three-tube flow angle 
probe, used by Everhart and 
Bobbitt [IE] for slot flow 
measurements in the NASA 
Langley 6x 19 Inch Transonic 
Tunnel, is shown schematically 
in Figure 4.29. In an effort to 
eliminate the error when 
crossing the shear layer, 
Freestone has recently 
developed a flow angle probe, 
whose pressure-measuring 
tubes are positioned parallel to 
the wall, see Figure 4.30. 

The velocity component normal to the wall normal is quite substantial inside the slot and all indications 
are that it can be measured very accurately. A difficulty arises when one wishes to establish 
correspondence between the velocity inside the slot and the mean or “homogeneous” normal velocity at 
the wall that enters Eq.(4.3.14) or (4.3.15). In theory, the latter can be evaluated by laterally averaging 
the mass flux using the slender-body theory (Everhart and Bobbitt [IS]). Unfortunately, viscous effects in 
the slots do not just manifest themselves by narrowing the effective slot width (vena contracta). 
Experimental data show that along the slot segments where air is flowing into the test section, rather than 
out of it, the crossflow is causing a rapid thickening of the wall boundary layer. This effective 
amplification of the mean normal velocity over the inflow regions of the walls was found to be of up to 
about 4.0 (Freestone and Mohan [23]). Quantitative observations of similar kind, both in slotted and 
perforated walls, have also been made by Vidal et al. [78]. Chan [I I], Firmin and Cook [20]. and Crites 
and Rueger 1151. Freestone (private communication, 1995) suggests: “It is possible in principle to make 
a series of measurements in the test section of interest, specially designed to provide the amplification 
factor in sufficient detail for subsequent application. Whether or not it would be feasible or practical 
undertaking is not so clear. Much may depend on first demonstrating that it is not necessary to know the 
streamwise variations in boundary layer thickness very precisely in order to achieve the desired accuracy 
of wall interference. Perhaps it would be adequate to know the overall increase in thickness over the 
length of the inflow region, but even this, in a three-dimensional test, is no small task.” Another possibility 



is keeping the amplification factor close to unity by enforcing outflow above and below the model and 
returning the drawn air to the wind-tunnel circuit some distance downstream (Mohan and Freestone [46]). 
Of course, the corresponding pressure gradient can make the measured model data difficult to correct to 
free stream conditions. 

In spite of the current ditTiculties in measuring the normal component of velocity at the wind tunnel 
boundary, the uncertainty of the model representation inherent in the one-variable method is a far more 
serious problem, especially in transonic or separated flow regimes. As spelled out by Rubbert [SZ] and 
the GARTEur Report [26], attention will undoubtedly turn more and more to the two-variable method, 
which is capable of producing corrections from two components of boundary velocity, without knowing 
anything about the flow in the neighbourhood of the model. Since the relative accuracy or dependability 
of the two-variable method is a function of measurement accuracy’s inherent in producing the two 
components of velocity near the walls, it is predominantly in improving the measurement techniques 
where progress can be made. 

4.3.3 ALTERNATIVE METHODS 

There are other methods of utilising boundary measurements in the evaluation of subsonic wall 
interference besides those discussed in this Chapter, but most of them are not as direct as those 
described above. An attractive approach, at least from the production-testing viewpoint, is to use the 
two-variable method with the measurement of one variable. This is of course possible only if the wall 
boundary condition is known, so that the unknown variable (normal velocity) can be derived from the 
measured one (pressure). An example of this approach is discussed by Rueger and Crites, et. al. 
(1994.) In this approach the uncertainty of model representation, inherent in the one-variable method, is 
traded for the uncertainty in the wall boundary condition. The boundary condition at a given wall location 
can be established, for example, by applying the one-variable method in instances when the model far 
field can be well predicted (subcritical, low incidence flow). In essence, the evaluation of the transverse 
velocity components Y, and w, consists of streamwise integrating Eqs(4.3.10) where the derivatives 
of u, have been obtained by the one-variable method. The subsequent two-variable evaluation is used 

in flow situations where the far-field of the model cannot be predicted as reliably (high incidence or 
supercritical flow). 

APPENDIX: RECTANGULAR WALL PANEL 

Considered is a rectangular panel 

R = {(x,y,z): x, Ix I x2, y, I y s y,, 2 = 0) , 

whose normal is oriented along the positive z-axis and whose source or doublet density is unity. The 
distance of the observation point xO,y,,z, from the panel point x,y,z is 

Y = ~(x,-x)*+(yo-y)*+(zo-z)2 

Evaluation of the potential and its derivatives induced by the panel at the observation point can be quite 
tedious (Hess and Smith [30]. Holst [32], Katz and Plotkin [35]) but the results can be manipulated into 
neat, Biot-Savart-type formulae. 



For the source panel, we obtain 
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The normal velocity induced by a source panel has a jump discontinuity across the panel: if 
x,<x,<x,,y,<y,<y, and z,+Of, 
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The tangential velocities and the potential itself are continuous across the panel 

For the doublet panel, similarly, 
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f3z, r 

R R 

a a i 
- dz ; dS = u; - u,“, + u,“, - u; 
a% J 0 R 



4-57 

- b .! ds = ,,,C,,,d+,,,d a 
I 0 

d 
JZO dz r II 21 22 - WI2 

R 

Id; = Z&-Y,) 
[(x,-xi)’ +z,‘]r, 

v; = z,(x, - xi > 
[(YO-Yj)2 +ZoZ15j 

txO - xi)(YO - Yj) ( 
Ml; = - 

Z$ 

(xo-x,)2(yo-yi)2+z~I;f ';I'; L I 

The potential of the doublet panel has a jump discontinuity across the panel: if 
x,<xO<xz, y,<y,<y, and z,+Ok, 

a 1 I 0 %;dS +*2x 
R 

The velocity components are continuous 
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