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9. WALL CORRECTION METHODS FOR DYNAMIC TESTS 

9.1 INTRODUCTION 

Wind tunnel wall interference in unsteady flow has not been as thoroughly investigated as it has been in 
steady flow. In the case of unsteady flow, the problem of wind tunnel wall interference is complicated 
even more by additional parameters describing the time dependent variation of the unsteady flow field. 
Moreover, other sources of interference such as tunnel wall reflections in the form of acoustic waves, 
and, as a consequence, wind tunnel resonance, play an important role as well. 

Most investigations on unsteady wind tunnel wall interference known so far have concentrated on 
(harmonically) oscillating lifting systems and bodies undergoing small amplitudes of motion in closed and 
ventilated wind tunnel test sections. For the case of such motion-induced unsteady flow, a general outline 
of the problem from a theoretical point of view is given in Ref. [29]. [3] reports on investigations in a small 
wind tunnel test section with slotted walls and with closed walls. In cases with no different steady 
pressure distribution between the tests with the different walls, the unsteady results were in a good 
agreement as well , while for higher transonic Mach numbers both the steady and unsteady results were 
affected significantly by difference in tunnel walls. Experimental results from systematic wind tunnel 
interference measurements are reported in [29]. Lambourne (211 reports results of oscillatory wing tests 
in 4 European wind tunnels. Unsteady interference effects in the smaller tunnels (DRA Bedford, DLR 
Gottingen) were bigger and led to a suppression of unsteady pressure peaks (due to shock motions) that 
were clearly present in the larger tunnels (ONERA S2 Modane, NLR HST Amsterdam). The ratios of 
model span-to-tunnel width were 0.45 and 0.25 for the smaller and bigger tunnels, respectively (see 
Figure 1). Nevertheless, most unsteady aerodynamic tests are not even performed in tunnels with 
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Figure 1 : Results of unsteady measurements in different wind tunnels 
(AGARD Tests on the NORA Wing). 
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stationary adaptation. Unsteady tunnel interferences are neglected, only the vicinity of tunnel resonance 
is avoided, and the largest ratio of tunnel-to-model size is chosen. But such results become questionable, 
especially when they are expected to serve for the validation of CFD codes. Meanwhile, these have 
reached a maturity that demands from validation experiments accuracies of a few percent for unsteady 
lift and moment coefficients. 

Of course, tunnel interference may also affect flutter tests because the critical flutter index (speed or 
tunnel pressure) is strongly governed by unsteady motion-induced airtoads. Lu [25] reports flutter tests 
with 3 flutter models of a Delta wing of different size but having structural dynamical similarity. Tests in 
the same wind tunnel have shown significant influence of the model-to-tunnel size ratio on the flutter 
boundary. 

Additional complexity in wind tunnel wall interference arises for rotary balance tests and for oscillatory 
tests with large support systems. Model support structures have to be massive in order to provide the 
necessary stiffness while forcing the desired model motion. Large support structures lead to additional 
strong interferences between the model, support and tunnel walls. While interference between model and 
tunnel walls is characterised by one lag time for the convection of unsteady waves between the model 
and tunnel walls, model-support-wall interference (often including separated flow regions) will involve 
more characteristic time lags. While there is hardly a chance to correct these complicated interference 
effects, unsteady tunnel interferences for oscillatory 2D and 3D clean wing model tests in sub- and 
transonic flows have been investigated, modelled and also corrected for during the last years. 

With the recent developments of adaptive wind tunnel walls, by which steady wall effects are eliminated 
or significantly reduced by actively controlling flow near the walls, new possibilities for the correction of 
wind tunnel wall interference have also emerged for unsteady flow. In the following, the prospects and 
concepts of experimental and analytical techniques for the correction of unsteady wind tunnel wall 
effects, appearing with aerodynamic and aeroelastic measurements of oscillating lifting systems and 
bodies, are presented. First, some fundamental relations of motion-induced unsteady flow fields, basic 
for a physical understanding and analytical treatment of unsteady flow phenomena, are explained. Then 
the principal causes of unsteady wind tunnel interference are described and the practicability of adaptive 
wind tunnel walls to eliminate unsteady aerodynamic wall interference effects in unsteady aerodynamic 
and aeroelastic wind tunnel model measurements is discussed. Finally, prospective wind tunnel wall 
corrections for motion-induced unsteady flow, applying steady flow wall adaptation and CFD techniques, 
are outlined. 
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9.2 PHYSICAL BASICS OF UNSTEADY WIND TUNNEL INTERFERENCE 

9.2.1 CHARACTERISTICS OF MOTION-INDUCED UNSTEADY FLOW FIELDS 

The differential equation which governs the inviscid unsteady flow due to small oscillatory perturbations 
imposed on a steady, uniform flow field is a wave equation. In reference to rectangular w-ordinates, see 
Figure 2, this equation for two-dimensional unsteady compressible flow, generated by an oscillating 
airfoil, reads as (see [23]): 

Here C#J = Q (x,r,t) is the time-dependent perturbation velocity potential, u, the velocity of the 

undisturbed flow, M, the corresponding Mach number and a, the velocity of sound. When the steady 
free stream Mach number is close to unity, the governing equation for 20 transonic flow in its simplest 
form reads as: 

(9.2) 

where y denotes the ratio of specific 

heats. Eq. (9.2) is the time-linearised 
transonic small perturbation (TSP) equa- 
tion, where we recognise a non-linear 
term associated with the steady flow 
potential r#r’ independent of time t. The 
corresponding 3D equation includes an 
additional term 4,. In the case of 

harmonic motion of the airfoil, 

0 (x, Y, t) = 4 (x, Y) P (9.3) 

with the w-ordinate transformations 
(L = reference length) 

“;,y’~~.r+,p =Jiq (9.4) 

and upon introduction of a reduced 
velocity potential cp, Eq. (9.1) can be 
transformed into the well-known Helm- 
holtz wave equation: 

I$ = rp 3cps + VP, + a?rp = 0 (9.5) 

A fundamental solution is: 

Q - fp(ar) 
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Figure 2 : Oscillating airfoil in a wind tunnel 

(9.6) 

with H denoting the Hankel function of a second kind and order zero, satisfying the Sommerfeld radiation 
condition and w = circular frequency, k = reduced frequency, k = reduced wave number; rdenotes the 
hyperbolic distance between the transmitting point (5 , n) and control point (x, y) of the flow field. 



(9.7) 

Hence, the unsteady part of the flow field of a harmonically oscillating airfoil may be represented by a 
superposition of perturbation sources which move with the basic flow velocity u, and propagate in the 
form of waves with the velocity of sound a,, thus exhibiting a waviness in the flow field dependent on the 
parameter 2 and on the mode of oscillation as well. As a typical example, Figure 3 illustrates the 
motion-induced unsteady flow geld of an oscillating airfoil in 2D compressible flow, where cp’ denotes 
the real part (in phase with the oscillating airfoil) and q” the imaginary part (90 degrees out of phase) of 
the unsteady velocity potential. It can be seen that this unsteady flow field is by far more complicated 
than the steady flow field of an airfoil at rest. 

Figure 3 : Motion-induced unsteady flow field (complex unsteady potential) 
of an airfoil in harmonic pitch oscillation around 42.5% chord axis 
( 9 = real , I$’ = imaginary part ) 

For transonic flows, the oscillatory behaviour of motion-induced unsteady 2D and 3D flow fields was 
thoroughly investigated in [38]. Unsteady flow fields induced by small amplitudes may be modelled by 
singularity distributions, whose disturbances propagate as nearly plane waves through a non- 
homogeneous steady flow field. This propagation is described by a nonhomogeneous Helmholtz 
equation, which is derived from Eq. (9.2). 

(9.8) 

The right-hand side of (9.8) models the effects of nonuniform steady transonic flow on the propagation of 
disturbances. Of main importance are the curvature and density of acoustic rays, which are properties 
directly related to the transonic influence and to the density of disturbance energy. Fig. 4 shows a typical 
result of propagation in a 2D transonic flow field. Only in the near field of the airfoil, transonic effects 



Figure 4 : Propagation of acoustic disturbances (rays) in a transonic flow field 
(NACA 0012, Ma, = 0,79) OOCOOO : boundary of local supersonic bubbles 

significantly change the ray curvature and ray density compared to the behaviour in a homogeneous flow 
(straight rays with uniform density). Note that upstream disturbances propagate themselves in such a 
manner that they are bent around the shock, which forms the downstream boundary of the local super- 
sonic region. The ray density is very large near the shock and very small in the supersonic region. This 
corresponds to large and small values of disturbance energy. Rays reaching the tunnel walls are not 
significantly affected by the transonic effects as long as local supersonic regions do not extend close to 
the walls. Then the flow near the walls may be fully described by the linear theory because all distur- 
bances from the airfoil reaching the walls propagate themselves, nearly unaffected by the local 
supersonic bubble. 

9.2.2 WIND TUNNEL INTERFERENCE EFFECTS IN UNSTEADY FLOW 

From the practical point of view, the most important types of motion-induced unsteady flow fields in a 
wind tunnel arise from forced or self-excited (flutter) oscillations of the model. In such wind tunnel inves- 
tigations the unsteady aerodynamic data of main interest are the magnitude and phase of the motion- 
induced unsteady pressures. For instance, for an airfoil performing pitching oscillation of amplitude Aa 
about a mean incidence a,, the wall interference effects on magnitude and phase of the unsteady 
pressures can be considered under the following headings : 

. steady effects on the flow for the mean incidence a, , 

. quasi-steady effects in context with the time-dependent kinematic flow conditions for all changes of 
incidence within the range (a, - Arx) < CL < (a,, + Ao1), 

. unsteady effects on the manner in which the magnitude and phase of the motion-induced unsteady 
pressure vary with frequency in context with the unsteady wake. 

. unsteady effects in compressible flow from acoustic interference 

Hence, the requirements for the avoidance of wind tunnel wall interference effects in unsteady tests are: 

- correct (undisturbed) base flow and correct steady perturbations, 
- absence of any additional unsteady effects, 

i.e., an unsteady process may be directly affected by steady flow wall interference as wall as by the 
purely unsteady sources of interference, as demonstratively shown in [22]. The principal causes of 
unsteady tunnel interference - in addition to the well known steady interference effects, such as wall 
constraint, shock wave reflection in transonic flow and wall boundary layers - are (see Figure 5) : 
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- unsteady effects of wall constraint, 
- reflection by the walls of model generated acoustic disturbances, and - as a consequence - 
- acoustic wind tunnel resonance, 
- distortion of the oscillatory wake of the model by other tunnel deficiencies, 
- inherent tunnel flow fluctuations, 
- wing support interference. 

In [7], wall effects on a transient motion of an airfoil in incompressible flow (stepwise change in angle of 
attack) is theoretically investigated. This is of importance for tests in response to control deflections. The 
unsteady development of lift strongly depends on the relative model size, as well as on the type of tunnel 
walls. Lift is built up faster for open walls than for closed ones and the influence of the relative model 

steady rnd ““steady steady steady and un*te&y 
\\\\\\\\\ 

- -- 
--- --- 

Figure 5 : Principal causes of wind tunnel interference 

size is more significant for open walls. 

Since a clear understanding of these unsteady wind tunnel interference effects is a basic concern for the 
application of adaptive wall concepts and the development of correction methods, they will be discussed 
in more detail in the following. Corrections for unsteady effects of wall constraint - excluding transonic 
flow- in tunnels having well-defined wall boundary conditions can readily be obtained from theoretical 
investigations. The corresponding boundary conditions for open and closed (solid) wind tunnel walls can 
easily be established, see [28], but it is difficult to obtain estimations for ventilated wind tunnel walls 
because of mathematical uncertainties about the boundaries. For two dimensional airfoils oscillating in 
sub- and supersonic flow several of such analytical unsteady wall correction techniques have already 
been elaborated. 

In a free atmosphere an oscillating model would leave behind an oscillating wake, the vorticity distribution 
of which is consistent with the unsteady flow at the model. If this wake is affected by a tunnel shock wave 
in a tunnel, driving fan, a near tunnel corner, or a support system, the unsteady aerodynamic loading at 
the model may be notably influenced. There are reasons to suggest that this source of unsteady 
interference is of considerable importance in certain special cases of flow speed and less important in 
transonic flow. 

Finally, various types of flow fluctuations, often collectively described as tunnel noise, can have several 
unwanted effects, particularly in aeroelastic model investigations. One of the principal sources of noise in 



transonic tunnels is the flow over ventilated walls. It is possible to reduce the noise from these walls by 
covering the perforations with gauze cloth and to apply sound-absorbing material to the tunnel walls, as 
shown in [26]. 

9.2.3 UNSTEADY WIND TUNNEL WALL BOUNDARY CONDITIONS 

Pressure in a flow field with small unsteady perturbations of an undisturbed homogeneous mean flow 
fulfils the following equation 

with the pressure coefficient 

(P-P,) 
cp = 0.5 pu: 

(9.9) 

(9.10) 

In the following, the disturbance normal velocity component v with respect to the walls is important 

L=*-+* 
u, &l--dy 

with n = f y for upperorlower wall (9.11) 

In the following, it is assumed that the flow field may be modelled by a mean steady flow and an 
unsteady harmonic perturbation 

g(x.Y,t)=~“(x,Y)+~(x,Y)e’W (9.12) 

While numerical computations of unsteady flow fields assume nonreflecting far field boundary conditions 
at outer boundaries (Sommerfelds radiation condition), tunnel walls have to be taken into account by 
special conditions. 

Closed (solid) walls: vanishing normal velocity component at the walls for both steady and unsteady flow 
component 

(9.13) 

Open walls (free iet): vanishing pressure disturbances (p = pm) at the walls 

(c,=(~*+ik~)=o~g(x)=~ (-m)e-N’(‘-‘+~ =o (9.14) 

taking into account that the unsteady disturbance potential vanishes for infinite upstream position. 

Ventilated walls: The two extreme conditions of closed and open walls yield opposite interference effects. 
While closed walls increase lift, open walls decrease the free air value of lift coefficient. The ventilated 
walls yield values between the two extreme wall types. In the following, the model is located at z = 0 
midway between two (upper and lower) tunnel walls (z = fb) 
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Porous (oerforated) walls: 

ViSCOUS effect i’v =$*$,+ikq3+Z@n=0 

( i $+ik c~(,,,b)iz$e,(x,*b)=o 

(9.15) 

with a complex porosity factor: Z = R + is, R = f/p (resistance) and S reactance 

Slotted walls: normal flow with velocity Y through the walls is described by momentum equation 

A$‘Vp= (p-p-) 
K 

(9.16) 

with a slot parameter K (dimension length). This approach yields 

$+K#,=O 

c~(x,~h)iK~c~(x,*h)=O (9.16) 

Here the limiting cases of K = 0 and K = CO describe the open jet and solid walls, respectively. 

9.2.4 ACOUSTIC INTERFERENCE AND TUNNEL RESONANCE 

In compressible flow, the reflection of acoustic disturbances from wind tunnel wails and their return to the 
model is a crucial unsteady interference problem. As shown in the previous section, an oscillating model 
generates unsteady pressure disturbances in the form of travelling acoustic waves which propagate 
outwards in the tunnel. After being reflected from the walls, these disturbances return to the model, 

Figure 6 : Positions of wave front from a disturbance at p. 

and reflection of acoustic waves from a wall 

the disturbance to be reflected by the wall and return to pc is : 

causing additional pressure 
changes there. This is in contrast to 
the Sommerfeld far field radiation 
condition, which requires a 
reflection-free propagation of dis- 
turbances to infinity in free 
atmosphere. 

Figure 6 shows an airfoil in 2D 
subsonic flow and the wave fronts 
from an acoustic disturbance in a 
uniform flow. It is seen that the 
velocity of propagation of the pres- 
sure disturbance from a point f, in 
the direction normal to the walls is 
af - ui, and the time needed for 

At=,&& =2& (9.19) 



where b is the distance to the wall. The attenuation of the disturbance by the time it returns to the source 
will depend on the distance travelled in the moving air which is 

a,At=2L 
P 

Figure 7 : Resonance in a solid wall test section 
(adapted from Fromme) 

P 1 0” =(2n-l)nU,--- 
Mm 2b 

n=l,2,. 

(9.20) 

Thus the reflected wave when it returns will be 
weaker (by natural damping), the higher the 
Mach number. When a disturbance from the 
oscillating airfoil is reflected from the tunnel 
wall back to the wing with such a phase 
relationship that it reinforces or cancels out a 
succeeding disturbance and, hence, the 
pressure changes currently occurring on the 
model, the most severe unsteady wall 
interference problem happens, as first 
described in [33], [I], [14] and experimentally 
verified in [33], see Figure 7. At this 
resonance condition, the disturbances emitted 
from an oscillating wing and reflected by the 
walls form a standing wave pattern. For solid 
walls, that do not change the phase of the 
wave on reflection, the resonance circular 
frequency is : 

(9.21) 

For open jet boundaries the phase change on reflection is n , so that 

P ’ 0, =2nk U, -- 
M, 2b 

n = 1,2, . . 

For a tunnel with ventilated walls, theoretical expressions for resonance frequencies depending on wall 
porosity, depth of plenum chamber and Mach number are given in [26]. In the case of resonance, where 
the disturbances form a standing wave pattern, the normal velocity has a maximum amplitude and the 
pressure has a node, i.e. is of zero amplitude at the position of the oscillating airfoil. Accordingly, the 
unsteady airloads on the oscillating airfoil will vanish at resonance. Whereas for incompressible flow 
(M, + 0) there is no tunnel resonance - the resonance frequency decreases with increasing Mach 

number - and since it tends to zero as (M, + l), the predicted resonance frequency must coincide with 

a test frequency for some intermediate Mach number which causes dramatic changes in the magnitude 
and phase of the unsteady lift on the oscillating model. 

The same expressions derived here for 2D tunnels are valid for tunnels with quadratic test sections 

The lowest value for resonance frequency for a quadratic test section are : 

P 1 q=n,2nU,-- 
M, 2b 

(9.23) 

The value of the parameter R, equals 0.5 or 1.0, for closed walls (n, = OS), and open walls (n, = l.O), 
respectively. 



For cylindrical test sections with closed walls the value of the lowest resonance frequency was derived in 
[33] : 

P 1 O.&=tl,U,-- 
4 R 

with (4 = 1.84), R = radius of test section 

For ventilated walls the resonance frequencies are given by 

P 1 q=2J,,bU,-- 
M, 2b 

Their values depend on Mach number, tunnel size, wall opening ratio and plenum depth. They are 
derived from the tunnel wall boundary conditions in chapter 2.3 by decomposition of the unsteady distur- 
bance pressure field into plane waves propagating in the mean flow direction and the transverse 
direction. Reduced frequency values of resonance conditions depend on Mach number and eigenvalues 
k2, of the tunnel section. For detailed derivation see [28]. 

For slotted walls the eigenvalues depend on the slot parameter K via a transcendental equation: The 
eigenvalues satisfy the inequalities 

QC+tan(A,,b)=O (9.26) 

The eigenvalues satisfy the inequalities 

Again, the limiting lower and upper bounds represent values for closed and open walls, respectively. 

For porous walls expressions for resonance frequencies were derived by Mabey [1980], (also see [28]) 
using the corresponding boundary condition for porous walls of chapter 2.3, but neglecting the reactance, 
thus approximating Z = i.9. This yields 

J,,b=atan(-SPM,)+ns 

with the limiting cases S = cc and S = 0 for closed walls and open jet walls respectively 

(9.28) 

Fortunately, at higher Mach numbers, there are influences to reduce these effects. Even for strong 
reflections from solid walls, the effective air distance increases with Mach number and the reflections thus 
become more attenuated. Also, the reflected disturbances travel more with the flow than across it, see 
Figure 6. Furthermore, for transonic conditions, when resonance frequencies are low enough, the 
(adapted) walls in typical transonic wind tunnels are perforated or slotted and the reflections are thus more 
diffuse and attenuated. Thus the strong phenomenon of tunnel resonance is milder in transonic flows. 



9.3 WALL ADAPTATION FOR DYNAMIC TESTS 

From the preceding explanations we have seen that the following wind tunnel interference effects, due to 
an unsatisfactory test environment, are of main concern in unsteady aerodynamic and aeroelastic 
experiments with oscillating models: 

1. interference of the steady base flow field by steady wall constraints, including shock wave reflections 
in transonic flow, 

2. interference of the (superimposed) motion-induced unsteady flow field by wall constraints, 

3. reflection of the model-generated acoustic disturbances by the walls, 

4. acoustic tunnel resonance in the test section. 

With regard to the application of adaptive wind tunnel wall concepts to eliminate or significantly reduce 
these wall interference effects in unsteady flow measurements, the following statements can be made : 

9.3.1 STEADY WALL ADAPTATION 

The practicability and feasibility of wall adaptation for steady flow have already been successfully 
demonstrated. 

The elimination or at least reduction of unsteady wind tunnel wall interference by means of adaptive walls 
seems to be extremely difficult to realise. The feasibility of unsteady wall adaptation has not yet been 
demonstrated. However, since unsteady aerodynamic processes are also affected by steady wall 
interferences, particularly in the transonic flow regime, the avoidance of steady flow wall effects by the 
application of steady flow wall adaptation will also significantly improve the results of unsteady wind 
tunnel measurements, as demonstrated by Kuczka [18] for the “Standard Dynamics Model” (SDM) 
shown in Figure 8. He obtained some 
satisfactory agreements between results 
from a tunnel with steady adapted closed 
walls and with results from tunnels with 
perforated walls for the in-phase 
component of unsteady lift and moment 
coefficients. However, the corresponding 
out-of-phase components disagree, even 
for low reduced frequencies. They are 
especially affected by reflections of 
model-generated disturbances from the 
walls, because they are, e.g., smaller 
than the in-phase components. In 
addition, the wall reflected disturbances 
are phase-shifted to the model 
oscillations. 

6- 

Figure 8 : In-phase component CL’ of unsteady lift 
coefficient of the oscillating SMD model with and without 

tunnel wall adaptation (adapted from Kuczka) 
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9.3.2 PASSIVE ADAPTIVE UNSTEADY WALLS 

//////////////// 
Figure 9 : Principle of airfoil slatted wind tunnel 

section (adapted from Kong) 

- - - Unear Theory 
---- OAR&O 
--.-- OAR=0344 
..-..- OAR=0.526 
- OAR=l.O 

I / 
0.00 0.25 0.50 0.75 1.00 

WC 

Figure 10 : Measured unsteady pressure distribution 
for different wall opening area ratios. 
(adapted from Kong) 

In addition to steady adaptation, another 
promising procedure has shown to be the 
use of special partly open walls, namely 
airfoil-slatted tunnel walls, Kong [IQ] 
shows that this type of walls avoids the 
disadvantages of flow separation often 
appearing with slotted walls. 
An opening area ratio parameter, OAR = 
gJc+gJ, see Figure 9, with a value of 0.6, 
has shown to be most successful in 
eliminating unsteady wall interference. 
Figure 10 shows that this OAR provides 
the best agreement of measured unsteady 
pressure distributions with free air results. 
Figure 11 compares the ratio of measured 
and analytical free air results for unsteady 
lift and moment coefficients. The results of 
tests with different ratios of model- to- 
tunnel size C/H = 0.333 and 0.667 and of 
different reduced frequencies for a 
subsonic oscillating airfoil in plunge motion 
show that the optimum desired value 1 is 
achieved with OAR = 0.6 again, for all 
parameter combinations, thus providing a 
calibrated value for all tests in this tunnel. 
This promising method has yet still to be 
validated for transonic tests as well. 

k = reduced frequency 
Re = Reynolds number 
Z = ampltude of cl0 

Figure 11 : Measured unsteady lift and moment coefficients for different wall opening 
area ratios and different reduced freauencies 



9.3.3 ACTIM ADAPTIVE UNSTEADY WALLS 

It is clear that steady adaptation can remove a significant amount of interference effects on unsteady 
results (see point 1 in chapter 2.2). The effects mentioned in points 2 and 3 may be only cancelled by 
adaptive walls if a time-dependent adaptation is applied. This has not been done yet. So only the practi- 
cability of such a method may be studied theoretically or numerically. 

Unsteady wall adaptation can be realised, at least theoretically, in the same way as with steady flow 
conditions. However, enormous technical effort is mandatory even for 2D measurements. Unsteady wall 
adaptation would require oscillatory moving flexible walls, where an unsteady motion of the wall contours 
would depend on the frequency and the vibration mode of the model, on the model amplitude of oscilla- 
tion and on certain phase relationships with respect to the motion of the model. Streamlining algorithms 
for such a nonstationary wall adaptation, even for the simplest case of non-flexible (rigid body) oscilla- 
tions of the model, would be very difficult to establish. They demand unsteady pumping tunnel walls 
governed by the unsteady varying stream surface contour. For imposed prescribed unsteady motions this 
might be feasible by pre-tests computing the wall contours in advance. It seems unlikely that point 4 
(tunnel resonance) may be cancelled at all. Unsteady wall adaptation may be best realised for low- 
frequency flow fields because then acoustic interference is small and the speed of the wall contour 
changes is low. 

In [S] a study on unsteady wall adaptation is carried out for 2D low-frequency oscillating airfoils in 
transonic flow. A CFD code based on the unsteady Euler equations is used to compute the unsteady 
airloads on the oscillating model in the presence of solid tunnel walls. The exact time dependent wall 
contours like the airfoil contour are precisely modelled by the computational grids. The parameter ratios 
of model-to-tunnel size, reduced frequency and Mach number are varied. Three different tunnel wall 
adaptation concepts (all based on the streamlining of the wall contours) with increasing degree of 
complexity are tested, namely: 

1) steady wall adaptation for the mean flow field, 

2) quasisteady synchronisation of wall adaptation (e.g. harmonically deforming walls between steady 
adapted wall contours obtained for maximum and minimum motion amplitude, 

3) unsteady synchronisation by choosing wall contours compatible with streamlines for a time dependent 
vortex at the position of the model and compatible with the measured unsteady lift of the model. 

Results for unsteady airloads obtained with these different wall adaptation procedures are presented in 
Figure 12, showing that the quasisteady adaptation for subsonic flow is sufficient while transonic flow 

Figure 12 : Numerical simulation of unsteady wall adaptation strategies (adapted from Chang) 



demands at least an unsteady synchronisation of the wall contours. There is still the question if the 
unsteady lift dependent synchronisation is sufficient for higher frequencies since significant time lags 
between streamline contour at the wall positions and the instantaneous lift will arise. 

Summarising, steady wall adaptation is a necessary prerequisite for obtaining interference-free unsteady 
results. But this is not sufficient at least for transonic flows and higher frequencies, and one somehow 
has to correct the residual unsteady interference effects. An unsteady wall adaptation procedure working 
for different Mach numbers, frequencies and model motions seems difficult to realise. Sophisticated 
correction methods based on mathematical models and CFD computations offer a more promising 
approach instead. In order to model unsteady wall boundary conditions with such methods, unsteady 
pressure data should also be measured at the walls. Indeed, the application of adaptive walls to minimise 
interference from steady flow wall constraints, together with the application of CFD-techniques which take 
into account the unsteady wall pressure data from experiments to describe precise wall boundary 
conditions, is most promising in deriving corrections for wind tunnel wall interferences in unsteady flow. 
Prospects and concepts for such hybrid wind tunnel wall correction techniques are outlined in the 
following. 

9.4. MODELLING OF UNSTEADY WALL INTERFERENCES AS A BASIC FOR 
CORRECTION METHODS 

Analytical predictions of wall effects on unsteady pressures and airtoads require the precise knowledge of 
the wall boundary conditions. Only three types of boundary conditions are well defined, namely those of 
solid (closed) walls, free jet and of prescribed unsteady wall pressure distributions (known from 
experiments). Porous and slotted walls can be simulated only approximately by mixed boundary condi- 
tions including free parameters. As wind tunnel tests with oscillating models are primarily perfoned for 
aeroelastic purposes, wind tunnel interference effects have to be studied within a wide range of Mach 
numbers, oscillation modes and reduced frequencies. For 2D subsonic flow in one of the first systematic 
analytical investigations on wind tunnel wall effects, Bland [S] derived an integral equation relating the 
downwash w (prescribed by the harmonic motion of the airfoil) to the induced unsteady pressure jump 
$ at the airfoil : 

w(x)= Q+C,M,,A)&(r)de (9.29) 

This is an extension of Possio’s integral equation [31], [13], which is valid for unbounded free air 
conditions. Bland derived a rather complicated corresponding kernel K, including tunnel wall boundary 
conditions to be automatically fulfilled on infinitely extended walls in the general form: 

where C, denotes a specific wall parameter. The limiting cases of solid walls and free jet condition are 
included: 

c,=O+p=O+cp=O(jze jet) (9.31) 



Thus the effects of ventilated walls are described by certain values of C,. but as dependence on the type 
of walls, their opening ratio and perhaps Mach number and reduced frequency is unclear and would have 
to be systematically studied by comparing computations and experiments. Bland’s method was 
completed by Fromme and Golberg [I 11, []13]. who improved the numerical performance of the solution 
method and extended it to general oscillation modes, including control surfaces. They obtained results 
clearly showing the unsteady wall effects, especially the sharp drops in magnitude of the loads and their 
phase jumps in the case of tunnel resonance, see Figure 13. Wall effects are significant in the whole 
frequency regime and wall- 
influenced loads 

Pltchtng o*clll.tlon. about 0.5-cl-#ord .XI. 

bigger/smaller than 
corresponding free air value for 
closed/open walls, which is well 
known for steady or quasisteady 

0 1 2 3 * k5 

flow. In particular, the strong 
changes in phase deserve special 
attention. This analytical method 
provides exact reference results, 
but it is restricted to Xl flows and 
to the regime of 
compressibility, i.e. constant Mach 
number in the whole flow field, 
and thus subsonic flow. It hardly 
appears possible to extend it to 0 1 .2 .3 .L k .5 

3D or transonic flow. 

Another method of indirectly 

Figure 13 : Lifl coefficient (magnitude and phase) of an airfoil 
performing harmonic Ditch oscillations around a 50% chord axis 

modelling the walls is the method 
(adapted from Fromme) 

of images. In an integral equation for the solution of 
the boundaty value problem of an oscillating model 
the influence of solid tunnel walls is taken into 
account by an image of the model located on the 
other side of the wall, the wall being a mirror plane. 
This single image is sufficient in the presence of 
only one wall. 

In the presence of upper and lower walls, images 
mirrored by both walls have to be taken into 
account, each of which has to then be mirrored 
again by the other wall as well, a procedure yielding 
an infinite series of images with increasing 
distances across all walls. This method has been 
thoroughly elaborated by Mabey 1271 for ventilated 
walls as well. The rather complicated procedure of 
summing up contributions of the infinite series, each 
element of which is representing a model either by 
vortices or by more precise panel distributions. may 
be simplified, because often a small finite number 
of images is sufficient. This is demonstrated in 

- infinite series of images 
---- only 1 image 
_ _ _ _ _ no tunnel walls 

_ _ wind tunnel test results 

Figure 14 : Results of modelling unsteady tunnel 
wall effects by methods of images (adapted from 
Laschka). Induced unsteady downwash velocity 

behind an oscillating airfoil system in a wind 
tunnel (H = 6.5, z = 3.5, k = reduced frequency) 



Figure 14, adapted from [24]. For a gust generator with two oscillating airfoils the induced normal velocity 
component w at the tunnel centre line z = 0 at a position downstream of the gust generator (x = 51 is 
shown. ]nj denotes the magnitude of the downwash velocity w, normalised by the amplitude of the airfoil 
oscillation. With respect to the measured results, the wall interference effects are modelled with sufficient 
accuracy by just one image. Note that, for reduced frequency k = 0 (quasisteady condition), 1~’ is not zero 
because w (k=O) is defined as the difference between the steady w values at the maximum and minimum 
incidence of the airfoils (normalised by ACZ). 

The advantage of these two methods, namely the reformulation of integral equation kernels and method of 
images, lies in the fact that tunnel walls are taken precisely into account, being infinitely extended upstream 
and downstream. Thus, the walls do not have to bs directly modelled by singularities (like the model). 

However, these methods will hardly be able to predict details of the wall affected pressure distribution at 
the model, because a derivation of modified 3D kernels seems very complicated, while the complexity of 
infinite series of images can be evaluated numerically only with a rough representation of the wing and its 
images, like simple horseshoe vortices. 

The following numerical approach, see [36] and [39], is more flexible. It is also based on the 2D linear 
equation, but may be extended straightforward to 3D and transonic flows. Within the framework of unsteady 
linearised theory (small oscillation amplitudes) the position of the airfoil, its wake and the walls (even if 
curved for steady adaptation) may be assumed to be approximately parallel to the x-axis (freestream 
direction of the wind tunnel). The airfoil is located midway between the tunnel walls, a distance b away from 
them. Then this 2D boundary value problem can be solved by application of Green’s theorem: 

(9.32) 

Green’s function w satisfies the 2D Helmholtz-equation together with Sommerfeld’s far field radiation 

condition for free air. For 3D problems Green’s corresponding function reads as I$/ = $. The integration 

contour C and the integration path s run along the boundaries of the control volume and along those 
boundaries where cp is discontinuous, see Figure 15. 
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Figure 15 : Integration path and area for the unsteady 
flow problem of an oscillating airfoil in a wind tunnel 

For free air conditions, the infinite boundaries 
give vanishing contributions; only airfoils and 
wake contour lines have to be taken into 
account. For wind tunnel flows the integration 
path also runs along the tunnel walls. As a 
final result, one obtains an analytical relation- 
ship between the downwash w at the airfoil, 
which is prescribed by the airfoil’s oscillatory 
motion, and the unsteady potential function 
value f and the normal unsteady velocity 
component g, both at the wails : 



w = $ (profile), f = cp (walls), g = g (walls) (9.W 

For f and g indices “up” and “lo” denote values at the upper or lower tunnel wall, respectively. The 
downwash in the presence of tunnel walls is governed by the following relation 

(9.35) 

Similar relations are derived for fand g on the walls, see [39]. If the integral operators are expressed by 
aerodynamic influence coefficients A, 6, C etc., the final system reads : 

w=A++A,f +4,g 

f = (4)‘-“(W +4g) (9.36) 

g=(C,)(-‘)(C6lp+C,f) 
These equations relate the downwash distribution w to an unknown dipole distribution &J. which 
provides the unknown pressure jump at the airfoil by taking the unsteady flow values f and g at the wind 
tunnel walls into account. For the numerical solution the wing profile and the walls are divided into line 
elements (panels) on which w, @, f, g are approximated as constants. The dipole strength in the wake is 
approximated by the values near the trailing edge and by use of the Kuna condition. Since the unsteady 
potential function, especially downstream of the airfoil, decreases only slowly, see Figure 3, the control 
volume of the integral equation has to be extended far up- and downstream (to approximate infinity), as 
at least 10 airfoil chords as numerical tests have shown. 

Applying this panel technique to the above equation yields a corresponding system of linear algebraic 
equations, where now the above aerodynamic influence functions are expressed by aerodynamic influ- 
ence coefficient matrices (results of integration along one panel), and where w, &, f, g are now column 
vectors of the corresponding values at the airfoil and at the tunnel walls. For the special cases of solid 
and open walls, the equations simplify to a closed form from which the (wall-affected) dipole strength, 
and hence the related unsteady pressures, can be calculated for a prescribed downwash w, i.e. oscilla- 
tory motion of the model. 

solid walls g = 0 + w = (A + A, I?,‘-%) Scp (9.37) 

open wulls f = 0 -+ w = (A + 4 C,‘-“C) 6rp 

For ventilated walls the boundary conditions outlined in chapter 2.3 have to be applied. Their implemen- 
tation combines f, g, and af/&. If pressures on the walls are measured, f can be obtained by integra- 
ting (9.9) - see also (9.39) below-and then directly used in (9.36). In Figures 16, 17 some typical results 
obtained from the described numerical method are illustrated. Figure 16 shows the wall-influenced and 
the free-air unsteady pressure jumps in terms of the non-dimensional complex pressure coefficient 

c,=(~,,,--,~,,,)/(qAa), with q = freestream dynamic pressure and Aa = amplitude, on a 2D 

plate performing pitching oscillations about a 42.5% chord axis, Mach number = 0.866, reduced 
frequency k = 0.050 and a wall distance b/L = 5. Solid walls increase the loads, while open walls produce 
the opposite effect. The results of Figure 17 are obtained for the same conditions, except that the 



reduced frequency has been changed to k = 0.182, which is close to the first solid wall resonance 
frequency. Now both the real and imaginary part are nearly zero. 
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Figure 16 : Unsteady pressure around an oscillating airfoil with different tunnel 
wall conditions, far from tunnel resonance condition 
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Figure 17 : Unsteady pressure around an oscillating airfoil with different tunnel wall 
conditions, close to tunnel resonance 



The corresponding integrated unsteady lift values are shown in Figure 10. The overall agreement of the 
results with those of the analytical method of Fromme and Golberg, see Figure 13 is good. The main 
discrepancy appears near the resonance frequencies, where the numerical panel method does not 
precisely predict the drop of magnitude to zero and produces oscillatory behaviour. The reason for this 
lies in the sensitivity of the numerical method with respect to modelling of the tunnel walls. These are 
modelled to be infinitely extended in the analytical method, while the panel method models only a finite 
extension (typically 10 - 100 chords). 

re, , .,. ._ . . 

Figure 18 : Magnitude and phase of unsteady lift coefficient obtained by the 
linear panel method (same parameters as in Fig. 13) 

Of course, unsteady aerodynamic predictions with wind tunnel wall effects can be obtained by other 
numerical methods as well. Today, the more sophisticated CFD-methods, which model the whole flow 
field and are based on non-linear equations, have also become a reliable tool in unsteady aerodynamics 
and they are easily applicable for the whole flow speed regime. Figure 19 presents results for the test 
case of Figure 17, which have been obtained by one of the simplest CFD methods, based on the non- 
linear Transonic Small Perturbation (TSP) equation in the time domain, see [vot3 19901. 

The unsteady results are obtained by solving the non-linear 2D TSP equations 

(9.38) 



Figure 19 : Magnitude and phase of unsteady lift coefficient obtained by the TSP method 
(same parameters as in Figs. 13 and 18, Ma, = 0.866, b = 5, pitching around 
a 50% chord, NACA 0006 airfoil). 
upper : linear simulation lower : non-linear transonic simulation 

The unsteady results are obtained by Fourier analysis from the complete time-dependent flow field 
simulation. In its upper part, Figure 19 presents linear results, which are directly compatible with those of 
the panel method. Linear theory was simulated by neglecting the non-linear term in the above equation. An 
overall agreement with the results of the panel method and the exact analytical method appears, but the 
strong jumps of magnitude and phase values at resonance frequencies are smeared, and the values of the 
corresponding sharp peaks (magnitude: zero, phase angle: -90 degrees) are not captured very well. 
Outside of the resonance frequencies the agreement is very good, and there are no oscillations, The 
corresponding transonic results in the lower part show that the effects of unsteady tunnel interference are 
very similar to the linear behaviour. The underlying acoustic effects are only altered in transonic flow. 
Resonance appears for the same frequencies, the wall effects on phase angles are even stronger for 
transonic than for subsonic flow. The increased values of magnitude are due to the transonic effects. 

A similar behaviour has been investigated for 3D transonic flows, see [35]. In 3D flows the same 
tendencies appear as in 2D, especially the resonance frequencies are observed for the same values. 
These investigations were carried out for rectangular wings in transonic flows. The unsteady interference 
effects for the rectangular wing are as big as those for the 2D airfoil. Figure 20 shows results for a 
rectangular wing oscillating in pitch, with an extremely large value of the ratio between tunnel width and 
wing chord of 21.2. In general, one should expect that unsteady interference effects for 3D flows are 
smaller than for 2D flows. A general investigation of swept wings has not been done yet. 
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Figure 20 : Magnitude and phase of unsteady lift coefficient obtained by non- 
linear 3D TSP computation for a rectangular wing in a wind tunnel 
(adapted from Seebass) 



9.5 REDUCTION AND CORRECTION OF UNSTEADY WIND TUNNEL 
WALL INTERFERENCES. 

9.5.1 UNSTEADY WIND TUNNEL WALL CORRECTIONS BY ANALYTICAL METHODS 

In an early attempt, Jones [17] formulated a 2D correction technique, using an infinite series of image 
singularity distributions to model the tunnel wall effects. Similarly, Garner et al [14] developed a 3D 
correction method for ventilated tunnel walls by describing the wall influences through an infinite series of 
images of vortex distributions representing the model. This method has been modified by Kuczka, (181, 
for closed walls. Details can be found in the references. The applicability was demonstrated by 
computing unsteady tunnel wall pressure distributions by this analytical model and comparing them with 
corresponding test results. The agreements are very satisfying, even in transonic 3D flows at high 
incidences of the model. But the method is restricted to models of low aspect ratio and to low reduced 
frequencies (nearly quasi steady behaviour). The method was applied for the SDM model in wind tunnels 
with both a quadratic ventilated test section and a circular closed but stationary adaptive section. Due to 
the low frequencies, both the steady adapted closed walls and the ventilated walls provided results for 
the real part of unsteady lift and moment coefficients at the model with only a small remaining difference. 
This remaining unsteady interference can be corrected by Kuczka’s method. Figure Zla shows that the 
correction method for unsteady interferences yields a slight shift of the real part of lifl in a way that the 
corrected results of the different tunnels agree very well. The correction of the imaginary part is not as 
satisfactory. The corrected final results of both tunnels agree well only for low incidences; see Figure 
21 b. Nevertheless, this method should be further improved because it is simple and has the advantage 
that no precise knowledge about the model geometry and its motion are necessary - the measured wall- 
affected lifl and moment coefficients are sufficient. General unsteady wall correction methods without 
restrictions with respect to model geometry and frequency need to take into account unsteady results 
measured at the tunnel walls 
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Figure 21a Figure 21 b : 
Unsteady in-phase and out-of-phase Mt coeflicients CL’ and CL” versus incidence for the SMD model tested 

in 2 wind tunnels and corrected for tunnel interference (adapted from Kuczka) 



9.5.2 UNSTEADY WIND TUNNEL WALL CORRECTIONS USING MEASURED TUNNEL WALL 
PRESSURE VALUES AND NUMERICAL METHODS 

9.5.2.1 DIRECT COMPUTATION OF THE TUNNEL WALL PROBLEM BY PANEL METHODS 

If it is possible to measure the unsteady wall pressure distributions during the test, they can be used to 
correct the wall-influenced unsteady pressure data at the model to corresponding free air results, Such 
wall pressure measurements are a basic feature for steady flow adaptive wall concepts. For unsteady 
corrections both magnitude and phase of unsteady pressure have to be measured at a sufficient number 
of tunnel wall control points. These may serve for tunnel wall correction methods based on numerical 
unsteady aerodynamic methods. In 1391 such methods for small amplitude oscillating models, based on 
the above panel method, are described and outlined in the following. As outlined in formula (9.9) the 
corresponding values of the velocity potential can be obtained from a measured unsteady (harmonic) 
tunnel wall pressure distribution C,” by the integration 

(9.39) 

The wall pressures have to be measured at a sufficient number of control points distributed on the tunnel 
walls, including the regions upstream and downstream of the model. Then one obtains an integral equa- 
tion for the wall-affected dipole distribution on the model by application of Green’s method to the wind 
tunnel wall bounded flow control volume. The final equation reads as: 

(9.40) 

Here 6 $7 denotes the dipole strength for the wall-affected pressure on the airfoil. It can be seen that the 
wall interference effects change both the downwash and the kernel of the integral equation, compared to 
the free air equation w = A6 cp Substitution finally yields the following equation : 

@i@(w-&p”) with A&p== follows 2,&T= A6q-~2(p” (9.41) 

Here the kernels (influence coefficient matrices) are known from theory and depend on model geometry, 
Mach number and reduced frequency. An extension to 3D problems is straightforward. For 3D cases 
Green’s function is an exponential function instead of the Hankel function for 2D cases, and integration’s 
have to be performed along the contour surfaces of tunnel walls, model and wake surface instead of 
lines. In the framework of the small disturbance approach, 3D models may be represented by panelling 
the projection area in the plane of streamwise and spanwise w-ordinate axes (parallel to upper and 
lower tunnel walls). With this method, no further information on the type of tunnel walls or model motion 
is needed, but the model geometry has to be represented by panels. 

The 2D correction method of Sawada [34] uses Green’s theorem as well, and is similar to the above 
approach. The advantage of his approach is that that pressure distributions appear directly in the integral 
equations, but integral kernels are rather complicated functions and extension to 3D will be very 
complicated. The results he obtained are encouraging for low frequencies and less satisfactory in the 
vicinity of resonance frequencies. 

Extension of the described correction methods to transonic flows demands the refomlulation of the 
integral equations based on an inhomogeneous Helmholtz equation, which can be derived from Eq. (9.2). 
Direct integral equation methods for the solution of 2D and 3D unsteady transonic flows under free air 
conditions and based on this approach are described in [16] and in [37]. The methods require the 



computation of several 
additional kernel functions in 
order to model the transonic 
effects of the steady base flow 
field and for the inclusion of 
field sources in those parts of 
the flow field near local 
supersonic regions. Figure 22 
shows the control volume for 
these so-called field panel 
methods. These additional 
operators thus depend on the 
Mach number, reduced 
frequency, model geometry 
and steady flow, which would 
significantly complicate the 
procedure. 

The corresponding integral 
equation for the correction 

source panels 

local supersonic 
regions 

‘dipoles on profile 

Figure 22 : Region of integration for the solution of transonic boundary 
value problem including the additional transonic near-field 
control area B 

values &I’ and cp’ of the dipole strength on the airfoil and of the potential values in the field 

&p’=&$f-&p and cp’=q-cp (9.42) 

involving the right-hand-side S of the basic nonhomogeneous Helmholtz equation and the potential 
values cp” on the tunnel walls reads: 

9.5.2.2 SOLUTION FOR THE CORRECTION POTENTIAL BY PANEL METHODS 

A slightly different approach is more promising. The method assumes closed adaptive tunnel walls which 
are adapted for the steady flow. Thus only the unsteady acoustic interferences will be corrected. A further 
assumption is that the component of the flow field which is caused by wall interference may be described 
by the linear theory. This is justified by the discussions in chapter 2.1. Thus the difference between 
velocity potential of the wall-affected tunnel flow and the desired value of the corresponding free air 
conditions fulfils the Helmholtz equation, and the correction value of the dipole strength and thus the 
airfoil pressure distribution is directly computed. 

rp~+rpc~+xr+P=o (9.44) 

cp’=@“-cp 



The corresponding boundary conditions are obtained by subtracting those of the wind tunnel flow 
(vanishing normal flow velocity on both the model surface and on the tunnel walls) from the free air 
conditions (nonreflecting far field conditions at the locations of the tunnel walls). The model surface 
conditions are prescribed by the oscillatory motion and are the same with and without tunnel walls, thus 
yielding 

rp; = 0 (profile) (9.45) 

Nonreflecting far field conditions have been derived by different authors, see for example [20], or (91, for 
unsteady CFD methods, and they are applied here in their harmonic, time-dependent complex form, for 
the upper and lower walls, respectively 

(9.46) 

Application at the tunnel wall locations, together with the potential transformation and subtracting from 
this the condition for solid tunnel walls (vanishing y-components of disturbance velocity) yields 

(p;*ppc=Xf (9.47) 

for the upper and lower walls, respectively with fdenoting the value of the potential on the upper or lower 
wall and with 

ik M, 

x=(1-M:) 
(9.48) 

The value of the velocity potential at the walls may be obtained from the measured wall pressures by 
integration as described above. Applying the notation of the preceding chapter yields 

wc=o gc*pf=+yf’w (9.49) 

and, finally. after some rearrangements, an integral equation for an unknown dipole distribution from 
which the pressure correction of the wall interference is obtained in the usual way, for details see [39] 

(‘4+‘4,B)&+(‘4&;i,)Xf” (9.50) 

for the upper and lower walls respectively. Figure 23 shows a result of this correction method for an un- 
steady transonic flow also including shock waves. Due to the non-existence of detailed unsteady tran- 
sonic flow pressure measurements at the tunnel wails, this demonstration did not apply wind tunnel data, 

Figure 23 : Correction of unsteady tunnel wall interference in transonic flow 
(NACA 0006. Ma, = 0.866, b = 5, pitching around a 25% chord). 
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but CFD results were computed by the above-mentioned TSP method for the wind tunnel flow with 
closed walls and for free air condition. Both the results on the airfoil and at the walls were used as 
“experimental” results and were corrected in the described manner. The correction shows significant 
improvements of the wind tunnel simulation results towards free air simulated results, although the 
agreement of corrected and free air methods is still unsatisfactory - not only near the tunnel resonance. 
Especially phase angles should be accurate within a range of f5 degrees. But one has to keep in mind 
that the correction procedure is based on a linear formulation, while both the wind tunnel flow and the 
free flow include large non-linear effects. 
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