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PREFACE

The Flight Mechanics Panel Specialists' Meeting on "Method for Aircraft State and Parameter Identification"
was held so that flight test engineers and pilots, handling qualities and simulation experts, and aircraft and flight
control system designers could share their understanding, knowledge and experience in the area of aircraft systems
identification.

Although the essential aircraft characteristics can be partially predicted with rather satisfactory accuracy by
means of theoretical calculations and wind-tunnel measurements, the demand for more precise, experimentally
determined aircraft flight mechanics parameters has increased. These characteristics can lead to a mathematical
aircraft model with which investigations may be made of specific flight conditions of interest. This approach can
significantly reduce the amount of flight testing required and consequently can decrease testing time and costs as
well as increase test safety.

The requirements for exact and reliable stability and control coefficients are based on the following applications:

(i) Proving the flying qualities as specified by the aircraft users and improving the flight vehicles themselves.

(ii) Optimizing the design of automatic control and stability augmentation systems. The stability and control
characteristics of the vehicle in which these systems are to be applied must be known accurately before
the desired optimization can be mechanized.

(iii) Producing the baseline data needed for flight simulations. This applies to either basic computer simulations,
to fixed and moving base ground simulators or to in-flight simulations. Testing organizations, industry and
the users of flight vehicles are intensely interested in this application.

(iv) Providing data for comparisons with results from purely analytical aircraft modeling techniques and wind-
tunnel measurements.

(v) Improving testing and data evaluation methods in general. The necessity for this application is based on
current economic considerations and the fact that results from prototype testing contribute more and more
to production decisions.

The Specialists' Meeting indicated that in recent years several new identification procedures have evolved for
obtaining aircraft parameters from in-flight measurements. These approaches have been successfully applied to
conventional (winged) aircraft and are practical techniques. The Specialists' Meeting further confirmed that assump-
tions which are widely used to simplify the mathematical model of the basic aircraft are acceptable. In this regard,
it is well-known that conventional aircraft, even at extreme conditions in their flight envelopes, usually possess
distinctive characteristic modes of motions with different frequencies (short-period,- phugoid, Dutch roll and spiral
modes) and that these modes normally can be identified and separated fairly easily.

The parameter identification problem becomes a much more complicated task when applied to large and slender-
body aircraft for which the elastic deformations at high dynamic pressures can no longer be neglected. For helicopters,
simplifying assumptions are, in general, considerably more difficult to make due to the strong coupling of the rigid
body degrees-of-freedom and because of the different flexible motions introduced by the rotor blades. An additional
problem in parameter identification for helicopters lies in the shortness of the test period which can be recorded due
to the inherent instability of these vehicles. This is one of the reasons why, up until this time, relatively little work
has been accomplished in identification of rotorcraft characteristics.

The papers presented at the Specialists' Meeting offer an excellent overview of the present state-of-the art of
systems identification in relation to flight testing. It was found that interest is concentrated primarily in a few
procedures; namely, in the relatively easy analysis methods such as the time vector, regression analysis and frequency
response techniques or in the more advanced maximum-likelihood method with its developments. It can be concluded
that with the application of the more advanced methods, the ever progressive mathematical development is leading to
a continuously increasing requirement for computation time. On the other hand, a certain inertia exists among users
whose experience exists in applying any one of these procedures and who wish to continue working with that specific
technique for the time being. It was frequently noted during the discussions at the Specialists' Meeting that a person
with a good physical understanding of the problem could often obtain, with a simplified procedure, results as good
as those obtained by a person with a more complicated approach but little insight into the physical problem. Further,
it was noted that the quality of the results could be increased not only by improving the flight test analysis method
but also through the application of optimum input signals and improved flight test instrumentation.

At the final round table discussion of the Specialists' Meeting it was concluded that at the present time linear
stability and control derivatives can be determined from flight test data in a routine manner using either simple or
sophisticated methods. Nevertheless, the application of parameter identification techniques to each flight test
program must be considered individually depending on the goals or objectives of that testing. Further, problems
can develop rapidly when the linearity assumptions for the aerodynamic model are no longer valid, such as in
situations with flow separation at high angles of attack or unsteady aerodynamics due to quick responsive control



surfaces. Finally, there was a strong plea to increase the confidence level of the aircraft parameters derived from
flight tests by demonstrating their repeatability through the use of different maneuvers, control system inputs and
turbulence inputs.

P.HAMEL William AIKEN, Jr
Member Member
Flight Mechanics Panel Flight Mechanics Panel
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MODELLING OF SYSTEMS WITH A HIGH LEVEL OF INTERNAL FLUCTUATIONS

by

J.G. Jones
Royal Aircraft Establishment

Bedford, England

SUMMARY

This paper is concerned with systems with a high level of internally-generated fluctuations. The
problem of modelling the structure of such systems is discussed and some problems in parameter identifica-
tion are reviewed.

The systems considered typically have two types of behaviour, determined by the magnitude of a
controlling parameter which influences stability. For a finite range of parameter values the system is
stable and its structure may be described by a deterministic set of differential equations. If not sub-
jected to external disturbances the system will achieve a state of equilibrium. At some 'critical' value
of the parameter, however, the system becomes unstable and beyond this boundary the system no longer
achieves a state of equilibrium but may exist (as a result of nonlinearities) in a steady state typified
by continuous fluctuations. This state may either be described as a regular limit-cycle type of oscil-
lation or may be essentially random in nature.

Practical examples include aircraft buffeting and wing-rocking, forms of fluctuating motion which
occur respectively in structural and rigid-body modes. In these examples aircraft incidence may be
regarded as the controlling parameter and the fluctuating motion is associated with the existence of
extensive areas of separated flow at high incidence.

Another example of aeronautical interest, whose structure falls into the type considered, is the
standard human-pilot model in which the internal fluctuations are represented by a 'remnant'. An example
is discussed which illustrates problems that can arise in the identification of this type of system when
operating as part of a closed loop.

1. PRELIMINARY

Aircraft buffeting and wing-rocking under high-g manoeuvre conditions are instances of system
behaviour characterized by a high level of internally-generated fluctuations, associated with the charac-
teristic unsteadiness of separated flow',2. As aircraft speed is increased from subsonic into the tran-
sonic range, the angle of attack at which these undesirable features occur tends to decrease; indeed, at
transonic speeds steady conditions may not exist even in the case of flight at 1 g (straight and level in
the mean). Since such forms of fluctuating motion clearly have an adverse effect on the manoeuvre cap-
ability of high performance aircraft, it is of great practical interest to be able to understand and pre-
dict these characteristics; thus methods for aircraft state and parameter identification need to be
developed to cover such situations. In contrast to flight at lower angles of attack and relatively low
speeds, where the forms of the relevant mathematical models are relatively well understood and research
interest lies largely in the development of improved methods for the identification of the parameters in
prescribed equations, conditions of high angle-of-attack and/or transonic speeds require further work on
the formulation and validation of theoretical model structures, as a preliminary to parameter identifica-
tion. It is to this problem of formulating appropriate model structures that the present paper is largely
orientated.

Current interest in aircraft buffeting is largely concerned with manoeuvres of combat aircraft at
high subsonic speeds, where the existence of shock-induced separations plays a primary role. A related
problem, mainly associated with work on high performance compressor and helicopter blades, is the oscil-
latory motion of a stalled airfoil in such a manner that the nature of the flow separation differs at
different instants in the cycle, possibly switching from attached to separated flow or from a leading-edge
to a trailing-edge stall. This phenomenon, known as stall-flutter, is usually associated with a marked
torsional (pitching) airfoil motion. The affinity between buffeting and stall-flutter has been discussed
by Fung3 who pointed out that there may be situations where it is difficult to make the distinction.

We shall be concerned with overall 'systems' which comprise a dynamically-responding wing in asso-
ciation with a flow field which may be separated. In particular, we shall consider situations where such
a system becomes unstable, where the loss of stability may involve the mutual interaction between wing and
flow field or may be purely hydrodynamic, manifesting itself in the latter case by the growth to macro-
scopic magnitudes of disturbances in the (usually separated) flow field. The systems considered are often
found to have two types of behaviour, determined by the value of a controlling parameter, such as angle-
of-attack or airspeed, which influences stability. For a finite range of parameter values the system, if
not subjected to external disturbances, remains in a state of equilibrium typified by constant values of
its state variables. At some critical value of the controlling parameter (a 'bifurcation^1 value'), how-
ever, the system becomes unstable and beyond this value it no longer achieves a state of equilibrium but
may exist, as a result of nonlinearities, in a steady state of continuous fluctuation. Such a fluctuating
state may in some cases be modelled mathematically as a regular limit-cycle oscillation, or it may be
essentially random in nature.

A basic feature of such fluctuating systems is the interaction between the fluid motion, involving
separated flow, and the motion of the wing surface. We distinguish between two cases, differing in the
nature of this interaction. The first we refer to as a FORCED VIBRATION. This consists of an irregular
random motion in which 'turbulent' pressure fluctuations which are independent of wing motion produce an
aerodynamic driving force, the consequent motion of the wing producing an additional, additive, motion-
dependent pressure field. The appropriate analytical model in this case is 'non-autonomous', involving a
random forcing term explicitly expressible as a function of time. The theoretical model describing the
wing motion, for a prescribed random force of excitation, may often take the form of linear equations.



1-2

However, nonlinearity plays an essential role in an overall view of the situation as it dominates the
process of energy transfer, within the airflow, by which energy is extracted from the mean flow and
channelled into the fluctuations of the aerodynamic driving force.

The second case we refer to as NONLINEAR FLUTTER. Here, more-or-less regular oscillations of a
stalled wing occur, in which the time-varying pressure field is essentially determined by the past history
of wing motion. The appropriate analytical model is 'autonomous' and involves no significant terms
explicitly expressed as functions of time. This type of motion is also known as a limit-cycle, and a non-
linear analytical model is essential. It includes stall-flutter as a particular case. In contrast to
'forced vibration', the nonlinear mechanism of energy transfer from the mean airflow now involves the
motion of the wing in addition to the unsteady motion of the air. The essential distinction between the
two phenomena is that in the former case we may say that the wing motion is 'forced' by the fluctuating
flow field, whereas in the latter case the joint motion of wing and flow field arises as a mutual
interaction.

In some situations the amplitude of wing motion is a relevant parameter, motion of small amplitude
leaving the turbulent fluctuations in the separated flow similar to those that would occur in the flow
past a rigid wing but leading to an additive, motion-dependent, pressure field. As the amplitude of wing
motion is increased, however, the possibility arises of the 'entrainment' of the larger-scale irregular
flow fluctuations into a deterministic relationship with the wing motion. This type of resonance is of
course most likely if the frequency of wing motion (Strouhal number) is close to some natural frequency
of vorticity shedding in the separated flow.

Whilst it is customary to regard wing structural buffeting as an aerodynamically forced vibration,
in which the forcing term can in principle be obtained from measurements on a rigid wing, more basic
research is required to determine the limits of applicability of this approach. Even in cases where the
buffeting wing is appropriately regarded as aerodynamically forced, the relationship between the forces on
the structurally-responding wing and on a geometrically similar but rigid wing is not necessarily straight-
forward. In particular, there is the possibility that the motion of the wing may interfere with the non-
linear process by which energy is transferred from the mean flow to the fluctuating fluid motion and thus
modify the statistical characteristics of the aerodynamic exciting force. The clarification of these
topics is of considerable practical importance in that they determine the circumstances in which rigid
wind-tunnel models may be used as the basis for estimation of intensity of buffeting of full-scale aircraft.

An analogous problem concerning the choice of appropriate theoretical model occurs in connection with
wing-rocking. Should a state of steady wing-rocking be regarded as aerodynamically forced or in terms of
limit-cycle oscillations of a closed-loop system whose motion remains bounded through the action of
amplitude-dependent nonlinear forces? In the latter case a unified treatment of wing-rocking and the
divergent motions known as 'wing-dropping' and 'nose-slice' may be possible, the distinction arising
primarily in the nature of the (nonlinear) forces at large amplitude, stabilising in the case of wing-
rocking but not in the other cases. An important area of current work is the determination of appropriate
characteristics that may be identified using wind-tunnel models to indicate the onset of wing-rocking of
the full-scale aircraft. Two types of criterion are possible, one based on the appearance of a significant
random FLUCTUATING component in the aerodynamic forces (or moments) and the other, based on the MEAN com-
ponent of the aerodynamic forces, indicating either a loss of dynamic stability for small perturbations
about some high-lift equilibrium condition, or a loss of equilibrium due to asymmetry. For example, one
might expect the appearance of fluctuating forces or moments on a rigidly-mounted wind-tunnel model to
correlate in general with a dynamic situation appropriately modelled as an aerodynamically forced vibra-
tion. Conversely, we might expect the measurement of mean aerodynamic forces that indicate a loss of
dynamic stability or equilibrium to correlate with a dynamic divergence or, under the action of appropriate
amplitude-dependent forces, with fluctuating motion of the limit-cycle, or non-linear flutter, type. How-
ever, exceptions to this association of onset criteria with types of dynamic motion can occur. For
instance, the appearance of random fluctuating forces on a rigidly-mounted model may correlate with a
dynamic situation in which the fluctuations in the flow field become deterministically related to wing
motion, leading to nonlinear flutter. Moreover, it is quite possible for the two types of criterion to be
satisfied simultaneously, fluctuating aerodynamic forces occurring in conjunction with destabilising
changes in the mean force or moment curves.

Another example of aeronautical interest, where the theoretical model of a system is required to
represent spontaneous fluctuations in addition to the response to external inputs, is the standard human-
pilot model5 in which the internal fluctuations are represented by a 'remnant'. This remnant, or internal
noise source, can be due to such things as sampling effects and random errors of judgement or may be partly
an intentional signal injected by the pilot as a means of monitoring the response of the controlled system.
An example will be discussed which illustrates the problems that can arise in the identification of this
type of system when it is coupled into a 'closed-loop' (as the human pilot is coupled to the system he
controls).

2. MATHEMATICAL MODELS

2.1 GENERAL OUTLINE

A common element of the buffeting and wing-rocking phenomena discussed in the previous section is the
interaction between the unsteady fluid motion, involving separated flow, and the motion of the wing. In
this section we clarify the ways in which a mathematical formulation of these and related phenomena may be
made.

We begin by considering the influence of time-varying boundary conditions, applied at the surface of
a wing, upon a rotational flow field. Two cases can be distinguished:
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(a) Random flow field

Substantially different flow time histories follow from nominally identical realisations of the
boundary conditions. Thus, corresponding to given boundary conditions, there exists a whole family of
compatible flow fields. Quantitative analysis is concerned with statistical properties, such as means and
correlations, of such a family.

(b) Deterministic flow field

The flow field at any instant depends uniquely upon the past history of boundary conditions. A
separated flow field of this type depends upon the orderly shedding of vorticity from the boundary.

In the above distinction between random and deterministic flow fields the time-varying boundary
conditions may either be externally imposed, by forcing the wing to follow some prescribed time history,
or may arise through the structural response of the wing to aerodynamic forces. In the latter case the
wing motion becomes one of the unknowns in the dynamic equations and we have a 'closed-loop' interaction.

The interaction between fluid motion and wing motion may be described in 'systems analysis' terms
(Fig.l). The simplest 'closed-loop' system representation arises when the flow field is deterministic,
depending uniquely on the past history of wing motion. As illustrated in Fig.la there are in this case
two independent deterministic relationships between the wing motion and the aerodynamic force (a general-
ised force, appropriate to the mode of response in question, taking the form of a weighted integral of
pressures over the structure). One relationship is obtained from the equations of motion of the structure;
and since the flow field is uniquely dependent upon the past history of wing motion we can, in principle,
deduce a second relationship between wing motion and aerodynamic force from the equations of motion for
the fluid. The joint time variation of wing motion and aerodynamic force may then be deduced as that com-
patible with these two independent relationships. The closed-loop system may be referred to as 'autono-
mous' or 'self-excited' and the motion takes the form of a limit cycle. Whilst the structural response
can often be adequately defined using linear equations, the fact that two INDEPENDENT functional relation-
ships exist between aerodynamic force and wing motion requires that the aerodynamic feedback loop be non-
linear (we exclude the trivial case where the closed loop fluctuations take the form of sinusoidal oscil-
lations of a linear system in neutral equilibrium). We will refer to all such types of motion as
NONLINEAR FLUTTER.

A particular type of autonomous oscillation, the case of single-degree-of-freedom flutter, has been
discussed in some detail by Lambourne6. Many examples of this phenomenon can be described approximately
by a second-order differential equation in which a nonlinear damping, or in-quadrature, term is negative
for small amplitudes but positive for large amplitudes. One simple example of such motion concerns the
behaviour of smoke stacks and has been described by Scruton?. The representation of such behaviour using
differential equations with amplitude-dependent rate terms is, however, in general an oversimplification
based on the assumption that a single sinusoidal harmonic dominates the motion. More generally, the past
history of motion needs to be taken explicitly into account because of its effect on the aerodynamic force
through the current distribution of vorticity in the fluid. In this situation the system cannot be des-
cribed by differential equations, integral terms with respect to time being required. Such representa-
tions,, involving forces dependent upon the past history of motion, may be given a unified treatment using
the theory of 'functionals'. This point of view is adopted, in particular, in Refs.8 and 9. Its practical
value lies largely in the clarification of the significance of various approximations. For example, the
usual treatment of aircraft stability in terms of 'aerodynamic derivatives' may be derived from a formula-
tion in terms of functionals by means of a Taylor series expansion of the functions involved. Alternativ-
ely, we record that some success has been obtained10'11 by making use of an approximation in which
integral terms, representing time-lag effects, are concentrated into one single time lag.

A second representation of the interaction between fluid motion and wing motion arises in the case
where the flow field is random, differing flow time-histories following from identical realisations of
wing motion. The appropriate system formulation then takes the form illustrated in Fig.lb where two com-
ponents of aerodynamic force are shown separated, one determined by, and one independent of, wing motion.
Two particular cases of this formulation may be distinguished. In the first case the combination (indi-
cated in Fig.Ib by a dashed line) of structural response and motion-dependent aerodynamic force forms a
stable system which, left to itself, would settle down to a state of equilibrium. In conjunction with the
motion-independent component of aerodynamic force this is the FORCED VIBRATION model for the interaction.
The motion-dependent aerodynamic force may be linear or nonlinear. In the second case the feedback loop
itself produces self-excited oscillations (for which nonlinearity of the motion-dependent aerodynamic
force is an essential condition) and we have the situation of an essentially autonomous system disturbed
by random noise. Whilst this latter theoretical model is at present little used in practice it is
required conceptually if we wish to consider a continuous transition between aerodynamically forced
vibration and nonlinear flutter.

In practical applications of the forced-vibration model (Fig.lb) the motion-dependent force is
generally taken to be linear. In addition, several further assumptions are often made which require
critical examination. For example, it is usually assumed that the aerodynamic excitation, or motion-
independent aerodynamic force, is relatively wide-band with a power spectral density that is approximately
constant over the effective bandwidth of response. As reviewed in Refs.l and 2, this assumption enables
the total damping of the closed-loop system to be simply deduced from the power spectrum (or autocorrela-
tion function) of wing motion (Fig.lb). A method commonly proposed to obtain the power spectrum of aero-
dynamic excitation is to make measurements on a rigid (non-moving) wing with identical geometry. However,
the assumption that the aerodynamic excitation of the structurally responding system is the same as the
aerodynamic force on a rigid (and rigidly-mounted) wing is itself a further hypothesis. For, whilst the
aerodynamic excitation of the system illustrated in Fig.lb is 'motion-independent' in the sense that it
may be regarded as an 'external noise generator', the STATISTICAL PROPERTIES (such as power spectral
density) of this force may in principle depend on the mean amplitude of structural motion. This possibil-
ity appears to have been first discussed in Ref.12. Since we cannot necessarily simply relate the aero-
dynamic forces on the responding wing illustrated in Fig.lb to forces measured on a rigid wing (or for
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that matter relate the forces on two structurally-responding wings with differing structural properties)
the question arises as to how the separation into 'motion-dependent' and 'motion-independent' components
of aerodynamic force may be made conceptually. The only measurable quantities on the responding wing are
the fluctuating pressures on the structure, which may in principle be integrated to give the total aero-
dynamic force, and the structural motion. However, nothing about the decomposition of aerodynamic forces
can be learnt from the relationship (e.g. cross-correlation) between total aerodynamic force and wing
motion, as this relationship is completely determined by the transfer function representing the response
of the structure (Fig.lb). A similar comment applies to the cross-correlation of wing motion and individ-
ual fluctuating pressures at points on the wing: such a cross-correlation function in general depends on a
combination of the 'transfer function' representing the motion-dependent aerodynamic pressure field and
the transfer function representing the structure (see Ref.2). Consequently, in principle, the only way
to separate the motion-dependent and motion-independent components of aerodynamic force on a structurally-
responding wing is to introduce an external 'test-signal' (such as an additional force, Fig.2). Such a
signal must be large enough to produce measurable components both in total aerodynamic force and in wing
motion, and yet, in order not to change the quantities being measured, not so large as to significantly
alter the mean amplitude of wing motion. As described in section 6 (see equation (17)) the aerodynamic
transfer function relating the motion-dependent aerodynamic force to the motion of the wing may then in
principle be identified as a ratio of cross-spectra. (Note: if the system is in fact linear, this method
will quantitatively identify it. If it is nonlinear, the method will identify5 the best linear fit, in a
mean-square error sense, or 'linear describing function'.) It should be emphasised that the use of a test
signal has been introduced here as a conceptual device, to show that meaningful definitions of the two
components of aerodynamic force are possible. It is not suggested as a practical experiment, because of
both the difficulty of introducing and measuring such additional forces in wind-tunnel tests and the
uncertainties introduced in the integration of fluctuating pressures to obtain generalised aerodynamic
forces.

If we do make the assumption that the aerodynamic excitation may be obtained from measurements on a
rigid wing and are also able to obtain numerical estimates for the motion-dependent aerodynamic force
(of which, in the case of wing flexible response, the most significant component is usually aerodynamic
damping) the forced-vibration model provides the basis of a method for predicting the amplitude of the
closed-loop response on the basis of rigid-wing measurements (see Refs.l and 2). It is therefore also of
practical importance to know whether the existence of separated flow significantly affects motion-
dependent forces such as aerodynamic damping. There is now substantial evidence1*13'28 that there may be
a significant change of damping under these circumstances. For example, in the case of wing structural
buffeting at high subsonic speeds measurements indicate1 relatively large increases in aerodynamic damping
around the buffet - onset condition. A possible mechanism to explain this phenomenon, in terms of the
(quasi-static) variation with wing incidence of the area over which a leading-edge suction force acts, has
been proposed in Ref.13.

2.2 SOME RELEVANT MODELS FROM MECHANICS, PHYSICS AND ELECTRICAL ENGINEERING

As a guide to the range of theoretical models that are available to represent systems with a high
level of internal fluctuations we briefly review in this section some concepts and equations from mechan-
ics, physics and electrical engineering.

The simplest equation of randomly forced motion arises in physics in the Langevin form of the theory
of Brownian motion, where the velocity of a particle suspended in a viscous fluid obeys the equation of
motion

m |y. = - Cv + F(t) , (O
dt

where ? is a friction coefficient and F(t) is a fluctuating force associated with the thermal motion
of molecules. The ensemble average of the fluctuating force is zero, and its second moment is given
(employing standard notation) by the fluctuation-dissipation theorem

<F(t)F(t')) = 2kBT?6(t - t') . (2)
D

In the elementary theory of Brownian motion, F(t) is assumed to be a Gaussian process, so that it is
fully determined by the mean value and second moment. The relationship (2) between C and F(t) derives
from the fact that both £ (damping) and F (excitation) arise from collisions with surrounding
molecules.

More generally, the evolution of a set of dynamical variables |ak> has been described by a (linear)
generalised set of Langevin equations of the form

ds ) * (t - 3)3̂ (3) + Fk(t) , (3)

where F, (t) is again a fluctuating force with zero mean. The 'memory' kernels 4*^ describe the

current effect of the past history of the system and in the generalised theory of transport coefficients
are related to the F (t) by an extension of equation (2). We may introduce frequency dependent coef-
ficients Y»(u) by:
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j dt exp (- iu)t)«)>k£(t)

When the memory of the system is short, or

then the resulting J,,M are approximately independent of frequency and the set of equations (3) takes
the 'Markovian' (or memory-less) form

o7ak = <nw ' Yk*)a* + Fk(t)

Fk(t)

In the above, it is assumed that the sets of equations (3) and (4) represent stable systems. Thus, if the
excitation terms F (t) are dropped, the motion of the system decays and a state of equilibrium is
achieved.

The next step is to assume that the coefficients « , <f> , A. . are dependent upon a controlling

parameter A which influences stability. For a finite range of parameter values the system is assumed to
be stable and its structure is described by the above sets of (integro-) differential equations. At some
'critical' magnitude of the parameter, AQ , however, let us assume that the system becomes unstable.

The value X = \Q is then known as a 'bifurcation value' of the parameter4. (More generally, a
sequence of bifurcations X = AQ, A ] f \2 , may be defined.) As A passes through the value A a quali-

tative change occurs in the behaviour of the system. On the assumption that when A > A , the subsequent
motion remains bounded, one possibility is that, instead of decaying to a state of equilibrium (F = 0) or
fluctuating about the equilibrium state under the influence of forces of excitation (F =£ 0), the system
oscillates in a regular limit-cycle. A standard example, from electrical engineering, is the electron
tube oscillator. In the simplest case of soft self-excitation^1, the bifurcation then occurs as follows.
If the parameter A (in this case the parameter is the coefficient of mutual inductance between anode and
grid circuits) is sufficiently small (A < AQ) the circuit operates as'an amplifier and, if there is no
signal, one has the state of rest. If A increases up to the bifurcation value A = A the circuit is
just on the threshold between two modes of operation. For A > A a self-sustained oscillation appears
and its amplitude begins to grow with A . Minorsky4 illustrates the passage of A through its bifurca-
tion value A = A. by the following scheme:

•jjStable limit cycle

Stable singular point . .• ̂^

^kUnstable singular point

which justifies the term 'bifurcation'.

The phenomenon of hard self-excitation is similar except that the limit cycle appears suddenly as
soon as the boundary A = A is crossed; that is, its amplitude does not grow steadily from zero with
increasing A as in the 'soft' case.

More generally, bifurcation is possible from two types of stable equilibrium state. One possi-
bility is that for values of A < A , in the neighbourhood of the bifurcation value, the perturbations
about the stable equilibrium state correspond to complex values of the normal mode frequencies. The
equilibrium state is then a stable 'focus'; the loss of stability at A = A- is associated with loss of
damping and is referred to as 'flutter'. With appropriate nonlinearities, for A > AQ the system may
approach in time a periodic state (limit-cycle) whose characteristics are independent of the initial con-
ditions. The bifurcation then takes the particular form

i^Stable limit cycle

Stable focus ——<^T
^Unstable focus

The other possibility is that, for values of A < AQ in the neighbourhood of the bifurcation value,
the imaginary part of the relevant root vanishes. The equilibrium state is then a node. The loss of
stability is in this case associated with loss of stiffness and the condition at A = AQ corresponds to
onset of 'divergence'. With appropriate nonlinearities a stable equilibrium state may however exist for
values of .A > AQ (as in the buckling of struts). A characteristic of such an equilibrium state is its
asymmetry; in some cases we find two 'mirror-image' stable states (of. the buckled strut). We can again
use the terminology of 'soft' and 'hard' modes depending upon whether or not the bifurcation corresponds
to the establishment of nonlinear equilibrium configurations with continuously growing amplitude as A
increases beyond the value AQ . In the case of a conservative system the soft mode case may be
described by the continuous appearance of a pair of 'potential wells' (Fig.3).
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In our discussion of 'bifurcation from a focus', we stressed the importance of nonlinearity for the
establishment of a steady fluctuating state of limit-cycle form. Mention should also be made of the
possible influence of hysteresis on the existence of such an oscillation. For example, Lambourne15 has
described a type of limit-cycle, in the context of oscillations occurring with aircraft control surfaces
in transonic flow, where hysteresis in the form of 'switching' between two states of the flow field, plays
an essential role. This example is interesting as it describes a mechanism whereby divergence from an
unstable node (i.e. loss of stiffness) can lead to a state of oscillation. This mechanism, which depends
on the existence of asymmetric 'buckled' states which are statically stable but dynamically unstable, is
in fact closely related to the flutter of buckled panels described in Ref.16.

In the above discussion of bifurcations and their possible consequences, we have ignored excitation
terms such as the F (t) in equations (3) and (4). However, even if the Ffc(t) are of small amplitude,
their existence will have a significant influence when A approaches a bifurcation value AQ , in the
sense that a microscopic input to the system will lead to a macroscopic response. For instance, in
physical systems undergoing a phase transition, one often finds a dynamical mode the frequency^of^which
goes to zero at the transition and a soft mode appears. The existence of such a soft mode is intimately
related to the occurrence of 'critical' fluctuations of macroscopic amplitude. Moreover, for values of A
only slightly larger than AQ , the existence of such fluctuations can lead to the mean state 'jumping'
from one equilibrium configuration to another (e.g. between the two potential wells in Fig.3). The pro-
bability distribution for the state of such a system could thus be bi-modal with high probability densi-
ties near the two equilibrium configurations and relatively low elsewhere.

Another possible effect of the inclusion of excitation terms Fk(t) is the 'triggering-off' of a
'hard' mode before A has in fact reached the bifurcation value AQ . This phenomenon is associated with
the fact that for hard modes the range of amplitudes, in the vicinity of the equilibrium point, for which
the system is stable is limited and tends to zero as A ->• A0 . The existence of the excitation terms
F, (t) may thus serve to 'push the system over the edge' for a value of A < AQ .

Lastly, we briefly consider the theoretical modelling of systems performing autonomous closed-loop
oscillations in the presence of an additional source of random excitation which produces perturbations
about the basic limit cycle. In particular, we draw attention to the fact that, in cases where the basic
limit cycle may be described by (nonlinear) differential equations, quantitative analogies exist 17 between
the probability distributions for the state of the system and the distributions for memory-less linear
systems excited by random noise, such as those described by equations (4). Furthermore, just as a linear
system may become unstable as a controlling parameter A passes through a bifurcation value AQ , leading
to a qualitatively different mode of operation of which a limit-cycle is one possibility, so a limit cycle
may itself become unstable at some subsequent bifurcation value \} > AQ , leading to further qualitative
changes in system behaviour. In the presence of additive noise, systems performing autonomous oscilla-
tions can exhibit 'critical' fluctuations (analogous to those described earlier) in the vicinity of such
bifurcation values. Ref.17 refers 'to recent examples from physics and electronics where dissipative
systems performing autonomous oscillations have bifurcation phenomena which are entirely analogous to
ordinary phase transitions and which may be accompanied by soft modes and critical fluctuations.

The basic equations describing the operation of such an oscillating system in the presence of noise
have been presented by Stratonovich18, who relates the probability distributions for amplitude and phase
to the corresponding distributions applicable to linear systems of the type defined by equation (4). The
latter, having no memory effects, are known as Markov processes; for such systems, provided that the cor-
relation time of the noise excitation Fk(t) is extremely short, the evolution of the state of the system
from a known initial value may be determined as a time-dependent (conditional) probability distribution.
This conditional probability distribution can be found as the solution of a related partial-differential
equation known as a FOKKER-PLANCK equation (although alternative techniques do exist and have been used in
the context of transient aircraft buffeting^). What Stratonovich18 showed is that the Fokker-Planck
method also applies to the time evolution of fluctuations in amplitude and phase of a nonlinear oscillator
under the influence of external noise. In particular, the probability distributions describing fluctua-
tions in amplitude and phase about a steady-state limit cycle may be found. This result is relevant to
the possible future generalisation of methods of parameter identification to cover the situation of systems
modelled by 'noisy' limit-cycles.

In the light of the above outline of available theoretical models, we will in the following sections
go on to consider separately buffeting associated with the structural response of a flexible wing and air-
craft rigid-body motions influenced by the existence of separated flow.

3. STRUCTURAL BUFFETING OF A FLEXIBLE WING

In the case of structural buffeting of a flexible wing it is usual to assume that a linear 'forced
vibration' model, with aerodynamic excitation obtainable from rigid-wing measurements, is applicable.
Then the model equation takes the form of equation (4), where the excitation Fk(t) arises as a result of
the unsteady state of the flow field, associated with existence of separated flow. Taking wing angle-of-
attack to be the controlling parameter (A in the previous section), it is assumed that no bifurcation
associated with the loss of stability of the system represented by this model equation occurs within the
angle of attack range considered. However, it should be noted that the onset of buffeting, represented in
the model by the growth to macroscopic magnitude of the exciting force Fk(t) , may itself be regarded as
a form of generalised bifurcation within the subsystem consisting solely of the flow field (note that the
associated 'loss of stability' then refers to the hydrodynamic instability of separated flow and is
independent of the motion of the wing).

In this section we review the manner in which the forced vibration theoretical model may be applied
to the phenomenon of buffeting. Before doing so, however, we emphasise that the limits of applicability
of this approach are in need of further experimental clarification, particularly by the comparison of
fluctuating pressures and forces on structurally-rigid and flexible wind-tunnel models of wings of similar
geometry (a discussion of this comparison is presented in Refs.l and 2). It is likely that the applicabil-
ity of this theoretical model will be limited at high-subsonic and transonic speeds in the case of flexible
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modes which^cause significant wing-incidence variations, as there is evidence25 that oscillatory wing
motion may in such situations couple in a nonlinear manner with fore-and-aft motion of the shock wave
leading to a form of nonlinear flutter (requiring a limit cycle representation). For a wing at small
sweep angles, this suggests that the model will probably be valid for wing bending but possibly not for
wing-torsion modes. In the case of a highly-swept wing the situation is less clear-cut, as .the bending
and torsion modes may each contribute significantly to wing incidence changes.

The forced vibration linear analytical model for response in a flexible mode may be expressed in
terms of a generalised co-ordinate Z(t) , representing the displacement in that mode, and a generalised
aerodynamic excitation x(t) assumed to have no feedback from wing motion (see Fig. 4). Z(t) should be
multiplied by the mode shape to obtain the displacement at an arbitrary point on the wing. The aero-
dynamic excitation x(t) has a power-spectrum which depends on cross-spectra of fluctuating pressures
over all pairs of points on the wing, weighted by mode shape. The power spectral density *x(f) of x(t)
is assumed to be approximately constant in the neighbourhood of the mode natural frequency fQ = UQ/2'" •
When relating measurements on a model in a wind tunnel to full scale, assumptions have to be made con-
cerning the appropriate scaling factors. On the hypothesis that Reynolds number effects are negligible,
the mean-square fluctuating force x2 scales like (qS)2 , where q is dynamic pressure and S wing
area, and the appropriate length and velocity parameters for scaling frequency are a geometric length
(e.g. mean wing chord c) and true airspeed V .

On this basis the power spectral density of aerodynamic excitation may be expressed in the form

2-

where E is a non-dimensional aerodynamic parameter, a function only of wing incidence, Mach number and
Reynolds number.

The response in the single-degree-of-freedom mode is defined by the differential equation:

ffljZ + 2m)Cu0Z + nijiOgZ = x(t) . (6)

By standard state-space techniques this second-order equation in one dynamic variable may be replaced by
two first-order equations involving two dynamic variables (e.g. Z and Z ) and thus cast into the form
of equation (4) .

In equation (6), m^ is the equivalent (generalised) mass of the mode, given by

m, = kjm (7)

where m is the total mass of the aircraft and kj is a non-dimensional quantity that depends on wing
geometry, mode shape, and mass distribution. The undamped natural frequency u>0 (in rad s~') is assumed
to be independent of aerodynamic forces (stiffness and inertia). This simplifying approximation, together
with the neglect of aerodynamic coupling between modes, appears on the basis of experimental data to be
acceptable in many practical buffeting situations. It assumes, of course, that we are well away from any
boundaries of conventional flutter. ? (equation (6)) is the total damping ratio,

where t,^ is aerodynamic damping ratio and C is structural damping ratio (this assumption of a viscous
type of structural damping simplifies, but is not essential to, the analysis).

The aerodynamic damping ratio is given by

2lVaU0 = k2alPVS , (8)

where a) is effective lift-curve slope (evaluated at the non-dimensional mode frequency n^ = f c/V) .

k_ is a non-dimensional quantity that depends on mode shape, p is air density.

2
The term m^n in equation (6) represents the structural stiffness.

Then a power-spectral-density (PSD) , analysis gives the root-mean-square acceleration associated with
the mode as

It follows from equation (9) that the non-dimensional aerodynamic excitation parameter E is given by
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The quantity ^a-/q thus appears as a useful measure of aerodynamic excitation derivable from measured
acceleration response and total damping ratio. Equation (9) illustrates the quantities required in a
theoretical buffeting prediction method based, for example, on wind-tunnel measurements. For an aircraft
flying at given wing loading, speed and altitude, the aerodynamic-dependent quantities are E and 5 .

One method for the evaluation of E involves the measurement of fluctuating pressures on relatively
rigid wind-tunnel models and the derivation of the generalised force by means of cross-correlation
techniques25'2^'27. Alternatively, E may be derived from wind-tunnel tests on the basis of equation (10)
using models for which the relevant mode shape is approximately correct (note that fully-scaled aeroelastic
models are not necessary). To obtain E from equation (10), wind-tunnel measurements of Og and total
damping ratio are required, together with a knowledge of mode natural frequency UQ and generalised mass

m' '
The other quantity required in a buffeting prediction method, based on equation (9), is the value of

the total damping ratio appropriate to the full-scale aircraft. As described in section 2.1, the investi-
gation of effects of separated flow on the aerodynamic component ?a of damping ratio is a subject of
current research.

Perhaps the most promising approach to the problem of predicting aerodynamic damping, for use in con-
junction with the forced-vibration model of buffeting, equation (6), is that based on the use of static
experimental data as an input, as suggested in Ref.13. Qualitative agreement with measured changes in
damping of the wing-bending mode in the vicinity of buffet onset have been shown using this approach,
although good quantitative predictions have still to be demonstrated.

The least-well understood aspect of structural buffeting of a flexible wing concerns the response in
wing torsion modes at high-subsonic and transonic speeds. There is substantial evidence that fore-and-aft
shock motion tends to couple with torsional oscillations of the wing, providing a strong mechanism by
which the flow fluctuations occurring on a rigidly-mounted wing might be fundamentally modified. Indeed,
if the flow-field essentially 'locks-in' to the wing torsional motion, the forced-vibration type of
analytical model for buffeting (equation (6) or, more generally, equation (4)) is no longer appropriate
and the phenomenon becomes a type of nonlinear flutter. The appropriate model then takes the form of a
limit cycle, probably with a significant amount of additive noise (an analytical model described at the
end of section 2.2). This is an area where considerable further work remains to be done.

4. FLUCTUATING RIGID-BODY MOTIONS OF AN AIRCRAFT

4.1 INTRODUCTORY REMARKS

We turn now to aircraft fluctuating motion, associated with wing separated flow, in rigid-body
response modes. The frequencies involved are lower than those associated with airframe flexible response,
and can have a direct effect on the controllability of an aircraft and the ability to hold an accurate
flight path. From the pilot's point of view, whereas aircraft flexible response may be said to influence
'ride-quality', rigid-body fluctuating motion also adversely influences 'handling-characteristics'. The
most important example of rigid-body response in this context is the lateral fluctuating motion known as
'wing-rocking' which is known to have a detrimental effect on air-to-air tracking capability. In some
situations, however, longitudinal rigid-body motion plays a significant role, either in the form of pre-
dominantly longitudinal motions or by coupling with the lateral degrees of freedom.

In the following, we illustrate the use of the mathematical models of fluctuating motion outlined
in section 2 for the separate cases of predominantly longitudinal and lateral aircraft response.

4.2 LONGITUDINAL MOTION

Pilot descriptions of aircraft fluctuating motion at high lift include the expressions 'bounce1 and
'porpoising'. These refer to types of longitudinal motion at frequencies primarily influenced by aircraft
rigid-body modes. The former is a description of a type of motion perceived as fluctuations at about
2-3 Hz in normal acceleration. The latter, porpoising, probably involves both normal acceleration and
pitching motion and takes place at a rather lower frequency.

From the pilot's point of view there is probably no clear distinction between the types of motion
mentioned above and aircraft buffeting that takes place primarily through the response of the flexible
structure. However, for the purposes of theoretical analysis, the appropriate response mode for calcula-
tions of buffeting intensity (in terms of normal acceleration) depends upon the frequency range in which
the response is to be evaluated. In section 3 we showed how buffeting can be modelled as wing flexible
response. However, if we are concerned with response fluctuations at frequencies below that of the first
wing-bending mode (say below about 7 Hz on a combat aircraft) it is more appropriate to consider aircraft
rigid-body motion. Moreover, if we are concerned with buffeting in the vicinity of the nodes of the first
wing-bending mode (and the pilot may sit at a point where the amplitude of wing-bending response is
relatively small), a significant part of the energy in the frequency range up to approximately 10 Hz could
appear as a rigid-body motion.

A simple approximation to longitudinal rigid-body aircraft motion may be derived by neglecting
pitching motion and considering the response in heave (translation) only. Fig.5 illustrates the block
diagram for the heaving motion (of an aircraft with mass m and wing area S) modelled in this manner
(a special case of Fig.lb). The total aerodynamic force G(t) is expressed as the sum of two components,
a fluctuating aerodynamic excitation F(t) having no feedback from aircraft motion, and an aerodynamic
damping contribution expressed in terms of lift slope 'a'. The corresponding differential equation is

= F(t) , CO
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where w(t) is aircraft heaving velocity. This simple first order equation is a particular instance of
equation (4). ^The equivalent transfer function equation describing the effect of F(t) on normal
acceleration w(t) is

where s = d/dt

A = m

B = JpVSa .

A 'break frequency', related to the time constant of the above first order equation is given by

~f = if • 03)
For frequencies above f , the effect of damping on the heaving acceleration dw/dt becomes small.
Moreover, the effect of unsteady aerodynamics reduces the influence of damping still further at high
frequencies. On the assumption that the power spectral density 4p of F is constant over the frequency
range of interest, and introducing a dimensionless parameter E , dependent only on flow geometry, we may
write

*F = v-E2^8)2 • (14)

The root^mean-square intensity of acceleration corresponding to an arbitrary fixed pass band above fre-
quency f then satisfies the proportionality:

°w ~ A °F

/c ) qE
~lv/ mVs ' OS)

As a numerical example, we take a typical small military aircraft, say

m/s = 60 Ib ft"2

lift slope a = 4.0

Mach number = 0.7

altitude = 10000 ft

then

f = 0.2 Hz .

At frequency f the effect of damping is to reduce the amplitude of fluctuating acceleration to
about 66% of its value without damping. However, at frequencies above 1 Hz, the acceleration amplitude is
at^least 97% of its undamped value. Thus, in situations in which heaving motion makes a significant con-
tribution to buffeting intensity, for example at positions very close to wing-bending nodes at frequencies
in the range 1-10 Hz, the effect of aerodynamic damping is negligible and buffeting intensity satisfies
equation (15). A particular consequence is that at a given value of E , for example for flight at con-
stant incidence on the assumption that Reynolds number effects are negligible, the buffeting response, at
fixed Mach number and within a fixed frequency range, is directly proportional to excitation and hence to
q , and thus at constant true airspeed varies linearly with air density p . Allowing for changes in air-
speed with altitude the variation is approximately with p'-2 . This contrasts2 with the case of response
in a flexible mode, where buffeting intensity at constant airspeed is proportional to pi ; allowing for
changes in airspeed with altitude this becomes pO.6 .

The analysis presented in this section is the rigid-body equivalent of the forced-vibration type of
analysis used for wing structural response in section 3. However, it should be noted that in the case of
aircraft rigid-body motion it is more likely that the effects of nonlinear mean aerodynamic forces become
significant. In particular, the regularity of the 'porpoising' motion suggests that the possibility of a
limit-cycle (nonlinear flutter), in which the periodic fluctuations in the flow field become coupled
deterministically to the motion of the wing, cannot be ruled out.

4.3 LATERAL MOTION

The principal undesirable rigid-body motions in the context of handling characteristics of combat
aircraft at high lift are the wing-rocking, wing-dropping, and nose-slice phenomena already referred to.
Wing-rocking should be distinguished from wing-dropping and nose-slice in that, whilst the latter two
may present a major hazard, possibly leading to loss of an aircraft in extreme circumstances, wing-rocking
should generally be regarded more in terms of nuisance, degrading weapon aiming accuracy but not neces-
sarily limiting sustained manoeuvres. Whereas wing-dropping and nose-slice are relatively well understood
phenomena, taking the form of a divergence associated with loss of lateral or directional stability
(bifurcation at a node), the provision of an appropriate theoretical model for wing-rocking is an out-
standing problem. A principal objective is a means for relating the dynamic motion of the full-scale air-
craft to measurements that can be made using rigidly-mounted wind-tunnel models.

Two basic types of analytical model exist for wing-rocking, analogous to the systems illustrated in
Figs, la and Ib, one representing an autonomous oscillation, or limit-cycle, and the other an aerodynamic-
ally forced response. If wing-rocking takes the form of an autonomous oscillation, the system is unstable
over a limited range of amplitudes, but constrained to motion of finite amplitude through the existence of
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nonlinear aerodynamic forces. (We use the expression 'unstable' (above) in a broad sense to cover both
dynamically-unstable equilibrium configurations and asymmetrical configurations which are not even in
static equilibrium.)

The simplest analytical models for the case of autonomous oscillations exclude hysteresis and/or
time-lag effects and are related to bifurcation from a focus (change from positive to negative damping).
If it is required to model conditions of sustained wing-rock, in which the oscillations continue with
approximately constant amplitude, a nonlinear model is called for. It may be necessary to include a
source of additive noise as a means of introducing small perturbations about the basic limit cycle. If,
however, it is required to model conditions of transient wing-rock, terminated by the pilot reducing the
aircraft angle-of-attack, then it may be sufficient to employ linear equations (with negative damping) to
describe the rate of growth of the amplitude of oscillations. The existence of additive noise is again
likely to distort the oscillatory motion, particularly in the initial phase when the amplitudes are small.
Tests with wind-tunnel models are in principle capable of predicting the onset of this class of motions
through the indication of a loss of aerodynamic damping. For this application, the aerodynamic measure-
ments should be made on a complete model so as to include effects of wing separated flow on the rear-
fuselage or tail. However, the prediction of the nature of the motion subsequent to initial oscillations is
much more difficult. If it is desired to predict the complete wing-rocking motion as an autonomous
oscillation then the aerodynamic forces (including those dependent on aircraft rates of motion) need to be
known as functions of aircraft angular displacements, and account should also be taken of the possible
existence of hysteresis, for instance in rolling-moment measurements. This type of prediction has not as
yet been attempted, and indeed it is clear that a complete analysis would be one of some complexity.

The alternative possibility is that wing-rocking takes the form of an aerodynamically-forced vibra-
tion, excited by fluctuating aerodynamic forces which are independent of wing motion. Fluctuating rolling-
and yawing-moments have in the past been observed on rigidly-mounted wind-tunnel models, but it is not
known under what circumstances coupling (locking-in) between flow field and motion takes place in the cor-
responding dynamic situation. On the assumption that significant random force or moment components per-
sist throughout the motion, the analytical model then resembles in general structure that used to describe
buffeting (section 3), an aerodynamic excitation force, analogous to Fk(t) in equation (4), producing
fluctuations in the response of an essentially stable system. A variant of this model occurs in the case
of 'critical fluctuations of a soft mode' (section 2),-where the approach to a condition of disappearing
stiffness leads to an amplification of the forced response.

Experience with a range of high-performance aircraft over the past few years has provided a wide
variety of illustrations of the types of phenomena outlined above. Examples include loss of lateral
stiffness (bifurcation from a node), due largely to changes in the nv derivative, leading to 'yaw-off
or 'nose-slice', loss of Dutch roll damping (due for instance to changes in the Up and np derivatives)
leading to wing-rock20 (bifurcation from a focus), and a case of wing-rock where no loss of stability is
apparent from the measured stability derivatives and the phenomenon has thus been regarded as a 'forced'
motion, associated with a randomly fluctuating wing flow-field. It is clear that no single parameter, or
combination of parameters, can provide a measure for aircraft handling qualities at high angle of attack.
In some cases the phenomenon of wing-rock Is regarded by pilots as non-repeatable, in the sense that the
same aircraft flown by the same pilot in apparently the same conditions may or may not exhibit wing-rock.
The explanation may be that rolling-moment behaviour is sensitive to small changes in sideslip angle of
which the pilot is not aware. A further complication is the effect on stability of pilot control inputs.
For example, in the absence of control forces the parameter controlling Dutch roll stiffness is
nv - sin a Ji. iz/ix , known as 'dynamic nv '. However, the use of ailerons by the pilot, in an attempt to
keep wings level, can lead to divergence at a lower angle of attack on account of the yawing moments
introduced by aileron deflections.

5 RELATED TOPICS

The concepts used in prescribing appropriate analytical models for the fluctuating motion of a wing
in the presence of separated flow are applicable in a more general range of situations. An instructive
example is that of a circular cylinder, transverse to the mean-flow direction, shedding a regular vortex
street. In the case of a rigidly-mounted cylinder, despite the high degree of order in the vorticity
distribution, we have an example of a 'random' flow field, since the phase of the flow fluctuations is not
determined by the boundary conditions. However, if the cylinder is mounted on elastic supports so that it
is free to respond dynamically in a direction transverse to the flow, the phase of the flow fluctuations
may become deterministically related to the cylinder motion if the structural stiffness is chosen so that
the cylinder natural frequency lies sufficiently close to the vortex shedding frequency. When this pheno-
menon occurs, the coupled motion is appropriately regarded as a limit cycle and measurements of pressures
and forces on the rigidly-mounted cylinder cannot be sensibly related to the motion of the dynamically-
mounted cylinder by 'forced-response' calculations.

In the above situation we may say that the cylinder is 'structurally responding'. A related experi-
ment may be performed in which the cylinder is 'externally forced', by means of imposed constraints, to
perform sinusoidal oscillations of prescribed amplitude and frequency. Again, if the amplitude of motion
is sufficiently large, and the forcing frequency (Strouhal number) lies in the neighbourhood of the
natural vortex-shedding frequency, the phase of the flow fluctuations may become controlled by the cylin-
der motion. These are extreme examples of the phenomenon that a changeover from a 'random' to a 'deter-
ministic' flow field, and a corresponding necessary change in the nature of associated dynamic response
calculations, can occur as the mean amplitude of structural motion increases.

Brief mention may be made here of the related topic (in that it involves flow fluctuations and wing
motion) of panel vibration. Instead of fluid motion involving separated flow, the problem usually studied
involves the motion of a panel in the presence of a fluctuating turbulent boundary layer. A commonly used
procedure is to measure fluctuating pressures on a rigid panel, and to use these in conjunction with aero-
dynamic damping estimates to calculate the motion of a flexible panel as an aerodynamically-forced
response. Alternatively, the panel oscillations sometimes occur as nonlinear flutter. These alternatives
have been discussed in Ref.21. In the latter case the larger-scale boundary-layer fluctuations, which are



random on the rigid panel, become coupled deterministically to the panel motion. The theory of Landahl22,
in which the large-scale turbulence components in a boundary layer on a rigid wall are calculated as the
most lightly damped eigenmodes of the associated linear stability problem, suggests that a form of non-
linear coupling could arise in which the large scale fluctuating components in the turbulent flow past a
flexible panel are related to the eigenmodes of the linear stability problem including wall flexibility.
This is only to suggest possibilities, however, as the theory for large-scale turbulence fluctuations has
not yet reached any generally accepted form, a fact which serves to emphasise that the type of problem
discussed in this paper can at present only be treated by semi-empirical analytical theories.

6. . PARAMETER IDENTIFICATION FOR SYSTEMS WITH A HIGH LEVEL OF INTERNAL FLUCTUATIONS

6.1 GENERAL REMARKS

The main purpose of this section is to serve as a reminder of the pitfalls that can arise in the
process of parameter identification if a system with internal fluctuations is treated, as regards the
relationship between system 'input' and 'output', as if it were deterministic. More precisely, we shall
be concerned with parameter identification for a system that is coupled, in a closed-loop manner, to other
dynamic components. The general situation is illustrated in Fig.6 where the system whose parameters we
wish to identify, system A, is coupled to a second system B. From the point of view of system A the
function of time e(t) is the 'input' and c(t) the 'output'. We shall consider only the most straight-
forward case where system A can be represented by a linear transfer function P (or equivalent set of
ordinary differential equations) together with a source of internal fluctuations n(t) . As illustrated in
Fig.6 the second system B (also assumed to be linear) may itself contain an internal source of fluctua-
tions, i(t) . Two practical realisations of the general situation illustrated in Fig.6 will be discussed.
Firstly, we note the resemblance between Fig.6 and Figs.lb, 4 and 5. In these cases the parameters (to be
identified) of system A are aerodynamic force coefficients, and the noise source n(t) arises from the
randomly fluctuating separated flow field. The coupled system B then represents the elastic (Fig.4) or
dynamic (Fig.5) response of a wing. From the viewpoint of system A, the input e(t) describes the motion
of the wing in the mode of interest, and the output c(t) represents the associated generalised force
arising as a (possibly weighted) integral of aerodynamic pressure fluctuations. In this context, we have
not previously considered the case where the system B also contains a source of fluctuations; such a
source occurs, for example, if the wing motion e(t) contains a component independent of aerodynamic
forces, for instance due to mechanical vibration arising from the aircraft propulsive system.

The second example concerns the theoretical representation of a human controller, or operator, per-
forming a single-axis closed-loop control task. For some applications it is sufficient to represent the
human operator by a linear transfer function, or describing function, together with a noise source or
'remnant'. The overall situation is then as illustrated in Fig.6, with system A corresponding to the
human operator and system B to the system he is controlling. We will consider an example in which it is
desired to identify the human operator parameters when controlling a system with rate response.

6.2 REVIEW OF THEORETICAL RESULTS

Consider first of all the open-loop situation illustrated in Fig.7. Since the loop is open, the
internal noise source n(t) is uncorrelated with the input signal e(t) . In this case we have5

P - ̂  (16)
e,e

where 4e c is the cross spectral density of the signals e(t) and c(t) and *e,e is the power
spectral density of e(t) .

Next consider the closed-loop situation illustrated in Fig.6. In this case, one way of determining
the linear transfer function P is from the ratio of two cross spectral densities5

4.
i.e

(17)

Note, however, that this formula requires the measurement of the signal i(t) and is only valid within
the frequency range of i(t) . Outside this range the formula (17) for P becomes indeterminate.
Suppose now that in the closed-loop case we define the transfer function analogous to that given by
equation (16):

p- = -£*£ . (is)
e,e

Then , P' is the linear transfer function which, with input e(t) , minimises the mean-square difference
between its output and c(t) . In this sense it is the 'best linear transfer function' from e to c .
This result will be important when we come to consider the analogue matching technique for parameter
identification (section 6.4).

The next step is to relate P' to the transfer functions P and S of systems A and B respectively
(Fig.6). We first consider two special cases in which e(t) and c(t) are deterministically related.
Fig.Sa illustrates the case where system A contains no source of internal fluctuations, i.e. n(t) = 0 .
In this case we have

c = Pe (19)

(where the right hand side can be interpreted as either a product in the frequency domain or a convolution
in the time domain). Since P' is the 'best linear transfer function' from e to c we evidently have
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in this case
P' = P . (20)

Alternatively, Fig.Sb illustrates the case where the second system B contains no source of fluctuations
and may thus be completely' represented by a (linear) transfer function S . The overall coupled system is
thus excited by the internal fluctuations of system A. Then we have

e = Sc

or equally

(2!)

By the argument used to obtain equation (20) we have in this case (provided that the transfer function
1/S is physically realisable):

(22)

5 23
Equations (20) and (22) are in fact special cases of a general result applicable ' when both internal
noise sources n(t) and i(t) are non-vanishing:

(23)

where ^4 \ and ^4 \ are those components of the spectral density of e which are correlated with
I ee/i » ee'n

i and n respectively. The form that P' takes in a particular example is discussed in section 6.4.

From the above general analysis we see that, when a system with a significant level of internal
fluctuations is coupled into a closed loop, it is not in general possible to identify its parameters in
the usual manner from records of its 'input' and 'output'. The result of such an operation is to identify
the parameters of the transfer function P' which in general (equation (23)) depends both upon the para-
meters of the system of interest and upon the properties of the remainder of the loop.

6.3 CONTRAST BETWEEN STRUCTURALLY-RESPONDING AND EXTERNALLY-FORCED WING MOTION

As an illustration of the way in which the relation between 'input' and 'output' of a system with
internal fluctuations can depend upon the manner in which it is coupled into a closed-loop, we consider
the aerodynamic force associated with the motion of a wing under conditions of separated flow. The system
'input' is the motion of the wing and the 'output' is the aerodynamic force, obtained as a weighted
integral of aerodynamic pressures. The mutual interaction between such a system and the structural res-
ponse of a wing is an essential part of the phenomenon of buffeting (Fig.4). In cases where the wing
motion arises entirely as a result of aerodynamic forces we will refer to the wing motion as structurally-
responding' (Fig.9b). This situation should be contrasted with that which occurs when the time history of
wing motion is externally imposed by means of additional forces (as a wing surface might be forced to
follow some prescribed time history in a wind-tunnel experiment). The relationship between wing motion
and the resulting aerodynamic force (weighted integral of aerodynamic pressures) is then as illustrated in
Fig.9a, the result of externally-imposed constraints being to destroy any influence of the aerodynamic
pressure field (and the associated aerodynamic force) on wing motion. In such a case we will refer to the
wing motion as 'externally-forced'.

As either type of wing motion may occur in wind-tunnel experiments it is instructive to contrast the
relationships between wing motion and aerodynamic force (or pressure field) in the two cases. The prin-
ciple result is that, provided the buffeting response takes the form of a forced vibration (in contrast to
nonlinear flutter) the statistical characteristics of fluctuating pressures (and associated aerodynamic
forces) are fundamentally different even for identical time histories of wing motion.

For, in the case of externally-forced wing motion, the ensemble (family) of fluid motions corres-
ponding to a given time history of wing motion consists of all those flow field compatible with the
boundary conditions imposed by the wing surface velocities (Fig.9a). In the case of a structurally-
responding wing, however, there is a smaller ensemble of compatible fluid motions consisting of that sub-
set of flow fields which satisfy IN ADDITION the relation between aerodynamic force and wing motion
imposed by the equation for structural response (Fig.9b). Since the aerodynamic force is obtained as an
integral over the wing involving pressure fluctuations and mode shape, in the case of a structurally-
responding wing there is an additional integral constraint enforced on the ensemble of possible flow
fields. A particular consequence is the difference in statistical properties of the fluctuating pressure
fields, and associated aerodynamic forces, on externally-forced and structurally-responding wings. This
difference was illustrated by means of a numerical example in Refs.l and 2. In this example Z(t) rep-
resents the motion of a wing and y(t) the associated total aerodynamic force when the wing is structur-
ally responding in an elastic mode (as in Fig.4). The power spectra of Z(t) and y(t) are illustrated
in Fig. 10. It can be seen that whilst 4Z has a peak at the resonant frequency of the mode, 4y has a
corresponding region of low spectral density (a 'notch' in the spectrum) associated with the mutual can-
cellation of the aerodynamic forcing and damping fields.

Suppose now that the wing is constrained, by means of externally-imposed forces as in Fig.9a, to
reproduce the time history Z(t) . The power spectrum 4Z will thus be unaltered. However, Z(t) will
now be completely uncorrelated with the random component of aerodynamic force (x(t)_ in Fig.4).
It can then be shown'>2 that the spectrum $y of the resulting aerodynamic force y(t) (obtained as a
weighted integral of fluctuating pressures) differs from 4y as illustrated in Fig.10, having a peak
related to that in 4z •
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In Ref.2 the consequences of the above result for the interpretation of fluctuating pressure measure-
ments from full-scale flight tests and wind-tunnel experiments are discussed. It is concluded2 that the
interpretation of flight-test measurements is complicated by the delicate phase-balance existing between
the spatially-overlapping aerodynamic excitation and response fields (including aerodynamic damping). It
is also suggested2 that considerably more information may be obtained from wind-tunnel tests if fluctuat-
ing pressures on structurally-responding wings and on rigid wings with similar geometry are compared.

From the point of view of parameter identification, perhaps the most significant consequence of the
above analysis is that information concerning the aerodynamic transfer function, and in particular aero-
dynamic damping (Fig.4), can NOT be obtained (e.g. by cross-correlation) from the time histories of wing
motion and the associated aerodynamic pressure fields measured on a structurally-responding buffeting
wing.

6.4 HUMAN OPERATOR CONTROLLING A SYSTEM WITH RATE RESPONSE

We consider the situation illustrated in Fig.6 with system A corresponding to the human operator and
system B to the system he is controlling. Thus P is the operator describing function, or transfer
function, and n(t) the pilot 'remnant', or noise source, due to such things as sampling effects or
random errors of judgement of the 'error' e(t) . Alternatively, n(t) can be partly an intentional
signal injected by the operator as a means of monitoring the system response.

S is the transfer function of the system response to control signal c(t) . For instance, if we
assumed that the control of aircraft bank angle can be regarded as a single-loop task then we could inter-
pret the quantities in Fig.6 as follows: i(t) is the bank angle response to gusts, i.e. the time history
of bank angle that would result if no attempt were made to control. e(t) is the actual bank angle in the
controlled case. c(t) is pilot stick-force, related to aileron deflection. S is the transfer function
of aircraft response to pilot stick force. The pilot attempts to produce a bank-angle response to stick
force which opposes i(t) thus keeping e(t) , the actual bank angle, small.

Methods of parameter identification that have been used in the past to define the human operator in
terms of P and n(t) include

(a) cross power spectral analysis

(b) adaptive analogue model.

Advantages that have been claimed for the latter method are that it saves computational effort and
that it can be used for non-stationary processes, possibly in real time. The method of application is to
assume a model P* with several variable parameters. The error signal e(t) is fed to the model which
proceeds to adapt itself (by means of auxiliary loops) so as to minimise some functional such as the mean
square difference (averaged over some fixed time) between its own output c*(t) and that, c(t) , of the
human operator. Within the limitations of the assumed model form, the model is thus designed to adapt to
the 'best' linear transfer function from e to c , in a mean-square error sense. We are concerned here
with clarifying the effect of pilot 'remnant' or random noise n(t) on the adapted state of the (deter-
ministic) model.

As described in section 6.2, the best linear transfer functions from e to c in a mean-square
error sense is in fact P' , as given by equation (23). The model will thus adapt itself so as to give
the best fit of its assumed form to the linear transfer function P' .

A theoretical treatment of the case of a human operator controlling a system with rate response has
been given by Durand and Jex2^, whose results we quote here. The theoretical model is very simplified but
appears to be consistent with the main features of existing experimental data.

Durand and Jex's theoretical model is as follows . The closed-loop system is as illustrated in
Fig.6. The system response is given by

K
° - C T TD = 0.4 s . (24)s(T s V 1) AR

R

(The negative sign arises because the output from S opposes the signal i(t).) The assumed form for the
describing function of the human operator is taken to be

, T = 0.1 s . (25)
P

v

where T represents a time lag.

The power spectrum of the input disturbance i(t) is taken to be as illustrated in Fig.11 with
constant power I2 per unit band up to a cut-off frequency oi£ taken to have the value u^ = 1 rad/s .
The operator's noise n(t) is assumed to be proportional to his gain Kp and is taken in the form

n(t) = KpN(t) , (26)

2
where N(t) is assumed to have constant power N per unit band up to a sharp cut-off at un = 10 rad/s.
The input disturbance to noise power ratio is taken to be I/N = 30 . The results to be discussed are not,
in fact, very sensitive to the exact form of the operator noise, the only basic property being Chat it has
considerably greater bandwidth than the input noise. In practice the exact form of noise will probably
vary to quite a large extent from operator to operator.
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The assumed input spectra lead to a theoretical error spectrum (Fig.12) having two distinct peaks:
one at ui and one at the closed-loop natural frequency. As the operator increases his gain Kp to
reduce the external input errors, the assumed form of pilot noise implies that the noise errors increase.
In fact there will exist a theoretically optimum gain Kp which minimises the overall mean square error.
The resulting closed-loop frequency and damping ratio corresponding to this optimum gain turn out2'* in
this case to take values 3.3 rad/s and 0.2 respectively. This damping ratio is rather low but the above
parameter values are not inconsistent with existing experimental data. The corresponding components of
the error spectrum are illustrated in Fig.12. Note that the power in the error signal at around the
closed loop natural frequency is due to operator noise and is uncorrelated with the external disturbance
input. In general, of course, the input power spectrum would not be cut-off as sharply as shown in Fig.11
and as a result the components of 4ee would not be as distinct as in Fig.12. The low frequency peak
would be much less sharp and between the peaks would be a region where the contributions of j*ee}^ and

l*ool were of equal importance.
' ce 'n

Consider now the behaviour of the adaptive analogue model in this case. As explained earlier, the
model will adapt itself so as to give the best fit of the assumed model form to P' , where P' is given
by equation (23). It can be seen that in this case we have

P' = <

0 < a) < u.
i

s(T s + 1)
K •-•. < (i) < u .

(27)

K " i n
c

According to the (idealised) theory of Ref.24, this is the transfer function to which the 'pilot
analogue model' would adapt.

In practice, the input spectrum 4i£ (Fig.11) would not be cut off so sharply and hence i(t)
would have some energy at frequencies above uj . Thus P' , equation (23), would contain some contribu-
tion from P in the frequency range u > u>i . Nevertheless, in the neighbourhood of the closed-loop
natural frequency it is likely that the dominant term in P' would still be the contribution from 1/S .
We conclude that the parameters in the analogue model which most strongly influence response at the
closed loop natural frequency will tend to adapt so as to give a good match, not to the human operator
transfer function P but to the inverse of the transfer function S of the controlled system. A more
detailed discussion is presented in Ref.23, where it is argued that there will be a particularly strong
influence of 1/S on lead terms (i.e. coefficients proportional to s in the numerator) in the assumed
analogue model.

7 CONCLUDING REMARKS

We have discussed a variety of systems characterized by their high level of internally-generated
fluctuations, and reviewed the problem of formulating appropriate theoretical model structures for such
systems.

Practical examples include aircraft buffeting and wing-rocking, where the fluctuations are associated
with the unsteady behaviour of separated flow. The importance of understanding these phenomena lies in^the
fact that modern high-performance aircraft often have to operate in such states in order to fully exploit
their manoeuvre flight-enevelope. Applications of theoretical models of the phenomena include planning
and interpretation of appropriate wind-tunnel tests, as a basis for prediction of full-scale behaviour,
and programming of ground-based simulations of manoeuvring conditions.

The mutual interaction between a dynamically-responding wing and a separated flow field can take two
forms: in one the wing motion is 'forced' by the fluctuating flow field, in the other the joint motion of
wing and flow field arises as a mutual interaction. The distinction is that in the former the nonlinear
process of energy transfer from the free stream to the fluctuations is predominantly a flow-field phenome-
non, the response of the wing possibly modifying but not fundamentally interfering with this process; in
the latter case the nonlinear energy transfer mechanism depends fundamentally on the coupling between flow
field and wing motion.

We have stressed the desirability of correctly modelling the manner in which system behaviour
changes as some controlling parameter, such as wing incidence, is continuously varied. Of particular
importance are conditions where the behaviour of the system undergoes a basic qualitative change, for
instance from a nonfluctuating to a fluctuating state. Mathematically such qualitative changes are rep-
resented by 'bifurcations' in the state of the model. From a generalised point of view such bifurcations
may be associated with a loss of stability either of the coupled flow-field/responding-wing combination
(as in classical flutter) or of the flow field in isolation (i.e. a purely hydrodynamic instability,
independent of wing motion, leading to fluctuating flow conditions). Another important phenomenon that ^
can occur as the controlling parameter, say wing incidence, is continuously increased is the _locking-in
of previously random flow fluctuations so as to have a deterministic relationship to wing motion. Thus
'buffeting' can become transformed to 'nonlinear flutter'.

An important element in the application of such modelling concepts to practical situations is the
planning and interpretation of appropriate experiments. In this context there is an important role to be
played by 'diagnostic' experiments, whose purpose is to investigate the qualitative characteristics of the
system, i.e. to find the appropriate model structure. We have elsewhere2 discussed such qualitative use of
measurements of fluctuating pressures in studies of buffeting and wing-rocking.

Lastly, we have emphasised that the identification of a system from its 'input' and 'output' is a
questionable procedure when the system has a high level of internal fluctuations and is operating as part
of a closed loop. In such a situation it may be necessary to inject a measurable 'test-signal to
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separate the characteristics of the system under investigation from those of the systems comprising the
rest of the loop.

1. J.G. Jones

2. J.G. Jones

3. Y.C. Fung

4. N. Minorsky

5. D. Graham
D. McRuer

6. N.C. Lambourne

7 C. Scruton

8. M. Tobak

9. R.E.D. Bishop
R.K. Burcher
W.G. Price

10. L.E. Ericsson
J.P. Reding

11. L.E. Ericsson

12. A.G. Rainey
T.A. Byrdsong

13. L.E. Ericsson

14. H. Mori

15. N.C. Lambourne

16. S.C. Dixon

17. R. Landauer
J.W.F. Woo

18. R.L. Stratonovich

19. J.K. Zbrozek
J.G. Jones

20. A.J. Ross

21. E.H. Dowell

22. M.T. Landahl

23. J.G. Jones

24. T.S. Durand
M.R. Jex

25. D.B. Benepe
A.M. Cunningham Jr.

• W.D. Dunmyer

REFERENCES

The dynamic analysis of buffeting and related phenomena.
AGARD Specialists' Meeting on Fluid Dynamics of Aircraft Stalling, Lisbon
AGARD CP 102 (1972)

A survey of the dynamic analysis of buffeting and related phenomena.
RAE Technical .Report 72197 (1973)

An introduction to the theory of aeroelasticity.
John Wiley (1955)

Nonlinear oscillations.
D. Van Nostrand (1962)

Analysis of nonlinear control systems.
John Wiley (1961)

Flutter in one degree of freedom.
Manual of aeroelasticity, Part V, Chap.5, AGARD

On the wind-excited oscillations of stacks, towers and masts.
National Physical Laboratory, Paper 16 (1963)

On nonlinear longitudinal dynamic stability.
AGARD Flight Mechanics Panel, Cambridge, England (1966)

The uses of functional analysis in ship dynamics.
Proc. Roy. Soc. Lond. A, 332 (1973)

Unsteady airfoil stall.
NASA CR-66787 (1969)

Comments on unsteady airfoil stall.
J. Aircraft, Vol.4, No. 5 (1967)

An examination of methods of buffeting analysis based on experiments with wings
of varying stiffness.
NASA TND-3 (1959)

Dynamic effects of shock-induced flow separation.
AIAA Paper No. 73-308 (1973)

Progr. Theor. Phys. 33, (423) (1965)

On certain types of self-excited oscillation occurring with aircraft control
surfaces in transonic flow.
National Physical Laboratory Aero Report 1 1 9 1 .
ARC 27852 (1966)

Application of transtability concept to flutter of finite panels and experimental
results.
NASA Technical Note TN D-1948 (1963)

The steady state far from equilibrium. Phase changes and entropy of fluctuations.
In 'Statistical Mechanics, New concepts, problems and applications'.
University of Chicago Press (1972)

Topics in the theory of random noise.
Vol II, Trans, R.A. Silverman, Gordon and Breach (1967)

Transient buffet loads on wings.
J. Sound Vib, .5 (2) (1967)

Determination of aerodynamic derivatives from transient responses in manoeuvring
flight.
AGARD Flight Mechanics Panel Specialists Meeting on Methods for Aircraft State
and Parameter Identification.
NASA Langley, Hampton, Virginia (1974)

Noise or flutter or both?
J. Sound Vib. _U_ (2) (1970)

A wave-guide model for turbulent shear flow.
J. Fluid Mech. 29_ (1967)

A note on the model matching technique for the measurement of human operator
describing functions.
RAE Technical Report 65290 (1965)

Handling qualities in single-loop roll tracking tasks: theory and simulator
experiments.
ASD-TDR-62-507 (1962)

A detailed investigation of flight buffeting response at subsonic and transonic
speeds. General Dynamics Convair Aerospace Division, AIAA Paper (to be
published)



REFERENCES (concluded)

26. C. Hwang Transonic buffet behaviour of Northrop F-5A aircraft.
W.S. Pi Northrop Corporation. Presented to 38th AGARD Structures and Materials Panel

Meeting, Washington (1974)

27. H. John Critical review of methods to predict the buffet penetration capability of air-
craft.
Messerschmitt-Bolkow-Blohm GMBH. 38th AGARD Structures and Materials Panel
Meeting, Washington (1974)

28. L.L. Erickson Transonic single-mode flutter and buffet of a low aspect ratio wing having a
subsonic airfoil shape.
NASA TN D-7346 (1974)

British Crown Copyright, reproduced with the permission of the Controller, Her Britannic Majesty 's
Stationery Office.



Acrodynom
force

Closed loop, autonomous

1-17

AzroOynam
force

~

—

Structure

Motion
aependent

aerodynamics

Motion
independent
aerodynamic

force

— 1

—

b Closed toop, general case

Fig.1 Systems analysis relating aerodynamic force
and wing motion

Fig.2 Use of externally-applied test signal to separa
components of aerodynamic force

potential
energy

X-X f bifurcation I
'Rvalue j

The vertical displacement of the curves is introduced to
keep them from intersecting and obscuring each other.

Fig.3 Soft mode bifurcation from stable node into
mirror-image stable states defined by
'potential wel ls '

Fig.4 Forced-vibration model of structural buffeting,
representing response in a flexible mode

Inertia

Total aerodynamic
force

wing
motion
(velocity)

F luctualing inpi

•HO

Fig.5 Forced-vibration model for 'buffeting' associated
wi th rigid-body heave mode



1-18

Syittm

' e(t)

Fig.6 Closed-loop situation

System A

Fig.7 Open-loop situation

Spectrum 0! aerodynomic lore*
(externally forced motion)

SpeCtrun of oerodynomic force
(structurally- responding wing)

(a) n(D-o

Fig.8 Two special cases

Fig.10 Power, spectra of aerodynamic forces on
externally-forced and structurally-
responding wings

uin-io *"uj (rod/stc)

Aerodynamic force
(weighted inlagral
of aerodynamic
pressures)

c(t)

Aeroflynomic
effects

e(tj
wmq motion
C^POMO
C«tt molly)

Fig.11 Input spectra

O Externally forced

Closed loop
natural frequency

b Structurally rctpondlnq

Fig.12 Error spectrum $ee= {$cc}; +

Fig.9 Contrast between structurally-responding
and externally-forced wing motion



2-1

IDENTIFICATION OF NONLINEAR AERODYNAMIC

STABILITY AND CONTROL PARAMETERS AT HIGH ANGLE OF ATTACK*

By

B. J. Eulrich and E. G. Rynaski
Calspan Corporation

Buffalo, New York 14221

ABSTRACT

This paper describes a procedure for the estimation of the nonlinear aerodynamic stability and
control coefficients at high aircraft angles of attack. It is based on a nonlinear, iterated Kalman filter/
fixed-point smoother identification algorithm and a least squares equation error method. Key ingredients
for successful identification are the mathematical model, instrumentation system, control inputs and the
identification algorithm. The major emphasis here is placed on the use of the identification procedure in
analyzing high angle of attack flight data.

Specifically, model form and initial estimates are established from wind tunnel data using series
expansions to represent the nondimensional force and moment coefficients for selected ranges of angle of
attack. This high dimensional representation is reduced by: (i) preprocessing the flight data using the
instrumentation system model and the six-degree-of-freedom aircraft kinematic equations to perform optimal
state estimation and hence decrease the effects of instrumentation errors; and (ii) separating the six
equations of motion into two separate four-degree-of-freedom systems; one for extracting the longitudinal
coefficients and the other for the lateral-directional coefficients.

Specific problems associated with the identification procedure at high angles of.attack and parameter
identifiability problems caused by poorly conditioned flight data are reviewed. Selection of the coordi-
nate system for the aircraft model, the determination of the initial covariance estimates and the measure-
ment and process noise statistics required to use the iterated Kalman technique are discussed. The
results and problems of identifying the F-4E high angle of attack aerodynamic characteristics from records
taken during the Air Force acceptance tests of this aircraft are presented. These results are in the form
of time history matches and comparisons of the estimated coefficients with wind tunnel data.

INTRODUCTION

Effective solutions to the problem of inadvertent departure and subsequent post-stall gyrations of
modern, high performance aircraft are dependent upon an accurate description of the aerodynamic character-
istics of the vehicle at high angles of attack. This paper describes a systematic procedure for the
estimation or identification of the significantly nonlinear aerodynamic stability and control coefficients
at high angles of attack. The actual post-stall gyration time histories of an F-4E are used to verify the
identification techniques used. The results are extensively described in Reference 1.

The key ingredients for successful identification are a suitable form of mathematical model, the
accuracy and adequacy of the instrumentation system, the control inputs or excitation to the airframe and,
finally, the identification algorithm used to extract the unknown coefficients of the aerodynamic and
instrumentation models. This paper discusses all these aspects of the identification process, but empha-
sizes the efficiency of the nonlinear, iterated Kalman filter/fixed point smoothing identification algo.-
rithm for obtaining accurate results.

Special attention is given to the description and identification of the instrumentation system used
during the flight testing of the aircraft and to techniques for reducing the dimensionality problem of
simultaneously identifying the aerodynamic parameters of all six equations of motion of the F-4E aircraft.

The results are in the form of time history matches and comparisons of the extracted aerodynamic
coefficients with wind tunnel estimates. The functional dependency of the nondimensional stability and
control parameters on angle of attack of the full scale airplane was found to compare favorably with data
obtained in two separate wind tunnels.

This paper is organized as follows. The identification problem at high angles of attack is first
reviewed and the identification procedure and algorithms used are briefly presented. This is followed by
a description of the system models employed and some general comments relating to the identification.
Sample results are then presented using the F-4E high angle of attack flight data.

AIRCRAFT IDENTIFICATION AT HIGH ANGLES OF ATTACK

Aircraft parameter identification is associated with the extraction of stability and control parameters
from flight test data in the form of time history responses of the aircraft and applied control inputs. It
is well known that the ability to extract stability and control parameters from flight test data depends
upon many elements related to both the theory of identification and the very practical matter of flight test
experience, but four major ingredients predominate. These four ingredients are:

1. Mathematical modeling
2. Instrumentation
3. Maneuvers or experiment design
4. Identification algorithms

This work was supported under Contract No. F33615-72-C-1248, Air Force Flight Dynamics Laboratory,
Wright-Patterson Air Force Base, Ohio
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The first three are illustrated in Figure 1, which is a conceptual block diagram of the actual aircraft
and the general model used for parameter identification purposes. The equations of motion of the aircraft
are written in the conventional, but general form:

>-P> J > o o (1)

(/I = h (Xf , -p, U[) + Vf , i = 1,.. . N
where

V- = state vector for the aircraft and associated dynamical system

-f> = unknown parameter vector

U = control input vector such as $$,§&, S^

tji = measurement vector of sensor outputs at discrete time points

f(),h() = functional form of aircraft and measurement system model

and wM and iff are zero mean, Gaussian white noise vectors which represent errors in the formulation of
the model (that is, missing terms, unknown inputs, etc.) and the inherent random error in the instrumenta-
tion, respectively. The first equation in Equation (1) is commonly referred to as the dynamical model of
the system to be identified, or the equations of motion of the aircraft if sensor/control system dynamics
are neglected, and the second equation the measurement system. The unknown constant parameter vector to be
identified from the control inputs and noisy sensor outputs satisfies

•p-0 (2)
where ô can contain unknown aircraft initial conditions, aerodynamic parameters, and instrumentation errors
such as constant biases, for example. Given the first three ingredients—that is, the model, the instru-
mentation and the proper maneuvers (e.g., control inputs)to insure that the unknown parameters are identi-
fiable from the measurements—then the identification technique (s) can be successfully used to obtain these
unknowns. In fact, if the instrumentation is complete, very accurate and noise-free, if the model form can
adequately represent the motions of the aircraft without significant error, and if all the degrees of
freedom of motion of the aircraft are properly excited to allow for unique identifiability of the unknown
parameters, then some of the simplest, straightforward identification techniques can be used to accurately
obtain the stability and control parameters of the vehicle. Before outlining the specific problems and
our approach associated with identification at high angles of attack, the identification techniques used
will first be discussed.

Identification Algorithms:

The identification algorithms used here are a classical least squares (LS) linear regression method
and a locally iterated Kalman filter/fixed-point smoothing algorithm (IKF/FP). This technique is
explained more fully in Appendix V of Reference 1 and a more complete documentation is available in Refer-
ences 2 and 3.

The LS method is a simple and efficient technique which is used to establish the initial model form
and to provide a set of initial parameter estimates and a set of approximate variances of these estimates for
initializing the IKF, if so desired. Once the model form f( ) is chosen, this method minimizes the error in
satisfying the equations with respect to the unknown parameter vector (y?) in the equation. That is,ur(t )
in Equation (1) is minimized with respect to-/3 and consequently, it is called an equation error method. This
method also provides an indication as to the adequacy of the model form and the identifiability of the param-
eters representing the model. The structural form of f( ), which is one of the key problems at high angles
of attack, is established with the use of the LS technique as a guide by visual observation of the fit and
by adjusting the model form so as to minimize the estimate of the variance of the equation error, ur(t).
This estimate is equal to the sum of squares of the error in the fit divided by the numbers of degrees of
freedom, that is, the number of data points used minus the number of unknown parameters being identified.

The restrictions of this technique, as it is used here, are that:

1. All measurements of % (aircraft accelerations) and* must be available.

2. The estimates are biased if the state measurements (#) are noisy; that is, if V- i- 0 in Equation (1) .

Once f( ) has been established, to account for both equation error (process noise ur(t )) and instru-
mentation error ( &£ ), the identification problem is transformed to a nonlinear filtering problem by aug-
menting the aircraft state equations with the parameter vector model. Equation (2). The problem can then
be viewed as one of fixed-point smoothing, that is, estimating both the unknown parameters and the initial
condition of the aircraft from the data. With this as a starting point, the estimation philosophy may then
be divided into two major groups: Bayesian and non-Bayesian. The difference between these groups is that
Bayesian philosophy can take into account a priori information about the data of unknowns, whereas non-
Bayesian does not. The Bayesian philosophy assumes that the entire information available to an estimator is
contained in the a posteriori density function; that is, the density function of the unknowns given the data.

With the Bayesian philosophy, two estimation criteria can be considered:

1. The minimum variance or minimum mean squared error criterion; the resulting estimator is the
conditional mean, that is, the expected value of the a posteriori density function, or

2. Maximum likelihood (Bayesian) or most probable estimate, which is the mode of the a posteriori
density function.

The development of the identification algorithm used for the research described in this paper is
documented in Reference 2. Using a mean square error criterion, the resulting recursive algorithm is a
form of nonlinear, iterated Kalman filter/fixed-point smoother. The nonlinear filter used is a form of
an extended Kalman filter utilizing a "local iteration" scheme between successive measurements to reduce
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the errors in linearizing the f(v,p,u.) and h(v.,p,it) functions by improving the reference trajectory. This
improvement is accomplished by smoothing each measurement data point backwards in time one point and re-
linearizing. In addition, the outputs of the filter at each data point can be used in a fixed-point
smoothing algorithm to produce a better smoothed estimate of the aircraft initial condition.

This technique is both a response error and an Equation error minimization technique under the usual
Gaussian assumptions in the error sources. That is, the technique adjusts the parameters of the model so
as to minimize the "weighted" errors between both the measured responses (accelerations included) and the
error in formulating the equations of motion of the airplane. The weighting in the measurements is selec-
ted to be compatible with the accuracy of the instrumentation and recording system, whereas the weighting
of the equation error is compatible with the error in the mathematical model of the airplane. These error
sources are commonly referred to as the measurement and process noise, respectively.

The selection of these noise statistics in particular is an iterative process which is carried out in
practice by observing the residual sequences (measurement data minus predicted measurements) of the filtering
operation and adjusting the statistics as required to force consistency between the predicted and actual
dispersion of the residuals. If the model is correct (implies both form and statistics used), the actual
dispersions of the residuals should be zero mean, white and consistent with the theoretically calculated
statistics. The residuals and the final covariance matrix in the algorithm also serve as additional checks
on the adequacy of the model form and accuracy and identifiability of the parameter estimates.

Besides the form of the model and the noise statistics, two additional pieces of information are re-
quired to perform the identification with the IKF. These are the initial estimates of the parameters and
states and the variance of the initial estimate (P0 ). These can be obtained using wind tunnel data and
a knowledge of the aircraft being identified or else by the LS initial estimates. In practice,*? which
represents the initial uncertainty of these estimates, is usually adjusted to ensure that the final param-
eter estimates are not affected by its value. This is accomplished by increasing the magnitude of R until
the initial estimates have no effect on the final values.

Specific Problems and Identification Procedure:

In relation to the major ingredients for successful identification outlined above, there are four
additional problems which increase the difficulties in identifying nonlinear stability and control character-
istics in the post-stall high angle of attack flight regime. These are associated with:

1. The complexity and uncertainty of the aerodynamic model(s) required,

2. the gross or large maneuver requirements,

3. the instrumentation, and

4. the short time duration of maneuvers where one particular model is applicable.

The first three requirements lead to a very high dimensional (and, therefore, a computationally de-
manding) identification problem because of the large number of unknown parameters needed to represent the
model accurately. The fourth item further compounds the problem because the relatively unstable and uncon-
trollable nature of the aircraft in this flight regime could force the aircraft to traverse the angle of
attack range of interest rather quickly, thereby providing only short time-duration records if the aircraft
maneuvers are not first carefully planned. The approach taken here was to reduce the dimensionality of the
identification problem by separating the overall problem into separate lower dimensional problems the
solutions of which are computationally practical. The three areas of concern and the approach taken are
discussed below.

First, the aircraft model, that is, the functional forms of f( ) and h ( ) in Equation (1), must
be selected to adequately represent the aircraft motions to be measured. The model should contain all of
the terms of significance that contribute to the forces and moments on the airframe. This includes kine-
matic terms, inertia coupling, gravitational, thrust, engine gyroscopic effects and aerodynamic forces and
moments. The aerodynamic forces and moments in this flight regime are highly nonlinear functions of several
variables and a Taylor's series representation of the aerodynamics, where the constant coefficients in these
expansions are the unknown parameters to be identified, can contain a large number of terms that can be
candidates for logical inclusion in the model.

In order to reduce the number of terms, three approaches can be taken to the problem of identification
of high angle of attack (a) aerodynamics. They can be described as:

• fixed point identification

• complete range identification

• limited range identification

Fixed point identification, where the small perturbation equations of motion about a trim or reference
flight condition may be applicable, has the favorable feature of using simple linear models with a small
number of parameters to identify. However, its major drawback for high angle of attack identification is
that the model is good only for very short periods of time, too short to get meaningful identification
results. Stability derivatives change very rapidly at high angles of attack, so a fixed point identification
would only be good for a very small range of a . Compounded with this drawback is the fact that the air-
plane may be highly unstable at high angles of attack so that the airplane cannot be held at a particular «.
for any significant length of time.

The complete angle of attack range approach to identification overcomes the problems of using a linear
model at fixed points to describe a highly nonlinear system. Using the complete range approach, an analyt-
ical aerodynamic model complex enough to describe the aircraft at all angles of attack can be developed
There would be no need to try to hold an unstable airplane at a constant angle of attack. However, there is
the problem of having too complex a model. To adequately define the complete aerodynamics of an aircraft
from normal cruise ee. through post stall maneuvers may require more than 150 parameters. The practicalities
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and economics of enabling an identification technique to handle such a large model precluded the possibility
of taking this approach.

A limited range of angle of attack identification, where the model is applicable for a selected range
of angle of attack, for example, is a practical compromise between the above two approaches. With this
approach an analytical model is chosen to adequately represent the aerodynamics for selected ranges of
angle of attack, sideslip angle, Mach number, and altitude. The ranges are selected on the basis of wind
tunnel data and the available flight test data within the candidate ranges. Hopefully, enough data will be
available in each range so that the unknown parameters can be accurately extracted and that only the param-
eter values change for different ranges of Mach number and altitude, not the model form. After identification
of the aerodynamics at different ranges of angle of attack, a complete model can be pieced together to define
the aerodynamics of the aircraft for the full range of a. .

The latter approach was considered the only one feasible for this program because of the flight data
base available. The aerodynamics to be identified were expressed in aircraft body axis, nondimensional form
instead of stability axes for two reasons:

1. The extracted coefficients could be compared directly to the wind tunnel data which was
presented in the body axis system, and

2. the force coefficients ( Cv, C-y and £«.) in the body axis system are directly related to the
individual body fixed linear acceleration measurements (n^,n^ and-^).

Taylor's series expansion were used to represent these nondimensional coefficients, where the coeffi-
cients of the expansion are the unknown parameters to be identified, because the resulting analytical forms
are readily amenable for use in the present identification algorithms.

The following assumptions were also made:

1. Power effects were included in the aerodynamic coefficients to be estimated.

2. The mass, moments of inertia, and center of gravity of the aircraft are known precisely.

3. The aircraft is rigid and no turbulence or wind effects are present.

4. Mach effects for M<.5 and hysteresis effects due to flow separation are negligible.

5. Angle of attack and sideslip angle rate effects are included in the appropriate rotary derivatives.

6. Control surface deflections are measured perfectly.

7. The actual complexity of the aerodynamics (that is, the number of terms and the functional
dependence of the variables) is no greater than the wind tunnel data indicates, especially
for the static coefficients.

The other two areas which increase the dimensionality of the problem are the instrumentation system
and the modeling of gross maneuvers which requires a complete six-degree-of-freedom representation of the
aircraft. Even with the limited range identification approach, the number of unknown parameters to be
concurrently identified is still extremely large. The measurement system, h(V't-f>,u.) in Equation (l),'must
be modeled and if instrumentation inconsistencies or bias errors are present in addition to the random
error, if^ , these errors will degrade the accuracy of the estimated aerodynamic parameters if not taken into
consideration (References 3, 4 and 5). If these effects are modeled and identified simultaneously with the
aerodynamic parameters, it will be extremely difficult to separate errors in the instrumentation from errors
caused by incorrectly representing the aerodynamics.

This consideration is especially important for high angle of attack testing, since the large full
scale ranges required of the instrumentation and large aircraft maneuvers accentuate these errors. To alle-
viate this difficulty, and consequently reduce the number of parameters to be concurrently identified, instru-
mentation consistency checks and error estimation can first be performed using the aircraft kinematic equation
and measurement system model with the iterated Kalman filter/fixed-point smoother. The equations, which are
given in Table I and discussed below, are the six-degree-of-freedom kinematic equations of the aircraft with
the body-fixed airframe linear accelerometers and rate gyros used in the manner of a strapped down inertial
measuring unit. This mechanization allows for the extraction of instrumentation biases from the flight data
and the optimal state estimation of the aircraft trajectory (V, a,, /3 , 0, e) using the Kalman filter to fur-
ther reduce the effects of measurement noise. In addition, an automatic procedure is thereby provided to
optimally transform angle of attack and sideslip angle measurements at the boom to those at the center of
gravity of the aircraft and to estimate the aircraft initial conditions. It should be noted that if angular
acceleration sensors (f>, q ,r} are available, which was not the case, then an optimal estimate of the air-
craft rotational rates (f>, q , r~] can also be easily obtained by simply expanding the instrumentation con-
sistency check equations to model these additional measurements.

To further reduce the computational burden, when employing the iterated Kalman filter, the six-
degree-of-freedom equations of motion of the aircraft were separated into two separate four-degree-of-
freedom systems; one for extracting the longitudinal coefficients (£,,, £,and Cm~] and the other for the
lateral-directional coefficients ( 0^ , Cn , and Cy). These equations and a discussion on the choice of
coordinate system used are given in the following section.

In summary, the overall identification procedure is illustrated in block diagram form in Figure 2.
It can be summarized by the following five steps:

1. Model form is initially determined from wind tunnel data by representing the nondimensional aero-
dynamic force and moment coefficients by Taylor's series expansion for selected ranges of angle of
attack, Mach number, and sideslip angle. The constant coefficients in these expansions represent
the unknown parameters to be extracted from the flight data.
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2. The six-degree-of-freedom aircraft kinematic equations and measurement system model are mechanized
in the iterated Kalman filter/fixed-point smoother (IKF/FP) to identify instrumentational errors in
the form of biases, aircraft initial conditions, and generate an optimal state estimate of the air-
craft trajectory (V,<*,/£,0,5). This procedure separates the identification of instrumentation
errors from the identification of aerodynamic parameters and reduces the effects of measurement noise
contaminating the air data and attitude measurements.

3. The results of step 2 are used to compute the six total nondimensional aerodynamic forces and moments
exerted on the aircraft using the corrected rate and acceleration measurements and computed thrust
and engine gyroscopic characteristics. Angular accelerations (.-p,^,r~) are obtained from angular
rate measurements (.-p, q , r). Candidate model forms selected from step 1 above are used in the least
squares (LS) identification technique to identify the parameters in the aerodynamic model forms by
minimizing the error in satisfying the aerodynamic equations with respect to the unknown parameters
in the equations. The error in the fit and the normalized regressor in the technique provide an
approximate indication as to the adequacy of the candidate models and identifiability of the unknown
parameters from the flight data.

4. The results from step 3, tempered with the values for the coefficients from the wind tunnel data,
provide a_ priori estimates of the model form and initial parameters and covariance estimates for the
IKF identification technique. Model structure verification is done with the aid of the residual
sequences in the Kalman filter. If the model is accurate, and the instrumentation errors are truly
zero mean, these residuals are zero mean and random. The final covariance matrix serves as a
check on the accuracy and identifiability of the resulting parameter estimates.

5. Model verification, the last step, is performed by building up an aerodynamic model base which can
be used in a simulation to predict the time histories of flight data in the flight regimes of applica-
bility. This, of course, represents the true test as to the accuracy of the extracted parameters.

SYSTEM MODELS FOR IDENTIFICATION

A total of three models were used in the iterated Kalman filter/fixed-point smoother identification
algorithm. These were the aircraft kinematic equations and measurement system for the identification of
instrumentation errors and generation of state estimates of the aircraft trajectory and two separate four
DOF systems: one for extracting the longitudinal coefficients (£„ , C, and Cm~) and the other for extracting
the lateral-directional coefficients ( C£ , C^ and C ). '

Aircraft Kinematic Equations:

The six-degree-of-freedom aircraft kinematic equations and measurement systems used for the identifi-
cation of instrumentation errors are given in Table I with appropriate definitions. The kinematic equations
are written in the aircraft body axes systems with three linear inertial velocities (u,, v, w), one linear
position (h ) and the three Euler angles (0,0,̂ ) as state variables. Forcing inputs to these equations
are measured time histories of the linear accelerations (n^ , ?>„ , n, corrected to the e.g.) and the rota-
tional rates (•£>,£,*•). Errors in these measurements are modeled as constant biases (for example, r>^ ,
^Vb ' "fb ' "fb. ' 4b ' rt ) to be identified. Since the linear accelerations and rate gyro measurements are
contaminated with random measurement noise, the use of these measurements in the kinematic equation intro-
duces process noise or equation error into the dynamical system and consequently makes the system model
stochastic. These noise inputs are accounted for by the ur.,i= I, . . .,6 noise terms in the equation.

Seven parameters are modeled in the measurement system. These include true airspeed ( V̂ ), boom vane
angle of attack (_»„•) and sideslip angle (ftm~] with the appropriate corrections, altitude (hm~) and the
three Euler angles ( 6W, 0m, 1/̂  . Bias errors are included in all measurements to be identified in addition
to scale factor errors in the air data measurements to model possible airflow effects. Auxiliary equations
are included to generate optimal state estimates of V, oc. , ft (at the e.g.) for use during the identification
of the aerodynamic coefficients. Other common sources of sensor errors, such as time lags in hm, for
example, were not modeled completely but were accounted for in the bias parameters and random noise terms.
The units used are self-explanatory.

Note that all the instrumentation is assumed perfectly aligned to the aircraft reference body
axis and that the major source of errors are treated as biases in the measurements in addition to the ran-
dom noise terms. The rectangular body axis coordinate system (u,,tf,ur] was used instead of the nonorthog-
onal system (V.fc./S) because the accelerometer biases appear linearly in the dynamical system and the«,
(o vane measurement models are less complicated in the a, w,us system.

The instrumentation consistency check equations as given in Table I contain two approximations.
These are associated with neglecting the effects of random errors (noise) in the rate gyro measurements in
accounting for airplane rotation rates in the cx.Vfn and @ym measurement models and the linear acceleration
corrections to the center of gravity. Modeling these noise terms would make the process and measurement
noise statistics correlated and the measurement noise nonstationary and extremely complex. Errors in
neglecting these effects were never fully investigated, but they are small for reasonable levels of rate
gyro measurement noise.

However, if angular acceleration sensors are available, the errors caused by the above approximations
can be eliminated by simply including three angular acceleration equations in the dynamical model and adding
the rate gyro measurements to the measurement system. This will also eliminate the modeling of rate biases
(••Pb.'tb' rb^ and the <z£ , <&£•, and£^ process noise terms in the dynamic model. In addition, an optimal
estimate can now be generated for the aircraft rotational rates, -p,^ , and/-. The additions required to
the equations of Table I when angular acceleration measurements are available are given in Equation (3) on
the following page.
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•3

Dynamical Model: • .

F r ffl ' D & f v \(3a)

Measurement System:

3m = 9 + 4b + V* (3b)

•f>i,4b and f"b are tne unknown angular acceleration bias parameters and u/j, usg , and u/^ the random component
of noise on the respective measurements.

Four-Degree-of-Freedom Longitudinal and Lateral-Dlre.ctional Models:

As indicated above, the representation of the aircraft characteristics in the post-stall flight
regime when large maneuvers are encountered for identification purposes requires a six-degree-of-freedom
(DOF) nonlinear equations-of-motion model and at least two kinematic relationships to describe the evolution
of the roll and pitch Euler angles. Further, the use of Taylor series expansions to adequately represent
all six aerodynamic force and moment coefficients over a large enough range of angle of attack (as dictated
by the flight data being used), leads to a very high-dimensional and, therefore, a computationally demanding
identification problem.

To circumvent the high degree of dimensionality, the identification problem was reduced by separating
the equations of motion into two systems, one for extracting the longitudinal coefficients {C-X,C*, and C-^)
and the other for extracting the lateral-directional coefficients ( C/, &„ and £y), with cross-coupling
turns entering similarly to the control inputs. The systems of equations used are given in Tables II and
III respectively, along with appropriate definitions.

The force equations in both systems are written in the nonorthogonal coordinate system (V,#,/£),
instead of the rectangular body axis system ( u,, f, &/) .because the dynamic equations and the measurement
system are the most linear with respect to the state variables for this system. This is the case because
the time history responses of V,oe.,fi are measured directly (a; and ft at the e.g. are available as state
estimates from the instrumentation consistency checks) and more importantly because the aerodynamic forces
and moments are expressed as functions of a and ft , so that auxiliary calculations are not required. Both
systems are also four-degree-of-freedom, instead of the conventional three. The lift and side force degrees
of freedom are included in both sets of equations because the aerodynamic forces and moments are strong
functions of both <K and ft ; particularly oe, . Due to large attitude maneuvers, the roll and pitch Euler
angles are also included in both systems. All aerodynamic coefficients are in the body axis reference
system. Although the aircraft state estimates from the instrumentation consistency checks serve to reduce
the bias inherent in the LS estimates, it should be noted that their use as measurements in the IKF invali-
dates the assumption of independent measurement noise.

The equations are fairly general and no simplifying assumptions, such as small angle approximations,
for example, have been made to limit their range of applicability, except that \Q\< 90°. In addition, to
further reduce the number of parameters to be concurrently identified, the 17% linear accelerometer meas-
urement can be used to account for the x-force contribution (C*) to the longitudinal equations and similarly
the 7?y accelerometer measurement can account for the y-force contribution ( Cy ) in the lateral-directional
model. The analytical representation of a force or moment coefficient, tor example, the Cm static moment
coefficient of Table II, is given by the typical expression s

s o i & i j

where oL^\ /8^} represent the i^ power of a: and the /̂  power of @ , respectively. The x and {3 effects
are lumped with the rotary derivatives due to their linear dependency. That is, the effects or sensitivity
of the measured responses of the airplane to a variation in Cm or Cm. , for example, would be almost
identical. ^ *

In both models, the linear acceleration measurements are first corrected to the e.g. using the appro-
priate transformation. Forcing inputs to the longitudinal model (Table II) include the stabilator control
($s)> effective roll control ( Sa ), thrust (7̂ ,7̂ .), thrust moment ( w?r) and air density (/>). Cross-
coupling inputs are measured roll and yaw rate (-f>m, r-m) and side acceleration ( ̂ y^.f"). For the lateral-
directional model (Table III), forcing inputs are the rudder control (Sr}> effective roll control (ĝ ),
thrust (Ty ), thrust moment (#?*,_, rr>yT ) and the cross-coupling inputs are measured pitch rate (<£ ),
airspeed (Vm~), and linear accelerations ("*aa, ̂ t^a.a.)• ""

It should also be noted that by including the cross-coupling and other forcing terms in the dynamic
equations (thru the use of the measured time histories of the linear accelerations and the rotational rates)
inherently leads to the introduction of process noise into the model. That is, these inputs are in error
by an amount equal to the measurement noise on their sensor outputs and consequently, this error is intro-
duced into the dynamical system model as process noise. The identical situation occurs with the kinematic
equations used for instrumentation consistency checking as described in the preceding subsection.

The process noise introduced this way is lumped into the <fc£, i = 1, . . .6 noise terms which are
assumed zero-mean, white Gaussian uncorrelated stationary noise processes. An approximate lower bound
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for the variances of 10- can be calculated as follows:

For the longitudinal model, let

"*m = "* + "

•Pn, = -1° + <Pn
(4)

where 7?Vfl, -f>^ , r~n and
 rliin are zero-mean white Gaussian measurement noise. Substituting Equation (4)

into the dynamical model equations given in Table II, assuming c.osfita 1 and eliminating terms of second
order (for example pnrn x. 0), it can be shown that

+ r, sin ft

sin *
sin & - r c,os

(5)
tan Q f

if all other possible equation error is assumed equal to zero. From Equation (5) it can be readily seen
that a/-, i = 1, ... 6 are correlated and nonstationary even though r>v , -p , rn and n are uncorrelated
and stationary. However, two additional approximations were made: "

1- UTf , i = I, . . . 6, were made stationary by choosing constant reference values
for « ,0, V , r , and -p . The reference values are, of course, dependent upon the
flight record being analyzed.

2. Neglect all cross correlations between «£,'=!, . . .6.

With the above approximations, Equation (5) can now be used to calculate the variances for urt given the
noise statistics for n^ , p , rn and r>u . A similar set of equations can be derived for the lateral-
directional model. " "

The errors introduced by the addition of process noise into the dynamical model and the above
approximations are small in comparison to other possible error sources, such as model form, for example.
Of course, the smaller the measurement errors in these sensors, the more accurate the approximations.

GENERAL COMMENTS

Before presenting the identification results, this section will review (briefly) some of the
symptoms and causes of identifiability problems, which can occur with poorly conditioned data, and the
indicators available in the identification algorithm to detect these potential problems. Additionally
combining results from two or more flight records and computing the accuracy of estimated total coefficient
for example C7n(<x,') , is presented.

Parameter identifiability is concerned with the ability to identify the associated parameters of
the model from the flight data, for it is intuitively obvious that those parameters which have no effect
on the data cannot be identified. Identifiability also relates to whether the parameters themselves can
be identified separately or whether they can only be identified as part of a linear combination. Most
identification problems are those related to the identifiability of the parameter set and are usually the
result of the use of poorly conditioned data caused by the application of an improper control input.

Stated formally (Reference 2), a nonstochastic system, linear or nonlinear, is identifiable if and
only if the sensitivity vector functions of the measurements with respect to the unknown parameters repre-
senting the system are nontrivial (nonzero) and linearly independent. This, of course, is equivalent to
saying that small changes in each parameter must produce a change in the measured responses of the aircraft
and these changes must be a different type for each parameter. For a linear system, this implies all the
natural modes of the system must be excited and the control inputs must be linearly independent among
themselves and also linearly independent of the state variables. If these conditions are met, the accuracy
of the parameter estimates are also functions of the level of measurement noise present and the data record
length, i.e., the signal to noise ratio in the output measurements.

In practice, unrealistic parameter estimates are usually obtained whenever the sensitivity of the
output measurements to changes in these parameters is small (low signal to noise ratio) or else there is
strong dependency between the sensitivities of several parameters. These problems are readily identified
in the IKF identification algorithm by comparing the size of the diagonal elements in the final covariance
matrix ( pf ) with the size of the diagonal elements of the initial covariance matrix (P ) and by observing
the size of the off-diagonal correlation coefficients in the normalized Pf matrix; large values, for example
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greater than .9, indicate potential problems. Two possible solutions to these problems are to use
a priori weighting with P0 or to fix one or more of the parameters in the group which show high correla-
tion at the "best guess" values (e.g., wind tunnel values). A priori weighting is accomplished by
reducing the magnitude of the initial parameter variance in P0 so as to reflect a more accurate initial
parameter estimate and hence weight the initial estimate more heavily. If information is available from
other flight records, it can be incorporated in this fashion. However, if the model form is adequate, the
parameters which exhibit high sensitivity in the measurements and are not correlated with other parameters,
usually are extracted relatively accurately even if other groups of parameters are highly correlated.
Model adequacy is determined from the residual sequences.

For the nonlinear aircraft identification problem, it was observed that relatively large correla-
tions usually existed between the parameter estimates making up a particular lumped coefficient (e.g.,
C0a(<t)'). If large correlations did not exist between the parameter estimates representing different
lumped coefficients, this "internal correlation" did not appear to be a particular problem. This internal
correlation was expected and is usually present between the parameters in polynomial representations. Also,
if the number of terms in the series representing a particular coefficient is not adequate for the range of
angle of attack being considered, the resulting extracted coefficient tends to match the actual coefficient
only in the range of angle of attack where most of the data and excitation occur. An additional difficulty
occurs when the data record length in which the aircraft excitation occurs is short, as an asymptotically
convergent solution is then not possible. In this case, extremely unrealistic coefficient values in certain
ranges of angle of attack may be obtained.

Associated with each estimated coefficient are their second control moments or variances which are
computed using the final covariance matrix of the parameter estimates from the identification algorithm.
These variances represent a band of uncertainty associated with the estimated coefficient which must be
taken into consideration when comparing the estimated coefficient to wind tunnel data or when combining
estimates from different flight records. Coefficient estimates combined from different flight records,
which traversed different ranges of cc and fi , must be done on a point by point basis at discrete values of
OL and/3. Coefficients estimated over a particular range of of. and fi , where a low order polynomial repre-
sentation was used for this particular range, cannot be expected to predict outside this range.

RESULTS

Extensive application of the identification procedure for the extraction of the nonlinear aero-
dynamic stability and control parameter of the F-4E aircraft from flight test data is reported in Reference 1.
A few of these results are presented below.

The majority of low speed wind tunnel data used to obtain the initial model representation was
obtained from two NASA reports (References 6 and 7) and accompanying data tabulations from a series of tests
in the Langley Full-Scale Wind Tunnel. For comparison purposes, data was also obtained from References 8
and 9. Data from Reference 8 will be referred to as Ames data, although the rotary derivatives were actually
obtained from a set of Langley results.

The flight data is from the Stall/Near-Stall Investigation of the F-4E aircraft (Reference 10) which
was conducted at Edwards Air Force Base. Specifically, the results from two flight records are presented,
both of which are for the 10 to 2Z degree angle of attack range at Mach numbers between .4 and .47. One
record, called Record 9, had primarily a longitudinal stabilator pulse type input applied and the other,
labeled Record 10, had aileron pulse type inputs applied with very little rudder excitation. All data were
recorded at a common sample rate of 10 samples per second and time de-skewed to a common reference time
point using linear interpolation. The measurements consisted of the standard flight parameters and certain
engine parameters. All three aircraft body reference inertial attitudes, angular rates and linear accelera-
tions were available in addition to air data measurements from nose boom mounted angle of attack and angle
of sideslip vanes and a pitot-static head. Special calculations, needed for Mach number, true airspeed,
air density and an estimate of engine thrust, for example, were also performed.

Angular accelerations were derived from the angular rates using digital filtering techniques and a
modified spline function computer program, the details of which are given in Reference 1. These derived
accelerations are used, along with the linear accelerometer measurements and other flight parameters, to
generate the nondimensional aerodynamics force and moment times histories for use with the LS identification
technique.

Prior to the extraction of the aerodynamic parameters, instrumentation consistency checks were per-
formed. Consistent biases in all three rate measurements, the vx and 77* linear accelerometers, pitch
attitude and angle of attack were identified. All biases were within thfe expected accuracy of the instru-
mentation, except for the angle of attack vane which was reading approximately three degrees too high. As
an example, comparisons between the flight data and predicted responses for Record 10, using the kinematic
model of Table I, without and with biases, are given in Figures Z and 4, respectively. Crosses represent
the flight data and solid traces are the predicted responses. The improvement is readily apparent.

Record 9 has very good aircraft excitation and control input (Se ) for identification of the longitu-
dinal coefficients (C.,, 0* and Ĉ ) but very little lateral-directional excitation. The results of the
identification using this Record are given in Figures 5, 6 and 8. Figure 5 shows a comparison of the non-
dimensional force and moment time histories (C^ , C- and O^ with those computed using the estimated
coefficients from the LS techniques. The resulting model consisted of 21 parameters-6 to represent the
C~ coefficient, 6 for the C, coefficient and the remaining 9 for the Cw coefficient. Two parameters,
C is /and Cmls I were held'fixed at the wind tunnel values because of the small S^ input. Updating the

model with the iterated Kalman filter identification technique produced the response comparisons given in
Figure 6. These are the time history comparisons between the flight data and the predicted responses using
the identified coefficents in the four-degree-of-freedom model given in Table II. Crosses represent flight
data and solid traces, the predicted responses. The comparisons are excellent. The residuals, which are
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not shown, also indicate an adequate model. These results were expected, since this record is considered
good for identification purposes.

Figure 8 presents the identified coefficients from both the LS and IKF, overlayed on the wind tunnel
coefficients for comparison. The wind tunnel data (Langley and Ames) are presented in the form of hand
faired plots to the actual test data points for convenience and are representative for -15°̂ (3 £, 15°.

The static<^versus«curve agrees almost exactly with the wind tunnel data. Cm showed a positive .03
shift from the wind tunnel data which is consistent with the least squares results and the positive incre-
ment in the extracted 0^.s& • This is also consistent with the increased moment effectiveness of the
elevator (S-mg^. The static G^ versus <x curve showed a positive .05 shift or approximately 2300 pounds
less drag or more thrust than the wind tunnel data indicated. Less damping in pitch, Ow, was also
obtained. An attempt was also made to identify a cubic Cmversus a derivative, to see if the form of Cm
would more closely approximate the wind tunnel data. The result was a CWA3 term that was almost zero. *
In general, all coefficients identified were very reasonable and the forms oT the static aerodynamics for
this angle of attack range appear to be similar to what the wind tunnel data predicts.

Similar results are presented for Record 10 in Figures 5, 7 and 9. These figures show the LS com-
parisons to G£, Cn and C-y time histories, the response comparisons using the four-degree-of-freedom
lateral-directional model, and the coefficients identified overlayed on the wind tunnel data, respectively.
As seen from Figures 5 and 7, this record has very little rudder deflection and yaw rate, implying that
the rudder derivatives and the yaw rate derivatives and dynamic cross derivatives would not be identifiable.
Indeed, these parameters had to be held fixed at the wind tunnel values. The results are fair, indicating
the poor maneuvers in this record for identification purposes.

CONCLUDING REMARKS

The identification procedure described in this paper is demonstrated to be an adequate and accurate
procedure for the identification of nonlinear aerodynamic stability and control parameters of an aircraft
at high angles of attack if properly followed. Model definitions from wind tunnel data, selected range
of angle of attack flight, separation of instrumentation and aerodynamic models, and partial decoupling of
longitudinal and lateral-directional equations of motion to reduce the dimensionality problem are all shown
to help considerably in reaching the final result of accurate parameter identification.

The results described in this paper also demonstrate the need for close cooperation between the flight
test and flight data analysis engineers. A carefully designed instrumentation complement is essential. A
series or set of control inputs specifically oriented towards the enhancement of vehicle parameter identi-
fiability is also very important to the objective of obtaining accurate and useful results. Adequate
identification algorithms exist now; future emphasis should be directed toward experiment design, for this
is where the more significant improvements in parameter identification are likely to be obtained in the
future.
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Dynamical Model:

TABLE I

KINEMATIC EQUATIONS FOR INSTRUMENTATION CONSISTENCY CHECKS
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Inherent Process Noise

Inherent Process Noise

Measurement System:

Forcing Inputs:

•f}, (f., ft rtt, 77^ and fi measurements

Definitions and Notes:

Subscripts b - Bias parameters to be identified

Subscripts S - Scale factor parameters to be identified

^ » ^2 » ̂  " Zero mean, white Gaussian process noise, introduced because of measurement noise
contaminating 77̂ , -n , -n* measurements

<*4i <*s, < - Zero mean, white Gaussian process noise, introduced because of measurement noise
contaminating #, q. , r measurements

V- - Zero mean, white Gaussian measurement noise

~*V yV/*/« " Locations of * and /3 vanes from the e.g. along x , y , ,. body axes

TABLE II

FOUR-DEGREE-OF-FREEDOM LONGITUDINAL MODEL

Dynamical Model;
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TABLE II Cont.

Measurement System:

Control or Forcing Inputs: 5S , Sa,
 T«, ̂, -"V •» /

Cross-Coupling Inputs: ^̂  , fw, Tfy (at e.g.)

Definitions:

^ * ~ Dimensionalizing terms which may also be a function of air density

J"j , J4 - Function of moment of inertia

<?£ , C* i^-m ~ Static Force or Moment Aerodynamic Coefficient; functions of parameters to be identified

c* , Ca •>£•*) ~ Dynamic or Rotary Aerodynamic Coefficients; functions of parameters to be identified

u1- , -V^ - Zero mean, white Gaussian process and measurement noise

7̂  f T - Thrust force along x and y body axes

-rnijr - Thrust moment around y axis

TABLE III

FOUR-DEGREE-OF-FREEDOM LATERAL-DIRECTIONAL MODEL

Dynamical Model:

jp = d, v*CJs + dz v^ > dt v*Crg + d4 vc^ * l'^ ™tr +r'v^-»>^ +d,r*-itip4 1'^ A/r) <?„ + ts,

r = </ v*C + d vC + d vzC •> d* vc + I'-m + i' -»>

os <£.- (cos e cos <t> + ̂ m) Sin oi\ si

+ foe /3 (d, VC,, + d& Cy • t- -~- -1) + -f> sin x, - f cos oe. + ors
vfl JQ V -yff

k. - — - — ( (sin d -TIV ) Sin K + (cos e cos<t> + n, ) cos oe. C . (f CoS # + r 6i-n K ) tan ftvcos /3 J w '"> J

cos <(>) tan e + tsf , 0 - c0<s $ - r sin & -f- ur , tor \6\

Measurement System:

^w = ^> v, , r^ = *• * *j , /3«, = /3 + ^ , <£

Control or Forcing Inputs: £ , £., £5, 7̂ , j>, -ntv , w
* ** V ' ^ '

Cross-Coupling Inputs: ^ , V, -nt , 77̂  (<j/ ̂ .0.)

Definitions:

d'y o/7£/ J'S - Dimensionalizing terms which may also be a function of air density

CJ tcn tcu - Static Aerodynamic Coefficients; function of parameters (and states) to be identified

Cj ,?„.,<?„ - Dynamic or Rotary Aerodynamic Coefficients; functions of parameters (and states) to be
identified

T - Thrust force along y-body axis
V

~">fT,
7rU - Thrust moment around x, ̂  body axes

<s£ , Vf - Zero mean, white Gaussian process and measurement noise
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FIGURE 1 BLOCK DIAGRAM OF ACTUAL AIRCRAFT SYSTEM AND MODEL FOR PARAMETER IDENTIFICATION
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FIGURE 2 BLOCK DIAGRAM OF GENERAL IDENTIFICATION PROCEDURE
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METHODS USED FOR OPTIMIZING THE SIMULATION OP "CONCORDE S.S.T."

USING FLIGHT TEST RESULTS

by
Jacques TARDY

Inge'nieur Bureau d'Etudes

AEROSPATIALE
316, route de Bayonne

B.P. 3153 - 31 053 TOULOUSE CEDEX.
FRANCE

INTRODUCTION

The elaborate calculation means provided by a simulator were used very early in the design of CONCORDE.
Different simulators of more and more sophisticated design, were installed from a fixed base analog simulator
to the present simulator which we shall describe later.
This simulator is used for various design purposes :

- development studies for the aircraft and its systems : handling qualities, flying controls, various pilo-
ting aids, failure research
- flight test preparation and crew training
- crew work load studies
- studies for introducing CONCORDE into air traffic in liaison with EUROCONTROL
- preparation for aircraft certification, examination of requirements and participation in certification for
the most critical conditions to be tested in flight, testing very low probability failures or investigations
in the extreme regulatory atmospheric conditions.

^S?£^1S^<SLJ^^S^^I^^!S5SS^^M^^^ (See Fie- 0.
The geometry of the cabin is as similar as possible to the preproduotion/production aircraft, not only

for an instrument point of view, but also for warning lights, seats and flying controls. The cabin is mounted
on a 3° of freedom platform, with pitch, roll and elevation (Redifon system). A screen onto which is projected
a colour picture filmed by a cine camera in front of a mock-up of TOULOUSE airport and surrounding contry, is
installed on the same platform. The cine camera follows the movements of the aircraft and gives the picture
which the pilot would see in the windscreen of his aircraft (GPS System).
The calculation means used comprise :

- a HONEYWELL DDP 224 digital computer with 32 000 words
- a RED 5 000 analog computer
- an interface unit
- a Boolean computer.

The engineers who follow the tests have the following recording apparatus available :

- 2 course tracers
- 5 eight-track recorders
- 1 photographic recorder.

It is possible to follow the main parameters available to the pilot on an instrument panel, from the control
station. A television screen reproduces the picture projected on the pilot's screen.

Failures are introduced from the control station, from which the crew work resulting from these failures and
the functional condition of the systems can be followed.

The following simulations nave been carried out and can operate simultaneously :

- aerodynamics and flight mechanics
- engines and associated systems
- air intake logic conditions
- electrical power generation
- fuel
- hydraulics
- air conditioning
- de-icing
- manometrics
- navigation - radio aids
- warning systems.

The pilot controls (wheel control column, pedals, throttle) are identical to those on the aircraft. The same
applies to all the mechanical controls which affect the impressions of the pilot :

- artificial force restoring devices, linkages down to the servo-control relays (used as servo actuators in au-
tomatic control mode).
The other items in the manual or automatic control channels can either be simulated on an analog computer, or
be real aircraft items. The following items can also be introduced into the control channel.

- all the mechanical controls as far as the control surfaces by means of a system which .electrically connects
the simulator controls to the controls of the flying control test rig which is comprised of aircraft equipment
and parts,

- most of the detectors : rate gyros and inertia platform (attitudes only) by means of a 3 axis servoboard -
air data computer via servo pressure generators etc ...

- all the automatic flying aid and autopilot computers.
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METHODS USED FOR_IMPROVING_SIMULATION

1 . Aerodynamics

Owing to the importance of the design work carried out on the simulator, one of the major problems was
to maintain this computation means in a configuration as similar as possible to the aircraft as we know it.
This caused considerable complication for simulation.
The mathematical model used before first flight was deduced essentially from wind tunnel testing, aero-elas-
ticity calculations and engine rig testing. After the first flight of the prototype, the simulator was modi-
fied almost continuously after analysis of the flight recordings. This analysis was made in several ways.
During the exploration of the flight envelope, a rapid analysis was required for flight safety. It was neces-
sary to ensure not only that the controllability and stability characteristics remained at adequate levels,
but also that there was no tendancy for them to deteriorate to a level which could prove dangerous. This ra-
pid analysis only gave a first approximation of possible modifications to be made to the simulator.
Representation of the aircraft required a more complete examination of the mathematical model. The methods
used were different according to the parts of the model which we wished to improve. For this purpose, we
used digital programmes which were independent of the simulator but which used the same equations. These pro-
grammes can be divided into two groups :

- the first group is comprised of the programmes which are only partial copies of the mathematical model of
the simulator. They are used to reproduce the inputs to which the aircraft is subjected, and we modify the
model until identical responses are obtained.

- the other group is comprised of programmes which automatically look for the changes to be made to the nume-
rical values of the model so as to minimise the differences between responses from the aircraft and responses
from the model.

We are kept informed of flight results by a large amount of recording equipment installed on the aircraft. For
these studies, we have used quasi-static recordings on magnetic tapes or time histories from the same tapes.

Longitudinal equations

The most generally used method for optimizing longitudinal equations is the method based on use of the
programmes in the first group since the automatic methods available are based on A PRIORI knowledge of the
shape of the model. We have been led to modify the longitudinal equations to introduce a larger number of pa-
rameters or introduce them with a different formulation.
Although it is true to say that we experienced no big problems with the lift equation, such was not the case
with the pitching moment equation. We had to introduce effects connected with aircraft weight, e.g. location,
and variations of this e.g. location with fuel movement during manoeuvres in addition to the parameters deter-
mined from wind tunnel testing such as atmosphere, undercarriage or nose effects. This precise simulation is
required, for instance, for studying controllability at e.g. limits. For certain studies, we have determined
additional parameters to enable us to simulate the effects of in-flight thrust reversal, engine failure, or
thermal deformation of the aircraft after supersonic cruise.

All these parameters were obtained by a comparative analysis of flight test results. First of all they were
programmed on the computer, and their numerical values adjusted by successive approximations. The same method
was used to develop engine effects using a digital programme (a copy of the simulator programme) to obtain
thrusts and the characteristic air intake factors which we then introduced into the flight mechanics program-
me. This method enabled us to simulate the evolution of the various parameters during aircraft acceleration
or deceleration. Pitch efficiencies and damping derivatives were changed little except in transonic conditions.
These transonic adjustments were determined by reproducing deflections per g in static conditions and respon-
ses to elevator deflections in dynamic conditions. An accelerated analysis of these programmes was then deve-
lopped. Aircraft responses and model responses are superposed on a cathode ray screen. A block diagram of this
method is given in figure 2. Some identifications were made based on responses to elevator deflections using
the gradient method which we shall describe later. With these successive approximations we thus achieved a
satisfactory mathematical model. It is certainly not optimum but it enables us to represent aircraft characte-
ristics so accurately that we were able to use the simulator to study handling qualities and more particular-
ly to determine manoeuvrability at e.g. limits, which requires great accuracy of simulation.

Lateral equations

The shape of the mathematical model in lateral mode has never changed so it was possible to use automa-
tic methods.

TIME VECTOR METHOD

During flight envelope exploration, we required a simple and quick method of determining the trends of
the main parameters and checking that future flights would still be safe.
To achieve this, we generally used the time vector method. With this method starting from the response of a
system released in unstable conditions, one can determine certain parameters of the corresponding mathemati-
cal model.
Let us assume a second order system the damping of which is less than the critical damping :

dji -. ax x. + bz^

Let us now assume that the system is released whith initial conditions X0)ij . x and y can then be expressed as
a function of time, as follows :

.kt
x. s. c< £ s>\

-fet-- i e s
If x and y are replaced by their value in the system (i), we obtain :
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Each equation can then be represented with vectors as follows :

Factors c< , (b , ̂ , ̂>t , u) can be determined from aircraft time histories and d, , b̂  and a^ t ba can
then be determined from the drawing of the polygons.

This method is implemented fairly rapidly. Unfortunately, it is extremely dependent on precise phase determi-
nation. Furthermore, it does not allow all the parameters of the model to be determined ; the values of some
of these parameters have to be assumed and it is easily applicable only for a badly damped oscillatory system
if the input is not harmonic.
This very simple method was used much more during flight envelope exploration than for mathematical model de-
velopment. It only provides a first approximation of the evolution of the parameters.

GRADIENT METHOD

To identify the aircraft in lateral conditions, we have often used the method called the gradient method.
We shall only give a few explanations of this means of identifying the aircraft here, a complete development
is given in the appendix. This method consists of comparing the responses of the aircraft (object) with the
calculated response (model) over a given portion of flight time and modifying the model according to a func-
tion e of the difference between the two responses (see fig. 3).

For S we have chosen the integral quadratic difference :
-T

were T is the duration of the flight portion.

^are the aircraft state vector coordinates ; i. e. the parameters defining aircraft response.

SjHare the model state vector coordinates.

6j is a weighting factor which enables the same relative precision to be maintained in output identification.

The coordinates of the gradient of 8 are calculated in the space of the n parameters of the model, and we thus
determine a preferential direction of search to minimise 6.

Progression towards the optimum value of 0 is also subject to certain calculation constraints to avoid oscil-
lations around the optimum point.
We are also able to maintain only a priority subspace in the space of the factors to be determined. This prin-
ciple was used to perfect the programme developped at AEROSPATIALE. It appeared desirable to deal first of all
with the parameters which are most sensitive to the force to be identified, by giving them theoretical values
(wind tunnel tests and aeroelastieity calculations) as initial values and calculating the minimum of 9 in the
subspace of these parameters. The parameters as a whole are then dealt with, at a second stage, and the ini-
tial values of the sensitive parameters are then the values determined previously.
Owing to lack of time, it has not been possible to study the inputs which favour the determination of certain
parameters and we have therefore identified responses with the conventional deflections encountered in flight
in roll and yaw (Cf. fig. 4 and 5).

This method provides quite a good identification of model responses to aircraft recordings. The parameters
present a varying degree of scatter, when they are identified in similar flight conditions. This is due to
their facility of determination by the inputs considered (Cf. fig. 6). So, roll and yaw sideslip derivatives
can be determined quite accurately by this method. On the other hand, crossed damping derivatives have consi-
derable scatter, and the same is true for lateral force equation terms.

The results of this programme are therefore known with a certain accuracy. We attempt to confirm them by re-
producing the deflection recorded on the aircraft whith a 6 degree of freedom programme, but above all by cal-
culating balanced deflections in steady sideslip. These calculations enable us to choose the values of the
parameters in the ranges of uncertainly found by the gradient method.

The simulator gives rise to an additional problem owing to its reduced capacity data storage. Aerodynamic
curves must thus be introduced with a minimum number of points, which implies representing them as kinked
lines. We must then check that this does not appreciably modify the desired response evolution. Rapid imple-
mentation of programmes displaying the responses on a screen is very useful for this study. These methods ena-
ble us to follow the evolutions of the aircraft, at least in the flight envelope explored.
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This problem is one of the major problem implied by the identification of an aircraft for a simulator. It
is always possible to identify one response of the aircraft in specific flight conditions but for a simu-
lator it is necessary to have a model as simple as possible which is valid from ground effect up to cruise
conditions.

We have only mentioned here the optimization methods generally used at AEROSPATIALE, but some tests have
been carried out with the modified NEWTON-RAPHSON method with which we have obtained satisfactory results.

Research is in hand to adapt the "least squares method" and the "KALMAN filter method", but neither of these
methods has yet proved satisfactory.

Hinge moments

Control surface hinge moments are also simulated. Before first flight we had a mathematical model
based on wind tunnel test results and aeroelasticity calculations. This model was very complicated and we
experienced much difficulty in modifying it to obtain the hinge moments measured on the aircraft. We there-
fore decided to review the whole problem and realized that a much simpler conventional model could give just
as good results. This factor adjustment was made in successive approximations or by using smoothing techni-
ques, but it would also have been possible to adapt the gradient method.

Difficulty in perfecting a mathematical model

It is difficult to say if one of the methods we used is better than another. Both have their advantages
and disadvantages. However, the mistake we certainly made was to start with a complicated model and try to
improve it to achieve the same results as those achieved during aircraft testing. We now think that it would
have been preferable to start whith an aerodynamic model based on wind tunnel data and aeroelasticity calcu-
lations in which only the main effects were kept. This technique was applied for hinge moment calculations
only, but we have been able to see that it considerably reduced the time required for perfecting the model.

It was also necessary to simplify engine programming for computer capacity reasons. A complete simulation
is made of the bare engine (flange to flange) that is the engine as in the manufacturer's brochure ; we then
make corrections to include air intake and nozzle effects using the complete performance calculation program-
mes. These corrections are for gross thrust, intake momentum drag and free stream tube area (this quantity
intervenes in aerodynamics).

Our objective is not to use the simulator for performance calculations, but simply to have performance data
such that handling qualities studies are not affected. We therefore try to use realistic performance on the
simulator. To improve this performance, we have sometimes had to modify drag values for instance, in order to
reproduce aircraft climb performance or aircraft maximum altitudes. Similarly, instead of using the complica-
ted calculation used by the engine manufacturers in their brochure for a windmilling engine, we have intro-
duced the ratings measured on the aircraft'.

Engine adjustments were nevertheless very limited, for when the control amplifiers are simulated, engine ra-
tings can be simulated quite well, at least in steady conditions.

We experienced some problems with engine calculation stability and dynamic responses, but we solved them by
internal engine calculation time lags.

3.Fuel

The fuel transfer system on CONCORDE is complex, with several transfer possibilities. CONCORDE has 13
separate tanks, and in non automatic mode it is possible to transfer fuel from one tank to any of the others.

The first programme carried out on the simulator was very complicated since it took pump characteristics and
pipe pressure drops into account. Altough this simulation was extremely complex, it was not perfect and pro-
ved very difficult to improve because of its complexity. We therefore only introduced the intertank fuel
flows measured on a test rig, and only retained the normal transfer procedures. These fuel flows, programmed
in this way, can easily be modified when the measurements made on the aircraft show that this is necessary.

RESULTS_OBTAINED AND POSSIBILITIES OFFERED_BY_THE_SIHULATOR

The CONCORDE simulator has been in use for 8 years for CONCORDE development purposes. It has amply con-
tributed to the development of this aircraft, the good handling qualities of which are recognized by-all the
pilots who have been at the controls.

II has enabled the number of control system development flights to be reduced considerably and has contributed
to the good progress and safety of test flying. To achieve this, it has always been necessary to keep it to
a standard as close as possible to the aircraft.

Design work is now completed and the simulator is used for aircraft certification. For that, we had to demons-
trate to the certification Authorities beforehand that the simulator showed conformity with the aircraft.
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be the aircraft state variables (object)

be.the model state variables

be the disturbances

be the parameters to be identified

In the following test, we shall call C any one of the 15 parameters to be identified.

STATE EQUATIONS

Constant factor linearized flight mechanics equations :

( f t p r J>
V. I M > rM > 'M J TM >

(1)

INTEGRAL_QUADRATIC CRITERION FOR IDENTIFICATION

(2)

ec are the weighting factors which allow the weight which seems to be the most logical in the identifica-
tion to be matched with each output.

PRINCIPLE OF THE METHOD

We must look for the direction of variations to be adopted for each factor C so as to minimise e, by
calculating

(3) S
.

f f l j f r - f . ) -" + e , ( ? - p ^1"+.
[ 1 I a I " ' 3 c r " r M O c

cJt

We write ^- = ^c \?n, U, c 1̂" = U rc ^ M _

We calculate iCu.-^ - Ji. v. ac j - -
dt ' '"' dt

and obtain, by reversing the order of the derivations

Referring to the state equations (1 ) we can then write

3C
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for each factor C,If we replace ^M , ^S , X. «̂ by Upc o Up<. , i./Pc ; c7
3C %c "ac. > "9C-

We obtain a system of 4 differential equations called an associated system. Resolution of this sys-
tem enables us to obtain (Jpc , Upc , Urc. > U<J,C

 whioh we transfer to equation (3) to obtain, by
integration p Q

From this, we deduce the value to be adopted for C at a step n + 1

Yc is the gain of the loop on each of the parameters to be identified ; it also allows priority identifica-
tion of the parameters which are most sensitive to the force considered. In addition, on completion of iden-
tification, when 9n and 9 nt^ are on either side of the minimum of the criterion, the convergence is achie-
ved by dichotomy.
This method is based on the assumption that the only minimum of the criterion 6 in the space of factors C
containing the initial point is the optimum required. If this were not so, there would be a risk of stopping
at a local minimum, in which case we would obtain erroneous factors C.
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APPLICATION OF A NEW CRITERION FOR MODELING SYSTEMS
by

Lawrence W. Taylor, Jr.
NASA Langley Research Center

Hampton, Virginia

SUMMARY

A new criterion has been proposed for modeling systems which promises to
be useful in deciding how complex a model should be. The criterion is based
on the expected model response error instead of the error in fitting the data
used for estimating the model parameters. The new criterion also does not
require withholding data to be used exclusively for testing. There remains,
however, the difficulty of testing a large number of candidate models that
correspond to the combinations of terms used In the dynamic equations. In
this paper, a computational approach is suggested which greatly reduced the
computations required in searching for the best model. In the suggested
approach the gradient of the response with respect to the model coefficients
is held fixed and numerous combinations of terms are assessed. After deter-
mining the most promising candidate model, the gradient is updated and the
process is repeated. This procedure gives greater assurance that the best
model is selected and does not rely on the analyst's judgment.

DISCUSSION

One interesting problem arises in modeling systems when the analyst does not know the exact form and
the particular terms in the dynamic equations which are most suitable for his purposes. Consequently, the
analyst must test a number of candidate models and obtain parameter estimates for each. He is then con-
fronted with the problem of choosing one of them with little or no basis on which to base his selection.
It Is tempting to use a model with many parameters since it will fit the measured response error best.
Unfortunately, It Is often the case that a simpler model would be better for predicting the system's
response. This is because the fewer number of unknown parameters could be estimated with less uncertainty.
An example of using an excessive number of model parameters is given in Figure 1 of this paper which is
based on results of Reference 1. Although the fit error decreased as the number of terms in the model was
Increased, the more complex models were poorer at predicting response, as is indicated by the upper curve.
It was only after the modeling process was repeated with an expanded data base that the more complex models
were better at predicting response as is shown in Figure 2. One test that can be used is to segregate the
response data available into a portion for estimating the model parameters and a portion for testing the
resulting model. An improvement on this approach is given in Reference 2 which enables the use of the
entire data base for modeling by replacing the test by the calculation of the expected response error of
such a test.

The analyst still faces the difficulty of testing a large number of model candidates If he wishes to
be certain a particular model is best. In Reference 3, it is suggested that the eigenvalues of the infor-
mation matrix be used to decide which eigenvectors be used as constraints on the model parameters. Although
this procedure will aid convergence, the solution obtained is not satisfactory for many applications.
Because of the discrete manner in which the constraints are applied, the solution becomes a function of the
Initial values of the model parameters. Another disadvantage is that the model complexity is never reduced
but equals that of the most complex model considered. A search of all possible model candidates Is con-
sidered to be a better alternative, but is thought to have a computational cost that is prohibitive. It is
the purpose of this paper to apply the new criterion of Reference 2 in a way that (1) automates model making
by testing all possible candidate models for the smallest expected model error, and (2) arranges the calcula-
tions in a way to greatly reduce the computational cost.

THE MODELING PROBLEM

The modeling or systems Identification problem of determining the parameters of a linear, constant-
coefficient dynamic model will be considered from two viewpoints, (1) given the model except for not knowing
the values of its parameters, and (2) given a large number of candidate models to consider. The conditional
maximum likelihood estimate is used In which the noise error covariance matrix is known. A modified Newton-
Raphson technique is used to express changes in the estimated model parameters.

Problem Statement

The problem considered is that of determining the values of certain model parameters which are best
with regard to a particular criterion, If the input and noisy measurements of the response of a linear,
constant-coefficient system are given. The system to be Identified is defined by the following equations:

x = Ax + Bu (1)

y = Fx + Gu + b (2)

z = y + n (3)

where

x state vector
u control vector
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y calculated response variable
b constant-bias vector
n noise vector, assumed to be Gaussian, uncorrelated
z measured response variable

The unknown parameters will form a vector c. The matrices A, B, F, and G and the vectors b and x(0)
are functions of c.

KNOWN MODEL FORMAT

The modeling problem is straightforward if we assume the model is known except of the values of its
parameters. One criterion that is often used in systems identification is the mean-square difference
between the measured response and that given by the model. A cost function which is proportional to the
mean-square error can be written as

(4)

1=1

where D^ is a weighting matrix and i Is a time index. The summation approximates a time integral. The
estimate of c is then

c = ARC MIN(J) (5)

which means that vector c which minimizes the cost function J. If we linearize the calculated response
y with respect to the unknown parameter vector c:

yi = y±.
- cQ) (6)

where
y nominal response calculated by using cQ

V y gradient of y with respect to c

c- nominal c vector

Substituting y^ Into the expression for J and solving for the value of c which minimized J
yields

c = cr Vl DlVi
1=1

-1

Vi
1=1

N

(7)

Because the inverted expression occurs repeatedly we will denote it as Q.

If this relationship is applied iteratively to update the calculated nominal response and Its gradient
with respect to the unknown parameter vector, the minimum-response error estimate c will result. The
method has been called quasi-linearization, repetitive least squares, and modified Newton- Raphson. The
latter seems more appropriate since Q approximates the second gradient of J in the Newton-Raphson
formulation. The flow chart of Figure 3 depicts this procedure when the model format is known.

UNKNOWN MODEL FORMAT

An analyst never knows with certainty what model is best suited for his purposes because it depends not
only on the model's use but also on the response data available for determining its parameters. Models
having excessive complexity should not be used when simpler ones would provide more accurate response esti-
mates. The analyst must test the possible candidates to be certain which Is best for its Intended purpose.
For the purpose of this discussion It will be assumed that the model's intended use Is to predict the
response of a system and that a meaningful measure of the model's performance is a weighted mean-square error.

A CRITERION FOR COMPARING CANDIDATE MODELS

The development of the new criterion of Reference 2 is repeated in the following discussion. The
weighted mean-square response error which was minimized by the minimum response error estimate was:

y±>
1=1

Let us denote the weighted mean-square response error which corresponds to testing the model's perform-
ance in predicting the system's response as:
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Where z1 is measured response data that is not part of z± which is used to determine the model
parameters. It Is convenient to consider the input, u, to be identical in both cases.

The criterion suggested for comparing candidate models is the expected value of J1. If It is possible
to express the expected value, E{jl}, in terms not involving actual data for z1, then a considerable saving
in data can be made and improved estimates will result from being able to use all available data for estab-
lishing the model parameter values.

Let us examine first, the expected value of the fit error with respect to the data used to determine
estimates of the unknown parameters.

We can express the response error as:

true ' ytrue ' V & ~ c >true

(£ - (n - - Ctrue>»

It has been assumed that (1) the response can be linearized with respect to the model parameters over
the range In which they are In error, and (2) the gradient Vcy Is constant over the same range.

The expected value of. the fit error, E{ĵ }, because:

• N
J V T I '

I Z_i i i l l ifU=i
Expanding we get:

<vt> (a - e

If a maximum likelihood estimate is used, or if the minimum mean-square response error estimate Is used
with a weighting equal to the measurement error covariance matrix, then we can write:

DI = M

N

I Vi* --1 '̂
1=1

-1
N

V T iL Vi « \
1=1

again linearization is assumed and It is noted that:

Zl -

After substituting we get:

E{J} = E {I n,1 M'1 }̂ - 2E {PT (f1?} + E {PT Q'1 Q tf1 P} = E {Z n±
T M'1 î } - E {PT Q"1 P}

Next, let us examine expected fit error E{j} of a model used to predict response measurements, z1,
which are independent of the data z, used to determine the estimates of the model.

We can again express the expected fit error as:

1) = E [J .YD/A - - (i AX v^
li=l J li=l

vcy±
Note that the only difference between the above expression and that obtained earlier for E(j) Is that

the noise vector is n1 Instead of n. The same expression can be used for c as before:

M'1 V

1=1 1=1

Substituting the above expression for c, and M"1 for D, we get:

- 2E ± M-
1
 n + E (PT Q-1 P>

=i i=i 1=1
Where P and Q are defined as before. Since tne noise vector, n"1 and n are uncorrelated, that is:

E <n 0 for all i
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Then the second term is zero.

Since the noise vectors n, and n^ are assumed to have the same covariance matrix, M, we can write:

E / ; nY M"1 n1^ = TRACE

U-l

n1.1 M'1 n1 TRACE

r N ,f\• fi-v.y
Li=1 J

= TRACE [N I] = Nr

Where N Is the number of time samples and r Is the number also

Nr
1J

We can now express E{jl} in terms of E{j) as:

EU1} = E{J} + 2E {PT Q"1 P}

Examining the second term:

N

E{PT q-1 P} = n±
T M-1 Vcy±

After taking the trace of the scalar and reordering the vectors we get:

/

N N

E{PT Q"1 P} = TRACE
V V T -1 -1 T -ll
L L Vi M vcyiQ vc yiM

Because the noise Is uncorrelated at unlike times the term simplifies to:

N N

E{PT q"1 P} TRACE Z Vi Q"1 Z VcTyi M-1

1=1 1=1

Finally, we have that the expected fit error for the case of testing the model's prediction of the
system's response as:

E{J

i

1} = J + 2 TRACE/ ) V y Q"1 V V Ty M"1
i Z_i *• •*• Z_j c j /i _=i

Since it is available, the actual fit error, J, is used Instead of its expected value. The Intent of
the new criterion, E{jl}, is that it be used instead of J In determining the level of model complexity
that is best.

APPLYING THE NEW CRITERION TO ALL POSSIBLE CANDIDATE MODELS

Although it is a great help to have a criterion for comparing candidate models, there remains a problem
of an excessive number of candidate models. Figure 4 Illustrates the large number of candidate models that
result from the combinations of unknown parameters that can be used for an example model with as many as
23 terms. The total number of possible candidate models that results from the combination of terms exceeds
8 million. Consequently, the calculations involved become an economic condideration. As the maximum number
of unknown parameters increases, the number of possible candidate models rapidly becomes astronomical.

One can do several things to reduce the computations Involved in assessing a large number candidate
models, particularly If all possible combinations of terms are considered. First, it is essential to hold
fixed the gradient V y. Next, it is useful to express the new modeling criterion, EfJ1} as:

= J + 2 TRACE

3=1 1=1

By rearranging terms it is now possible to compute all but q in advance. One can also take advantage of
a "bordering" technique to express Q~l of a model in terms of that for a model with one less term, that is:

If

matrix

is the inverse of the information matrix for candidate model m, the inverse of the Information

for a model having one additional term is:

'1
q"1 + q"1 b c bT o"1
in Tn in

T — 1 T — 1
- (c - bT q/ b)bT q/

-1 , , ,T -1- o b (c - b qm

,T -1 ,
c - b 0 b

b)
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Because of symmetry of both q-1 and CVjjl only 2n2 - 2n additional multiplications are required to form
Q̂  compared to nj if one starts from scratch. For example of looking at all possible combinations of a
23-term model, the multiplications involved in forming over 8 billion inverses is reduced from 14.4 trillion
to 2.12 trillion, a savings of 85 percent.

The following procedure is suggested to realize these savings:

1. Determine values of the model parameters using all terms being considered.

2. Preserve the information matrix, q, of step 1.

3. Compute and preserve the matrix

%y. of step 1.

4. Starting with terms taken singly, then pairs, and so forth, form the inverse of the corresponding
information matrix using the bordering technique.

5. Select the appropriate rows and columns of the matrix of step 3 which correspond to the set of terms
being considered.

6. Form the trace of the product of the matrices in steps 4 and 5. Either order may be used for the
multiplication.

7. Preserve the models having the lowest value of expected fit error, Efj1}.

The flow chart of Figure 5 depicts this procedure as it relates to the modeling problem when the format
is unknown.

CONCLUDING REMARKS

The analyst often faces the problem of selecting a model's level of complexity in addition to determin-
ing the model's unknown parameters. If a model is selected solely on the basis of fit error or a likelihood
function, the model will probably be less accurate in predicting system response than a simpler one.

Several models of varying complexity should always be examined and at least tested by predicting system
response measurements not used in determining the unknown model parameters. Unfortunately, this form of
test requires reserving part of the total data for testing only.

A new criterion is developed by expressing the expected fit error that would result from testing a model.
The new modeling criterion enables using all of the data for determining the unknown model parameters.

A problem exists because of the large number of possible candidate models caused by the numerous combi-
nation of terms. The example which involved up to 23 unknown parameters corresponds to over 8 million candi-
date models or combinations of parameters. A procedure has been suggested which reduces by 85 percent the
computation effort involved. The problem, however, of efficiently searching for the best candidate model
remains an area worthy of attention.
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A MONTE CARLO ANALYSIS OF THE EFFECTS OF INSTRUMENTATION ERRORS
ON AIRCRAFT PARAMETER IDENTIFICATION

by
Wayne H. Bryant and Ward F. Hodge
NASA Langley Research Center
Hampton, Virginia 23665

SUMMARY

An output error estimation algorithm was used to evaluate the effects of
both static and dynamic instrumentation errors on the estimation of aircraft
stability and control parameters. A Monte Carlo analysis, using simulated
cruise flight data, was performed for a high-performance military aircraft,
a large commercial transport, and a small general-aviation aircraft. The
effects of variations in the information content of the flight data, resulting
from two different choices of control input maneuvers, were also determined.

The results indicate that unmodeled instrumentation errors can cause
inaccuracies in the estimated parameters which are comparable to their nominal
values. However, the corresponding perturbations to the estimated output
response trajectories and characteristic equation pole locations appear to be
relatively small. The magnitudes of these perturbations to the estimated
parameters, output response trajectories, and characteristic equation pole
locations, for both longitudinal and lateral response modes, can vary appre-
ciably with different classes of aircraft, and with the information content of
the flight data used. Control input errors and angular accelerometer lags
were found to be most significant of the instrumentation errors evaluated, and
the perturbations they produce are much larger than those arising from the com-
bined effects of static errors and white noise in the output response
measurements.

Although comprehensive data regarding parameter accuracy are not avail-
able without an exhaustive study, results for specific cases can be readily
obtained using the error analysis algorithm described here.

INTRODUCTION

One of the important tasks associated with current efforts to improve the estimates of stability and
control derivatives obtained from flight data is to evaluate the effects of unmodeled errors in the meas-
urements. The estimated quantities may be used in a variety of applications each with its own accuracy
requirements, and the measurement system and flight maneuvers used may be specified primarily for other
purposes. For these reasons, it is desirable to be able to evaluate the effect of a given instrumentation
set on the accuracy of estimated stability and control parameters, and conversely, to determine an instru-
mentation set which will permit the parameters for a specific aircraft to be identified to a desired level
of accuracy. Largely because of the difficulty in specifying parameter accuracy requirements and the
existence of less powerful computational facilities, suitable error analysis algorithms for this purpose
have appeared only recently. Two such algorithms, based on the minimization of output response errors,
are described in Reference 1. The first one furnishes statistics of the resulting parameter inaccuracies
through the use of sensitivity coefficients in an ensemble technique, and the other provides the statistics
by means of a Monte Carlo analysis of simulated flight data.

Reference 1 also reports an initial investigation using the ensemble algorithm to determine the suit-
ability of presently utilized instrumentation. This study assumed typical instrumentation, cruise flight
conditions, and included the effects of static instrumentation errors only (such as biases, scale factors,
misallnements, center-of-gravity uncertainty, and vane corrections). The results, together with those
presented in Reference 2, indicated that these error sources can cause much larger parameter inaccuracies
than those attributed to white noise in the output response measurements alone.

The results contained in Reference 3 and this report extend the overall investigation in several
respects. A principal objective of these studies was to evaluate the effects of additional error sources
such as those arising from instrumentation dynamics and measurements of control inputs. The simulated data
algorithm (Monte Carlo) was used for this purpose, since these errors cannot be handled by the ensemble
algorithm without introducing approximations which have not yet been evaluated. As stability and control
derivatives are often estimated from flight data obtained for other purposes that may not require the full
excitation of the aircraft modes, results were obtained for two different input maneuvers. Further data
were obtained to determine how much the results change with different classes of aircraft for one input
maneuver and identical instrumentation sets. In order to provide a more complete evaluation, the effects
of parameter inaccuracies caused by unmodeled instrumentation errors on the output response trajectories,
and characteristic equation pole locations were also determined. Lastly, a sensitivity analysis was
performed to qualitatively identify the dominant error sources.

METHOD OF ANALYSIS

Simulated Data Error Analysis Algorithm

The process of estimating stability and control derivatives by minimizing an appropriate quadratic
performance function J(p) provides a natural approach for analyzing the effects of unmodeled errors In
the measurement data ym. The essential feature of the simulated data concept is that the Increase In
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parameter inaccuracies caused by unmodeled instrumentation errors are obtained simply as the differences
between the assumed true values of the parameters, and those estimated from simulated flight data which
contain the unmodeled errors. The algorithm used for this purpose is that of Reference 4, which minimizes
the output response error using the discrete performance index

J(P) (D

1=1

where yi is the estimated response, R'1 Is a weighting matrix, and the product is summed over the number
of data points (N) in the measured trajectory. The estimated parameters p are solved for using the modified
Newton-Raphson algorithm

z
1=1

(ymi -
1=1

< |0.01

(2)

simultaneously for each parameter.The convergence criteria used for the present study was

Aircraft Equations

The equations of motion used to represent the aircraft dynamics in the present study are:

A6

Aq

Aw

Au

for the longitudinal mode and

Ag

AP

Af

Ai).

o
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o
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*oe
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~ —
A*6a

Ar6r

(4)

for the lateral directional mode. The short-period equations are obtained from (3) by eliminating the state
Au and all its factors. The unknown parameters estimated in the longitudinal mode are Mq, V^, M^, M6e,
ZSP, Zw, Zu, Xw, and Xu- In the short-period mode, Mq, MW) Zw, M6e, and Z6e are estimated and in the
2?«al moS; ?e, Y6a'X, L*B, L*p, L*6a> L*6r, N*B, N*p, N*r, N*6r, and L*r are estimated. Aircraft
considered in the study were the DC-8, the F4-Ĉ  and Cessna 172. This selection permits the evaluation of
a high-performance aircraft, a large transport, and a small general-aviation aircraft.

Measurement Equations

The ideal measurement equations are represented as

y = H(p) x + D(p) u (5)

where x and u are the state and control vectors and H(p) and D(p) are the state and control observa-
tion matrices, respectively.

The simulated longitudinal measurements are:

(1) Pitch attitude (6)
(2) Pitch rate (q)
(3) Angle of attack (a)
(4) Longitudinal velocity (u)
(5) Longitudinal acceleration (n^)
(6) Normal acceleration (nz)
(7) Pitch acceleration (q)

In the short-period mode, longitudinal velocity and acceleration are not used. In the lateral mode, the
simulated measurements are:

(1) Angle of sideslip (g)
(2) Roll rate (p)
(3) Yaw rate (r)
(4) Roll attitude (<)>)
(5) Lateral acceleration
(6) Roll acceleration (p)
(7) Yaw acceleration (f)
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These measurements are corrupted by errors which are modeled in the following order:

yx = T y + b (6)

where T is a matrix of scale factor, cross-coupling, and misallnement errors, and b represents measure-
ment biases. State measurement lags are modeled as

where Ty is a diagonal matrix of measurement time constants. The simulated flight data measurements are
then obtained by adding white noise at each time point

ym = yL + W (8)

In a similar fashion, control surface position measurement errors are modeled as

where Tc is a matrix of scale factor errors, and bc are measurement biases. Control measurement lass
are Included as

"L = rcX (ui - V do)

with Fc a diagonal matrix of measurement system time constants. The simulated control measurement is
obtained by adding white noise as

um = uL + wc (ID

and is used in the development of the estimated state measurements. A more detailed description of the
measurement models can be found in Reference 5.

Monte Carlo Computations

The statistics of the measurement errors appearing in the preceding equations are assumed in Table I
(Refs. 1 and 6) to be given by zero-mean la values, which are used in conjunction with a pseudo-random
number generator to simulate a number of sets of ym and um. Following the simulation procedure employed
in References 1 and 2, the sensor location errors (eax, eaz, £vx) and the elements of Fv and rc are
treated as constants which remain at their tabulated la values for all sets of ym and um generated.
The elements of w and wc are given new random values at each time point of every set of ym and u
while the values for all remaining error sources are regenerated once for each such set to simulate random
biases. A corresponding set of parameter estimates p are computed using Equation (2), and the resulting
estimation errors Ap are formed by subtracting the assumed true parameter values, p. Means and variances
of Ap are then calculated.

Further computations are made to permit evaluating the effects of the Ap on the estimates of the
output response trajectories and the open-loop characteristic equation pole locations. Statistics of the
former, for each discrete value of time, are calculated using all sets of data generated. Computations of
all quantities were generally based on 50 such data sets; however, in some cases as few as 25 sets were used
with satisfactory results. An interval of 0.1 second was used for both the integration step size and the
data sampling rate. Since the short-period roots of the longitudinal characteristic equation become real
for some of the Ap, scatter diagrams are used to indicate the distribution of these quantities.

RESULTS AND ANALYSIS

The Monte Carlo analysis of the effects of unmodeled instrumentation errors outlined in the introduc-
tion was based on simulated flight data, generated from the aircraft parameters and cruise flight conditions
listed in Table II (Refs. 7, 8, 9) and the two sets of control input maneuvers plotted in Figure 1 These
choices permit examining the effects of independently varying the information content of the simulated
response measurements and the type of aircraft, and facilitate comparisons with similar results presented
in References 1 and 2. The effects of the unmodeled error sources were evaluated in three groups or error
cases for each control input or aircraft type. These error cases correspond to progressively adding white
measurement noise (case 0), static measurement errors (case 1), and dynamic lags and control input errors
(case 2) to the simulated data. The analysis presented includes results for both the longitudinal short-
period and lateral-directional response modes. Lastly, sensitivity computations were performed to identify
the dominant error sources.

Although the results presented are not exhaustive, they are representative of those that can be
obtained through the use of the error analysis programs described here and in Reference 1 for specific
combinations of aircraft type, instrumentation set and error level, and the control input selection.

Error Analysis

In order to extend and make possible direct comparisons with the results for the ensemble algorithm
given in References 1 and 2, those for the present study also were generated mainly for the F4-C aircraft
(see Table II) using the input maneuvers designated as sequence 1 in Figures l(a) and l(b). The -effects
of the unmodeled instrumentation errors on the estimated aircraft parameters are analyzed, then the corre-
sponding perturbations to the output response trajectories and characteristic pole locations are discussed
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Stability and Control Derivatives. The statistics of the errors in the estimated aircraft parameters,
for both the short-period and lateral response modes, are presented in Figure 2 for each of the three error
cases. This information is expressed in terms of percentage deviation from the assumed true value of each
such derivative presented, and includes the mean and standard deviation for every element of the resulting
Ap. For Figure 2, and all subsequent plots of a similar nature, the mean and standard deviation of each
plotted quantity are respectively denoted by cross hatched and solid bars as indicated.

In generating the data plotted in Figure 2, the estimation errors for the longitudinal derivatives
Mu, Xu, Zu, and Xw associated with the phugoid, and the lateral derivatives Y6a and Y6r, were found
to be very large. Since the phugoid period for the F4-C aircraft is roughly 22 times the 15-second data
sampling interval used, the results for &„, Xu, Zu, and Xw were judged to be inaccurately determined
because of insufficient information, and only those for the derivatives retained in the short-period
approximation are presented. The values for Y6a and Y6r were omitted for the same reason, but these
two derivatives were allowed to vary in the estimation process.

Reference to Figure 2 shows that the static errors added by case 1 cause much larger parameter inaccu-
racies than those due to white measurement noise alone (case 0). The case 1 errors produce biases in most
of the elements of Ap for both response modes which are comparable to their respective standard deviations.
These biases proved to be mainly a consequence of modeling Eax, eaz, and ê  as constant errors (see
Table I), and not the result of any statistical inaccuracy that could be attributed to the number of data

sets used.

Comparisons of the Monte Carlo results presented in Figure 2 with those obtained using the ensemble
algorithm generally indicated good agreement, but were limited to cases 0 and 1 since case 2 was not evalu-
ated in References I and 2. With the exception of some of the weaker derivatives, the differences amounted
to only a few percent in both the mean and random components of Ap. The results for case 2 show that
dynamic lags and control input errors can cause much larger inaccuracies in the estimated derivatives than
the combined effects of white noise and static errors in the response measurements.

The effects of initial state errors were also evaluated; however, the resulting changes in Ap proved
to be very small (about equal to those for case 0) so that the utility of estimating them would seem
questionable for either case 1 or case 2. Since the results for case 1 Imply that the contributions to
Ap from the biases in the response measurements are small compared to those from the dynamic lags and
control input errors, the value of estimating the output biases also appears doubtful. Assuming they are
present in the flight data, estimating case 2 error sources would therefore seem to offer better prospects
for reducing inaccuracies in the estimated derivatives.

A T .

One additional aspect of the computations that should be mentioned is that l^j R Ig^j remained

almost unchanged for all three error cases, so that the inverse of this matrix is not indicative of the
error covariance matrix E[Ap ApT] except for case 0. Furthermore, the elements of Ap contain biases
which are comparable to their respective standard deviations for both cases 1 and 2 as previously noted.

Output Response Trajectories. The effects of the Ap on the resulting output response trajectories
are illustrated by the time history curves presented in Figure 3. Plotted for each element of the short-
period and lateral output vectors are the assumed true response (based on the Table II parameter values),
and the means and standard deviations of both the measured and estimated response. Only the curves for
case 2 are plotted since those for cases 0 and 1 exhibit almost no deviation from the true trajectories.
These results show that the perturbations to the response trajectories are not very severe, however, their
importance depends on. the particular application.

Reference to Figure 3 indicates that the largest perturbations for both response modes occur for the
attitude angles, and increase to fairly large values over the 15-second interval plotted. This propagation
results from the effects of the Ap on the integration of the aircraft equations of motion. Inspection of
Equation (3) for the short-period mode shows that the errors in Mq> &„, and %e directly affect the
integration of Aq. The resulting inaccuracy in Aq is in turn propagated by the integration of A9, so
that the effect on the pitch attitude error A6 is twofold. Equation (4) for the lateral mode^indicates
that the roll attitude error A$ results from a similar double propagation of the errors in L g, L p.
L*r L*,ca and L*6r by the integration of Ap and A$. The perturbations to the attitude angles A0
and A$ thus depend on the errors in these eight derivatives, which all increase appreciably between

cases 1 and 2 (see Fig. 2).

The relative positions of the y and ym time histories plotted in Figure 3 further indicate the
effects of the unmodeled instrumentation errors on the fit between the estimated and measured response
curves which appears to be generally good except for the attitude angles AS and A<)>. The estimated
response curves (except that for A$) exhibit negligible biases, but their standard deviations are larger
than those for the corresponding measured curves. This behavior is opposite to that observed for cases 0
and 1, and may be due to process noise introduced in Equations (3) and (4) by the addition of control input
errors (case 2) which degrades parameter estimates obtained with the modified Newton-Raphson algorithm

(see Ref. 10).

Characteristic Equation Pole Locations. The s-plane representation is employed for the scatter
diagrams presented in Figure 4 to illustrate the effects of the Ap on the resulting characteristic
equation pole locations. The plotted pole locations for both response modes were calculated using data
points for each set of p used in generating Figures 2 and 3. The results for the different poles are
denoted by plotting symbols as shown, and their assumed true locations (based on the Table II parameter
values) are indicated by arrows. As was the case with Figure 3, only the results for case 2 are presented
since those for cases 0 and I also showed very little departure from the true values. While the perturba-
tions to the characteristic equation pole locations do not appear to be much more severe than those for the
response trajectories, their importance again should be judged by the application.
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To determine which of the Ap cause the majority of the bias and scatter seen in Figure 4, the
equations used to determine pole locations were evaluated with only one parameter at a time set first to
its estimated mean value, then to its estimated mean +la value. The following table shows which errors
were found to have the greatest effect on the indicated movement of the poles.

Mode Axis Derivatives affecting
pole motion

Short period

Lateral
Dutch roll

Roll subsidence

ico -

a -

iu -

iw -

a -

a -

a -

bias and scatter

bias and scatter

bias

scatter

bias

scatter

bias and scatter

Mw
M
q

*
L
*P *

L*P *
*P *
L , N
P r
L*
E

Reference to Figure 2 again shows that the errors in those derivatives which dominate the resulting
perturbations increase appreciably between cases 1 and 2.

Effect of Control Input Maneuver

To determine how the results presented in Figures 2, 3, and 4 might vary for an alternate choice of
control inputs corresponding data were generated using the input maneuvers designated as sequence 2 in
Figures l(c) and l(d). The sequence 2 inputs for both response modes are comprised of ordinary short
doublet pulses, and were chosen to provide a comparison with results for maneuvers of the type often used
in actual flight tests. As evident from Figure 1, these inputs differ both in form and duration from those
for sequence 1 which consist of doublets augmented with trailing step pulses.

To facilitate comparisons of the parameter estimation errors for the two sets of input maneuvers, the

ratio of Ap- for sequence 2 to that for sequence 1, jJ, is plotted in Figure 5 for each of the short-
pl

period and^lateral derivatives. The actual Ap^ percentage values can easily be obtained by multiplying

Apl by Sp~ if desired- For example, the values of Ap1 and ̂  for the mean error in £* (from

Figs. 2 and 5) are respectively about 20 percent and 0.5, which give 10 percent as the value of the mean
error in L*p for sequence 2.

Except for the ratios of the mean errors in some of the lateral derivatives for case 0 (which are
inaccurately formed because of the smallness of the numbers involved), the fact that the values for most

°f the Ap~ ratios Plotted in Figure 5 are nearly unity indicates essentially the same magnitude Ap

errors for both sets of inputs. Even though the aircraft response differs substantially, as evident from
the corresponding state variable time histories also plotted in Figure 1, the increase in information con-
tent afforded by the use of sequence 1 did not result in any appreciable decrease in Ap\ Thus, the infor-
mation content of the response data does not appear to be deficient for either set of input maneuvers
While the assumed true response trajectories for the two sets of inputs also exhibit the differences just
noted, the magnitudes and overall characteristics of the resulting perturbations are essentially the same
for each corresponding element of ?. The two sets of characteristic equation pole locations show similar
scatter patterns, which is consistent with the fact that the parameter estimation accuracy remained almost
unchanged. Because of the limited additional information they contribute, the response trajectories and
pole location plots for sequence 2 are not presented for either response mode.

Instrumentation Error Effects for Different Aircraft Classes

To determine how the effects of unmodeled instrumentation errors might vary for different aircraft using
the same control input and identical instrumentation sets, the previous computations were repeated using
the parameters and nominal flight conditions for the large transport (DC-8) and the light general-aviation
aircraft (C-172) also listed in Table II. These data include results for both the short-period and lateral
response modes, and were generated using the sequence 1 input maneuvers. The ratio of the Ap for the

DC-8 and the C-172 to that for the F4-C aircraft, ?-^^ and A!
C"172, were formed in the same manner as

Ap2
 PF4-C PF4-C Ap

jx- to facilitate comparisons of the results for the three types of aircraft. The values of DC"8 are

presented in Figures 6(a) and 6(b), and those for .fi
C"172 in Figures 6(c) and 6(d). No results for Z,

F4—C
are included in Figure 6(c), since the assumed true value for this derivative was zero for the C-172 aircraft
(see Table II). As with Figure 5, some of the case 0 ratios are inaccurate, however, these results are of
minor importance as the elements of Ap for each of the three aircraft are all very small for case 0 anyway

ApDC-8 '
The Ap ratios plotted in Figures 6(a) and 6(b) indicate that the elements of Ap for the DC-8 and

F4-C aircraft are about the same for the short-period mode, but are larger for most of the DC-8 lateral
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AP ,„
derivatives. The corresponding values of -rx presented in Figures 6(c) and 6(d) exhibit even larger

flpF4-C
differences between the two sets of parameter estimation errors for each response mode. These results
indicate that the effects of unmodeled instrumentation errors on p can vary appreciably for different
classes of aircraft.

The perturbations to the output response trajectories for the DC-8 and C-172 also exhibited much the
same overall characteristics as those for the F4-C aircraft, and the plots for these curves were therefore
omitted for the same reason as those for sequence 2. The corresponding characteristic equation pole loca-
tion plots for case 2, however, are presented in Figure 7. Comparisons of Figures 4 and 7 indicate that
the pole location errors for the DC-8 and C-172 are very similar to those for the F4-C aircraft, except
those for the C-172 short-period poles exhibit a much larger scatter pattern. Evaluations of the pole
location equations similar to those performed in conjunction with Figure 4 showed the increased scatter to
be caused mainly by AMy and A2W which are much larger for the C-172 than for either the DC-8 or F4-C
aircraft. The effects of the errors in these derivatives are further manifested by the short-period roots
of the longitudinal characteristic equation becoming real for five of the 50 sets of pole locations plotted
in Figure 7(c); however, examination of the output response trajectories for these five sets showed no
appreciable differences from the rest. Because of the high short-period damping factor for the C-172
(0.92 for the assumed true values), the estimation algorithm has difficulty in determining accurate values
for the derivatives, and instrumentation errors compound this difficulty. However, the algorithm still
estimates a set of derivatives that closely represents the observed output responses.

Identification of Dominant Error Sources

The remaining objective of the present study was to qualitatively identify which of the error sources
dominate the resulting perturbations plotted in Figures 2, 3, and 4. The initial phase of this process
showed that, while Ap for error case 1 is much larger than that for case 0, neither white noise nor static
errors in ym proved to have much effect on either the estimated response trajectories or characteristic
equation pole locations. These error sources thus appeared to be relatively unimportant, indicating that
the perturbations to the output measurements y and pole locations s evident in Figures 3 and 4 are
produced mainly by the effects of the dynamic lags and control input errors.

The addition of only dynamic lags to case 1 was found to produce negligible changes in the random
components of Ap for both the short-period and lateral derivatives, but the magnitudes of the mean or bias
components generally increased. Results generated by including the individual elements of Fy and FC
one at a time indicated that these changes are produced principally by the pitch accelerometer and elevator
position transducer lags for the short-period mode, and by the roll accelerometer and aileron position
transducer for the lateral mode. Further analysis showed that the biases^in the pole locations evident in
Figure 4 are noticeably affected by these lags, while the corresponding y trajectories remain essentially
unchanged. Except for the effects of static bias errors in the lateral control input measurements, as
discussed in the following paragraph, the resultant biases in Ap (Fig. 2) and (Fig. 4) for case 2 proved
to be caused mainly by the two dominant lags for each response mode. While the effects of dynamic lags do
not appear to be very large for the cutoff frequencies represented by the time constants listed in Table I,
these values are near a threshold such that the biases they produce may increase rapidly if onboard filter-
Ing below these frequencies is employed.

The random components of Ap and Ay and the scatter in s for case 2 thus were traced to the static
control input errors. By adding these error sources to case 1 one at a time, as was done with the lags, the
elevator white noise and the aileron bias were found to be the dominant static control measurement errors
for the short-period and lateral modes, respectively. This procedure further indicated that the random
parts of the perturbations evident in Figures 2, 3, and 4 are caused mainly by these error sources. As
mentioned previously, b<5a also contributes to the resultant biases in Ap, Ay, and s for the lateral
mode. These biases are most noticeable in the roll attitude trajectory (Fig. 3(b)), and the root location
for the roll subsidence time constant (Fig. 4(b)). While only results for the F4-C aircraft are discussed,
the dominant error sources were determined to be the same for all three aircraft.

CONCLUSIONS

The results from a Monte Carlo analysis of the effects of unmodeled flight instrumentation errors on
the estimation of aircraft stability and control derivatives indicate the following conclusions:

1. Aircraft derivatives estimated from flight data, obtained with existing instrumentation, may be
in error by amounts which are comparable to their respective nominal values. The effects of these errors
on the corresponding estimates of the output response trajectories and characteristic equation pole loca-
tions do not appear to be very severe, however, their importance depends on the particular application.

2. The perturbations to the estimated parameters, response trajectories, and pole locations contributed
by dynamic lags (particularly those for the angular accelerometers) and control input errors are much larger
than those arising from white noise and static errors in the response data combined.

3. The effects of initial state errors and output measurement biases also are comparatively small,
so that the utility of estimating them would seem questionable particularly if the flight data contain
dynamic lags or control input errors.

4. While some exceptions may be noted, the magnitudes of the resulting parameter estimation errors
can vary appreciably for different classes of aircraft with some tendency to be largest for light aircraft
and smallest for heavy transports.
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TABLE I. STANDARD DEVIATIONS OF NOMINAL INSTRUMENTATION ERRORS
(From Reference 1, except as noted)

Instrument Subscript Bias & noise Scale factor Sensor location e.g. location Misalinement Time constant1

(b) (w) (e) (e) (e) (y) (T)

Gyros

Pitch attitude
Roll attitude
Pitch rate
Roll rate
Yaw rate

6

*q
p
r

0.150°
.500°
.100°/s
.100°/s
.100°/s

0.005 - - -
.005
.005 - - -
.005 - - 0.60°
.005 - - .60°

0.333 s
.333 s
.333 s
.333 s
.333 s

Accelerometers

Forward

Normal
Lateral
Pitch
Roll
Yaw

2
nx.ax

2
nz.az
ny
q
p
f

.005 g

.005 g

.0005 g

.100°/s2

.100°/s2

.100°/s2

.005 0.305 m - .60°

.005 .305 m - .60°

.005

.005 - - -

.005 - - .60°

.005 - - .60°

.100 s

.100 s

.100 s

.333 s

.333 s

.333 s

Airflow

tt - vane
6 - vane
Pitot tube

a,vx2

g
u

.100°

.050°

.305 m

.005 .305 m - -

.005 - -

.005 - - -

.333 s

.333 s
1.000 s

Control surface position potentiometer

Elevator

Aileron

Rudder

S

S
a
&r

.100°

.100°

.100°

.005 - - -

.005

.005

.500 s

.500 s

.500 s

Airframe center of gravity

Forward
Normal

xcg
zcg

_

—

0.152 m
.152 m -

Reference 6.

Subscript applies to sensor location only.
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TABLE II. REFERENCE TRAJECTORIES AND STABILITY AND CONTROL DERIVATIVES

Reference trajectory
V, m/s
a , degrees

6Q, degrees

Altitude, m

Longitudinal

Mq, s"1

Mw, 1/s-m

Zw, s"1

Mu, 1/s-m

Zu, s"1

Xu, s

Xw, s"1

Mr , 1/s -rad
2

Zf , m/s -rad

Lateral

v s"1
* -1
V s

* -2
V s

* -1
L , s
P
* -1

N , s
P
* -1
L , s
r'
* -1

N , sr

Y6a, 1/s-rad

Lr , 1/s -radoa

NT , 1/s -radoa

Y. , 1/s-rador
it 7
Lr , 1/s -rador
* , 2N6r, 1/s -rad

1
F4-C1

252.2
2.6

2.6

6096.0

-.7192
-.0338

-.7624
-.0015

-.0617

-.0070

.0273

-16.2100

-21.7514

-.1569

-15.9779

6.5630

-1.6084

-.0997

.3840

-.3432

-.0034

10.8972

.7063

.0246

2.5431

-3.9028

Aircraft

j
DC-8^

251.2
0

0

10058.4

-.9240
-.0364

-.8060
-.0026

-.0735

0.0140

.0043

-4.5900

-10.5461

-.0868

-4.4103

2.1405

-1.1812

-.0204

.3343

-.2281

0

2.1102

-.0652

.0222

.5490

-1.1644

3
C-172

54.5
-.7

-.6

1524.0

-6.7346
-.1664

-2.0702
-.0020

-.3844

-.0427

.0702

-24.3809

0

-.1630

-23.2641

5.5036

-11.5311

-1.3632

2.6918

-1.2138

0

53.7865

.2103

0

.9974

-6.1719

Reference 7 .

Reference 8.

Reference 9.
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(a) Longitudinal mode. Sequence 1. (b) Lateral-directional mode. Sequence 1.

Figure 1. Control-input maneuvers and resulting state variable-response trajectories for the F4-C.



5-10

10

en
o>

-10
5

%

-5

"

T i m e , s e c

=L
5

T i m e , s e c

io

10

J I L J I I L

10

T i m e , s e c

20

V
/T\ /Kl

-20
5 |—

cn
0. 0
"O

-5
20

-20
5

-5

5

-5

T i m e , s e c

X37

T i m e , sec

T i m e , s e c

T i m e , s e c

10

10

' ' '
10

T i m e , s e c

J L I I L

10

T i m e , s e c

(c) Longitudinal mode. Sequence 2. (d) Lateral directional mode. Sequence 2.

Figure 1. Concluded.



5-11

o
L.
k_
CD

if
o>

1000

100

10

.1

Ol1—

Mean

S t a n d a r d
D e v i a t i o n

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
M Mq w 6e

(a) Short-period mode.

Ok_
l__

o>

lOOOr

100

10

.1

.01L J J

W e a n

S t a n d a r d
D e v i a t i o n

J
0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

Y # # * * * # # # # #

P P P p p r r 6a 6a ^6r ^6r

(b) Lateral-directional mode.

Figure 2. Errors in estimated parameters for the F4-C.
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(a) Short-period measurements.

Figure 3. Estimated, measured, and assumed true output-response trajectories for the F4-C.
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5-14

-1.2 -1.1 -1.0 -.9 -.8
1 1 1 1 1

iffifoOBf&fsi

4

fe 3

t

-J -.6 -.5 -.4 -.3 -.2 -.1 0

I I 1 1 I

—

-

(a) Short-period mode.

.8 —

.6 —

.4 —

.2 —

3.0 -2.5 -2.0 -1.5 -1.0 -.5 0

i "r ^T^ i l l

-.2

O Dutch roll -.4
|\ Spiral divergence
C^ Roll subsidence

.5
k. N
f 1

1.0

1

-.6 —

(b) Lateral-directional mode.

Figure 4. Estimated characteristic equation pole locations for the F4-C aircraft.
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(a) Short-period (DC-8) mode.
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Figure 7. Estimated characteristic equation pole locations for the DC-8 and C-172 aircraft.
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ADVANCED FLIGHT TEST INSTRUMENTATION: DESIGN AND CALIBRATION

by

R.J.A.W. Hosman

Department of Aeronautical Engineering
Delft University of Technology

Delft, The Netherlands

SUMMARY

From november 1973 till april 1974 a series of flight tests with a Hawker Hunter Mk.7 aircraft was
performed to determine the performance as well as stability and\ control characteristics from measurements
during non-steady symmetric manoeuvres. The instrumentation system used in these tests will be described
briefly in this paper. In the description of the layout of the system the following subjects will be
treated in more detail.

1. The choice of the specifications for the transducers as related to the desired accuracy of the
characteristics of the aircraft to be determined. Special attention will be given to the methods
applied to meet these specifications, especially for the pressure transducers.

2. The calibration program to determine the characteristics of the transducers in the statistical
format, to apply modern system theory to the analysis of the flight measurements.

1. INTRODUCTION

A method to determine performance as well as stability and control characteristics from accurate
measurements in non-steady flight has been developed at the Department of Aeronautical Engineering of the
Delft University of Technology during the last decade. The De Havilland Canada DHC-2 Beaver laboratory
aircraft, owned and operated by the Delft University, has been used for the experimental evaluation of
the flight test method developed. Experimental results have been published in Refs. 1 and 2.
Recently an additional flight test program has been carried through in close cooperation with the National
Aerospace Laboratory using a Hawker Hunter Mk.7 as test aircraft. See Fig. 1. This flight test program was
aimed at application of the method to flight testing a high performance aircraft so as to enable further
evaluation. A brief outline of the flight test method applied will be given prior to presenting a description
of the instrumentation system, the design specifications and the performance achieved.

The flight test method applied is based on deduction of aircraft performance as well as stability and
control characteristics from measurements obtained during a nominally symmetric non-steady manoeuvre.
The manoeuvre is characterized by a nearly constant acceleration of the aircraft from low to high speed in
a time interval of about 200 seconds. At more or less equal time intervals the aircraft is forced to
oscillate about the lateral axis by manually controlled oscillations of the elevator. Characteristic time
histories of several variables are shown in Fig. 2. The non-steady manoeuvre is described in more detail
in Ref. 3.

Stability and control characteristics are derived from measurements obtained during the aircraft's
oscillations. Aircraft performance and the polar drag curve are determined from the quasi-stationary parts
between the oscillations.

A two step procedure is applied for flight test data reduction. See Fig. 3. First of all the aircraft's
flightpath is reconstructed with the aid of Maximum Likelihood or Kalman Filtering methods from the
measurements recorded. See Refs. 4 and 5. Results obtained processing the Hawker Hunter flight test
measurements are presented in Ref. 6.

Secondly aircraft performance as well as stability and control characteristics are derived from flight-
path reconstruction results.

The instrumentation system used for the flight tests mentioned above will now be discussed. Specifi-
cations of the transducers incorporated in the system will be presented.' Finally the calibration program
required for determination of the measurement channel input-output relations as well as the measurement
error statistics will be described. The results achieved will be compared with the specifications desired.

2. DESCRIPTION OF THE INSTRUMENTATION SYSTEM

The system was built at the Department of Aeronautical Engineering of the Delft University of Technology
and was based on the experience obtained during the non-steady flight test programs with the Beaver in 1967
and 1968. See Refs. 1 and 2. This experience, however, was limited to the instrumentation of low speed
aircraft and was extended with the experience of the National Aerospace Laboratory, which guaranteed a solid
basis for the instrumentation of the Hawker Hunter laboratory aircraft.

The Beaver flight test program, see Refs. 4, Sand 10,showed that several aircraft state variables had
to be determined with great accuracy (r.m.s. errors less than 0.01% of full range) to obtain accurate
aircraft performance characteristics.

The transducers of the system can be devided into four groupes:
1. Transducers to determine the flightpath of the aircraft

a. three accelerometers aligned along the X, Y and Z axes of the aircraft's body frame of reference.
b. two rate gyro's measuring rate of pitch and rate of yaw.
c. two attitude gyro's measuring bank angle and heading angle.
d. one absolute- and three differential pressure transducers used to measure static and dynamic

pressures.
e. an angle of attack vane and a temperature probe.
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2. Transducers to determine engine thrust.
a. two differential pressure transducers to measure static and total pressure in the jetpipe.
b. sensors for measurement of E.G.T. and engine r.p.m.

3. Transducers to measure elevator and stabilizer angles.
4. Transducers to determine the position error correction of the static part of the nose boom.

All transducers mentioned are summarized in Table 1.

A simplified block diagram of the flight test instrumentation system is shown in Fig. 4. The data
logging part of the system is capable of measuring and recording 19 variables ,each at a sample frequency
of 20 samples per second. This system is described in Ref. 7.

The transducers were mounted in the aircraft's fuselage, the data logging part was carried in the
inboard pylon tank of the port wing. The operator's panel was placed at the starboard side of the instrument
panel of the dual cockpit.

2.1 The specifications of the transducers.

The specifiations used for transducer selection were based mainly on the experience obtained from the
flight test programs with the Beaver aircraft. The impact of the measurement error model used for flight
test data analysis on the transducer specification requirements will be discussed prior to presenting
instrumental specifications.

The inaccuracy of a transducer basically depends on the design of the transducer and the environmental
operational conditions. A number of error sources can be mentioned. Non-linearity, hysteresis, sensitivity
for interfering inputs, etc. The effects of these error sources on the achievable measurement accuracy can
be expressed in a rather simple model. See Refs. 8 and 9. This model contains two different error types.

First of all the systematic errors. The systematic errors are assumed to be constant during a short
period of time (duration of one non-steady manoeuvre). The systematic errors to be considered here have the
same effect as and indeed will often be due to zeroshifts.

Secondly the random errors which can be considered as measurement noise.

The accuracy of the transducers depends on both errors. The bias errors of the differential pressure
transducers, however, can be determined in flight by short circuiting the pertaining pneumatic circuits
prior to and after each flight test manoeuvre. This feature enables the application of model matching
techniques for flightpath reconstruction and estimation of the bias errors of the inertial transducers.
See Refs. 4, 5 and 10. However, in these references it has been shown that the bias error of the accelero-
meter aligned along the aircraft's longitudinal axis can be determined only with insufficient accuracy. For
that reason an extremely accurate accelerometer exhibiting negligible zeroshifts has been incorporated in
the flight test instrumentation system, to sensing the aircraft's longitudinal acceleration.

To further improve the achievable flightpath reconstruction accuracy more accurate differential pressure
transducers were needed than those available on the market when designing the instrumentation system.
However, the measurement accuracy of the pressure transducers could be considerably augmented by careful
stabilization of the environmental operational conditions. This goal could be achieved mounting all
differential pressure transducers in one specially designed box.
In Table 2 the specifications of the transducers are presented.

2.2. The pressure transducer box

Pressure transducers are sensitive to temperature changes and accelerations in the direction
perpendicular to the membrane. In particular differential pressure transducers designed for a relatively
small measuring range tend to show large zeroshifts in course of time. These errors could be attenuated
by the following precautions.

The seven differential pressure transducers were mounted in one box. This pressure transducer box was
installed in the ammunition bay of the aircraft.

The temperature inside the box was maintained at 43 ̂  1° C by a thermostat combined with effective
isolation of the box. To decrease the time constant of the temperature control system,forced ventilation
with a small fan was applied. See Fig. 5.

The non-steady manoeuvre is considered as nominally symmetric. Asymmetric deviations were consequently
assumed small. The acceleration sensitive .axes of the differential pressure transducers have therefore been
installed parallel to the Y-axis of the aircraft's body frame of reference. The acceleration sensitivety
of the pressure transducers is of the order of 2 - 6 % of full range per g. The results of the flight test
program showed accelerations in Y direction being less than 0.05 g. Consequently corrections for acceleration
induced errors could be omitted.

The systematic errors could be corrected for by measuring the output of the transducers at zero input
before and after the manoeuvre. Zero input can be obtained by short circuiting the transducer with the aid
of a valve. Time averaging the output voltage thus obtained provides a mean voltage magnitude representative
of the zero shift. Six electro mechanically driven valves have been used for short circuiting. A scheme
of the entire pneumatic circuit is given in Fig. 6.

To obtain further improvement of the performance of the transducers some additional precautions
taken.

The non-linearities of the transducers were determined by calibration and consequently corrected for.

were taken.
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The static pressure inside the box was used as reference pressure for the differential pressure
transducers. To stabilize the reference pressure a damper was installed. See Fig. 6.

As pressure transducer amplifiers are temperature sensitive,these amplifiers were also mounted in the
pressure transducer box.

The results of the calibration program to be described in the next chapter, will show that the
precautions discussed above gave a considerable improvement of the accuracy of the transducers.

One of the variables to be measured accurately to enable flightpath reconstruction is the altitude
variation Ah. See Refs. 4, 5 and 10. The method used to measure this quantity needs some explanation. The
altitude variation Ah is computed according to:

Ah--^ (0
Pg

were Ap is the static pressure variation relative to the static pressure at manoeuvre initiation.
Determination of Ah may thus be seen to require the measurement of the change of static pressure. This
measurement is performed with the aid of a differential pressure transducer coupled to a thermosflask.
See Fig. 5 and 6. When the valve shown in Fig. 6 is closed at manoeuvre initiation the corresponding
reference pressure is stored in the flask. Consequently reference pressure variations can be measured with
the differential pressure transducer Apj. Static pressure variation can then be determined according to:

Ap = Apj + Ap^ (2)

See Fig. 6.

The accuracy with which the change of static pressure Ap can be measured depends on the differential
pressure transducers applied and the stability of the pressure in the thermosflask. A temperature variation
of 1° C in the flask induces a pressure variation of 0.3 %. Such a pressure variation equals an altitude
variation of about 25 meters.

To stabilize the temperature in the flask the heat capacity inside the flask had to be augmented and
the isolation had to be improved. The flask was therefore filled with 150 grams of steelwool. This material
had the additional advantage of fast heat exchange with the air. The isolation of the flask was improved by
plastic foam. See Fig. 5. A small electric heater mounted inside the thermosflask was required to maintain
equal temperature in- and outside the flask during the warm-up period of the pressure transducer box. A
second thermosflask was used to prevent cold air from entering into the measurement flask during fast
descends of the aircraft. This flask was also filled with steelwool and provided with a temperature control
unit.

Taking account of the design described above it was expected that the temperature inside the thermos-
flask could be kept within a range of +_ 0.03° C during a period of 5 minutes which is long enough for one
manoeuvre.

3. TESTING AND CALIBRATION OF THE INSTRUMENTATION SYSTEM

Testing and calibration of an instrumentation system in advance of a flight test program provides both
a final check on the proper operation of the whole system and the relations between input and output of the
measuring chains. Calibration after completion of the flight tests is necessary to have a check on
possible changes in the caracteristics of the transducers.

If Kalman filtering or corresponding techniques are used for flight path reconstruction from flight
test data detailed knowledge concerning measurement error statistics is required. This knowledge cannot be
gained from one single calibration. In this Chapter it will be shown that combination of the data of all
calibrations carried out during the flight test program provides additional knowledge about the measure-
ment error statistics.

Before discussing the calibration program some data of the test program of the instrumentation system
will be given.

3.1. Testing the instrumentation system.

To have a check on the proper operation of the system under the environmental conditions which could
arise during the flight tests all components were tested before the calibration. The temperature was varied
between +25° and -30° C. The pressure was varied corresponding to an altitude change from zero to 30.000
ft. Acceleration changes in all directions of ̂  1 g were applied. Modifications of data logging system
components had to be made in order to meet the system specifications.

Due to lack of the possibility to test the system when changing all environmental conditions at the
same time, the pressure transducer box and later the whole system were tested in the Beaver laboratory air-
craft up to an altitude of 20.000 ft.

The performance of the pressure transducer box satisfied the required specifications. When the tempera-
ture was varied from +25 to -30° C the maximum temperature deviation inside the box after one hour was 3.2° C.
Due to this low outside temperature of the pressure transducer box the rate of change of the pressure inside
the thermosflask was found to correspond to an altitude variation rate of 1.5 ft/min one hour after the
decrease of the outside temperature.

During the test flight in the Beaver laboratory aircraft, which lasted three hours, a maximum tempera-
ture change inside the box of 1.5° C was observed.
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3.2. The calibration program.

An instrument calibration program was accomplished to determine the respective input-output relations
of i.he measuring chains of the system and to obtain information about the systematic and random errors of
each measuring chain. All transducers were calibrated twice prior to flight testing, once during flight
testing and twice posterior to flight test program completion. All data points of the five calibrations
were combined and used to determine the input-output relations of the transducers and to determine the error
model.

Successive calibrations of a particular transducer under constant conditions will always differ in some
respect.

Calibrating transducers inputs Y, measured in engineering units, are related to output voltages X. If
the'inverse relation is expressed in- terms of a polynomial

Y = a + a X + a X2 + ... + a X™ (3)
0 1 2 m

then the deviation of a calibration data point AY is defined by

A Y = Y - a - a X - a X 2 - . . . - a Xm (4)
0 1 2 m

Differences between the results of successive calibrations can be found comparing the polynomial coefficients
a , a , ..., a and comparing the corresponding r.m.s. magnitudes of the data point deviations.
0 1 m

Combining the data of several calibrations and fitting one curve through all that data, the differences
between the calibrations can be shown by a plot of the deviations AY versus the corresponding values of Y.
Such a plot of a differential pressure transducer is given in Fig. 7.

When the data of successive calibrations are combined the r.m.s. magnitude of the deviations AY will
increase with increasing number of calibrations. The r.m.s. magnitude will be larger than the r.m.s. of the
deviations AY of only one calibration. See Fig. 8. The increase shown can be caused by:

1. different systematic errors occurring during different calibrations;
2. time dependent variations of transducer gradients;
3. different realizations of random measurement noise.

A general description of the calibration procedure applied and the calibration standards used will be
presented prior to discussing the results.

Due to the high resonance freguency of most transducers and the comparatively small bandwidth of the
variables, static calibration was considered to be adequate. See Ref. 2. Except for the thermometers, T and
E.G.T., all the calibration curves were determined by calibration of the entire measuring chain, so as to
improve the accuracy of the calibration curve. As described in Ref. 11 third order polynomial were fitted
through the calibration data by using regression analysis. In case of the accelerometers a more extended
formula was used to correct for misalignment and cross-axis sensitively. The three accelerometers were
calibrated together relative to the frame axes of the accelerometer box. See Fig. 9. The following equations
were used:

Ax ° a
0
 + \ ex + \ ex + % ex + \ ey + % ez + \ 6x ey

Ay • bo «• b) ey + b2 e
2
 + b3 ey + b^ ex + *^ ̂  + b£ ex ey (5)

A = c + c e + c e2 + c e3 + c e + c e + c e e
Z o l z 2 Z 3 Z I . X 5 7 6 y z

where e , e and e are the output voltages of the accelerometers.

The calibration polynomials of the differential pressure transducers were modified to eliminate the
zero input related output, related to the zeroshift during the calibration.

AP = + (6 " 6 } C(6 ~ " + 6' 6 ) 3 (6)

wherein:

p = the input of the differential pressure transducer
e = the output
e p = the output related to zero input during the calibration
Po

The following standards are used for the calibration of the rate gyro's, accelerometers and the pressure
transducers.

1. A rotary, tiltable indexing table (Optical Measuring Tools, England) for calibration of accelerometers
between -1 g and + 1 g.

2. A rate of turn table (Genisco Inc., U.S.A.) for calibration of rate gyro's and accelerometers above 1 g.
3. A tilting piston pressure gauge (Delft University of Technology) used for calibration of differential

pressure transducers in a range of 0 - 250 kgf/m .
4. A primary pressure standard (Consolidated Electrodynamics Corp., U.S.A.) for calibration of absolute and

differential pressure transducers with a range larger than 250 kgf/m .
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3.3. Calibration results.

The calibration program yields for each instrument the coefficients of the pertaining calibration
polynomial as well as the r.m.s. value of the data point deviations AY. The r.m.s. value of the deviations
of all transducers are listed in table 3. Two r.m.s. values are given for each transducer. The first r.m.s.
value a(AY)|is the mean of the r.m.s. values of the deviations obtained from each calibration. The second
r.m.s. value a (AY) 2 is the r.m.s. of the deviations obtained when one polynomial is fitted to the data of
the 5 calibrations.

With these data it is possible to compare the specifications of the transducers given in table 2 and
the pertaining characteristics derived from the calibrations made.

The results of some transducers will be discussed next:

In Fig. 10 a plot of the deviations of 5 calibrations is given. From table 3 it is clear that the r.m.s.
value of the deviations of 5 combined calibrations 0"(AY)2 is three times larger than O(AY)i from one
calibration. This is caused mainly by the torquer characteristics of the rate gyro used. However, the zero-
shift is very small. According to table 3 the random error is within the specifications.

The deviations of the calibrations of the accelerometer in X direction are plotted in Fig. 1 1 . This trans-
ducers showed small gradient variations, whereas measurement noise expressed in the r.m.s. value of the
deviations o(AA)2 is smaller than specif ied. The same holds for the accelerometers in Y and Z direction.x

The differential pressure transducers behave entirely different from the transducers discussed above. As
shown in Table 1 two different types of differential pressure transducers were used in the system:

1. Three ACB H 5010 differential pressure transducers for the lowest pressure ranges (+_ 170 kgf/m2).
2. Four Statham PM6TC transducers for the medium and high pressure ranges (+ 500 up to~+ 17.000

kgf/m2).

In section 2.1. it was assumed that to improve the performance of the pressure transducers it was
necessary to measure the zero input related output during flight to eliminate the effect of the zero shift
on measurement accuracy. In addition a number of precautions were taken to improve the environment of the
transducers.

The low pressure transducers Ap , Ap and Ap exhibit large zero shifts as shown in Fig. 12a for Ap .
When fitting one single calibration curve5through6the data of 5 calibrations considerable differences arise
depending on the corrections are made for the zeroshifts. See Fig. 12b and Table 3. The tree identical ACB
transducers exhibit a remarkably large differences in measurement accuracy.

The three high pressure transducers q , Aps• :and Apt- to not show a clear zero shift, but rather a change
of the gradient. In Fig. 13 the deviations of qc are plotted. Remarkable in this figure is the change of the
gradient with time which was also found for Aps. and Apt.. Comparing the r.m.s. values a(AY)2 with and without
zeroshift correction only small differences are found for these three transducers. See Table 3.

The Statham transducer used to measure the change of the reference pressure Ap exhibits both a zero
shift and a small gradient variation. See Fig. 14. Correction for the zero shift yields the largest relative
improvement of the r.m.s. value a(AY)2 of the deviations. In spite of the much larger range of Ap (+_ 500
kgf/m2) as compared to the range of the ACB transducers ( + 170 kgf/m2) the measurement noise has a r.m.s.
magnitude of the same order. See Table 3.

The r.m.s. magnitude o(AY)2 of the measurement noise of all differential pressure transducers has an
order of magnitude of 0.1 to 0.2 % of the range of the transducers, which is smaller than was expected.

Essential parameters for flightpath reconstruction are the measured altitude variation Ah as well as
the airspeed V. Accuracies achievable when deriving these quantities from pressure measurements recorded
in flight can now be estimated.

The error in the altitude variation Ah is mainly dependent on the error in the measurement of the
static pressure variation. Ap = Ap + Ap . Assuming that the errors in the measurements of Ap and Ap are
independent, the noise of Ap can be easily computed from the data in Table 3. 0Ap = 1.06 kgf/m2. This'value
is equivalent to 0.8 m altitude change at zero altitude and 1.6 m at an altitude of 20.000 ft.

Due to the non-lineair relation between the true airspeed V and the dynamic pressure q and taking
account of the non-normal distribution function characterising the statistics of the error in the measure-
ments of qc, see Fig. 13, it is not possible to give an estimate of the r.m.s. of the error in the measured
true airspeed V. As far as the influence of an error in q on the true airspeed is concerned, it is
possible to determine the effect of "an error in q on the true airspeed for a given value of the airspeed
and the altitude.

Using the maximum errors in Fig. 13 of q due to the gradient change with time, the error AV can be
determined for different values of the true airspeed V and the altitude h.

V h AV max

130 m/sec 20.000ft 0,5 m/sec

250 m/sec 20.000 ft 0,3 m/sec



6-6

From these data it is evident that the variation of the gradient of q does not have much influence on the
accuracy of the true airspeed.

4. SUMMARY AND CONCLUSIONS

In this paper an instrumentation system for flight tests in non-steady flight is described. Amongst
others the system comprises several high accuracy transducers and a high quality data logging system. The
results of the calibration program described show that:

1. An instrumentation system with an overall accuracy in the order of 0.01 % has been realized such in
accordance with prespecified tolerances.

2. An improvement of accuracy of differential pressure transducers can be achieved by correcting the zero
shifts and improving the environmental conditions of the transducers.

3. One single calibration has been shown to provide insufficient information to determine the statistical
characteristics of the measurement noise.
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Table 1. Transducers used in the instrumentation system.

channel
number

1

2

3

4

5

6

7

8

9

10

1 la

l i b

12

13a

13b

14

15

16

17

18

19

measured variable

q rate of pitch

Ax specific force along X-axis

A^ specific force along Y-axis

AZ specific force along Z-axis

1(1 change in heading

r rate of yaw

n engine speed

T temperature

AP4 Pc'Pref

Ap5 Ps-Pref

AP6 PC-PS
E.G.T. exhaust gas temperature

A?! Pl'Pref
a angle of attack

APSJ Psj-Pref

Aptj Ptj-Pref
6e elevator angle

Pref reference pressure

1c Pt-Pref
<f bank angle

in elevator trim angle

transducer type

Honeywell GG87

Donner model 4810

Donner model 4310

Donner model 4810

Sperry S3A

S.F.I.M. I 14

D.U.T.

Rosemount Model 102

ACB H 5010

ACB H 5010

ACB H 5010

Bell and Howell 187A-80

Statham PM6TC

N.L.R.

Statham PM6TC

Statham PM6TC

D. U.T.

Kelvin Hughes KTG 1902

Statham PM6TC

Sperry HGU-B

D.U.T.

range

+ 23°/sec

+ 10 m/sec2

+ 5 m/sec2

+ 100 m/sec2

-

_+ 7°/sec

0 - 8200 r.p.m.

-100 to +200° C

+ 200 kgf/m2

_+ 200 kgf/m2

+_ 200 kgf/m2

0 - 1200° C

+_ 700 kgf/m2

_+ 30°

+_ 7000 kgf/m2

+_ 17.500 kgf/m2

-9 to +21°

0 - 11.000 kgf/m2

_+ 7000 kgf/m2

_+ 90°

+_ 25°

PI
PC

Ps

Pt
psj
Pt;

Pref at manoeuvre initiation

static pressure at the trailing cone

static pressure at the nose boom static port

free stream total pressure

static pressure at nozzle exit

total pressure at nozzle exit
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Table 2. Desired input range and accuracy of the transducers.

channel
number

1

2

3

4

5

6

7

8

9

10

1 la

l i b

12

13a

13b

14

15

16

17

18

19

measured
variable

q
AX.
Ay
Az

*
r

n

T

Ap/

Ap ̂

AP6
E.G.T.

Ap,

a

Aps.

Apt
J

«e
pref

f

input range

+ 23°/sec

+ lOm/sec2

+ 5m/sec2

-15 to 45 m/sec2

+_ 90°

+ 7°/sec

0 - 8200 rpm

+ 50° C

_+ 170 kgf/m2

+. 170 kgf/m2

_+ 170 kgf/m2

0-750° C

+_ 500 kgf/m2

_+ 30°

-3000 to + 7000 kgf/m2

0 - 17.000 kgf/m2

-9 to +21°

0 - 1 1 .000 kgf/m2

0 - 5000 kgf/m2

+ 20°

+ 2.5°

desired accuracy

zeroshif t

0.004

0.005

0.01

0.05

0.07

rms error

0.009°/sec

0.004 m/sec2

0.002 m/sec2

0.012 m/sec2

1°

0.07°/sec

8 rpm

0.1° C

1.7 kgf/m2

1.7 kgf/m2

1.7 kgf/m2

4° C

5 kgf/m2

0.3°

50 kgf/m2

85 kgf/m2

0.1°

22 kgf/m2

25 kgf/m2

0.2°

0.05°
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Table 3. Calibration results: the runs of the calibration data point deviations.

channel
number

1

2

3

4

5

6

7

8.

9

10

1 la

lib

12

13a

13b

14

15

16

17

18

19

measured
variable

q °/sec

AX m/sec2

A^ m/sec2

Az ni/sec2

^ °
r °/sec

n rpm

T ° C

AP4 kgf/m2

Ap^ kgf/m2

Ap6 kgf/m2

EGT ° C

Ap, kgf/m2

a °

Apsj kgf/m
2

Aptj kgf/m
2

«e °

Pref fcgf/m2

qc kgf/m2

f °

lh

number
of

calibrations

5

5

5

5

4

4

4

4

5

5

5

3

5

4

5

5

5

5

5

4

5

a (AY),*

0.0022

0.0016

0.0010

0.0042

0.063

0.017

1.2

0.018

0.57

0.39

0.53

1. 1

0.41

0.034

3.2

11.

0.036

3.4

1.4

0.033

0.0088

a (AY) 2
not corrected
for zeroshift

0.0061

0.0026

0.0015

0.0074

0. 12

0.043

1.2

0.036

1.00

0.67

1.00

2.6

2.3

0. 19

11.

19.

0.079

5.9

5.4

0.058

0.039

a(AY)2
corrected

for zeroshift

0.82

0.41

0.56

0.67

8.3

20.

5.6

o(AY)2

input range

0.013 %

0.013 %

0.015 %

0.012 %

0.06 % «»

0.31 %

0.015 %

0.036 %

0.24 %

0.12 Z

0.17 %

0.35 %

0.067 %

0.32 %

0.083 %

0.12 Z

0.26 Z

0.054 %

0.11 %

0.15 %

0.78 %

» o(AY), and o(AY)2 are defined in section 3.3

*» only the synchro of the heading gyro was calibrated.
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Fig. 1 The Hawker Hunter Ml;. 7 laboratory aircraft

reconstruction's/reconstmcted

Fig. 3 Flow-diagram of analysis of test data

Fig. 4. Simplified block diagram

of the instrumentation system
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Fig. 5 The front and rear side of the pressure transducer box

pressure transducer box

Pt

PC

Fig. 6 Connection scheme of the pressure transducers



6-13

Q
. 

Q
.

<
] 

<J

b
 

b
< 

+

^
 (N

 C
N

Q
. 
r

coC
N

ing'-*->o.g"6o0)
.aE•3c.

3T3c/)Ca

<§•

•ac0
06
0



6-14

Fig. 9 The accelerometer box
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Fig. 10 Deviation curves of five combined calibrations of the rate of
pitch gyro
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Ap
kgf/m2

1.6

0.8

0

-0.8

-160 -80 0 80 160
p kgf/m2

a) not corrected for zeroshifts

-160 -80 0 80 160
p kgf/m2

b) corrected for zeroshifts

Fig. 12 Deviation curves of five combined calibrations of the

differential pressure transducer Ap^
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-400 -200 0

a) not corrected for zeroshifts

200 400
p kgf/m2

-400 -200 0

b) corrected for zeroshifts

200 400
p kgf/m2

Fig. 14 The effect of zeroshift and gradientshift on the deviation

curves of five calibrations of the differential pressure

transducer Ap
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A COMPLEMENTARY FILTERING TECHNIQUE FOR
DERIVING AIRCRAFT VELOCITY AND POSITION INFORMATION

by
Frank R. Niessen

NASA Langley Research Center
Hampton, Virginia 23665

SUMMARY

In a VTOL instrument approach and landing research program at the
Langley Research Center, there was a requirement for ground-referenced
velocity and position information, without noise or lag. Radar position
information, which was contaminated with noise, was telemetered to the air-
craft; In addition to smoothing the position signal, the components of
velocity, which were not measured, had to be derived.

An onboard navigation system which employed complementary filtering was
developed to provide the velocity and position information. The inputs to
the mix filter included both acceleration inputs, which provided high-
frequency position and velocity information, and radar position inputs,
which provided the low-frequency position and velocity information. Onboard
aircraft instrumentation, including attitude reference gyros and body-
mounted accelerometers, was used to provide the acceleration information.
An in-flight comparison of signal quality and accuracy showed good agreement
between the complementary filtering system and an aided inertiarnavigation
system. Furthermore, the complementary filtering system was proven to be
satisfactory in control and display system applications for both automatic
and pilot-in-the-loop instrument approaches and landings.

SYMBOLS

Values are given in both SI and U.S. Customary Units. The measurements and calculations were made in
U.S. Customary Units.

A,B,C Matrices

ax,a ,az Body-mounted accelerometer outputs, m/sec (ft/sec2)

.b.c. Single column matrices or vectors

g Gravity constant, 9.8 m/sec2 (32.2 ft/sec2)

K Gain matrix

k Element of gain matrix

R Riccati equation matrix solution

s Laplacian operator

t Time, sec

>i Control input vector

v^ Input noise vector

w Measurement noise vector

X,Y,Z Displacement in runway reference coordinate frame (see Fig. 6), m (ft)

ĥ'̂ h'̂ h Inertial accelerations in aircraft reference coordinate frame (see Fig. 6), m/sec2 (ft/sec2)

£ State vector

y_ Output vector

C Damping ratio

6 Pitch attitude, positive nose upward, rad

0"v Variance of input signal noise
2

Ow Variance, of measurement signal noise

T Time constant, sec

<)> Roll attitude, positive right wing down, rad
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if) Yaw attitude, positive nose right, rad

co Undamped natural frequency, rad/sec
n

Superscript

T Matrix transpose

A dot over a symbol indicates a derivative with respect to time. A circumflex O denotes an
estimated value.

INTRODUCTION

In a VTOL instrument approach and landing research program at the Langley Research Center, there was
a requirement for ground-referenced velocity and position information, without noise or lag. This informa-
tion was needed for implementation of advanced control and display concepts. Radar position information,
which was contaminated with noise, was telemetered to the aircraft; in addition to smoothing the position
signal, the components of velocity, which were not measured, had to be derived. Over the course of the
flight-test program, three different techniques were used to obtain this information — approximate differ-
entiation and filtering, an aided inertial navigation system, and complementary filtering.

The development of the system which employed complementary filtering and its subsequent performance in
flight are described in this paper. The complementary filtering system computed ground-referenced accelera-
tion from onboard sensors and combined this information with the noisy radar position signals on a weighted-
frequency basis to obtain satisfactory position and velocity information. The complementary filter used
fixed gains which were based not only on signal noise characteristics, but also on other practical aspects
such as instrument and computation accuracies.

The use of this system represents a practical application of the complementary filtering technique.
Furthermore, being based on classical estimation theory, it is of interest since it illustrates the applica-
tion of that theory. Finally, the system concept itself is noteworthy because it could be used for the
approach and landing guidance problem, as an alternative to more complex systems such as inertial or Doppler
navigation systems.

FLIGHT-TEST PROGRAM

An onboard navigation system employing complementary filters was developed for a flight-test program
at the Langley Research Center in which a CH-46 helicopter was used to investigate control and display con-
cepts for VTOL instrument flight. These investigations have been reported in References 1-3. The test
helicopter, shown in Figure 1, was equipped with an electronic flight control system, electromechanical
displays including a three-axis VTOL flight director, and onboard general-purpose analog computers, by which
advanced control and display concepts were mechanized. The basic instrument task included acquisition of
runway center line and glide path, deceleration to a hover, and a vertical landing. While the emphasis of
the investigations was on manual approaches, with the pilot actively in the control loop, automatic
approaches were also performed to demonstrate that the guidance control laws which had been developed could
be used as well for that purpose. Position and velocity information without lag or objectionable noise was
required since this information was sent directly into the controls for automatic approaches through the
guidance control laws and was displayed to the pilot through a three-axis VTOL flight director and other
indicators.

The evaluation pilot's control panel is shown in Figure 2. The engine instruments, pitch- and roll-
attitude indicator, needle-ball, airspeed, barometric altitude, and vertical speed indicator were standard
instruments. The remaining indicators were driven by the onboard computers and, specifically, the command
needles and deviation needles on the attitude director indicator, the moving map, and the radar altimeter
were driven by position and velocity signals .from the onboard navigation system. Typical sensitivities
which were used for the various display indicators are given in Table I.

Over the course of the flight-test program, three different onboard navigation system configurations
were employed to obtain aircraft position and velocity. Each configuration relied on a ground-based pre-
cision tracking radar to provide position information to the aircraft via telemetry. The onboard navigation
systems, which received this position information, had to provide both position and velocity information for
guidance. The onboard system configurations which were used included the following:

(1) Approximate differentiation and filtering
(2) An inertial navigation system with periodic radar position updates ^
(3) Complementary filtering whereby radar position information was continuously mixed with accelera-

tion information obtained from onboard sensors

Precision Radar

Aircraft position was sensed by a precision tracking radar system, located at Wallops Flight Center,
Virginia, where the flight tests were performed. A photograph of the precision tracking radar system is
shown in Figure 3. The position of the aircraft was sensed directly in terms of slant range and azimuth
and elevation angles of the radar antenna. This information was transformed into rectangular coordinates
in the runway reference frame and transmitted to the aircraft by means of telemetry.

The radar was K-band, with an antenna beamwidth of approximately 0.5°. A passive reflector was mounted
on the nose of the aircraft to provide a specific point for the radar to track. The limits of the radar
tracking antenna were 30° in elevation and +45° in azimuth. The accuracy of the radar was approximately 0.02°
for the azimuth and elevation angles and 3 m (10 ft) or 1 percent (whichever is greater) for slant range.
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Onboard Navigation Systems

As reported in References 1 and 2, the first series of tests were conducted with a +10-volt analog
computer used to filter the radar position information because of radar and telemetry noise. The telemetry
unit was an FM unit with +10-volt discriminator outputs. Velocity information was obtained by approximate
differentiation of the position signals. This approach, even with maximum tolerable filtering, resulted in
considerable noise from velocity signals which, in turn, caused the flight director command needles to
jitter. These random needle fluctuations were found to be quite objectionable.

An inertial navigation system with periodic radar-position updates was used for the steep-angle approach
work reported in Reference 3. The system, formerly a Gemini spacecraft inertial navigation system was
modified so that the radar position data could be used to update the navigation outputs. The radar signals
were sampled and digitized at a ground station at 1-second intervals and transmitted to the aircraft by means
of a digital telemetry link. The position and velocity outputs from the digital computer were converted to
analog form, and then routed to the onboard analog computers. In general, the signal outputs were of suffi-
ciently high quality in terms of both accuracy and noise level to be used for the flight director display
application. However, this system was quite complex, which made it difficult and costly to maintain and
operate, and it weighed approximately 360 kg (800 Ib).

Lastly, a system using a complementary filtering technique was used to provide accurate position and
velocity outputs with low-noise content. A detailed description of this system and its development are
presented in subsequent sections of the paper. Briefly, this system featured a second-order complementary
filter with inertial-acceleration inputs as well as the radar-position inputs. The inertial-acceleration
inputs provided short-term position and velocity information, while radar-position inputs provided the
long-term position and velocity information. Onboard sensors, including attitude reference gyros and body-
mounted accelerometers, were used to provide the inertial acceleration information. Since only the high-
frequency content of the onboard inertial acceleration information was relied on in this application, the
relatively crude inertial information was adequate. This system was used for the constant-attitude decel-
eration profile tests and the automatic approach tests, also described in Reference 3.

THEORETICAL BACKGROUND

Differentiation of Position Information

There are inherent problems in differentiating position information to obtain velocity information,
because of signal noise. Of course, position and velocity information which is to be used in display or
control system applications must be practically noise free. Figure 4 shows the transfer function for
approximate differentiation. Notice that approximate differentiation inherently introduces a first-order
lag equal to the time constant, T. Since the effect of filtering or lagging a signal used in a closed-loop
control system is to reduce the stability of the system, it is desirable to keep the lag, T, as small as
possible. On the other hand, by reference to the time response, it can be seen that high-frequency noise
on the input signal will be amplified by a factor of I/T. Thus, from this standpoint, it is necessary
that T be large, preferably greater than 1.0, in order to reduce the noise contained by the input signal.

A trade off has to be made between lag and noise level but, frequently, an acceptable trade off cannot
be made. Figure 5 is a plot of velocity versus position which was recorded at the precision tracking radar
facility. The velocity information was derived by approximate differentiation of the radar's position signal
using a time constant, T, of 0.5 second. Since this computation was performed at the ground station, the
position signal was not contaminated with telemetry system noise. Even so, it can be seen from Figure 5
that the derived velocity signal has noise with a peak-to-peak amplitude on the order of 3.0 to 6.0 m/sec
(10 to 20 ft/sec). Since the noise on the derived velocity signal varies inversely with T, this noise
could be reduced to a minimum of 1.5 to 3.0 m/sec (5 to 10 ft/sec) assuming that a time constant as large
as 1.0 second could be tolerated, but even this level of noise would be clearly unacceptable. As indicated
by this example, differentiation of position information alone was not capable of providing acceptable
velocity information.

Complementary Filtering Technique

The complementary filtering technique combines acceleration with position data to determine low-noise
estimates of both velocity and position. The coordinate frames of reference which were used in measuring
aircraft acceleration and position are depicted in Figure 6. Figure 7 is a block diagram representation of
the complementary filter. It is noted that the form of the filter for this particular estimation problem is
identical to that of a Kalman filter. The part of the system drawn with solid lines (Fig. 7) represents the
high-frequency computation of velocity and position, based on aircraft acceleration. Since acceleration is
integrated directly to obtain velocity and position, there is no lag. Note also that the mix filter provides
a position estimate as well as a velocity estimate. As drawn with dashed lines (Fig. 7), the difference
between the estimated position and the position measured by the tracking radar is fed back as a correction
to both the velocity estimate and the acceleration input. In contrast to approximate differentiation, the
velocity estimate Is the output of an integrator which attenuates the noise component of the position input
and also of the accelerometer input. For additional information, Table II contains transfer functions which
indicate the response of each of the estimator outputs to individual acceleration and position inputs.

The selection of the complementary filter gains was based on the general steady-state Kalman filter
solution for this particular estimation problem. Given the noise properties of the inputs, the Kalman filter
solution provides the gains for an optimal estimator in the sense that the estimates will have minimum vari-
ance noise. The results of the general solution for the gains for this particular form of filter are dis-
cussed here, and a more detailed treatment of the solution is given in the Appendix.

The gains k-̂  and ̂  can be expressed in terms of the familiar second-order parameters £ and ton
as k± - 2Cu)n and k2 = "n

2- Tne damping ratio was found to be constant and the undamped natural fre-
quency was determined to be a function only of the ratio of accelerometer noise to position noise
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„ V2~ 0.707

un

It is important to note that the solution is dependent only on the relative noise between the inputs and
not on the absolute noise levels. It is possible, of course, that if the absolute noise levels were
extremely high, the filter would provide estimates which could be unacceptably noisy.

FLIGHT-TEST VALIDATION OF COMPLEMENTARY FILTERING SYSTEM

System Description

A photograph of the components of the onboard navigation system which used complementary filtering is
shown in Figure 8. The onboard sensors which were used included three body-mounted accelerometers, a
vertical gyro for pitch and roll attitude, and a directional gyro for heading. These sensors were part of
the research aircraft instrumentation package and had previously been used for recording and for control
system applications. The 10-volt analog computer which was used to perform all the necessary onboard com-
putations was housed in a box which normally remained closed.

As shown by the block diagram of the system in Figure 9, the computations included correcting the body-
mounted accelerometers for the effect of gravity and resolving the accelerations into components along the
runway reference coordinates. Several approximations were made to minimize computational requirements,
based on the assumption of small pitch and roll angles during the final approach and landing maneuver for
the research tests.

The body-mounted longitudinal and lateral accelerometers were corrected for the effects of gravity by
using the sine of pitch and roll angles from the onboard vertical gyro

X, = a - g sin 6
n x

V = a + g sin <j>

The normal accelerometer was corrected for effects of gravity by assuming small pitch and roll angles

Z, = a - g cos 6 cos <j>
h z

\ ~ 3z - 8

In resolving the accelerations along the body axes into the runway reference coordinate frame, it was
assumed that the aircraft would at all times be approximately in a level attitude so that

X ~ X. cos (i|i - <|< ) - ¥ sin (i(/ - \|) )

Y = ^ sin OJi - i|>o) + Yh cos W - t|io)

9 ~ 7Z ~ Zh

The horizontal accelerations were resolved by using a sine-cosine resolver driven by a directional gyro
synchro output. A differential synchro input was incorporated to permit selection of any desired runway-
reference heading iK,. The three position signals X, Y, and Z were obtained from the precision tracking
radar as described in a previous section. The 10-volt analog computer was used to perform all the above
computations onboard the aircraft; and Figure 10, the analog computer schematic, shows the details of these
computations and indicates the scaling which was used.

It is noted that if the accelerometers were slaved to vertical so that the longitudinal and lateral
accelerometers would indicate true horizontal accelerations and the normal accelerometer would indicate
true vertical accelerations, then the need to correct the longitudinal and lateral accelerometers for effects
of gravity would be eliminated and would make the rest of the computations valid for other than small pitch
and roll angles. This was not done, however, for the system described herein.

The complementary-filter gains which were used corresponded to a natural frequency of (% = 0.45 rad/sec
with a settling time constant of 12.5 seconds, based on the time to settle within 2 percent of steady state.
These sains were selected so that the time constant would be long enough that noise from the radar position
signal would be satisfactorily attenuated, but short enough that errors which would result from inaccuracies
associated with the acceleration information would be kept small.

Flight-Test Results

As discussed above, the complementary filtering system was developed for use in a VTOL instrument
approach and landing research program. The modification of the recording system that was necessary to
obtain the data presented here was restricted in order that the data could be obtained in a timely manner,
without impeding the main research program. For this reason, data were obtained for only X and Y in one
instance and for only X in another instance. Nevertheless, the axes that were selected for documentation
were the'axes with the least desirable scale factors and, consequently, represent the worst case rather than

the best.
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Figures 11 and 12 show the input and output signal noise characteristics for the complementary filter-
ing system. These data were recorded separately for X and Y during hovering flight near the landing
area. These data were obtained by an FM magnetic tape recording system and were later sampled at a rate of
100 Hz during the data-reduction process. Longitudinal acceleration was not recorded during these tests;
however, its signal noise characteristics were very similar to those of the lateral accelerometer. The
noise on the position output was greatly reduced compared to the noise on the position input signal, which
had a peak-to-peak amplitude of approximately 30.5 m (100 ft). The noise on the position input signal was
mostly due to telemetry noise, which was nearly 1 percent of full scale. The accelerometer signal noise,
mainly due to aircraft structural vibration, was also essentially eliminated by the integration process
within the filter, as evidenced by the low-noise velocity estimate. It was determined that the signal noise
contributed by the analog computer components themselves, which was related to computer scaling, resulted in
approximately 0.06 m/sec (0.2 ft/sec) peak-to-peak noise for the velocity estimate for X, for which the
scaling problem was most severe. This level of computer-generated noise therefore accounted for nearly all
the noise observed on the velocity output; hence, the complementary filter essentially eliminated the effects
of both acceleration and position measurement noise.

A comparison in accuracy was made in flight between the complementary filtering system and the inertial
navigation system with periodic radar position updates, mentioned in a previous section. Baseline perform-
ance data on the inertial navigation system are contained in Reference 4, whereas details of this system's
navigation computations, including the update logic, are described in Reference 5. Both systems relied on
the precision tracking radar for long-term position and velocity information; the complementary filtering
system received continuous position information, whereas the aided inertial navigation system received
position updates at 1.0-second intervals. Without updates, the position-error drift rate of the inertial
navigation system was approximately 2.0 nautical miles per hour. For comparison, the position-error drift
rate of the complementary filtering system, without position feedback, was estimated to be on the order of
100 to 200 nautical miles per hour. This high drift rate was mainly due to approximations which were made
in resolving the accelerations and also was a result of computer scaling limitations. However, Figures 13
and 14 show the close agreement obtained between the outputs of the two systems during a decelerating
approach to hover and during a hovering maneuver, respectively. From Figure 14, it can be seen that the
velocity outputs agree within about 0.30 m/sec (1.0 ft/sec).

In addition to the results discussed above, the six position and velocity outputs of the complementary
filtering system were found to be satisfactory for both control and display applications in the VTOL instru-
ment approach and landing research program for which the system was developed. As noted previously, displays
driven by these outputs consisted of a flight director indicator, a horizontal-situation moving-map display,
lateral and vertical flight-path error needles, rising runway needle, and simulated radar altimeter. Again,
Figure 2 illustrates the display panel configuration while Table I indicates typical display sensitivities
which were used. The guidance computer, which provided pitch, roll, and power flight director display com-
mands, also provided similar commands to the control system in the automatic approach mode. The VTOL land-
ing approach task in these tests involved acquisition of the runway center line, capture of the glide path,
deceleration to a hover, vertical descent, and touchdown. The entire sequence could be accomplished either
manually, with the pilot centering the flight director commands, or automatically. Signal noise was not
apparent either in the display movements or, while in the automatic mode, in the control actuator motions.
The accuracy of the complementary filtering system enabled tracking of the approach path and speed profiles
with a high degree of precision. Figures 15 and 16, from Reference 3, show manual and automatic tracking
performance, respectively, for decelerating instrument approaches along a 6° glide path.

CONCLUDING REMARKS

An onboard navigation system employing complementary filters was developed for use in a VTOL approach
and landing research program at the Langley Research Center. The system used onboard conventional aircraft
instrumentation in combination with landing guidance system signals to provide acceptable position and
velocity information for landing approach guidance. Based on the development of this system, the following
conclusions were drawn:

1. Straightforward differentiation of landing guidance system signals, alone, did not provide adequate
velocity information for use in either controls or displays since differentiation tended to amplify the noise.

2. The complementary filtering system was effective in providing estimates of aircraft position and
velocity state information, without appreciable noise and without lag. Flight data indicated that acceler-
ometer and radar position signal noise, approximately 1.2 m/sec2 (4 ft/sec2) and 30.5 m (100 ft) double-
amplitude noise, respectively, had been greatly reduced by the complementary filter, which provided a
velocity estimate with only 0.06 m/sec (0.2 ft/sec) double-amplitude noise. Furthermore, an in-flight
comparison of signal quality and accuracy between the complementary filtering system and an aided inertial
navigation system showed agreement within 0.30 m/sec (1.0 ft/sec) for the velocity outputs.

3. The concept of combining onboard acceleration information with telemetered radar position informa-
tion to provide useful landing guidance system signals was validated through the use of such a system in
the VTOL approach and landing research program for which the system was developed. The VTOL approach task
included acquisition of the runway center line, capture of the glide path, deceleration to a hover, and a
vertical descent to touchdown. The task was accomplished both manually, with the pilot centering flight
director commands, and automatically, with the flight director command signals sent directly into the
controls.
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APPENDIX — FIXED-GAIN SOLUTION FOR COMPLEMENTARY FILTERING

The general Kalman filter solution, obtained from Reference 6, is outlined below. The plant dynamics

are expressed as:

x = Ax + Bii

with measured outputs

y_ = Cx + w

The input and output measurement noise characteristics are specified by the correlation matrices Q and
P, respectively. The Kalman filter gain matrix, for the stationary case, is found from

K = R C1?"1

where RQ is the steady-state solution of the matrix Riccati equation

R = AR + RAT - RCTP~1CR + BQBT

For the complementary filtering problem, as shown in Figure 17, the acceleration input is regarded as
a control input and, as a single input, is a scalar; therefore, the B matrix is reduced to a column
matrix or vector 1>. Similarly, there is only one measured output; therefore, the C matrix becomes a

row matrix (P.

x = Ax + bu

where A = I" t\ andN-'-H
y = _c £ + w

where c = jjjj

2 2
The correlation matrices Q and P are reduced to the scalar quantities Ov and aw . The matrix

Riccati equation, therefore, becomes

R = AR + RAT - R

The steady-state solution is found by setting R = 0. Taking each element of R,

2
r21 + r!2 -

22 rllr!2

r21rll

22
r2lr!2

By using the fact that the R matrix is symmetric and that

2
•11

, these equations can be reduced to

0 - r 22 r!2rll

From these equations, the steady-state values for the elements of R have been found to be

1/2 3/2
rll r!2 ̂

R

21 22
av°

3/2a 1
V W
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The gains are obtained from

k = R C /-U

" Id

and result in k., =V2~

may be shown that u =

By expressing the gains as k.,

0.707.

and it
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TABLE I. DISPLAY INDICATOR SENSITIVITIES

Pitch and roll flight director needles

Full-scale deflection + 2.0 cm (+ 0.8 in.)
Full-scale values for: ~~ ~

A"itude + 0.35 rad
Velocity + 10.7 m/sec (+ 35 ft/sec)
Position _,. 85 5 m ̂  280 ft)

Power flight director needle

Full-scale deflection + 1.3 cm (+ 0.5 in.)
Full-scale values for: — —

Velocity +5.2 m/sec (+ 17 ft/sec)
Position + 30.5 m (+ 100 ft)

Glide-slope deviation needle

Full-scale deflection + 1.8 cm (+ 0.7 in.)
Full-scale value for position + 30.5 m 7+ 100 ft)

Lateral deviation needle

Full-scale deflection + 1.4 cm (+ 0.55 in.)
Full-scale value for position + 45.7 m (+ 150 ft)

Rising runway needle

Full-scale deflection + 1.4 cm (+ 0.55 in.)
Full-scale value for position + 30.5 m (+ 100 ft)

Radar altimeter

Instrument diameter 7.6 cm (3.0 in.)
Needle deflection from 0 to 30.5 m (100 ft) HO deg
Needle deflection from 30.5 m (100 ft) to 366 m (1200 ft) 140 deg

Moving-map sensitivity

Distance from touchdown less than 610 m (2000 ft) 12 m/cm (100 ft/in.)
Distance from touchdown between 610 m (2000 ft) and 2440 m (8000 ft) 36 m/cm (300 ft/in!)
Distance from touchdown greater than 2440 m (8000 ft) 480 m/cm (4000 ft/in.)
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TABLE II. TRANSFER FUNCTION RELATIONSHIPS FOR

COMPLEMENTARY FILTERING

Output for —
Input * *

X X

8 + k, i
X ~2 ~2 - —

s2 + ks + k s2
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Figure 1. Research helicopter.

Figure 2. Evaluation pilot's panel.

RADAK

Figure 3. Precision-tracking radar facility.
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(a) TRANSFER FUNCTION (b) TIME RESPONSE
Figure 4. Transfer function and time response for approximate differentiation.
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Figure 5. Approximate differentiation of a precision radar signal, T = 0.5 sec.
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Figure 6. Aircraft and runway reference coordinate frames.
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Figure 10. Analog computer schematic for complementary filtering system. Where a signal value is
expressed, the number preceding the symbol indicates the scale factor, in volts per SI Unit.
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Figure 11. Complementary filtering system input and output signal noise
characteristics, X. (Note that a was not recorded.)
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Figure 12. Complementary filtering system input and output signal noise
characteristics, Y. (Note that a was not recorded.)
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SENSORS AND FILTERING TECHNIQUES FOR
FLIGHT TESTING THE VAK 191 AND VFW 6lk AIRCRAFT

By
Dr. Werner E. Seibold

VFW-Fokker GmbH
28 Bremen 1, Hiinefeldstr. 1-5

1.0 SUMMARY

The flow of the flight test data of the VFW 6lk (Fig 1-1 and VAK 191B (Fig 1-2) Aircraft from
the sensor through the data acquisition, selection and preprocessing process is described in
general. An overview over the sensors included in the VFW 6l4 is given. 'Two important sensors
for Take Off and Landing performance are described. The data smoothing and filtering techniques
are discussed whereby special emphasis is given to a new simple and powerful digital filter, the
Si or "Riedel filter".

List of Symbols

f input or raw data stream (time history)
f~ output or smoothed data stream (time history)
t current time
to centre-time of integration interval
T length of integration interval
W frequency of weight function (Si-filter)

2.0 INTRODUCTION
2.1 GENERAL REMARKS

The methods and techniques described in this paper have been developed to solve the
following two problems:
a) Get a VTOL aircraft vertically off the ground and through the transition to normal airborne
flight, and
b) Get the certification for a commercial aircraft.
Both aims do not ask for high sophisticated methods to get extreme accuracy but they ask for
reasonable and cheap methods to get millions of data processed and reduced. Therefore a lot of
effort was spent to get a well defined and efficient overall system. The design goal was to pre-
sent the required results in final graphical form within Zk hours after flight. In case of criti-
cal tests such as stall, only two hours were available for the whole process. Both goals could
be achieved by the system and method described below. The aircrafts to which these methods are
applied are the VFW 6l4, a short haul commercial aircraft shown in Figure 1-1 and the VAK 191B,
an experimental vertical take-off and landing aircraft, shown in Figure 1-2.

2.2 The VFW-Fokker Flight Test Data Acquisition and Processing System - An Overview

The overall data flow can be subdivided into the four major steps: (Fig 2-1)
I. Data acquisition, recording and/or transmitting (onboard)
II. Telemetry reception or tape playback, quick look data formatting and data selection plus

digital tape formatting in the telemetry ground station.
III. -Data preprocessing, reduction and final output formatting in the computation lab.
IV. Data and result analysis by engineers and scientists. Figure 2-1 shows these steps in a

schematic manner.
This picture only shows the flow of the main data. It does not show the flow of support data
such as

o Channel identification
o Calibration data

which are of utmost importance to get reasonable data out at all. The four steps mentioned
above are in more detail described as follows:

Step I. (In order to describe a typical VFW data acquisition system the VAK 191B System diagram
(Figure 2-2) shall be used. The FVW 6l̂  is very similar.)

As you can see, it is subdivided into an FM and a PCM system. The PCM system has normally a
sample frequency of *K), 50 or 60 cycles. (50 in case of VAK, kO and 60 in case of VFW 6l4) and
can therefore easily be used for signal frequencies up to 10 Hz. Super-commutation is possible
to double the frequency but it was never really used. Higher frequencies up to the same kHz
such as flutter and jet engine vibration are handled by the FM system. The basic philosophy was
to use the PCM system as far as possible and to use the FM system only as an exception to cover
the frequencies mentioned above. The VAK system has 9 data bits per word (10 for VFW 61̂ ). In
both aircrafts (VAK 191B and VFW 6l*f) more than 5̂0 sensors are installed, out of which 250 can
be recorded or transmitted by the corresponding PCM onboard system. In case of the VAK 191B for
instance, the FM system provides 10 channels with subcarrier oscillators of the proportional
and constant bandwidth type. The resolution is 0.5& for the PCM and 2...J>% for the FM system.
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Step II. The Telemetry Ground station which provides for:
o Telemetry signal reception and recording
o Tape playback
o Data formatting for quick look
o Data selection and formatting of digital tape
o Generation and updating of calibration data base (disk)

is equipped as shown in Figure 2-3. The whole station is mobile and it was used in several places
where it produced for the .flight test crew on-line graphical time histories (generated by means of
the 8-channel brush recorders) and on-line data tables where the data are shown in engineering
units together with time and event counter information (generated real time by means of the line
printer which is driven by the data preprocessing computer which in turn gets the data real time
from the data handler).

•Step III.

The data preprocessing, reduction and final output formatting is done by means of a big
general purpose computer (CDC 6500) to which a graphical display and a microfilm recorder are
hooked up (Fig 2-̂ ). These two devices plus the standard line printers provide us with the capa-
bility to edit and output data in a way directly usable for engineering analysis and reports.
Examples of this will be shown later on. The overall functions we have to perform are:
o Provide the flight test engineering with

a) Data readouts in tabular or graphical form which needs no or only very limited
editorial work.

b) A "plug-in-capability" so that his special (scientific) computer programs can
interface easily with the data stream. This means that his program has to have
access to the measurement data and in previous steps generated results in what-
ever sampling rate and engineering units he wants, and in addition he can feed
back his own results into the system for final output formatting or further
processing.

In both cases the user assumes that general functions such as
o data storage and retrieval
o calibration (in the units he wants)
o smoothing and filtering are performed by the system.

Figure 2-k shows the various S/W packages and their major modules through which the flight test
data can be processed. Especially the very right one shall be mentioned which has all the capa-
bilities for an integrated flight test data reduction process, whereas the other ones are special-
ized to do specific and very often needed functions with the highes efficiency possible which
never can be reached by a generalized system. The generalized system is called Flight Test Moni-
tor (FTMTR) or Data Pool alternatively, because it provides
a) a monitor routine which can be asked by means of user provided control cards to load and
execute user or service modules provided by the system in whatever sequence the user wants, and »
b) retrieves the input data required out of a data pool and stores the output data provided back
into it. The data pool consists essentially of random access disk files. The user level
"addressing" is done by symbolic parameter identifier and the "elapsed test time". The user also
specifies the time increment by which he wants to proceed and the engineering units in which the
input data has to be delivered or the output data are provided. By means of a transformation
table the proper conversion factor can be defined. By this the user can process the data in what-
ever units he likes to without any harm or restrictions for pre- or postprocessors. A data com-
pression method is used in order to minimize storage requirements and the time needed for input/
output operations. A series of test runs with real flight test data was made in order to find the
best compression method. A zero order extrapolator was found to be the most efficient one in
terms of reduction factor achieved and processing time required. The tests were based on a study
of DFVLR Braunschweig. The achievable reduction factor depends very much on the specified ampli-
tude tolerance which in turn defines the final accuracy. In order to get an optimum between
efficiency and accuracy the tolerance can be defined for each channel separately.

Step IV.

The final analysis and judgment of the results i's of course done by the engineers and
scientists who, however, can use the Flight Test Monitor mentioned above for further iterations
and in order to gain better understanding of their problems. For instance the very last Figure
(Figure 4-16) was generated by means of the^FTMTR running the steps shown in Figure 2-5.

3.0 SENSORS
3.1 GENERAL OVERVIEW

Besides a few special sensors, we used fairly normal sensors and transducers for the
different measurement problems which are described below for the VFW 61*+ especially,
o Rudder and Tap positioning _ .

Inductive angle sensorID 36A5 E (was introduced with respect to flutter investigations;,
o All other "position sensors"

Film potentiometer CIC 155
o Hydraulic pressures

Pressure sensors with built in amplifier CEC 9̂3 for prototype No. 1. They were replaced
due to money reasons by the type Statham PA-822 (5000 psia/1000 psia).

o Air pressures for environmental control system:
CEC it-326/Statham PA-S22. On pressure (5 psi: PL 283TC, PM9S, PM92 TC and PK 5TC,. They are
very sensitive with respect to acclerations and can only be used in stationary a/c status.

o Throughput: for fuel and hydraulic system
Cux - turbine - flow meter (output signals have to be transformed to DC voltage which is done
by a frequency transformer Typ V22^ Fa. Braun Stuttgart).
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o Temperatures:
- Resistor thermometers PT 100 (Hereaus, Hanau)
- Thermo elements CR/AL used for many purposes in

o Hydraulic
o Fuel
o Environmental control subsystems

o Accelerometers
Types: CEC 4-202 and Statham A69 TC

Ranges: -5 g, -10 g, i 25 g and -50 g •
Used in: Fuselage, wings, rudders, engine pylon, gear

o Jet engine sensors
Provided by Rolls Royce
Pressures: SE 40, SE 42 (SE Laboratories).
Temperatures: Pt 100 and thermoelements CR/A1

o Speed and Altitude (Static and Total Pressure)
Nose boom for static and total pressure (self adjusting). Normal (series) pitot sensor and
static holes.
For better static pressure: Trailing cone (System Douglas) Trailing bomb (System NLR)

These systems were used depending on .the purpose of a specific test.
Altitude: Transducers: Rosemount, Typ 840E, and for low altitude Type 1241

speed: Rosemount Type 831 BD and .for low speed PM 5TC (Statham, up to 150 kts.)
o Forces

Strain gauges
o Attitude

Gyros
o Optical Information

TV and other cameras are used to get optical information about stall behaviour, water splash
tests, etc.

3.2 SPECIAL SENSORS

The two special sensors which shall be described herein are the Nose Camera and the
Inertial Gyro Platform. Both were used first of all in order to obtain take-off and landing
performance data. The principle of the nose camera is to take pictures of the runway at rather
high frequency (5 per second). The known geometrical relationships between either special or
normal markings (lights) along the runway on the one hand and their appearance in the pictures
taken by the camera on the other hand allow for calculation of the trajectory and attitude of the
aircraft. The time distances between sequential pictures allow for calculation of speeds and
accelerations. The method is proven and allows for rather high accuracy, however, it is extremely
tedious and cumbersom compared to PCM data because film development and data readout requires
special devices and lengthy manual processes. Quick look and corresponding go/no-go decisions
for specific tests cannot at all be provided by this method. In order to do this and herewith to
increase the efficiency of flight testing the VFW 6l4 especially at remote test bases the Inertial
Gyro Platform was installed. It is shown in Figure 3,-l in its general layout. By means of this
device all data necessary for the task mentioned above can be acquired and transmitted to the
Telemetry Ground Station, for quick look purposes. The platform basically measures accelerations,
which by means of analog integrators can be transformed into speed and length (distance) informa-
tions. The problem is the accuracy of the acceleration measurements and the integration process
which up to now restricts the applicability of the platform to quick look purposes. There is no
doubt that further development to sufficient accuracy will increase the efficiency of take-off
and landing as well as noise investigation tests considerably. Figure 3-2 shows results of the
platform.

4.0 SMOOTHING AND FILTERING - PROBLEMS AND TECHNIQUES

The filtering techniques which are described below are based on the PCM data stream
rather than on the FM data, stream (see Figure 2-2). (Problems like nonlinearities and offsets in
sensor or amplifier outputs are not dealt with in this chapter because they are of static nature
and corrected by means of data calibration techniques.) We identified in this data stream
basically four different types of dynamic "trouble-makers:"

o Spikes
o Noise
o Gap in data stream
o Dynamic components in signals

being expected to be stationary
as they are shown in Figure 4-1.

4.1 Methods

One can basically think of two different ways to get rid of these problems:
A) use of hardware filters
B) use of software filters

VFW-Fokker did not make any considerable use of hardware filters onboard of the aircrafts due to
increased complexity of the board equipment in the first place. In spite of that the philosophy
was to sample and record the data at fairly high rates (40-60 Hz) which gives a lot of built-in
redundancy because the normal sensors sampled via the PCM system do not have considerably more
than .5 to 5 Hz signal frequency. That says in other words that the smoothing and filtering task
is done by software during data selection and preprocessing rather than by onboard hardware.
We investigated several algorithms to do this filtering with the basic objectives that

o the effort to implement the algorithm
and o the effort or cost to make day to day use of it for millions of data
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can be covered within aircraft testing time and budget constraints.
The algorithms we investigated within this framework are the following:
A) Normal averaging - Sum over N consecutive samples divided by N, the next sum starts with

the first sample not used by the previous one (Step Size3N), Number of output samples
reduced by factors of N.

Expressed in integral form it is:

f2{t)=l

B) Gliding Average As above but the next sum starts with second sample of the previous one,
number of output samples = number of inputs samples.

The formula is:

This method is well known and in common use because it is very simple and cheap. Its main dis-
advantage is its poor frequency response.

C) Si-function — As B, but the sum is done with weighted samples.
The weight function is Si'(x) = s^nX (proposed by Dr. Riedel)

The formula is: »0*-iT

This method is very promising because it allows to exactly define the characteristics of the
filter in terms of frequency and phase response, which is possible through proper selection ofW
(upper frequency limit) and T (integration interval). The longer T is selected the better the
filter characteristics are. In addition the method is - from the programming and execution time
point of view - efficient enough to be used for a reasonable amount of data. (For examples see
figures 4-2 to 4-8. The phase error which appears on the time histories can be corrected be-
cause it depends only on the frequency limit and not on the signal frequency.)

D) Gliding least square fit method — For a restricted number of consecutive samples (set) the
least square fit method is used. (The first sample of the next set is the second one of the

first set.) This method seems to be promising too but
o the filter characteristics are hard to define
o the computational effort is far beyond that of the Si-filter.

(For examples see figures 4-9 to 4-12).

E) In addition to those filters, we used "valve type filters" for several cases such as
(a) spike recovery, and (b) exclusion of dynamic components in stationary data.

This method is basically the same in both cases which is to delete those data totally or replace
them by artificial ones, which exceed certain limits. The only difference between the two methods
is, that in case of spike recovery, the limits are derived from the time history of the channel
itself, whereas in the second case another channel opens or closes the "software valve." For
instance in case of steady data for flight mechanics all data have to be deleted or disregarded
when the g-load exceeds 1 ±0.005g. This method is under certain circumstances very useful and
it is extremely cheap*

4.2 Application

We investigated the Si-function and the gliding least square fit method theoritically
to some extent and concluded out of the results that the Si-function is the more promising one.
We integrated this metfiod together with the standard average and the gliding average in the
integrated data reduction system and used it especially for speed and altitude filtering for the
VFW 6l4. As you may know, the transformation from Indicated Air Speed (IAS) via Calibrated Air
Speed (CAS) to True Air Speed (TAS) requires derivatives of speed and altitude which is numeri-
cally very difficult when the signal is too noisy. We got good results with a reasonable effort
as soon as we turned down the upper frequency limit to less than 1 Hz (Figure 4-14 and 4-15).
We used the "software valve" or "separation" method to get steady lift coefficient vs. angle of
attack out of stall test for instance. We calculated both valves over the corresponding time
but used only those for which the g-load was within specified limits (1 ±0.005g). The results are
shown in the last two slides. (Fig 4-16, Fig 4-17). An even better picture can be achieved by
selecting a smaller bandwidth.
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Fig. 4-2 1HZ Fig. 4-3 F = 2HZ

Fig. 4- F= 4 H Z Fig. 4-5 F= 6 HZ

SI-FILTER — TIME HISTORY
UPPER FREQUENCY LIMIT: 5 HZ
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INPUT

OUTPUT

Figures 4-2 to 4-5
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Fig. 4-6
UPPER FREQUENCY LIMIT 5 HZ

Fig. 4-7
u rREQUENCY LIMIT 6 HZ

Fig. 4-8
UPPER FREQUENCY 'LIMIT 7HZ

Si-FILTER FREQUENCY RESPONSE

Figures 4-6 to 4-i
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Fig. 4-9 F. IHZ Fig. 4-10

Fig. 4-11 F = 4 H Z Fig. 4-12

GLIDING LEAST SQUARE FIT
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GLIDING LEAST SQUARE FIT

FREQUENCY RESPONSES

Fig. 4-13

Figures 4-9 to 4-13
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DESIGN AND EVALUATION OF A SYMMETRIC FLIGHT-TEST MANOEUVRE FOR THE ESTIMATION OF
LONGITUDINAL PERFORMANCE AND STABILITY AND CONTROL CHARACTERISTICS

by
H.W. Kleingeld

NATIONAL AEROSPACE LABORATORY NLR
Anthony Fokkerweg 2
Amsterdam-1017
The Netherlands

SUMMARY

Performance and stability and control characteristics of aircraft can "be estimated from measure-
ments in one flight test manoeuvre. This requires the manoeuvre to contain quasi steady accelerating parts
and non steady oscillating parts. The first element of the manoeuvre provides mainly information about air-
craft performance, while the oscillating part yields information about stability and control derivatives.

A moving base simulator has been used to determine the problems which accompany the manual application
of the required elevator control input and to teach the pilot to generate the signal without feedback.
Results of this evaluation program are given and compared with corresponding results of the actual flight
tests.

1. INTRODUCTION

The determination of performance or stability and control characteristics from non-stationary flight-
tests has been subject of extensive research in the Netherlands. In 196U a new dimension was added when
a method was developed which made it possible to derive longitudinal performance and stability and control
data for a large flight envelope from one relatively short manoeuvre (Ref. 1).

Between 1966 and 1968 flight-trials have been made on the DHC Beaver Laboratory aircraft of the Aero-
nautical Department of the Technological University of Delft to further develop this method for convention-
al aircraft.

The required characteristics of the above-mentioned manoeuvre and as a consequence the shape of the
input signal to the elevator control has been analysed in references 1 and 2.

In the trials different kinds of input signals of various degree of complexity were applied and in
the beginning a programmed autopilot was used to generate the correct signals. After much training it was
also possible to apply the signals manually with a sufficient degree of repeatability.

In 1970 preparations started to further validate the method on an aircraft equipped with turbo jet
propulsion. This type of aircraft was suitable to investigate e.g. compressibility effects and jet engine
influence on performance and stability and control characteristics.

The Hawker Siddeley Hunter MK7 laboratory aircraft of the National Aerospace Laboratory in the
Netherlands which was available and used for the trials, is a medium high-performance aircraft. It is
equipped with special test equipment such as a trailing cone and a nose boom for accurate ambient static
pressure measurements and pitot-static tubes in the jet exhaust pipe to enable engine thrust calculation.
Four undenting pylons are provided for underwing fuel tanks. During the above-mentioned flight trials one
of these positions was taken by an instrument container.

The Hunter project of which the flight trials have been flown between November 1973 and May 197!* can
roughly be divided in the following parts:

- Instrumentation of the aircraft
- Preparation and execution of the flight trials
- Processing and analyses of the measured data.
The instrumentation system, which is a further development of the system used in the Beaver trials,

is discussed in detail in reference 3.
Preliminary results of the analyses - the flight-path reconstruction in some of the manoeuvres - are

given in reference k.
The preparation and execution of the flight trials form the main part of this paper. In section 2 a

qualitative motivation is given for the input signal to the elevator control, which has been used in the
trials. Some peculiarities of the aircraft are discussed. In section 3 crew training on a moving base
simulator and the execution of the flight program is discussed. In section k a. summing up of the results
of the trials is given. In section 5 some conclusions are presented which can be drawn from this part of
the program.

2. ELEVATOR CONTROL INPUTS FOR NON-STATIONARY FLIGHT TESTING

2.1. General discussion on the shape of the desired manoeuvre
The derivation of performance as well as stability and control characteristics from one non-station-

ary flight manoeuvre puts different requirements on the information which has to be contained in the
measured aircraft responses.

Aircraft performance, such as climb performance and aircraft polars can be derived from measurements
taken in quasi-steady accelerated flights. If these measurements differ too much from steady-state condi-
tions a correction has to be made using knowledge of the aircraft aerodynamic model.

Stability and control characteristics can be derived if the aerodynamic model of the aircraft is
known. This model can be estimated from measured aircraft responses,provided sufficient information is
contained in these responses. As most of the aerodynamic derivatives are related to the short period
oscillation, it seems reasonable to assume that oscillations of about the short period frequency in tbsse
responses will fulfil the requirement.

If these two types of aircraft responses are combined, aircraft performance and the aerodynamic
model can be determined in principle from one manoeuvre whereas the model is then used to correct the per-
formance measurements to steady-state conditions and to calculate longitudinal stability and control
derivatives.
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2.2. Design of a practical elevator control input signal
In preliminary trials on the Hunter, input signals have been considered of various degrees of complex-

ity. It soon became apparent that only very simple input signals could be applied with a reasonable
repeatability. The hydraulic control system of the aircraft is very effective and artificial feel is
applied independent of airspeed. The resulting control force is thus proportional to control
deflection from the trim position. Therefore the forces are relatively high at low speed because of large
required control deflections and very low at high speeds. The application of a programmed autopilot could
not be considered because no provisions were available in the aircraft.

As a result of these experiences a practical input signal was defined which would generate aircraft
responses reasonably close to the requirements of section 2.1 (Fig. 2).

Starting-at a low speed in stationary flight, the aircraft was made to accelerate in level flight
through the whole speed envelope without pitch oscillations, except every 30 seconds, when 1* block-type
oscillations were fed into the elevator control in basically the short period frequency. Between succes-
sive series of oscillations the aircraft accelerated steadily. In general U to 5 series were contained
in one complete manoeuvre. The target "g" levels in the oscillations were set at 0 and +2 g.

3. PREPARATION AND EXECUTION OF THE FLIGHT TRIALS

3.1. General aspects
From a pilot's point of view a substantial difference exists between stationary and non-stationary

flight testing as far as his control actions are concerned.
In the first case the pilot uses his controls to balance the forces and moments on the aircraft.

The stabilization of the aircraft on a target speed can be a rather difficult task, especially if height
constraints exist. Nevertheless the pilot gets sufficient information from the outside world and his instru-
ments to execute the required task and to check his performance. In most cases ample time is available to
stabilize the aircraft and take the measurements.

For non-stationary flight testing definite input signals have to be specified to the pilot. These
inputs are then applied to the controls. In most cases a programmed autopilot is not installed in the
aircraft. The information from the aircraft response is not available in time to the pilot to estimate
the difference with the required response and to take corrective actions. However, with experience he is
able to give his opinion on the quality of the manoeuvre and to try and improve his control policy in the
following manoeuvres. Training on the simulator and in flight will provide him with this experience which
will ensure a reasonable repeatability of the generated input signals.

3.2. Use of a moving base simulator
The three degrees of freedom moving base simulator of the Aeronautical Department of the Technologi-

cal University of Delft has been used extensively for ground training.
The Hunter simulation has been based on available aircraft data, supplemented with subjective opinion

of pilots with ample type experience. In the cockpit the original control column and throttle quadrant
were replaced by Hunter items. Pitch, and roll information was displayed on a CRT which was flush-mounted
in the instrument panel. The visual system of the simulator was used to disfXay a horizon line.

The principal aim of the training sessions was to learn and generate the elevator input signal, given
in figure 2.

Preliminary results with all subject pilots showed an overshoot tendency on the elevator time his-
tories (Fig. 3a and 3b).. This overshoot tendency could be lessen&d-by training and was eliminated if
the rate of elevator deflection .was decreased sufficiently (Fig. 3c and—3d-)-<—To evaluate thlf influence.-of
the motion system on the performance, several trials were made without this system. The opinion was that
even the limited motion cues which, were generated, aided considerably to get the "feelJL-of the manoeuvres
and to restrict the "g" excursions between the limits of 0 and +2 g.

3.3. Execution of the flight program
Surprisingly the initial results of the flight trials showed the same overshoot tendency on the

elevator time histories as during the ground training (Fig. ka. and Ub). Contrary to the simulator trTaTs
hardly any improvement could be obtained with, training. Due to the rather violent aircraft motions the
control stick could not be stopped in the required position.

To overcome this, problem a metal bar was installed in the cockpit (Fig. 5a) which normally s-l-id.be-
tween the pilot's fingers and the control stick. If the movement of the hand (with the stick) had to be
stopped, the pilot pressed the bar firmly between his hand and the control stick (Fig. 5b and 5c). After
this device was installed, performance improved considerably although, it was never possible to obtain the
same regular shape of input signal as in the simulator trials (Fig. 6). The use of buffers to limit con-
trol stick movement is not practical because of the change of elevator trim position and deflection with
speed.

The amplitude of the control deflections which, would result in the ± ] g change in normal accelera-
tion could be learned relatively easy and in general the acceleration level remained between 0. and +2 g.
It could, however, not always'be prevented that some asymmetric motion was induced by the pilot which
could not easily be stopped. It can be expected that in trials, which, require higher load factors, the
flying precision will degrade.

In the initial flight trials some problems were encountered in ending the pitching oscillations after
the block signals and the accelerating part of the manoeuvre was not steady enough. After some training
this problem was. eliminated.

k. RESULTS OF THE FLIGHT PROGRAM

When the flight trials were concluded in May 197** a total number of 19 flights had been made, of
which 1l» can be further analysed.

The remaining 5 Have either been training flights, or flights with, instrumental mishappening which,
precluded further utilization. A total of about 50 manoeuvres, floxn at altitudes of 10000, 20000 and
30000 ft are further processed at the moment.
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5. CONCLUSIONS

From the experiences gained in the trials the following conclusions can be drawn:
- An input signal for non-stationary flight testing should be as simple as possible, unless a programmed
autopilot is available.

- Training in advance on a moving base simulator can improve performance, but its usefulness should not
be overestimated.

- The use of simple aids to guide the pilot's control movements can improve his performance considerably.
- In non-stationary flight testing flying precision will degrade rapidly with an increase of g load level.
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Fig. 1 Hawker Siddeley Hunter MK7
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Fig. 2 Diagram of the elevator input signal
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Fig. 3 Recorded elevator time histories in simulator training
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Fig, Measured elevator time histories in flight, "before the installation of a bar to
control the movement of the hand

5a General view

5b Forward control stick position 5c Rearward control stick position

Fig. 5 Bar to control the movement of the hand
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Fig. 6 Measured elevator time histories in flight, after the installation of a
bar to control the movement of the hand
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DETERMINATION OF STABILITY DERIVATIVES FROM FLIGHT TEST RESULTS

COMPARISON OF FIVE ANALYTICAL TECHNIQUES

BY

HORST WLlNNENBERG DORNIER GMBH

HE1NZ FRIEDRICH D-799 FRIEDRICHSHAFEN

ULRICH VON MEIER POSTFACH 317

HANS-JOACHIM MUNSER

S U M M A R Y

Five analytical techniques in stability derivatives estimation were compared, in cooperation with the "E-

Stelle 61 of the GAP" and with the "DFVLR". The test aircraft, a G 91-T3, was equipped with a sophistica-

ted instrumentation and data acquisition system. The analytical techniques: manual evaluation of special

flight maneuvers, time vector method, forced oscillation method, analog matching and regression analy-

sis are compared in relation to the amount of time and equipment for the flight testing, complication of

the data reduction and the quality of the results. The accuracy of the data aquisition is the most impor-

tant problem. Therefore an accurate check of all test data has to be performed before sophisticated eva-

luation programs are used. As a result it can be summarized that in general several measuring and eva-

luation techniques should be used in parallel.

1, INTRODUCTION

Parameter identification from flight test results is an important and necessary task not only from a re-

search point of view but also for the industrial flight testing. After the begin of the flight testing of

a new aircraft the manufacturer has to know very rapidly the actual parameters and derivatives in compa-

rison with the values derived from theory or windtunnel tests. This is necessary to decide whether and
i

what type of modifications of the aircraft or the stability augmentation system have to be made. For the

flight testing of the Airforce test departments the problems are similar. Therefore this task was defined

in cooperation with the "E-Stelle 61", which is the German Airforce Flight Test Center, and the "DFVLR",

the German Aerospace Research Institution.

The aim was to get some practical ideas of the application of 5 different analysing methods, which seemed

to be representative for the broad spectrum of the well-known methods and which seemed to be applicable to

a more industrial use. Therefore the comparison should include the necessary amount of data aqui-

sition and reduction systems, flight test time, skill of the pilot and the evaluating engineer and last

not least the quality of the results.

For the same reasons also manual evaluation techniques without and with computer aid and highly automatic

methods for a digital computer use are taken into account. With respect to the aforementioned reasons

and the already available pratical experience from the Do-31 flight testing we decided to choose the fol-

lowing methods from the manual evaluation techniques:
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- evaluation of special maneuvers from analog traces

time vector method

- forced oscillation method

from the "Output error"-methods

analog matching

and from the "Equation of motion"-methods

- regression analysis.

2. INSTRUMENTATION SYSTEM

As test aircraft a trainer version of the Fiat G-91 was used, fig. 1. The trainer version has the advan-

tage that the flight test engineer could participate at the test flights and could influence the pro-

gram in the air, if necessary. The aircraft was equipped by a sophisticated instrumentation system

which was especially laid out for this task.

As the accuracy of the sensors is one of the most important problems in the field of flight test data

analysis, special efforts have been made to get the best possible input data. Therefore for instance

two different sensor-systems for angle of attack and sideslip, a Dornier flight log mounted on a sting

in front of the aircraft and two additional sensors at the fuselage have been installed. The attitude,

rate and acceleration sensors have been mounted on a frame of cast steel, fig. 2. This frame is ortho-

gonal, beatable to compensate temperature effects and at three points rigidly fixed to the structure

of the aircraft. The bearings are adjustable to guarantee an exact alignment of the sensor axis to the

axis of the aircraft. The whole platform is isolated by damping material and mounted near to the e.g. of

the aircraft.

Similar efforts have been made to improve the position signals of the control surfaces. Fig. 3 shows an

example of the arrangement for the rudder. To avoid errors by backlash and elasticity the potentiometers

have been .r-igidly mounted as near as possible to the rudder bearings additionally improved by a cog wheel

with bias springs.

For the same reasons the range of the sensors has been chosen as small as possible according to the

task, fig. 4, You see the range of the different sensor types and the attainable accuracy at the computer

input.

Though this instrumentation system is very accurate, there are other erros, which also have to be com-

pensated as well as possible. These are the time or phase erros. They occur due to the fact that the sen-

sor itself has a certain time lag or phase error due to its frequency response and there is an additional

time lag resulting from the time intervals during the scanning of the different measuring channels.

Fig. 5 shows, how we have tried to overcome these difficulties in the first step. As the influence of the

structure vibrations has to be filtered by low pass filter RC-networks, the time constants of these net-

works have been chosen together with the known time constants of the sensors so that all signals are rela-

ted to a reference time. To do this successfully the frequency response of all sensors has to be known.

Therefore special test programs for instance for the angle of attack and sideslip sensors had to be carried

out. Though these time lag corrections are valid only for the actual flight-mechanical frequencies they

considerably improved the results especially of the automatic methods.
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Today these corrections are part of a Kalman filter computer program, which shall be used in combination

with the regression analysis. Furhter information will be given in Mr. Friedrich's paper.

The data reduction is done in the usual manner. We use an on-board magnetic tape recorder, which records

the data with a frequency of 42 Hz. This tape is digitized, the calibration factors and all the other

informations, which are necessary from the flight mechanics point of view, are added. From this basic

"computer tape" the special tapes for the different methods are produced.

3, MANUAL EVALUATION OF SPECIAL FLIGHT MANEUVERS

This technique is well-known to every flight test engineer, so it needs no large explanations. Only ana-

log traces are necessary for the evaluation. Fig. 6 gives a short summary of the procedures which are

necessary for the evaluation of the longitudinal motion. By horizontal flights and steady turns with

different load factors the lift coefficient slope over the angle of attack and the horizontal tail ef-

ficiency can be evaluated. By repeating this for different e.g. positions the neutral and the maneuver

point can be found, which leads to the static stability terms and by this to the value of Cm .

In parallel the Cm also can be derived from the frequency of the short period oscillation neglecting the

damping terms or taking the theoretical values. The combination of the damping derivatives Cm + C,,,. are

derived from the damping of the short period. In detail the time to half amplitude and the already evalu-

ated CL are used for the determination. The problem of analysing the short period motion is the normally

high damping of this mode, so that only very few amplitudes are available for the evaluation. The pilot

task is therefore "to feel" the natural frequency and try to excite the aircraft with it by a doublet-ele-

vator input.

The fig. 7 shows the maneuvers and the procedure which have to be done for the evaluation of the lateral

.coefficients. In this case the problem is a little more complicated as some maneuvers have to be

interpreted in parallel. So the pilot has to fly for each point of the interesting flight conditions

a roll maneuver with a constant ramp aileron input and a load factor of

1 as long as a steady roll rate has built up

- a steady sideslip maneuver

a Dutch Roll excitation by rudder pulse or doublet inputs.

The last two maneuvers can also be combined. It is important, that during the Dutch Roll oscillation aile-

ron and rudder should be kept exactly zero, which seems to be no easy task for the pilot.

With these maneuvers the procedure of the determination begins with a first approximation of the roll-dam-

ping coefficient by neglecting the influence of the sideslip angle B, using the roll acceleration during

the ramp input and the stationary relation of roll rate and aileron deflection.

The second step is the interpretation of the Dutch Roll, where the frequency leads directly to Cno and theP
damping directly to Cn • With this Cn and the evaluated roll/yaw ratio including the phase angle between

p and (3 Cj can be determined. With the before calculated Cj „ and the aileron effectiveness Ci_ a second

approximation of the Cj is done including the sideslip terms.

Summarizing the experience it can be concluded: With a precise instrumentation system the main parameters

can be determined. Though the accuracy of these derivatives is not high, it is a good check for rapid

information of the order of magnitude. Also the instrumentation equipment can be checked by this method.

The disadvantages are the necessary high skill of the pilot, the large experience of the analysist

and the large amount of flying time, which has to be provided for this method.
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4. TIME VECTOR METHOD

Another nearly manual technique is the time vector method. Though this method gives even less values than

the aforementioned it is of importance mainly as a check instrument for the flight test data. It also

leads to the main parameters and therefore should be used if possible to check the results of more sophi-

sticated methods.

This method can be applied to the oscillating modes only, in practice short period and Dutch Roll motion.

The required input data are frequency, damping, amplitude ratios and phase relations of the main motion

parameters. Fig. 8 shows how these values can be received by an evaluation of the peak values of the

oscillating parameters and their temporary position. This procedure was done by a computer program

which gives the results by weighting the different parameters according to their deviation and taking

the average values by the method of least squares.

As I don't know whether you are all familiar with the time vector philosophy I first shortly repeat the

main principles, fig. 9. The phase relation between a parameter and its differentiation is an angle of

90 degrees plus the damping angle eQ, and the amplitudes differ by the natural frequency u . With these

relations an equation of motion can be represented as closed vector diagram, in this simple case of an

oscillation with damping an isosceles triangle.

Fig. 10 shows the typical arrangement of the time vector polygons for the Dutch Roll mode. With some

experience the derivatives in the form of vector lengths can be reduced from the available input data,

though some assumptions have to be made. In this case for instance Cy corresponds to the theoretical

value. The fig. shows the difference of the time vector diagrams calculated with theoretical values and

the diagrams which have been constructed with flight test results.

The fig. 11 presents the corresponding relations for the short period mode. In this case we used the

results of the next method, the forced oscillation method, which simplified the procedure, as enough

amplitudes have been available for the analysis. In this case the assumption has to be made that the

elevator effectiveness corresponds to the theoretical value.

Now I should like to demonstrate you shortly, how this checking procedure I mentioned before is working,

fig. 12. The first check deals with the phase relations of differentiated parameters, which should be

90 deg. plus EQ. The next step checks the amplitude ratios of the derived differentiated parameters,

which should be u . In the case of this program all derivations of the position angles have been

available as measuring data so this check was realistic. The third and fourth check came from the

application of the method using the lift equation and the kinematic relation and can easily be understood

by the use of the method.

Fig. 13 explains the corresponding check procedure for the lateral motion. In this case, too, the main

check is related to the phase relations and the amplitude ratio of differentiated parameters. In addition

to that, further checks of the yaw parameter t|i and its differentiations are possible with the aid of the

side force polygon as is indicated on the fig. The results of these checks can then be used to correct

either the input informations for this or for other methods.

The possibilities of a parameter identification by means of this method are nevertheless limited as will

be shown in the fig. 14. This fig. shows the effects of amplitude and phase errors of the main input

data. An amplitude and a phase error of + 10 % was assumed. The latter is corresponding to a time lag

of about 0,05 seconds. It can be seen that especially the phase errors lead to large errors of the

final results. This fig. is valid for the longitudinal derivatives and the fig. 15 shows the correspon-

ding situation for the lateral derivatives. In this case, too, mainly the phase errors but also frequency

errors have an important influence on the evaluated parameters.
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Finally, the following can be concluded for this method. It is of importance as a check-instrument

and well suitable for the main parameters. The disadvantages are the necessary high accuracy of the

test data and the necessary experience of the analysist.

5. FORCED OSCILLATION METHOD

Though this method on principle belongs to the manual analysing techniques the main work was done

with the aid of a digital computer. For the application of this method a sine-generator has to be in-

stalled in the aircraft and fitted to either the elevator or the rudder. In our case we only use the

elevator as actuating device as it was simpler to realize. The principles of this method are explai-

ned in fig. 16.

The motion parameters which have been excited by the sine-generator, are oscillating with the same

frequency but individual amplitude and phase lags. By a Fourier analysis these parameters can be trans-

formed into sine and cosine-parts. If we now put this presentation into the equations of motion andz

seperate into sine and cosine-parts, we get two sets of defining equations. The Fourier coefficients can

be evaluated from the traces of the motion parameters by summation formulas instead of the original

integrals. To get the necessary sets of equations according to the number of unknowns several frequen-

cies - in practice about ten - have to be provided, whereby the surplus equations are used to improve

the results with statistical methods.

As it is possible to do the summation graphically this method requires no computer use, and even in our

case, where a computer program was available, a manual check has to be done before the computation,

fig. 17. This fig. shows the influence of non-constant periods on the Fourier coefficients.

It is therefore necessary to choose only those parts of the traces where the oscillation has reached

a stationary state, otherwise the errors become too large.

Of course the latter reduces the practical applicability of this method as a lot of flying time has to

be provided regarding also the high numbers of frequencies which additionally have to be stationary.

Also the installation of a sine-generator will not always be easily to realize. So this method plays

a certain "outsider" role within this comparison.

6. ANALOG MATCHING

This technique is the simplest form of the output-error methods. It is wellknown for many years, and in

Germany especially the DFVLR has a lot of experience with this method. So within this cooperation the

application of this technique was carried out by the DFVLR.

Fig. 18 explains the procedure. From an analog magnetic tape which has been derived from the original

"computer tape" the flight test state parameter X and the control parameters AF are fitted to the

computer. Then in the next step the initial reference conditions for the model are computed from the

differences of actual values and the computed model values. With these corresponding reference condi-

tions the transients of model and flight test are presented one upon another on a four channel oscillo-

graph, the picture of which can be photographed by a polaroid camera.

With this equipment the operator has to try by iteratively modifying the model parameters to get a good

conformity of the model trace with the flight test trace. Fig. 19 shows as an example a comparison be-

fore and after the adaption. Though the initial discrepancy between flight and simulation is large,

the final fit is relatively good.
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The problems of this method are similar to those of the time vector method:

Only the main parameters can be determined

There is no unique solution. Each fit can be obtained with several different

sets of parameters.

The succes of the method depends highly on the experience of the operator.

Nevertheless it should be mentioned that based on this technique in combination with the philosophy of

the manual evaluation method a further improvement seems to be possible. In this case a digital computer

program should do the calculations and fitting iterations according to a procedure which should include

the flight test maneuver and the way of analysing these maneuvers.

7. REGRESSION ANALYSIS

This method is the most sophisticated of this comparison regarding the computing effort, and the simplest

concerning the efforts of the flight testing and evaluation. As this technique will be explained in de-

tail by the paper of Mr. Friedrich I only shortly discuss the main principles.

The method belongs to the equation error or equation of motion methods. It is based on the non simpli-

fied equations of motion, fig. 20. The coefficients on the left side have to be calculated from the acce-

lerations, mass and moment of inertia terms. Additionally all state and control parameters have

to be measured. With these values each observation point, and these are 42 per second, gives a set of

equations for all coefficients and derivatives. The large amount of equation sets during a flight

phase between two and five minutes is used to improve the results by means of a statistical method,

the regression analysis. The mathematical problem is relatively simple as the equations are non-

coupled.

The necessary maneuvers are simple but uncomfortable for the pilot, fig. 21. The pilot has to move all

control surfaces in a random matter to get all the interesting relations. The fig. shows a typical example

for this agitating of the controls.

It is obvious, that this method needs a sophisticated instrumentation system with a very high accuracy,

especially no time lag errors should occur. But even other errors of course have a large influence on

the results. This can be seen on fig. 22. Here the influence of a e.g. distance correction of the accele-

ration terms on the evaluated C_-value is shown.

Until now the advantages of the method, possible determination of all interesting coefficients and deri-

vatives by only one flight maneuver is connected with a partly bad accuracy of the evaluated results. The ,

check with a simulated flight test showed that in principle it is possible to reach the aim. To get these

excellent results in flight, too, high efforts of improving the measuring equipment or the filtering

techniques have to be made. We have tried this now by the use of a Kalman filtering technique but the

results are not yet available.

8. COMPARISON OF THE METHODS

At first a set of determined coefficients and derivatives is compared in relation to the theoretical va-

lues. Fig. 23 shows the values for the longitudinal motion. It can be seen that only the regression ana-

lysis gives all the interesting values. But if you look on the numbers, some big differences are found.

Nevertheless some of them correspond relatively well to the expected ones, f.i. CL/ C^, C^, CQ^. Cm and-

Cm . The other methods show a higher number of "blanks", but the remaining data are relatively good.
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Fig. 24 shows the results of the lateral motion derivatives, which gives a similar picture. In this

case the results of the regression analysis are much more better than in the longitudinal case, which

has encouraged us to continue with this method. The expression "possible" means that this value can

easily be computed from the determined moment derivatives. Also in this case the three "manual" methods

give less but relatively reasonable results. It is obvious that further improvements of the data

aquisition system will also lead to better results for these techniques.

Fig. 25 finally shows the actual comparison of the five evaluation methods due to the criteria which

have been mentioned at the beginning of the paper:

Test equipment

High requirements for a modern PCM data acquisition system are only necessary for the regression analy-

sis, while the other methods can also use available PAM systems. The accuracy of the sensors should be

high for nearly all methods but phase lag corrections are extremely necessary for the regression analy-

sis. Only the forced oscillation method needs a sine-generator as additional equipment and also the ne-

cessary flight test time is very large so this method is not useful for a routine use in the flight test.

On the other hand the necessary flight test time for the regression analysis is very short. Pilot skill

has to be high for the manual evaluation techniques, especially if he has to excite exact frequencies.

Evaluation effort

The necessary computer systems will be available at all flight test centers. The required analysing

time is high for the manual methods and of course very low for the automatically working methods. The

same can be said regarding to the experience of the analysist. The number of evaluable coefficients and

derivatives is limited for the time vector method and the manual evaluation. Forced oscillation and

analog matching lead to the main parameters, whereas by the regression analysis, all parameters can

be achieved be including performance coefficients. The quality of the coefficients and derivatives

is, on the other hand, relatively sufficient for the first methods whereas for the regression analysis

it is highly depending on the instrumentation and measuring accuracy.

9. CONCLUSION

Though the evaluation of coefficients and derivatives is a hard job and needs a lot of effort, it is an

important and a non neglectable task also for an industry flight test program. As preconditions for a

successful work in this difficult field we found the following items:

the main attention should be given to the accuracy of the sensors and

the data aquisition

each set of test data has to be checked before its further use

the parallel use of at least two different methods is desirable

a good cooperation of test pilot, flight test engineer and. analysist

is important

large experience of the participating engineers is desirable, too.

Finally the choice of methods which should be applied, depends on the possibilities of the instru-

mentation system, as the simpler methods need less information than the more sophisticated ones. For

an industrial use especially for smaller and simpler aircraft the simpler evaluation techniques there-

fore still play an important role for the task of parameter identification.
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Fig. 1: Test Aircraft Fiat G91 - T3 Fig. 2: Test Equipment of the G91 - T3
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Fig. 3; Position Sensor of the Rudder
Fig. 4: Characteristics of the Instrumentation System
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Fig. 8: Evaluation Procedure to get the Basis Data
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Fig. 20:

Basic Equations for the Use of the Regression Analysis

i (seel

Fig. 22: Influence of a C. G. Distance Correction of the

Linear Acceleration Terms on the Evaluated C_ Values
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Fig. 21: Typical Inputs for the
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FIVE IDENTIFICATION METHODS APPLIED TO FLIGHT TEST DATA
by Jean-Pierre Chaquin

Office National d'Etudes et de Recherches Aerospatiale* (ONERA)

92320 Chatillon (France)

SUMMARY

The present paper deals with the determination of the parameter of linear multivariable systems

using input and output measurements. It is assumed that the physical system, which is to be investi-

gated, can be described by a set of linear differential equations with constant coefficients. These

estimations had to be applied to the derivation of active control parameters. Tests of well known

methods, such as least squares, modulating functions, conjugate gradients and analog matching, are

developed. Some results are proposed to be used as support for the comparison of the different methods.

CINQ METHODES D'IDENTIFICATION APPLIQUEES A DES MESURES EN VOL

RESUME
Cette communication a trait a la determination des parametres de systemes Lineaires a plusieurs

variables a partir des mesures des signaux d'entree et de sortie de ces systemes. Le processus phy-

sique a etudier est suppose pouvoir etre decrit par un ensemble d'equations differentiates lineaires

a coefficients constants. Les estimations obtenues sont destinees au calcul de parametres de controle

actif. Une comparaison de methodes connues, telles les moindres carres, les fonctions modulatrices,

les gradients conjugues et 1'adaptation analogique, est developpee a partir des quelques resultats

presentes.

1. INTRODUCTION

The problem is to calculate the flight derivatives of air-

craft using flight records of the acceleration of the center of

gravity, of the angle of attack, of the pitch rate and of the

excitation (deflection of elevators or airbrakes).

For each method, the whole measuring time has been used

for the evaluation. This way, disturbances and errors in mea-

surements, which are statistically independant from the input

signals, can be eliminated.

A theoretical survey is developed in the first part of the

paper, then results and comparisons of the methods are exposed.

2. SURVEY OF IDENTIFICATION TECHNIQUES

2.1. General considerations on system identification

Following Rault [1], we will distinguish three steps in

identification :

- characterization : it is a qualitative operation that defines

the structure of the system, i.e. type and order of the differea-

tial equations which connect inputs and outputs ;

- identification and parameter estimation ;

- checking : it is a necessary step where one checks that

the estimated parameters have a physical meaning and that the

accuracy of the estimation is good enough.

'As only the aerodynamic coefficients of the rigid aircraft

intervene in the calculation of gust alleviation laws at this time

with the ONERA method.the characterization step is well defined

because the differential equations of the motion are well known.

•All the data collected in flight on analog tapes have been

sampled before being analyzed on a digital computer. The direct

current of demodulators, bias,: time constants of the different

circuits of the analog to digital converting chain have to be

looked at very carefully. The problems introduced by noise will

be recalled for each method.

2.2. Least squares tl]

Let iAi.be an(rn-t-4\ state variable vector and OCjL^Qo _^at \

an(Vi+ £) measured variable vector supposed without noise

in a first step. Let £ be the function connecting u. and Xo

and the unknown parameters vector pT-(PoipA. ••• P }
One can write :

The least square method consists in minimizing the sum of the
squared errors.

which yields with matrix notation :

J=(Y-F(X,,,?)/(Y-F(XR1P))
To derive the minimum of J, one writes •

.0
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where p is an estimator of p .

This equation generally cannot be solved because FQ^p)
is a non linear function of p . We will see later that it can be
solved by iterative techniques.

Assume now that F(Xft p) is a linear function of p .

) = r P d) i sa (Vnf 4) matrix

Equation (1) yields :

<£T (t> £ = <£Y thence £ = [<?<*>]'* <f> T Y

Y=. F(X*,p) 4-B thence Y =

Let us prove now that p is a non biased solution, i.e.
that if E (.) is the mean operator, E(p) — p . I f the
coefficients of <p are not correlated with S and if .B is a
zero mean noise and if <p is a deterministic matrix :

= p

We have assumed that the noise occurs only on the output,
which is generally true, and that measurement noise and sam-
pling noise built a zero-mean process uncorrelated with the
system output.

The second assumption is generally not so obvious, due to
the fact that unpredicted inputs generate a non neglectible
secondary noise.

It has been supposed that
- ̂  was deterministic,
-B was a zero-mean noise.

As stated in Section 1, all the recorded parameters have
been sampled with the measurement noise and also with the
noise added by the use of the analog recorder (amplifiers, ..).
It follows that <p is not really deterministic.

In the same way^B is generally not a zero-mean noise. It
is possible to avoid this problem by using the weighting least
squares method (see figure 2).

Let \V(t) be a zero-mean white noise. We suppose that :

*W(t)

where -9l(t)is a finite order filter.

If the correlation of b and Vf is known, the function
can be evaluated. It is then possible to filter the data with n,

and to apply the least square method to the filtered input
and output signals.

But the main problem is the evaluation of •!(. .. Iterative
methods have been proposed by Clarke (1967). It is the purpose
of the GLS method.

2.3. Integrated least squares

Integration helps filtering the noise that appears in the
recorded signals. The integrated least square method consists

in applying the least squares method to the integrated equations.

But it is very diff icul t to define the zero of a measuring
device. Instead of measuring /&(t), one measures ,4(t)+ K
where •ft is in first approximation a constant value.

This method is helpfull for high frequency noise but losses
its interest when a zero-shift may occur.

2.4. Modulating functions

The method consists in expanding the output and input si-

gnals in a set of functions. Let f ^t)i- A n + 4 be a set of
such functions and < f4 } Jt^ be the inner product of

i and f, .. One can then write, if & is one output of the
system following a differential equation, the coefficients of
which are

= <«,<*>«*,>

The choice of the modulating functions eliminates the
diff iculty of computing the successive derivatives of the signals.

For instance :

is chosen such that :

one gets

There are no differentiation, which increases the effects of
noise, and no integration, which may induce errors on constants.
One has only to solve a linear system in ( pj). _ ^ n+^ •

Let us note that this method has to be carefully applied
because the modulating functions may screen some informations
in the signal and generate some others which were not existing.

2.5. Conjugate gradients : method of
Fletcher and Reeves [2]

The main advantage of the gradient methods is to allow
identification of non linear problems by iterative techniques.
The way of searching the variables in directions chosen as
to accelerate the process changes following the methods. One
uses the unit directions of the parameter vectorial space
(Gaussian method). Others are using the opposite gradient at
the previously determined point of the parameter space (stee-
pest descent).

Let J(sE) be the non-linear .cost function to be minimized.
It is a function of n parameters (x4)X4l... ,

x-n) •• Let us

assume that J(2) and its gradient ^J(.3?) are available at
each point of the parameter space and that the minimum Xm;n

minimizing J(jE.) exists. One can expand J(t) in Taylor's
expansion in the neighbourhood of
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• mln minimum

A is the Hessian matrix of J . It is definite positive and

symmetrical if the second derivatives are continuous. In the

neighbourhood of Xmjn, the gradient is given by :

diTA.d-. =o ; V I > L
o s Q

+ higher order terms Many coefficients are equal to zero. It comes :

to(n) — O (necessary condition). -r* •—* ,_

with -- —• -• fr"^ - ••

= A ( x-
The variation J(X^Un + £x) _ J (.5c în

zed when its derivation is equal to zero :
is maximi-

;*. A. Ax"

where X{, is an approximation of Xmin

The step of iteration is then defined by :

•V . — "Y .
*^C4*I v '

The most difficult problem is the evaluations of A"*, i.e.

A , because the evaluation of the second derivatives cannot be

accurate enough. Indirect methods have been proposed (Shah,

Buehler and Kempthorne (1961), Powell (1962))that use geome-
tric properties of surfaces.

The modification of Fletcher and Powell (1963) of Davidon's
procedure (1959) proposes (see ref. 2) :

with
"X-1.+A r.

and <*;_ calculated as to minimize J(Xj,+ 4) .

H0 , H.J , , Hn is a sequence of definite positive matrix.
Ho is generally chosen equal to the unit matrix. This

sequence is so built as to modify H i at each step of iteration

so as the series converges towards A" when X;, nears Xm)n

(see ref. 5).

The fastest convergence is offered by the steepest descent

method but it becomes less accurate in the neighbourhood of the

minimum. The use of conjugate directions dv is generally pre-

fered because it takes into account the local behaviour of the
function.

The idea of Fletcher and Reeves was to look for cL-, as a

linear combination of the opposite gradient at the considered

point x\. and the previously determined directions do^d^-vd^
so as to fit the orthogonality condition.

This yields the final algorithm :

position of the minimum of J(;£) on the line passing by Xt
in the direction at ,

=^ *;, by minimisation of

until °/L # O

'Application to non quadratic problems

The convergence depends much on the conjugaison of the

generated directions. This conjugaison can be destroyed by

non quadratic terms in the cost function and this difficulty is

combined with the inaccuracy of the minimization of J along
the last direction.

A partially conjugate gradients method (see ref. 6) can be

applied to decrease the length of conjugate gradients cycles

for the purpose of minimizing the degradation of conjugaison
of the successive directions.

2.6. 'Analog matching

This method makes it possible to get rapidly good estima-

tions of the parameters and to introduce them, as initial values

in an iterative method. To avoid the importance of the operator

estimation, an adaptative control of the coefficients has been
derived (see ref. 3 and 4).

One must remember that all the terms of the equation have

not the same weight. It is then recommended to evaluate, with

known estimations of the parameters (for instance, wind tunnel

values) the frequency bandwidth where the system offers the

best sensitivity to a given variable. This can be studied in

amplitude Bode's diagram for instance, as shown later.

Let J('3C.)be a cost function. We want it to be always

decreasing with time. Its derivative with time has then to be
non positive

This is always verified when we choose the law of varia-
tions of 3C. with t i m e :
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For non-linear problems it becomes very difficult and

very expansive also to develop the analog system because of

the rapidly increasing number of good multipliers which are

required.

3. RESULTS 'AND COMPARISONS OF THE
DIFFERENT METHODS

3.1. Formulation of the problem

Let us recall the formulation of the equations of the longi-
tudinal motion of a rigid aircraft which is used in the different

methods. Let 2. be the acceleration of the center of gravity
C| the pitch rate, rf the angle of attack and S«|K the exci-

tation. It comes :

.

All the results are compared on figure 7 and time histories
are drawn on figure 8 ,and 9 and compared with the measured
functions.

3.2. Some indications on the different methods

a) Modulating functions

This method has been tested with the following set of
functions :

Tchebyshev's polynoms of
second kind and of order n.

<f>

They have been chosen because of the simplicity of the

integration bythe Gaussian method,

N

\-.A

where the i»Ji. are the weights and X; the abscissas of the

Gaussian points. And :

a... re *:j(in \
M+x \ff+A J

The number of functions has been chosen equal to the

number of unknown parameters in order to study the specific

properties of this method.

b) Analog matching

We shall detail here what has been done on the analog

diagram of figure 3 and 4. Let us consider the lift equation of
the rigid aircraft

2= +

at

dt

d,i

This is always obtained by :

dt ••
<***..
at "

To illustrate the note explained in Section 2.6 on the fre-
quency range of the input signals, we can look at figure 6. It
should be noted that the ^ -parameter is always much smaller
than the others. This explains the difficulty encountered for
the estimation of this parameter.

This analog method has also been tested with an analog
simulation program CSMP-IBM. Some results are shown on
figure 10.

c) Conjugate gradients

Nothing to explain especially out of the minimization of

T(3C;+,i)°n the line passing by OC; in the direction di for J
quadratic (see ref. 5). Let U(ol) be defined by :

Let us note that

Let 01,̂  be the value of 0
Fletcher and Powell propose,

minimum :

minimizing Jf^TC.^ ot,O;
n, being an estimate of the

JLA if

A=^i

< ? .iras

Let £ be the error and J= £ the cost function :

otherwise
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M' is examined at the points K z O fi {Ji^n —.,*,...jb
where o< is doubled each time and where Io is the first of

these values at which either u ' is non-:negative a u has not
decreased. Then a cubic interpelation given by Davidon is
used

The estimate

If neither 1^(0.) nor i^ (b) is less then i£ («><«), then of^
is accepted as the estimate of 0(m . Otherwise, according
whether iA Qo(a) is positive or negative, the interpolation is
repeated over the intervals [a, *a~] or Q<e , t] respectively.

3.3. Comparisons of the different methods and

general considerations on errors

The least squares method can lead to very important errors
when used with too many noise-affected signals or too short
samples. These samples have to be long enough to allow the

assumption that the noise is a zero-mean process and to be
short enough so as we are able to assume that the time-
dependent parameters are constant,

For the pitch equation, one has to differentiate the mea-
sured signal 9 to get the pitch acceleration, and the effects
of noise are increased. The integrated least squares have
been used to avoid this problem but they need a good know-
ledge of the initial conditions. Otherwise, one can get a good
identity of the measured signal and the calculated signal,
but with coefficients which have no physical signification.
More important errors on the values of parameters have been
noted for integrated least squares than for ordinary least
squares.

Filtering eliminates part of the information in the useful
signal so that the parameter space is modified. The elimina-
tion of a high frequency noise by parallel filtering will unsen-

sitize terms of the highest degree of the transfer function,
and slows down their identification.

The modulating functions method avoids the determination
of the initial conditions but have to be adapted to each sort
of excitation (step, random signals, ......) to keep all informa-
tions contained in the signal, without introducing perturbations.

The method which seems to be the best fitted to the problem
is the conjugate gradients method because it allows one to

build very stressing cost functions, either linear or not, and it
converges rapidly enough. But the disturbances generated by
noise always exist because noise modify the eqiii-cost sur-
faces of the parameter space. The method converges then
towards a new minimum as shown on figure 11.

The embarrassing noise for identification is made up by
the secondary inputs of the system (gust for instance) which
appear at the output as a correlated noise. It is then possible
to modify the model so that it becomes adapted to the system.

But noise is not the only cause of error that influences

the identification. One may consider two other causes :

. errors due to the assumption of linearity,

. errors due to the approximation of a continuous system by
a discrete system.

These errors have an impact on :

. characterization step for the first case,

, sampling rate, the choice of which is difficult . One has
to respect the Shannon condition, but the cut-off frequen-
cy of a signal in often not derived, and the highest

sampling rate compatible with the measurement system
is used.

But che requirements which one wants to have on the qua-
lities of a model depend on what one looks for. It should be
noted that parameters which are well excited by the input
signal can be well identified whatever the method may be.

There are inputs which are called "sphericiting" (cf, ref. 1)
that divid the information amongst all parameters and "sensi-
tizing" inputs which focus it onto a given parameter.

As Rault (see ref. 1), we will state that there is more to

win with the determination of "sensitizing" input signals then

with the amelioration of identification methods. A low noise
on a little significant trial can bring a much more important
error then a noise with a high amplitude applied on a very
significant test.

4. CONCLUSION

Identification is a unavoidable step in the conception of
CCV systems. The experience collected by using these well
known methods incites us on the one hand to investigate

possible new methods and on the other hand to extend identi-
fication to flexible structures with a view to apply to them
mode control processes.
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Fig. 1 - Diagram identification procedure.

Fig. 2 • Diagram of the weighting least squares

Fig. 3 - Automatic analog matching diagram for the lift equation.

F/g. 4 ' Automatic analog matching diagram for the pitch equation.
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Fig. 5 • Amplitude Bode's diagram for the lift-equation.
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Fig. 6 • Amplitude Bode's diagram for the pitch-equation.
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ABSTRACT

This paper presents some recent results on the design of aircraft Inputs (i.e. elevator, rudder and
aeleron deflection time histories) to identify aircraft stability and control derivatives from flight
test data. The problem is first reduced to an optimization problem with differential and integral con-
straints. The criteria used are either expressed in terms of the Cramer-Rao lower bound on the covariance
matrix of the parameter estimates or in terms of the maximum prediction error variance. , Both time-domain
and frequency domain synthesis procedures are discussed. Numerical results are given for linearized
longitudinal and lateral dynamics of C-8 and Jet Star aircrafts and comparison with doublet type inputs are
made. Outstanding problems and areas for futher research are also discussed.

1. Introduction and Background

The determination of aircraft stability and control derivatives involves three interrelated problems
of input design, instrumentation and derivate extraction. The importance of choosing appropriate inputs
(i.e., control surface deflections) for exciting specific modes of an aircraft or executing specific
maneuvers during flight testing has been recognized for a long time, but a systematic attempt has only
been made recently [1]. Several considerations which enter into the selection of inputs for an aircraft
are:

1. Pilot Acceptability - The inputs should be capable of being implemented easily by a pilot and the
resulting response of the aircraft should not endanger pilot safety.

2. Parameter Sensitivity - The measured response of the aircraft should be sensitive to the parameters
that are being identified. This is necessary for obtaining good estimates of the parameters from
the flightiest data during the inverse computation or the identification process.

3. Instrumentation Limitations - The dynamic range of the instruments and their signal-to-noise
characteristics impose limitations on the types and magnitudes of aircraft maneuvers. The relation-
ship between input design and instrumentation specification has been emphasized in Ref. [2].

4. Derivative Extraction Method - In the past, the choice of control inputs has often been dictated
by the desire to use a particular method for derivative extraction. For example, sinusoidal inputs
were used initially to obtain the transfer function of an aircraft at specified frequencies[3].
However, it was soon realized that this was very expensive in terms of the total flight test time
required to obtain the aircraft stability and control derivatives. [3] Next, the step and the
doublet type of inputs were used and specialized methods such as Prony's Method[4] and the Time
Vector Method[5] were devised to extract derivatives. With the more powerful digital techniques
available today such as the Newton-Raphson[6, 35] and the Maximum Likelihood Methods[7], arbitrary inputs
can be handled and it is no longer necessary to limit the inputs for the succsss of the derivative
extraction method.

5. Modeling Assumptions - The six-degree-of-freedom equations of motion and the nonlinear aerodyanamic
model for an aircraft contain a large number of parameters (over 200). The simultaneous estimation
of all these parameters from a single maneuver is not attempted since this would lead to nonunique-
ness and Identifibility problems. Generally, linearized decoupled equations of motion are used for
the extraction of longitudinal and lateral stability and control derivatives. The inputs selected
for exciting these modes should be such that the assumptions of linearity and decoupling are not
violated. The inputs currently in use are mostly of the doublet type. The resulting aircraft
response in an impulse-type of response about a given trim condition. Generally no attempt is made
to optimize the frequency, the shape, or the timing of the impulses in order to make the aircraft
response sensitive to the parameters that are being identified.

6. Use of Stability and Control Derivatives - The accuracy requirements for stability and control
derivatives are dictated by their final use in response prediction, control system design, wind
tunnel correlations, etc. The relative importance of the parameters may vary from one use to the
other, thus changing the requirements for parameter accuracies. It is desirable to select those
inputs that are optimal with respect to different criteria rather than just one criterion function.
The importance of these considerations will be brought out in the next section where different
criteria would be examined.

_ _

The research reported in this paper was made possible through support extended to Systems Control, Inc.
by NASA under Contract NAS 4-2068 and to the Division of Engineering and Applied Physics, Harvard
University, by the U.S. Office of Naval Research under the Joint Services Electronics Program under
Contract N00014-67-A-0298-0006. -
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We now give a brief historical account of input design for aircraft parameter identification.
The first systematic attempt seems to be that of Gerlach [8, 9], who using intuitive arguments
selected inputs for damped second order systems. Gerlach's analysis is based on the frequency tranfer
function of the system and its sensitivity to frequency and to the parameter values. For identifying
three parameters of the system Gerlach selects two frequencies in the ratio of 1:3 bracketting the
natural frequency of the system. No attempt is made to allocate energy optimally between the two
frequencies, but a low pass (sin wt/wt) filter is used to eliminate high frequencies from the input
signal. These inputs were used by Gerlach[9] in nonsteady flight testing. A comparison of these
Inputs with the optimal inputs discuss in section 5 reveals the soundness of Gerlach1s Intuitive
arguments.

Our interest in input design strated with some simulation experience with X-22 data [7] where
a multistep elevator input was found to give an order of magnitude better estimates of the parameters
than a single step input. A mathematical statement of the problem starting initially with a scalar
parameter showed that the input design problem could be formulated as a linear quadratic control
problem of the maximization type [1]. The solutions to this problem were found to be related to the
Sturm-Liouville problem and to the eigenvalue problem for Fredholm Integral equations [1], The extension
tomultiparameter problem turned out to be much more complicated than originally expected since a
large number of criteria based on different norms of the Fisher Information Matrix can be Used. Only
the simple and weighted traces of the information matrix could be handled by straightforward extensions
and their appliability to aircraft parameter identification was discussed in Ref. [10], where the
importance of choosing the weighting matrix properly was emphasized. The trace of the Cramer-Rao lower
bound was used by Nahi [11], Goodwin [12] and Reid [13], but only locally optimal numerical results
were obtained using gradient-type methods. A more satisfactory approach to the problem was needed and
a first hint of such an approach came from Viort [14] and Mehra [15], who formulated the input design
problem in the frequency domain and used the important work of Kiefer and Wolfowitz [16, 17, 18] in
statistical experimental design. This approach has now been extended to time-domain input design for
a large class of systems [19, 20] and will be the subject of subsequent sections of this paper.
Recently, Chen [21] has given a formulation of the input design problem as a time-optimal control problem,
but the optimal solution to this problem suffers from the same numerical difficulties as faced earlier
by Nahi [12] and Goodwin [13]. An approximate solution given by Chen [21] using Walsh function expansions
lacks optimality properties.

We digress at this point to present basic ideas of the Kiefer-Wolfowitz [16, 17, 18] approach to
experimental design in'regression problems. In the sequel, we will show how these results extend to the
design of inputs for dynamic systems, both in frequency and time-domain. Consider the problem of choosing
values of the independent variables x from a given set X, in fitting a regression model between y and x
of the following type

y = fT(x)9 + v (1)

2 3
where f(x) is an mxl vector of regression functions (e.g., x, x , x , ..., in polynominal regression), 9

2
is mxl vector of unknown regression coefficients and v^is a random error with zero mean and variance a .
The covariance matrix of the least squares estimator 9 is M~l where M, the information matrix, is given by

—ija J5i
f(x)fT(x)£(dx) (2)

and ?(dx) is a probability measure defined over the set X. If N values of x are used in regression, then
NC(dx) represents the fraction of measurements made between x and x + dx. Kiefer and Wolfowitz [17] show
that the probability measure ?(dx) can be chosen to be purely discrete, i.e., nonzero for a finite number
of x values. In other words, the optimal design can be chosen to be of the form

5*00 - {5r *x; 52, x2; ...; 5fc. V ̂  5± = l>

which concentrates NC, measurements at x , N£ at x and so on. Furthermore, the optimal design £*(x) is

such that if it minimizes |M |, then it also minimizes the maximum response prediction error variance,
viz.

max {fT(x)M~1(?)f(x)}.
xeX

T ^
The quantity in brackets can be easily seen to be the variance of y = f (x)9 for a given x. Karlin and
Studden [22] give a game-theoretic interpretation of these results and Fedorov [23] discusses a number
of interesting examples and applications.

The organization of this paper is as follows. In section 2, we formulate the input design problem
mathematicallly and discuss several criteria for optimization. The solution procedures are described
in section 3 and analytical examples are discussed in section 4. Numerical results are discussed in
section 5. The last two sections (6 and 7) are devoted to the discussion of outstanding problems and
conclusions.

The inverse of the Fisher Information Matrix is the Cramer-Rao lower bound on the covariance of an unbiased
estimator of the parameters.
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2. Statement of the Problem

Consider the linearized equations of motion of an aircraft in state vector form

-£ x(t) = Fx(t) + Gu(t) (3)

y(t) = Hx(t) + v(t), 0 <. t £ T (4)

x(0) = 0

where x(t) is nxl state vector of position and velocity variables (both linear and angular), u(t) is qxl
vector of input variables (elevator, rudder, aelerons, etc.), y(t) is pxl vector of output measurements
(angles, velocities, and accelerations, etc.) and v(t) is a pxl vector of random measurement errors.
The matrices F,G and H contain stability and control derivatives and all other unknown parameters. The
errors v(t) are assumed to be gaussian and white viz

E[v(t)] = 0, E[v(t)vT(T)] = R6
t,T

The unknown but constant parameters in F, G, H and R are denoted by 9 (mxl vector}. We estimate
9 from the knowledge of (y(t), u(t), 0 <_ t <_ T} using an unbiased efficient estimator 9 with covariance

M , where M is the Fisher information matrix [23]. It is required to select a design for input

u(t) e S2u such that a suitable criterion function related to the objectives of the identification

experiment is optimized.

2.1 Input Design Criteria

Aircraft estimation is done for one or more of the following objectives: (a) accurate determination
of stability and control derivatives for wind-tunnel correlations and for use in simulators, (b) response
prediction, (c) flight control system design, (d) handling qualities and aircraft certification.

Very often, the results of an identification experiment are used for all of the above objectives,
but for input design purposes, a single criterion is to be chosen. Since control system design and
handling qualities involve further considerations, we would mainly be concerned here with criteria (a)
and (b) which will be called, respectively, the Parameter Space and Prediction Error criteria. It
will be shown that one may obtain designs that are simultaneously optimal for these two criteria.

Parameter Space Criteria

The goodness of parameter estimates is most coveniently expressed in items of the bias and the
covariance properties of the estimates. For input design purposes, one assumes that an unbiased and
efficient (e.g. maximum likelihood [7]) estimator is used so that the optimal input design can be
carried out independent of the estimator used. This leads to a great simplification since the minimum
variance given by the Cramer-Rao lower bound can be easily computed in a number of estimation problems,
even though the exact covariance matrix of a particular estimator is very difficult to obtain.

Most of the work in input design is based on the assumption of an a priori estimate 9- for the

parameters 9. In aircraft input design, such an estimate is available from wind-tunned tests. The
Cramer-Rao lower bound, M~l, for the covariance of an unbiased estimator 9 is given as

log P(Y.9).T*r\ '

where Y denotes the set of observations (y(t), 0 <_ t <_ T} and the expectation in (5) is taken over
he sample space Sl^ of observations . An expression for M will be derived in the next section, but

consider first various scalar measures of performance based on M and M .

(1) A-optimality: Miriy _ Tr(M ), i.e., minimize the average variance of the parameters.iriy _

(ii) E-optimality: Min X (M~ ) where X is the maximum eigenvalue of M"1.u ~ max max
Eiiy

(iii) D-optimality: Minimize the determinant or the generalized variance |M" j . This is equivalent to
minimizing t:he volume of the uncertainty ellipsoids since

Also, log |M I is related to the mutual information between 9 and Y, as shown by Arimoto and Kimura [25],

If the a priori estimate 9Q is regarded as random with a priori probability distribution, Eq. (5) would

also involve expectations with respect to this probability distribution. For details, see Ref. [24].
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An important advantage of D-optimality is that it is invariant under scale changes in the para-
meters and linear transformations of the output [15], whereas A-optimality and E-optimality are
effected by these transformations. Another advantage of D-optimality. to be shown later, is that
it implies, (roptlmality. a prediction error criterion discussed below. Figure 1 shows the above
criterion in two dimensions.

It is possible to imbed criteria (i)-(iii) in a more general measure of matrix norm used by
Muller and Weber [26].

[1/m'Tr Ms]1/s, s < 0 (7)

It can be shown that

llmm
8-K)

,1/m
8

-1
m . = m/Tr M

lim m = X (M)
s mln

(8)

(9)

(10)

m > m8 ~ 8 if 8l-82 (ID

Remark; Aoki and Staley [27], Mehra [1], Nahi and Napjus [28], and many other authors have used
Tr(M) or Tr(WM) as a criterion. This criterion leads to a quadratic optimization problem which is
easy to solve. But it can result in a singular M and should be used only to obtain start-up inputs for
optimizing with respect to one of the above criteria.

Information Matrix: In this section, we derive an expression for the Fisher Information Matrix M using
Eq. (5). The log-likelihood function for the system (3)-(4) is

L(9">-iC (y(t)-H(9)x(t,9))V1(y(t)-H(9)x(t,9))dt - log |R| + constant (12)

Taking partial derivatives with respect to elements of 9 and R,

rT
(y(t) - H(9)x(t,9))IR"J'(fl

3"j

_3L
39

L [T

j J0
(y(t) - H(9)x(t,9))V1(|i- x(t,9) + H(9) (13)

^e;} - f0
 (l^ x(t' e) + H(9) x( t>9) + H(e) (14)

32

"3r̂ TT = fk)i8j Jo
(y(t) - H(9)x(t ,9))TR 1 - x(t ,9) + H(9)

ej j
(15)

(16)

Thus the information matrix for 9 and R may be written as

M =

M,'99 0

"RR

(17)

where the i, jth element of M-- Is given by Eq. (14) and M^ does not depend on the input u(t).

Therefore, from now on, we will denote Mfl,, by M and remove M from futher consideration.

The sensitivity function equations are easily obtained from Eq. (3) and (4) as

_d ,.3x(t).
dt 139 ' If (18)

39 = 0 (19)
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Prediction Error Criterion

Let us assume that after the maximum likelihood parameter estimate 9 has been obtained, it is
required to predict the response of the aircraft to a given input {u (t) , 0 £ t _< T}. Using the

equations of motion with 9, we obtain the maximum likelihood prediction as

y(t, U , 9) = Hx(t, U , i) (20)

The prediction error

e(t, up) = y(t, up, 9) - y(t, up, 9) = H(9)x(t, u , 9) - H(9)x(t, u , 9) + v(t) (21)

Expanding H(9) and x(t, u , 9) to first order around 9 and neglecting higher order terms in (9-9),
we get

e(t, Up) = g- {H(9)x(t, up, 9)}Q=g (9-6) + v(t)

The covariance of prediction error is, therefore,

(22)

E(e(t, up)e
T(t, Up)} = ̂| {H(9)x(t, up, g {H(9)x(t, up, (23)

Denote by

fT T -1J(u> u ) - E{e (t, u )R e(t, u )}dt, the normalized total mean square prediction
v 1 Q P P

error for input {u (t) , 0 < t < T}.
P ~ -

Using Eq. (23)

J(u, u ) = Tr{M~1(u)M(u )} + T (24)

Notice u is the design Input employed during parameter estimation and u is the input used for response

evaluation. We now define the input design criterion as a minimax criterion in which u E £2 is chosen

to minimize the maximum prediction error i.e.

J(u) = max J(u, u )
u e« p

P U

(25)

It is clear that for input design purposes only the quantity Tr{M~ (u)M(u ') } is important. In the next

section, we show that the prediction error criterion (also called G-optimality) and the determinant
criterion (D-optimality) lead to similar input designs.

3. Optimal Input Designs

In this section, three methods for input design are considered. The first method produces non-
randomized or deterministic time-domain inputs maximizing locally a norm m (see Eq. (7)-(ll)) of the

S

information matrix M. The second method considers a larger class of inputs viz. randomized or
stochastic time-domain inputs and produces globally optimal inputs with respect to the above criteria.
The third technique synthesizes frequency domain inputs for the stationary case and is computationally
much more efficient than the time-domain techniques,

We first express the information matrix M (Eq. 14) in terms of u(t) alone using Eqs. (3), (18), and
(19). It is convenient to use the transition matrix f(t,T) defined as

- $(t,T) = F $(t,T) (26)

f(T,T) = I

Then x(t) = 4>(t,t)Gu(T)dT
fT

4>(t,t)Gu(
J0

(27)

(28)

[H~ *<t,T) u(T)].dT A±(t,T)u(T)dT (29)
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Thus

f ft -r j\u •». ft ~H

M,, = {[ u (T)(|S- *(t,T)G + HA.(t ,T))H]R~ £[ (-jf-
IJ J 0 J0

 dB
± i JO 3 j

Eq. (30) may be simplified to

where

fT fT T
M,, = u (T)W (T,s)u(s)dtds

3 J0 J0 3

W±J(T,S) = {

. $(t,s)G + HA.(t ,s))u(s)ds]}dt (30)

(31)

(qxq matrix)

rTI

J
max(T,s)

»p -i jitt
$(t,T)G + HA±(t,T)dT] V [||- t(t,s)G (t,s) ]dt (32)

In the sequel, we will be concerned with the eigenvalues and eigenf unctions of kernels related to
W^. (T,S). In particular, we would consider the kernel

m
N(T,S) = I Pij\j(T,8) (33)

(qxq matrix) i,j=l

k-1 k-1where p denotes the (i,j)th element of the matrix M and k is a nonpositive integer (k<0) . The

eigenfunctioris (qxl) and eigenvalues of N(T,S) are defined by the Fredholm integral equation,

TrT
I N(T,8)7T1(T)dT = 5(8),

The kernel N(t ,s) is symmetric since

NT(s,T) (s.T)

1-1,2, ...

(T.s) = N(T,s)

(34)

(35)

Thus all the eigenvalues ̂  , £ , ... of Eq. (34) are real and the corresponding normalized eigenfunctions

TT ,Tr , ... are an orthogonal and complete set. We may thus expand any function u(t) in terms of the

above eigenfunctions as

u(t) = I cxir.(t)
1=1 1 1

(36)

where

and

, TT1(y)> = j u1(t)TT±(t)dt

i=l

LEMMA 1: The maximum eigenvalue £ of the homogeneous Fredholm integral equation

fT

(37)

/•T m
[ I pVf \ , (T , s ) ]Tr (T)dT

J O i,j=l 1J 1J
(38)

subject to

f.'
Jo

(t)TT(t)dt = 1

satisfies the inequality

C > TrfM*1]max — l J

Proof: Consider

Tr[Mk] = TrfM11'1

(39)

(40)

fT m!l f1 S k-1 T
Tr{( I p , ,V, (T,s ) )u(T)u(s )}dTds

J 0 J 0 i,j=l 1J 1J
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Using Eqs. (36) and (37)

T ' >T <»
T S T T = .

k k max

k fT ' >T <» m oo
Tr[>f] = Tr J J P^V, (T,S)TT (T)^(s)a a dids = I o?5 . < 5 (From Eq. (37))

J 0 Jo k,fc=l i,j-l ij ij k * k * k=l

The equality is attained when u(s) = ir(s), the eigenfunction corresponding to £

We now prove the main theorem for the design of time-domain nonrandomlzed inputs.

3.1 Time Domain Nonrandomized Inputs:

Theorem 1: A set of necessary conditions for an input (u*(t), t e [0,T]} to maximize nL , k <_ 0 locally
*

subject to the constraint u(t)u(t)dt _< 1 are
'0

f1
(i) u*(t)u*(t)dt = 1 (41)

J0

(ii) u*(.) minimizes the maximum eigenvalue £ of the nonlinear homogenous Fredholm integral equation

N(T,s;u)u(T)dT = ?u(s) (42)
J0

where N(T,S;U) = I p (u)W (T,S) is a symmetric kernel and p ~ is the (i,j)th element ofM ~

(ill) £max(N(T,s;u*)) = Tr[M
k(u*)] (43)

(iv) u*(.) is an eigenfunction of Eq. (42) corresponding to £
max

Proof: (i) follows easily from the fact that M is scaled by a when the norm of u is scaled by a. Thus
the maximum m, is attained for maximum norm of u(.) i.e. Eq. (41).

We now define the Lagrangian function
/•I

L(u,X) = m (u) - X[ u (t)u(t)dt-l] (44)
k J0

where X > 0 is an unknown scalar Lagrange multiplier. A set of necessary conditions for u* to be a local
maximum are that L(u,X) be stationary at u* and L(u*,X) be minimized with respect to X.

We use a calculus of variations approach to derive the stationarlty condition for L(u,X). Consider
an admissible variation 6u in u and define the change in L to first order in 6u as,

6L = L(u+6u,X) - L(u,X) = i-j- tr(Mk(u+6u) - Mk(u)) - 2X | u
T(t)6u(t)dt (45)

kmnL J 0

Now to first order in 6u,

M (u+6u) = Tr I W, , (T,s ) [u(T)u T (s ) + u(T)6uT(s) + 6u(T)uT(s) + 6u(T)6uT(s)]d.TJs
3 >0 J 0 3

fT
M (u) + [D (T) + D (T)]6u(T)d (46)

^•J J 0

where
fTf1 T

D (T) = u ( s ) W (T.s)ds (47)
13 J 0 J

fT T fT T T
u1(s)W (T.s)ds = u ( s ) W . i . ( s , T ) d s (48)

J 0 Ji J0 ij
D., (T)

Define an mxm matrix 6W with elements
fT

(SW)^ = [D
1;j(

T) + D J 1 (T)]6u(T)d (49)

Then M(u+6u) = M(u) + 6W (50)

tr[Mk(u+6u) - Mk(u)] = ktr[Mk"16W] (51)
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From Eq. (45),

6L jpr- tr(Mk 16W) - 2X f uT( t)6u(t)dt = 2 f [—i-y f pk/D (T) - Xu T ( f ) ]6u(T)dT
mm*'1 io Jo mm*'1 i,j=l ±3 lj

(52)

For optimality 6L should be zero for all admissible variations 6u from the optimum u*, which implies

I pk:V.(T) =<n.mk-1Xu*T(T), V T e [O.T] (53)
1,3=1 1J 1J k

Substituting for D (T) from Eq. (47)

pkTV,(T,s)ds = mmk"1Xu*T(T)

•T m , _ v i *
I P ~V,(s,T)u*(s)ds = mmr1Xu (T) (54)

0 i,j=l 1J 1J k

which is the same as Eq. (42) with

5 = mm^~1X (55)

Now we maximize L(u*,X) over X. To evaluate X, premultiply Eq. (54) on both sides by u*T(x) and
integrate over T from 0 to T. This gives, using Eq. (41)

(56)
mm,
k

or L(u*,X) = X (57)

We thus choose the smallest X that satisfies Eq. (54). Since, in this case, E, = mX and k £ 0, this
implies choosing the maximum eigenvalue ? for determining u*. Also 5 - tr(Mk) which from Lemma 1

inflX I

is the smallest value of E. . From this, theorem 1 follow immediately.
IQclX

Remark: Consider the prediction error criterion J(u,u ) = Tr{M~ (u)M(u )}, which is maximized with respect
to Up, and minimized with respect to u both being constrained to be of unit norm. It is easily seen that

m fT fT
J(u,u ) = I p (u)M (u ) = u (T)N (u,T,s)u (s)dTds (58)

m
where N (U,T,S) = £ Pj.(u)W (T,S)

° 1,3=1 ±J 1J

Thus, Max J(u,u ) = £ (N (u,T,s)) (59)
p max o

The optimal input u(.) minimizing £ &x(N ) is, therefore, the same as the input u*(.) maximizing

m = |M(U)| . Thus the, G-optimal and D-optimal inputs are the same. Furthermore,

?max(No(u*,T,s)) = Tr[I] = m

Algorithm 1: The input u*(t) maximizing |M(u)| may be computed as follows.

(a) Start ̂ with any input u such that M(u ) is nonsingular. Let k=0.

m
(b) Compute N(u ,T,S) = £ p (Uv)wi1(

T>s)» and find its maximum eigenvalue - eigenvector (normalized)

k k k k k
pair (E, , TT ) such that <u, , IT > > 0. A method for computing (? , IT ) using Riccatimax max k max — r e -••'max' max
Equation is given in Ref. [1].

(c) If C = m, stop. Otherwise go to (d).
fflciX

(d) Le tu k + 1 = [ U - B ^ + B i r ^ l / l l u ^ l l (60)
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Choose B by a one-dimensional search to maximize |M(u. . •, ) | or any other B e (0; 1] to ensure

that [M(U. +.) I 21 |M(U.)|. This can always be done away from the optimum since

3B l08 IM<VI>|B-O • 2(4x-n) <uk> \ax>

(e) Go back to (b).
oo

In general, if the B, -sequence is such that V B. = °° and lira B. =0, the above iteration
k k=0 k t~° k

would converge to a local maximum of |M(u) | .

3.2 Time Domain Randomized Inputs

If the identification experiment is repeated several times, we may do better by changing inputs .
according to some probability law. The design problem, then, is to choose the probability distribution
function, f (u) so as to maximize the randomized information matrix

M(f) = f M(u)f(du) (62)
Jflu

It is shown in Ref. [19] that only discrete distribution functions with at most n = m(m+l)/2

points need be considered so that
nu n

M(f) = I M(u )f ,
1=1

An input design consists of {f , u , 1=1, n }

Since M(f) is linear in fj's, the determinant |M(f) | will be a concave function of f 's. Thus the

Kuhn-Tucker theorem gives necessary and sufficient conditions for a global maximum. The following result
Is proved in Ref. [19].

Theorem 2: The following are equivalent

(i) f* maximizes |M(f)|

(ii) f* minimizes max Tr{M~1(f)M(u )}
u efi p
p u

(ill) max Tr{M~1(f*)M(u ) } = HI. (63)
u efi p
p u

All designs satisfying (i) - (ill) and their linear combinations have the same information matrix M(f*).

Remarks : In general |M(f*) | _> |M(u*) | , with equality in those cases where f* consists of only one
point i.e. f*(u*) = 1. Thus, Randomized inputs may be used to obtain lower bounds and approximations to
u*.

3.3 Frequency-Domain Synthesis of Optimal Inputs

If the system described by Eqs. (3)-(4) is (i) stable and time-invariant, (ii) data length T is
large* and (iii) the noise processes are stationary, one may compute the optimal inputs much more
efficiently by using frequency-domain techniques. The basic simplifications comes from three facts:
a) The Fourier transformation is an orthogonalizing transformation in the sense that the Fourier series
components of a stationary process are orthogonal to each other. Alternatively, the Fourier transforma-
tion diagonalizes the covariance matrix of a stationary process, b) The set of all stationary inputs
is characterized by the q x q spectral density matrix S (u) with the frequency variable U) e ( - co,00)

This should be contrasted with the time domain representation of U as a vector in n cTR. q. c) The

optimal input can be chosen to be nonrandomized or deterministic in the stationary case (see Theorem 4) .

We now state the relevant results for frequency domain synthesis of optimal inputs. For proofs
of these results, see Refs. [15, 29].

THEOREM 3: The asymptotic per sample Fisher information matrix (mxm) for parameter set 9 of the
system (3) -(4) has the elements

Lim M±J = My = Re TrCB (uOdFu) ) (64)

where Re denotes real part, F (u>) is the spectral distribution function of u(t) and

In practice, it has been found that data lengths more than three times the largest time-period are
adequate for using the frequency domain method. (See Section 5.1.2.)



12-10

3T*(u) -1 3T(o))
ijv ' 39t vv 39.

(* denotes complex conjugate and transpose)

T(to) = H((DI - t)"̂  (66)

S (a)) is the spectral density of measurement noise v(t).

THEOREM 4: (i) The information matrix M Is a real, symmetric, nonnegative definite matrix,

(ii) The set of information matrices M corresponding to all normalized designs (I.e.,

l/2ir Tr dF (to) = 1) is convex and closed.

(ill) For any normalized input design F. with mixed spectrum, another design F with a purely point

spectrum of less than [m(m+l)/2+l] points can be found such that M(F ) = M(F ).

Comment: 1) Noice that in the frequency domain, the role of the probability measure f is played
by the spectral density function. Part (iii) of Theorem 4 implies that a suitably chosen deterministic
input will provide as much information as a stochastic input in the stationary case. We will therefore
restrict the search for an optimal input to that containing a finite number of frequencies.

D-optimal design in frequency domain: We now maximize |H| with respect to {F (u), 0) e(-co,<x>)}

subject to the constraint

i-E dF (to) £ 1 (67)
—CD

^The optimal input spectrum F will be shown to have the following characteristics.

THEOREM 5: For the optimal input spectrum

-£ Tr I dFuu(W) = 1

and the following are equivalent

(i) F maximizes |M|

(ii) F minimizes max X [Re T .̂(F )BJ.(u)]v uu max 4 i i 1J uu 13w i,j=i

where "p"., is the (i,j)th element of M and X is the maximum eigenvalue of qxq matrix inside theIj max
parentheses.

m
(iii) max X [Re T T, . (F )BJJ(oo)] = m (68)

max , 7 , i j uu ijto i,j=l J J

The information matrices of all normalized designs satisfying conditions (i)-(ili) are identical
and any linear combination of these designs also satisfy (i)-(iii).

Algorithm 2: (a) Start with any design F. such that M(F ) is nonsingular. Let k = 0.

m
(b) Compute Dfc = Re I ~p (Fk)

B
±j (<")

and find its maximum eigenvalue X (to). Find to e (-00,00) by a one dimensional search so that

Xk (to, ) > X (to) (69)
maxv k — max

Also compute the eigenvector 1(1

<C) If Xmax(V = m - (70)

stop. Otherwise proceed to (d).

In most of the practical problems the search foru can be confined to a set of reasonable frequency

values, e.g. [-to ,to ].m m
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(d) Update the design as follows:

Fk+l = (1-\)Fk + V'V (71)

where F(u ) is a design with a single point at u = to of size ipk (i|)k )T. Choose 0 < a < 1 either
K. max max k —

by a one-dimensional search or any sequence such that

k^ I..KI r
.̂ IM I. / a. = «, . lim a.

(e) Go back to (b) . k=0

(72)

Remarks : 1) A comparison of the above algorithm with the corresponding time-domain algorithm 1
reveals its appealing computational simplicity. In the single-input case, the search for the computa-
tional simplicity. In the single-input case, the search for the maximum in step b) is a one-dimensional
search over the range [-<%, (%]. In the multi-input case, eigenvalues and eigenvectors of only a qxq matrix
have to be computed. The time-domain approach, on the other hand, requires computation of eigenvectors
and eigenvalues of Nq x Nq matrices.

2) The D-optimal frequency domain synthesis problem has a simple game- theoretic interpretation.
The nature (maxlmizer) picks the frequency u and eigenvector direction i|j and the designer picks the

input spectrum. The payoff function is a scalar norm of the transfer function covariance matrix.

3) It is not necessary to use sinusoidal inputs to achieve the desired spectrum. Van der Bos [30]
shows how a desired spectrum may be achieved using binary valued periodic inputs and Papoulis [31]
shows how it may be obtained using the Arcsine law.

4. Analytical Examples

In this section, we discuss a few selected analytical examples to indicate the general nature of
the results.

4.1 First Order Systems with Unknown Gain ([32], [1])

Consider a scalar system

x(t) = -x(t) + 9u(t) (73)

with measurements

y(t) = x(t) + v(t) t e [O.T] (74)

where v(t) is stationary exponentially correlated noise

E[v(t)v(T)] = ce'*̂ '1' ' (75)

Using results from Section 3, the optimal input for estimating 9 is:

u*(t) = A sin (tot + <j>) (76)

where

<f> = tan to (77)

and to is a root of the transcendental equation

tan(toT + 4>) = to/a - (78)

The frequency to is chosen to maximize the eigenvalue X of the Fredholm Eq. (42), which can be shown to be

1 a2 - 1
X = 2a7 [1 + ~~2] (79)

1 + to

It can be seen that for wide-band noise (a > 1), the maximum of X is attained by the smallest to that
satisfies (78). On the other hand, if the noise is narrow band (a2 < 1), the maximum of X is achieved
for the highest possible frequency to. Thus the system is excited at those frequencies where highest
signal to noise ratio at the output is obtained.

4.2 Second Order System with Unknown Frequency [20]

x + x + 9x = u (80)

y = x + v (81)

Assume 9 _> 1/4 so that the system is oscillatory. Using results of Theorems 4 and 5, it can be shown
that the optimal input for the asymptotic or steady state case is a sinusoid at frequency to* where



12-12

GO* =

- 1/2 9 > 1/2

1/4 < 9 < 1/2

(Low damping)

(High damping)

(82)

5. Numerical Results

This section presents optimal elevator input to identify parameters in the short period mode and
the rudder and aeleron inputs to estimate stability and control derivatives in the lateral motions of
the aircraft. The input signals are designed for the planned flight test duration, using available
instruments and their accuracies and the best a priori estimates of unknown parameter values. Both
time domain and frequencies domain techniques are used.

. Aircraft motions are simulated to evaluate the optimal inputs relative to conventional inputs and
are tested under a variety of off-design parameter values. The accelerations and velocities are also
determined to ensure that the inputs are safe and implementable.

5.1 Longitudinal Systems

The longitudinal perturbation motions of a Buffalo C-8 aircraft about a steady trim condition obey
the following differential equations (units: meters, deg, sec).

(83)d
dt

u

9

q

a

~.02 -.171 .001 .179

0 0 1 0

.0984 0 -1.588 -.562

-.131 0 1 -.737
— — '

u

9

q

a

"o.o

0.0

-1.66

.005
L~

where

u Is forward speed,

9 is pitch angle,

q is pitch rate,

a is angle-of-attack, and

6 is stabilator deflection,
s

The poles of this system are at

to = -1.6 + .621 (short period mode) and to
sp — ph

-.0153 + .088j (phugoid mode)

The first pair of complex roots corresponds to the fast, highly damped, short period mode and the second
to the slow, weakly damped, phugoid mode.

It is assumed that there are five unknown parameters, all in the short period mode (underlined).
It is well known that the two state (pitch rate and angle-of-attack) model of an aircraft is a good
representation of the short period motion. This approximation is used to compute the optimal elevator
deflection time history. The equations of motion become

-1.588 -.562

-.737

-1.66

.005

(84)

The noisy measurements of q and a are

v
_ <*-

(85)

The measurement noise is assumed white. The root mean square errors in the measurements of q and o are
.70 deg sec" and 1.0 deg, respectively, and the sampling rate is 25 per second.

5.1.1 Time Domain Optimal Inputs

A doublet input, is used, conventionally, to identify the above five parameters. Starting from this
doublet, the input design program is used to determine the optimal input for a 6 sec long experiment
with 100 deg^ sec total input energy. The performance index is the trace of the dispersion matrix. The
input at the end of each interation step is shown in Figure 2. Fairly good convergence is obtained In
three steps. Table 1 shows the standard deviation in parameter estimates for each of these
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inputs. Also shown is the value of B which determines the component of new input added to the old
input (see Section 3, Algorithm 1).B was taken to be one if the decrease in Tr(D), D=M~1 was more
than 50%. It is clear from Table 1 that the optimal input gives much better parameter estimates
(e.g.,'smaller standard deviations) than the conventional doublet input.

Approximation to Optimal Input

The optimal input of Figure 2 is approximated by a sequence of four steps with the same total
energy. The approximated input is shown by the broken line in Figure 3. This input is used on the
two state, short period approximation of the longitudinal equations of motion (Equation (84). Table
2 compares parameter dispersions resulting from the optimal and the approximated (suboptimal) inputs.
Some parameters have better estimates while other have poorer estimates, with the average variance
increasing by about 13%.

Off-Design Parameter Values: Since the input design is based on some a priori parameter values (e.g.
wind tunnel values) it is important to study the effect of using these inputs for difference true para-
meter values When all five parameters in the short period model are increased by 50% of their initial
values, the result Is a system with a natural frequency of 1.86 rad/sec and a damping ratio of .94.
It is more difficult to identify parameters of this system with the same input energy because of
increased damping. Table 3 shows standard deviations of parameter estimates when the approximated
input is used on this system with off-design parameter values. There is an increase in estimation
errors from design conditions, but the approximated optimal input is still much better than the doublet.
Next, the parameters of the system are halved, reducing the natural frequency to .76 rad/sec and the
damping ration to .77. The parameters in this system are easier to identify, but still the approximated
input compares favorably with the conventional doublet input.

Fourth Order Model

The approximation to optimal inputs, obtained using the two state approximation, is simulated
on the fourt state longitudinal equations of motion (Equation (83)), with measurements of q and a
only. The measurement error and the sampling rate are the same as before. Table 4 is a comparison
of the standard deviations on estimates of C , C , C , C , and C with the assumption that

mq ma mS Za Z5s s
the remaing parameters in the system are known. The estimates predicted by the four state model are
slightly better than the estimates predicted by the two state model. This is because there is an
additional excitation of the short period mode from variations in forward speed.

Aircraft Response to Optimal and Conventional Inputs

It is necessary that the optimal inputs, designed for identification, neither produce excessive
accelerations for pilot and airframe safety nor involve large excursions in aircraft states for the
linearization assumptions to hold. The optimal elevator input of Figure 2 is used with the aircraft
model to determine the acceleration and state time histories. The variation of pitch rate, angle-
of-attack, vertical acceleration and pitch acceleration are shown in Figures 4a-4d. The peak
accelerations for the optimal input and the doublet are comparable. However, when the optimal input
is applied larger accelerations persist for a longer period of time. The optimal input results in
about the same pitch rate as the doublet but a higher variation in angle-of-attack. The pitch rate,
angle-of-attack and accelerations are however reasonable so that the optimal elevator Input is
implementable.

5.1.2 Frequency Domain Optimal Inputs

As metnioned in section 3, the frequency domain synthesis is computationally much more efficient
and produces globally optimal results in the stationary case. Its applicability to short time
periods is ^examined here. Furthermore, it provides a very good starting input for time-domain
synthesis.

Optimal elevator input spectrum is determined to identify five parameters, Z , M , M . Z. and
Ot 01 q 0

M^ in the short period, mode of the C-8 aircraft. The equations of motions and the set of available
e

measurement for this aircraft are as given below. Two criteria of optimality are used viz: (a)
(a) Min |D| and (b) Min Tr(D), where D=M~1. Now since there are five parameters and two outputs,
the minimum number of frequencies for a nondegenerate design is two and the maximum number of

frequencies required in an optimal design is -|-, i.e. fifteen (see Theorem 4).

To minimize the determinant of the dispersion matrix, the initial input is selected to have two
frequencies at 0 cps and at .125 cps with equal power. Figure 5 shows the spectrum of the elevator
deflection input after each iteration. Notice that during some iteration steps, the program puts
more power at already chosen frequencies. After eight iterations, the change in the determinant of
the dispersion matrix is less than .1% from the previous step. There is a total of seven frequencies

—
The standard deviation format of Table 1 is used through. These quantities are the square roots of
the diagonal elements of the Cramer-Rao lower bound and represent the lowest possible value of the
parameter estimate standard deviations which can be attained using an unbiased and efficient parameter
identification procedure. These lower bounds rather than parameter estimates based on individual runs
are a meaningful comparison of different inputs, a better input giving a smaller lower bound. The
nominal parameter values are given for reference. Computation of actual parameter variances requires
monte carlo runs and is found to agree closely with the lower bounds as shown in Ref. [10]. .
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in the final input spectrum.

This input has interesting characteristics. The spectrum is divided into two parts: A low
frequency input to identify gains and a high frequency input to identify natural frequency and
damping, etc. The higher frequency input occurs around the natural frequency, which is reasonable.
Table 5 shows the standard deviations (lower bound) on parameter estimates for an average 12 sec
long experiment when the system is is steady state and the energy in input is 200 deg2 sec. Also
shown are the trace and determinant of the information matrix and the trace of the dispersion matrix.
Next, the frequencies close to each other are lumped and ones with negligible power are dropped to
get the spectrum of Figure 6. The standard deviations on parameter estimates for this simplified
design in steady state for the same experiment duration and Input energy are also shown in Table 5.
There has been an improvement in the determinant of M and trace of D, showing the value of the
simplification.

The frequency domain inputs are designed with the assumption of steady state. If the flight
testing time is short, the aircraft does not reach a steady state. To find the true information
matrix for a 12 sec long test starting from zero initial conditions, a time domain input based on
the frequency spectrum and same average power is generated and is shown in Figure 7. This time
domain input is not unique since the initial phase relationship between the sinusoidal inputs is
arbitrary. Table 5 gives the parameter standard deviations and trace and determinant of information
and dispersion matrices when initial phases are chosen at random. The parameter standard deviations
deteriorate by 5% to 15%. A better result could be obtained by optimizing the initial phases.

Equivalent results with Tr(D) as the criterion are given in Ref. [20]. The difference ln input
spectrum is very small.

Effect of Data Length

If the system starts from zero initial conditions, the performance of an input of finite length is
poorer than predicted on the assumption of steady state. To determine the duration of the experiment
when this approximation becomes serious, time traces of elevator deflections 4 to 12 sec long are obtained
based on the simplified spectrum of the Tr(D) criterion. Each of these inputs is used with the state
and measurement equations and the resulting information and dispersion matrices are determined. Table 6
gives the ratio of standard deviations of parameter estlamtes for these finite inputs (with the system
starting from zero initial conditions) to the standard deviations in steady state (for the same
average input power and experiement duration). Trace and determinant of the information and dispersion
matrices are also compared using simulated data. The asymptotic value of these ratios for long
experiments is one. For experiments shorter than 8 sec, the deterioration is serious. The inputs are
good for experiments longer than 10 sec. This corresponds to above two cycles of the natural short
period mode.

Aircraft Response to the Frequency Domain Optimal Inputs

The root-mean-square (RMS) state deviations are computed for the frequency domain inputs. For an
average input power of 16.67 deg2, the RMS state values are shown in Table 7.

5.1.3 Comparison of Frequency Domain Inputs with Conventional and Optimal Time Domain Inputs

Table 8 shows a comparison of standard deviations on parameter estimates for the frequency domain
input, the optimal time domain input, and the doublet. The steady state frequency domain value is a
lower limit on Tr(D) for an input with 100 deg2 sec input energy In a 6 sec long flight test. The
time domain input is optimized for a 6 sec long experiment and gives 50% better result than the time
trace from the frequency domain input. Nevertheless, the input resulting from the frequency domain
approach is superior to a doublet. As mentioned earlier, this would be an excellent first pass at the
optimal input and is useful for starting the time domain program.

5.2 Inputs for the Lateral System

The equations of motion for lateral motions of one version of a Jet Star flying at 573.7 meters/sec,
at 6,096 meters are [33] (all In units of deg, sec.)

d
dt

"B"
Y

p
r

-.119

0

-4.43

__2i99

.0565

0

0

0

0

1

-.935

-.119

-1

0

.124

-.178
_.

B

Y

P
r

0

0

2.88

0.0

.0289

0

1.40

-1.55

.&
(86)

where B is sideslip angle, Y is roll angle, and p and r are roll and yaw rates, respectively. Aileron
and rudder are two control inputs. Noisy measurements of the four states B, <)>> P and r are available.

The noise in measurements is white and Gaussian with root-mean-square values of 1 deg (B) > -5 deg (<tO»
.71 deg sec (p) and .71 deg sec" (r).

The sampling rate is 25 per second. The poles of the system are at

-.0511 + 1.78 j (Dutch roll), -1.12 (Roll) and -.00667 (Spiral)

The inputs are designed to identify the parameters which predominantlylaffect the Dutch-roll mode
(underlined in Eq. (86)).



12-15

5.2.1 Rudder Input (Time-Domain)

The optimal rudder input to minimize the sum of variances of the five parameters is determined
and is shown in Figure 8. The duration of the simulated test is 8 sec. and the input energy is
100 deg2sec. The comparison of standard deviations on parameters resulting from the optimal input and
the doublet is given in Table 4. The optimal input results in better parameter estimates than the
doublet, based on comparing the standard deviations.

Simultaneous Rudder and Aileron Inputs

New simultaneous rudder and aileron inputs are designed to identify lateral parameters. The inputs
with combined energy of 100 deg2 sec are shown in Figure 9. The aileron input amplitude is very small.
The estimates resulting from this simultaneous input are presented in Table 9. There is a very small
improvement over the single rudder input case, as would be expected since the rudder input is much more
effective in estimating these five parameters than the aileron input. Larger aileron deflections can
be obtained by placing separate energy constraints on the aileron and the rudder.

5.2.2 Frequency Domain Lateral Inputs

The lateral system of Section 4.3 with unknown C , C. , C , C and C is used as the example
yB *B nB "r "6r

to determine the optimal rudder input spectrum to minimize the trace of the dispersion matrix. The
optimum input spectrum has two frequencies: at 0 cps with 12% of total input power and at .285 cps
with 88% of input power. The second frequency is very close to the natural frequency of the Dutch-
roll mode. Since the Dutch-roll mode for this aircraft has low damping, this input would produce
large state excursions in steady state. This occurs because there are no constraints on the state
variables.

Table 10 shows a comparison of standard deviations for this frequency domain input and the time
domain input for an 8 sec long simulated flight test. Because of low damping, the system is far from
steady state for the duration of the experiment. Standard deviations on parameter estimates predicted
on the assumption of steady state are too optimistic.

5.3 Considerations of Primary/Secondary Derivatives

In many aircraft identification problems of interest, it is necessary to obtain accurate estimate of
only a subset of all unknown parameters. The parameters whose estimates are required are called
primary and the remaining unknown parameters are called secondary. There Is no direct incentive to
obtain good estimates of the secondard parameters. The inputs should be designed such that the secondary
parameters are estimated only to the extent that they keep reduce uncertainty in primary parameters
resulting from errors in secondary parameters. The input design technique presented previously can
be used to determine control singals to identify only the primary parameter.

The Buffalo C-8 aircraft, whose equations of motion are given in Eq. (83) is used as an example.
It is assumed that the input is to be designed to provide the best estimate of C , while in addition

mq
to Ĉ  four other parameters, cz >

 Cj,j > cz • and c are also unknown. The starting Input is the optimal
q ot a 6 S

e e
input when all parameters are equally important. The input after one iteration is shown in Figure 10.
It looks quite similar to the input when all parameters are weighted equally. The standard deviations
of parameter estimates for these two inputs are compared In Table 11. The standard deviations of C

m
q

and Cm decrease by about 3% while those of other parameters increase. This shows that to get a good
6
s

estimate of C it is necessary to have a good estimate of C also. Since C is an important
m m» m
q 6s q

parameter in the system, even when all the parameters are to be identified, good estimate of C is obtained.
q

The considerations of primary and secondary parameters may be more useful when the two sets of parameters
affect different modes.

6. Outstanding Problems In Input Design for Stability and Control Testing

6.1 Nonlinear Dynamics and Aerodynamics

The input design technique presented in Section 3 uses linear perturbation equations of motion about
a trim condition. Substantial nonlinear aerodynamic effects are present, however, in the high angle-of-
attack flight regime for a conventional aircraft and in the transition regime for a vertical take-off
and landing aircraft. In addition, large angular motions, encountered in certain maneuvers, introduce
nonlinear dynamical effects. In such circumstances, a perturbation model is inadequate and the complete
nonlinear model must be considered for input design.

An initial attempt at Input design for the high angle-of-attack regime was made by Hall, Gupta,
and Smith [34]. Considerable further work is required before a practical technique is developed. A
general theoretical approach for solving this problem is given in Ref. [19]. It would probably be more
fruitful to restrict the class of inputs in such a way that the resulting input design is simplified.
For example, the input may be represented as a finite sum of harmonic or Walsh functions.
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6.2 Hard Constraint on Control Input

There are often constraints on the maximum input amplitude either because of mechanical limits on
stick or control surface deflection or the assumption of linear control effectiveness. These constraints
can be satisfied by scaling down the input energy. This technique, however, does not make full use of
the available input amplitude. The criterion function (e.g. weighted trace or determinant of the
dispersion matrix) must be minimized directly under the constraint.

lu^t)! <<*± 1=1.2, - - - q

for each of the q inputs. The optimal inputs are of the bang-bang type and may be calculated using
Algorithm 1 by solving a quadratic programming problem during each iteration [19].

6.3 Input Design in the Presence of Wind Gusts

Often there may be wind gusts or turbulence present during the flight test. These gusts have two
major effects on parameter estimation. First, they cause additional excitation of the aircraft which
enhances parameter identification accuracy. Second, wind gust produce uncertainities in state
estimates thus reducing the accuracy with which the parameter can be determined. Analytically the
effect of the process noise on optimal input can be taken into account with some additional terms as
shown in Refs. [19, 29].

6.4 State Constraints

fT „
Quadratic state constraints of the type x (t)Ax(t)dt _< c can be handled via control transforma-

Jo
tions as shown in Ref. [24]. It may be important to incorporate these constraints in aircraft input
design if excessive velocities or accelerations are produced by unconstrained designs.

7. Conclusions

A comprehensive account of input design theory and results for estimating aircraft stability and
control derivatives is provided in this paper. It is shown by numerical examples how optimally designed
inputs provide smaller variances on the parameter estimates as compared to conventional inputs. Both
time-domain and frequency domain synthesis techniques for computing deterministic as well as stochastic
inputs are presented and their applicability to the aircraft problem is discussed. It would seem that the
next, logical step would be to use these inputs during flight tests in order to verify the theoretical
results presented in this paper.
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Table 1. Standard Deviations of Parameter Estimates
for Inputs at the End of Each Iteration

Length of Simulated Flight Test = 6 sec.

Total Input Energy = 100 deg sec.

Iteration 0
(Doublet)

1era ton

Iteration 2

Iteration 3

Parameter Value

Cmmq

.219

'

.113

.113

-1.588

C"0

.362

.0729

.0676

-.562

Standard

\

.326

.0595

.0561

-.737

Deviations

C

™68

.0978

.0620

.0672

-1.66

%

.0957

.0421

.0400

0.0

Tr(D)

.304

.0272

.0264

P

'

.61

.43

Table 2. Comparison of Optimal and Approximated
Inputs

Duration of Simulated Flight Test = 6 sec.

Total Input Energy = 100 deg sec

Optimal Input

Approximated Input

Parameter Value

Standard Dcv

Cmq

.113

.126

-1.588

C

.0676

.0590

-.562

\

.0561

.0497

-.737

ations

C
Ss

.0672

.0807

-1.66

cz
6s

.0400

.0381

0.0

TrCD)

.0264

.0299

[All in units of deg. [All in units of deg. sec.)

Table 3. Approximated Input Under Design

and Off-Design Conditions

Length of Simulation: b ae

Total Input Energy: 100 deg'

Table 4. Comparison of Standard Deviations
on Parameter Estimates Predicted by Two

State and Four Models

'Length of Simulation = 6 sec.

Total Input Energy = 100 deg sec.

Parameters

Nominal

All Pirimeter*
50\ Higher

AU Parameter.
501 Lower

Natural
Frequency

I.J3

1.86

.76

Doping
Ratio Input

Approximated

Doubk-t .

Approximated

Doublet

Appr.dm.ud

Doublet

Standard Deviation*

C
mq

.126

.219

.220

.24)

.0656

.224

Cm

.0590

.362

.134

.517

.0200

.213

cza

.0497

.326

.0845

.385

.0269

.297

C
m6i

.0907

.0978

.143

.117

.03TO

.0719

\

.0387

.0957

.osoa

.0949

.0269

.0866

Tr(D)

.0299

.304

.0968

.498

.007*]

.191

Table 5. Errors in Parameter Estimates
Using |DI as the Optimality Criterion

Duration of Simulated Flight Te.t = 12 aec.

Total Energy In u " 200 deg2 »ec

,npu,

Frequency Domain Input

Steady State Value

SimpUfUdFreq, Domain
Input •
Steady Stata Value

Tiro* Domain Input From
Freq. Spectrum

Parameter Value

Standard Dev

C
q

.0<S*

.0850

.0929

-1.588

cm

.0367

.0371

.0429

-.562

cza

.0110

.0310

.0154

-.737

ationi

C
8

.0571

.0566

.0594

-1.66

\

.0246

.0246

.0261

.005

Tr<M)

1.29 x IO4

1.21 . 10<

1.15 x 10*

M

2.07 x 101S

2.08 , to"

.9Z1 x 101!

Tr(D)

,0131

.0134

.01S9

Model

Four State

Two State

Parameter Value

Standard Deviations

Cn,
q

.115

.113

-1.588

C%

.0560

.0676

-.562

\

.0499

.0561

-.737

S
.0752

.0672

-1.66

\

.0378

.0400

0.0

Tr(D)

.0260

.0264

[All in units of deg, sec.]

Table 6. Ratio of Parameter Estimates
Standard Deviation for Short Experiments

to Steady State Experiments

[All in unitl of den. aec.l

Ungth <f
aimuUtMl
Plight TMt

4 MC

6 ««c

• MC

10 MC

12 MC

Infinity

Standard Deviation for Short Experiment
Standard Deviation in Steady State

X
1.9

1.4

1.4

1.1

1.09

C"«

4.0

1.4

1.2

1.01

cza

1.7

1.4

1.06

1.0

C
°ft»

2.6

1.1

1.3

1.1

\
.93

1.3

1.05

1.01

T*tM>F.nite
Tr(M>, f

.76

.78

1.06

1.04

1.04

1.0

l°|Fini..

.91

8.7

2.1

1.2

1.15

1.0

T'<DVinil.
TV(I»~ ~

8.3

1.9

l.t

1.2

1.1

1.0

Table 7. RMS State Deviations for Frequency
Domain Inputs (Simulation)

Criterion

|D|

Tr(D)

Pitch Rate

3.19 deg sec"1

3.05 deg sec"1

Angle- of- Attack

2.95 deg

2. 52 deg

Table 9. Parameter Estimate Standard
Deviations for Different Lateral Inputs

[AU in units of deg.

Input

Rudder Doublet

Optimal Rudder Input

Pa,.™«,V.,ue

S

.00880

- . 119

\

.0204

- 4 . 4 3

Standard D

%

.00277

2 .99

eviat.on*

C

.00880

- . 1 7 8

C

"6r

.00860

- 1 . 5 5

Tr(D)

.000648

.000632

Table 8. Comparison of Time Domain and
Frequency Domain Approach (Tr(D) Criterion)

Duration of Simulated Flight Talt > 6 a

Input

Steady Stite Frequency Domain
(cannot achieve: lower limit or Tr(D).

Time Trace from Frequency Spectrum

Optimal Time Domain

Doublet

Parameter Value

Standard Deviation*

C

.102

.140

.113

.219

-1.588

C

.0581

.0819

.0676

.362

-.562

cz

.0490

.0704

.0561

.326

-.717

C»

.0628

.0801

.0672

.0978

-1.66

C7

.0363

.0409

.0400

-09S7

.005

Tr(D)

.0213

.0394

.0264

.104

Table 10. Comparison of Frequency Domain
and Time Domain Optimal Lateral Inputs

uration of Simulated Flight Ten: 8 *ec.

Total Input Energy: 100 deg2 .ec,

Input

Frequency Domain
(Steady Stale)

Optimal Ti™ D<"""n

Part meter V.lue

S
.00119

,00880

-.119

Stan

%

.00281

.0204

-4 .43

ard Devi.tio

C
"P

.000140

.00277

2.99

na

cn

.000948

.00880

-.178

Cno

.00666

.0102

.00860

1.55

Tr(D)

.0000546*

.000904

.000648

[All In units oi deg. »ec - l

*Lo<.vcr limit on Tr(D); cannot be achieved itarti B initial condittot
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Table 11. Comparison ofV Standard Deviations
on Parameter Estimates with All Parameters
Equally Important vs. C Primary

mq
Length of Simulated Flight Test = 6 sec.

Total Input Energy = 100 deg2 sec.

Parameters
Equally
Important

Cm Primary
q

Parameter
Value

Standard Deviations

S

.113

.110

-1.588

X

.0676

.0747

-.562

\

.0561

.0615

-.737

C
-8.

.0672

.0651

-1.66

\

.0400

.0415

0.0

Tr(D)

.0264

.0275 .

[All in units of deg , sec. ]

Fig. 1. Uncertainty Ellipsoid in Two-
Dimensions

ft

Fig. 2. Input at the End of Each Iteration Fig. 3. Optimal and Approximated Elevator
Inputs

Fig. 4a. Comparison of Pitch Rates for
Doublet and Optimal Control (Simulation)

Fig. 4b. Comparison of Angle-of-Attack
Variation for Doublet and Optimal Input

(Simulation)

u 0

DO

Optimal

'••'X
Doub

•Time (sec)

* Optimal

Time (sec)
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Fig. 4c. Comparison of Vertical Accelera-
tion and Optimal Input (Simulation)

0

<;
•S
S -20

- Optimal

Time (sec)

Fig. 4d. Comparison of Pitch Accelera-
tion for Doublet and Optimal Input

(Simulation)

Optimal

Time (sec)

Fig. 5. Steps in the Computation of
Optimal Input (min |D|) to Identify
Parameters in the Short Period Mode of

a C-8 Aircraft

T
fuu(n)

ITERATION 0

2 .3
T.6

t
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ITERATION! >16.
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ITERATION 2
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T-30 f
ITERATIONS f ^{n,
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T.09

.1

f?804 .
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•°*04V04

I

T:07
.2;

I

1

r.38 !

'

T!"
•2|

1
1
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1

-.32 j
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r.28

ITERATION 4
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r.27
ITERATION 5
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-.25

ITERATION 6

.3

ITERATION;
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Fig. 6. Simplified Input Spectrum to
Minimize |D|

Fig. 7. Elevator Deflection Time History
Based on Spectrum of Fig. 6 (min |D|)
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Fig. 8. Optimal Rudder Input to Identify
Five Parameters in the Lateral Motion of

an Aircraft
Fig. 9. Simultaneous Rudder and Aileron
to Identify Five Lateral Parameters

Fig. 10. Optimal Elevator Deflection (C
n

Only Primary Derivatives)
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INPUT DESIGN FOR AIRCRAFT PARAMETER IDENTIFICATION:

USING TIME-OPTIMAL CONTROL FORMULATION*

By

Robert T.N. Chen

Principal Engineer

Flight Research Department

Calspan Corporation

Buffalo, New York

ABSTRACT

This paper presents a new formulation and a practical and useful solution to the input design for iden-
tification of aircraft stability and control parameters. The new formulation directly addresses the follow-
ing question: for a given measurement system and with prescribed constraints on the input and output magni-
tudes, what should the input functions be and for how long should the data record be taken to enable identi-
fication of system parameters to specified accuracy? Time optimal control theory is used in the formulation
of this important problem. Necessary conditions and the structure of the optimal control input are dis-
cussed. By using Walsh functions and calculating the Cramer-Rao lower bounds recursively, a practical arj

useful design procedure is then presented. Application of the new approach are then made to the design of
flight test inputs for identification of stability and control parameters of several types of aircraft.

1.0 INTRODUCTION

In gathering flight test data using the available measurement system for identification of aircraft
stability and control parameters, there are two important questions to be answered: (i) what should the
input function be so that the aircraft may be properly excited, and (ii) for how long should the data record
be taken to enable identification of the parameters to a desired level of accuracy?

In the past, the input design problem has been formulated to address only the first question by speci-
fying a priori- the length of the data record to be taken. The input design problem formulated in this way
becomes, as it is now well known, a typical fixed -time -interval optimal control problem for which an
"optimal" input function within the specified time interval is to be obtained by maximizing some function
of Fisher's information matrix1"6 or minimizing some function of the error covariance matrix7'8 as the index
of performance. When the number of parameters to be identified is more than one (as is usually the case in
practice) the use of a proper index of performance for the fixed-time-interval optimal input design becomes
less obvious; weighting factors must now be introduced to produce a compromise for the relacive accuracy
requirement of the parameters to be identified. Indeed, the choice of a suitable index of performance has
been and still is a debated issue.5'7'9

More importantly, with the fixed-time-interval input design formulation, the important second question
mentioned earlier cannot be effectively answered, because the time interval for optimization is fixed a pri-
ori and the parameter accuracy achievable, which is the end product of real interest, is not directly
considered in the input design.

To overcome the above inherent difficulties with the existing formulation based on fixed-time-interval
optimization, the problem has recently been formulated as a time-optimal control problem addressing the
above two questions directly and simultaneously. Ul) jn aircraft flight test applications, for example,
this new formulation can mean less flight time for data gathering and less time and money required for pro-
cessing the flight test data and identifying the stability and control parameters. Furthermore, with this
new formulation, a meaningful trade-off study can be performed, as illustrated in this paper, to assist
preflight planning concerning requirements of instrumentation accuracy, type and redundancy, and permissible
control authority for test inputs, etc.

The remainder of the paper is organized as follows: Section 2 presents the new formulation and discusses
the necessary conditions and the control structure for the optimal input. Section 3 presents a practical
and useful design procedure using Walsh functions and converting the calculation of the Cramer-Rao lower
bounds from a "batch process" into a recursive process. Applications of this approach to the design of
input for identification of stability and control derivatives of several types of aircraft are given in
Section 4.

2.0 TIME-OPTIMAL INPUT DESIGN FORMULATION

Consider the following nonlinear dynamic system and associated measurement system:

v = -f(x., -p, u),

y = h (v. , f),u.) t- v(t) (2)

*This work was supported partially by Calspan internal research and partially by Contract No. N00019-73-C-
0504.
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where # is the state vector (n-vector) ; -jO is the unknown parameter vector (q-vector) ; U, is the. input
vector (r-vector); y is the output vector (m- vector) ; and f-, an m- vector, is Gaussian white noise with
zero mean and covariance function,

ZS(t-r) (3)

with K being a diagonal constant matrix. Fisher's information matrix M is given by

\ dh^9h dvVn.t[9h 3» \ 9h dh 9* 1 _ ...

0\^
+^^\^[^^r0\-^

+^wr (
Define the matrix C to be

C-AT'^lfy} (5)

Then the diagonal terms of the matrix C are the Cramer-Rao lower bounds, which are the theoretical lower
bounds of the variances of any unbiased estimates of the initial state y.0 and the parameter vector yo .

 14

The identifiability of these parameters is equivalent to the invertability of the matrix M -4 Thus, if
these parameters are assumed to be identifiable, then C, and M are positive definite symmetrical matrices.

3v dv.
In Eq. (4), the sensitivity functions - — and — — are integrated using the following sensitivity

^ . o TCf. &-Pequations: ° r

along with Eq. (1). The physical constants on the input and the state are

I lt(t) \*U (8)

*X (9)

where U and X are constant vectors. Notice that the contraint, Eq. (9), is required for the equation of
motion, Eq. (1), to remain valid and/or to keep the output y within the limits of the sensors.

The problem of designing optimal inputs for parameter identification is now formulated as follows:
find the optimal control u,*(t) that minimizes the final time tf , i.e.:

JT = ffdt (10)
0

subject to the contraints, Eq. (1), (2), (8) given earlier* and Eq. (11) below:

0 < C-. ̂  o-/ , i = I, 2, 3, . . . , -m-q (11)

where a^ are given positive constants signifying maximum standard deviation allowable for the identification
of initial state variables X0 and the unknown parameters jy using an efficient estimator (i.e. an unbiased
minimum variance estimator).

The time-optimal control problem formulated above belongs to a special class of time-optimal intercept
problem, in which the target set is stationary.15 To see this, consider Eq. (4~) and (5). Let the integrand
in Eq. (4~) be denoted by ST/Z~fS, i.e.:

— — l * -̂  (12)

Then a differentiation of Eq. (^ and (5) yields the following nonlinear matrix differential equation

C - - GSrK~'SC (13)

which, together with the dynamic system, Eq. (1) and (2), and the sensitivity system, Eq. (6) and (7),
governs the time-evolution of the error covariance matrix C . Notice that since the parameters -Ka and -p
are assumed to be identifiable, C is 'symmetrical and positive definite at each time instant. Thus, there
are a total of only j(n-f-^)(n^fl) state variables of interest in Eq. (13).

*State variable constraints Eq. (9) will be discussed later.
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The initial condition C(o) is the covariance matrix associated with the nominal values of K0 and *o
used in the input design* (the first iteration in the sequential improvement implied in the input design
for parameter identification). This is a Bayesian interpretation; and the matrix M in Eq. (4) is to be
considered as added information. For the non-Bayesian case, C0 -* oo , and a large positive number say
1018, may be used £or the diagonal terms of c(0) ^ with zeros for the off.diagonal terms NOW) the con.
straints-, Eq. (11), thus form a "stationary target set", which is an (n + o) dimensional rectangular
region K^ composed of

°i * cu fa)* > °> / - /, 2, • • • , »+<i (14)

For example, for rn-q^Z, the region £ is a rectangle as shown in Figure 1.

The problem formulated at the beginning of this section is seen to have been converted into the fol-
lowing time-optimal control to a stationary target set. Find the control u.* (t) , which controls the system
of order | (q-f3n}(n-K} + l) composed of

(a) original dynamic system (1) n equations

(b) sensitivity system (6) and (7) - ri(f>-r^) equations

(c) error covariance equations (13) - L (n+q) (*>+q + f) equations

to the target set, Eq. (14), in minimum time subject to the inequality constraints of the control variable
Eq. (8).

It is useful to give a geometrical interpretation of this problem parallel to that for the time-optimal
intercept problem.15 Let /?£ be the augmented state space of dimension -L (o + 3n)(r> + q-f t) which corresponds
to the target set KV defined by (14). Let Xt; be the reachable augmented state space at time t/ using
the control u (t) wi'thin the constraints, Eq. (8); and let Yt£ be the corresponding reachable spaces in
the target space. Figures 1 and 2 show a geometrical interpretation of the time-optimal solution for a two-
parameter case (i.e., wvf 2) .

From Figure 1, it is seen that since C.t-f- are monotonically decreasing with time as is evident from
Eq. (4), (5), or (13), the time-optimal control will occur at the boundary of the target region B,.
From these observations, consideration may therefore be given to replacing the inequality constraints 'of
Eq. (14) with the equality constraint

< US)

one at a time and test the conditions

CJj W & «f* (16)

for all j £ i . By using this procedure for all i = /, 2 , . . . , 77 / q , candidate solutions and hence
the time-optimal control may be obtained.

Necessary Conditions for Optimal Control

We now discuss the necessary conditions. Let the augmented system of order 4 (o + '3n)(.n-m + t) discussed
above be described by * ' ' '

^ ^//\ \ > S / v S\•y. = f (v,u.), v(o) = Oi0 (17)

ST ST -y7")7" MRIi Z>K, ' °f3 ' * / (18)where C - T T

—

with c being the ̂  (n+o')(vtq-f/)-vectoT, which is composed of the upper triangular elements of the matrix
C. , i.e.

> c ,3, • • •

(19)

(20)

*The input design problem discussed here assumes that there exists some a apriori knowledge of the parameter
values either from other independent sources or from identification using non-optimal inputs. Sequential
improvement is implied here.
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S - , 5 > . . . S } r (21)

(22)

The Hamiltonian is

H - / * AT£ (23)

Beginning with i = / in Eq. (15), the necessary conditions are1"

* = f (£, u.) , % Co) = £0 /̂Ve/7 (24)

, £„ 6V) = <*?, %z (tf) - fc, (V - . . . =0 (25)

0 =• ^. -Cu , ( 7" - optimality conditions for
control input u. (t) } (26)

Now, for i=2, all the equations are the same as listed above, but the boundary conditions for
become

C22 ft,) = cr/ , lf fa) =

where & = (H , X , . . . ̂
' * i(<

For t = 3,4-t •••, fJ+q. , similar results follow.

Optimal Control Structure

In many practical situations, the control u M enters into the dynamic system, Eq. (1), in a linear
fashion, e.g.

(28)

and 3h /g% and ^^Sf, are independent of u..

In this case, Eq. (17) becomes

and the conditions for the time-optimal control, Eq. (26) become

(29)

u* = -Usance (Z)k\ (30)

where sgn i^} = 1 if V > 0

= -1 if V. < 0

which indicates that the optimal control is bang-bang.

The above necessary conditions may be extended to the case when the constraints on the state variables
of Eq. (9) are considered; an approach such as that described in Reference 16 (page 117) may be employed.
We will not repeat it here.

As shown previously in the simple illustrative example H, the necessary conditions, Eq. (24) - (27),
are fairly complicated. Computer implementations for the solution of this type of problem are rather in-
volved as discussed in many standard texts (e.g., Reference 15). Because of budgetary limitation, no
attempts have been made to try to implement a time-optimal control algorithm, based on the above necessary
conditions, on a computer (although we strongly recommend it be done). Instead, use has been made of the
structure of the optimal input in developing a practical and economical search routine for input design as
discussed in the next section.
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3-0 A SUBOPTIMAL INPUT DESIGN USING WALSH FUNCTIONS

A practically useful suboptimal solution to the time-optimal control formulation for the input design
problem is presented in this section. The solution is obtained by using an efficient direct search procf-
dure which makes use of the bang-bang structure of the optimal input discussed in the preceding section and
calculates the error covariance matrix in a recursive manner.

First, the error covariance matrix calculated in the "batch process" of Eq. (5) was converted into a
tn̂ r̂  f rl ,̂ Th^S °Peration makes ̂  Possible to determine the length of the data record required
desizn schl <%lred. H °5 parame\er identification accuracy. It also permits various suboptimal input
design schemes to be devised using the time rate of change of the error variance.

the wHnrfnn^0 h6lP dete™inVhe Pr°Per switching time in the bang-bang structure of the optimal input,
the Walsh functions were selected as a candidate family of functions from which to choose the suboptimal
control input. Aside from the bang-bang structure of the Walsh functions, they are easy to implement and
their orthogonal characteristics are very desirable for use in multi-input systems.

Recursive Calculation of the Error Covariance Matrix

digital comP"tation with integration step size At , the error covariance matrix of Eq. (5) may be
sd

a -

the

Using the Matrix Inversion Lemma^, 17f Eq. (31) may be converted into the following desired recursive
ions ni .TGI at ions nip

(32)

This relationship will be used in conjunction with the use of Walsh functions to design a suboptimal input.

Walsh Function Generation

of ™° WalSl? functi°ns' "hich assume the values of +1 or -1 in an alternative manner, are a complete set
of orthonormal basis functions over some interval, say (0,T). Extensive discussions on the generation of
Walsh functions have been given by WalshlS, Harmuthl9, and Swick". A sample set of Walsh functions
Wal(i,t),i=0) I,..., 7 is shown in Figure 3.

Using symmetric and skew-symmetric properties of the Walsh functions, Swick13 has developed a syste-
matic way of independently generating each individual Walsh function. His procedure was implemented on
a computer to independently generate any one Walsh function with index i from a set CO 1 2 Sll
SDecifvThrr1 input/esi?n applications. To call for a specific Walsh function, it is'necessary only to
and (c) thTam?UtudeerS " C°mPUter r°Utin6: (&) orth°g°nal interval, (b) the Walsh function index,

Computational Steps for Suboptimal Input Design

stage™6 direct'search inPut desi8n Procedure uses the following basic computational steps in each design

Step 1 Select a large time internal T (second), beyond which all computation will stop.

Step 2 Begin with a (MLi,i) with i-H , sufficiently large so that the system response will be small
and well within the constraints on the magnitude of the state variables (if imposed).

Step 3 Calculate the error covariance matrix C, recursively by Eq. (32).*

Step 4 At each computing point tK= K&t , test to see if

(%)*£*• *j
where oy are the parameter-accuracy specifications. If yes, record t. Let /=/-/
and go to Step 2. If no, continue. y

Step 5 At each switching instant tn compute AC" Z (t ) = G. $ ft \ - f ̂  /> 1 W/
it ~- r>/ ^tt l nJ ^it ^n-fj >

 yl-

*The initial conditions were discussed previously. For non-Bayesian case, the initial condition may also
be taken at the value when the full rank of Eq. (31) is reached.
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and test the effectiveness of the previous switching*

± Ga- Vi
where € « / , is a positive number, e.g. 0.05. If yes, continue; if no, set i = i-l
(or reducing the switching frequency by a factor of 2) and go the Step 2.

Step 6 The results of the preceding steps will be a subset of Walsh functions (dot (i > T") which
meets the parameter- accuracy specification with corresponding final time fy. ; and
the suboptimal input is the one with the smallest Cf ̂  if the constraints on the
magnitude of the state variables are not imposed. If these contraints are imposed, the
suboptimal input of interest will be that with the smallest tf among those that
satisfy the state magnitude constraints.

For multi-input cases (i.e., u.(.t) is a r-vector) , the preceding procedure is the same with the
exception that Step 2 is now replaced by a set of r numbers, i.e.

/V, . . . , A/- r+f

for each corresponding control input.

It should be noted that the above basic computational steps are for each design stage, which yields a
single desirable Walsh function. Should a multi-stage design be required, the basic steps listed above may
be used repeatedly. When the number of parameters to be identified is large and the accuracy specification
for the parameter identification is high, it may not be possible to complete the design in a single stage;
in this case, a multi-stage design will be required to complete the design as will be illustrated in the
next section. If it is impossible to complete the design in a single stage, the accuracy requirements
corresponding to the group of parameters, which consistantly failed the accuracy test (Step 4), may be
judiciously relaxed. Complete the first stage design with the relaxed specification and then proceed to the
second stage design by restoring the accuracy specification and reducing the value of G in Step 5. This
procedure is permissible, because the error covariance matrix is calculated recursively as shown in Eq. (32).
As such, the error covariance matrix calculated at the end of the first stage can be used as the initial
condition for the second stage design and so on. The following figure illustrates the case in which the
design is completed in two stages.

First stage input design

First stage design using
some relaxed specification.

Time

Second stage input design

Second stage design using
the result of 1st stage design
and original specification.

Time

Combined suboptimal input

Time

1— stage 2— stage

Unlike a single stage design in which the above procedure yields a unique design, a multi-stage design will
in general result in nonunique design; and the final selection of a suitable multi-stage design could, for
instance, be determined from the ease with which the flight test implementation may be achieved.

4.0 APPLICATIONS

The suboptimal input design scheme described in the previous section was applied to several examples
described below.

4.1 An Illustrative Example (Comparison with Goodwin's Optimal Input )

As an illustrative example, consider the following first order system previously studied by Goodwin .

v = 0.x -i- bu , #(o) =0, \U.\ 4= I

= •K + V

inclusion of a test for correlation coefficients has recently been suggested by J.V. Labacqz.
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where the measurement noise ir (t) is white, Gaussian with E {v(t)\ = 0 and E.{vMv(z)] = S(t-T) , The par-
ameters a and b , to be identified, are known to have nominal values of -1, and 1 respectively. Goodwin's
input function obtained.by minimizing the trace of the error covariance matrix C with a fixed time interval
of 10 seconds is shown in Table I. For an integration step-size A £ = 0.05 second, the a; and trG
are also shown in the table. Using these 67 as the parameter-accuracy specification, the results of apply-
ing the suboptimal input design scheme discussed in Section 3 are shown in the last column. The design was
completed in a single stage. It is seen that the results are somewhat better than Goodwin's.

In an attempt to see the difference in effectiveness between the two input functions geometrically,
the propagation of oy as illustrated earlier in Figure 1 was plotted on Figure 4 for the two input functions
together with some input functions generated by perturbing slightly the switching times. The difference in
the effectiveness is readily seen from this figure. Recall that Goodwin used the fixed-time-interval of
10 seconds and the performance index is the trace of C matrix, which is a circle in the ô - ab plane with
origin at <ra = <rb*0 in this case (if a weighted trace of C had been used, it would have been a ellipse
instead). The input is seen to generate the oy trajectory to touch a smallest circle in 6,,-ah plane
in 10 seconds; and as a result of this formulation, the desired accuracy may not be achieved. On the other
hand, we used here the least time to touch the accuracy target as the criterion, and the resulting input
guaranteed that the desired accuracy was obtained.

4.2 Input Design to Identify Aircraft Longitudinal Short-Period Parameters

Consider the identification of the stability and control derivatives for the longitudinal short-period
equations of motion of a conventional aircraft.6 The equations of motion and the measurements are given by:

,'*"'

Assume that the measurement noise vector v = (vf , v2) is independent, Gaussian white noise with zero
mean and covariance function

0 0.04

and that the nominal values of the derivatives are assumed to be

A^ = -1.588 "Zee, = -0.737

AC = -0.562 Zg = -0.005

M'ge = -1.66

Using a fixed-time interval if = 4 sec, and using the input energy constraint,

/UZ(t)dt =3/0,Jo '
a maximization of the trM leads to the results6 shown in the "optimal input" of Table II. For the sake of
facilitating a direct comparison with the result obtained earlier in Reference 6, it was assumed that the
level of accuracy desired was the same as that produced from that input. The control excursion permissible
is limited to only ± 8.792 degrees (for which the energy is less than 310 for 4 seconds with bang-bang input
structure. The next column in Table II shows the suboptimal input design results. To achieve or exceed
the basic specification, it requires only 3.96 seconds of data record with less input energy than that for
the "optimal input" of Reference 6 as shown in the third column. Note that, although the accuracy ( o" )
of MX just achieves the specification, the remaining four parameters considerably exceed the accuracy
specification. Furthermore, as shown in Figure 5, the control excursion is smaller and the aircraft motion
is smaller for the suboptimal input, which is also easier to implement in flight testing. The last column
in Table II shows the results for meeting a 25% more accurate criterion than the basic specification. In
this example, the design was again completed in a single stage.

4.3 X-22A Aircraft Application

The suboptimal input design scheme was also used to design control surface inputs for the identifica-
tion of the X-22A aircraft longitudinal stability and control parameters at certain fixed operating points.
The data used for the input design are shown in Table III. The results for the basic design are shown in
Table IV. Because the desired level of accuracy was not very high in this example (oy desired ranged
from 10 to 70% of their parameter values) the design was again carried out in a single stage as was done
in the previous two examples. It is interesting to point out that the "characteristic" switching frequency
of the input was 1.12 rad/sec, which lay in the frequency range of the short period, 2.19 rad/sec, and the
phugoid, 0.27 rad/sec of the aircraft as calculated using the parameter values used for the input design.

Computer runs were also made to assess the effects of changes of control excursions and the measure-
ment noise level. The design results are shown in the last two columns of Table IV, designated as cases
2 and 3, respectively. By comparing these two cases with Case 1, it is seen that an increase in the control
authority increases the switching frequency and shortens the data length. A decrease in the measurement
noise level by a factor of 2 (a factor of 4 for R) results in a variable switching frequency and as might
be expected, shortens the data length required to meet the same desired level of accuracy.
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4.4 Application to a Medium Transport Aircraft

The purpose of this application was to design an elevator input function for the identification of
eight longitudinal stability and control derivatives of a medium transport aircraft to within 10% accuracy
(in terms of <r) for all the eight derivatives shown in Table V. In this case the design was completed in
two stages, because the level of accuracy desired for all the parameters was relatively high. In the ini-
tial attempts to complete the design in a single stage, it was observed that the parameter Zs& consistently
failed its accuracy test, and hence the necessity for multi-stage design became apparent. As shown in
Table V, the first stage design was accomplished by relaxing the accuracy for Zg& from 10% to 20%. The
length of the data record required to meet this relaxed specification was 12.05 seconds.

The 2nd stage design was performed by restoring the accuracy for back to 10% and reducing the value
of & in Step 5 from 0.01 to 0.001. Also, in an attempt to reduce ts , the time duration required to meet
the specification, permissible control authority was doubled f rom A 1.5° to * 3°. Figure 6 shows the re-
sponses of the aircraft to the combined suboptimal input. It is interesting to note that the two character-
istic frequencies of the designed input again lie between the short period and phugoid frequencies of the
aircraft.

4.5 Application to a Large Aircraft

The objective of this application was to design a better flight test rudder input for identification of
the lateral-directional stability derivatives and rudder control derivatives of a large aircraft to within
a desired level of accuracy. The data used in the input design are shown below. They include the equations
of motion, initial parameter estimate and the desired accuracy of the parameter identification, estimated
error of the response variables measured, and the permissible control excursion.

(a) Equations of Motion

dt

-p

0

' ' '0 L

0 9 0' 0

-1

(b) Initial Parameters Estimate and Desired Accuracy (c)

0

0

0

10

(c) Estimate Measurement Error

Para.
Actual
Para.

Values

1.719

1.164

31.49

0.443

0.0078

0.3

3.686

0.679

0.0194

• 0.9939

• 0.161

0.0135

Initial
Para. Est
Value

- 1.375

1.397

-25.192

0.354

- 0.006

- 0.360

2.949

- 0.815

0.023

- 1.193

- 0.138

0.010

Desired
Accuracy

(a}

0.138
0.419
7.558

0.106
0.003
0.036
0.295

0.082
0.006

0.238
0.041
0.005

Unit
Meas.
Variables

sec

sec

sec

sec

sec

sec

sec

sec

-1

-1

Unit

deg/sec

deg

deg/sec

deg

deg

Error
Co-)

0.02

0.02

0.02

0.03

0.007

-1

(d) Permissible Control Excursion

\§r I ^ 1 inch

fSf ) =3.25 inch
I rf>Jmax

As can be seen in these data, the initial parameter values used for the input design are not the actual
values; they are about 20% off the actual. The desired accuracy specifications as expressed in terms of cr
are approximately 10 to 30% of the initial parameter values. The designed input is shown in Table VI in
which the effectiveness of the suboptimal input is compared with that of the conventional rudder doublet
(with its "frequency" approximately equal to the Dutch roll frequency). Significant improvement of the
designed input over the conventional input is clearly shown.

Table VII shows the sensitivity of the designed input with the variation in the control excursion (or
authority) permissible and the level of the measurement noise. Note that as the control authority enlarges,
the "switching frequency" increases and, of course, the time to meet' the identification accuracy specifica-
tion ts is shortened. Increasing the measurement noise level slows down the switching frequency and in-s
creases
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An alternate set of initial parameter estimates, desired accuracy, and measurement noise (significantly
higher than that previously used) as shown below was also tried for rudder input design. The initial param-
eter estimate was obtained from actual identification of the parameters from computer generated data using
a doublet input and including simulated process and measurement noises. This exercise was designed to
simulate the case in which the initial parameter value used for the input design was obtained from a non-
optimal input.

(b)' Initial Parameter Estimate and Desired Accuracy (c)' Estimated Measurement Error

Para.

A/

Wo

Actual
Para.

Values

- 1.719

1.164

-31.49

0.443

- 0.0078

- 0.3

3.686

- 0.679

0.0194

- 0.9930

- 0.161

0.0135

Initial
Para. Est.
Value

- 1.31

3.87

-28

1.17

- 0.0?04

- 0.444

3.45

- 0.7

0.0204

- 0.9886

- 0.163

0.0128

Desired
Accuracy

0.131

0.774

5.6

0.234

0.00608

0.0444

0.345

0.7

0.0041

0.1977

0.0326

0.0026

Unit

sec"

s'ec"

sec"1

sec'1

sec"1

sec'1

sec

sec'1

—__

sec-

sec"

Measured
Variables Unit

Error

-P
0
r
ft
Sr

deg/sec

deg

deg/sec

deg

deg

0.2

0.08

10.04

0.04

0.007

The results of the input design are shown in Table VIII. In this case, a two-stage design was required
to meet the specification. The first stage design was performed by relaxing the specifications of A/,, , K,/|/,
and Ysr/V0 as indicated in the table. The designed input is again significantly better than the conventional
rudder doublet input. Aircraft responses to the suboptimal input were only slightly larger than those
to the conventional rudder doublet and were within the permitted ranges.

5.0 CONCLUSIONS

The following conclusions are evident from the development given in the preceding sections:

(i) The time-optimal control formulation proposed in this paper provides a direct answer to the ques-
tion of the length of data record and the corresponding control input required to meet the par-
ameter-accuracy specification. This formulation is equally applicable to linear and nonlinear
flight regimes.

(ii) This new formulation removes the inherent difficulty associated with the selection of a suitable
index of performance for the fixed time-interval formulation of input design in the identifica-
tion of aircraft parameters.

(iii) This new formulation can mean less flight time for data gathering and less time and money 'for
data processing. It also permits a meaningful trade-off study of requirements for instrumentation
accuracy and permissible control surface excursions.

(iv) The recursive computation of the error covariance matrix is a useful tool to determine from the
existing data record the adequacy and the length of the data record required to meet the desired
level of accuracy of the parameter identification. It also permits various suboptimal input
designs schemes to be devised using the time rate of change of the error variances.

(v) The suboptimal input design scheme proposed in this paper has been shown to give better results
than have been obtained heretofore using the fixed time-interval formulations. It gives an
input function which is effective and easy to implement for flight testing.
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Figure 6 Aircraft Responses to Designed Input

Table I
Length of Data Record to Achieve or Exceed

Parameter-Accuracy Specification
(At = 0.05 sec)

~~~~~--^CASES

PARAMETERS""--^

'min -(b)

I ( O j ) 2 .
i=1 ' mm

tf (SEC)

INPUT ENERGY

"OPTIMAL INPUT"
(REF. 7)

. 8.74
1 | TIME -SEC

1 1 !

5.78 10

0.94453

0.81437

1.5553

10

BASIC

SUBOPTIMAL INPUT AS LEAST AS
GOOD AS "OPTIMAL INPUT"

' 1
. 1 i TIME -SEC

3.80 7.60 9.45

0.94271

0.75305

1.4558

9.45

SMALLER THAN BASIC

Table II
Length of Data Record to Achieve or Exceed

Parameter-Accuracy Specification

( At = 0.02 sec)

~~̂ --̂ ^ CASES

PARAMETERS ̂"~̂ \̂

INPUT FUNCTION
Se(t)

1̂

Z (a}2

tf (SEC)

INPUT ENERGY

"OPTIMAL INPUT"

(REF. 6)

-12.5 ̂ -^ TIME - SEC

0.16957

0.06605

0.09601

0.03684

0.02564

0.04435

4

BASIC

SUBOPTIMAL INPUT
AT LEAST AS GOOD AS

"OPTIMAL INPUT"

g ,Q, 3.96
2.24

0.12144

0.06598

0.07187

0.03233

0.02085

0.02575

3.96

SMALLER THAN BASIC

SUBOPTIMAL INPUT
AT LEAST 25% BETTER

THAN "OPTIMAL INPUT"

8.792

-8.792

[

4.86
3.20

0.12022 (0.12720)*

0.04812 (0.04954)

0.07159 (0.07201)

0.02396 (0.02763)

0.01830 (0.01923)

0.02280

4.86

NOT APPLICABLE

*Numbers in paraentheses are for 75% of the quantities in the second column
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Table III

X-22A Aircraft Data for Input Design

(a) EQUATIONS OF MOTION

_d_
oit

"
u.

0

Au.

A9

(b) INITIAL PARAMETER ESTIMATES AND DESIRED PARAMETER IDENTIFICATION ACCURACY
AT DUCT ANGLE OF 15°

PARAMETERS

M«-

Ma

M0
M&es

xu

Xyj,

xs

x&es
H^
Zur
Ze

**„

ACCURAC
UNIT

0

rad/sec /fps

rad/sec /fps

1/sec

1/sec2

rad/sec /in

1/sec

1/sec

ft/sec2/rad

ft/sec2/in

1/sec

1/sec

ft/sec2/rad

ft/sec2/in

Y DESIRED
(o-)

0.0005

0.0005

0.10

0.50

0.03

0.05

0.01

2.00

0.10

0.20

0.02

6.00

0.50

EST. PARA. VALUE
FOR INPUT DESIGN

-0.0056

-0.0073

-1.73

-3.49

.29

-0.10

0.065

-2.85

0.24

-0.50

-0.50

32.4

-2.70

(c) MEASUREMENT NOISE

°H = 1.0 ft/sec

°Sj- = 0.25 ft/sec

°~g = 0.15 deg

o~a = 0.10deg/sec

(d) PERMISSIBLE CONTROL EXCURSION

i

Table IV

Length of Data Record to Achieve or Exceed
Parameter-Accuracy Specification

X-22A Aircraft Application

(At = 0.05 sec)

\
N.
\^ CASES

PARAMETERS \^

DESIRED 0

Xu 0.05
xw o.oi
Xe 2.00

X c 0.10
*ES

Zu 0.20

Zw 0.02

Zg 6.00

Z<. 0.50
6ES

Mu 0.0005

Mw 0.0005

Mq 0.10

MQ 0.50

Mj 0.03

1. BASIC DESIGN

1.5" 1 | 1

Ef, ° |5.6J hlSEC)

TIME
MIN. 0 ACHIEVABLE

0.00844

0.0099

1.33979

0.09921

0.01546

0.01118

1.69482

0.05169

0.00030

0.00017

0.00747

0.03038

0.00060

2. EFFECT OF CONTROL
EXCURSION
PERMISSIBLE

3"- ^ -̂» ,
f, l2|4.4k6J7.55

;; o i i IJ(SEC)
•3 " ^^

MIN. 0 ACHIEVABLE

0.00905

0.00991

1.53180

0.05105

0.01328

0.00979

1.68376

0.02467

0.00025

0.00015

0.00525

0.02775

0.00050

3. EFFECT OF
MEASUREMENT

NOISE LEVEL (R= Ro/4)

1-5"4 . 4.8
SEo 1-6

0 (SEC)

6^17.4

I i

MIN. 0 ACHIEVABLE

0.01586

0.00994

1.58813

0.06006

0.02869

0.01479

2.76175

0.02453

0.00036

0.00015

0.00364

0.03213

0.00034
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Table V
Elevator Input Design for

a Medium Transport Aircraft
(Two-Stage Design)

CASE

PARAMETERS

M,

Mq

Ma

M6g

Za

Z6

PARA.
VALUE

FOR
DESIGN

-0.0313

0.3175

0.006

-0.944

•1.185

-2.649

-1.038

-0.06

DESIRED
O

(10% PARA.
VALUE)

0.00313

0.03175

0.0006

0.0944

0.1185

0.2649

0.1038

0.006* (0.012!

Io.

FIRST STAGE DESIGN

= 12.05

14.4

TIME
(SEC)

MIN. 0 ACHIEVABLE
@ END OF 1st STAGE

0.00121

0.01338

0.0006

0.02055

0.01357

0.02009

0.00957

0.01190

0.00142

SECOND STAGE DESIGN

t. = 8.05

TIME
(SEC)

3-

MIN. a ACHIEVABLE
@ END OF 2nd STAGE

0.00107

0.00983

0.00038

0.00843

0.00816

0.00735

0.00553
0.00599

0.000356

'.006 INITIALLY, THEN RELAXED TO .012 FOR FIRST STAGE DESIGN.

Table VI

Comparison of Conventional and Suboptimal Rudder
Input for Parameter Identification*

PARAMETERS

L

Lr

Lff

LS

"r
Nr
A/g

Nvr
 + a

(y /(/) _ /

Xe/^o
\I

V
0

I-2
t L

ACTUAL
PARAMETERS

VALUE

•1.719

1.164

•31 .49

0.443

-0.007802

-0.3

3.686

-0.679

0.01945

-0.9939

-0.1727

0.01281

INITIAL
PARAMETERS
VALUE USED

IN INPUT
DESIGN

-1.375

1.397

-25.192

0.354

-0.006

•0.360

2.949

-0.815

0.023

-1.193

•0.138

0.010

-

BEST ACCURACY ACHIEVABLE (<T)
FOR 8 sec DATA

CONVENTIONAL
RUDDER DOUBLET

+1 T n(in,
0 I ' I

*'p U 2'6 time 8
., ..U (sec)

0.0689

0.3573

0.6518

0.0101

0.0088

0.0447

0.0840

0.0029

0.0030

0.0203

0.0308

0.0064

0.5680

SUBOPTIONAL
INPUT

1 t = R 31 / r1.8 ' 7.2 ,

|u su-
0.0325

0.1982

0.3557

0.0109

0.0041

0.0247

0.0459

0.0025

0.0013

0.0098

0.0204

0.0035

0.1703

•MEASUREMENT ERRORS, R = DIAG. [(0.02)2, (0.02)2, (0.02)2. (0.03)2, (0.007)2]
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Table VII
Rudder Input Sensitivity

o INITIAL PARAMETER ESTIMATE: 20% OFF ACTUAL VALUE

o MEASUREMENT ERRORS, RO = DIAG. [(0.02I2, (0.02)2, (0.02)2, (0.03)2]

A. BASIC DESIGN

1.

*'p 0-
(in)

-1-

B. EFFECT OF CC

•751
S'P 0-P 0
(in)

,75-

1.5

<Jr
P 0-

(in)

-1.5-

C. EFFECT OF M

1 .

*'P 0-
(in)

• 1-

*ts = 5.3

1

1-8 i 5.4 72 10

I TIME (sec)

)NTROL EXCURSION PERMISSIBLE

8 1°

il
ts = 7.85

ts = 4.25

1.

5.8 10

45 4.35

EASUREMENT NOISE LEVEL (R = 2.25 R )
0 ts = 9.55

l
1
j 13.5

2.25 6.75 9 11.25

*ts : TIME REQUIRED TO MEET THE SPECIFICATION OF PARAMETER IDENTIFICATION ACCURACY.

Table VIII

Rudder Input for a Large Aircraft
(Two-Stage Design, Alternate Specification)

CASE

PARAMETERS

FIRST STAGE
t, = 12.10

•1"

5 13-6

(SEC)

SECOND STAGE

DESIRED
0

MIN. a ACHIEVABLE
@ END OF 1st STAGE

MIN. 0 ACHIEVABLE
@ END OF 2nd STAGE

™r
N0

0.131
0.774

5.6
0.234
0.00608*
0.0444
0.345
0.07

0.0041*

0.1977

0.0326
0.0026*

0.04241
0.25578
0.43148
0.02870
0.00541
0.03281
0.05644
0.00497

0.00209

0.01399

0.02393

0.00382

0.03481

0.18292

0.34871

0.01901

0.00445

0.02351

0.04525

0.00323

0.00174

0.01055

0.01877

0.00255

0.2593 0.15973

•INITIAL VALUE, THEN RELAXED FOR FIRST STAGE DESIGN.
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DETERMINATION OF AERODYNAMIC DERIVATIVES FROM TRANSIENT RESPONSES IN MANOEUVRING FLIGHT

by

A. Jean Ross
Royal Aircraft Establishment

Farnborough, England

SUMMARY

The paper describes some of the work done on aircraft parameter identification at RAE Farnborough,
at the Cranfield Institute of Technology under UK Government sponsorship, and at the British Aircraft
Corporation (Warton Division).

The RAE computer programs are based on the method of differential corrections, and the lateral
program is being applied to the analysis of Dutch roll oscillations of aircraft performing high-g
manoeuvres, to obtain aerodynamic derivatives up to angles of attack near the onset of wing rock.

The CIT computer program includes four progressively more complicated estimation methods, and
results are presented for the longitudinal response of the slender wing research aircraft (HP 115). Non-
linear aerodynamics are shown to have significant effects at the higher angles of attack.

The BAG computer program uses a type of hill-climbing technique, and has been used to obtain deriva-
tives from lateral responses, both rapid rolls and wing rock.

1. INTRODUCTION

The art of obtaining aerodynamic derivatives from flight records has been studied and practiced in
the UK using various methods in the past (time vector, Shinbrot, analogue matching etc.), but application
of optimisation techniques has only received serious attention comparatively recently. Computer programs
using such digital methods, which have been successfully implemented at the Royal Aircraft Establishment,
Cranfield Institute of Technology and British Aircraft Corporation (Warton Division), are briefly described
in this paper and some of the results pertaining to aircraft flying at high angles of attack are presented.

The need for analysis methods which could be used for nonlinear equations of motion became apparent
in Aerodynamics Department, RAE in 1968, when free-flight model tests of slender aircraft under lifting
conditions exhibited strong coupling between longitudinal and lateral responses. Digital computer programs
originally developed for trajectory and response analysis of rockets, based on the Newton-Raphson technique,
were successfully adapted to the transient equations of motion with five degrees of freedom, and the same
basic analysis method is now being used^ for the analysis of responses of full-scale aircraft (section 2).
In parallel, Avionics Department at RAE developed an optimisation method^, based on a hill-climbing tech-
nique, for use on a hybrid computer, but the computer time required for convergence has proved rather
lengthy, and so the method is not being used extensively.

More basic research into the development and use of computer techniques for parameter identification
is being done by Dr. Klein^ at CIT, under research contract with the Procurement Executive of the Ministry
of Defence, in close collaboration with Aerodynamics Department at RAE. The analysis methods included in
the current program are described in section 3, and are extensions of the Newton-Raphson technique,
yielding and making more use of statistical information than the current RAE programs.

The aim of the Flight Test and Aerodynamics Departments at BAG (Warton) has been to obtain, in
collaboration with their Mathematics Division, a computer program^ which can be used on a routine basis
to analyse flight records almost 'on-line' (section 3). The optimisation technique used is similar to
hill-climbing, and thus differs from the method used at RAE and CIT, but as yet there has not been oppor-
tunity to compare the results obtained with the three programs.

Each team has experience of analysing the classic types of responses, longitudinal short-period, and
lateral Dutch roll oscillations, and each has been applying the methods to responses which cannot be
analysed using linear techniques, in particular to lateral responses for various aircraft at high angle
of attack and high subsonic Mach number. Results for two aircraft are presented in the descriptions of the
work at RAE and BAC (sections 2 and A) and the latter also includes analysis of rapid-roll manoeuvres.
The variation of some of the derivatives with angle of attack is presented, and compared with tunnel and
estimated values where available. For both aircraft considered, the trends indicate that the Dutch-roll
oscillation becomes dynamically unstable as angle of attack is increased, so that the uncommanded wing-
rock oscillation can be identified with a negatively damped Dutch-roll type of motion.

The example chosen from the analysis done at CIT (section 3.3) is the highly-damped, nonlinear
longitudinal response to elevator pulse of the HP 115 slender-wing research aircraft throughout its angle
of attack range. In this case, the response measurements had not yielded any quantitative aerodynamic
data using analysis techniques available when the measurements were obtained'. The effects of second-
order aerodynamic derivatives are shown to be significant in obtaining a good fit to the response data,
but their values cannot be derived from the responses available for analysis.

The fourth parts of each of sections 2, 3 and 4 describe briefly the possible future development of
the three computer programs, and the types of problem likely to be studied.

Copyright © Controller HMSO, London 1974
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2. WORK AT THE ROYAL AIRCRAFT ESTABLISHMENT

2.1 Description of analysis method

The computer programs currently in use in Aerodynamics Department, RAE, were developed for the
analysis of the coupled longitudinal and lateral oscillations of free-flight models of aircraft. A digital
method of analysis became necessary when models were flown at non-zero lift (on a barrel-roll trajectory),
as the disturbances applied by small pulse rockets caused significant response in the longitudinal short-
period mode when attempting to excite the lateral Dutch-roll oscillation. The aerodynamic derivatives
were obtained successfully", using a Newton-Raphson technique to give an iterative optimisation procedure.
The same basic computer program has been adapted^ for analysis of responses of full-scale aircraft, one
for longitudinal motion, and one for lateral motion in the presence of longitudinal disturbances. The
programs have also been made more versatile than the original, as the parameters to be identified may now
be specified in the data, without changing the program.

The cost function is the sum of the squares of the weighted differences between the computed instru-
ment readings and the actual recorded readings, and the unknown parameters are the aerodynamic derivatives,
the initial conditions, and the instrument offset errors. The corrections required for the updating of
the parameters at each iteration are obtained from the partial derivatives of the equations of motion with
respect to the parameters. Statistically the simplest output error method is used, with no process noise
assumed, and a priori values are not set for the parameters. The relative weightings applied to the
instrument readings are usually chosen according to the magnitudes of the responses.

The equations of motion are those for the perturbations in the response variables about a trim
state, which need not be steady level flight, and at present only linear aerodynamic derivatives are
included. In the program for the analysis of lateral responses, the measured angle of attack and rate of
pitch are used as known disturbance inputs. For example, the sideforce equation is written as

v' = ŷ v' + ypp' + yrr' + y^' + y^< - v(r' + re) + w(p' + pe)

+ Saye + 8
 cos 9

e
 sin * .

where ' denotes the perturbation from the trim state, denoted by the suffix 'e'. The steady trim value
aye is included to allow the total measured angle of attack (w = V sin a) to be used in the pw term, and
the total computed angle of bank in the gravity term.

The computed instrument readings are obtained from the steady state and the perturbations, e.g. the
sideslip vane angle at x., z relative to the centre of gravity is given by

p p

+ v£ + xg(r' + re) - z6(p' * pe)}/V + Eg ,

where E0 is the offset error of the vane.

The complete sets of equations for the longitudinal and lateral programs are given in Ref.2.

2.2 Application of programs

The longitudinal and lateral derivatives of the Hunter Mk.12 aircraft in 1-g flight are currently
being determined, to give data needed for the next phases of the research programme on manoeuvre-demand
systems. The opportunity is being taken to compare results from the responses due to the usual control
inputs to excite short-period and Dutch roll oscillations (elevator doublet and rudder pulse respectively),
and from responses due to sequences of arbitrary control inputs.

The lateral program is also being used in the study of the wing-rock phenomenon*, as it appeared
from theoretical estimates that, for the Gnat Trainer aircraft, the Dutch roll becomes unstable at high
angles of attack and high subsonic Mach number. A flight test programme is almost complete, in which
ranges of Mach number at three different heights are covered, throughout the angle of attack range from
1-g flight up to and including the onset of wing-rock. The test procedure for the pilot is, at given
Mach number and initial height, to

(i) increase angle of attack, in a diving banked turn until buffet and subsequently wing-rock
occurs,

(ii) decrease angle of attack to well below buffet, and excite Dutch roll oscillation with a rudder
pulse,

(iii) increase angle of attack to near buffet onset, and excite Dutch roll oscillation,

(iv) increase angle of attack further, and if possible, excite Dutch roll oscillation in buffet,

(v) increase angle of attack until onset of wing-rock.

At each test point, (i) to (v), the pilot aims to maintain constant angle of attack and Mach number,
although this condition is very difficult to achieve at the higher angles.

'Wing-rock1 is used in the sense of an uncommanded lateral oscillation of either diverging or steady
amplitude.
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The analysis began with the responses obtained at the lower angles of attack, and then proceeded to
selected responses at the higher angles of attack, chosen on the basis of small variations in a and M .
At present, the wing-rock responses are being analysed using the equations of motion with linear deriva-
tives, and so divergent and steady amplitude oscillations are treated in separate portions.

Definition of the steady state has caused difficulty, as the offset errors of the rate gyros appear
to vary with flight condition, and bank angle cannot be recorded with the instrumentation available. The
equations for a steady co-ordinated turn have been used to evaluate p , q , r , 8 , $ , assuming that
zero errors in recorded angle of attack and normal acceleration are negligible.

2.3 Results for Dutch roll analysis (Gnat aircraft)

An example of the measured and computed Dutch roll responses obtained at low angle of attack is
shown in Fig.l, together with the aileron input and angle of attack variation. Corresponding results at
higher angle of attack for a Dutch roll in buffet, Fig.2, indicate that the fit obtained is not so close,
but is acceptable.

The preliminary results for some of the derivatives are shown in Fig.3, up to angles of attack just
below the onset of wing-rock, and covering the Mach number range 0.72 to 0.82. The derivatives C and

r
C were not determined,but kept constant at their estimated values. It may be seen that the values of
P

C are close to the tunnel results, and maintain a near-constant level. The computed values of C.,ne *e
are generally larger in magnitude than the tunnel results, but may indicate a loss in C at the higher

6
angles of attack. The damping-in-roll derivative, C , has greater scatter than the derivatives due to

P
sideslip, but the mean level is at a lower magnitude than the estimated variation. It does not appear
possible to determine the damping-in-yaw derivative, C - C , as two distinct levels are indicated

(with large expected errors) at the higher angles of attack. Currently, some of the responses are being
tested to see if C can be determined instead, as theoretical work has indicated that C may have a

P "p
greater influence on the overall damping of the lateral oscillation than C - C

nr nB
2.4 Future work

The analysis of wing-rock oscillations is continuing, the aim being to establish the adequacy or
otherwise of linear aerodynamics to define the transient flight behaviour.

In addition a projected research programme on a transport aircraft calls for the identification of
aerodynamic derivatives, and so preliminary consideration is being given to the representation and
analysis of a large flexible aircraft for which the rigid-body and bending modes may interact significantly.

3. WORK AT CRANFIELD INSTITUTE OF TECHNOLOGY

3. 1 Description of analysis methods

The research on aircraft parameter identification at Cranfield Institute of Technology is supported
by MOD(PE) contract, and has been directed towards analysis of responses expected to be difficult, for
example, heavily damped oscillations, rapid rolling, and nonlinear problems. Some of the work has been
reported elsewhere, and the following description is taken mainly from Ref.A.

The computer program developed incorporates four methods of estimating the parameters, and is
applicable to linear and nonlinear problems. The four methods are summarised in Table 1, which illustrates
the progressively more complicated cost functions and updating used. The equation error method is only
used as a start-up procedure for the output error methods if initial guesses for the parameters are not
otherwise available.

The weighted least squares method provides unbiased estimates of the unknown parameters provided
that the mathematical model of the motion is correct and there is no noise on the measured inputs. The
weighting matrix, W , applied to the instrument readings is kept constant throughout the iterations.

The maximum likelihood method assumes that the error distribution of instrument readings is known,
and in practice is taken to be Gaussian. The weighting matrix W. is updated iteratively as the inverse

of the covariance matrix of the measurement noise, .Wj = Rj . This method usually requires more
iterations and better starting estimates than for weighted least squares, and so it is useful to have both
methods in the same computer program, with control switched as the iteration proceeds.

In the Bayesian method of estimation, the unknown parameters are treated as random variables. If
Gaussian distributions are assumed, then the weighting applied to the parameter corrections is obtained
from the covariance matrix of the a priori known parameters. Again, it is profitable to progress from
maximum likelihood to Bayesian methods.

The nonlinear problems are covered by the same computing algorithm used for the linear equations of
motion, by introducing the augmented input vector, which includes the nonlinear terms with the input
variables. The basic program contains the linear aerodynamic derivatives, either for longitudinal or
lateral responses, and a separate subroutine is prepared for each nonlinear problem considered.
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The instrumentation assumed consists of the usual accelerometers, rate gyros and incidence probes,
corrected for transducer positions and the responses to be fitted are selected according to the actual
flight instrumentation.

The scheme has been implemented at CIT on a small computer using an intermediate level interpretative
language which was designed specifically for experimental data analysis applications, as described by its
originator in Ref.10. The language offers considerable operational flexibility, enabling acquisition,
scaling, transformation and processing of data to take place without intermediate storage, and allowing
'hands on' control even, under some circumstances, during program execution. The consequences of this
last feature are that wayward runs can often be 'rescued' without the need for restarting the entire
process, and that the general program can be incorporated, without modification, into a special purpose
program to enable data to be input and output in a user-oriented format. The disadvantage of the language
is the relative slowness of execution due to its interpretative nature. FORTRAN versions of the program
are to be prepared, for general use on other computers.

3.2 Application of programs

The longitudinal responses obtained on the Bassett variable stability aircraft for 'extreme'
characteristics have been analysed, altering the derivatives C , C and C 'to give negative staticm m- m

a a q
margin, and low and high values of damping. In all cases the fit between measured and computed responses
is satisfactory, and the derivatives obtained with acceptable accuracy. The lateral responses were used
to study the effects of making large changes in individual derivatives. The results showed that changes
in mode characteristics and no appropriate changes in control input resulted in strong correlation between
parameter estimates, causing decreased identifiability for some parameters.

The MS760 Paris aircraft has also been used for parameter identification studies, both for longitudinal
and lateral responses, and a study was made of different input forms. Simulated rapid rolling responses
(using North American F-100 data) have been analysed, fitting the lateral responses in the presence of
'measured' longitudinal responses. The results of these three computational experiments are reported in
Ref.4.

The computer program has also been used to analyse the highly-damped longitudinal response of the
HP 115 slender-wing research aircraft throughout its angle of attack range. Although strictly this
example is not in the category of 'manoeuvring flight' (the tests being carried out at nominally 1-g
conditions), the large angles of attack achieved make it non-standard as regards usual identification
problems, and so the results are included in this Report (section 3.3).

As expected in a research programme which is deliberately aimed at difficult cases, a number of
problems have arisen, some of which have yet to be solved (section 3.4). The problems of including non-
linearities in the mathematical model has been overcome, from a computational point of view, by considering
the nonlinear terms to be additional inputs to the system, as mentioned previously. The problem of
modelling a complicated system raises the fundamental question of how complex the model should be, the
best relationship between complexity and measurement information not being clear. If too many unknown
parameters are sought for a limited amount of data then a reduced reliability of evaluated parameters can
be expected, or attempts to identify all parameters might fail. Allied with this uncertainty is the
choice of input form, which is being studied as opportunity arises. Divergence only occurs rarely, due
to the progressive nature of the fitting process; however, difficulty arises in deciding whether the
estimated values of the parameters are meaningful, and whether the optimum set of parameters have been
chosen for analysis. Criteria for assessment are being tested, but no recommendations are possible as yet.

3.3 Results for longitudinal response analysis (HP 115 aircraft)

The experimental data has been taken from flight measurements of the longitudinal short-period
oscillation of a slender-wing research aircraft, excited from straight and level steady flight by elevator
deflections, at different airspeeds between 70 and 160 kn. The resulting airspeed changes during the
transient motion were negligible. The response variables analysed were rate of pitch and normal accelera-
tion, with elevator angle as the control input. The angle of attack measurements were found to be suspect,
due probably to vane stiction, and so were not included in the analysis.

On the basis of wind-tunnel tests and preliminary flight measurements, the normal force and pitching
moment were assumed to have derivatives with respect to a, q, n, f\, a2, qa and na . It was found that,
at the lower angles of attack, a good fit could be obtained using zero values for all the second order
derivatives, and for C and C (Fig.4). For most responses, C and C had to be fixed atz* m* z zn n 1 1
values measured in the wind-tunnel and in steady flight respectively. The values of the parameters were
compared with those obtained from (i) application of the maximum likelihood technique in the frequency
domain, and (ii) the nonlinear model, with a priori values assigned to the analysed derivatives. The
three sets of values agreed well, usually within the indicated errors, but the fit obtained for the normal
acceleration was significantly better with the nonlinear model.

At high angles of attack, the linear model was found to be inadequate, the mismatch in normal
acceleration being observable in Fig.5. The introduction of the nonlinear terms reduces this error, and
the resulting autocovariance function is quite close to that of white noise (see Fig.5). The use of the
nonlinear model also had a significant effect on the damping-in-pitch derviative, Cm + Cm_ , which was

q o
strongly correlated with C for the linear model. The remaining derivatives did not differ significantly

ma
from those derived with the linear model.
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The resulting variation of the estimated derivatives with angle of attack is shown in Figs.7a and b,
together with results from wind-tunnel and steady flight tests where available. The trends of C and

12
ma

Cm w:''th i-ncreasin8 angle of attack agree well with the tunnel results , although the general level of
n

Cm ^S closer to the results from steady-state flight tests. At the higher angles of attack the values of
n

Cz and Cm + Cm- dePart slightly from the tunnel results (those for daraping-in-pitch derivative being
a q a

taken from a slender-wing model of similar planform).

Comparisons were also made between results obtained from responses due to different types of
elevator input: stick-forward pulse and square pulse, and stick-back sharp pulse. The latter was not so
effective in exciting good responses for analysis, one set of parameters demonstrating this being the
average values of the partial derivatives, 3q/3C , 3n /3C etc., which were numerically smaller. The

a a
responses with effective inputs were analysed, using the nonlinear model to give results for C , C and

Zr\ Zii
Cm_ , shown in Fig.7b. Preliminary examination of the flight records had indicated the possible presence

n
of lift and moment due to rate of application of elevator control, and the degree of consistency through-
out the angle of attack range seems to substantiate the existence of significantly large values of C

n
and C for slender aircraft with trailing edge controls.

mii

3.4 Future work

It is envisaged that the tests currently being flown using the Folland Gnat aircraft in the RAE wing-
rock investigation will be analysed at Cranfield, to supplement the parameter identification results being
obtained at the RAE (section 2). In parallel with this work, the theoretical background and computational
implementation of methods.to analyse flight responses containing inputs from atmospheric turbulence are
being studied, and further nonlinear responses, in particular helicopter data, are to be analysed.

4. WORK AT BRITISH AIRCRAFT CORPORATION (WARTON)

4.1 Description of analysis method

The Flight Test and Aerodynamics Departments at BAG (Warton) have used various methods in the
analysis of flight records of military aircraft, for example, Lightning, TSR2, Jaguar13*1*, to obtain both
performance and handling parameters, and aerodynamic derivatives. Experience is now being gained in using
a digital computer program5 based on a least-squares technique, to obtain aerodynamic derivatives needed
to establish handling boundaries for flight clearance.

The error between measured and computed response time histories is expressed as a sum of squares and
to this is added a similar term for the a priori weighting to give the cost function

V Nz . 2 Nc
— — - - - — c. - c

o .
i oi

u.
1

2

The NZ responses z. . measured at N time points are matched to the computed response z. .

The usual number of responses is five, namely sideslip, roll rate, pitch rate, yaw rate and normal accel-
eration factor, a. is the standard deviation of the noise assumed on response 'j', and is usually chosen

to be the accuracy to which the appropriate instrumentation can measure, although the value may subsequently
be updated (but not automatically) on the basis of results obtained.

A total of N^ derivatives are variable, and are to be found, c. being the current value of the
ith derivative, and CQ^ being its a priori value, u.̂  is the 'uncertainty' of variable 'i', and
represents the confidence level of the value c ^ , i.e. it is believed that the correct value of c.
lies in the region CQ^ ± u. . The values of u. have usually to be chosen on past experience.

The scaling factor K affects the relative weightings between the response part of the cost function
and the a priori part. K is normally set to unity, although sometimes a value of zero is used to obtain
the best possible fit, ignoring a priori values.

The cost function is minimised using Powell's method for minimising a sum of squares without
calculating derivatives, and so differs from the techniques used in the RAE and CIT programs. The varia-
tion of responses with the derivatives is obtained by a purely numerical process.

The mathematical model of the equations of motion contains the five degrees of freedom a, 6, p, q,
r, in terms of their increments Aa etc. from the initial trimmed state. The aerodynamic forces and
moments are expressed as the usual derivatives, together with second order derivatives with respect to
angle of attack, and control deflections. Also included are engine gyroscopic contributions. The attitude
of the aircraft is represented by the direction consines of the body-fixed axis system relative to earth.
The computed instrument readings for a, 6 and az are corrected for transducer positions relative to
the eg.
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4.2 Application of the program

The aim is to process and analyse flight data in parallel with the flight-test programme, and so
the analysis program has been made compatible with other computer programs and data stores, to give
accptable turn-round times between flight experiment and the obtaining of analysed results. The flight
data is taken from the computer file storing all the relevant flight test runs, and the initial estimates
of the derivatives are interpolated from the data in the derivative file store. These latter may be
overwritten by either arithmetic or algebraic values obtained from other sources.

Results have been obtained from responses due to stick jerks and slow rudder doublets in level
flight, (exciting the longitudinal short period and lateral Dutch roll oscillations respectively), from
Dutch rolls excited during high-g turns, and from rapid roll responses, again at high-g. The latter
manoeuvre is defined by the control sequence: elevator to give required g-level in turn, then step input
to aileron (or roll control), with elevator and rudder held nominally constant. No attempt has been made
to modify these standard test techniques, as they usually yield sufficient information for flight clearance.
Instead, the advantage of the present analysis method is the ability to use more of the flight records so
obtained, in terms of including transient motion due to control inputs exciting the response, without
recourse to handmatching. To date, over 200 rapid roll responses have been matched, half of them requir-
ing little effort from the analysts, but 20% requiring considerable effort to achieve a good match. In
addition, about 60 responses at high angle of attack, mainly wing rock, have been considered. 15% of
these had to be abandoned, due to limitations in the present matheamtical model which only includes linear
variation of the lateral derivatives with angle of attack, and the remaining responses required some effort
to analyse.

The responses in rapid rolling have been used to obtain derivatives at relatively high angles of
attack, including the derivative Cn , yawing moment due to rate of roll, and to obtain significant cross-

np
coupling derivatives. The need to establish quickly the trends of derivatives with increasing angle of
attack and Mach number, in order to define the conditions for the next flight test in the series, has
been the main impetus in developing the present computer program.

Most of the problems encountered in using the program have been related to the experiments at high
angles of attack. Originally the computer program required analysis to start from a trimmed state, but
has now been modified to allow for initial accelerations, so that more flight records may be analysed.
The datum shifts (zero errors) on the instrumentation are currently estimated from flight records taken
during trimmed flight, which may lead to some undertainty. As in the work at RAE, it is not easy to
obtain records of wing-rock for relatively steady values of angle of attack and Mach number, so that the
choice of time histories to be analysed needs to be made by an experienced flight analyst. In fact, there
is general agreement among research workers in the United Kingdom that an important factor in making
efficient use of the analysis programs such as those described in this Report is the active collaboration
of both Flight Test and Flight Dynamics teams, to monitor the work being done. Experience is being gained
in interpreting the various error parameters available from the computer output, in particular the sensi-
tivities of response variables to the parameters, and the errors in the responses.

4.3 Results for rapid rolling and wing-rock (combat aircraft)

The BAC results presented here were obtained from matching the lateral responses of a fighter-strike
aircraft, at high angles of attack.

The aircraft exhibits wing-rock and a departure termed 'yaw off by the pilots, but both character-
istics have been shown to be identified with dynamic instability of the Dutch roll oscillation, that is,
loss of damping. Some rapid roll responses were also analysed, and a sample of the results are presented
here. Figs.8 and 9 show the measured and computed responses obtained in rapid rolls and wing-rock
respectively, and variations of the derivatives with angle of attack are given in Fig.10. Some estimates
of the derivatives have also been made, based on tunnel tests and trends in the calculated Dutch roll
characteristics, and are shown for comparison. In this analysis of the flight data, the derivatives due
to rate of yaw were kept constant at their a priori values.

The yawing moment due to sideslip becomes negative at the higher angles of attack, but the rolling
moment, C , is sufficiently large and negative to maintain the Dutch roll mode as an oscillation. The

*B
trends of the derivatives due to rate of roll with increasing angle of attack both have adverse effects
on Dutch roll damping, the rolling moment decaying towards zero, and the yawing moment becoming significantly
negative. The decay in C had been anticipated in the estimate, but the marked variation of C was
unexpected. p P

Analysis of flight records of other configurations of the aircraft has shown that the rolling moment
due to sideslip is highly dependent on the type of store load, although the other derivatives were not so
sensitive. (With stores, C is of course less positive.)

B
4.4 Future work

The computer program is currently being streamlined further for use on a routine basis, and a study
is being made of the effects of choice of confidence limits in the a priori values of derivatives in order
to obtain a simplified g'uide. The use of the correlation matrix to decide on parameters to include in the
analysis is also to be investigated.

Possible extensions to the program are to account for variations in forward speed (six degrees of
freedom), and to include further nonlinear aerodynamics, probably by combining linear increments with
given forms of variation with angles of attack and sideslip.
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5. CONCLUSIONS

The digital computer program developed in three centres in the UK are showing themselves to be
capable of identifying the aerodynamic derivatives from responses obtained in manoevures at high angle of
attack, although care and judgement are needed in assessing the results.

At RAE and CIT the available computer programs are proving to be valuable tools in the research work
on wing-rock, the flight measurements of responses being used to obtain values of derivatives which can
help identify the basic aerodynamics of the phenomenon. The Cranfield program has also been applied
successfully to the analysis of longitudinal responses due to nonlinear aerodynamic forces and moments.

In an aircraft firm, such as BAG, the emphasis must be on having methods of analysis which give quick
and reasonably accurate results for aerodynamic derivatives, to be used as background information in the
assessment of flying qualities of an aircraft in its various configurations and throughout its flight
envelopes. Application of the analysis program to measurements at the extremes of the flight envelope has
given aerodynamic derivative data which is currently not available from wind-tunnel tests.
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Table 1

SUMMARY OF METHODS USED AT CIT

Method Cost function Estimate of parameters, y

Equation error:

Regression analysis

Output error:

Weighted
least squares

Maximum likelihood

Bayesian

i=l

Definitions:

H£ = gradient matrix
N = number of data points

R = covariance matrix of
measurement noise, 1 i

R = covariance matrix of
2 a priori known parameters, 2 E|(Y-Y0)(Y-Y0)

J

W
X.
x.
y.

Y

E| j

weighting matrix
matrix of measured state and input variables
state vector
output vector
measurement vector

parameter vector

expected value, YQ " E{Y}
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SYMBOLS (not defined in text)

a , ay z

g

p, q, r

v, w

V
x, y, z

v etc.'v

acceleration factors in y and z directions,
respectively

non-dimensional aerodynamic derivative
2

acceleration due to gravity, m/s

angular rate of roll, pitch and yaw
respectively, rad/s

velocity components in y and z directions
respectively, m/8

forward speed, m/s

body-axis system

dimensional aerodynamic derivatives, divided
by aircraft mass

a

B

5, r\,

angle of attack, rad

angle of sideslip, rad

deflection of aileron, elevator
and rudder, respectively

angle of pitch

angle of bank
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ADVANCEMENT IN PARAMETER IDENTIFICATION AND AIRCRAFT FLIGHT TESTING

Roger A. Burton
Systems Analyst Specialist

Flight Test Division
Naval Air Test Center

Patuxent River, Maryland 20670
USA

SUMMARY

This paper presents results from an ongoing program at the Naval Air Test Center
to develop parameter identification technology with specific emphasis placed on studies
conducted in parameter identifiability and "optimal" control inputs for parameter esti-
mation. Navy applications for parameter identification technology are discussed with
specific areas in aircraft stability and control testing outlined. Specific criteria
required for defining optimal control inputs and establishing parameter identifiability
are discussed. Parameter identification results from the analysis of flight test data
are presented which establish the need for considering input design in planning'tests
for extracting aerodynamic coefficients from flight test data. Parameter identifiability
results for specific control inputs used are presented. In cases where identifiability
problems are shown to exist the use of a rank deficient solution to improve parameter
identifiability is demonstrated.

SYMBOLS

az acceleration in Z axis

ay lateral acceleration

g acceleration due to gravity

^a. distance from center of gravity to angle of attack vane
o
6 distance from center of gravity to sideslip vane

Kd Dutch roll root residue

KSS steady state gain

K<(> root locus gain for the roll rate to aileron transfer function

Ka angle of attack vane scale factor

Kg sideslip vane scale factor

M pitching moment

M() pitching moment derivative

N yawing moment

N() yawing moment derivative

. Ny transfer function numerator polynomial for the x to y transfer
function

nz normal acceleration

n random white noise

L rolling moment

L() rolling moment derivative

p roll rate

q pitch rate

R measurement noise covariance matrix

r yaw rate

g laplace operator

T . transpose
J . cost function
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u longitudinal airspeed

uo longitudinal trim airspeed

v eigenvector

X longitudinal force

X() longitudinal force derivative

Y side force

Y() side force derivative

Z vertical force

Z() vertical force derivative

a angle of attack

a gust angle o± attack
o

B sideslip angle

gp. gust sideslip angle
o

A characteristic equation

6a aileron position

<5e elevator position

6R rudder position

? damping ratio

9 pitch angle

A eigenvalue

ax standard deviation of the x calculated response with respect to
the x measured response

TR roll mode time constant

Tg spiral mode time constant

<(> roll angle

u)c gust break frequency

un natural frequency

Subscripts

i index

m measured

sp short period

INTRODUCTION

The Naval Air Test Center (NATO is conducting a research program to develop air-
frame parameter identification technology for use in flight testing Navy aircraft. This
program was initiated in 1971 between the Naval Air Systems Command (NAVAIR) and NATC.
During this same time period the Office of Naval Research (ONR) issued a contract to
Systems Control, Inc. (SCI) to advance the state-of-the-art in parameter identification
methods. In 1973 a concentrated effort was conducted by the Navy to continue the
development of this new technology by forming a joint program between NATC, NAVAIR, ONR
and SCI. This paper will present the results of this joint program to date including a
discussion of Navy applications for parameter identification and flight test results.

BACKGROUND

Many flight test applications of airframe parameter identification techniques have
surfaced in recent years as the technology in this field has continuously increased.
For example, the determination of the compliance of an aircraft's flying qualities with
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the requirements of military specification MIL-F-8785B (reference (1)) has long been a
costly, time consuming facet of aircraft flight testing. However, it now appears
possible_that a considerable portion of the flight test program can be eliminated through
use of airframe parameter identification. This recent technology would be employed to
extract the aircraft stability and control derivatives from data obtained through a
limited number of flight tests. These derivatives in turn, would be used to verify the
aircraft's compliance with the military specification requirements. In addition, the
steady growth in the complexities of these aircraft specification requirements and
automatic landing systems have changed the complexion of the requirements set upon the
flight test community for data accuracy and evaluation techniques. These new require-
ments for improved data accuracy and more complicated evaluation techniques can be ful-
filled by using this new airframe identification technology. Thus the desire to reduce
the amount of flight time spent on specification testing and the increased complexity of
aircraft systems and specification requirements has prompted the development of airframe
parameter identification technology at NATC.

SCOPE OF INVESTIGATION

During the parameter identification program at NATC beginning in 1971, both classical
and advanced airframe parameter identification methods have been studied. This approach
was taken in order to develop a wide spectrum of experience in parameter estimation theory
and applications. Classical methods that were programmed during this period are analog
matching, least squares, z-transform, Fourier transform, and Newton-Raphson. (Results
from these earlier programs are published in references 2 and 3.) The advanced statisti-
cal method that has been programmed is the maximum likelihood approach to parameter
identification. This later effort is the topic of this paper with emphasis placed on
parameter identifiability studies conducted. The major efforts in this area have been
in establishing criteria for the determination of "optimal" inputs for parameter esti-
mation and identifiability of system parameters.

A flight test program was conducted in support of the development of the maximum
likelihood parameter identification algorithm. The purpose of this flight test program
was to gather data to exercise the parameter identification algorithms programmed and
to determine the proper data gathering procedures. This later task is the major effort
in this program and its objective is to determine the effects of control system inputs on
parameter identification estimates. The determination of the proper data gathering
procedures is basically an experimental study to solve the parameter identifiability
problem by determining an "optimal" control input that will result in the "best" parameter
estimates. The types of control inputs that are being used to generate data in the
longitudinal axis are pulse, step, doublet, sine wave, variable frequency sine wave, and
random. Aileron pulse, aileron step, aileron doublet, rudder doublet, aileron-rudder
doublet, aileron sine wave, rudder sine wave, and aileron-rudder sine wave inputs are
being used to excite the airplane motion in the lateral-directional axes. The F-14A
airplane BuNo 157987 was the flying test bed for this program and during the period
May 1974 to September 1974 eight flights were flown to obtain flight test data. During
these flights, 196 maneuvers (inputs) were performed to collect data for the input design
experiments. Tests were conducted in the cruise and power approach configurations at
flight conditions of approximately 0.6 Mach at 15,000 and 30,000 feet altitude.

FLIGHT TEST APPLICATIONS

Navy applications for airframe parameter identification technology include stability
and control testing, system simulation, establishment of a data base for operational
flight trainers, and the determination of aircraft frequency response for evaluation of
automatic carrier landing systems. The basic procedure used is to first estimate the
aircraft parameters of interest over the required flight envelope. These estimated
parameters are then used to determine aircraft stability and control characteristics,
operational flight trainer data base, or frequency response. The following section will
be limited to a discussion of the Navy applications of parameter identification to
aircraft stability and control testing.

Flying Qualities Specification Compliance

The new flying qualities specification (reference l) has many new parametric require-
ments which require the use of an advanced airframe parameter identification technique
for determination of specification compliance. In the longitudinal axis the new require-
ments of interest are short period damping (?Sp), frequency" (unsp^

 and acceleration
sensitivity ,nz.. The requirements for .nz. are given in graphical form in figure 1.

~ o~
There are several flight test procedures which have been proposed for determining ,nz.

a
including short period free response to a doublet input, wind up turns, steady pull ups,
and frequency response to sinusoidal inputs. A mathematical expression for nz steady

a
state is given by:

- l 1Q • 1 1Q Q "CX

(1)

-Mq + u0M6e
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The primary difference in these test procedures for determining nz is the tail lift

term Z{ . The short period free response to a doublet does not consider this term (the

value obtained for nz is for the untrimmed lift curve slope). The windup turn and
o~

steady pull-up maneuvers give the value for nz under steady state (low frequency
a

conditions) assuming that pitch rate effects on Zg .are small. The correct value for

nz will be obtained from sinusoidal inputs in that this value contains the tail lift
(S~)
term at the frequency at which the airplane normally responds to control inputs. This
correct value of nz can be determined using estimated aircraft stability and control

(jj~)
derivatives to calculate the transfer function parameters of the pitch rate to elevator
9 and angle of attack to elevator .a . transfer functions.
( ) C«

-(S) = N ^ (3)

A

where N? N? are the transfer function numerator polynomials and A is the character-
o ' o
e e

istic equation of the system. An analytical expression for nz can be formed using the(~)

linear relationship for normal acceleration

nz = u0 (9 - a) (H)
g

and equations (2) and (3).

1̂  (s) = u1°
(5)

The normal acceleration sensitivity nz ' is calculated from equation (5) by substituting

jw for s and evaluating the expression at the short period frequency (un ).

Another new longitudinal requirement of MIL-F-8785B is the specification of a
maximum value of damping ratio (t,) now specified for the short period mode. In general,
classical hand measurement techniques are not successful in accurately predicting the
damping ratio for heavily damped systems which characterize modern Navy aircraft with a
stability augmentation mode engaged. Thus airframe parameter identification techniques
can be used to fulfill this new data requirement', since the damping ratio can be
expressed as a combination of stability derivatives. Thus in the longitudinal axis if
the transfer function parameters or stability derivatives can be estimated, the
specification requirements that can be determined are WnSp5 (Ĥ \' ^sp' n̂ and ^p'

In the lateral-directional axis, MIL-F-8785B sets new requirements for Dutch roll
damping Ud> and frequency (wnd>, spiral mode (1/TS), roll mode U/TR), and roll rate
specifications. In addition to the updated military specification requirements in the
lateral-directional axes, there are also new parametric requirements in the detail
specifications for the S-3A (reference 4) and F-14A (reference 5) airplanes. These new
requirements are in the form of the Dutch roll coupling parameter (con ) and the Dutch

$.
Wnd

roll excitation parameter (Kd ). These new specification requirements in the lateral-

ŝdirectional axes are difficult to determine accurately because the effects of the spiral,
roll and Dutch roll modes cannot be easily separated using conventional techniques.
However, these new lateral-directional requirements can easily be determined if the roll
rate to aileron transfer function is calculated using estimated stability and control
derivatives.
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(S) = * (6)
a (Tg S+l) (TR S+l) (S? + 25d S+l)

The specification requirements which can be determined from the matched transfer function
parameters are u>n , Cd> TS, TR, oin^ and Kd • In order to determine Kd from this data,

und Kss Kss
the matched transfer function poles and zeros are plotted on an S-plane as shown in
figure 2.

The term Kd is then determined as the residue measured from the Dutch roll pole and
is given by:

V
dJDutch ~ a b ( 7 )
Roll eund

wd
Residue

that 1/TS = 0.

The term Kss is the steady state residue and is measured from the origin, assuming

0.

teady = "VTR ...
State T̂ ̂— (8)

Residue d

Thus Kd/Kss is determined as the ratio of equations (7) and (8).

STATUS OF NAVY PARAMETER IDENTIFICATION CAPABILITY

Successful completion of the joint program among NATC, NAVAIR, ONR and SCI has
resulted in the development of an advanced state-of-the-art maximum likelihood identi-
fication computer program called SCIDNT. This computer program was implemented on the
NATC Real Time Data Processing System (RTFS) in August, 1974 and has subsequently been
successfully _ used to identify aircraft stability and control parameters from flight test
data. _ This identification algorithm is programmed in a general format to provide the
capability for identifying linear and nonlinear aircraft models and easily modifying the
equations of motion and instrumentation equations. SCIDNT contains many advanced
features which enable it to more readily handle the flight test data analysis problem.
These capabilities and options of SCIDNT are outlined in Table I. In its present form
SCIDNT can determine the stability and control derivatives for the linearized, uncoupled
longitudinal and lateral aircraft equations of motion in the presence of wind gusts and
measurement errors. These equations of motion and measurement equations are presented
below:

Longitudinal Equations of Motion:

a = ZaU+aJ+ZuU+Zql - g_ sin 9O + Z6 <$e (9)

u = Xa(a+ag)+Xu
u+Xqq-g cos 6O + X6 6e (10)

q = Ma(a+ag)+Muu+Mqq + M6 6e (11)

9 - q (12)

«g =-uc ag + n6 (13)

Longitudinal Measurement Equations:

am = Ka
U0

Um '- U + R2 (15)

1m = q + n3 (16)

9m = 9 + n4 (ly)

azm =
 uo (Za(a+ag) + Z& 6e) + n5 Q8)
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Lateral Equations of Motion:

p = LpP = Lrr + Lg (B+6g) +L6a 6a + L6R 6R (19)

r - Npp + Nrr + Ne (B+Bg)
 + N6a 6a + N6R 6R (20)

B = sin a0p-cos aor + YB (B + Bg) + g.
 cos eo + Y6, 6a «R

 R

U0

<(> = 'p + tan 90 (22)

B =-uc 6g
 + ne (23)

Lateral Measurement Equations:

Pm = P + ni (24)

rm = r + nz (25)

Bm = Kg (g + Bg) + S-gKg r + n3 (26)

u0

<l>m = <t> + n4 (27)

aym = U0 (Yg (B + Bg) + Y6a 6a
 + Y<5R 6R) + n5 (28)

One of the more important data analysis problems that is addressed in SCIDNT is the
identifiability problem associated with accurately extracting stability and control
derivatives from flight test data. This identifiability problem is related to the degree
of excitation of the modes of a system by a particular input and the corresponding ability
to identify the parameters of the system (reference 6). In other words, in order to
identify a mode (or parameters) of a system that particular mode must be excited by the
input. This parameter identifiability problem also relates to whether a parameter can
be identified by itself or whether it is identifiable only as part of a linear combination
of several parameters (reference 6). Parameter identifiability problems usually manifest
themselves in the identification procedure as either physically nonrealizable parameter
estimates, large parameter error covariances, or problems in inverting the information
matrix. SCIDNT uses three different approaches to alleviate parameter identifiability
problems:

a. Parameters may be fixed or constrained to be within certain bounds.

b. A priori weighing may be placed on parameters estimates.

c. A rank deficient solution may be used to compute the inverse of the information
matrix.

These three techniques can be used separately or in conjunction with each other in SCIDNT
to alleviate the parameter identifiability problems. Parameter fixing or constraining
and a priori weighing are subjective techniques and their use is well documented in the
literature. Since these two techniques require a high degree of operator skill for
successful implementation, a more generalized method (automatic or black box procedure)
is desirable for use by the practicing flight test engineer. The technique implemented
in SCIDNT to solve this problem is the use of a rank deficient solution to handle the
numerical problems (identifiability problems) associated with inverting the information
matrix and obtaining accurate parameter estimates and error covariances. These numeri-
cal problems can be related to the spread in the eigenvalues of the information matrix
(reference 6). For example, neglecting computer round-off and other computational
errors, a perfect dependency among parameters would result in a zero eigenvalue and a
subsequent difficulty in inverting the information matrix. Thus for this case, a rank
deficient solution can be used in SCIDNT to calculate the inverse of the information
matrix. In actual analysis of flight test data, computational errors restrict the
existence of an actual zero eigenvalue and thus the spread between the smallest and
largest eigenvalues will be many orders of magnitude with the smallest eigenvalue being
non-zero. When the spread in the eigenvalues is large, the smaller eigenvalues can be
related to singular directions in parameter space and indicate parameters or combinations
of parameters which cannot be identified. It has been demonstrated by using the rank
deficient solution option of SCIDNT that numerical convergence can be achieved (with
reasonable parameter estimates) in cases where previous computer runs did not converge.
The utilization of the rank deficient analysis in SCIDNT will be discussed in the Flight
Test Results Sections.

FLIGHT TEST RESULTS

This section presents representative data from the input design experiments to
demonstrate the feasibiltiy of using an "optimal" control input to improve parameter
identifiability. The criteria used to quantitatively establish improvement in para-
meter identifiability were comparisons of:
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a. Stability and control derivative estimates.

b. Standard- deviation of parameter estimate error (confidence bounds).

c. Eigenvalue spread of the information matrix.

d. Parameter step size (convergence characteristics).

e. Cost function variation.

f. Standard deviation of the computed time history with respect to the measured
response (CTX)'

g. Estimates of transfer function parameters (stability and control specification
requirements) computed from parameter estimates.

h. Aircraft response prediction.

Normally the "true value" of the parameters (stability and control derivatives) is not
known; however a priori knowledge of the values of the transfer function parameters
(damping, frequency and time constants) does exist based on classical hand measurement
techniques. Thus comparisons between the transfer function parameters based on classical
hand measurement techniques and those computed from SCIDNT parameter estimates will
indicate the relative accuracy of the estimated stability and control derivatives.

Longitudinal Parameter Identifiability

The longitudinal analysis was conducted using the short period approximation to the
longitudinal dynamics of the airplane. This was accomplished by setting the derivatiyes
X , X 5 Xq, Xg , MUJ and Zu in equations 9, 10, and 11 equal to zero. The process noise

option was not used in this case and pitch rate corrections to angle of attack were not
made. A time history match for the response to a doublet input is presented in figure 3.
This comparison of time histories shows only a fair match between the flight test data
and computed response from SCIDNT and in practice would not be acceptable for use in
satisfying flight test data requirements. The estimated stability and control derviatives
for this run are presented in Table II. The matched response for a sine wave input is
presented in figure 4. The estimated stability and control derivatives for this run are
presented in Table III. A comparison between figures 3 and 4 shows that the time history
match for the sine wave input is considerably better than that achieved using the doublet
input. Refering to Table II, it is seen that the term Zg did not converge using a

doublet input (high standard deviation and large parameter step size) whereas in Table
III Zg did converge for the Response generated using a sine wave input. In fact, compari-

sons of Tables II and III show that for all but one parameter the standard deviation of
the estimate error and the parameter step size decreased when going from a doublet to a
sine wave input. Corresponding decreases in the cost function variation and the standard
deviation of the computed time history with respect to the measured response (0x) were
also observed.; however, the eigenvalue spread of the information matrix was larger for
the sine wave input than it was for the doublet input. Thus for this case using a more
complicated input did not decrease the eigenvalue spread; however, an improvement in
parameter identifiability was observed using the sine wave input as indicated by the
variation in the other criteria used for this analysis. This improvement in parameter
identifiability and the accuracy of the estimated parameters is also indicated by the
comparison of short period damping, frequency and normal acceleration sensitivity (nz/a)
presented in Table IV for classical analysis and identification results. The classical
analysis results were computed using hand measurement techniques for damping (peak to
peak method), frequency (measured period of oscillation) and (nz) (ratio of the envelope

a
of the nz and a responses to a sine wave input at the short period frequency). As shown,
both the doublet and sine wave results represent reasonable estimates of these para-
meters; however, in all cases the results from the sine wave input are closer to the
classical analysis values. Since a reasonable amount of confidence is placed on the
classical results for this case, this comparisons indicates that the use of a sine wave
input as compared to a doublet input does improve the identifiability and thus the
accuracy of the longitudinal stability and control derivative estimates. It should be
emphasized that these results are only a small sample from the total longitudinal data
being analyzed and that one cannot conclude from these limited results that a elevator
sine wave as compared to a elevator doublet is a better input for parameter estimation.

Another criteria often used to demonstrate the accuracy of estimated stability and
control derivatives is aircraft response prediction. This technique is illustrated in
figure 5. In this case a doublet input (input 1) was used to excite the aircraft re-
sponse at one flight condition and then SCIDNT was used to identify the stability and
control derivatives. A second input (sine wave) was then used to excite the airplane at
the same flight condition. The identified model from the doublet input was then used
in conjunction with the sine wave input to determine if the identified model would predict
the aircraft response for the different input. The results from these tests are pre-
sented in figure 6. As shown, the identified model was successful in predicting the
aircraft response giving a good indication of the accuracy of the identified stability
and control derivatives.
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Lateral-Directional Parameter Identifiability

The lateral-directional parameter identifiability study was conducted using equations
19 through 28. The process noise option of SCIDNT was not used during this analysis
and yaw rate corrections to sideslip angle were not made (Kg=0). Parameters were
estimated in three distinct steps using six iterations of the computer program. Initially
least squares start up values were used and the N and Y derivatives were estimated hold-
ing the L derivatives constant. Next the L derivatives were estimated holding the N and
Y derivatives from Step (1) constant. The final step in the procedure was to fine tune
the parameter estimates by estimating all of the derivatives (N,Y,L) at once using as
start up values the results from Steps (1) and (2). Typical results for rudder doublet,
aileron-rudder doublets and aileron-rudder sine waves are presented in Tables V through
IX and a time history match for an aileron-rudder doublet is presented in figure 7.
The parameter estimates for these maneuvers (Table V) show that the aileron rudder doublet
and sine wave inputs gave reasonable estimates of the stability and control derivatives
whereas the rudder input resulted in estimates that for some parameters were of the wrong
sign (Ng,Lr). In addition, the estimates for the rudder input case are several orders
of magnitude different than those observed from the aileron-rudder inputs. Comparison of
the parameter step sizes (Table VI) and standard deviations (Table VII) shows that SCIDNT
had better convergence properties and lower standard deviations for the aileron-rudder^
inputs as compared to the rudder only doublet. A comparison of the eigenvalue separation
and the standard deviations of the time history fits resulting from these three inputs
are presented in Table VIII. As shown, the aileron-rudder doublet resulted in the
lowest eigenvalue separation and the best overall time history matches. All three inputs
resulted in reasonable estimates of aircraft Dutch roll frequency and damping character-
istics as compared to classical analysis results; however, the rudder doublet input did
not give good estimates of roll and spiral mode time constants. These comparisons indicate
that by using a combination aileron-rudder input parameter identifiability is improved
over that obtained using rudder only inputs (similar results were obtained using aileron
only inputs). This improvement in parameter identifiability was obtained not only for
the rolling derivatives (rudder only inputs primarily excite the yaw and side force
derivatives) but for the yaw and side force derivatives as well. This can be attributed
in part to the ability to obtain better estimates of the coupling derivatives (due to
better excitation of aircraft response) which in turn result in better estimates of the
non-coupling derivatives. These examples clearly demonstrate from a practical viewpoint
that the accuracy of parameter estimates and the ability to identify aircraft parameters
is input dependent. The data presented here for the lateral-directional parameter
identifiability study is limited in scope and does not represent a complete data base
at this time for specifying the "optimal" control input. However, a case has been made
for the need to consider the parameter identifiability/input design problem in planning
flight tests. In fact, many factors have been observed during these tests which will
lead to the establishment of criteria for "optimal" control inputs. Such factors as
input frequency, input energy and amplitude of aircraft response have been observed to
have a significant influence on parameter identifiability as well as the type of input
used. These factors are currently being investigated as well as those discussed in
items a through g of this section to establish the criteria for determining the "optimal"
input.

Advanced concepts which give a more concise description of the total information
about all parameters in the system are also under consideration. For example the
information matrix (M) or dispersion matrix (M-l) could be used to determine the
identifiability of system parameter from a given set of flight data (reference 7). The
dispersion matrix represents a lower bound on parameter error covariances and thus the
trace of this matrix would give the sum of the parameter error covariances. Small values
of the trace would indicate a good set of data whereas large values would indicate
identifiability problems. The determinate of the dispersion matrix could also be_used
for this purpose, since its value would represent the product of the covariances in the
principle directions in parameter space.

Rank Deficient Solution

In cases where parameter identifiability problems are observed the rank deficient
solution of SCIDNT can be used to improve parameter estimates and algorithm convergence
characteristics. The estimation results from the analysis of the rudder doublet input
data presented in Tables V through IX show that a parameter identifiability problem
exists for this set of data. Parameter estimates for this-input were characterized by
incorrect signs, large parameter step sizes, and large parameter error standard
deviations. This parameter identifiability problem was solved in the past by a_priori
weighting and fixing parameters; however, by using the rank deficient solution it is no
longer necessary to subjectively weight and fix various parameters but instead the rank
deficient solution fixes combinations of parameters corresponding to nearly zero eigen-
values. Each of these small eigenvalues represent a singular direction in parameter
space and a combination of parameters that cannot be uniquely identified. The imple-
mentation of the rank deficient solution can be illustrated by considering the nxn
information matrix (M) in terms of its eigenvalues and eigenvectors (reference 6).

M = E XiViVi
T (29)

i - 1

where X and V represent the eigenvalues and eigenvectors, respectively. The inverse of
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the information matrix is given by:

rp

V (30)

n
M~l - T 1

The parameter step (A0) in the numerical optimization procedure is:

A3 = M-l (|a,T (31)

where 0 represents the vector of parameters to be identified. The rank deficient
solution in concept neglects any eigenvalues below a predetermined threshold k in
computing the inverse of the information matrix.

M-1 = "z ±_ ViViT (32)
1 = 1 Xi

where the relationship for the cutoff threshold is given by:

Xi < k XMAX (33)

Thus all eigenvalues less than k'Xmax would be discarded. In the example given in
equation (32) n of the n eigenvalues would be discarded in computing the inverse of
the information matrix. The practical limitations of utilizing the rank deficient
solution are that the parameter step sizes will be small (slow convergence) and good
start up values are required.

Thus in trying to improve the identifiability of the rudder doublet data the eigen-
value threshold was set to k = 10~4. The results from this rank deficient solution are
compared with the previous rudder doublet data in Table X. As shown, improvements in
parameter identifiability were obtained as indicated by more realistic parameter
estimates (Ng and Lr now have the correct sign) and reduced parameter estimate error
standard deviations and step sizes. Time history matches were considered good for this
case and were better than those achieved for sideslip and lateral acceleration without
the rank deficient solution. This example illustrates that the rank deficient solution
can be successfully used to correct parameter identifiability problems and represents
an advancement in the state-of-the-art when compared to previous methods for improving
identification algorithm convergence characteristics.

CONCLUDING REMARKS

The parameter identifiability investigations conducted have established the need
for considering input design in planning tests for extracting aerodynamic coefficients
from flight test data. Using an elevator sine wave input to generate aircraft responses
in the longitudinal axis improved parameter identifiability as compared to using a more
simple elevator doublet input. Lateral-directional tests using aileron pulses, rudder
doublets, aileron-rudder doublets and aileron-rudder sine wave inputs showed that the
combination aileron-rudder inputs resulted in improved parameter identifiability. Para-
meter identifiability is the interaction of many criteria and cannot for example be
stated simply in terms of eigenvalue separation. The information content in a set of
data containing the system parameters is affected by input type, input frequency, input
energy and amplitude of aircraft response. These factors have been observed to influence
parameter identifiability criteria such as eigenvalue spread, parameter error standard
deviation, parameter convergence, time history matches, cost function variation, and
accuracy of estimates. In cases where parameter identifiability problems exist a rank
deficient solution can be used to improve the quality of parameter estimates.

The results from the current program in parameter identifiability will be used in
a research effort in 1975-76 to develop a real time data quality analysis algorithm for
on-line verification of parameter identifiability. Additional research programs that
will be conducted during this time frame include development of input design and model
structure determination algorithms, implementation of SCIDNT nonlinear analysis capability,
and the implementation of a helicopter analysis program.
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TABLE I
SCIDNT Capabilities and Options

NUMBER DESCRIPTION

1.

2.

3.

4.

5.

6.

7.

9.

Any parameter may be fixed or constrained to be
within certain bounds.

A Priori weighting may be placed on parameter
estimates.

Standard deviations of parameter estimation
errors are computed.

Biases and random noise errors in instruments
are computed.

Process noise may be included and its magni-
tude and break frequency identified.

Process noise effects may be included but not
identified.

Measurements from failed instruments may be
deleted.

States may be deleted which do not signifi-
cantly enter the aircraft modes of the
particular data record considered.

Rank deficient solution may be used to compute
the inverse of the information matrix.

TABLE II
SCIDNT Estimates of Longitudinal Short Period Stability and

Control Derivatives Using a Doublet Input

Derivatives

Esimate

Standard Deviation

Parameter Step Size

Eigenvalue Spread

Cost Function Value

Time History Matches

Za

-0.553

0.0038

0.0045

Ma

-2.076

0.0082

0.012

Mq

-0.670

0.0071

0.004

Z6e

-0.035

0. 0055

0.018

%

-4.621

0.023

-0.016

0.609 x IO2

-2.84 x IO3

aa = .00276 06 = .0102

aq = .0086 aa =2.95
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TABLE III
SCIDNT Estimates of Longitudinal Short Period Stability Using a Sine Wave Input

Derivatives

Estimate

Standard Deviation

Parameter Step Size

Eigenvalue

Cost Function Variation

Time History Matches

za

-0.501

0.0028

0.002

Ma

-2.13

0.0068

0.006

Mq

-0.711

0.0064

0.003

Z'e

-0.167

0.006

0.008

M«e

-5.075

0.021

-0.023

0.225 x IO3

-2.80 x IO3

aa = .0060 a9 = .0100

aq = .0046 aa - 2.56
"Zi

TABLE IV
Comparison of Longitudinal
Short Period Characteristics

Description

Classical

SCIDNT-Doublet

SCIDNT-SINE

Damping
Ratio
Usp)

0.31

0.42

0.384

Frequency
(t°nsp)
(rad/sec)

1. 58

1.599

1.592

HZ
a
(g/rad)

10.3

11.62

10.06

TABLE V
Lateral-Directional Parameter Estimates

Parameter

Lp

Lr

LB

Np

Nr

Ng

YB

Lga

N6a

Yga

L6R

N«R

Y*R

Inout
Rudder (1)

Doublet

-7.799

-3.126

-25.29

-3.381

-3.450

-7.929

-0.0876

9.57C

0.24°

OC

-2.954

.785

-0.0267C

Aileron^'
Rudder
Doublet

-2.402

1.474

-8.352

-0.0270

-0.632

2.12

-0. 0813

11.34

0.24C

Oc

-2.476

1.816

-0.0267°

Aileron^1'
Rudder
Sine

-2.612

2.292

-7.789

-0.0225

-0.459

1.969

-0.0832

10.189

0.24°

0°

-4.738

1.614

-0.0267°

Note: (1) The superscript c indicates that the parameter was held
constant during the estimation procedure.
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TABLE VI
Lateral-Directional Parameter Step Size

Parameter

Lp

Lr

LB
Np

Nr

Ng

YB

L6a

L«R

Y6"

Rudder
Doublet

-0.128

-1.048

-2.204

4.586

3.662

13.32

-0.0016

_

-0.541

0.731

Input
Aileron
Rudder
Doublet

-0.0145

-0.0384

-0.0365

-0.0022

0.0142

-0.0026

-0.000063

0.0662

0.0363

-0.0129

Aileron
Rudder
Sine

0.135

0.0539

0.637

-0.00038

-0.00057

0.00821

0.00131

-0.561

-0.178

0.0409

TABLE VII
Lateral-Direction Parameter Error

Standard Deviation

Parameter

Lp

Lr

LB

Np

Nr

Ng

YB

âY6a

N6R

Y*R

Input
Rudder
Doublet

7.978

7.145

24.14

2.596

2. 326

7.851

0. 00103

-

1.749

0. 568

-

Aileron
. Rudder
Doublet

0.0657

0.1056

0.193

0.0064

0.0097

0.0194

0.0011

0.269

0.0729

0.0179

Aileron
Rudder
Sine

0.116

0.111

0.319

0.0042

0.00467

0.0134

0.00062

0.410

0.154

0.0163

— i ~
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TABLE VIII
Additional Lateral-Directional Parameter

Identifiability Characteristics

Parameter

Eigenvalue
Separation

Cost Function
Value

0P

°r

°B

°<0

%

Input
Rudder (1)

Doublet

-0.121xl07

-0.273xl04

0.0348

0.0132

0.019

0.0626

0.732

Aileron(2)

Rudder
Doublet

0.107xl06

-0.305xl04

0.0301

0.0177

0.0156

0.0204

0.892

Aileron' 2 )
Rudder
Sine

0.140xl07

-0.513xl04

0.0486

0.0198

0.0163

0.0892

0.616

Note: (1) Smallest eigenvalue is negative.
(2) All eigenvalues are positive.

TABLE IX
Lateral-Directional Modal Characteristics

Parameter

1/Tg

1/TR

Cd

»nd

Conventional
Analysis

^0

2.4 to 2.6

0.1

1.53

Input

Rudder
Doublet

-0.124 .

10.69

0.171

1.54

Aileron
Rudder
Doublet

-0.0188

2.48

0.201

1.528

Aileron
Rudder
Sine

0.00831

2.673

0.166

1.480
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TABLE X
Parameter Identification Results Using A Rank Deficient Solution

For Rudder Doublet Data(l)

Derivative

Estimate

Standard
Deviation

Parameter
Step Size

Cost Function
Value

Time History
Matches

LP

-1.750
(-7.799)

0.248
(7.978)

0.009
(-0.128)

Lr

2.412
(-3.126)

0.186
(7.145)

-0.004
(-1.048)

LB

-5.869
(-25.29)

0.555
(24.14)

-0.001
(-2.204)

NP

-0.026
(-3.381)

0.017
(2.596)

-0.009
(4.586)

Nr

-0.540
(-3.450)

0. 019
(2.326)

-0.004
(3.662)

NB

2.253
(-7.929)

0.037
(7.851)

-0.022
(13.32)

YB

-0.079
(-0.0876)

0.0007
(0.00103)

+0.0002
(-0.0016)

%

-6.451
(-2.954)

0.547
(1.749)

-0.003
(0.541)

N*6R

1.936
(0.785)

0.034
(0.568)

-0.013
(0.731)

-0.228 x IO4 (-0.273 x IO4)

Op - 0.099 (0.0348) al = 0.139 (0.0626) oa = 0.630 (0.732)

ar = 0.0262 (0.0132) og = 0.0089 (0.019)

Notes: (1) The values in parenthesis are from Tables V - IX for the rudder doublet
results without the rank deficient solution.

(»*

p"

*£

X

n/«~ g i/rad DUTCH ROLL NUMERATOR

FIGURE 1
ivllL-F-8785B SHORT PERIOD FREQUENCY AND ACCEL-
ERATION SENSITIVITY REQUIREMENTS

FIGURE 2
S-PLANE PLOT OF THE ROLL RATE TO AILERON
TRANSFER FUNCTION
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FIGURE 5
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ACCURACY OF PARAMETER ESTIMATES
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PREDICTED RESPONSE USING
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FIGURE 6
COMPARISON OF MEASURED RESPONSE BASED ON A
SINE WAVE INPUT AND PREDICTED RESPONSE BASED
ON ESTIMATED PARAMETERS USING A DOUBLET INPUT
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SUMMARY

It has been known for several years that stability and control deriva-
tives can be obtained from flight data by using nonlinear minimization
techniques. The maximum likelihood estimator method (sometimes referred
to as the Newton-Raphson method) has been one of the more popular methods
for this type of analysis.

Some investigators maintain that although the maximum likelihood esti-
mator method should be adequate in theory, it is not practical for routine
use on a large quantity of flight data. This paper discusses the application
of a maximum likelihood estimator to flight data and proposes procedures to
facilitate routine analysis of a large amount of flight data. Flight data are
used to demonstrate the proposed procedures.

Modeling considerations for the system to be identified, including
linear aerodynamics, instrumentation, and data time shifts, and aerodynamic
biases for the specific types of maneuvers to be analyzed are discussed.
Data editing to eliminate common data acquisition problems, and a method
of identifying other problems are considered. The need for careful selection
of the maneuver or portions of the maneuver to be analyzed is pointed out.
Uncertainty levels (analogous to Cramer-Rao bounds) are discussed as a way
of recognizing significant new information.

SYMBOLS

A stability matrix

°n normal acceleration, g

<*x longitudinal acceleration, g

a
v lateral acceleration, g

B control matrix

CD coefficient of drag at trim condition
trim

CL coefficient of lift at trim condition
trim

c
n coefficient of partial derivative of yawing moment with respect to roll rate

P

Cy coefficient of partial derivative of side force with respect to sideslip angle

CZ coefficient of partial derivative of "normal" force with respect to angle of attack

c vector of unknown coefficients

C
0 vector of a priori estimates of unknown coefficients

Dl weighting matrix for observation vector

D2 weighting matrix for a priori estimate vector

G partition of matrix relating state vector to observation vector
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Subscript:

b

Superscripts:

acceleration due to gravity, m/sec2 (ft/sec2)

partition of matrix relating control vector to observation vector

identity matrix

moment of inertia about roll axis, kg-m2 (slug-ft2 )

cross moment of inertia between roll and yaw axis, kg-m2 (slug-ft2 )

moment of inertia about pitch axis, kg-m2 (slug-ft2)

moment of inertia about yaw axis , kg-m2 (slug-ft2)

cost functional

scale weighting factor for a priori weighting matrix

Gaussian white noise vector

roll rate, deg/sec or rad/sec

pitch rate, deg/sec or rad/sec

acceleration transformation matrix

yaw rate, deg/sec or rad/sec

total observation time, sec

intermediate or incremental time, sec

control vector

velocity, m/sec (ft/sec)

variable bias vector for nonstate measurements

state vector

observation vector

measurement of observation vector

angle of attack, deg or rad

angle of sideslip, deg or rad

aileron deflection, deg or rad

elevator deflection, deg or rad

rudder deflection, deg or rad

pitch angle, deg or rad

bank or roll angle, deg or rad

null matrix

with respect to body axis

matrix transpose

derivative with respect to time

INTRODUCTION

Extraction of stability and control derivatives from flight data has been of interest for many years. In.1966
the NASA Flight Research Center started the development of a nonlinear minimization digital program for the
extraction of these derivatives. The maximum likelihood estimator method (sometimes referred to as the Newton-
Raphson method, as in refs. 1 and 2) which resulted from that study has been applied to more than 1500
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maneuvers from 19 aircraft over the past 8 years. The method was used routinely on most of these maneuvers.
This paper discusses the Flight Research Center experience, particularly in derivative extraction in a batch
processing mode.

Some investigators maintain that the maximum likelihood estimator method is not practical for routine use on
a large quantity of flight data. With certain qualifications, we have found that most of the difficulties have arisen
from modeling or data problems. We point out how these difficulties can be isolated and, in some instances,
accounted for. Although this paper deals specifically with the digital computer program developed at the
Flight Research Center, much of the discussion applies to any maximum likelihood estimator program with
essentially the same options.

MAXIMUM LIKELIHOOD ESTIMATOR METHOD

The maximum likelihood estimator method is one means of estimating aircraft stability and control derivatives
from flight maneuvers.

The equations that are used to describe the aircraft system in the maximum likelihood estimator method are
as follows:

= Ax(t) + Butt)

y< t )= [ - j - ]» ( t ) + [ - J - ]u ( t ) + [-»-] I (i)

2(0 = ytt) + n( t)

where

state vector

u tt) control vector

ytt) calculated response vector
ztt) measured response vector
n(t) measured noise vector
v instrument bias vector

and the unknown coefficients of the system appear in the A , B, G, and H matrices and the v and x(0) vectors.
All the unknown coefficients form a vector c, thus the unknown stability and control derivatives are contained
in the vector c.

The maximum likelihood estimator method is defined as the minimum of the following cost functional with
respect to the vector of unknown coefficients , c:

1 /"T
J=TJ [z(t) " y ( t )J 0t [ztt) - y t t ) ]d t (2)

where T is the total observation time of the maneuver, and D. is the inverse of the measurement covariance
matrix. The controls are assumed to be known and noiseless.

Independent estimates of the unknown coefficients are often available from wind-tunnel data, previously
obtained flight data, or calculated estimates. It is desirable to use this a priori information in conjunction with
the maximum likelihood estimator so that all the information available is used to obtain the estimates and no
change is made in the derivatives from the a priori values unless there is sufficient information in the flight data
to justify a change. The cost functional is expanded to include a penalty for a departure from the a priori values.
This is referred to as the modified maximum likelihood estimator method and is implemented by minimizing the
following cost functional with respect to the vector of unknown coefficients, c:

/
- ytt)] * D: [z(0 - y ( t ) ] l d t + /c - cj* KD2 /c - c\ (3)

where CQ is the vector of a priori estimates of the vector-c and KD. is the weighting matrix for the a priori
information. This cost functional can be derived in the same way as that for the maximum likelihood estimator by
using the joint probability p(z ,c) instead of the conditional probability p(z /c) . A more detailed discussion of
the modified maximum likelihood estimator method is presented in references 1 and 2.

DESCRIPTION OF NASA FLIGHT RESEARCH CENTER COMPUTER PROGRAM

The NASA Flight Research Center uses a series of three FORTRAN programs to automatically extract stability
and control derivatives from flight data using the maximum likelihood estimator method. The first program
(SETUP) preconditions the data to be used; the second program (MMLE) contains the maximum likelihood
estimator algorithm, as described in references 1 and 2; and the third program (SUMARY) provides a means
of displaying and summarizing the results. The function of these programs and the various options we have
found to be necessary are described briefly in this section.

The first program, SETUP, automatically determines the flight condition and the necessary startup values
from the flight data for use in the second program. The SETUP program punches a startup card deck and creates
a file containing the flight time history. Any of these automatic features can be overridden. Only the following
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information is absolutely required for a maneuver to be analyzed:

(1) The start and stop time for each maneuver.
(2) A digitized file with the pertinent quantities required for each maneuver, including the flight condition.

(3) The geometric characteristics of the vehicle, including instrument locations.

(4) A complete set of nondimensional a priori derivatives.

(5) An indication of which control's move independently during each maneuver.

The second program , MMLE, provides estimates of the unknown coefficients of Eqs. (1) . These equations
are written with respect to arbitrary accelerometer locations. To use the MMLE program, the D^ and D2

matrices of Eq. (3) need to be known. Usually the matrices are determined from maneuver data that agree with
data based on the mathematical model, and the matrices should remain fixed until some major change in instru-
mentation occurs. The program has a mode that determines either the DI or D2 matrix, or both. The D^ matrix

(assumed to be diagonal) is determined such that the weighted error on each measurement is approximately unity.
This is achieved by letting the algorithm converge to a solution, adjusting the DI matrix elements appropriately,

and then, with this new DI matrix, letting the algorithm converge. This procedure is automatically repeated

until the weighted error of each measurement is within some tolerance of unity. Once the DI matrix has been

determined, the elements of the DZ matrix can be specified. The D2 matrix (assumed to be diagonal) is obtained

by allowing the algorithm to converge for a fixed DZ matrix with various values of K (Eq. (3)) . Then plots are

provided for each converged estimate as a function of K. The elements of the D2 matrix can be adjusted so that

all the coefficients start to deviate from the a priori estimates at approximately the same value of K. The D^ and
D0 matrix determination is discussed in more detail in reference 2.

2

Three aids are available in the MMLE program with which the input data can be modified either to correct the
data or to specify changes to the model being used. These are as follows:

(1) Any of the input signals can be biased, corrected for instrument position, or multiplied by a constant.

(2) Extra inputs are allowed for inputting information needed to correct the model.

(3) Multiple time histories can be analyzed as one case for maneuvers made at approximately the same flight
condition.

Three means of identifying data deficiencies or modeling errors are also available. These are discussed in
the DATA EDITING section (p . 8) .

The third program, SUMARY, provides plots of the estimated derivatives and uncertainty levels (Cramer-Rao
bounds of ref. 2) from the punched card output of the MMLE program. These derivatives are plotted as a func-
tion of angle of attack. Various symbols can be used to represent Mach number, configuration, or any other
parameter of interest. A priori estimates (or any other estimates) can be included on this plot.

NASA FLIGHT RESEARCH CENTER EXPERIENCE

The NASA Flight Research Center has been using the maximum likelihood estimator method to extract stabil-
ity and control derivatives from flight data for 8 years. More than 1500 maneuvers from 19 aircraft have been
analyzed. The flight conditions have included Mach numbers up to 5 and altitudes to 30,700 meters (100,000 feet) ,
angles of attack from -20° to 40°, and elevated normal acceleration maneuvers up to 4g. Virtually all derivative
extraction at the NASA Flight Research Center is done with the modified maximum likelihood estimator program
discussed in this paper.

The Flight Research Center's experience is summarized in the following table:

Aircraft

X-15

XB-70

M2-F2

HL-10

M2-F3

X-24A

F-111A

CV-990

F-8 (supercritical wing)

YF-12

F-8C

JctStar

F-111A TACT (baseline)

X-24B

F-15 (subscale model)

TACT

PA-30

YT-2B

F-1G

Maneuvers
analyzed

Unknown

Unknown

Unknown

Unknown

155

Unknown

Unknown

90

320

30

11

265

181

103

139

192

86

15

33

Maneuvers
successfully

analyzed

a io
"30

as
°75

110

"15
a io

90

260

30

10

260

150

92

112

164

85

11

32

Utilization ,
percent

-_.

—
...

_..

71

—

—

100

81

100

91

98

83

89

81

85

99

73

97

Rounded to the nearest 5.
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As shown, for the more conventional aircraft, nearly 100 percent of the maneuvers were analyzed successfully.
For the experimental aircraft, with which it is more difficult to maintain an exact flight condition, the successful
analyses are as low as 70 percent. Overall, 87 percent of the maneuvers were successfully analyzed. Most of
the M2-F3 lifting body maneuvers that were not successfully analyzed were those on which unsteady transonic
flow occurred. The low utilization percentage for the F-111A airplane is attributed to the lateral-directional
motion which occurred during more than half of the longitudinal maneuvers performed at high normal acceleration.
The lateral-directional variables were not recorded; therefore, the cross coupling effect on the longitudinal mode
could not be corrected for. The F-15 remotely piloted subscale model experienced buffet at angles of attack be-
tween 20° and 35°, which accounts for most of the unsuccessfully analyzed maneuvers. For a maneuver of aver-
age length, 20 seconds of computer time are required per submittal for a longitudinal maneuver and 40 seconds
for a lateral-directional maneuver. In this context, a submittal refers to submitting a maneuver for processing
or to resubmitting a maneuver once any desired changes have been made to the data to improve the derivative
extraction process.

In general, the maximum likelihood estimator method has been extremely useful in derivative extraction.
Most of the resulting fits have been "nearly" perfect, particularly when the percentage of utilization was high.
Recently, 86 maneuvers performed during a PA-30 flight, with the airplane in three different configurations,
were analyzed in the batch processing mode. The maneuvers were considerably longer than an average maneu-
ver. After the flight, the data were stripped out on a Sanborn recorder and the maneuver times were read off.
The raw data was in PCM form in engineering units. The entire derivative extraction process, including the
creation of the original data files and the final summary plots of the derivatives for the three PA-30 configurations
throughout the angle-of-attack range, required only 12 engineering hours and 1 3/4 hours of CDC 6500 computer
time. Eighty-five of the 86 maneuvers were successfully analyzed; therefore, each maneuver required less
than 9 minutes of engineering time and approximately 11/4 minutes of computer time. These results are typical
for maneuvers analyzed under ideal conditions.

For "good" data, such as those for the PA-30 airplane, the average maneuver required fewer than 1.2 sub-
mittals per maneuver. For data obtained when the flight condition was difficult to maintain, such as the F-111A
elevated normal acceleration maneuvers, 2.3 submittals per maneuver were required. For analysis of extremely
marginal maneuvers, when the derivative estimates are important because only one maneuver is available or the
estimates are needed before further flight envelope expansion, five or six submittals may be appropriate.

Although the use of the maximum likelihood estimator method has been successful at the NASA Flight
Research Center, difficulties have been encountered in 10 percent to 15 percent of the maneuvers analyzed which
necessitated more in-depth analysis before good estimates of the stability and control derivatives could be
obtained. The next three sections discuss means of improving the quality of the estimates, major error sources,
and data editing techniques that we have found to be valuable in using the maximum likelihood estimator method
in the batch processing mode.

IMPROVING QUALITY OF ESTIMATES

Sometimes no estimates, or only poor estimates, of the unknown coefficients can be obtained. This can
result from applying the maximum likelihood estimator carelessly even when the standard model is valid. If
certain situations are avoided or identified, the estimation process can proceed routinely.

Dependent Variables

One type of poor estimate results from not having a completely independent set of unknown coefficients.
This occurs most commonly in determining aerodynamic and instrument biases. If the two sets of biases are not
linearly independent, the resulting estimates of these biases are obviously meaningless. Usually this problem
has little effect on the estimates of the stability and control derivatives, but it can slow the convergence of the
algorithm. When dealing with both aerodynamic and instrument biases, the aerodynamic biases should be
permitted to vary for each state being fit and the instrument biases to vary only for the nonstate measurements,
such as an accelerometer measurement. This ensures a linearly independent set of biases.

Still other types of linear dependence can occur when a vehicle is operating with the stability augmentation
system on and no independent control inputs are made by one or more of the controls being used in the augmen-
tation system. An independent input is always preferable, but if this requirement is not met, it is still possible
to obtain useful results. The stability augmentation results in one of the control variables being nearly indis-
tinguishable from the state variable being fed back. This can be overcome by not allowing the derivatives of the
control in question to vary. In reality, of course, the control is only "nearly" dependent on the state, because
several electrical and mechanical devices are engaged before the state measurement affects the control. Usually
this near dependence is enough to result in poor estimates of several of the derivatives.

Another kind of near dependence may occur when two controls, such as an interconnected aileron and
spoiler, move together throughout most of the command range. Usually this is best dealt with by using the
average deflection of the two controls and estimating one set of control derivatives for the two controls. Some-
times the effect of one of the controls is much larger than that of the other. In this instance, the more effective
control should be used for the estimated derivatives, and the derivatives of the other control should be fixed.

When linear independence or near linear dependence has occurred, one method that has been used with some
success is a priori weighting, with the weighting somewhat higher on the nearly dependent variables than on
the independent variables. This approach can sometimes be successful in apportioning the values of the depen-
dent derivatives, particularly when stability augmentation is used. In this instance a priori weighting should
be done carefully, because meaningless estimates may result.

Structural Noise

All aircraft have observable structural modes which usually cause no problem because their frequencies
are high compared to the aerodynamic frequencies. Generally, if the structural frequencies are more than a
factor of 5 or 10 higher than the highest aerodynamic frequency, they can be neglected unless they interfere with
the control position measurements. The estimates of the derivatives usually are unaffected by high-frequency
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structural noise. However , if the structural frequency is near the aerodynamic frequency, two approaches can
be taken. The structural modes can be treated as known and their effect subtracted from the data before the
derivatives are extracted. The second and more difficult approach is to model the structural modes as well as
the aerodynamic modes and then estimate the unknown coefficients for all the modes. This would require
significant modifications to the maximum likelihood estimator program being discussed.

As noted, significant structural vibration that affects control measurements can cause problems in the
application of the maximum likelihood estimator. The power spectra of the control measurement can be determined,
and the frequency of the structural vibration can then be identified. A notch digital filter can be used to filter
out that structural frequency from the raw data, if it is much higher than the aerodynamic frequencies. It is
usually desirable to filter all the measurements with the same filter. It is important to exclude structural vibra-
tion from the control measurement, because the maximum likelihood estimator method is based on the assumption
of a noiseless control input.

Drift

Drift in the states is another possible problem. This drift is caused by small vehicle nonlinearities, which
may result from unsteady aerodynamics or a variation of the flight condition. Usually the drift causes no partic-
ular problem, since the maneuver need only be shortened to improve the analysis. However, when more than
one sharp control input occurs, the drift has a significant adverse effect. This can be seen in figure 1, which
compares the measured data for aileron and rudder control inputs with the data computed from the estimated
derivatives. As shown, a significant amount of drift occurred before any rudder input was made. The algorithm
attempts to match the time history during the rudder input, but is unable to compensate for the drift, resulting
in poor rudder derivatives. The problem can be overcome by reinitializing the algorithm before the rudder
input occurs, which is referred to as analyzing multiple maneuvers. This results in no significant error in the
states at the time of the input. Figure 2 shows the fit obtained from the multiple maneuver analysis. As can be
seen, the fit is now excellent, resulting in good rudder derivatives. This procedure can also decrease the time
during which negligible motion occurs between pulses. The use of the multiple maneuver approach can also
enhance the data analysis by providing only one set of estimates for several maneuvers made at the same flight
condition.

Uncertainty Levels

Errors in the estimated coefficients can be found by using uncertainty levels. Uncertainty levels are propor-
tional to the approximation of the Cramer-Rao bounds described in reference 2 and are analogous to standard
deviations of the estimates. The larger the uncertainty level, the greater the uncertainty. Therefore, by
comparing the uncertainty levels for the same coefficient obtained from different maneuvers, one estimate may be
found to be more valid than another. By using these levels, additional information about the estimate is obtained.
For example, if a coefficient agrees with the a priori estimate and has a small uncertainty level, independent
information from the maneuver agrees with the a priori estimate. If the coefficient has a large uncertainty level,
little new information was obtained from the maneuver and the a priori estimate is still the best estimate. Some-
times the a priori weighting is not sufficient to force the coefficient to the a priori value, and there is a good deal
of scatter in the estimates. In this instance, the uncertainty levels can show the best estimates, that is, the
estimates having the smallest uncertainty levels, and permit an accurate fairing of the data. For example,
figure 3(a) shows a large amount of scatter in the C estimate for three flap settings. Therefore, we can

P
conclude that little information about C was obtained from the analysis that yielded these data. If the data of

"p
figure 3(a) are supplemented with the uncertainty levels associated with each data point, as in figure 3(b), it
becomes evident that the data with the small uncertainty levels define a consistent trend with angle of attack as
is shown by the fairing. It is of interest that the data with the small uncertainty levels were obtained from
maneuvers in which all inputs were made with the aileron control. The other data were from maneuvers in
which all inputs were made by the rudder control. The aileron and rudder control data are shown separately
in figure 4(a) . The fairing in the plot of aileron maneuver data is the same fairing as shown in figure 3(b)
based on the uncertainty levels. As pointed out previously, the use of multiple maneuver analysis enhances the
analysis of data by providing only one estimate of several maneuvers at the same flight condition. Thus, because
the rudder data provided poor estimates and the aileron data gave good estimates, it seems reasonable to combine
the data for the aileron and rudder inputs made at the same flight condition and use the multiple maneuver
approach. The results of this approach are shown in figure 4(b) for the data presented in figure 3(b) . The
fairing is that shown in figure 3(b) based on the uncertainty level analysis and agrees well with the data obtained
from the multiple maneuver analysis. In this instance the uncertainty levels were not needed in the multiple
maneuver analysis because all the spurious points disappeared, but this usually cannot be counted on. There-
fore, uncertainty levels as well as multiple maneuver analysis can be used to improve the quality of estimated
coefficients.

MAJOR ERROR SOURCES

In any stability and control flight-test program, difficulties with data or modeling should not be unexpected.
Frequently these problems, such as data spikes, can be observed by a cursory look at the initial flight results;
however, other less obvious problems should also be expected. Two of the most common major error sources
are the improper specification of the instrumentation and data acquisition system and inaccurate modeling.
These error sources and the procedures that can be used to determine when errors occur are discussed in this
section.

Instrumentation and Data Acquisition System

Basic to the accuracy of any instrumentation system is the proper specification of corrections. These
corrections for aircraft stability and control analysis must include instrument calibration, accelerometer location
correction, and angle-of-attack- and angle-of-sideslip-vane corrections. The instruments must be carefully
positioned to avoid measuring structural vibration and undesirable flow effects. As an example, one simple
consideration is that the location of some of the instruments has not been properly accounted for. This is
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particularly important for vanes and accelerometers. These two corrections can be readily specified in the
MMLE program. If corrections are not made to the data for the vane locations , the fit of the data is poor, partic-
ularly when angular rates are high. If the accelerometer position is not correctly accounted for, some of the
estimated derivatives (Cv and C7 , in particular) will be affected. It usually becomes evident that this correc-

P «
tion has not been made by comparing the measured and the computed data.

The resolution and accuracy of the instrumentation must be taken into account. If measurement noise is
small, fairly low resolution can be tolerated on any non-control measurement, although the lower the resolution
the poorer the estimates. Low resolution of the control measurement can be intolerable, because most motions
are derived from control movement. If the control position is not accurately defined on a sampled time history,
the predicted motion will not be acceptable. If the predicted motion is incorrect, the estimates of the derivatives,
particularly the control derivatives, will be severely degraded. For very low resolution of the control measure-
ment, the movement of the control could be missed completely.

The sample rate chosen for the data can also have a marked effect on the quality of the estimated derivatives.
In most aircraft stability and control analyses, the determining factor is the accurate definition of the control
motion. Rapid excursions are caused by rapid control inputs, thus dictating the required sample rate. For a
low sample rate, the initial motion of the control would be missed and the vehicle could appear to respond before
the control motion began. As pointed out, the resulting control time history would result in unacceptable pre-
dicted motion, thus degrading the estimated derivatives. For most aircraft, 20 samples per second is acceptable,
but 50 samples per second is more desirable. For very slow control motions, less than 20 samples per second
might prove to be acceptable.

For considerations other than control motion requirements, a sample rate of 10 samples per cycle has been
found to be desirable. In phugoid mode analysis, for example, 10 samples per cycle may result in very low
sample rates. It should be noted that the integration routine used in the maximum likelihood estimator method
may need to be modified if the sample rates are very low.

Time, or phase, shifts must also be considered. Time shifts can occur when continuous data is sampled
sequentially. Particularly where the sample interval is large, the time shift between a measurement sampled at
the beginning of the interval and a measurement sampled at the end of the interval becomes significant. Because
the maximum likelihood estimator algorithm assumes that all samples occur simultaneously, this would cause
errors in the measurement data. Once again this becomes particularly important when the control input is sampled
at a significantly different time than one or more of the other measurements. If the instrumentation system cannot
otherwise meet the minimum sample rate requirement, this effect can be compensated for in the data before the
analysis begins by time shifting the appropriate signals.

A phase shift due to instrumentation filters can cause a similar problem. All filter rolloff frequencies should
be kept much higher than the aerodynamic frequencies of interest. If a filter is unavoidable, all the measure-
ments should be filtered with the same filter or a phase shift correction should be applied to the raw data for all
the filtered measurements.

Modeling Problems

As used here, modeling problems refer to considerations that the analyst must take into account to obtain
the best possible estimates. These considerations are viewed with regard to the standard linear model, which
assumes that all motion occurs in either the longitudinal or the lateral-directional mode. That is, the standard
model is valid for level flight, a steep descent, a steady turn (elevated normal acceleration), or a spiral descent.
However, refinement to the standard linear model is sometimes necessary. Modeling problems can be placed in
one of the following categories:

(1) The linear model may no longer adequately approximate the aircraft, but a known nonlinear model is
available.

(2) The aircraft may be subjected to unknown external inputs.

(3) No known model may exist for some phenomenon affecting the aircraft.

Typical problems for each of these categories will be discussed when meaningful results can be obtained by
either modifying the maximum likelihood estimator algorithm or the model itself.

Known Linear Model

The simplest type of modeling problems occur when the model is known to be nonlinear but can be modified
to be linear with additional known inputs. Mode coupling between the lateral-directional and the longitudinal
modes is an example of a nonlinear model of this type. Coupling usually occurs when the vehicle cannot be
completely stabilized while stability and control maneuvers are being performed. This occurs frequently during
steady turns or high-angle-of-attack maneuvers. If it is assumed that the measurements of the motions in the
modes not being analyzed are sufficiently accurate, these measurements can be treated as known. Thus the
coupling terms appear as known external inputs to the mode under investigation. The model is once again
linear, and the maximum likelihood estimator of Eqs. (2) or (3) can be applied and the additional terms treated
as extra controls.

Figure 5 is a time history of a longitudinal maneuver in which significant lateral-directional motions were
experienced. The fit of the flight and estimated data is not particularly good because the aircraft was at an
extreme angle of attack and was difficult to stabilize in the lateral-directional mode. If the refinements and
additions listed in the table on the following page were made to the longitudinal equations of motion, the fit
would be that shown in figure 6.
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Equation
defining — Refinement or addition

- JT -ft- (cos 9 cos cp cos a + sin 9 sin a) - tan p (p. cos a + r^ sina)

-r, sin cpb

This fit is considered exceptionally good for a high-angle-of-attack maneuver, and the resulting derivatives were
in good agreement with derivatives for maneuvers performed at the same flight condition but with little lateral-
directional motion.

Another modeling problem occurs when the linear model of the aircraft breaks down and the nonlinear model
is known but cannot be put into linear form. An example of this is the need to include the drag polar in the
model. The cost functional to be minimized is an extension of Eq. (2) . The algorithm is essentially the same as
that for the maximum likelihood estimator used to minimize Eq. (2) , but the state equations are no longer linear.
Figure 7 is a comparison of longitudinal maneuver data that require a nonlinear model and the computed data
based on the estimates from the algorithm just discussed. The fit is excellent. The drag polar obtained from this
maneuver is compared in figure 8 with wind-tunnel estimates of the drag polar. The agreement is relatively good.

Unknown External Disturbances

Modeling problems caused by unknown external disturbances are encountered when an aircraft flies through
a wake vortex or in atmospheric turbulence. Figure 9 is a comparison of flight data obtained in atmospheric
turbulence with data obtained with the maximum likelihood estimator of Eq. (2) . As can be seen, the fit is
unacceptable. A maximum likelihood estimator derived by Balakrishnan can be applied to data obtained in
atmospheric turbulence if the Dryden model of turbulence is used. The method (ref. 3) estimates the turbulence
as a function of time in addition to the unknown coefficients. The data shown in figure 9 were analyzed in refer-
ence 4 using Balakrishan's maximum likelihood estimator. As shown in figure 10, the resulting fit is now
virtually perfect.

Unknown Model

The third type of model breakdown for which no known model exists cannot generally be handled. Many
nonlinear models can be approximated easily by a power series expansion, but this type of analysis yields mean-
ingless results in that the coefficients extracted have little physical meaning. An example of model breakdown,
for which even a power series expansion does not approximate the nonlinearity, occurs during aerodynamic
separation. Although many causes of aerodynamic separation are known, the time at which the separation
occurs and the frequency with which it occurs are random. Thus little can be done to extract meaningful stabil-
ity and control derivatives unless the separation is mild enough that a known model can adequately approximate
the overall resulting motion. Figure 11 shows data obtained in a flight region where aerodynamic separation was
known to exist. These data are compared with data computed from the maximum likelihood estimates obtained by
using Eq. (2) . The fit, although sometimes poor, indicates that the computed data approximate the flight data.
Therefore, a fairly good linear approximation was obtained to the data showing aerodynamic separation, and the
resulting estimated coefficients agreed well with those obtained where aerodynamic separation was not evident.

DATA EDITING

Data editing problems that may be rectified fall into'two categories: (1) problems with the measurements, and
(2) problems caused by inconsistencies in the model, which may be the result of something as simple as the wrong
values of some geometric constants being used. Both types of problems are usually found by looking at the raw
data or by using the MMLE or SUMARY programs to find any inconsistencies. The MMLE program will point out
all of these problems, unless a flight condition is incorrectly identified, but will require a computer submittal.
Means of identifying data problems can be summarized as follows (parenthetical notations are referred to in the
table on page 9):

• Although inspection of raw data plots is always the easiest approach, frequently the problem cannot be
detected in this way. (Raw data)

The following features of the MMLE program can be extremely helpful in detecting data problems:

• If the weighted error (value of cost functional) exceeds a given error, a time history of the measured data is
printed out. This usually indicates a major problem in the measured data. (MMLE-1)

• The program can be submitted to obtain a plot that compares the computed data based on the startup values
with the measured data. (MMLE-2)

• A time history plot comparing the computed data, based on the values of the converged estimated derivatives,
with the measured data can be obtained. This feature can frequently be made more useful by increasing the
a priori weighting when a converged solution cannot otherwise be obtained. (MMLE-3)

• The SUMARY program presents all the estimated coefficients as well as the uncertainty levels plus any
a priori coefficients that are available. Many types of data problems are indicated by comparing the individual
estimates and the corresponding uncertainty levels. (SUMARY)
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Common data or modeling problems are listed in the following table. Means of identifying the problems
(keyed to the preceding discussion) are indicated in the order of their effectiveness, based on the amount
of effort required.

Problem

Data spikes

Time dropouts

Data dropouts

Improper time increment for maneuver

Coupling between modes

Wrong magnitudes or signs on measurements

Data nonlinear

Wrong sample rate

Wrong modes being analyzed

Low resolution on measurements

Noise on controls

Maneuver needs to be shortened

Phase or time shift in signals

Different frequency and damping on differ-
ent signals

Turbulence or wind shear during maneuver

Needs to be broken into several maneuvers

Low resolution on controls

Control derivatives varying but control fixed

Velocity, dynamic pressure, or geometric
constant wrong

Stability augmentation system on (no
independent control motion)

Wrong center of gravity or accelerometer
position

Wrong weighting matrix

Wrong flight condition

To identify origin of
problem use —

Raw data, MMLE-1, MMLE-2,

Raw data, MMLE-1, MMLE-2,

Raw data, MMLE-1, MMLE-2,

Raw data, MMLE-1, MMLE-2,

Raw data, MMLE-3, MMLE-1

MMLE-3, MMLE-2, MMLE-1

MMLE-3, MMLE-2, MMLE-1

MMLE-3, MMLE-2, MMLE-1

MMLE-1, MMLE-2, MMLE-3

MMLE-1, MMLE-2, MMLE-3

MMLE-1, MMLE-2, MMLE-3

MMLE-1, MMLE-2, MMLE-3

MMLE-3

MMLE-3

MMLE-3

MMLE-3

MMLE-3

MMLE-3

MMLE-3

MMLE-3

MMLE-1, MMLE-2, MMLE-3, SUMARY

MMLE-3, SUMARY, MMLE-1

SUMARY, MMLE-3

MMLE-3, SUMARY

MMLE-3, SUMARY

MMLE-3, SUMARY

SUMARY

CONCLUDING REMARKS

A maximum likelihood estimator computer program has been used at the NASA Flight Research Center for the
past 8 years to extract stability and control derivatives from flight data. The program, together with two assoc-
iated programs, has been effective in analyzing 87 percent of the aircraft stability and control maneuvers
attempted. More than 1500 maneuvers from 19 different aircraft have been successfully analyzed. For maneuvers
analyzed under ideal conditions, each successful analysis required less than 9 minutes of engineering time and
1 1/4 minutes of CDC 6500 computer time per maneuver; fewer than 1.2 submittals per maneuver were needed.
Maneuvers that were not successfully analyzed in a routine manner were often salvaged by more extensive
analysis.

REFERENCES

1. Taylor , Lawrence W . , Jr.; and Iliff, Kenneth W . : A Modified Newton-Raphson Method for Determining
Stability Derivatives From Flight Data. Computing Methods in Optimization Problems - 2 , Lotfi A. Zadeh,
Lucien W . Neustadt, and A. V. Balakrishnan, eds. , Academic Press, 1969, pp. 353-364.

2. Iliff, Kenneth W . ; and Taylor, Lawrence W . , Jr .: Determination of Stability Derivatives From Flight Data
Using a Newton-Raphson Minimization Technique. NASA TN D-6579, 1972.

3. Balakrishnan, A. V.: Stochastic Differential Systems I - Filtering and Control - A Functional Space
Approach. Lecture Notes in Economics and Mathematical Systems, 84, M. Beckman, G. Goos, and
H. P. Kiinzi, eds. , Springer-Verlag, 1973.

4. Iliff, K. W. : Identification and Stochastic Control With Application to Flight Control in Turbulence. UCLA-
ENG-7340, School of Engineering and Applied Science, Univ. of Calif., Los Angeles, Calif. , May 1973.



16-10

6r, deg

10

-10

4

6a, deg

-4

.10 r-

r, deg/sec 0

Flight
Estimated

I I I I I I I I J

A J\ Jl
v v

i i i i i i i i i

I 1 I I I I I

I I I I I I

I I

I I I I I V I I I

12 16 20 24 28 32 36

p, deg/sec

Figure 1. Comparison of flight and estimated data showing significant measurement
drift at time of rudder control input.



16-11

10 r-

6r, deg o

-10

4

63, deg

-4

.10 i-

a
y. g o

-.10
20 i-

<p, deg 0

-20

4 i-

r, deg/sec 0

-4

20 i-

p, deg/sec 0

-20

2 i-

P, deg 0

-2

I I I

t\ l\
V

A ,
\l

i i i i

I I
8 12 16

Flight
Estimated

Time, sec
12 16

Time, sec

Figure 2. Comparison of flight and estimated data of figure 1 showing
the improved fit resulting from multiple maneuver analysis.



16-12

Flap

D Zero
O One-half

.80

.40

0

-.40

-.80

-1.20

—

C

1 — 9
0

-

A hull

D

O
D

1 1 1 1 1

2 0 2 4 6 8 10

a, deg

Flap

D Zero
o One-half
A Full

.80

.40

0

-.40

-.80

-1 20

-

(

O

.

-

] /

i

-2 0

If

I Uncertainty

£ 1

fcM

[

1

1
i

t\ [

° C] 6
r L •!•

1 1 1
2 4 6

a, deg

level

C l
(

E)

> I rfi1"
"-Uncertain

level fai

1 1
8 10

fa; Without uncertainty levels. CD) With uncertainty levels.

Figure 3. Variation of C with angle of attack showing the advantage of using uncertainty levels.

.80

.40

X
-.40

-.80

i 9n

.40

Cn 0
PP °

Aft

(.

r-

(j

2

Flap

D Zero
O One-half
A Full

I Uncertainty level

Rudder maneuvers

1 J 9 Flap
| D Zero

o One-half
A Full

1 1 1 1 1 I Uncertainty level

Aileron maneuvers -40 r~ /-Fairing from figure 3(b)

| f- Fairing from figure 3(b) r /

1 I 1 1 1 1 ,n 1 1 1 1 1
0 2 4 6 8 1 0 ' - 2 0 2 4 6 8 1 0

a. deg a, deg

(a) Single maneuver analysis. (b) Multiple maneuver analysis.

Figure 4. Variation of C with angle of attack for single and multiple maneuver analysis.



16-13

6 deg -20
C

e, deg -4

q, deg/sec 0

a, deg

Flight

Estimated

6e, deg -20

-40
0

e, deg -4

q, deg/sec 0

-10
32

a, deg 28

24

Flight

Estimated

I l l

I I I I

I I I I
0 1 2 3 4 5

Time, sec

Figure 5. Time history of longitudinal maneuver
showing the effect ignoring lateral-directional
coupling terms in high-angle-of-attack data.

Figure 6. Time history of longitudinal maneuver
showing improvement in data of figure 5 after
inclusion of lateral-directional coupling terms.

Flight

Estimated

Time

Figure 7. Comparison of flight and estimated data using a nonlinear model.



16-14

Estimated data
from -

Flight
Windtunnel

Figure 8. Comparison of drag polars obtained from estimates
based on wind-tunnel and flight data.

10

e, deg/sec 0

-10
4r-

e, deg 0

-4

an ,g

a, deg .4 —

e, deg 0 _

Time, sec

• Flight
•Esti mated

I I I ^1 I I I

Figure 9. Comparison of flight data obtained in turbulence
with estimated data which neglect the effect of turbulence.



10 i-

Flight
Estimated

e, deg/sec 0

I I I

a, deg ;^AA^

gusf

4

0

-4 I I I I I
0 2 6 8

Time, sec

10 12 14

Figure 10. Comparison of flight data obtained
in turbulence with estimated data which
include the effect of turbulence.

10 i-

6r, deg 0

-10

\J

.10 r-

a
y. 9 0

-.10

20 i-

e, deg 0

-20

4 r-

r, deg/sec 0

20 i-

p, deg/sec 0

-20

4 i—

p, deg 0

16-15

Flight
Estimated

I I I I I

I I I I I

I I I I I

I I I I

1 2 3 4 5
Time, sec

Figure 11. Comparison of flight data obtained
in buffet with estimated data which neglect the
effects of buffet.





17-1

DETERMINATION OF AIRCRAFT DERIVATIVES BY AUTOMATIC PARAMETER

ADJUSTMENT AND FREQUENCY RESPONSE METHODS
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The paper reviews the experiences at DFVLR Research Center Braunschweig in the estimation of

aircraft parameters by means of three identification methods: Frequency response, maximum-likelihood,

and model with automatic parameter adjustment. Results using flight test data from the DOT27 and

HFB-320 aircraft are presented. The effects of including nonlinear terms and turbulence in the model

are also discussed.

Furthermore, the model with automatic parameter adjustment method was used for studying the

problems of derivative identification for rotorcraft type vehicles. Preliminary results obtained

when evaluating simulated Sikorsky S-61 flight data with various input signals are given.

Finally, some aspects of designing input signals for flight tests are discussed. In this subject,

a method is described for the design of short-time signals which allow a good identification of the

system parameters and are still easily flown by the pilot.

1. Introduction

This paper shall give an insight into the activities of the DFVLR-Institute for Flight Mechanics in

the field of system identification of fixed wing aircraft and helicopters. So far,- emphasis has been

placed on the development and application of the following three methods:

- Frequency response

- Maximum-likelihood with Newton-Raphson iteration

- Model with automatic parameter adjustment.

This solution methods differ primarily in the following major, ways:

Time domain - versus - frequency domain

Digital evaluation - versus - hybrid evaluation

Equation error criterion - versus - output error criterion

Off-line evaluation - versus - on-line evaluation

Having all three methods available, it is therefore possible to obtain the results of an identification by

using several different techniques.

The development and application of identification methods described above is only one part of the

work which is necessary for a successful parameter determination. The other part consists of a thorough

theoretical preparation for actual flight tests. In this respect, the following tasks are required:

- Determination of the correct model structure

- Investigation of the influence and, therefore, the ability to identify

the coefficients of the chosen model

- Design of appropriate inputs to the model.

All of" these tasks are also being conducted in the DFVLR.
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The methods described above are not only applied to fixed wing aircraft but also to helicopters. In

order to investigate the problems of parameter identification of unstable helicopters, simulations are

being performed at present in which the model structures, test signals and evaluation methods are being

investigated. Some of the results obtained will be discussed in more detail in this paper.

Finally, work for optimization of input signals shall be mentioned. Emphasis is placed on such

signals which can be simply flown by the pilot. For. instance, as will be also described in detail later,

sequences of step functions, similar to the binary random functions, are optimized.

2. List of Symbols

a..,, a,.. longitudinal and vertical accelerations at center of gravity
X /
C ,C nondimensional longitudinal force and normal-force derivatives
X* Z*
C nondimensional pitching moment derivative
m»
F frequency response function

p roll rate

q pitch rate

R correlation function

5 spectral density function

u longitudinal velocity component

v vertical velocity component

a angle of attack

B angle of sideslip

-y flight path angle

6 control deflection

6 , 6 aileron and elevator deflections
a e
e equation error

0 pitch attitude

9 lateral control deflection
c
0 pitch attitude of rotor tip plane
R
o standard deviation

$ roll angle

<j) roll angle of rotor tip plane
R

ID frequency

3. Methods for Parameter Identification

3.i Frequency response methods

The method for the determination of the frequency response values has been known for some time and

often employed in the past. However, a systematic evaluation of the frequency response values has rarely

been performed. It was therefore the aim of our efforts to develop methods and computer programs for the

analytic presentation of the transfer functions and the identification of the system parameters from the

frequency response values. Figure 1 shows that two ways in which this is possible. In this paper, only the

method for determining the equation coefficients for the frequency response method shall be discussed

while,thereafter, the transfer functions and their poles and zeros can also be determined (ref. 1).

Basic concepts of the frequency response method are shown in Figure 2. In this method, the frequency

responses are first calculated from the flight test data. Figure 3 shows the necessary numerical operations

and, in parallel, the corresponding transformations of the equations of motion into the frequency domain.

After the transformations, the transformed equations have the same coefficients as the original equations

and the corresponding estimated values of the frequency response (e.g., Ffl fi, F g) have taken the place of

the time histories of signals (e.g. a^, a, 6). Thus, as an example, the simplified Z-equation in the time

domain is written
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az(t) = ZQ a(t) t Z& 6(t) + ...

while,according to Figure 3, it is written in the frequency domain as

F (co) = Z F (co) + Z,. + ...
a.^0 a a6 6

Since the coefficients are the same, we have the possibility to determine these equation coefficients

by applying an equation error method on the frequency domain equations. Figure 1 presents such a method.

The criterion results from the maximization of the likelihood function of the equation errors. The

statistical characteristics of the frequency response errors, which has been treated in former paper,are

used to determine the variances of the equation errors (refs. 2 and 3). As estimated values of the unknown

coefficients are also required for the calculation of the variances, the method is an iterative one. The

method converges very rapidly, so that four iteration steps are sufficient if no a-priori information on

the system parameters is used.

Beside the quick convergence, the method has two other advantages which result from the use of

correlation technique:

1. The amount of data to be evaluated with the iterative method is essentially lower than the number of

measured values. Therefore, little computing time is necessary after the initial correlation calculation

(which must be performed only once). In addition, if a greater number of evaluations with different models

is to be performed, the initial correlation calculation need not be repeated.

2. Noise which is independent of the input is largely suppressed by the correlation of the signals with the

input signal. This leads to a reduction of the systematic errors in the parameters as compared to those

obtained when applying the equation-error-method in the time domain.

The essential disadvantages of this method are that it does not provide the initial values of the

state variables which are required for a comparison of the model output with the test data, and that, when

nonlinear terms in the model are taken into account, the reference values of the state variables and the

bias errors of the measurements must be known. Therefore, a state estimation program is additionally

required in the case of nonlinear models. This program must estimate the initial values of the state

variables and the bias errors of the measurements.

Figure 5 shows a comparison of Do-27 flight data with the model outputs using this solution technique.

Results from flight tests with HFB-320 using this solution technique are treated in connection with the

maximum-likelihood identification presented in the following section.

3.2 Maximum-Likelihood method

For the evaluation of flight tests, a maximum-likelihood method was employed in addition to the

frequency response method. This method is known as Newton-Raphson method or method of quasilinearization

and needs no further explanation (refs. 4 and 5). In this paper, some results are presented which were

obtained using this method. A 12 second portion of a flight test with HFB-320 serves as example. Different

mathematical models were investigated including: a linear model, a nonlinear model with a quadratic

influence of the angle of attack on the X-force, and a model with turbulence influence included.

Figure 6 shows a comparison of the results between using a linear and a nonlinear model. As the two
2

models used differed only in the GX 2
 a term in the X-equation, an essential difference in curve fitting

results only at the ax-signal. The figure shows,therefore,that a better fitting of the a..-curve will be

achieved with the quadratic model. This is further confirmation of the fact that the quadratic term of a

must not be neglected in the X-equation as already reported in other papers (refs. 6 and 7).

Figure 7 compares the measured output signals with the outputs obtained using the nonlinear model.

For a comparison, it further shows the result of an identification using the previously discussed frequency

response method. As the evaluation with the frequency response method was made on the basis, of a linear

model, the curve fitting in the case of the ax~signal is not ideal. Both methods show some deviation during

the time history of the angle of attack. This deviation was attributed to turbulence effect.
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For this reason, a M-L identification was performed with a model including turbulence. Here, a

further improvement of the fitting in the case of the az~signal could be observed, as is shown in Figure 8.

In the case of the other signals, no major improvement could be obtained which is probably due to

measurement noise. Therefore, it seems reasonable to conclude that an extended model which takes measure-

ment noise as well as turbulence at the angle of attack into account should be used. This corresponds to

ref. 8.

Figure 9 presents a comparison of the parameters identified for the HFB-320 aircraft from five

sources: windtunnel data, frequency response method 'solution, and the linear, nonlinear, and nonlinear

with turbulence solutions with the M-L method. It should be noted that there is no solution for CXa2 for

the linear models since it is a nonlinear term and that the value of GZ varies because the term has little

influence in the equations.

3.3 Model with automatic parameter adjustment

Figure 10 shows the block diagram of the model with automatic parameter adjustment method. The model

has the structure of the equations of motion and provides the equation errors which result from the input

and output signals and the estimated model coefficients. The gradient of the parameters to be adjusted is

calculated by means of a cost function. The final estimates of the parameters are determined by means of

integration. This method is described in ref. 6 in more detail. Figure 11 presents some results using this

method with Do-27 aircraft flight data.

It is possible with this method to investigate and to make visible the influence of changes in the

model structure. Coefficients which adjust themselves very slowly or not at all to a final value have

little influence in the model and can be considered as unessential. Further, a completion of the model,

for instance, by means of nonlinear terms, provides better time histories of the coefficients. This can be

shown by means of examples of models with and without CXQ2 (Figure 12). Using the linear model, an

equation error -C-, 2 °? appears. The circuitry tries to compensate this error by a continuous variation of

the coefficient Cv . This becomes evident from the comparison of the time histories for CXa of the linear
ACt

to the nonlinear model.

Owing to the possibility of using a hybrid computer, a further development of the procedure was

possible. With this computer, a repetitive playback of the digitally stored measured values becomes

possible. Figure 13 shows that extremely short flight times can also be evaluated using this method.

In the non-iterative case it may occur that the adjustment process of the parameters is not yet

concluded at the end of the test time, as shown in the center of the figure. In this case the measured

data may be fed to the model again in an iterative method as presented at the bottom of the figure.

Maneuvers flown at different times can be evaluated using the same technique by placing one immediately

after another.

At present, this technique of repetitive calculation is being used for fundamental investigations

into identification of helicopter parameters. This is required because the helicopter instability allows

only very short test times. An additional difficulty is encountered with the high-frequency rotor

dynamics. The work, therefore, has the following objectives:

1. Determine if the reduced so-called quasistationary model (which results from neglecting

inertia and damping of the rotor disc in the complete model) is applicable for this

solution technique.

2. Determine how readily the required derivatives can be identified.

3. Choose and optimize the appropriate test signals.

Reference 9 reports the first results of these studies.
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As an example of an application of the method, a linear model of the Sikorsky S-G1 helicopter was

simulated and then analized. The simulation had six degrees-of-freedom which consisted on four degrees-of-

freedom of the fuselage motion and two degrees-of-freedom of the rotor tip plane (u, v, ij), 0, <j> 0 ). On
R R

the other hand, for this case the analysis was based on neglecting the derivations of <j>_ und 0_ giving a

reduced system of only four degrees-of-freedom (u, v, <(>, 0). Figure It shows that the reduced model over a

wide frequency domain corresponds very well to the original model. Deviations only occur at high

frequencies where the dynamics of the rotor disc plays a significant role.

Figure 15 shows two input signals used for this method and their spectra. As signal 1 shown at the

top of the figure contains too little information in the low frequency domain, an additional test with

signal 2 shown at the bottom of the figure was conducted. Subsequently, the time histories of both tests

were arranged one after another for the evaluation. The evaluation with test signal 1 alone showed poor

agreement in the lower frequency domain, whereas the evaluation with both signals showed good agreement as

shown in Figure 16. In the case of very high frequencies, deviations from the 6-degrees-of-freedom model

were contributed to the rotor dynamics as previously described. On the other hand, the identifications

found in this high frequency domain correspond very well to the reduced 4-degrees-of-freedom model

presented in Figure 14. In the time history plot, shown in Figure 17, the difficiency of the single input

solution is not so evident as in the frequency response plots of Figure 16. This arises because the time

histories contain less information on the low-frequency behaviour due to the short test time than the

corresponding frequency-response curves. Finally, using both signals, Figure 18 shows that the model could

be well identified.

4. Optimization of Input Signals

The results of the helicopter simulation have shown that the quality of the identified model

essentially depends on the choice of input signals. Methods for the optimization of input signals have

already been published , e.g. in ref. 10. Such methods which provide continuous signals, make great

demands on the ability of the pilot to steer exactly the prescribed signal. With respect to the pilot, it

is more favorable to optimize a sequence of easily controllable signals, for instance, step functions. A

first step in this direction is the use of binary random processes as a signal generator. As such

processes have a known performance spectrum, the information contents of the signal can be easily judged

and influenced. Such signals were applied with good success in the Do-27 and HFB-320 flight test.

However, Figure 15 showed that, in the case of short flight times, signals of this type still do not show

an ideal power spectrum curve. The spectrum of the random process cannot be realized within the short time

of 20 seconds, therefore, sharp peaks and breaks will result. For this reason a method was developed that

optimized the sequence of the step functions for a prescribed total time, length of interval, and step

height. The criterion used to make this determination is the approach of the signal spectrum to the

spectrum of the corresponding random process. First results are shown in Figure 19 which shows namely two

optimized input signals of a time duration of only 7 seconds each. These signals have, in spite of the

short test time, a flatter spectrum than the signal used for the helicopter simulation which had a test

time duration of 20 seconds. In addition, the signals are built up so simply that they can be easily flown

by the pilot after little training. The amplitudes of the first signal shown at the top of Figure 19 are

equally large positively and negatively. The disadvantage of this signal is the low value of the power

spectrum at low frequencies. This disadvantage, however, can be eliminated by a displacement of the

signals as shown in the lower part of Figure 19. Note the improved corresponding power spectrum in the

low frequency domain.

Before determining optimal input signals for a flight test according to the described procedure, one

has to estimate which frequencies the signals should include. For this, a procedure was developed that

uses the Bode plot of the frequency responses. In applying the method, first the magnitude of the frequency

responses multiplied by the corresponding equation coefficient is plotted. An example of such a plot is

given in Figure 20 which shows the dependency of the terms of the rolling moment equation on the frequency.

In the case where forcing is introduced with a definite frequency, only those coefficients which exercise

an essential influence at this frequency within the equation can be determined. Further, under other

circumstances, only ratios/of coefficients can be determined. This occurs, for instance, >.df the known

inertia terms are of no importance and thus the equation has no dominating term with a known coefficient.
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Figure 20 contains an example of such a case in the lower frequency domain. Additionally, which parameters

can be defined in the different frequency ranges is also shown in this figure.

Using the same procedure as the example above, one produces the corresponding diagrams for all the

other equations and input signals. Combining this information, the required frequency domain for the input

signal can be found. In addition, the time interval needed for the input signal can also be determined from

the upper frequency limit.

Compared to an optimization of signals in the time domain, this method offers a number of practical

advantages:

1. Several input signals with good power spectra can be developed independently of the aircraft being

tested. The final adjustment of these signals to the test aircraft is then made by varying the time

scale without changing the amplitude variation of the signal.

2. The pilot needs to memorize the form (amplitude variation) of the test signals only once even though

the test time of the signal is changed from run to run.

3. Owing to the flat spectrum, the signal is suitable even if the actual behaviour of the aircraft

deviates from that of the a-priori model.

5. Conclusions

Three methods for system identification have been used in the Institute for Flight Mechanics of the

DFVLR: the frequency response method, the maximum-likelihood method and the model with automatic parameter

adjustment method. The evaluation of flight tests with Do-27 and HFB-320 have demonstrated that model

output and flight test data correspond better when the quadratic influence of the angle of attack is taken

into account. The inclusion of turbulence at the angle-of-attack signal only partial improves the solution.

It appears that, when using signals from vane type instrument, measurement noise as well as turbulence have

to be taken into account for a more accurate solution.

The method with automatic parameter adjustment can be employed as an on-line method in the case of

measuring times of long duration as well as an iterative method in the case of short measuring times. In

the later case, problems of helicopter identification were investigated. In so doing, an identification

was performed on a six-degree-of-freedom helicopter simulation using a reduced model with four degrees-of-

freedom. It appeared that with suitable input signals good correspondence between this theoretical and

identified model could be obtained.

The choice of suitable input signals and/or their optimization is an important supposition for

performing a successful system identification. In those cases in which the pilot has to control the inputs,

the signals must have a particularly simple form. On the other hand, they shall contain the information

required for the parameter determination. Therefore, a method was developed consisting of two steps in

which, at first, type and frequency domain of the signal are determined and, subsequently, time history

with regard to the desired spectrum is optimized.

In the present paper, all the activities of the DFVLR in the fields of system identification and

signal optimization could not be discussed. It is the aim of these efforts, to work with several methods

which are independent of each other. In this way, the methods can be adapted to the special conditions of

flight tests and the obtained results can be confirmed.
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Fig. 7 Identification results (time histories)
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A COMPARISON AND EVALUATION OF TWO METHODS OF
EXTRACTING STABILITY DERIVATIVES FROM FLIGHT TEST DATA

by

Paul W. Kirsten
Aerospace Research Engineer

Air Force Flight Test Center
Edwards AFB, California, USA

SUMMARY

Two methods for extracting stability derivatives from flight data are compared. A
modified Newton-Raphson minimization technique and a digital-analog (hybrid) matching
technique were used to analyze the same data maneuvers obtained from two aircraft.
About 55 maneuvers of an F-111E aircraft were analyzed over a Mach number range of
0.3 to 2.0 and an angle of attack range of 3 to 19 degrees. About 15 maneuvers were
analyzed for the X-24A lifting body at Mach numbers of 0.8 and 0.9 and an angle of
attack range of 4 to 13 degrees. Stability derivatives were extracted from these
maneuvers, and the results from the two techniques along with wind tunnel results
were compared. The hybrid matching mathematical model contained complete five-degree-
of-freedom equations (no velocity derivatives) with variable dynamic pressure, whereas
the Newton-Raphson model used uncoupled, three-degree-of-freedom equations with
constant dynamic pressure. Both techniques were found to be capable of giving ac-
curate results, but required a fairly extensive knowledge of the method being used.
Since the Newton-Raphson technique tends to be less time consuming, it is better suited
for processing large quantities of data maneuvers. Hybrid matching is well suited
for programs in which a limited amount of data is processed for each flight; or for
analyzing maneuvers which are highly coupled or transient in nature; requiring com-
plete five-degree-of-freedom equations.

LIST OF SYMBOLS

ax acceleration along body x-axis
(longitudinal)

ay acceleration along body y-axis
(lateral)

az acceleration along body z-axis
(normal)

b reference span
c reference length
eg center of gravity
Cx rolling moment coefficient
Cm pitching moment coefficient
Cm pitching moment coefficient bias
CN normal force coefficient
CNQ normal force coefficient bias
Cn yawing moment coefficient
Cy side force coefficient
DI weighting matrix for measured

state parameters
D2 weighting matrix for a_ priori

estimate vector
g acceleration due to gravity
h pressure altitude
Ix moment of inertia about the

x-body axis
product of inertia about the
x- and y-body axes

*xz product of inertia about the
x- and z-body axes

Iy moment of inertia about the
y-body axis

IyZ product of inertia about the
y- and z-body axes

Iz moment of inertia about the
z-body axis

J cost functional or weighted
mean square fit error

L rolling moment divided by the
moment of inertia about the x-axis

M pitching moment divided by the
moment of inertia about the y-axis

M Mach number
m mass
N yawing moment divided by the moment

of inertia about the z-axis

xy

Pb
£b

2V

SAS
t

xc

Y

Z

A
ce
6
&a

Se
60
6r
e
A

body axis roll rate
wingtip helix angle (the helix
angle described by a wingtip
during a rolling maneuver)
dynamic pressure
body axis pitch rate
body axis yaw rate
reference area
stability augmentation system
a function of time
true airspeed
longitudinal force divided by
mass
side force divided by mass and
velocity
normal force divided by mass
and velocity
prefix meaning increment
angle of attack
sideslip angle
total aileron deflection
additional control deflection

elevator deflection
constant control deflection
rudder deflection
pitch angle
F-111E wing sweep angle
bank angle

Subscripts:

6a , 6c,6c^,6c~,
6e,6r,60,p,q,r,
v,ct,e,<t>,e

partial derivatives
with respect to
subscripted variables
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1.0 Introduction

The importance of aircraft stability and control derivatives in the development
and evaluation of a successful aircraft has been recognized for some time. In recent
years, highly automated data acquisition systerns and advanced derivative extraction
techniques have been developed for determining aircraft stability and control deriv-
atives from flight test measurements. These advanced techniques have made possible
a more accurate and timely flight test estimation of derivatives than obtainable with
previous techniques and have, therefore, made the effort to obtain them more justi-
fiable.

There are three essential elements in the identification of aircraft parameters
from flight data:

1. Adequate instrumentation (the right kind of sensors with necessary accuracy)
and recording equipment with which to collect the flight data.

2. A proper sequence of flight control inputs (surface deflections) which will
excite all the aircraft response modes from which parameters are to be
extracted.

3. Algorithms and computer programs to identify the derivatives, their con-
fidence levels, and related effects such as sensor errors and wind gusts.

The last two of these elements are the primary concern of this report. Instrumenta-
tion systems will not be discussed in detail. It should be completely understood,
however, that the accuracy of the extracted derivatives is a direct function of the
accuracy of the instrumentation system used. The accuracy of the weight, balance,
and inertia data is equally important of course, as is the measurement of flight
conditions (especially dynamic pressure).

Two methods for extracting stability and control derivatives from flight data
are compared in this report. A modified Newton-Raphson minimization technique and
a digital-analog (hybrid) matching technique were used to analyze the same test
maneuvers obtained from two aircraft: an F-111E and an X-24A lifting body.

The main purposes of this study were to (1) compare results from the two methods
over a large sampling of similar flight data maneuvers, and (2) to determine the
suitability of each program for use on routine stability and control test programs
by relatively inexperienced personnel.

This study compared and evaluated two specific existing programs and, not
necessarily, the manual matching concept versus the digital Newton-Raphson concept.
Improved versions of the Newton-Raphson program used in this study are presently
being developed by NASA-FRC and other organizations.

2.0 Flight Data Requirements

The flight test parameters that are necessary for the two derivative extraction
techniques for the lateral-directional and longitudinal modes are listed in table I.

The requirements for the two techniques are the same except for angle of attack
in the lateral-directional mode, dynamic pressure, and coupling between axes. The
Newton-Raphson technique uses a constant average a in its lateral-directional equa-
tions in order to keep the computations linear. A variable a is used in the hybrid
matching technique. Dynamic pressure is also considered a constant average value
in the Newton-Raphson technique whereas hybrid matching uses the time history of the
parameter. Coupling between the longitudinal and lateral-directional axes is ac-
counted for in the Hybrid program and is not accounted for in the Newton-Raphson pro-
gram.

It is essential that all control parameters be submitted as inputs to the
models in both techniques. This includes all control surface deflections such as
rudders, ailerons, spoilers, and flaps, reaction control rockets, and any other
control input that could have induced motion in the aircraft during the selected
time segment.

It is desirable to have time histories of the angular accelerations pb, rb,
and qu. These parameters will add some information in the analysis and may improve
the results somewhat. Accurate, high confidence instrumentation for the direct
measurement of rotatio.nal accelerations has not yet been developed, however, and
valid analysis can be made without them.
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An accurate set of inertias must be implemented in both techniques. The
accuracy of the derivative values are a direct function of how accurately the
moments of inertia have been calculated.

Experience has shown that the flight data should be sampled at 50 samples per
second for a fighter type aircraft. Lower sampling rates are probably adequate
for larger, slower responding aircraft; however, rates below 20 samples per second
could produce questionable results due to the inability to accurately define the
control surface movement.

TABLE I

Flight
Parameter Newton-Raphson Hybrid Matching

Lateral-Directional Mode

Control
Parameters

Required Time
History

Required Time
History

Required Constant
Average Value

Preferred Time
History

Required Constant
Average Value
Preferred Time
History

Longitudinal Mode

Control
Parameters

Required Time
History

Required Time
History

Preferred Time
History

Not Used

Preferred Time
History

Required Time
History

Constant Average
Value
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Longitudinal Model

V Required time histories in the Newton-Raphson program
for an analysis in three-degree-of-freedom in the

ax longitudinal mode. These parameters are not required
for a two-degree-of-freedom analysis.

Both Modes

q Required Constant Required Time
Average Value History

V Required Constant
Average Value

Weight inertias eg
(for eg corrections
to accelerometer data)

3.0 Test Maneuvers

The Newton-Raphson and hybrid matching programs are both capable of analyzing
all types of flight test maneuvers or vehicle oscillations, as long as they can be
adequately described by the mathematical model of the particular program. Also,
both programs can be used to analyze either SAS-off or SAS-on oscillations in the
lateral-directional or longitudinal axes. There are, however, considerations to
be given to the type of flight test maneuver performed which will lead to the most
accurately determined set of stability and control derivatives. These considera-
tions are discussed below.

The type of flight test maneuver used to extract stability and control deriv-
atives is very important. A maneuver which excites all the aircraft response modes
and tends to isolate the effects of individual derivatives is highly desirable. A
lateral-directional maneuver which has been found to satisfy the above conditions is
(figure 2) a sharp rudder input, followed by a control surface fixed (SAS-off)
oscillation, and terminated with a sharp aileron input.* (A similar maneuver is
desirable in the longitudinal axis, using longitudinal control surfaces as the
forcing functions.) This is the maneuver which was used for all data analyzed in
this report. In this type of maneuver, the control derivatives Cjl^, Cn(5r> Cy ,

Cj _ , Cn,. > and cyr are most accurately determined at the time of the appropriate

sharp control surface input. Sideslip derivatives Cj. , Cn , and Cy. and damping

derivatives Co , Cn , Co , and Cn are more accurately derived from the free
"p" np' *•!• r J

oscillation portion of the maneuver when control surfaces were not influencing
vehicle motion. When conditions dictate that this maneuver be performed with aug-
mentation on, the accuracy of the sideslip derivatives may deteriorate somewhat,
and the effect of damping derivatives is severely masked by control surface motion.

4.0 Analysis Methods and User Comments

4.1 The Hybrid Matching Program

The hybrid matching technique is an extended and improved version of the old
analog matching technique which has been used for many years to extract stability
derivatives from flight test data (reference 3). The revisions and improvements
made to the program provide for a much more accurate estimation of derivatives in
significantly less time than the earlier techniques.

A rudder pulse is performed first since it does not cause a significant angle of
attack change on most airplanes. This is important if the derivatives to be
identified vary with angle of attack.
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In the hybrid program, flight test data is stored directly in the digital
computer using magnetic tape. This eliminates the need for tracing flight data
curves manually, which results in a considerable savings of time and a completely
accurate display of flight data. Flight data are transferred from the digital
computer to the analog computer where the equations of motion are solved in a
repetitive operation mode (50 times per second). This mode allows the operator to
instantaneously see the effect of changing derivatives. The computed response and
actual flight response appear simultaneously on an oscilloscope as standing wave
time histories. This direct display of flight and computed time histories negates
the need for transparent plastic overlays of the flight data, thereby eliminating
the considerable amount of parallax and distortion which is associated with using
overlays. Stability and control derivatives are then manually varied until the
computed solution matches the flight data as closely as possible. Thus, all of the
logic in the hybrid matching technique is supplied by the human operator.

The hybrid program has an important feature of uncoupling the equations of
motion, which allows the operator to more clearly see the effect of changing indi-
vidual derivatives and therefore, more rapidly arrive at an initial estimation of
the derivatives. Uncoupling the equations of motion is accomplished by using the
measured flight time histories of the response parameters pb , rfe, qb, a, 6, and <|>
as well as the control surface time histories in the equations. Equations of motion
for both programs are contained in Figure 1. Therefore, the only variables in each
equation are the stability and control derivatives. The effect of each derivative
is isolated to one equation, which allows the operator to more clearly see the
result of changing one particular derivative on the computed response of the vehicle.
(There are some interaction effects due to the Ixz terms in the equations. However,
since Ixz is usually a relatively small quantity, these effects are insignificant.)
In this matter, the roll derivatives C4 , Cĵ , Cj,̂ , Cl , and Cj are obtained by

analyzing the f>b equation. The yaw derivatives Cn , Cn6a, Cn6r> Cn are obtained

from the rb equation. Side force derivatives Cy , Cyg , and Cy are derived through

the solution of the ay equation. In the longitudinal mode, Cm , Cm. , and Cm ar-e

obtained from the q equation and CN and CN from the az equation.

After the best comparison between computed results and flight values is obtained
in the uncoupled mode, the computer model is switched to the coupled mode and refine-
ment of the match of the computed solution to flight values is performed (if nec-
essary). In the fully coupled lateral-directional mode, the pb, rfe, 6, and c(> terms
in the p,, rb, and g equations are computed solutions rather than flight values. The
pitch rate and angle of attack terms in these equations remain flight data. In the
coupled longitudinal mode, the qb and a terms in the d, q , and az equations are
computed solutions. The lateral-directional terms, p , r^, B, and $ remain flight
values. b b

4.2 The Modified Newton-Raphson Technique

The modified Newton-Raphson technique used for extracting stability and control
derivatives by the AFFTC was developed by Kenneth W. Iliff and Lawrence W. Taylor
Jr., at the NASA Flight Research Center. The technique is thoroughly described in
references 5and 6. The computer program used at the AFFTC is but one version using
the Newton-Raphson technique and the comments in this report on the Newton-Raphson
method pertain only to this specific version. In this section, a brief discussion of
the basic algorithm is given, along with the main features of the program.

The Newton-Raphson program used for this study is a maximum likelihood estimator
which uses a modification of the Newton-Raphson algorithm to identify the unknown
coefficients in a set of linear differential equations. The equations of motion
mechanized by the Newton-Raphson program are listed in Figure 1.

The technique computes time histories using an initial set of derivatives
(usually wind tunnel), and compares these calculated time histories with flight
measured time histories. From this comparison a mean squared error is obtained and
put in the form of a cost function, J. The object of the Newton-Raphson algorithm
is to vary the unknown coefficients (stability and control derivatives) in the
equations of motion in such a way as to reduce the cost function, J to a minimum.
This is equivalent of finding where the gradient of J (VJ) is zero. The program
relates VJ as a function of the set of unknown coefficients and changes these
coefficients, using the Newton-Raphson method, until the gradient is zero. The
Newton-Raphson method is an iterative proces's in which a new estimate of the vector
of unknown coefficients is dependent on the old estimate and the derivative of the
function at the old value. Therefore, the complete Newton-Raphson algorithm contains
the derivative of the function VJ which means that second gradients (V2J) are involved.
This algorithm produces rapid convergence to the minimum of J usually in from four to
six iterations. However, the second gradient of J is very difficult and time con-
suming to calculate on a digital computer. Therefore, a modification has been made
in the second gradient of J so that no second order terms are included in the computa-
tion. Thus, what is used is a modified Newton-Raphson technique.
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The modified Newton-Raphson program contains several weighting features which
allow the user to have some control over the matching process. These weighting
features account for instrumentation noise in the measured parameters, allow the
use of £ priori information on the derivatives, and permit any derivative to be
fixed if it is not involved in a maneuver.

The D, matrix is a diagonal weighting matrix whose elements correspond to the
flight staEe parameters. The purpose of the D^ matrix is to weight the individual
flight parameters so that the program will match each parameter equally to account
for the amount of measurement noise in any particular channel. From two to four runs
of the program are necessary to determine satisfactory Dj^ weightings. Once a set of
D., weightings has been determined for a particular aircraft, they should not have
to be changed for subsequent maneuvers as long as the instrumentation system remains
the same.

The program contains an £ priori feature which allows the use of independent
estimates of the unknown coefficient from wind tunnel, previous flight data, or
any other source. These a_ priori estimates may be used as starting values in the
program and, during each iteration, the changes that are made to improve the fit
are weighted against the deviation from these starting estimates. The addition of
a. priori information into the program generally results in the extraction of better
overall estimates of derivatives but must be used carefully.

The a_ priori feature contains a weighting matrix (D2) whose elements correspond
to each of the unknown coefficients. These weightings correspond to the relative
confidence placed in the starting values of the derivatives. If wind tunnel data are
used for the starting values, the D2 matrix allows the user to account for dif-
ferences in wind tunnel accuracy for different derivatives. For example, high
weighting (high accuracy) for Cj> , but low weighting (low accuracy) for Cn .

The program computes a set of confidence levels for the calculated coefficients.
To assess the validity of these coefficients, a Cramer-Rao bound is used which
estimates their error covariance matrix of the calculated coefficients. This process
is described in detail in reference 6. Confidence levels are discussed further in
the section entitled "D2 Weightings and Confidence Levels Study."

4.3 Basic Program Structures and Differences

There are basic program differences between the two methods which should be dis-
cussed. The most important difference is the role of the human operator. In the
hybrid matching process, the human operator is directly involved in the derivative
computation. He manually changes the stability and control derivatives until the
desired match between the computed solution and flight data is obtained. He, there-
fore, supplies all the logic inherent in the hybrid matching process. Although
the Newton-Raphson technique does not use the human operator in the actual derivative
extraction process, the effective use of the program requires a comparable level of
knowledge and experience in the selection of weighting functions and use of the â
priori option.

Having the human operator directly involved in the derivative extraction
process has important advantages which should be incorporated into any good all-
digital technique. These advantages include:

1. The human operator supplies engineering judgement to the program to obtain
the desired match between computed and flight data. Good engineering
judgement would include eliminating or concentrating less on flight data
which contained noise, wild data points, extraneous inputs (wind gusts,
etc.), or changes in flight conditions (such as angle of attack) which
may occur during a maneuver.

2. The human operator can vary the weighting of individual derivatives
throughout a particular maneuver. If pulse type maneuvers are performed
which isolate the effects of individual derivatives, the operator can
obtain the value of those derivatives at the appropriate time during
the maneuver when the effects of the derivatives are most pronounced upon
the motion of the vehicle. Thus, control surface derivatives will
generally be obtained at the time of the corresponding control surface
pulse input. Sideslip and damping derivatives will be most heavily
weighted during the free, or SAS-on, oscillation of the vehicle.
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3. A level of accuracy can be assigned to individual derivatives and the
entire maneuver in general by the human operator. It is important
that accuracy levels are known, since many maneuvers do not contain
sufficient information, or do not isolate the effects of individual
derivatives adequately to give an accurate estimation of the value of
the derivative. Also, if a maneuver contains little information about
a particular derivative, the operator can hold that derivative at its
wind tunnel or estimated value. In this manner, he supplies â  priori
information to the program. ~

Thus, the role of an experienced individual is extremely important to a
derivative extraction technique. The purpose of developing an all digital extraction
technique would be to do the job of the human operator more quickly and more
accurately, if possible, while still retaining the logic he supplies.

The Newton-Raphson program contains logic which allows individual measured
flight parameters to be weighted in such a manner to account for instrumentation
noise. However, wild data points and extraneous inputs may severely degrade the
results of the program and must be corrected external to the program.

The Newton-Raphson program does not have provisions for time-varying weighting
of derivatives, thus the logic described above is not explicity available in
the program. However, the logic is accomplished to a certain degree in that there
is more information available in the maneuver to establish values for the control
derivatives at the time of the sharp control inputs.

A measure of the accuracy of individual derivatives (confidence levels) is
produced by the Newton-Raphson program. A discussion of the adequacy of these
confidence levels is given later in this report. The program does have logic which
allows starting values to be assigned to each derivative and assigns an individual
weighting to each derivative which reflects the relative confidence in the starting
values. This logic allows an individual derivative to vary from its starting value,
if sufficient information is contained in a maneuver for that particular derivative,
and holds it near its starting value when little information is available.

The mathematical models of the Newton-Raphson and hybrid matching programs
differ considerably. Equations of motion for the two programs are contained in
Figure 1. The Newton-Raphson program uses three-degree-of-freedom equations which
completely uncouple the longitudinal and lateral-directional axes. The program
also makes small angle approximations in the a and $ equations. (Compare the Newton-
Raphson and hybrid equations in Figure 1.) The hybrid matching mathematical model
contains complete five-degree-of-freedom equations (no velocity derivatives) which
account for coupling effects between axes. The hybrid model does not assume small
angle approximations. The hybrid matching model uses a variable dynamic pressure,
while dynamic pressure is a constant in the Newton-Raphson program. Neither pro-
gram accounts for structural flexibility effects. Thus, for an aircraft with sig-
nificant aeroelastic effects the derivatives obtained are valid only for the flight
condition (dynamic pressure and loading) under investigation. The equations of
motion of the Newton-Raphson program are adequate for analyzing most flight test
maneuvers because they are usually performed under nearly steady state conditions
with little coupling between axes. However, maneuvers which are highly coupled
and/or transient in nature or which include large attitude excursions would require
complete five-degree-of-freedom equations with variable dynamic pressure.

Both techniques assume linear derivatives. Thus, the derivative obtained is
the local slope of the force or moment coefficient with respect to a particular
variable. It is a linear value for the flight condition under investigation. In
actuality, derivatives may not be linear functions. For example, Cng may be a

nonlinear function of 6. If Cng is nonlinear in the range of B's experienced

during the flight maneuver investigated, it may be difficult to obtain a good
match using a linear function. Another example is Cm(x which is often a nonlinear

function of angle of attack. If a pitch pulse is performed in a region of non-
linear Cma> the linear computed response will not match the flight response. There

are several options for analyzing maneuvers of this type:

1. A nonlinear function can be programmed into the mathematical model if
the form of the function is known.

2. The maneuver can be analyzed in sections (at different a's or 3's) to
obtain a different derivative value for each section.
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3. A single value can be obtained for the entire maneuver which is an average
value for the angle of attack (or angle of sideslip) range traversed.
Different size input pulses may be performed to obtain the relationship
between the derivative value and the amplitude of the state variable.

It is important that the data be recorded accurately. Both programs can ac-
count for biases in the data and instrumentation noise. However, data dropouts,
large discontinuities, or spikes severely degrade the results in the digital Newton-
Raphson analysis. In the hybrid matching technique, the human operator can account
for such data discontinuities by ignoring extraneous points except for discontinu-
ities in the control position measurements which are direct inputs to the model. It
is important that all flight data not contain phase shifts.

It is important to perform the flight test maneuvers at relatively constant
Mach number and angle of attack because derivatives may be strong functions of
these parameters. If the Newton-Raphson technique is used, it is doubly important
to maintain a constant angle of attack since the lateral-directional coupling equa-
tions use constant angle of attack in the computations in addition to the potential
derivative variation with a. Also, relatively constant dynamic pressure is de-
sirable during the maneuver if the airplane under investigation is flexible and/or
if the Newton-Raphson program, which assumes constant dynamic pressure, is used.
If the hybrid matching program is used, maintaining relatively constant Mach and
angle of attack during the maneuver are the only conditions which must be satisfied.
That is, the airplane does not need to be at level, 1-g flight when the pulse
maneuver is performed. A nicer, more analyzable, pulse will probably result if
the initial rotational rates are near zero, however. If the Newton-Raphson program
is used, in addition to the conditions of constant Mach number, angle of attack,
and dynamic pressure, the small angle approximations contained in the equations must
be considered. For example, the term sin <j) in the g equation is approximated by the
angle Q in the Newton-Raphson program.* If the airplane goes through a large bank
angle change when the maneuver is performed, this term will be inaccurate. However,
the effect of this term is small when the velocity is large, and the inaccuracies
produced by the small angle approximation can possibly be ignored under these con-
ditions .

4.4 Equipment and Manpower Resources

One operator who is familiar with both digital and analog computers (as well
as experienced in extracting derivatives) is required to run the hybrid matching
program. Training requirements vary from individual to individual, of course, and
the learning process never ends. However, it is felt that analyzing approximately
20 test maneuvers would provide sufficient experience to become proficient in
derivative extraction using the hybrid technique.

The time to analyze and obtain a set of stability and control derivatives for
a particular flight test maneuver, although difficult to assess, may differ con-
siderably between the two programs. The average time required for an experienced
operator to obtain a set of derivatives, and accuracy levels for the derivatives,
using the hybrid matching program is approximately 45 minutes (including computer
setup time for the individual maneuver). The digital computer run time required to
analyze one flight maneuver using the Newton-Raphson program is approximately
four minutes. An additional 10 to 15 minutes per maneuver is required for setup
time. Hence, the time to analyze one maneuver, assuming one entry into the com-
puter, is considerably less for the Newton-Raphson program than for the hybrid
matching program. The hybrid program is an on-line operation however, and when
results are obtained (in the 45-minute time period) they are final results and are
not rerun unless additional test information becomes available (i.e., revised
inertias, instrumentation calibrations, etc.). The adequacy of the results of the
Newton-Raphson program are not known completely until the time histories of the
computed and flight data match are received from the computer. If the results
are not adequate (see below), the maneuver must be rerun. Thus, although the
actual computer run time is minimal, the total time required to obtain optimum
results for some maneuvers may be longer. It should be noted that the time per
case for hybrid matching does not change as a function of number of cases. The
time per case decreases considerably for the Newton-Raphson program as the number
of cases is increased.

If the airplane oscillates around a bank angle other than zero, this term can be
replaced by $ sin<(>av where (J> is the average value of $ during the maneuver.
Thus only the perturbation of $ around the average $ will be an approximation.
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The above discussion assumes that the weighting matrices used in the Newton-
Raphson program have been established for a particular airplane. It also assumes
that the source data tapes have been edited and transferred to the proper format
and computer language to be compatible with each of the analysis programs. This
process, although required only once per test program, has proven to be both frus-
trating and time consuming.

A level of experience comparable to that needed for hybrid matching is required
to effectively use the Newton-Raphson program. Most of the experience required is
in establishing and using the weighting matrices and interpreting the results of
the program.

Assuming a minimum amount of resubmitting data into the computer, the Newton-
Raphson program tends to be less time consuming than the hybrid matching technique.
It is, therefore, better suited for processing large quantities of data maneuvers.
Hybrid matching is more applicable for programs in which a limited amount of data
is processed for each flight than It is for programs in which large amounts of
data are processed, or for analyzing maneuvers which are highly coupled or transient
in nature requiring complete five-degree-of freedom equations.

5.0 Discussion of Flight Test Results

5.1 F-111E and X-24A Data

Stability and control derivatives obtained using the Newton-Raphson and
hybrid matching techniques are presented, along with wind tunnel data, for the
F-111E aircraft and the X-24A lifting body. All derivatives presented in these
figures are body axis derivatives. The F-111E data are presented as a function
of angle of attack at Mach numbers of 2.0, 1.6, 1.4, 1.2, and 0.8 for a wing sweep
of 50 degrees. The X-24A data are presented as a function of angle of attack at
Mach numbers of 0.9 and 0.8.

Only lateral-directional data are presented. The F-111E flight test program
was a lateral-directional study and no longitudinal maneuvers were performed. In
the X-24A flight test program, the lateral-directional mode was of primary concern
(as it is with most airplanes) and only a limited amount of longitudinal data
was obtained. Both techniques have longitudinal modes which have been successfully
used on flight test programs. Since the longitudinal mode is not as complex as
the lateral directional mode, it is generally more easily analyzed (except when the
airplane has nonlinear derivatives such as C ).

mot

There were many questionable aspects of the F-111E program which caused un-
certainties in the extracted derivatives. The wind tunnel data was somewhat
questionable since it was rigid model data which had analytically flexibilized
corrections applied (for some derivatives these corrections were quite large).
Also, wind tunnel data for the clean configuration did not include possible effects
of trim control surface setting (such as the effect of elevator deflection on
sideslip and aileron derivatives). Accuracy of the recorded flight data was not
known. Also, the recorded flight data was of poor quality and contained many wild
points. The accuracy of the moments of inertia and their variance with fuel con-
sumption were unknown. Finally, the airplane motions were rather heavily damped
with the SAS on. Most of the maneuvers analyzed were SAS-on maneuvers. The ac-
curacy of the extracted derivatives is less under these conditions.

The uncertainties discussed above may explain the scatter which is present in
the extracted derivatives for the F-111E, and the lack of comparison with wind
tunnel data. They would be expected to have a like effect upon both techniques,
however, and it is therefore valid to compare the results of the two techniques with
each other without qualification. X-24A data is also presented in this report
since more confidence is expressed in the quality of the flight data than in the
F-111E data. The uncertainties which were present in the F-111E flight test pro-
gram were minimized in the X-24A program.

5.1.1 Sideslip Derivatives

5.1.1.1 F-111E

Sideslip derivatives C^- and Cn. are shown in figure 3, for 50 degrees of
wing sweep.* The significant fact is that comparison between the two derivatives
extraction techniques, except for a few instances, is very good.

*
Side force derivatives are not presented in this report since the location of the
lateral accelerometer was not accurately known for the F-111E. Also, these
derivatives are secondary derivatives and have minor influence on the airplane's
response.
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Comparison between the extracted derivatives and wind tunnel data for
C£R was not particularly good in many instances. There was an ususual amount of

scatter in the flight-derived values of Cg,g at similar flight conditions. Part

of this scatter may be explained by the fact that the airplane was heavily damped
in roll with the SAC on, which may have degraded the extracted values some. How-
ever, the scatter was repeatable in both extraction techniques.

Scatter in the flight values of Cng was low, and agreement between the

two extraction techniques was again good. However, the flight-derived values of
Cnft were much lower than wind tunnel data in most cases. Note that the wind tunnel

data was obtained at Mach numbers of 2.0, 1.2, and 0.8. The wind tunnel data
shown in the figures at Mach =1.6 and 1.4 were interpolated from the Mach =2.0
data and the Mach =1.2 data. The wind tunnel data at Mach =1.2 was obtained
from a different wind tunnel than the other data, and gave considerably higher
values of Cnfi, than data at the other Mach numbers. Also, flight-derived values

of Cnft have been lower than wind tunnel data in the transonic region on other

flight test programs (including the X-24A program).

5.1.1.2 X-24A

Flight results and wind tunnel data for the X-24A sideslip derivatives
are presented in figure 7. Agreement between the two extraction techniques was
good in most cases. The comparison of flight and wind tunnel data was good for
CJ,Q. As in the case of the F-111E, flight results for Cng at Mach = 0.9 were

lower than wind tunnel data.

5.1.2 Aileron Derivatives

5.1.2.1 F-111E

Aileron control derivatives for the F-111E are presented in figure 4.
Agreement between the two techniques was good in most cases, except at Mach = 2.0
where the hybrid matching results for C^,a were consistently higher than the
Newton-Raphson results. At all Mach numbers, the flight-derived values of

for both techniques were somewhat higher than wind tunnel data. It is felt that
the position of the horizontal tail may have an effect upon the value of the aileron
derivatives. If this effect exists, it is not included in the wind tunnel data.
Flight results for Cn- compare reasonably well with wind tunnel data.

5.1.2.2 X-24A

Flight results and wind tunnel data for the X-24A aileron derivatives are
shown in figure 8. Comparison between the results of the two techniques with each
other and with wind tunnel data is reasonably good in most cases.

5.1.3 Rudder Derivatives

5.1.3.1 F-111E

Rudder control derivatives for the F-111E are given in figure 5. ci ls

an extremely ineffective control derivative and very difficult to accurately obtain
from flight data. In contrast, Cn- is a very effective derivative, and flight-
derived data should be accurate for maneuvers which contain sharp rudder inputs.
In most cases, the results of the two techniques compare very well with each other
for this derivative. The comparison between computer and wind tunnel data is good
at supersonic Mach numbers. At 0.8 Mach number, computer values are consistently
lower than wind tunnel data.

5.1.3.2 X-24A

X-24A rudder derivatives are shown in figure 9. Comparison between the
two techniques with each other and with wind tunnel data is good except for a few
Newton-Raphson cases at Mach =0.9 and angles of attack around 12 degrees. In
some of these cases, the computed Newton-Raphson response did not match the flight
response well at the time of the sharp rudder input. It is felt that if the weighting
on Cnr were increased during this short time period, the match would have improved

and the computed value of Cn- would have increased. Variable derivative weighting

logic would possibly be an improvement to the Newton-Raphson program, especially
when analyzing pulse-type test maneuvers where the primary effect of the control
surfaces is restricted to a small segment of time in the maneuver.
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5.1.4 Damping Derivatives

Damping derivatives for the F-111E and X-24A are presented in figures 6 and
9. It is extremely difficult to accurately extract damping derivatives from
flight data when the data contains the inputs of an effective stability augmentation
system. A concentrated effort was not made to obtain F-111E damping derivatives
using the hybrid matching technique. The only damping derivative which was obtained
(for some maneuvers) was C& , which Is the most effective damping derivative for

most airplanes. When damping derivatives could not be extracted from a maneuver,
they were held at their predicted value in the hybrid matching program. When using
the matching program it is quite obvious when there is insufficient information
present to define a particular derivative (very little change in response is ob-
served when the derivative is varied over a wide range).

Numerical values for the damping derivatives are given for all maneuvers
analyzed by the Newton-Raphson technique. It is important to understand that these
values may be heavily weighted toward the initial starting value of the derivative
used in the program. In other words there is logic in the Newton-Raphson program
(as in the hybrid program) which holds a derivative at or near its starting value
(which is the predicted or estimated value that the operator enters into the program)
if no information is contained in the maneuver for that particular derivative.
This is desirable logic to have in the program. However, it is important to
differentiate between accurately determine derivative data points which were, in
fact, quite close to predictions, and derivative data points which were merely
left at the predicted value because there was no information present in the test
maneuver. This will be discussed in detail in the next section.

The consistency in the values of Cj^ , and possibly Cn , as a function of angle

of attack indicates that these derivatives can probably be determined with reason-
able accuracy for both airplanes. The overall scatter in the values of Cj, and

Cn , and the fact that the operator using the hybrid program could determine values

for only a few maneuvers, indicates that these derivatives are difficult to extract
and accurate values cannot be obtained. Whether or not the consistency in the
Newton-Raphson values of Co and C was caused by these derivatives being too

P p
heavily weighted will be discussed in the next section.

5.2 D2 Weightings and Confidence Levels Study

Five F-111E maneuvers at a wing sweep of 50 degrees and 0.8 Mach number which
ranged in angle of attack from 8.8 to 18.1 degrees were analyzed extensively in an
attempt to understand and validate the a_ priori (D2) weightings and the confidence
levels obtained from the Newton-Raphson program. All derivatives presented in
this section will be dimensional and in the principle axis. This is because the
program prints out the confidence levels in this form and part of the purpose of
this study is to relate the final derivatives to the confidence levels. Each of
the five maneuvers was run four times, (1) with a_ priori weightings using wind
tunnel values as starting derivatives, (2) without £ priori weightings using wind
tunnel values as starting derivatives, '(3) with a. priori weightings using starting
derivatives that were double wind tunnel values, and (4) without £ priori weightings
using starting derivatives that were double wind tunnel values.

Figure 11 compares the final derivatives for conditions 1 and 3. Also included
on this plot are envelopes respresenting the data from figure 12 which compares
final derivatives for conditions 2 and 4 (without a priori weighting).

From these comparisons the validity of the D2 weightings, the validity of the
confidence levels, and the relative amount of information contained in the maneuvers
for each derivative can be determined.

The major derivatives Lg, Ng, Lg , Nga, and N,. show consistent results and

good comparisons between final derivatives that started with wind tunnel derivatives
and those that started with doubled wind tunnel derivatives (figure 12). This
indicates a great deal of information available for these derivatives since con-
sistent results are obtained even without £ priori weightings. The only exceptions
would be Lg, Lg , and N^ for the maneuver at a=8.8 degrees. This maneuver was a

SAS on rudder doublet only (no aileron doublet), and contained less information for
these derivatives. This maneuver is discussed in more detail later.
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These same derivatives show generally good comparisons (with the exception of
the maneuver at a=8.8 degrees) for conditions 1 and 3 with a priori weightings as
illustrated in figure 11. In the same figure, envelopes have been drawn represent-
ing the no £ priori data from figure 12. The data run with £ priori weightings
generally fell within or close to these envelopes. The fact that the final deriv-
ative values in all cases investigated were similar, and the fact that there was
consistency as a function of a indicates that the D2 weightings are correct for Lg,

V L6a> N6a> and N6r'

The relatively ineffective control derivative Lgr has a great deal of scatter

as a function of a without £ priori weighting (figure 12) which indicates that very
little information was contained in the maneuvers for this derivative. In figure 11,
final L, points that started with wind tunnel values, compare well with final points

that used starting values that were double wind tunnel. All points fell within or
close to the envelope of no £ priori data. However, because the data are severely
scattered even with £ priori weighting it is felt that the DZ weighting on Lgr
should be increased.

The damping derivatives N_ and L show consistent results with a and with the
two different starting values without a priori weightings in figure 12. This means
that information was available for those two derivatives in the maneuvers analyzed.
A priori weighting seemed to increase the scatter between the final results for the
"two different starting values considerably in the values for Np (figure 11), so it
looks like the D2 weighting for this derivative should be reduced. Figure 5 also
shows that the matched values for Lp that used double wind tunnel derivatives for
starting values are biased from the no £ priori envelope. This indicates that the
D2 weightings should probably be reduced for this derivative. It is apparent that
the D2 weighting is too large since the matched derivatives under condition 3 are
staying close to the starting values and incorrectly biasing the results from the
no a priori envelope.

The damping derivatives N and Lr show a great deal of scatter with a without
£ priori weightings (figure 12), indicating little or no information probably
because r is small. With £ priori weighting (figure 11) the data are still very
scattered with a and the matched derivatives run under condition 1 do not compare
well with those run under condition 3. Therefore, the D2 weightings for N and
Lr should be increased to give more consistent results and hold the matched values
closer to the starting numbers since little information is available.

Confidence levels obtained for the five maneuvers are shown in figure 12.
Confidence levels obtained from the version of the Newton-Raphson program used in
this study are valid only when £ priori is not used. If a priori weighting is
used, the confidence levels obtained are influenced by the weighting factor which
is assigned to the derivative and are not solely a measure of the amount of infor-
mation contained in the maneuver for that derivative. A recent version of the
Newton-Raphson program has been developed (by NASA-FRC) in which confidence levels
can also be obtained when the £ priori option is used. Also in this version of
the program, confidence levels are given in non-dimensional form. These are
significant improvements to the program.

Confidence levels shown in the figures are values obtained from the Newton-
Raphson program multiplied by a factor of ten. This is necessary since the con-
fidence levels are only a relative measure of the accuracy of each derivative.
Experience has shown that multiplying the confidence levels of the program by a
number that is between 5 to 10 converts that values to meaningful numbers that can
be associated with derivative values.

Comments obtained by visual inspection of the resultant time histories of each
of the five maneuvers are listed below. These comments should be useful in
analyzing and determining the validity of the,confidence levels.
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Maneuver
a

8.8

9.1

14.7/10.0

18.0

18.1

Type of
Maneuver

6r only

6r only

6r, 6a

fir, 6a

6r, 6a

SAS

ON

OFF

ON

ON

ON

Quality of Match

Good overall match

Very good overall match

Good P match, fair 3
match, poor R match

Good overall match

Fair overall match -
Cj. Appears too high

and Cns.__ appears too
low

J«6r

The maneuver at a=8.8 degrees was a good overall match but was a SAS on rudder
doublet only (no aileron doublet was performed during the maneuver). Thus, the
ailerons were only moving through the SAS commands, and the resulting aileron deriv-
atives should be less accurate than those obtained from aileron doublets. Also,
since the ailerons of the F-lll produce larger B excursions and more roll rate than
the rudders, one would expect Lg, Lp, and probably

maneuver. And indeed, the confidence levels for Lg, L ,

for this maneuver in comparison to the other maneuvers.

to be less accurate for this

N J6a' and N
6a are large

The maneuver at 01=9.1 degrees was a SAS off rudder doublet only. (Since the
ailerons did not move during this SAS off maneuver, aileron derivatives were held
fixed and are therefore, not presented). Since this was a very good SAS off match,
one would expect all the derivatives, and especially the damping derivatives, to
be more accurate for this maneuver. This is verified by the confidence levels
which are, for all derivatives, lower for this maneuver than any other maneuver.

There was a poor match of yaw rate for the maneuver at a=10 degrees (14 degrees
for Lg), indicating that Ng, Nga, N,5r, Nr, and N may not be accurate for this

maneuver. Ngr and N do not compare well with the other maneuvers when plotted as
a function of a as in figure 12. Confidence levels for Ngg, Ngr, and Nr are com-
paratively large for this maneuver, but do not seem to be as large as they should
considering the poor quality of the match of yaw rate.

The maneuver at a=18 degrees gave a good overall match, and confidence levels
for all derivatives were indeed low.

The maneuver at o=18.1 degrees was viewed as a fai-r match and confidence levels
were also generally fair. In particular, Lgr was felt to be high and N,jr low (by
looking at the printed time-history of the match). Lgr was higher and Ngr was lower,
for this maneuver than for the maneuver at a=18.0 degrees which gave a good match.
However, confidence levels for these derivatives were not as large as it would seem
they should be.

In summary, confidence levels for the five maneuvers analyzed seemed to be a
representative estimate of the accuracy of the associated derivatives in most in-
stances. However, in a few instances where parameters were poorly matched, con-
fidence levels were not as large as it seemed they should have been. Although more
investigation in this area is necessary before complete confidence can be given to
the confidence levels produced by the Newton-Raphson program, preliminary results
obtained from this small study are 'encouraging .
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6.0 Conclusions

Flight derived values of the derivatives obtained using all-digital Newton-
Raphson technique and the hybrid matching technique agreed well with each other for
most cases analyzed. This indicates that if accurate input data are supplied to the
two programs, and the right types of maneuvers are analyzed, both programs are
capable of extracting accurate derivatives from flight test data.

The results of the two programs did not compare well with wind tunnel predictions
in several instances. For example, there was definite disagreement between flight
values and wind tunnel predictions of CnQ in the transonic region.

"p

Final derivative values obtained from the Newton-Raphson program are relatively
insensitive to starting values if £ priori weighting is not assigned to the deriv-
atives. If £ priori is used, final values may be sensitive to starting values.

Confidence levels produced by the Newton-Raphson program seem to be a representa-
tive estimate of the accuracy of the associated derivatives in most instances. More
extensive evaluation of these confidence levels is needed however.

At the present time, both techniques require a fairly extensive knowledge of the
method being used and could produce misleading or meaningless results if applied by
an inexperienced operator.
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qS
77 - - - - [CN + CM ' OL + CM, • 6e]
V tmcosacos|3 N° ^ Nse

Sideslip Angle

(3 = pb sin a — rb cos a +

m cos (

cos V,

g
(cos 6 sin 0) — — (sin 6 sin

5a 5r] •

Normal Acceleration

ii
mg

5e]

Lateral Acceleration

(g's) = 2 - [ C yb mg y 6a 6r]

Fig. 1 Hybrid and Newton-Raphson equations of motion
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Euler Angle Transformations

qb sin 0 + rb cos 0
m = — - - •
Y COS0

Q _ qb cos 0 — rb sin 0

0 = Pb + (qb
 sin 0 + r

b
 cos 0)

Equations of Motion Mechanized in the Modified Newton-Raphson Computer Program

For the lateral-directional mechanization,

p = !p f + Lpp + Lrr + L0P + L5a5a + L5r5r
*x

+ LSci6Cl + L5c25c2 + L6o60

f = !p p + Npp + N rr + N0/3 + N5a6a + N5r5r
'•z

+ N5ci6c, + N5c25c2 + N5o50

ft = p sin a — r cos a + Y00 + 0g/V cos 9

+ Y5a5a + Y5r5r + Y6Ci6c, + Y5c25c2 + Y6o60

0 = p + r tan d

ay = Y6a5a + Y6r6r + Y6C]6Cl + Y5c26c2 + Y5o50 .

For the longitudinal mode,

q = Mqq + Maa + MVV + MSe5e + M6c6c -f M5Ci6Cl

+ M5c26c2 + M5o60

a = q + Nqq + Ntta + NVV + N00 + N5e5e + NSc5c

+ N6ci6Cl + NSc25c2 + N6o50 + g/V

V = Xqq -I- Xad + XVV + X00 + XggSe + X6c5c

+ X6Ci6c, + X6c25c2 + X6o50

0 = q.

5c, 6c, , and 6c2 are additional control inputs and should be used if necessary.

60 represents a bias term in the state equations so that the initial slopes of the state parameters may be
adjusted by the program when necessary.

Figure 1 Concluded



18-17

lOr-

-*

s
b

a>
Q

Newton-Raphson Time History Match
F-111E Mn=2.0 Alpha=10.0

_v
Flight
N/R Match

-101-

80i-

_2
1 ...... _|__ . ..| __ 1 ----- \ ---- 1 ....... .1. ._¥—\- -- J- ......... 1—-I-- ...... I ___ I __ I

1.0 2.0 3.0 4:0 5.0 6.0 7.0 8.0
Tine f Seconds)

Figure 2 Desirable Lateral-Directional Flight Test Maneuver
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Open Symbols - Hybrid Matching
Closed Symbols - Newton-Raphson
— Wind Tunnel Data
— -Interpolated Wind Tunnel Data
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Open Symbols - Hybrid Matching
Closed Symbols - Newton-Raphson
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Open Symbols - Hybrid Matching
Closed Symbols - Newton-Raphson

Wind Tunnel Data
Interpolated Wind Tunnel Data
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Open Symbols - Hybrid Matching
Closed Symbols - Newton-Raphson
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Open Symbols - Hybrid Matching
Closed Symbols - Newton-Raphson'
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Open Symbols - Hybrid Matching
Closed Symbols - Newton-Raphson
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Open Symbols - Hybrid Matching
Closed Symbols - Newton-Raphson
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All data run with a priori
F-lllE, A=50°, M=0.8
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All data run without a priori
F-111E, A=50°, M=0.8
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ESTIMATION OF THE AIRCRAFT STATE IN NON-STEADY FLIGHT

by

J.A. Mulder

Department of Aeronautical Engineering
Delft University of Technology

Delft
The Netherlands

SUMMARY

Kalman filtering and smoothing and maximum likelihood estimation techniques have been applied to the
problem of estimating the aircraft state in non-steady flight from onboard noisy inertial and barometric
measurements. Applied to actual flight test data the estimation schemes yielded similar results.

1. INTRODUCTION

In many flight test problems airspeed and angle of attack must accurately be known. Airspeed can be
determined from barometric measurements. This, however, introduces measurement errors due to the limited
accuracy of the barometric transducers.

The angle of attack is usually measured by means of a vane. The vane is positioned on a boom some
distance ahead of the wing. This reduces the magnitude of local aircraft induced air velocities.
Nevertheless in many cases the difference between the local direction of the air flow and the direction
of the undisturbed flow is not negligible. Thus the necessity arises for the calibration of the vane in
a series of steady straight flighcs. In steady straight flight conditions the aircraft pitch angle can be
measured by means of a pendulum while the flightpath angle follows from the change of altitude during a
given time interval. The difference between the pitch angle and the flightpath angle is considered to
represent the "real" value of the angle of attack and thus a calibration of the vane is possible.

The situation becomes more complex in case the local direction of the airflow is significantly
influenced by engine power or engine thrust. This may be experienced particularly when flight testing
STOL or VTOL aircraft.

Airspeed and angle of attack are of prime importance when measuring aircraft performance in quasi-
steady and non-steady flight conditions. In those flight conditions several corrections have to be
applied additionally to the measured value of the angle of attack, Ref. 1. Besides it remains at least
questionable whether the calibrations in steady straight flight conditions apply equally well to qv.asi-
steady and non-steady flight conditions.

The problems mentioned above can be circumvented when in addition to the barometric variables
several inertial variables are measured in flight. Airspeed and angle of attack may then be derived
from the components of the aircraft state vector which can be calculated from the measurements by
applying so called state trajectory estimation techniques as described in Ref. 4, 5 and 6.

The possibility of circumventing the task of directly measuring the angle of attack by means of
a vane has first been mentioned in Ref. 2. In Ref. 3 the trajectory of the state vector has been calculated
by applying regression analysis. In Ref. 4 least squares estimation has been used to this end. The
application of an identical algorithm, maximum likelihood estimation, has been reported in Ref. 5.
In Ref. 6 the state trajectory estimation problem has been solved by applying the Kalman filtering and
smoothing algorithms.

In this paper the estimation techniques described in Ref. 5 and Ref. 6, i.e. maximum likelihood
estimation and Kalman filtering and smoothing have been applied to measurements in one non-steady flighb
test manoeuvre and the results have been compared.

The shape of the nominally symmetric flight test manoeuvre is the subject of Ref. 10. Starting from
an approximately steady straight and horizontal flight condition the aircraft, Fig. I, is accelerated
quasi-steady through the speed range of interest.

Once in every period of 30 seconds a dynamic manoeuvre is executed after which the acceleration
proceeds in quasi-steady flight. Applying the techniques described in Ref. 7 both performance and handling
characteristics are to be derived from the measurements during one manoeuvre.

The paper is organized as follows. In Chapter 3 the mathematical model is presented of the motion
of an aircraft in an atmosphere which has been assumed to move uniformly with respect to earth. Some
aspects of the instrumentation system are described in Chapter 4. Chapter 5 provides a brief discussion
of the estimation schemes applied to the state trajectory estimation problem. In Chapter 6 the experimental
results are discussed. Final conclusions are drawn in Chapter 7.
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2. NOTATION

a

A

AAz0
E

f

g

h

L

P

Apt

Ps

kinematic acceleration

specific force, quantity sensed by an accelerometer

zeroshift of the AZg accelerometer

mathematical expectation operator

vector function in (3-1)

acceleration due to gravity

vector function in (3-2)

likelihood function

probability density function

impact pressure

static pressure of the undisturbed airflow

Ps ~ Ps^o)
angular velocity about Zg axis

variance matrix of measurement noise, radial distance from the earth's centre.

time

time of i th measurement

vector of measurement noise

speed vector

vector of plant noise

wind vector

state vector

augmented state vector

observation vector

Y

6. ,

angle of attack

parameter vector

augmented parameter vector

flightpath angle with respect to the atmosphere

kronecker delta

pitch angle

geographic latitude

geographic longitude

roll angle

heading angle

earth's rate of rotation

superscripts

T

-1

with respect to air

estimated quantity

time derivative

vector or matrix transpose

matrix inverse

average quantity

subscripts

component of vector V along the axis XT of the reference frame FT

components of vector V are along the axes of FT

measured quantity
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Reference frames

The origin of Fy, F̂ , and of Fg is in the center of gravity of the aircraft. Fy, FT and Fg are rectangular

and righthanded, see Fig. 2.

Fy The axis Xy and Zy are in the plane through the aircrafts center of gravity and the earth's

axis of rotation. The positive direction of Zy is to the earth's center. The positive

direction of the Xy axis is to the North. ,

FT ZT coincides with the Zy axis. XT is in the plane through Xg and ZT.

Fg Body fixed reference frame. Xg and Zg are in the plane of symmetry of the aircraft.

The positive direction of Yg is to starboard. Xg is parallel to the mean aerodynamic

chord.

3. THE SYSTEM AND OBSERVATION MODEL

The kinematical relations of the aircraft motion 'relative to a spherical and rotating earth are
well known, Ref. 1 1 . The following set of simplified relations have been used in the present formulation
of the state trajectory estimation problem.

•a _ 2 _ _ _
VXT = aXT - Ru

e cos i)j sin A cos A

VZT = aZT - {2u
e sin ̂ cos A + ̂  (V̂  + WXT)} (VXT + WXT) - Ru

e cos2A

AzT = VZT

— — 1 a6 = qg cosip - rB sin<£ + o>
e sin \|i cos A + — (Vx + Wx )

The kinematical accelerations ax_ and az can be derived from:

axT
 = AxB

 cos 6 + AyB si" 6 simp + AZB sin 6 cos*

SZT
 = ~Axg si-n e + Ayg cos 8 sin 14) + Az cos 6 cosip + g

The set of first order differential equations represent a system:

x = f(x, u, g) (3-1)

in which the state vector x is defined by:

x = col {VXT, VZT, AzT, e}

and the input vector u by:

u = col {AXB, AyB> AZB, qB, rg, ip }

B denotes a vector of unknown parameters which is defined in Chapter 4.
In the derivation of (3-1) from the general expressions in Ref. 1 1 the following assumptions were made.

a) In the course of a non-steady manoeuvre as described in the Introduction the_variations of R,
A and y are small enough as to permit the substitution of average values R, A and y.

b) WT, the velocity of the atmosphere relative to the earth can be assumed to be constant along the
trajectory of a non-steady manoeuvre.

c) As mentioned in the Introduction, the non-steady manoeuvre is nominally symmetric. This may be
deduced also from the time histories of the "asymmetric components" Ay , rg and * of the input

vector u, Fig. 3. It is therefore reasonable to assume that VyT is small compared to V
a and

changes of ij> are small enough as to permit the substitution of an average heading angle \j>.

d) For reasons to be stated below, the trajectory of the manoeuvre is selected to be parallel to
the atmospheric isobars, hence:

The observation model of (3-1) can be written as:

y = h(x) (3-2)

In (3-2) y denotes an observation vector defined by

y = col {V ,
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The components of the observation vector y can be derived from the impact pressure Apt and change of
static air pressure Aps which are measured very accurately in the instrumentation system, Ref. 8 and 9.

The calculation of Va from Apt is straight forward and need not be commented upon.

Aps denotes the change of static air pressure relative to the static air pressure at the initial
position of the aircraft at time t = to. Consequently Aps represents the vertical distance to a surface
of constant static air pressure through the starting point of the non-steady manoeuvre. In principle
the change of altitude deduced from Aps differs from Az^ depending on the topography of the surface of
constant static air pressure mentioned above.

However, in practice this difference is thought to be negligible because of the following reasons:

a) The distance travelled through in the course of a non-steady manoeuvre (app. 30 to 40 km) is small
compared to the scale of horizontal atmospheric pressure distributions.

b) The trajectory is selected to be approximately parallel to the isobars which can be accomplished
by consulting meteorological information prior to executing the flight tests.

Airspeed V can be expressed as follows:

V3 = (Va2T + V
3-2, + Va2)* (3-3)

Denoting the vertical component of the constant wind by WZT> VZT can be written as:

vlT = VZT - wzx
W is very small. In the case of anti-cyclonic pressure (high pressure) distributions WZT is positive and

called subsidence. The magnitude of subsidence is in the order of 0.1 m/sec, Ref. 12.

Because the non-steady manoeuvre is nominally symmetric Vy is small and (3-3) may be written as:

va = (va2, + vlT)
J + (vaj + v'T)"

J (jva2 - VZTWZT) « (v
a
T +vZT)

J

which completes the description of the system and observation model.

The flightpath angle with respect to the surrounding air mass y is defined as:

.
Y = - arc sin

v

Because Wz is very small compared to V :

Vz
= - arc sin

a ...__•.. fi (3-4)
,.a

In nominally symmetrical steady as well as non-steady flight conditions the angle of attack a may be
calculated from the components of the state-vector of the system (3-1) by:

a = 9~Y = 6 + arc sin (3-5)
a2 2 i

(VxT
 + VZT)

S

A. THE INSTRUMENTATION SYSTEM

A detailed description of the instrumentation system employed is presented in Ref. 8 and 9.
The system comprises several high accuracy inertial and barometric transducers. Analog signals from the
transducers are conditioned to range from zero to 10.000 mV dc and succeedingly filtered by identical
fourth order filters. The dc outputs of the filters are sampled and digitized by an analog to digital
converter at a rate of 20 per second. The resolution of the analog to digital converter amounts to 0.01%
of full scale i.e. 1 mV.

The random errors of the measurements of the "symmetrical components" of the input vector u are in the
order of the resolution of the instrumentation system. In Ref. 8, by comparing the results of several
calibrations, zeroshifts could be detected in the order of several mV's.

The random errors of the barometric measurements amount to several mV's due to the limited accuracy
of barometric transducers compared to the accuracy of inertial transducers.

It is shown in Ref. 9 the zero outputs of the barometric transducers vary considerably as a function
of time. In contrast to the inertial transducers, however, the zeroshifts of the barometric transducers
are easily measured in flight before and after every measuring run and can subsequently be corrected for.

In Ref. 13 it is shown that the trajectory of the state vector x is particularly sensitive to zero-
shifts of the AZ accelerometer and the qB rate gyro.
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These zeroshifts have therefore to be modelled as the components of an unknown parameter vector 6
defined as:

P = col (AAZo, Aqo) (/,_!)

in order to avoid unallowable model errors.

5. SOLUTION OF THE STATE TRAJECTORY ESTIMATION PROBLEM

The state trajectory estimation problem can be formulated as a statistical estimation problem.
The nonlinear dynamic system (3-1) is observed according to the observation model (3-2). At discrete
instants of time tj, i = 0, . . . . N, measurements are made of the components of the input vector u
and the observation vector y. These measurements are corrupted by measurement errors which are assumed
to be additive.

um(i) = u(i) + w(i)

ym(i) = y(i) + v(i)

The assumption is made that w(i) and v(i), i = 0, . . . N, can adequately be represented by zeromean
gaussian random sequences according to:

E {w(i)} = 0

E (w(i) wT(i)} = 6£.Q

E {v(i)> = 0

E (v(i) vT(i)} =6.. R
ij

The components of x at times t£ and additionally the components of the parameter vector 6 have to be
estimated in some optimal way from the noisy measurements of u(i) and y(i).

Two different algorithm's have been applied

a) The extended Kalman filter followed by a fixed interval smoothing algorithm, corresponding to
Table 9.4-3 and 9.5-3 of Ref. 15.

b) The maximum likelihood estimation scheme as described in Ref. 16.

Based on the review presented in Ref. 14 both algorithms are briefly discussed in Section 5.1 and 5.2.

5.1 EXTENDED KALMAN FILTERING AND FIXED INTERVAL SMOOTHING

The parameter vector B is assumed to be constant in the course of one flight test manoeuvre,

6 = 0 (5-1)

(3-1) and (5-1) can then be written as:

x = f (x , u) (5-2)

in which x denotes an augmented state vector:

x* = col {XT, BT}

The time interval between two successive measurements, At is assumed to be small enough as to permit
the discretization of (5-2) which may then be written as:

x*(i+l) = $(x*(i), u(i)) (5-3)

w(i) is very small because u(i) is measured very accurately. Then w(i) may be interpreted as plant noise
entering additively into the system (5-3) according to:

x*(i+l) s »(x*(i), um(i)) - |£ (x*(i), um(i)) • w(i) (5-4)

Apart from modelling the input vector measurement noise, the plant noise is considered to account also for
differences between the model and the actual process.

When x (0) is assumed to be a gaussian random variable with variance matrix P (0|0) it is shown in
Ref. 14 that following from the assumptions stated above the aposteriori probability density function is
gaussian and can be written as:

p(x*(0), x*(l) , x*(N)|ym(l), ym(2), ym(N)) =

C.exp{-J([x"(0) - E(x*(0))]Tp* (0|0)[x* - E(x*(0))]
N N

+ Z fym(i) - h(x*(i))]
T R~'[ym(i) - h(x*(i))j + Z wT(i)Q~'w(i))} (5-5)

i=l i=0

in which C is a normalizing constant.
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The most probable estimate of the sequence x*(0), x*(l),
the aposteriori density function, or identically minimizing

[x*(0) - E(x*(0))]T P* (0|0)[x*(0) - E(x*(0))]

x*(N) is obtained by maximizing

T£ [y (i) - h(x*(i))]T R"'[y (i) - h(x*(i))] + £ w(i) Q~w(i)
i=l m i=0

with respect to the sequence x*(0), x*(l) ..... , x*(N) subject to the constraint (5-4). This constitutes
a problem in optimal control theory which can be reformulated as a nonlinear two point boundary value
problem. In the linear case, the solution is provided by the Kalman filtering and smoothing algorithms,
i.e. in case (5-4) and (3-2) are linear. In the nonlinear case (5-4) and (3-2) may be linearized about
some nominal trajectory. Application of the Kalman filtering and smoothing algorithms then results in an
approximate solution of the problem of maximizing the aposteriori probability density function.

In applying the Kalman filter the sequences of estimates x (i|i) and x (i+l|i) are generated, i.e.
the estimates of x*(i) and x*(i+l) based on the measurements of y up to and including t£.
In case these estimates are utilized as nominal conditions in (5-4) and (3-2) the Kalman filter is indicated
as "extended Kalman filter". Subsequent application of the fixed interval smoothing algorithm yields the
sequence x*(i|N), i.e. the estimates of x*(i) based on all measurements. This sequence constitutes the
approximate solution mentioned above.

5.2 MAXIMUM LIKELIHOOD ESTIMATION

Two important characteristic features of the state trajectory estimation problem stated above can
be formulated as:

a) the mathematical model described in Chapter 3 is very accurate,
b) the components of the input vector u are measured very precisely.

Therefore it seems in this case reasonable to assume the plant noise to be small enough as to be neglected.
This assumption simplifies the estimation problem considerably. It is shown in Ref. 16 the likelihood
function L may now be written as:

= p(ym(i), ym(2)

N T .
= D exp{-J I [ym(i) - h(x(i))]

i R [ym(i) - h(x(i))]}

ym(N)|e)

(5-6)

in which D denotes a normalizing constant.

The augmented parameter vector B is defined as

*B = col {VaT(0), VZT(0), AzT(0), 8(0), AAZQ, Aqo}

The maximum likelihood estimate of B* can be obtained by maximizing the likelihood function L, or identically
m i n m z n g

T -1
] R

with respect to B subject to the constraint (3-1). This constitutes a nonlinear optimization problem which
may be solved iteratively in several ways. Here the "modified Newton-Raphson" algorithm described in Ref. 16
has been used.

Once an estimate of B* has been obtained the maximum likelihood estimate of the state follows directly
by numerically integrating (3-1) which, because the estimate of B* is based on all measurements, results in
the sequence x(i|N).

6. EXPERIMENTAL RESULTS

The algortihms described in Chapter 5, i.e. extended Kalman filtering, fixed interval smoothing and
maximum likelihood estimation have been applied to the measurements in one non-steady flight test manoeuvre.
The shape of the non-steady manoeuvre is the subject of Ref. 10 and has been briefly discussed in the
Introduction. The time histories of several variables representing the components of the input vector u
of the system (3-1) are presented in Fig. 3.

When applying the extended Kalman filtering and fixed interval smoothing algorithms the estimate of
the initial augmented state vector and in addition the variance matrices P (o|o), Q and R have to be
specified.

The estimate of the initial augmented state vector is defined by:

x*(0|0) col{VXT (0|0), VZT(0|0), AzT(0|0), 6(o|0), AAZQ(0|0), Aqo(0|0)} (6-1)

The non-steady flight test manoeuvre starts from a condition of nominally steady, straight and approximately
horiaontal flight. Initial estimates of VX],, VZT and AzT may then be calculated from the initial
barometric measurements according to:
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vXT(o|o) = v
a(o)

VZT (0|0) = (AzTm(i) - AzTm(0))/(trt0)

AzT (0|0) = AzT (0)

in which ti~to refers to the initial period of steady straight flight.
Nominally steady straight flight conditions imply the kinematical accelerations ax and aZT to be
approximately zero.
A reasonable estimate of 9(0) may then be deduced from the relevant expressions in Chapter 3:

6(0|0) = - arctg (AX]J (0)/AZfi (0)) x

The zeroshifts AAZ(j and Aqo cannot be directly measured in flight prior to the execution of the flight test
manoeuvre. Therefore, because no apriori information is available the initial estimates of AAZ and Aqo
are put equal to zero:

AAZQ(0|0) = 0

Aq0 (0|0) = 0

The variance matrices P (o|o), Q and R have been assumed to be diagonal. Reasonable estimates of the
diagonal elements of these matrices may be obtained by consulting the general description of the
instrumentation system and the results of several laboratory calibrations in Ref. 8 and 9.
The resulting numerical values have been listed in Table 1.

When applying the maximum likelihood algorithm an initial augmented parameter vector B and variance
matrix R have to be specified.

From the discussion above and the definition of B in Chapter 5 it follows B can be put equal to
x*(0|0). °

The elements of the variance matrix R indicate the accuracy of the barometric measurements of airspeed
V and change of altitude Az^ during quasi-steady flight conditions.
In the non-steady parts of the flight test manoeuvre these accuracies are reduced considerably because of

a) the dynamic response of the air pressure tubes,
b) the parasite sensitivity of the barometric transducers to accelerations.

The additional errors introduced into the barometric measurements in non-steady fligKt conditions
depend on the non-steady motion of the aircraft and can therefore not be represented by independent random
processes.

Tor these reasons it was decided to neglect the barometric measurements during the non-steady parts
of the flight test manoeuvre.

Application of the extended Kalman filter, the fixed interval smoothing algorithm and the maximum
likelihood estimation algorithm yield corresponding results i.e. estimates of the components of the state
vector during the manoeuvre and in addition estimates of the unknown parameters.

The time history of the state vector x resulting from the application of the maximum likelihood
estimation algorithm is presented in Fig. 4. Starting from the initial parameter vector B convergence
was achieved within 10 iterations. The related residuals are shown in Fig. 5. Fig. 5 clearly illustrates
the non-randomness of the errors introduced into the barometric measurements during the non-steady parts
of the flight test manoeuvre. The extended Kalman filter yields a similar result, Fig. 6.

The results of the extended Kalman filter, the fixed interval smoothing algorithm and the maximum
likelihood estimation algorithm have been compared in Fig. 7 and 8. With respect to Fig. 7 it should
be remarked that because the zeroshifts have been assumed to be constant in the course of one flight
test manoeuvre the final estimates of AAZQ and Aqo resulting from the extended Kalman filter are not
altered by subsequent application of the smoothing algorithm.
From the state vector airspeed Va, flightpath angle Y and anj
(3-3), (3-4) and (3-5). In Fig. 9 the resulting time histories are compared.
From the state vector airspeed Va, flightpath angle Y" and angle of attack a can be derived by applying

From Fig. 8 and Fig 9 it follows that subsequent application of the smoothing algorithm reduces
considerably the differences between the results of the extended Kalman filter and the maximum likelihood
estimation algorithm.

7. CONCLUSIONS

Two different estimation schemes i.e. the extended Kalman filter and fixed interval smoothing and
the maximum likelihood estimation algorithm have been applied to the problem of estimating the aircraft
state trajectory during a non-steady flight test manoeuvre.

When applying the extended Kalman filter and fixed interval smoothing algorithm the state trajectory
estimation problem is linearized about a nominal trajectory. The result therefore constitutes an approximate
solution to the problem.
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It has been argued that due to the quality of the measurements of the components of the input vector
(i.e. the outputs of the inertial transducers) and the accuracy of the mathematical model the plant noise
could be assumed to be small enough as to be neglected. This simplifies the state trajectory estimation
problem considerably. An exact solution to this simplified estimation problem is provided by the maximum
likelihood estimation algorithm.

The results obtained from both estimation schemes closely correspond to each other. This may be best
illustrated by the estimated time histories of air speed Va and angle of attack a. As mentioned in the
Introduction, these variables are of prime importance in aircraft flight testing. From Fie. 9 follows the
differences between the results of both estimation schemes are in the order of 0.25 m sec" in the case
of Va and 0.001 rad or 0.06° in the case of a.

These closely corresponding results indicate that when applying high accuracy instrumentation techniques
both estimation schemes provide an accurate solution "to the aircraft state trajectory estimation problem.
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diag P*(0|0) ={(1)2, (2)2, (I)2, (1.10-1)2, (2.10-2)2, U.10-V}

diag Q

diag R

{(4.10-3)2, (2.10-3)2, (6.10-3)2, (5.10-5)2, (1.10-V, (5.10-")2}

{(5.1Q-1)2, (I)2}

Table 1. Numerical values of the elements of the variance matrices of the estimate initial augmented
state, the plant noise and the measurement noise.

Fig. 1. The Hawker Hunter mk VII laboratory aircraft of the
National Aerospace Laboratory (NLR). Note static pressure
trailing cone.

e.g.

B

Fig. 2. Definition of the vehicle carried vertical reference
frame FT and body fixed reference frame Fg.
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Fig. 3. "Symmetrical components" and "asymmetrical components"
of the input vector u during the nominally symmetric
non-steady flight test manoeuvre.
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Fig. 4. Maximum likelihood estimate of the state vector x
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Fig. 6. Residuals (innovations) resulting from application
of the extended Kalman filtering algorithm.
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S U M M A R Y

First some fundamental remarks about the analysing method, the regression analysis, are made. Then brief-

ly the method is described and some test results with simulated data are given.

The experiences with the regression analysis gained from flight tests with the aircrafts Dornier Do 31

and Fiat G91-T3 are discussed in detail. With these experiences the possibilities of the method are dis-

cussed and improvements by using a Kalman filter are shown.

Finally, for each equation of motion an example with good results, is represented.

1. FUNDAMENTAL REMARKS ABOUT THE ANALYSING METHOD

At first, some fundamental remarks about the analysing method seem to be necessary. Thereby also the

system inherent advantages and disadvantages will be expressed.

Indeed the term "regression analysis" is not correct. It describes only a part of the method, but surely

the most important one regarding the mathematics. The method deals with a direct analysis, i.e. the so-

lution of the equation of motion. This sort of method is known as "equation error" method or "equation

of motion" method. All these methods determine one value from the equation of motion and all other values

must be known from the configuration or from measurements. Consequently, these are simple methods with a

closed solution in one step. They are distinguished by the value which is determined and its further pro-
cessing.

These methods use the physically most obvious way and so a solution without iteration and without coup-

ling of equations of motion is obtained. But there is an important disadvantage, all state parameters are

needed and measurement errors are not considered. Therefore many variables must be measured with high
accuracy.

In the past, it was tried to overcome this deficiency by means of integration or transformation of the

equation system. Here another way is taken. In each equation of motion the aerodynamic coefficient is

assumed as unknown. This reduces the difficulties in the first step. The difficulties are now in the se-

cond step, i.e. the determination of the stability derivatives from the aerodynamic coefficients. This is

done with the regression technique. Therefore, the whole method is called "regression analysis".
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2. DESCRIPTION OF THE METHOD

The method will not be described in detail. This has already be done in [1]. In the following only the

approach will be summarized.

1. Step: The aerodynamic coefficients are determined from the equations of motion (fig. 1).

2. Step: The stability derivatives are determined from the aerodynamic coefficient [fig. 2).

Figure 1 contains the equations of motion used here, and figure 2 shows the aerodynamic coefficients as

functions of the stability derivatives and the state variables. The left parts of the equations in fig. 2

were determined in the first step. The state variables are measured. The unknowns are the stability deri-

vatives.

Since each one of these equations can be solved with one observation and each flight test consists of many

observations, the stability derivatives can be determined with statistical methods, i.e. with the method

of least squares. With the linear equation, this is a problem of the general, linear regression, as it is

shwon in a general form in fig. 3. The solution of this relatively simple problem leads to the wellknown

normal equations [fig. 4). The normal equations are solved as shown in fig. 5.

The computer program has no numerical difficulties. Additional computed parameters facilitate the discus-

sion of the results. Details - as already mentioned - can be seen in [1].

So all stability derivatives from one flight condition are obtained in one single run of the computer pro-

gram. Another advantage is that the method runs as closed program completely independent of the experi-

ence and of the skill of the user.

But there are also grave disadvantages. First the aforementioned difficulty to need many measurements with

high accuracy. This fact is additional complicated, because all variables must have enough motion to get

the stability derivatives. In fact, the mathematical statistics require as much random motion as possible.

A further disadvantage is the fact that each observation is considered separately. This leads to great dif-

ficulties with phase errors. A correction is impossible, since the motions have to be stochastic.

Consequently, the method implies an extreme alternative, either to get all derivatives in a relatively

simple way or else to obtain bad results. So in practical application failures are expected. But general-

ly, the flight test analysis keeps involving failures. However, our activities - which were discussed at

another point of the meeting - show, that in flight test analysis several methods should be applied

simultaneously. And always the regression analysis should be included, since it requires only a little

time for flight testing and analysis and it checks the measured values. This will be illustrated in the

following.

3, TESTS WITH SIMULATOR DATA

The digital computer program "regression analysis" was tested with simulator data. These tests also are

described in detail in [1]. Here only a few important results are stated.

To begin with the most important result: The method found exactly the stability derivatives programmed in

the simulator. Fig. 6 shows the deviations for a data set with 14 ODD observations. These deviations can

all be explained by peculiarities and inaccuracies of the analog computer program. For details see [1].

The test data came from a simulated flight with more motion than in a real flight, in order to detect all

derivatives. With the regression analysis, the means of the state variables are determined and then the
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derivatives to these means are calculated. When coefficients are programmed in the simulator as non-linear

functions, the values of the tangent are calculated.

In fig. 7 the influence of the number of observations on the quality of the results is shown. The figure

is typical for stability derivatives. For more than 10 000 observations, practically the interval remains

constant. For less than 3 ODD observations, some results show already important deviations. Consequently,

with a scan frequency of 4D to 50 Hertz, a flight time of only 1 to 5 minutes is required for the analy-

sis.

Also the influence of additional or lacking components was tested. Fig. 8 shows a typical test of sup-

posed but not existing components. The simulation program has no relation between the drag-C" and the

aileron deflection ? or angle of sideslip B. Therefore, the stability derivatives CQ and Cp must be

zero. According to fig. 8 this result was obtained, as the little values are insignificant. But the most

important result of this test is the fact that the surplus variables do not affect the existing deriva-

tives. So we can include any supposed influences into the analysis without changing the regression coeffi-

cients or impairing the quality of the regression - as it is shown in the multiple correlation coeffi-

cient.

In the contrary, the multiple correlation coefficient shows, whether all influences have been considered

[fig. 9). In fig. 9 in the sideforce equation the most important variable, the angle of sideslip B, was

not considered. Of course, now the complete analysis was wrong. But the lacking of a component was shown

in the bad multiple correlation coefficient.

Thus the tests show that the method can easily be used with very short flight time. Moreover, it has pro-

ved that the method is very well suited to find not expected influences or, in turn, to prove that sup-

posed influences are not existing.

4. RESULTS OF FLIGHT TEST ANALYSIS

Now let's talk about the practical application. Three different flight test periods were analysed, flight

tests with the conventional version of the Do 31 and with a Fiat G91-T3. The tests with the G 91 were

carried out in two periods. Fig. 10 to 15 summarize the results, that is one figure for each equation of

motion.

First some general remarks to the flight tests. The first analysing trials were made with flight tests

from the Do 31. As expected, they did not show the same good results as the test data from simulation.

With these tests only the regression technique was tested. The deficiencies of the equation methods were

suppressed, as the aerodynamic coefficients directly came from the simulation. In the flight tests, how-

ever, these deficiencies were fully present.

The results of this first analysing period mainly were used to test the data acquisition equipment and the

measurements. (Here, this important aspect with the application of the regression analysis cannot be dis-

cussed. For details see [3]). This test was used to improve and to expand the test equipment.

Thus, the second test period was realized with an improved data acquisition system. But now, another type

of aircraft was used, instead of the transport aircraft Do 31, now the light fighter Fiat G91-T3. We then

experienced the wellknown effect of being faced with completely different problems. The first test period

with the G 91 did not show any improvement in the results, on the contrary, partly they were even worse.

The discussion of the measurements by means of regression analysis showed an impairment of the signals for

the incidence a and the sideslip B which could not yet be explained. Furthermore there were considerable

phase errors, caused by electronic filters, which are required for damping the aircraft vibrations. Against

the phase errors the filters were adjusted so that all signals showed approximately the same time error.

Then the second test period with the G 91 showed an amazing success of this rough phase correction.
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Now let's discuss the figures. Fig. 10 represents the results of the lift equation. It shows the improve-

ment in the second period with the G 91. Also this figure illustrates the known problems with a-derivatives.

Of course, these influence the whole equation of motion, particularly the derivative C i .

Fig. 11 contains the results for the drag equation. Here, the results of the first period G 91 were so good

that the second period did not show any improvement. In the second test period it can be seen, how an error

in Cp is compensated by an opposite error in Cp .

For the results of the pitch motion tfig. 12) the same is true as for the lift. There is again the bad in-

fluence of a. In the pitching moment, the improvement from the first test period to the second is even more

distinct.

Now the lateral motion. Fig. 13 shows the sideforce derivatives. Clearly it is to see the impairment of

the sideslip signal from the G 91 compared to the Do 31. Also the influence of the phase correction clear-

ly can be recognized.

For the results of the roll equation in fig. 14 the same is true as for the sideforce. Here also the im-

pairment in the sideslip signal of the G 91 can be seen. And there is also a considerable influence by

phase correction.

Finally, fig. 15 represents the derivatives of the yaw motion. Here are the same tendencies as already

for the sideforce and for the roll motion.

With the results in fig. 10 to 15, the following forecast (fig. 16) can be made for the chances of flight

test analysis with regression analysis. The determination of Cpa> Cn and CY^ has very good chances. How-

ever, there are only small chances for the derivatives CL , C , Cig, C± and Cnr< and very likely no

chance for a-derivatives. The difficulties with d explain the small chances for C[_ and Cm. The diffi-

culties with C^ and Cn are unexpected. It is supposed they are caused by errors of measurements.

5. FUTURE ACTIVITIES

Of course the aim of future activities is an improvement of the results. For an equation error method,

this means always an improvement of the test equipment. As already mentioned above, just the regression

analysis is very well suited for measurement discussion.

But, we took an additional way for the improvement. The large improvements which have been realized al-

ready with a rough phase correction seems to promise success with a prefiltering of the measurements.

Fig. 17 shows the most obvious way of the analysis using the Kalman filtering. The further processing by

means of the regression analysis is represented by a dotted line. On principle, it is possible to apply

the Kalman method in this way. But this requires an iteration, since the aircraft model enters into the

filter algorithm, and the most essential part of the model - the model of aerodynamics - is the re-

sult of the whole analysis. However, the main difficulties lies in the very complex equations of the ex-

ternal forces and moments which would require an extensive calculation and programming with considerable

sources of errors.

Finally, the setup according to fig. 1B was selected. This makes reasonable use of the redundancy in the

measurement vector. Thus we get a considerably simpler form of the dynamic equations. The state variables

are the same as in the initial setup. However, as given function of time-parameters of our dynamic system

the corresponding measurements of the translational and rotational accelerations are introduced into the

equations of motion, instead of the aerodynamic forces and moments as function of state variables, aero-

dynamic coefficients and control deflections. But the aircraft motions must be sufficiently slow in re-
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lation to the data acquisition frequency. This permits to integrate the differential equations over an

acquisition cycle with constant values of the accelerations.

An important point of this way is the aircraft model (i.e. the aerodynamics) will not be used. This seems

reasonable for data filtering as a prefliter before regression analysis. Now the aircraft model to be

analyzed in a later step, do not enter the filter. So the Kalman filtering becomes a closed task in the

total work of analysing.

It is also attempted to use the Kalman method to filter out quantitatively still unknown systematic errors,

such as zero shift, calibration errors, installation errors. Since these activities are not yet concluded,

they cannot be discussed here. However, the filter is already programmed. The program is just now in the

test phase. The test results are promising for the future. But the adjustment of all parameters is very

hard and requires a long time. A first report with the filter program soon will be published as a study

for the German Ministry of Defense.

6. FINAL REMARK

In the preceding sections the regression method was very critically analyzed. To show the possibilities of

the method, for each equation of motion an example with good results finally is given.

It is represented

in fig. 19 an example from the degree of freedom lift

in fig. 20 an example from the degree of freedom drag

in fig. 21 an example from the degree of freedom pitch

in fig. 22 an example from the degree of freedom sideforce

in fig. 23 an example from the degree of freedom roll

in fig. 24 an example from the degree of freedom yaw.

These results need no explanation. They show that also an equation error method in connection with good

measuring technique and with statistical methods can supply useful results with relatively low efforts.
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ABSTRACT

A new development for the identification of nonlinear stall/spin
regime air dynamic forces and moments is presented, with applications
to simulated and flight test response data. This development is a
two-step method. The first step is the application of an algorithm
which determines the order and coefficients of polynomial expansions
of the nonlinear aerodynamic forces and moments which characterize
the stall/post-stall flight regime. The second step is the use of
a nonlinear six degree-of-freedom maximum likelihood algorithm which
accurately estimates the values of the polynomial coefficients.
This method has been applied to simulated and flight test data for
a twin engine swept wing fighter aircraft. Suggested approaches to
more general nonlinear flight regime identification are given.
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1.0 INTRODUCTION

The stall/post-stall/spin high angle-of-attack operating regime of advanced high performance aircraft
is currently recognized as a critical area of the flight envelope which requires more precise definition [1].
The complexity of the dynamic and aerodynamic interactions which characterize such regimes necessitates
advanced testing and analysis methods. One of these methods is that of system identification in which
flight data from the critical regimes is processed to isolate and quantify the significant aerodynamic

contributions.
System identification is emerging as a powerful technology for exploiting test data to significantly

improve and increase fundamental knowledge of aircraft dynamics. Such knowledge is essential for more
quantitative approaches to handling qualities evaluation, aerodynamic modeling for real time simulations,
and verification of analytical and wind tunnel estimates of aerodynamic parameters. In general, system
identification consists of at least two phases. The first, is the analytical model determination stage
wherein the equations and aerodynamic parameters are selected which are to represent the system response.
The second phase is the estimation of the parameters of that model from response test data of the system
under study. This latter phase is called parameter identification.

For most aircraft testing, the first phase is not a significant issue, since the assumption of a
linear, usually longitudinally/laterally decoupled, model is made. This assumption reduces the system
identification problem to one of the estimation of the parameters of the linearized models. For transition
or extreme flight conditions, however, the assumption of linearity of dynamic and aerodynamic forces and
moments may not be accurate. Examples are VTOL aircraft landing or take-off responses and high angle-of-
attack aircraft maneuvers. In such regimes, it may be necessary to expand the aerodynamic effects in some
type of nonlinear function, usually polynomials in independent flight variables such as angle-of-attack or
sideslip angle. It may, in addition, be necessary to retain certain nonlinear dynamic terms to account

for inertial cross-coupling effects.
The requirement for nonlinear models thus places stringent demands on the model determination phase

of system identification. There are two basic reasons for this. First, a complete mathematical model of
the nonlinear responses places severe computational demands on parameter identification algorithms.
Hence, the model generally must be reduced in order. Secondly, even if unlimited computer facilities are
available, the problem of overparameterization will severely degrade the applicability of the data
processing results. Overparameterization is the allowance of more parameters to explain the data than are
actually required. The result is excessive computer time, possible algorithm divergences, and incorrect
parameter estimates. It is thus necessary in the model determination phase to estimate which terms of a
polynomial are actually significant to the response, and to use the parameter identification phase to
estimate the value of these terms.

This paper presents a method for performing the system identification task to high angle-of-attack
flight data. The method consists of a model determination algorithm for estimating which nonlinear
parameters significantly affect aircraft responses and a nonlinear, six degree-of-freedom maximum
likelihood identification algorithm for identifying accurately the values of the selected nonlinear terms.
This method has been applied to simulated responses of an advanced swept wing fighter and to the flight

test responses for that fighter.

2.0 THE INTEGRATED PARAMETER IDENTIFICATION PROCESS

2.1 Requirements for Identification

Aircraft parameter identification is the process of extracting numerical values for the aerodynamic
stability and control coefficients from a set of flight test data (e.g., a time history of the flight
control inputs and the resulting aircraft response variables). Although the fundamental theoretical basis
of identification has existed for over 75 years, practical application of this technology to aircraft
flight testing has been attempted only over the last three decades. Most of this application has been
limited to identification of low order linear aircraft mathematical models, at low angles-of-attack and

Mach number.
There are three principal elements of aircraft parameter identification: (1) the data processing

algorithms (identification method), (2) the aircraft instrumentation, and (3) the flight control inputs
(Figure 1). These elements are highly interactive.

In order to develop a comprehensive identification technology for application to the high angle-of-
attack flight regime, a method of approach has been implemented which integrates these interactive elements.
As diagrammed in Figure 2, this method of approach is composed of two basic phases. Phase 1 is a detailed
simulation of a high performance aircraft [1]. Phase 2 is the application of advanced parameter Identi-
fication methods to determine the effects of inputs and measurement errors on the algorithms in processing
high angle-of-attack data. Phase 3 is the application of the results of Phases 1 and 2 to the specification
and evaluation of high angle-of-attack flight tests [2].

Phase 2 of this procedure involves the critical elements of (1) model and parameter selection,
(2) parameter estimation, and (3) model verification. The fundamental complexity of these three elements
requires a strong reliance on information available from wind tunnel data and knowledge of aircraft physics.
This requirement, however, must be satisfied with caution because of the difficulty of translating the
inherently limited capability of wind tunnels and aerodynamic theory to the complex maneuvers and flow
interactions at high angles-of-attack. The particular value of such prior information is the manner in
which it can be used to formulate the possible types of forces and moments (reserving isolation of the
specific nonlinear effects for post-flight analysis). This specification of nonlinear effects is the model
determination phase. The parameter identification is the quantification of the specific aerodynamic terms
selected by the model determination phase. Model verification is the application of various techniques to
increase confidence that the identified model adequately represents the aircraft responses. Such techniques
include the calculation of the confidence levels of the estimates, consistency with results of previous
wind tunnel and flight tests, and the ability of the identified model to predict responses of the aircraft

with different inputs.
The combination of the simulation phase and the identification phase may be performed to validate the

estimation procedures, to specify control inputs, instrumentation, and critical flight configuration.
These latter two specifications are directly applicable to the design of flight tests for the subject
aircraft.
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2.2 Techniques for Simulation, Model Determination, and Parameter Identification

In this section, we review the techniques which have been developed for implementation of the
integrated parameter identification process.

2.2.1 Simulation

The simulation objective is to provide a controlled data base for Isolating potential identification
problems which might arise from actual flight test data. Requirements for inputs and instrumentation, for
example, may be specified from such simulations prior to the flight tests. Such requirements may be
difficult to individually detect from any specific set of flight data due to the complex response and data
iterations which exist in any actual system.

As demonstrated in Reference [1],"nonlinear high angle-of-attack responses may be simulated, at least
qualitatively, by digital techniques. In particular, responses such as pitch up and yaw departure (due
to unstable Cn ) are strongly dependent on wind tunnel measurable static nonlinearities and these critical

p
regions can be predicted for flight conditions simulated by the wind tunnel configuration. Unfortunately,
many flight conditions may only be approximated in wind tunnels and, in fact, some aerodynamic (and
dynamic) nonlinearities may not be detected from such tests due to scaling or tunnel model support limit-
ations. In addition, high performance maneuvers may induce non-tunnel reproducible interactions between
the pilot, the flow fields, and the aircraft.

The simulation described in Reference [1] was designed as a generator of data which is characteristic
of that from the responses of high performance aircraft. The characteristics of this simulation are
summarized in Table 1. The simulation was subsequently compared with reported results of the stall/spin
tests of a swept wing fighter aircraft [3]. Responses such as pitch-up, yaw departure, and spin were
obtained with the simulation. In addition, it was found that wing rock would be simulated, and that the
roll, sideslip, and aileron deflection amplitudes and angle-of-attack occurrence were comparable with that
recorded in the flight test. However, the frequency of the simulation was 7.5 seconds compared to 4.5
seconds for the actual test. This frequency discrepancy was ascribed to uncertainties in the parameters
of the aircraft being tested, the pilot responses of the tests, and the differences between the wind
tunnel and actual values of dynamic derivatives such as Co . Based on the correlation of the simulated

*P
responses with this and other actual responses, the simulation was deemed acceptable as a generator of
typical data. Further extensive correlation of the simulation was beyond the scope of the program
development.

As discussed in [1,2], the simulation used to generate data is an extensive and detailed represen-
tation of the aircraft and data error sources. Both the dynamic equations and the measurements are
nonlinear. The simulation aspect of the errors reported here is unique in the application of identification
algorithms to simulated data. Typical approaches assume a polynomial form for nonlinear parameter var-
iation, generate the time history data with this model, and then attempt to reconstruct the polynomial
from the data [10-12]. Such an approach is certainly useful for testing of a program, but may tend to
place more confidence in the effectiveness of an algorithm than is justified. This follows because
identification of the same functional form which generates the data disregards the modeling error which
may occur by approximating the actual function (unknown) by an assumed or a priori function. The approach
used in this work is to generate the data by an aerodynamic model which is of higher order than the model
which is identified (e.g., data is in "table look-up format"). Hence, the integrated parameter identi-
fication process of Figure 2 contains the element of modeling-error effects explicitly.

2.2.2 Model Structure Determination

Having determined an analytical, a priori form for the aerodynamic forces and moments, and selected
the principal axis systems, the framework is established for estimating the structure and parameters
appropriate to a given data length. Polynomials are chosen as the basis of the identification model for
this work. This is itself an assumption about the physics of the aircraft aerodynamics. The assumption
is historically based on the dependence between force and moment coefficients and independent variables
(a or 6, for example) which is observed in wind tunnels. Recent work in England [13] has demonstrated
the validity of such approximations with actual aircraft responses in the subsonic regime. Mathematically,
polynomial representations result from series expansions about some reference point (e.g., trim) and
herein lies the inherent assumption of the polynomial approximation. Specifically, it is assumed that
there are continuous derivatives or rates of changes of derivatives (to an arbitrarily high order). In
the transonic regime especially, such continuity may be violated, forcing discontinuous representations.
For this work, continuity is assumed.

Wind tunnel test results (and any other information about the physics of the maneuvers) are used to
define all the possibilities of the polynomial functions for the forces and moments. Then, the actual
response data obtained is used to specify which of these functions are most probable. The goal is to
identify only those polynomial coefficients which are required to reproduce the actual force or moment
characteristics. This addition to the integrated parameter identification process is diagrammed in
Figure 3. Flight tests are conducted for particular conditions and inputs. The data from these tests
is then used as the basis for selecting the functional forms required to reproduce the data. The data is
passed through a filter, (denoted as the optimal subset regression program) which gives variables which
might be required to reproduce the forces and moment characteristics which generate the data. These
variables may correspond to the coefficients of powers of the independent variables (say, a or 6). In
general, the number of terms allowed is dictated by expected significance from a priori considerations.
Of these possible required terms, the filter selects the most significant. The model defined by these
significant variables is than passed to the identification program.

The optimal subset regression algorithm adds and deletes variables to a particular model in an
iterative manner (see Appendix). Estimates of previously ignored parameters are incorporated and evaluated
by two criteria, as follows:

1. Of all possible variables 6, is Q the most highly correlated with y of variables not in

the regression?

2 If GI is added to the regression, is its contribution to the "fit" significant relative to

variables 9i_1'91_2'•••
6i which have already been used? Does the significance of 6 ,...,9

diminish because 6 is included?



21-4

These questions are answered within the framework of statistical hypothesis testing. The algorithm
uses statistical hypothesis testing techniques based on the Fisher F ratio (e.g., F-tests). Formally,
this ratio measures the reduction in fit error with the current model relative to the error due to noise
and model uncertainties. A "total" F-ratio measures the entire model fit relative to error and a "partial"
F-ratio measures the incremental .improvement in fit due to addition or deletion of a parameter in the
model. A generalized flow chart is shown in Figure 4. Starting with a list of possible variables, the
algorithm enters the variable with the highest partial correlation to the observations y. The contribution
of this variable to reducing fit error is made, and a new variable entered. Subsequent tests add and
delete variables to improve the "fit". The final subset of 0 which results from the procedure is one
within confidence bounds set by the user (say, 95% or 99%).

The algorithm not only identifies the most significant parameters, but also finds least square
estimates of their true values. In general, these estimates will be in error (biased due to measurement
noise and high order modeling errors). As such, they can be used for start up values of the maximum
likelihood algorithm to reduce computation time and improve convergence, but may not be considered as
final estimates themselves. As an added check on the validity of the determined model, the program
computes the residuals, y-y, on the final pass. This provides an evaluation of the adequacy of the model
(whose values yield y) compared to the "true" process (whose values give y). Ideally, these residuals
will be white Gaussian.

The following assumptions are made for the present application of the subset regression algorithm:

Mass and inertias of the aircraft are known. This assumption is based on the extensive weight
and balance data available for modern aircraft. In actual test conditions, however, there may be
marked differences between the current aircraft configuration and the baseline calculations (e.g.,
unsymmetrical loadings, addition of weapons and instrumentation, etc.). This assumption, therefore,
requires evaluation of such effects to determine their importance.

Aircraft rate (rotary) functions are assumed to vary only with a and g. This assumption limits the
model structure to lower Mach numbers and aircraft loadings. Specifically, the terms C^, Cng, and

C£Q are not considered separately from C™ , Cnr> and Cĵ . At extreme conditions, this assumption is

questionable. The basic reason for allowing use of this assumption is that the data base [1] does
not have the aircraft rate and velocity vector rate terms explicitly separated. In general, extreme
inputs would be required to separate these contributions in actual flight tests. It must be noted
that the regression model structure can be easily modified to include terms such as Cng if required.

The general expansion for any specific force or moment coefficient is

C = C (a,8) + EC a1 + EC mB
j + T EC a1 6j

0 i a(i) i B(;l) i j ct( Vj;

where ci and "g are reference angle-of-attack and sideslip angle, respectively. The specific coefficients
for which such an expansion is used are listed in Table 2.

Primary emphasis is placed on the static coefficient structure for the modeling tasks here. All
static terms could minimally be expressed as linear combinations of (C a + C.B) , where n=l,2,3. In

9 5
addition, the coefficients of C could be expanded to a and C to 6 . Control effectiveness coefficients

' m n
and dynamic coefficients were generally limited to first order expansions in a only. These expansions
were decided upon after initial experimentation with the programs. It was found that higher than first
order terms in a were usually not required on the basis of the regression analysis. In general, these
control effectiveness and dynamic terms are difficult to identify from acceptable inputs.

An important aspect of the regression program is that the coefficients are not serial. Thus, if
intermediate coefficients were not necessary (e.g., such as Ca

2g)» tneV are not included. (The maximum

likelihood program will automatically eliminate terms not specified by the regression).
These assumptions and expansions will be used with an equation error formulation of the six degree-

of-freedom representation of the aircraft. Details of this representation are discussed in Reference [2].

2.2.3 Parameter Identification Procedure

The extraction of aerodynamic derivatives from flight data has received considerable attention during
the last three decades and the most recent efforts are given in Refs. [14-15]. Earlier techniques were
mostly manual or analog requiring subjective judgment by operators [16]. These methods are suitable for
simple linear systems under very ideal conditions.

More recently, with the availability of fast digital computing machines and efficient computation algo-
rithms, many powerful digital methods have been developed. Examples of digital methods are various
equation error methods [17-18], output error methods [19-31], Kalman filter/smoother approach [11] and
the maximum likelihood technique [2,10,32-34].

Output error methods, which include gradient methods and modified Newton-Raphson, were motivated by
earlier curve fitting techniques. These methods may not work well if there is high process noise or if
the weighting matrix in the criterion function is improperly chosen. The equation error methods minimize
the difference between the left hand side and the right hand side of the state equations. Examples of
this method are various forms of least square, correlation methods, and instrumental variable approach.
Since these methods do not account for measurement noise, the estimates are biased in the presence of this
type of error. In the Kalman filter/smoother approach, the parameters are converted into state variables.
The Kalman filter and smoother are developed for this new state vector starting from a priori values of
states and parameters and their covariances. This method gives biased estimates even for linear systems
'and requires a priori knowledge of measurement and process noise covariances.

The maximum likelihood technique solves many of the problems mentioned above. By considering unknown
elements of process noise and measurement noise covariances and other instrumentation errors as parameters,
it considers these noise sources and also estimates them, if not known a priori. The method determines
parameter values, which maximize the likelihood function of the parameters given the measurements and
any a priori information. The likelihood function has the same form as the conditional probability of the
observations given the parameters. It is customary to work with the logarithm of the likelihood function.
The method, as applied to parameter identification in nonlinear dynamic systems with measurement and
process noise is a combination of two steps:
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1. A Kalman filter for state and its covariance.

2. A Gauss-Newton method for parameter estimates, and associated covariances; also unknown noise
statistics.

Figure 5 is a flow chart of the procedure steps. The details of the above steps are given in Ref. [2].
In addition to estimating the parameters in the state and measurement equations, it also determines the
covariance of errors in parameter estimates. If the model, whose parameters are identified, is a true
representation of the system in the region of operation and the sampling rate is high, the maximum
likelihood method gives unbiased estimates of parameters for long data records. With increasing amounts
of data, the estimates converge to their true value almost certainly. It can be shown that the technique
extracts all information about the parameters from data; in other words, the method is efficient.

The maximum likelihood identification program is combined with the model structure determination
algorithm as shown in Figure'6. The process is shown for simulated data, although, as will be discussed,
it has also been applied to flight test data.

The computational requirements of maximum likelihood make it very desirable to concentrate as much
as possible on estimates of only those parameters which can be estimated well from the available data.
Since the computation requirements are roughly proportional to both the number of parameters and the
number of model states propagated, estimating parameters ill-specified by the data increases
computation with only, at best, marginal increases in useful results. In fact, overparameterization can
actually decrease the quality of all the estimates.

First, many parameters can be isolated by examination of the data. If it is apparent that there is
only minor excitation and, hence, little information corresponding to a particular identification model
state, the state equation for that model and its associated parameters can be removed from the identi-
fication procedure. Either a constant or a measured time history of that state can then be substituted
in the remaining state equations where there is cross-coupling to the removed state. This technique
can be applied in much parameter estimation work involving aircraft where the longitudinal and lateral
degrees of freedom can frequently be decoupled for inputs confined to one plane or the other.

Isolation of a reduced set of significant parameters by equation elimination can generally be applied
before using the subset regression on the data. After regressing the data, if the results for a parti-
cular equation reveal a low F-ratio for the overall fit, below approximately 100, or if all the included
variable coefficients have F values below 100, (an F-value of 100 corresponds to a 95% parameter
estimate confidence (2 sigma) of about +20%) that equation also can reasonably be eliminated in the
maximum likelihood optimization procedure.

Further development of the parameter subset for maximum likelihood estimation based on regression
estimate F-values is also desirable. Experimentation reveals that both less computation and better
estimates result if maximum likelihood is used to refine estimates of only those parameters whose F-value
is more than 4% of the maximum parameter F-value for a particular equation. The 4% cutoff corresponds
to parameter estimate confidence five times less than those of the "best" parameter estimate. Attempts
to identify more parameters with the maximum likelihood procedure may overparameterize the fit to the
given data, resulting in poorer overall estimates of the parameters when compared to the estimates
obtained with a smaller parameter set.

If the parameters remaining after insignificant modes have been eliminated, the regression subset is
decomposed into two parts. The first part is those terms which are "significant" by the various F-tests.
The regression estimated values of these terms are defined more precisely by the maximum likelihood
algorithm. The second part consists of terms which are "insignificant", but for which numerical values
have been estimated. Because these latter estimates do constitute additional information about the system,
they are used as fixed values in the maximum likelihood algorithm. Hence, all regression estimates are
used for the maximum likelihood identification; one subset as a priori start-up values and the other
subset as fixed values. The reason for including the non-zero values of the "insignificant" subset is
that these regression estimates, though not perfect, should be closer to the actual value than an estimate
of zero. The estimates of "identified" parameters improve if the estimates of "non-identified" parameters

are better.
Table 3 presents the parameter sets for the two demonstration examples, a lateral case and a longi-

tudinal case. Included in the sets used for maximum likelihood estimation in addition to the parameters
selected by statistical means are the constant terms for each state equation and the bias on sideslip
angle, B, measurement. These additional parameters do not have the F-value statistic for significance
ranking, but are nevertheless felt to be potentially important enough to be included. In the case of
constant" terms, the value is that of the primary aerodynamic coefficient values (Ĉ .Ĉ .Ĉ Ĉ Cy»

c
z)

 at

the mean a and B for the experiment data. Thus, the final rule in determining the parameter set should
always be the judgment of the user.

2.3 Input Design

The model determination and parameter identification aspects of the integrated parameter identification
procedure requires careful design of flight tests, in particular, it is necessary to make a good choice
of inputs and the instrumentation.

It has long been realized that the ultimate success of a flight test program depends also on the
choice of inputs used to excite the desired motions of the aircraft. Good inputs could enhance parameter
identifiability and improve confidences on parameter estimates. This is especially true for parameter
identification of aircraft models at high angles-of-attack where the aerodynamic derivatives are expanded
as polynomials in angle-of-attack and sideslip angle. This leads to a large number of unknown parameters.
In addition, there are many other considerations for choosing inputs for specific flight tests [35,36].

The aircraft equations of motion are nonlinear at high angles-of-attack. Stall, wing rock and other
phenomena observed in this region cannot be explained by linear models. Under these circumstances, it
is possible to consider an aircraft model in which the aerodynamic stability and control coefficients
are slowly varying functions of aircraft states, in particular, angle-of-attack a and sideslip angle B-
Usually, the form of these functions is not known a priori.

For very small changes in a and B during a maneuver, a model assuming constant values of aerodynamic
derivatives may be adequate. The techniques, described in Ref. [2], for the design of optimal inputs for
linear dynamic systems, can be used to specify inputs for identification of local values of functions
representing the stability and control coefficients. It is necessary that there be only small excursions
in these states which have maximum effect on parameters being identified.
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Many methods have been suggested to design inputs which would give good identifiability of stability
and control coefficients over a range of states. One way could be to carry out flight test around many
angles-of-attack and sideslip angles covering the range of interest. Inputs based on linear models are
designed at each of these points, as explained above. This would give an accurate description of each
aerodynamic derivative, but may be practically infeasible because:

1. It would require excessive flight testing time and data processing time.

2. It would require carrying out flight tests in regions where the trim conditions cannot be
reached or the airplane is unstable and/or unsafe.

A better scheme is to approximate the nonlinear aerodynamic derivatives by polynomials (or some other
truncated series of complete functions) in independent variables. Each unknown nonlinear function in the
equations of motion is thus replaced by a set of parameters. These parameters can be identified in a
variety of ways. The aerodynamic derivatives are determined from a knowledge of the coefficients of terms
in the polynomial expansions.

For small ranges of a and B, it is possible to determine all the polynomial coefficients in one
single experiment. The inputs should have sufficient amplitude so that the motions occur in more or less
the entire range of a and B under consideration. The technique for determining the amplitude is given
in Ref. [2]. The amplitude depends on the order of the polynomial, accuracy desired, duration of the
experiment and a priori estimate of the coefficients of the polynomial.

To determine aerodynamic derivatives over a wide range of angle-of-attack (0_<a£30°) and sideslip
angle (-20°<B£20°), it is necessary to perform experiments starting at different d,B trim conditions.
The results of these separate experiments are put together to obtain all coefficients in the polynomial.
The algorithm of [2, Appendix C] finds the trim conditions and the duration of the experiment at each
trim condition to produce a good estimate of the nonlinear function over the entire range of interest.
It is possible to put constraints of infeasible operation over a region. The technique considers regions
where the stability augmentation system (SAS) is required for pilot safety but deteriorates parameter
estimates.

A semi-empirical technique is useful in the design of input signals for identifying parameters in
complicated systems with known characteristics. As a first step, analytic inputs are designed based on
simplified models. State time histories are generated and inputs are evaluated based on a more accurate
but complex model. This would give information about poorly identifiable directions in the parameter
pace and about poorly excited modes. This is usually done using simple programs which are not necessarily
recommended for data reduction from actual flight tests. It is noted that input evaluation can be done
without generating simulation data and going through the identification process. In the implementation
used here, the optimal subset regression program is used to determine identifiable directions resulting
from a certain input. A knowledge of the deficiencies in the chosen input, together with known system
behavior, is used to modify the input. The process is repeated until an acceptable input is obtained.

It has been found in this work that, in general, the optimal inputs for high angle-of-attack
regimes are those which put the most energy at the known nonlinearities. Examples will be given in the
next section.

3.0 APPLICATION TO SIMULATED DATA

The preceding sections have presented an overview of the integrated parameter identification process.
In this section, we discuss the application of this process to the simulated data of Section 2.1.1.

3.1 "Model Building from Data"

3.1.1 Lateral-Directional Response Application of the Subset Regression Method - Usefulness of
Linear Models

One of the first steps in evaluation of the subset regression program was the lateral directional
response analysis. This case is considered more important and difficult than the longitudinal tests.
Most of the reported incidences of degraded stall/post-stall responses occur in roll or sideslip and
multiple nonlinearities characterize the regime.

A number of small perturbation tests were performed for this case. It was determined that severe or
complicated control time histories were not warranted for flight tests at high angle-of-attack (due to
the basically unstable character of responses in the regime). The fundamental aspect of these examples
was to determine the adequacy of a linear model at several angles-of-attack, as opposed to a polynomial
model requiring more complicated inputs. These results are shown in Tables 4 and 5.

Note that there is roll-pitch coupling at 15° angle-of-attack for the aileron doublet example. This
departure from linearity occurs because of the pitch instability at the point. In each case, Cj, =0,

which indicated zero rolling moment at trim. In addition, the wind tunnel results indicated Cj, » 0 at

a = 15° which was substantiated by the model structure determination program. At least 98% of the moment
variation in each case was explained by using C{,_, C^g and Cj, , with the other terms being much less

significant. Again, in each case Cn =0, indicating a zero yawing moment at trim. The Cn coefficient

as verified by the known data, changed sign (from positive to negative) between a = 15° and a = 25°.
As in the aileron doublet case, at least 98% of the yawing moment variation could be explained by using
simply Cnr , Cn and Cn • A linear model seems quite adequate in this case where the critical sign

change in Cj, was found by this approach.
B

Thus, a linear model may explain perturbation input aircraft responses, even in a "nonlinear" regime.
The linear model is here shown to indeed be adequate as a point-wise definition of the aerodynamic model.
This indicates the possibilities of using linear input designs for high angle-of-attack regimes. This
conclusion, however, must be approached with caution. At high angles-of-attack, it may be difficult to
hold trim and to conduct even perturbation maneuvers at constant angle-of-attack. Hot only inherent
instability, but also buffet may make such inputs difficult, at best. The important conclusion which
can be attained is that the regression program can be used to delineate those regions where linear or
nonlinear aerodynamic modeling is required.



3.1.2 Static Pitching Moment Characteristics - Input Design for Nonlinear Systems

One of the most important phenomena of the stall/post-stall regime is "pitch-up". Its principal
cause is the positive C™ which occurs close to stall [1]. Unlike most lateral aerodynamic nonlinearities,

the affected mode is the relatively simple short period response which can be conceptually treated as
a second order system whose stiffness is controlled by C_ .

The primary objective is to investigate the following questions:

1. What flight test conditions are required to determine the presence of Cn,a>0?

2. What order polynomial is required to represent the Cm versus a characteristic over the test
regime?

In order to resolve these issues, several initial conditions and inputs were applied to the F-4
simulation and the subsequent responses passed through the subset regression program. Since the principal
effect of the aerodynamic nonlinearity was known to be on pitch (short period) response, pitch accel-
eration is used as the regression variable.

Initial conditions and inputs used were the following:

1. Trim at 1°, 10°, 20° angle-of-attack, doublet stabilator 1°, 2°, 5°, respectively.

2. Trim at 10° angle-of-attack, ramp stabilator (l°/sec).

3. Trim at 13° angle-of-attack, sinusoidal stabilator (5° and 10° amplitudes).

The results of perturbation inputs in anticipated linear regimes were first developed [1]. These
regimes were low angle-of-attack (a=l°), pre-stall (a=10°) and post-stall (a=20°). The data from these
maneuvers was passed to the subset regression program. The resulting coefficient model was evaluated on
the basis of the quantitative "fit" of the response from the estimated model to the actual simulation
response. The results are shown in Table 6.

The next series of longitudinal inputs case were made with a stabilator ramp of l°/sec to slowly push
the aircraft from the linear regime through the known nonlinear C versus a characteristics at about 15°

(starting from 10°). In addition, sinusoidal inputs were used.
The basic result of these runs was that the C versus a nonlinear characteristics required data

m
replication for successful determination. Only the last series of runs provided this replication. The
physical reason for this requirement is based on the negative spring interpretation of the static moment
characteristic. If the initial rates and accelerations with which the aircraft enters the unstable
region are too low, the response to a doublet or step would be unstable, forcing the response to a
stable region. If the initial accelerations are too high, the aircraft inertia overwhelms the static
moment and the data doesn't reflect the nonlinearity. Although several sets of initial conditions and
time-varying inputs may exist for isolating the characteristics, no extensive experimentation was
performed with other than a sinusoidal stabilator input.

First a 10° amplitude sine wave input at a trim angle-of-attack of 13.5° was tried. The data from
this run was passed through the regression program for two maximum allowable polynomials—a fifth order
and a ninth order. Compared with the (known) simulation C versus a, this input did not come acceptably

close to the "true" value.
Then, a new input with half the amplitude and frequency was applied. Passing the data of this new

input through the regression program, again with two polynomial possibilities, produced the result
shown in Figure 7. Clearly, a higher order polynomial can be identified (locally) using this input.

This numerical experimentation demonstrates that the combined use of a detailed simulation, the
subset regression routine, and knowledge of the physics of the aircraft response, can help design highly
efficient high angle-of-attack flight tests. Other demonstrations of this input design technique are
given in Ref. [2].

3.1.3 The "Best" Model

The subset regression approach is an elegant and efficient means of model structure estimation. As
with most data processing aids, however, its use must be moderated with engineering judgment. Extensive
use of the technique, as with any analytical approach repeatedly applied to physical problems, allows
formulation of certain guidelines which facilitate such judgment. Such guidelines usually have a basis
in theory, but are not easily quantified.

One such guideline is discussed in Ref. [37], the Akalke final value prediction theorem. This
criterion states that, for certain types of systems, there is an optimal number of parameters which
describe a model structure. A plot of this criterion function versus number of parameters has a unique
extremum (i.e., in a quadratic sense) which is at the optimal number of parameters [10]. It is also
shown that fit error, the residuals of the estimated versus actual output time history, is not satisfactory

2
since fit errors (as also measured by R , the multiple coefficient) as a criterion, do not possess a
unique minimum.

Fit error criteria tend to approach an asymptotic value as the number of parameters is increased.
The eventual insensitivity of the fit error to increase in number of parameters, as parameters are added,
is due to the continuing reduction of degrees-of-freedom (e.g., number of observations less number of
parameters). Fundamentally, when the number of data points equals the number of parameters, the regression
curve passes exactly through these points. No further improvement is then possible. Noise will, of
course, allow more parameters to be entered (since point-by-point fit no longer occurs), but these
parameters tend to fit the noise, not the process.

The Akaike criterion is a function of fit error, but also weights this error with the number of
degrees-of-freedom. For the regression, a similar function of fit error is the F-ratio, the ratio of
"fit goodness" to fit error, weighted by the degrees-of-freedom. The concept of F-ratio is detailed in
Ref. [2] and its importance to this work is significant.
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Table 3 Parameter Set Decomposition

FLIGHT TEST DATA. WIND TUNNEL VALUES OF

AERODYNAMIC PARAMETERS

START-UP
PROCEDURE

EXTENDED KALMAN
(NONLINEAR) FILTER

STATE AND COVARIANCE TIME HISTORIES

LIKELIHOOD FUNCTION
CALCULATION

SENSITIVITY FUNCTIONS
AND GRADIENT
CALCULATION

INFORMATION MATRIX
CALCULATION

STEP SIZE
DETERMINATION
USING MODIFIED

NEWTON-RAPHSON

ML ESTIMATES OF AERODYNAMIC
PARAMETERS. CONFIDENCE LIMITS

Fig. 5 Flow Chart of Maximum Likelihood Identi-
fication Program

TION PKOCEIU'RE

In i till
Condition*

1
'

Control Input
Specification

1

1. Use estimates Irom each degree of
freedom equation (it for parameter
subset with maximal F-ratio.

2. Refine estimates with F-val

Sreater than or equal to 4% F
3r each eauation.

.Likelihood for
Parameter
Identification

Fig. 6 Operational Flow Chart of Integrated

Parameter Identification Process

Lateral Response

Parameter Estimates
Refined by Maximum Likelihood

C

C

Other Non-Zero Regression
Parameter Estimates Used in

Maximum Likelihood

Parameter Estimates

\
c

"ap
cn

6a

°v
%

"P

Longitudinal Response

nates
Likelihood

Cmc6s
Cm

q
m 6

0
C f

ma5

Cm
Q

Cm

C« Cna ap
c,, cVp ^n.2_ r ft

'r Cn 4

C . - —
V Cn

r a

Sr en4 C , ,P n 22
C a P

6c C6 nr r
C0 , -, C

Vp2 nap 2

C«
P

Other Non-Zero Regression
Parameter Estimates Used in

Maximum Likelihood

cz

C z 3a
c,

6s
Cm 2n2

o P
C
"ds/

Table 4 Aileron Doublet (+5° over 2 second
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That the F-ratio is a measure of the "optimal number" of parameters is shown in Figure 8,
corresponding to an example to be discussed in more detail in Section 4. Its placement here is to
emphasize the need, based on a criterion other than fit error, to evaluate model suitability. As

shown, R is a monotonically increasing function of the number of parameters. The F-ratio, however,
has a maximum with seven parameters (obtained after deleting one variable of small significance).

In general, it has been found that the subset F-ratio will have local maxima, beyond the first, as
parameters are added. This result is shown in Figure 9. The first general criterion used for selecting
parameters to be identified is to delete all parameters included in the regression past the first maximum.

A second guideline to further optimize the regression subset for maximum likelihood application is
to select only parameters whose contribution is a certain percentage of the most significant parameter,

as discussed in Section 3.1.2.

3.2 Identification in the Stall/Post-Stall High Angle-of-Attack Regime

In this section, evaluation of the integrated parameter identification process is carried out using
simulated aircraft flight test data. State and measurement model equations used in this maximum
likelihood procedure are detailed in Ref. [2]. Nine state equations and eight measurement equations
containing thirty-three nonlinear, aerodynamic coefficients compose the identification mode. (Each of
these coefficients are further expanded.)

In the identification procedure, the subset regression program is used on the simulated flight test
data to identify the model structure and give initial estimates of the selected aerodynamic coefficient
polynomial expansion parameters. The maximum likelihood program is then used to refine the parameter
estimates obtained from the regression analysis to yield the final parameter estimates and a measure of
confidence associated with those estimates. The detailed flow chart of the entire process was illustrated

in Figure 5.
In addition to evaluating the identification procedure on a variety of simulated flight test

experiments, investigations were also carried out to assess the effects of different levels of
measurement noise, process noise, control input variations, identified parameter set size, and

data length.
The identifiability of the stall/post-stall regime is the prime objective of the applications

conducted for the identification process. This angle-of-attack regime (10° to 25° and beyond) is charac-
terized by multiple nonlinearities in the pitching, roll, and yaw moments and forces. The central
objective of this application is that resolution of the identifiability problems for this range is the
prime requisite for any high angle-of-attack identification procedure.

The evaluation procedure which has been determined is based on the following considerations:

1. Selection of Inputs: Not all inputs will sufficiently excite the aircraft to induce nonlinear
forces and moments. These results were noted in Section 3. A standard set of inputs was

selected for this purpose.

2. Selection of Data Length: In general, the longer the data length, the better will be the
identification accuracy of those parameters which can be identified. At high angles-of-attack,
however, the amplitude of responses may prohibit extensive time at a particular flight condition.
This consideration led to a data length of 10 seconds, with a sample rate of 10/sec.

3. Selection of Primary Coefficients: The coefficients which affect aircraft response may be
classified as primary or secondary. Primary coefficients are those which most affect aircraft
response and which are of greatest interest to the test engineers. Secondary coefficients are
those which have, in general, smaller effects on aircraft response, but which, for certain
requirements (e.g., SAS or handling quality studies), may be of interest. For the applications
discussed here, the static force and moment coefficients are considered primary (e.g., Cx>

c
y»

C C C ,C ). The subset regression program is the essential step in the definition of
z m n x>
primary or secondary coefficients.

Tabular summaries of the selected test conditions, inputs and noise levels are given in Ref. [2].

3.2.1 Lateral-Directional Parameter Identification in the High Angle-of-Attack Stall/Post Stall Regime

(a=17.5°)

In the baseline lateral case, control inputs are chosen to excite the lateral-directional modes of
the aircraft. Applied controls are a half period sine wave pulse in rudder, 6^, of 10° amplitude and

period duration of 2.5 seconds followed by a full period sine wave doublet in ailerons of 7° amplitude
and period duration of 2.5 seconds. Total data length is 10 seconds real time, sampled every 0.1 seconds
to give 100 points for each measured variable. Initial flight conditions are d=17.5°, 6=0°, and all rates
zero. The baseline runs are corrupted by measurement noise [2]. Twelve parameters are selected by the

subset regression program for this baseline case.
Figures 10-12 are time history plots of measurements and various aerodynamic coefficients showing

actual values and estimated values with +20 confidence limits. The most prominent characteristic of both
demonstration cases is the excellent measurement estimate fits to the actual data. Estimate 2a confidence
limits bracket the measurement noise induced variations of the actual data.

Estimate fits to the nonlinear aerodynamic coefficients reveal a range from excellent estimates to
fairly significant biased estimates. For the lateral motion case, the major coefficient estimates,
C , C and C are very good; again, with confidence limits bracketing actual data most of the time.

Estimates of control derivatives such as Cn<Sr, Cn^ and Cj,̂  tend to be biased, however. The two

prime reasons for the biased estimates are:
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1. Modeling errors due to higher order variation of actual coefficients with a and 6 than allowed
for in coefficient model polynomial expansion.

2. Low amount of information about control derivatives available as a result of short time of
control application.

Examination of regression and maximum likelihood results produced the following conclusions.

1. Final maximum likelihood F-values are higher than a priori values, indicating improvement
in estimate quality over regression results.

2. F-value ordering indicates relative parameter significance remains close to regression,
lending confidence to using the regression for parameter set specification.

3. F-values from the regression and a priori maximum likelihood results are of the same order
of magnitude.

Significant improvements in control effectiveness of parameter estimates are achievable by modifying
the inputs and increasing the data length [2].

In general, the effect of increased noise, whether process or measurement, on parameter estimates
is to decrease the confidence in the estimates. As mentioned, the baseline lateral case does include
instrumentation measurement noise. This same case was simulated with increased measurement and process
noise (e.g., gusts). In all cases, the estimates were still good, with the expected widening of the
confidence intervals [2]. Because of this, no attempt was made to actually identify the process noise
in the simulated data.

3.3 Longitudinal Results

The longitudinal mode with inputs to excite pitch rate, vertical velocity, and longitudinal
velocity is a fundamental aspect of this effort. The stabilator (elevator) input for the baseline
longitudinal case is a continuous sine wave superimposed on the initial, constant stabilator angle. With
a period of 4 seconds, the input is designed to be approximately at the short period mode frequency of
the aircraft and, therefore, yield the most possible information about the parameters governing that mode.
Amplitude of the input is 4°. Again, the data length is 10 seconds real time and there are 100 sample
points. A second case is also a sinusoidal stabilator input, but with smaller amplitude of 2°. A third
case was also generated in which a coupled response was generated in which longitudinal and lateral
inputs were simultaneously applied. A total of 31 parameters were identified for this latter case.

Results for these three inputs are shown in Figure 13. It is seen that whereas the 4° stabilator
oscillation is very poor at the limits of the test angle-of-attack range, the 2° stabilator and coupled
inputs are much better.

One objective of parameter identification techniques is the ability to use model parameter values
estimated from one set of data to predict the responses of a different set of data. Of course, the
operating range of the data to be predicted should not extend beyond the valid limits of the parameter
estimates, but within that constraint, the predicted response should closely approximate the measured
response. For the model to be of engineering utility, it must not only be able to reproduce the data
upon which it is based, but also be able to closely match responses to different inputs.

Figures 14-15 show the predicted and actual response of the aircraft using parameter estimates from
previous lateral/longitudinal coupled response estimates. The inputs for this case, however, are consid-
erably different in form and amplitude from those used to generate previous estimates.

Although the measurement estimate fits for the prediction are not quite as good as the original
parameter estimation data fit, the correspondence is, nevertheless, more than satisfactory. An assessment
of this relatively simple 31 parameter estimate model must be that it is successful in quite faithfully
reproducing the far more complex simulation of real aircraft flight characteristics.

4.0 FLIGHT TEST DATA

4.1 High Angle-of-Attack Longitudinal Flight Data for a Swept Wing Fighter

The high angle-of-attack results reported here are for flights conducted by the U.S. Air Force [3] on
a swept wing fighter aircraft at 40,000 ft. altitude. Only Record 14 from Flight Test 165 is used for the
extraction of longitudinal and lateral stability and control coefficients at high angles-of-attack. In
this record, the elevator was used to increase the angle-of-attack steadily from about 15° to over 40°
over a 20 second period. The airplane stalls at about 25° and finally the unstable lateral motions
produce a rolling departure. The thrust of the engines during this maneuver is assumed constant. There
are measurements of linear accelerations, angles and angular rates.

First, the subset regression is used to determine a set of relevant aerodynamic derivatives which
define the model structure. The angular rates were differentiated numerically to obtain angular accel-
erations required for the subset regression. To simplify the problem, the aerodynamic derivatives are
expanded only as selected functions of angle-of-attack, a, and sideslip angle, 8. The set of functional
variables allowed for each moment and force coefficient was discussed previously.
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Adequate expansions of forces and moments for the longitudinal motions from the subset regression
program are:

2 A
C = C + C 0 a + C , a - r C g + C q

x x x 2 x 4 x0 x
o a a 6 q

C + C a + C -a2 + c ,B2 + C q
zo za za2 ZB2 zq

: 6 + C a6
Z ,. S Z ;. S
6 a6
s s

C =C +c a + C ,a2 + C -a3 + C B + C q + C <S
m m m m 2 . m 3 m0 m m,- s

o a a a B q os

There are several important things about these expansions. The order of expansion in terms of
angle-of-attack is different for each coefficient. Also, in the expansion for C^, the fourth order

expansion term must be included while the third order expansion term is not. There is a significant
coupling in the longitudinal motions from variations in the sideslip angle. The expansion of the control
coefficient is different for the three moment and force coefficients. The model representation selected
by the optimal subset regression program is used with the maximum likelihood approach for the estimation
of parameters. The starting values of the parameters are taken from the results of the regression. The
time history plots of the measurements of angle-of-attack, pitch rate, fore-aft acceleration and vertical
acceleration and the predicted values of the measurements based on the identified parameter values are
given in Figure 16.

The identified coefficient C is shown in Figure 17. The wind tunnel values of C as a function of
m m

angle-of-attack, at zero sideslip angle are also shown. Note that the identified values are for the
average sideslip angle encountered in the maneuver.

4.2 High Angle-of-Attack Lateral Flight Data for a Swept Wing Fighter

The first 15 seconds of data from the selected model for the aircraft lateral direction motions are
used. There are nonlinear terms in the model, the lateral force and moment coefficients being adequately
described by the following equations:

+ C
a 6

C = C + C
naB

C p

C = C + C . B + C a B + C a6r + C a p
y yo V yaB ya6r yap

Notice that at the high angle-of-attack, the lateral controls are almost ineffective. The lateral motion
can be adequately explained by an unstable system driven by its coupling with the longitudinal motions.

Most of the estimates did not change very much from the regression values. The time history plots
of the measured outputs and predicted outputs are compared in Figure 18. Next, the coefficients Cyg

and Cna are plotted as a function of angle-of-attack. The comparison of the identified values and the
15

wind tunnel values [7] is shown in Figure 19. The identified values are plotted over the range of
angle-of-attack encountered in the flight test. These two coefficients are important because they
determine the lateral stability of the aircraft at high angles-of-attack.

5.0 SUMMARY AND CONCLUSION

5.1 The Integrated Parameter Identification Procedure

The basic objective of the integrated parameter identification procedure is to mos't fully exploit the
theoretical and computational versatility of the maximum likelihood method to yield a practical data pro-
cessing tool. Because the likelihood function contains all unknown parameter information if the model is
correct, primary emphasis has been placed on specifying the best possible model estimate. This specifica-
tion is achieved with an algorithm based on subset regression.

Application of this model determination program demonstrates a significant improvement in maximum
likelihood efficiency, both in required computation and in accuracy of results. The improvement in
performance of the entire process is based on the following characteristics of the regression method:

1. The subset regression method selects parameters on their ability to match the measured response.
By selecting the optimum number of variables to accomplish this match, the most significant
variables are isolated.

2. The method yields a priori estimates from the data above, and does not itself require initial
estimates. Though usually biased, the estimates given by the program are frequently better
than a priori estimates from other sources.

3. The method gives significance evaluations on the estimated parameters, which serves an
essential role in final selection of a model structure to be used in the maximum likelihood
algorithm.



21-17

LONGITUDINAL CASE
1.0

0.8

0.6

aO.4

0.2

0 2 4 6 8 10 12 14 16 18 20
Time (Seconds)

Measured Angle-of-Attack Compared to Response
Based on Estimated Parameters

-0.2

-0.4

-0.6

-0.8

-1.0

LONGITUDINAL CASE

-1.2
0 2 4 6 8 10 12 14 16 18 20

Time (Seconds)

Measured Vertical Acceleration Compared to
Response Based on Estimated Parameters

0.25

0.15

0.05

-0.05

-0.15

-0.25

LONGITUDINAL CASE

^̂ ^

2 4
Time (Seconds)

Measured Pitch Response Compared to Response
Based on Estimated Parameters

0.20

0.16

0.12

30.08

0.04

TO 12 14 16 18 20 gO.00

LONGITUDINAL CASE

0 2 4 6 8 10 12 14 16 18 20
Time (Seconds)

Measured Longitudinal Acceleration Response Com-
pared to Response Based on Estimated Parameters

Fig. 16 Parameter Identification from Longitudinal Response of a Swept Wing Fighter
(Flight Test Data)

0.0

-.1

10

Identified
from Record 14

Langley
Wind
Tunnel

20 30 40 50 a
Cm Vs. Angle-of-Attack

Fig. 17 Identified Coefficients from Longitudinal Responses



21-18

0.5
LATERAL CASE

1 - '

LATERAL CASE

0 2 4 6 8 10 12 14 16 18 20
-0.5

0.10

0.06

0.02

-0.02

-0.06

-0.10

Measured Sideslip Response Compared to Response
of Identified Model

LATERAL CASE

) 2 4 6 8 10 12 14 16 18 20
TiM (Sec)

Measured Lateral Acceleration Response of
Identified Model

LATERAL CASE

0 2 4 6 8 10 12 14 16 18 20
-1.

0.2

0.1

-0.0

,

-0.3

"-0.5

1.0

Measured Roll Rate Response of Identified Model

0 2 4 6 8 10 12 14 16 18 20
TiM (MC)

Measured Yaw Rate Response of Identified Model

0.0

-.01

Fig. 18 Parameter Identification from Longitudinal Response of a Swept Wing Fighter
(Flight Test Data)

10

y

'

* ,'

\ ^Yx
A

s
s

s

JO

Identified
from Recc rd 14

ao u SO

Langley
Mind
Tunnel

C vs. Angle-of-Attack

.004

.002

-.002

-.004

-.006

\
22- m_ 10

Identified
.from Record 14

Langley
•Wind
Tunnel

C vs. Anqle-of-Attack

Fig. 19 Identified Coefficients from Lateral Responses



21-19

4. The computational requirements of the regression algorithm are modest, and the algorithm can
be used quickly not only to evaluate input designs, but also effects of measurement errors.

The implementation of the maximum likelihood for this work can accept either linear or nonlinear
aerodynamic expansions of the force and moment coefficients. Further, this algorithm can process
parameters for only one dynamic equation or all six. The program includes calculations of parameter
significance level.

5-2 Application to Simulated and Flight Test Data for the High Angle-of-Attack Stall/Post-Stall Regime

The evaluation of the integrated parameter identification process has been conducted with simulation
and flight data. The simulation is highly nonlinear and of much higher order than the identification
models used.

The main conclusion of applying the identification procedure to the simulated data is the predom-
inance of linear aerodynamic models required, even for "nonlinear" regimes. This is generally true for
small perturbations about steady state conditions. Recognizing that such conditions may not be
attainable, nonlinear models are required for large inputs where angle-of-attack and sideslip are
simultaneously excited, such as would be obtained for large amplitude sinusoidal inputs or special
maneuvers. The regression step is essential since it indicates whether or not nonlinear contributions
are required. The ability to recognize and identify such nonlinear terms is requisite for determination
of coefficients such as C and C . This is demonstrated with both simulated and flight data of a swept

wing fighter aircraft. Both types of data give similar linear and nonlinear aerodynamic models.
Primary emphasis has been placed on the identification of static force and moment coefficients.

Greatest errors have been found in estimates of the dynamic rate derivatives and control effectiveness
derivatives. These errors are attributed to the relatively low rates which were obtained for inputs
to identify the important static derivatives. Inputs may be modified, using input design algorithms
discussed in the paper, to improve the estimation of these derivatives. It must be noted that the
errors of the dynamic derivatives which were obtained could not be found by comparing time history matches
of the measurement of rate, as these were excellent in all cases. Only with comparison of the actual
parameter time histories were these errors observed.

Techniques for improving parameter estimates include input design and increased data length (where
possible). Such modifications have a significant effect on flight test planning and should be available
for identification of important but difficult to excite parameters. The integrated parameter identi-
fication process as developed in this work is amenable to such flight test design, using procedures
detailed in Ref. [2].

The confidence established in the procedure led to evaluation of the identification results by a
prediction criterion. Specifically, the parameter estimates from a specific lateral maneuver with one
input are used to predict the response of the simulation to another input (for roughly the same flight
regime). This prediction capability was verified with excellent results.

In summary, it is concluded that the application of the integrated parameter identification process
developed for the high angle-of-attack stall/post-stall regime offers significant improvements in the
ability to identify not only parameters, but also the entire system structure and parameters. Primary
interest now lies in input design for testing of aircraft in such regimes.

APPENDIX A

Model Structure Determination by Stepwise Regression

The stepwise regression technique has been used in statistics to determine a set of independent
variables which determine the value of the dependent variable to a specified accuracy. The same technique
can be used to determine the model structure of a nonlinear dynamic system, which is linear in parameters,
in particular the high angle-of-attack problem. With measurements of accelerations and state variables,
the equations of motion can be written as

xe + (A.I)

where y is an m x 1 vector of accelerations, X is an m x p matrix of state variables and nonlinear functions
of state variables, 6 is a p x 1 vector of parameters and e is the residual. The set of important
parameters is determined by performing a correlation analysis between y and X. The parameters are
included in the regression equation one at a time until the entire model is determined (see Kendall and
Stuart [38] for details).

At any point in the analysis the regression equation y = X8 + e can be partitioned as

X191 X292

where X includes q variables and X- contains p-q variables. Then

(A.2)

(A. 3)

which shows that an estimate of 9- could be obtained by regressing the residuals from the regression of

y on Xĵ  (which estimates 9.̂ ) . Then the vector y-X.81 is regarded as a new observation, say y ,

which may be regressed on X_ to estimate 9-. This decomposition can be applied to each possible subset

of variables, X^ "bringing in" new variables from the right to left hand side of Eq. (A.3). The

requirement on "bringing in" new variables may be satisfied by examining the significance of each variable.
The F test may be used to determine the significance of a single parameter by noting that the estimate

2 2 2 2 2 2 2
s of the variance a is distributed as a y,m_ • Hence, s /a ~ (% )/(m_ )•

 Then for the parameter 9 ,

i i (A.4)
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where sg. is the standard error of 9., which is

where s is the iC diagonal term of

(A. 5)

Since (9 -9.)/a ~ n(0,l), it follows that, by definition of Student's t distribution that

n -ft
(A. 6)

Si

In particular, it is desired to test the hypothesis 9± = 0 (i.e., y does not depend on 8), the statistic

t = 9 /s0 is used. It is shown in [37] that the F distribution with 1 and (m-p) degrees-of-freedom is

equivalent to the t2 distribution with m-p degrees-of-freedom. Hence, the significance of individual
regression coefficients, 9, is determined from F ratios

F = 92/st
2 (A.7)

If the ratio (A.7) indicates a variable is not significant, then the variable is deleted. To
bring in another variable, the partial correlation coefficients of all other parameters are examined.
To form the F ratio for these coefficients

r2_ L_J (A. 8)
yxj <e-/se ) + (m~q)

-1 i

where q is the number of variables already in the regression. The corresponding F test is

r~~ (m-q)
yx. ^

F. . -^- (A.9)

yXj

The variable (F ratio with 1 and m-q degrees of freedom), is calculated for each of the remaining
variables. The variable with the highest value is then brought into regression. This process is
repeated until all relevant parameters are included in the regression.
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IMPORTANCE OF HELICOPTER DYNAMICS TO THE
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SUMMARY

A mathematical model of the helicopter requires appropriate representa-
tion of the constituent elements of rotor dynamics. General-purpose programs
that model a variety of configurations for a broad range of operating condi-
tions often result in varying and incompatible levels of sophistication.
Analysis of specific dynamic problems facilitates the identification of con-
figuration parameters that determine system behavior. For the present analy-
sis, the nonlinear equations of a torsionally rigid hingeless rotor are
linearized about an equilibrium condition to determine flap-lag stability
characteristics in hover. A collocation method is used to obtain the coupled
natural frequencies and modes. These modes allow exact treatment of the
effect of elastic coupling which more than compensates for the destabilizing
inertial coupling. The sensitivity of damping to the number of modes was
found to be small and reasonable accuracy was obtained using the first flap-
wise and edgewise coupled modes. The range of destabilizing precone was
found to be small.

NOTATION

a Lift curve slope

Cd Ratio of drag coefficient to lift curve slope, C, /a a

c Blade chord

E Young's modulus

e Distance between mass and elastic axis

ea Distance between area centroid of tensile member and elastic axis

G Dimensionless generalized mass or shear modulus of elasticity

Iji 12 Cross-section area moments of inertia

J Torsional stiffness constant

km Polar radius of gyration of cross-sectional mass about elastic axis

k̂  , k Principal mass radii of gyration

ka Polar radius of gyration of cross-sectional area effective in carrying tension

LZ, L Aerodynamic loading per unit length

M Number of blade modes

m Mass per unit length

n Number of blade stations

Q Dimensionless generalized force

q Generalized coordinates

R Blade radius

T Blade tension

"i v, w Elastic displacements of a point on the elastic axis, parallel to the x, y, z
coordinate system

x> y» z Undeformed coordinate system, x coincident with elastic axis of the underformed blade

8 Blade precone

B. Dimensionless flapwise modal displacement
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i
Y Lock number

£ Dimensionless edgewise modal displacement

9 Local blade pitch angle

K Dimensionless mass, m/m

AI, A- Dimensionless bending stiffness

AI, A-, A12 Generalized bending stiffness

v Inflow velocity

£ Dimensionless radial coordinate x/R

a Solidity

a , a Real part of flapwise and edgewise eigenvalues
w v

a Ratio of the real part of edgewise eigenvalues to the corresponding eigenvalue at
p zero precone

a Ratio of the real part of edgewise eigenvalues to the corresponding eigenvalue at
zero pitch

T Dimensionless time, J2t

(J> Elastic torsional deflection

n Rotor angular velocity

10 Dimensionless natural frequency, cu/fl

uj Dimensionless first edgewise frequency for zero pitch angle
§0

u Dimensionless first flapwise frequency for zero pitch angle
eo
( )' 8/8x or 8/3C

C) 3/8t or 3/3T

( ) Equilibrium quantity

(~) Nondimensionalized by ft for frequencies, R for displacements, flR for velocities,
and m fi2R for forces per unit length

( ) Reference quantity

1. INTRODUCTION

As fixed-wing vehicles have progressed from low subsonic to the hypersonic flight regime, appropriate
analyses have evolved to assist in predicting and understanding the associated aeroelastic instabilities.
In the case of helicopter rotors, parallel development of a mathematical model is far from complete. While
most helicopter instabilities are understood reasonably well when viewed as general physical phenomena,
they are not as amenable to analysis as their fixed-wing counterparts. This is due in part to an aero-
dynamic environment of exquisite intractability. In dealing with the flow fields associated with helicopter
rotors, the analyses developed for fixed wings must be drastically modified or abandoned altogether.

Structural dynamics of helicopter rotors differ significantly from their fixed-wing counterparts.
Varied design practice generates numerous root boundary conditions with varying geometric and elastic prop-
erties. Inplane flexibility manifests itself by adding additional degrees of freedom and as a potential
source of inter-modal coupling. Rotation leads to complicated inertia loads which must be regarded as a
potential source of stiffness and coupling between degrees oi" freedom. Geometric design parameters such
as droop, sweep, precone, hub offsets, and noncoincident mass, tension, pitch, and elastic axes may signifi-
cantly alter rotor dynamic characteristics. Rotor blades are typically very complex structures having
highly nonuniform elastic, inertial, and geometric distributions. In general, the equations which describe
the flapwise, edgewise, and torsional characteristics of such blades are nonlinear integro-differential
equations.1-3 The nonlinearities arise from aerodynamic and inertial terms, and periodic terms arise when
cyclic pitch changes are imposed. In forward flight, additional nonlinear and periodic terms of aerodynamic
origin arise.

The substructuring of helicopter dynamic stability and loads analyses is generally based on advance
ratio since it is an important determinant of the aerodynamic forces. At high advance ratios periodic
aerodynamic and structural terms may significantly influence rotor stability. Thus, when periodic terms
are important, methods such as Floquet theory must be used to accurately determine rotor stability.

0

An additional substructuring of helicopter dynamics is the number of degrees of freedom, denoted by
hub constraint. When the hub is fixed only a single blade analysis is necessary to define rotor stability.
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The single blade with a fixed hub is important for several reasons. Most importantly, the dynamic behavior
of a single blade is the basic building block for more complex problems. For instabilities which depend on
rotor/fuselage coupling, such as air or ground resonance, a knowledge of isolated blade dynamics is useful.
Furthermore, methods for improving rotor blade stability are also likely to prove effective for improving
the stability of coupled rotor/fuselage dynamics. The single blade analysis is often subject to further
reduction by uncoupling or suppressing the flapwise, edgewise, and torsional degrees of freedom in various
combinations. With hub fixity relaxed, all blades are intercoupled with themselves and the helicopter
fuselage. This class of problems emphasizes the dynamic coupling between rotor and fuselage degrees of
freedom. Air and ground resonance are important subdivisions in this category. An additional consideration
is the coupling of the rotor with feedback control systems. For hover or low advance ratios, standard con-
trol system synthesis techniques are applicable.

In recent years a considerable amount of rotor aeroelastic research has focused on specific instabili-
ties.'* These analyses provide insight into the physical characteristics of numerous types of instabilities
and provide the basis for general-purpose helicopter mathematical models. Several general-purpose simula-
tion models exist in the Army's inventory of computer programs. These programs have been developed to
predict performance, handling qualities, rotor dynamics, and loads. Limited success has been obtained for
specific rotor configurations. Emphasis on modeling a variety of configurations for a broad range of flight
conditions has resulted in varying and incompatible levels of sophistication. The aeroelastic module is
generally based on modeling requirements for rotor loads. A major deficiency is the inability to accurately
determine hingeless rotor stability boundaries.

In recent years the hingeless rotor has become an increasingly attractive concept. The advantage of
this system is the large moment capability which can be transmitted directly to the aircraft. The resulting
high control power and angular damping substantially Improve flying qualities and maneuverability. However,
a greater potential for instability exists due to strong dynamic coupling inherent in the cantilever con-
figuration. Recent research and flight-test experience5-7 has revealed that hingeless rotor stability is
significantly influenced by elastic and inertial coupling terms.

2. FLAP-LAG STABILITY OF HINGELESS ROTORS

For the present analysis, the equations of motion for combined bending are obtained by extension of
the method of Houbolt and Brooks.8 The assumptions used in deriving this system of equations are briefly
outlined: (a) The elastic blade is cantilevered to a rigid hub and rotating at constant speed, (b) The
blade is torsionally rigid, (c) Precone is assumed to be a small angle, (d) The elastic axis is a straight
line. (e) The pitch axis is coincident with the elastic axis. (f) The mass and tension axes have negli-
gible offset from the elastic axis, (g) The blade cross section is symmetric about the major principal
axis. (h) Hover flight is assumed and cyclic pitch change is negligible. (i) Two-dimensional quasi-steady
aerodynamic loads are used with radial flow, apparent mass, and stall effects neglected. (j) Structural
damping is neglected.

Figure 1 depicts the deformed position of the elastic axis as a general space curve. Equations (A-l)
and (A-2) of Appendix A are the flapwise and edgewise equations of motion for appropriate values of the
applied loading. The applied loadings for small precone and negligible chordwise offsets are

Px(x,t) = mfl x + 2mftv

p (x,t) = L - mv + m£2 v + 2mfJB w - 2mfiu (1)

p (x,t) = L - mw - mfl 3 x - 2mQB v
z z P P

q (x,t) = qz(x,t) = 0

Substituting Equation (1) into Equations (A-l) and (A-2) of Appendix A and differentiating twice yields the
coupled flapwise-edgewise equations of motion.

[(Ê  cos2 8 + EI2 sin
2 9)w" + (EI2 - EÎ  sin 6 cos6v"]"

- (Tw1)' + mw + mfi2B x + 2mQS v = L
P P z

2 2 ' <2)
[(EIX sin 9 + EI2 cos^ 9)v" + (EI2 - EÎ  sin 9 cosSw"]"

- (Tv1)' + mv- mQ2v + 2mflu - 2mflB w = L
p y

where
- T' - m(fi2x + 20v) = 0 (3)

_ i P
2 Jo

[(w')2 + (v')2] dx (4)

Equation (3) represents the apparent shortening effect due to combined transverse bending. The equations
of motion are expressed in dimensionless form by dividing by mrn

2R. Dimensionless' displacements u, v, w
are based on rotor radius R, and the independent variables become ? = x/R and T = fit. The dimension-
less equations are:

- f' - K(C + v) - 0
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jW11 + A"12v"]" - (Tw
1)' + Kw - 2K3pv

[X v" + A"12w"]" ~ (TV')' + KV - KV = L + 2KB w - 2Ku

(5)

where
cos2 9 + A sin2 8

A"2 = AX sin
2 8 + A2 cos

2 9

X12 = (A2 - AX) sin 6 cos f

El,

1 m/R4
El,

The dimensionless aerodynamic forces per unit length denoted by Ly and Lz may be obtained from the
two-dimensional quasi-steady relations of Reference 3 as

L = -
Z O

(8v

_

(28? - v)v -

)v + (85 - 2v)w]

(6)

Note that higher order effects10 due to elastic deflections are neglected. The quantity V is the local
dimensionless inflow velocity for a hovering rotor. The inflow is approximated by combined blade element

and momentum theory11 as

v = T6"

a aa£9 a aO
(7)

Equation (5) may be simplified by substitution of Equations (3) and (4) to eliminate u and T. The

resulting equations are:

_ /•!
[Â w" -r A12v"]" - [w

1 I K + 2v)d?] ' -r KW = LZ - KB ? - 2KB V

[A2v"+A12w"]"- [v' K(? + 2v)d?]' + KV - KV = L - r 2 K B w + 2 K / (v'v1 + w 'w ' )d?
y P J Q

(8)

These equations may be linearized about an equilibrium operating condition to retain the essential features
of the nonlinear coupling, and the resulting equations are simplified by expansion in terms of the free
vibration modes. For the present analysis, these modes are defined as the coupled rotating modes (Appendix
A). The displacements and loads consist of equilibrium and perturbation components.

V(£,T) = v(O + V(£,T)

(9)
= L, (?) + L, (C,T)

where the dimensionless equilibrium and perturbation quantities in Equation (9) are now written without a
bar. Substituting Equation (9) into (8) and neglecting higher order products of perturbation quantities
yields the equilibrium and perturbation equations.

•
(10)



22-5

r1 •• r1
11 + A12v"]" - [w1 I K? d?]1 + KW = L - 2B KV - 2Kw^v + 2wJJ I Kv d?z (11)

/•I
[A v" + A w " ] " - [v1 / K? d?]' + KV - KV = L + 23 KW - 2Kvlv

* •" I
'

-
y p 0

r1 f c • •" I KV d? + 2K J (V^V1 + w 'w'

J *. 0
+ 2v

u
'c

The displacement at a radial station ? is expressed as a superposition of the contributions of the various
modes

M

V(C,T) =

The linearized perturbation equations may be simplified by substituting Equation (12), and applying the
orthogonality relation given by Equation (A-7) of Appendix A. The perturbation equations in matrix form are

{q} + [0)2GJ {q} = {Q} (13)

where

T1 2 2
G i = / K[Bi + Ci]

Qi

Y ac

Y ac Y_ac
[26pK + -|— (v - 2e?)]61?j - -|— CB^.j) d? (16)

k=l

siki =2 / 6i8k ( / KCi d?)d? + 2 / ?ick ( / K?i d?) d? + " / ^il I Û'MJ ^n 1 K / F J l n l l c / f J /n ^ - J n k J

^epaeids - 2 J ^6^.,d? - 2 J K?^k?j d?

The coefficients AQk may be obtained from Equation (10). Defining DJJ = - (Cjj + Ŝ ), Equation (13)
is written in matrix form as

fGj {q} + [D] {q} + [u2G] {q} = {0} (19)
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Assuming XT

q = qe

Equation (19) may be expressed in conventional eigenvalue form as

[E] {q} = XflJ {q} (21)

where

[G]"1 [D] - fGJ~ [u i

[E]

[0]

(22)

3. DISCUSSION OF RESULTS

Stability characteristics of the coupled flapwise-edgewise bending oscillations of a cantilever blade
may be determined from Equation (21) for known operating conditions and blade properties. For the present
analysis, the spanwise variations of dimensionless mass and stiffness are illustrated in Figure 2. The
amplitudes of these distributions are varied to obtain the desired blade frequencies for a specified rotor
speed, radius, and collective pitch. Figure 3 illustrates the typical variation of the flapwise-edgewise
natural frequencies with rotor speed. These natural frequencies are obtained from Equation (A-5) using
20 equally spaced radial stations for R = 6.985 meters.

Stability characteristics of the coupled flapwise-edgewise bending oscillations of a hingeless blade
without precone in a hovering flight condition are shown in Figure 4. The results are presented as a locus
of roots of Equation (21) with increasing pitch angle for the first flapwise and edgewise modes. Loci for
several configurations having various inplane frequencies are presented. It is convenient to classify
rotors in terms of the first edgewise and flapwise frequencies at zero pitch. These dimensionless frequen-
cies are denoted by UrQ and Ug-. The flapwise mode is typically well damped and the inherently low edge-

wise damping is substantially increased for higher pitch angles. This is consistent with the results of
Reference 12 for a rigid blade model with appropriate root restraint springs to approximate the elastic
coupling. The modal solution avoids the difficulty of having to assume the degree of elastic coupling.
For specified geometric, inertial, and elastic properties, Equation (A-5) is used to determine the appro-

priate elastic coupling.

The influence of the number of modes on first edgewise modal damping is given in Table 1. The sensi-
tivity of damping to the number of modes is relatively small and reasonable accuracy may be obtained using
the first flapwise and edgewise coupled modes.

The Coriolis and centrifugal terms given by Sy in Equation (18) tend to destabilize the edgewise
degree of freedom. The influence of S±* on the dimensionless edgewise damping is illustrated in Figure 5.
The effect of blade precone on the dimensionless edgewise damping is shown in Figure 6. In general, precone
is stabilizing except for small positive increments.

4. CONCLUSIONS

1. Conventional linear equations of motion yield unconservative results for the coupled flapwise-
edgewise stability of cantilevered, torsionally rigid rotor blades. The coupled flapwise-edgewise equations
can be linearized about an equilibrium operating condition to retain the effect of the inertial coupling
terms. The edgewise damping is dependent on these terms.

2. The sensitivity of flapwise and edgewise damping to the number of modes was found to be small.
Accurate results can be obtained using the first flapwise and edgewise coupled modes.

3. The use of coupled rotating modes avoids the difficulty of having to assume the degree of elastic
coupling. These modes allow exact treatment of elastic coupling which more than compensates for the
destabilizing inertial coupling. Thus, flapwise-edgewise oscillations of nonuniform blades in hover were
found to be stable over a wide range of parameters.

4. Precone was found to be stabilizing except for small positive increments.

5. The collocation method^ used to determine the coupled flapwise-edgewise modes is easily extended
to the calculation of coupled flapwise, edgewise, and torsional modes.

APPENDIX A — NATURAL FREQUENCIES AND MODES OF HINGELESS ROTOR BLADES

This Appendix formulates a numerical solution for the natural frequencies and modal functions of a
nonuniform rotor blade. The blade is idealized as a rotating cantilevered beam which has nonuniform prop-
erties and arbitrary twist. The term "twist" is used to define a variable orientation along the length of
the beam of the principal axes relative to the plane of rotation. Twist, chordwise offsets, and pitch will
cause the beam to have coupled flapwise, edgewise, and torsional displacements. Solutions of the equations
which describe the behavior of such a beam and the associated orthogonality relationships are obtained.

The integrating matrix developed by Hunter in Reference 13 is the basis for the method of solution.
The integrating matrix [L] is a means of numerically integrating a function that is expressed in terms of
the values of the function at specified increments of the independent variable. It is derived by expressing
the integrand as a polynomial in the form of Newton's forward-difference interpolation formula. Integrating
matrices based upon polynomials of degrees one to seven are given in Reference 13. Solutions of the equa-
tions of motion are developed entirely in matrix notation. First, the integro-differential equations, which
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are linear homogeneous equations having variable coefficients, are expressed in matrix form. The matrix
equations are then integrated using the integrating matrix [L] as an operator. Next, the constants of
integration are evaluated by applying the boundary conditions, and the resulting matrix equations are
expressed in standard eigenvalue form. Solutions of this eigenvalue problem may be obtained by conven-
tional methods.

For the present analysis, the equations of motion for combined bending and torsion are obtained by
extension of the method of Houbolt and Brooks.^ The principal assumptions used in deriving this system
of equations are briefly outlined: (a) The elastic blade is cantilevered to a rigid hub and rotating at
constant speed. (b) The blade elasticity is adequately described by the conventional bending and torsion
characteristics described in Reference 8. Shear deformation and rotary inertia are negligible. Further-
more, the effects of the additional section constants BI and 82 described therein are considered to be
negligible. (c) The elastic axis of the undeformed blade is a straight line. (d) The pitch axis is coinci-
dent with the elastic axis of the undeformed blade. (e) The blade cross section is symmetric about the
major principal axis. (f) Cyclic pitch, precone, sweep, and higher order inertial and elastic terms are
assumed to have a negligible effect on the blade frequencies and modes.

Figure 1 depicts the deformed position of the elastic axis as a general space curve. The applied
loadings are shown acting at a point PI which is located at a radial distance (n) from the axis of rota-
tion. The bending moments at point P produced by the applied loadings at P^ are equated to the elastic
restoring moments" to yield

2 2 /"R
(El cos 9 + El sin 8)w" + (El - El )cos 8 sin 6 v" - Te sin 9 - Te <S> cos 9 = I {- p (w, - w)

J- £- «t J. 3. 3 f X J.
,, J-x.

+ pz(n - x) + q } dn (A-l)

2 7 fR
(El - El ) cos 8 sin8w" + (El sin 9 + El cos 9)v" - Te cos 9 + Te <t> sin 9 = 1 {- p (v, -i. L j_ 2. a a f x 1

J-x.
v)

+ py(n - x) + qz> dn (A-2)

2 2 /"R fR
(GJ + Tk )<(>' + Tk 8' + I Te (w" cos 8 - v" sin 8)dn = 1 (q + q v' + q w')dr| (A-3)a a A a ./x x y z

The applied loadings (in vacuum) may be obtained from Reference 8 as

Px(x,t) = - T' = mfi
2x

p (x,t) = - mv + me$ sin 8 + mfi v

+ men2(cos 8 - <(> sin 8)

P (x,t) = - mw - me<j> cos 9 (A-4)

2
q (x,t) = - mQ ev sin 9 + me(v sin 9 - w cos 8)

- mQ2(km
2 - km

2)(sin 9 cos 9 + <)> cos 28)

. £. 't
- mk <pm y

2
q (x,t) = mfi ex(sin 9 + $ cos 9)

2
q (x,t) = - mfi ex(cos 9 - <J> sin 9)

Substituting the applied loading given by Equation (A-4) into Equations (A-l), (A-2), and (A-3) and
deleting steady-state terms yields the free vibration equations. Application of the integrating matrix [L]
yields the corresponding eigenvalue problem.

[G] {$} = u2 [H] W (A-5)

where ,,

-"
{*} = v"
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[G]

Gl Gl
w v

G2 G2
w v

[H]

Hl Hl
w v

H3 H3 H3,
_ w v <(

The partitions of [G] and [H] are (n + 1) matrices defined as follows:

[Gx ] = fEIx cos2 8 + EI2 sin2 9J + fi2 [P3(mx)] [F]2

[G2 ] = f(EI2 - EI1)cos 9 sin 8]

[G3 ] = - fi2[L] fea cos 9J fP2(mx)J + «2 [L] fmex cos 9J [F]
w

G^ ] = f (EI 2 - EI1)cos 8]

[G ] = fEI sin2 9 + El, cos2 8] - fi2 [P, ] fm] + fi2 [P (mx)] [F]2

v

[G3 ] = n2 [L] fea sin 9J fP2(mx)J + fi2 [L] fmex cos 9] [F]2

v

- n2 [L] fmex sin 9] [F]

[G^ ] = - fi2 fP2(mx)J fea cos 9] [F] + fi2 [L] fmex cos 9] [F]

[G. ] = n2 fP,(mx)J fea sin 9] [F] - fi2 f x j [L] fme sin 9] [F]
Z i £. 3

(n

[G3 ] = fGJ] + fi2 fk2] fP2(mx)J + n2 [L] fm(k2 - k2 )cos 29] [F]
d> 2 1

[H ] = [P1]
w

[H2 ] = [0]
w

[H3 ] = [L] fme cos 8] [F]
w

[Hj_ ] = [0]
v

[H ] = [P ] fmj [F]
v

[H3 ] = - [L] fme sin 8] [F]
v

[H ] = [P ] fme cos 9] [F]

[H2 ] fme sin 8] [F]

where

[H3 ] = [L] fmk^ [F]

[P1] = [L] [x] - fx j [L]

fP 2 ( f ) J = diag [L] {f}

[P 3 ( f ) ] = [L] f f ] - f P 2 ( f ) ]

[F] = [ [B] - [L]
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0 0

0 .

[B]

0 1

0 1

0 1

Solutions of Equation (A-5) define the natural frequencies and associated modal functions. The first
element in each of the above matrices corresponds to the tip value. The 1, n + 1, and 2n + 1 rows and
columns of the dynamic matrix [G]-1 [H] are deleted prior to iteration. The modal deflections are deter-
mined from the eigenvectors of Equation (A-5) as

']2! !
1 ^
i

(A-6)

The orghogonality relation for these modes may be derived from Equations (A-l), (A-2), and (A-3) by appli-
cation of cantilever-free boundary conditions. The orthogonality relation is

[mw w + mv v. + mk + me cos }>iWj -me sin 0 V - m e + me cos8 w .< |> . ] dx = 0 i
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TABLE 1. EFFECT OF THE NUMBER OF MODES ON FIRST FLAP AND LAG MODE
DAMPING AT 6 = 0.3, u>, = 0.664, u>a = 1.104, n = 20

Mode type
= 2

1st Jag &
1st flap

1.000 1.000

3

4

5

2nd flap

2nd lag

3rd flap

1.0112

1.0128

1.0131

1.006

1.005

1.006

(a) TRAILING EDGE VIEW (b) END VIEW

Figure 1. Equilibrium of forces and moments.
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Figure 2. Spanwise variation of dimensionless blade mass and.stiffness.
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Figure 3. Variation of blade natural frequencies with rotor speed,
R = 6.985 meters, 6 = 0.0 radian, n = 20.
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Figure 4. Locus of roots with increasing pitch angle for first flap and lag modes,
Yr = 5.0, a = 0.05, Cd = 0.01, u = 1.104, M = 3.
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Figure 5. Effect of nonlinear terms on first lag mode damping, Yr = 5.0, a = 0.05,
= 0.01, (0, 0.664, 1.104, M = 3.
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Figure 6. Effect of precone on first lag mode damping, Yr = 5.0, O = 0.05,
C = 0.01, u, = 1.216, olQ = 1.104, 8 = 0.1, M = 3.
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ESTIMATES OF THE STABILITY DERIVATIVES OF A
HELICOPTER AND A V/STOL AIRCRAFT FROM FLIGHT DATA

by

D.G. Gould and W.S. Hindson
Flight Research Laboratory

National Aeronautical Establishment
National Research Council of Canada

SUMMARY

Stability derivatives for the Bell 205 helicopter have been derived from flight data using a least squares quasilinearization
technique. The aircraft model, which included a first order representation of rotor response characteristics was based on fundamental
parameters descriptive of the particular design. A conglomerate analysis procedure which produced estimates based on data from several
similar manoeuvres was used to increase the confidence in the results observed.

Data from the CL-84 V/STOL aircraft were also analyzed, indicating the validity of certain a priori longitudinal stability
derivatives for the aircraft, and yielding estimates of others. The results indicate the need to use a more elaborate modelling technique,
such as was used for the Bell 205, which takes into account the particular complexities of the aircraft.

1.0 INTRODUCTION

The real concern of the engineer in applying modern analytical techniques to system identification problems is not so much
in the quantitative minimization of the fit error, but rather in obtaining reliable parameter estimates of general applicability. This calls
for the use at every opportunity of good engineering judgment in the application of these techniques, particularly in cases where ad-
vance knowledge about the system is lacking. Tending to act in opposition to this requirement is the increasing necessity for specialist
mathematical analysts to implement what may appear to the practical aeronautical engineer as formidably complex identification tech-
niques. However, it is suggested that a reduced analytical sophistication may in some cases be an acceptable tradeoff for increased par-
ticipation by the engineer in the identification process.

In this paper, some of the significant means of exercising this engineering judgment in lieu of mathematical complexity are
discussed by way of examples of extracting model parameters descriptive of a helicopter and a V/STOL aircraft from flight measure-
ments of responses. The choice of mathematical model, considerations in obtaining convergence, the use of parameter and state vector
weighting, and a practical method to allow for process noise by expanding the data base, and thereby increasing the confidence in the
reliability of the results are the subjects of this presentation.

In the case of the helicopter this work was undertaken to assist design of a high gain full authority multichannel autopilot
for the aircraft, shown in Figure 1, which is under development as an airborne simulator (Ref. 1). The parameter extraction effort for
the CL-84 V/STOL aircraft shown in Figure 2 was performed to assess the validity of certain significant a priori stability derivatives to
model the small perturbation longitudinal handling characteristics of the aircraft in support of the Tripartite V/STOL Instrument Flight
Test program reported in part in References 2 and 3.

Fig. 1: Bell 205Al Helicopter Fig. 2: CL-84 Tilt Wing V/STOL Aircraft
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2.0 ANALYSIS METHOD

The classical method of least squares (Ref. 4) applied to the linear or non-linear parameter identification problem provides
the basis for most of the parameter identification techniques in use today. In its simplest form, the method is generally termed quasi-
linearization, but employing slightly different assumptions, it is also equivalent to the modified Newton-Raphson technique.

2.1 Least Squares Quasilinearization Technique

Consider the linear or non-linear system modelled by the equation set

= 0 2.1.1

the solution of which is Xi(Uj,Xk)

where the only constraint imposed is that the column parameter vector Xk be constant over the time period of interest. In this represen-
tation, U: is a known system vector forcing function and Xj is the column state vector describing the response of the system.

To the first order, the change in system response, Xj, due to a small change in the parameter vector, Xk , is

jAk + AXk) = ax. AX,, 2.1.2

The corresponding value of the cost function is

J = /'
3Xi(Uj,Xk)

ax,.

A X k ] [ dt

2.1.3

where Y, is the column vector of observed states and WM is a weighting matrix reflecting the relative accuracy in measurement of the
state variables. It may also reflect the relative importance assigned to the observed state variables if, for example, it is desired to arrive
at final estimates with emphasis on the response of only one or two of the state variables. With the assumption that an extremum in J

has been reached, then = 0 yields a recursive relationship for successive changes in the parameter vector in order to minimize the
3AXt

cost function:

AXk = ;' axk

3Xk

w,i ' J > "
L 3xk J

dt

2.1.4

9Xj
It should be noted, although it is not the case of present interest, that if the parameter sensitivity functions, ——, are inde-

3Xk

pendent of Xk Equation 2.1.2 is exact, Equation 2.1.4 is an explicit expression, and iterative solutions are not required. In the present
analysis, since 2.1.1 is a set of first order differential equations (linear or non-linear) the sensitivity functions are dependent on Xk and
iterative solutions are necessary.

Although the formulation is classical, the recent success of this method is a result of modern computing capabilities which
now permit calculation of the parameter sensitivity directly from the modelling Equation 2.1.1.

2.2 The Problem of Obtaining Convergence

It is usually the case, when dealing with aircraft response measurements, that the recursion relationship as given by Equation
2.1.4 does not result in successive parameter changes that converge. There are a number of reasons for this behaviour, the most common
one being that the equations of 2.1.4 are poorly conditioned usually because of an approximate linear relationship (in the time histories)
among the state variables and/or among the parameter sensitivity functions. This problem can be alleviated but often not eliminated by
a careful choice of control inputs (the system vector forcing functions). This difficulty has been allowed for in these tests through the
use of simultaneous unco-ordinated (i.e. dissimilar) inputs from the two governing cockpit controls, each containing as broad a range of
exciting frequencies as possible.
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It is also true that the ability to obtain convergence may be highly dependent on the accuracy of the initial estimates with
which the iteration is begun. For conventional aircraft, good estimates of the aerodynamic parameters are usually available from wind
tunnel tests or theoretical prediction. If the aircraft is a helicopter or other V/STOL vehicle, this favourable situation is usually lacking
for various reasons associated with the complexity of interfering aircraft components, and the difficulty of performing good wind tunnel
tests.

An equation error starting technique proposed by Denery in Reference 5 can assist in obtaining convergence by reducing
the sensitivity of the analysis to initial parameter estimates. By using first the observed values of the state variables in the calculation of
the sensitivity functions, the analysis is controlled until the response of the iterating model improves, conceptually to a point from which
monotonic convergence to the absolute minimal cost function can be initiated. Although this will result in biased estimates of the param-
eters if continued, if the calculated model response is then used as is correctly required in Equations 2.1.4, the bias due to this procedure
is removed and proper results are obtained. This technique was used with some success in the work reported here, but is has been found
that the choice of initial parameters estimates still remains very critical.

It has been our experience, that the procedure which most consistently gives convergent behaviour is one where significant
weight is given to the original estimates of some of the parameters.

It has also been found that inclusion of any independent constraints among the parameters which can be formulated can
contribute significantly to convergence. This will be discussed further in a later section.

2.3 Inclusion of A Priori Estimates

In the event that fairly reliable estimates of some parameters are known, then it is possible to control the amount of de-
parture from these first estimates during the course of the iterations through an additional term in the cost function of the form (Ref. 6)

With this additional term the Expression 2.1.4 for AXk becomes

'ax, i T

AXt =
I L™k J > J

2.3.2

This expression allows for the calculation of successive changes in the parameter vector from the initial estimates in order to minimize
the cost function which now includes Expression 2.3.1.

The practical effect of the a priori weight matrix Dkk is twofold. It ensures that certain parameters emerging from the itera-
tion will retain realistic values based on previously known independent information or other justification. Secondly, it improves condi-
tioning of the sensitivity function product matrix requiring inversion in the recursion equation by contributing a controllable amount
to the diagonal elements.

As discussed in Reference 7, a statistical interpretation can be made of the weighting matirces WH and Dkk, relating them
to the measurement noise characteristics of the state vector elements, and the statistical properties of the initial estimates. While there
is justification of this approach provided that the statistical assumptions can be validated, this is often not the case, particularly if one
attempts to account for the effect of unknown random atmospheric disturbances by this means. The procedure adopted here sets the
weighting matrices according to engineering judgment based on the conditions of the test and the quality of a priori information avail-
able. A method to allow for the process noise due to unknown atmospheric inputs, and to some extent modelling deficiencies, is dis-
cussed in a later section.

3.0 DEVELOPMENT OF THE SYSTEM MODEL

3.1 In Terms of Stability Derivatives

In the field of flight dynamics, the classical means whereby the aircraft equations of motion have been made tractable has
been through linearization and small perturbation simplifications. This resulted in the classical aerodynamic stability derivatives con-
tained in two three-degree-of-freedom sets of decoupled equations. Although not nowadays necessary, this approach is still valid, and
for many reasons it is useful to consider for V/STOL aircraft and helicopters. However, the fundamental meaning and relative impor-
tance of the stability derivatives may require special interpretation.
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Following this convention, the lateral directional response of the single rotor Bell 205A helicopter was first modelled as
follows:

P = LpP + LPP + LRR + LVV + L5aSa + L6a5a + L6rSr

R = NpP + NPP + NRR + NVV + N6a5a + N6a6a + N6r8r
3.1.1

V = YpP + (w0 + YP)P + (YR - u0)R + YVV + g0 + Y6a6a + Y5a5a + Y6r6r

0 = P

The quantities P, R, V, and <t>, namely the roll rate, yaw rate, lateral velocity and bank angle represent the state vector Xj| 6a, Sa and 6r
represent the known system vector forcing function Uj ; while the parameter vector consists of the twenty one aerodynamic stability de-
rivatives Lp, Lp, LR, ...... , Y6a, Y6r.

The 6a and P time derivatives are retained as first order approximations to the lag in main rotor response and the lag in side-
wash at the tail rotor resulting from the changing lateral force of the main rotor. This constitutes what is considered to be valid modelling
for the simple seesaw type of rotor system which was involved, at least for the range of frequencies of interest in this investigation. The
identification of the rotor response time constant, which as a first estimate is simply one quarter of the rotor fundamental period, is
equivalent to incorporation of a single rotor degree of freedom contributing to the three-degree-of-freedom lateral-directional response.

The parameter vector can be reduced to eighteen modified stability derivatives which contain the P derivatives in order to
present the problem in the more recognized linear from

[X] = [F][X] + [B][U]

where [F] is the matrix containing the response or state vector derivatives and [B] contains the control derivatives.

Using intuitive initial estimates of the stability derivatives where it was not possible to obtain preliminary estimates from a
cursory examination of the flight data, a solution was attempted which also incorporated the equation error starting technique of Denery.
It was found that the solutions often did not converge, and so it was concluded that the freedom of some of the parameters would have
to be restrained by using the a priori weight technique. With sufficient a priori weight on some of the more significant derivatives such
as the damping derivatives, convergent solutions were obtained but some of the derivative estimates resulting were physically unrealistic.
And quite different estimates resulted from small changes in the first estimates of those parameters which had high a priori weights. Since
the a priori information available was not such that much confidence could be placed on the accuracy of any of the first estimates of the
derivatives, this brute force stability derivative approach was rejected, and a formulation in terms of more fundamental parameters was
sought, but still retaining algebraic relation to the basic linearized stability derivative form.

Proceeding in the same fashion for the response of the helicopter in the longitudinal plane

u = xou + x-jU + x^w + xww + XQQ + (XQ - WO)Q - ge

W = Zi,il + ZUV + ZWW + ZWW + Z<jQ + (ZQ + U0)Q

Q = MrjU + M.jU + MWW + MWW + M<jQ + MQQ

0 = Q

In a fashion similar to that employed for the lateral-directional modelling, the Se and the state vector time rate of change
derivatives are used as first order approximations to the lag in main rotor response, and the lag in downwash at the horizontal tail resulting
from the changing normal force of the main rotor.

Without very reliable initial estimates for at least some of the thirty stability derivatives contained in the parameter vector,
it would be very unlikely that convergent solutions could be obtained because of poor conditioning in the sensitivity function matrix,
and even in the event solutions were obtained, many of the stability derivative estimates would be physically unrealistic and of little
value to the engineer.
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3.2 In Terms of More Fundamental Parameters

The procedure adopted for the results given in this paper, and in considerably more detail in References 8 and 9 expresses
the stability derivatives in terms of the aerodynamic forces and moments acting on the major components of the aircraft, moment arms
and inertial parameters. For example, the total derivatives Xw and Zw are broken into elements associated with the major helicopter
components as follows:'

Xw = XWMR + XWMR + XWFT + XWFUS

3.2.1

Z\v - (1 CTR - CFT)^WMR + ZWTR + ZWFT + ZWFUS

where the subscripts MR, TR, FT and FUS refer to the main rotor, tail rotor, fixed tail and fuselage respectively. The terms eTRand
eFT represent down-wash factors at the tail rotor and fixed tail resulting when the Z force on the main rotor is changed. The correspond-
ing pitching moment derivative, Mw is

_ m r

iyy L MR W M R TR TR FT FT W M R
 3 2 2

-\

-CTRZWTR - CFT/AVFT + ^FU;

where m is the helicopter mass, Iyy is the pitching moment of inertia, and hMR , £TR , SFT, 8FUS represent the moment arms from the
reference axes to the effective aerodynamic centres of the main rotor, tail rotor, fixed tail and fuselage, respectively.

Similar expressions were developed for each of the stability derivatives of the Equation 3.1.2 in terms of new parameters
such as those in the above expressions. Thirty- three new parameters, designated Ps, were used in the expressions for the thirty stability
derivatives, designated Rm . The algebraic constraints provided by these expressions make it such that a change in one parameter PB , say
XWMR > not only changes Xw but also changes Mw . Furthermore, most of these new parameters (hMR , 8TR , 8FT - etc.) could be esti-
mated a priori and the confidence in the estimates established for use in setting the elements of an a priori weight vector.

The sensitivity functions with respect to the original stability derivatives,

were calculated from the sets of sensitivity equations obtained by taking derivatives of the Equation Set 3. 1.2 with respect to the param-
eters Rm appearing in these equations. The partial derivatives

expressing the sensitivity of each of the stability derivatives to the parameters PB, were obtained from the expressions such as 3.2.1 and
3.2.2 and the sensitivity functions with respect to the new set of parameters ?s calculated from

9Xi so 9Rm ax,
= y 0 3.2.3

9P« . m=1 3P8 3R,,,

The method is similar for the lateral-directional response. The 21 stability derivatives (Lp, LP, Y6 ) can be written in
terms of 19 fundamental parameters descriptive of the characteristics of the components assumed to be contributing to the aerodynamic
forces and moments. This procedure is equivalent to the classical method of estimating stability derivatives from basic aerodynamic and
design data. The reader is directed to References 8 and 9 for a detailed description of the modelling assumptions employed for the 205
helicopter.

Algebraic complexity is introduced using this procedure, but it has the very significant advantage of providing constraints
on the variations among the different parameters. Moreover, the fundamental parameters themselves are in several cases moment arms
to aerodynamic centres, aircraft mass and moment of inertia parameters, rotor response time lag, etc, which although not known pre-
cisely, allow reliable initial estimates to be made and permit a priori weighting to restrict changes in these parameters within physically
realistic limits.

3.3 CL-84 Modelling

The argument for using the fundamental parameter modelling technique, found to be necessary for the helicopter, can be
made even more strongly for this aircraft. Particularly in the powered lift flight regime, this aircraft is dominated by an unusual com-
plexity of aerodynamics and flight control mixing. It is very likely that reliable information of a design nature could only be extracted
after applying significant aerodynamic and engineering experience relating to this particular aircraft in order to formulate a satisfactory
model. Even at that point, unusual transducer related difficulties are likely to occur in applying the identification procedures which
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result from the high vibration environment and the complex aerodynamic flow field to which even the boom mounted sensors are sub-
jected. In addition, the effects of atmospheric disturbances become of longer and more significant duration in the flight record at the
low airspeeds involved.

Nevertheless, unlike the case of the helicopter, there did exist from wind tunnel tests and other independent flight informa-
tion prior estimates of some of the conventional stability derivatives. Since information of a handling qualities nature was sought in
relation to a precise small perturbation instrument flying task, it was of interest to apply the basic longitudinal stability derivative repre-
sentation given by Equations 3.1.2, except that for the results reported here the derivatives with respect to the time rate of change of
the state observation vector were not used. In the most fundamental sense, it would be thought that a simplified modelling and identi-
fication procedure would have some validity if it could satisfactorily reproduce the flight response using close to these a priori values,
and at the same time yield physically realistic values of the other derivatives.

In order to assist the identification procedure by constraining the variations in some of the derivatives in a manner similar
to the fundamental parameter formulation in the previous section, the normal and longitudinal accelerations were added to the state
vector. The model described in Equations 3.1.2 is now extended to include

AX = X,jU + XWW + XQQ + Xefl + Xjc8c + X^ + Xje8e + X6eSe

Az = ZuU + ZWW + ZQQ + Z89 + ZjcSc + Z6c8c + Z^S', + Z6eSe

where the 6 derivatives are a result of the stability augmentation system.

These expressions contribute to the elements of the sensitivity function product matrix

to an extent allowed by their respective components in the state vector weighting matrix [Wjj].

The advantage of introducing these constraints is apparent in the identities

U = Ax - W0Q

W = A Z + U O Q

3.4 Method Used to Reduce the Influence of Process Noise

Process noise commonly is said to be the result of unknown random inputs to the system, and also the effect of errors in
the mathematical model chosen to describe the system. The former will generally consist of unknown small atmospheric disturbances
occurring during the test, and which may be of nearly the same period as the duration of the test. Consequently, as implied in Section
2.3, it is often not meaningful to think of these disturbances in a statistical sense. Moreover, even if the best possible model is chosen
for the system, bias will exist in the iterated parameters as the algorithm seeks to improve a particular fit. This can itself be considered
a form of modelling error. While more advanced techniques do exist (Ref. 10) which can account more analytically for process noise,
the procedure adopted here is thought to adequately allow for these effects form a practical point of view for most situations.

The procedure simply involves extending the data base from which the parameters are calculated by including a number of
similar but independent runs for which the same model parameters are expected. These additional data appear as an additional dimen-
sion in the state and control input vectors in the computation, contributing in an additive manner to the cost function and sensitivity
function matrix. The result is a single set of model parameters best fitting several runs which may differ to an unknown extent in terms
of atmospheric turbulence, and the peculiarities of the exciting control inputs.

4.0 RESULTS

4.1 Bell 205 (UH1H) Helicopter

The procedures just outlined have been used to obtain 21 lateral-directional and 30 longitudinal stability derivatives of the
Bell 205 helicopter from the identification of 19 and 33 more fundamental parameters respectively.

The observed responses used in the cost functions were roll rate, yaw rate and lateral velocity for the lateral-directional tests,
and longitudinal velocity, normal velocity, pitch rate and normal acceleration for the longitudinal tests. In both cases, a quasilineariza-
tion procedure similar to that described in Section 2 was used to first remove the unknown biases from the measurements of the Euler
angles and their rates prior to formation of the observed state response vector. This procedure is described in Reference 8. The obser-
vations of linear velocity were obtained from an on-board real time calculation of wideband inertial body axis velocities, the reliability
of which had been independently verified.

The two sets of control inputs, lateral cyclic and tail rotor collective, and longitudinal cyclic and main rotor collective were
measured at the pilot's control, and their unfiltered time rates of change calculated directly for inclusion in the vector forcing functions.
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Several tests each with about ten to fifteen seconds of random excitation were performed in ostensibly smooth atmospheric
conditions for each of three different speeds, 40, 70 and 100 knots. The 70 knot results are presented here.

4.1.1 Lateral-Directional Estimates

The estimates obtained for 10 dominant lateral-directional stability derivatives are given in Figure 3 for three tests all per-
formed from the same reference flight condition. The results are all physically realistic indicating the success of the fundamental param-
eter formulation which allowed use of the a priori weight technique with confidence. Although one would expect closely similar results
from each of the runs, there are some significant variations among some of the estimates, for example the roll damping derivative, Lp.
The most likely causes of these differences are thought to be the existence of small unknown atmospheric disturbances and peculiarities
in the response resulting from the particular characteristics of the control inputs which were of course different from run to run.
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Fig. 3: Bell 205 Helicopter

When the data base was expanded to simultane-
ously include all these runs in a conglomerate analysis, the
results shown in the last column of Table 1 were obtained.
As shown in Figure 4 for a typical run, these estimates pro-
duced a quality of fit nearly as well as when the run was
treated separately. Figure 3 indicates how the root mean
square errors for the fitted parameters varied for the three
runs separately, and as part of the conglomerate. While the
penalty for demanding that a common set of derivatives be
found which fits all runs is an increase in the cost function,
the increase is small and it is argued that the confidence in
using the results for more general applicability is consider-
ably enhanced.

4.1.2 Longitudinal Estimates

Some of the results of the longitudinal analysis for the helicopter
are presented in Figure 5 for the reference flight condition occurring at 70
knots. Again there is physical realism in the results, bearing in mind that the
flight vehicle is a helicopter (for example, XQ is unusually high because of
the flapping rotor), but there remains a variability among estimates obtained
from separate runs.

To better illustrate the effects of the conglomerate analysis, the
total weighted root mean square error for all fitted parameters is plotted in
the same figure for the runs treated separately and together at successive
iteration steps. All runs were started at step zero with the same set of initial
estimates. The dashed line represents the global weighted root mean square
error across all four runs, and it is seen to have converged quickly to nearly
its final value by iteration Step 2. At the same time, the dispersion in fit
error among the runs treated separately and together of course decreases,
and carries on for the separate runs to their own minima by Step 5. It
could be said that the separate minima achieved, and the variability in the
final estimates together reflect the peculiarities of these runs. However,
while the total global fit error remains nearly constant for the conglomerate
case after Step 2, it is seen that the conglomerate dispersion is decreased
and the error distributed to a closely equivalent level across all four runs. It
is this effect which supports the proposition made earlier that possible errors

due to process noise have been reduced. While this process noise is not
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identified, and it is inevitably true that deficiencies remain in the mathe-
matical model, the confidence with which the engineer can apply these
results in a more general sense is considerably increased.

Figure 6 shows the quality of fit which is achieved for a typical
run treated separately and in a conglomerate fashion. Again the differences
are not great, and are plausibly attributable to control input peculiarities
and/or unknown atmospheric disturbances.

4.2 CL-84 V/STOL Aircraft

A brute force stability derivative technique employing the re-
presentation given in Equations 3.1.2 was used with flight data from the
aircraft in its wing angle 40 degrees (relative to horizontal datum) configu-
ration shown approximately in Figure 2. The test procedure was identical
to that described earlier for the helicopter, except that the reference flight
condition was at a nominal steady descent angle of nine degrees referred to
still air. The corresponding airspeed in this configuration is approximately
forty knots.

The results of two different analyses of the single test available
with the aircraft in this configuration (with stability augmentation) are shown
in Figure 7.

The ability of the a priori values to model the response when
only the longitudinal, normal and angular pitch velocities were used in the
state observation vector is indicated in Column 2. With the exception of
Xjj to be discussed later, the response damping derivatives and where appli-
cable, the control input derivatives have remained close to their a priori
values. Five iterations were performed with high relative weights on all the
a priori values. The other derivatives, notably the control derivatives for
which there were no a priori initial estimates readily available, have all
attained reasonable values. Shown in the same figure are the root mean
square errors in the observed parameters using these results. The longitu-
dinal and normal accelerations calculated using these derivatives do not fit
well, however.

When the longitudinal and normal accelerations are included in
the state response vector, and the high weights on the a priori values re-
tained, the results are as shown in Column 3. Although more of the deri-
vatives have departed from their a priori values, there is still reasonable
correspondence. It may be significant that the a priori values available did
not relate precisely to the reference condition used in the flight tests.

The quality of fit achieved with the results not incorporating
AX and AZ are shown in Figure 8. The poor resolution of the data and lack
of response in longitudinal velocity assuredly contribute to the discrepancies
in these derivatives seen in the Table. With Ax and Aj included, the results
in Figure 9 are obtained. While it is tempting to release some
of the weighted parameters in order to further reduce the fit
errors which are particularly visible in the accelerations, there
would be no basis for confidence of the new values obtained
without other corroborating flight data. This was done, and M i
although good fits were obtained, physically unrealistic values
resulted. For example, in attempting to fit Ax, the algorithm
tends to identify an unjustifiably large value of X6 , while the
more correct derivative which likely should be identified is
XQ . This difficulty is probably a result of the high value of
pitch damping due mainly to the stability augmentation sys-
tem, and could perhaps be alleviated by extending the analysis
used here to also identify an appropriate W0 as appearing in
Equations 3.1.2, thereby separating XQ .
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which linear velocities were derived present unusual uncertain-
ties in comparison with tests with conventional aircraft.

However, as a result of this analysis, the a priori
values available for the stability derivatives have been verified
approximately, and additional derivatives deduced, notably
X6PL> Z6PL> and M6PL- Of equal use is the information made
available to the engineer during the course of the analysis
relating to deficiencies in the model assumed and the identifi-
cation of particular improvements needed to be incorporated.

5.0 CONCLUSION

Stability derivatives for the Bell 205 helicopter
have been derived for both lateral-directional and longitudinal
degrees of freedom. The success of the analysis depended on
formulation of the stability derivatives in terms of more fun-
damental parameters peculiar to the specifics of the aircraft.
The confidence in the more general applicability of the re-
sults was obtained by determining a single set of derivatives
best fitting the information contained in several separate runs
from the same reference flight condition. In this way, the
effects of unknown atmospheric turbulence, and of peculi-
arities in the control inputs were reduced. Fig. 9: CL-84 Results with Ax A, Included in

n t e «u /ii o/i • r.,1- L , State Observation VectorData from the CL-84 aircraft have been analysed
to assess the validity of existing conventional stability derivatives for the aircraft. While there is general correspondence with the pre-
viously available data and additional derivatives have been obtained, it is apparent that this simplified stability derivative modelling tech-
nique is deficient in being able to more accurately describe the response. Formulation of the aircraft model in more complex terms
peculiar to the aircraft is considered a requirement in order to obtain reliable system information.

It is proposed that a logical analytical sophistication, which appears to be lagging the advancements in identification tech-
niques, is the more fundamental formulation of system models. Not only is this now analytically tractable, it also yields more basic and
meaningful information, and may in some cases such as those described here be of absolute necessity.
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ROTORCRAFT DERIVATIVE IDENTIFICATION FROM ANALYTICAL

MODELS AND FLIGHT TEST DATA*

John A. Molusis

Aeromechanics Branch
Sikorsky Aircraft

Division of United Aircraft Corporation

SUMMARY

A general procedure is presented for systematic development of rotorcraft
models for use in systems identification, which includes fuselage and rotor degrees of
freedom (DOF). Formulations for rigid blade flap and lag as well as the normal mode
representation of an elastic blade are developed for hingeless and articulated rotor
systems. The method of multiblade coordinates is used to obtain linear constant
coefficient state variable models of various levels of approximation. Two of the
approximate models, a 6 DOF and a 9 DOF, are identified from a nonlinear articulated
helicopter computer simulation. The results demonstrate the accuracy attainable for
each model.

Advanced statistical system identification methods and algorithms are reviewed.
A least squares method used with an optimum data filter and an extended Kalman filter are
both used to identify 6 DOF derivatives from helicopter flight test data. Derivative
and time history comparisons are made and correlated with analytic model derivatives.

The results outline the status of rotorcraft modeling and systems identifica-
tion and indicate areas that require further investigation.

INTRODUCTION

A need exists for methods that will enable systematic correlation and improve-
ment of existing rotorcraft analytic prediction methods. For example, analytic models
generally predict incorrectly the unstable Dutch roll characteristics associated with
some helicopters at high speeds. Also, many existing analytic models do not predict the
correct gain values of pitch rate feedback which cause the rotor tip path plane to
become unstable. In addition to these problems, requirements exist for more accurate
control, gust alleviation, and improved handling qualities of current and future rotor-
craft. These are among the motivating factors for pursuing the identification of
derivatives from rotorcraft flight test data.

Successful identification of derivatives from rotorcraft flight data requires
three fundamental steps. First, the modeling requirements and the important degrees
of freedom of the problem must be defined. Second, a computationally efficient yet
accurate identification algorithm is required to treat both measurement and process
noise. Third, the proposed method must be applied to flight test data and a complete
evaluation must be conducted through correlation with flight data and analytic pre-
diction. Iteration on these three steps is required until the modeling, algorithm,
and correlation all yield satisfactory results. This paper is concerned with each of
these three steps, with particular emphasis on the rotorcraft modeling problem.

A general procedure is presented for development of rotorcraft models. The
models vary in complexity and are dependent on the number of blades and rotor type.
A large number of models are developed to approximate the rotor and fuselage degrees
of freedom, which range from an 18 DOF flap-lag-fuselage model to a first order
representation of the rotor. The 6 degree of freedom quasi-static fuselage model is
also considered.

The need for including rotor degrees of freedom in rotorcraft derivative
identification was established in Reference 1, which shows that identified 6-DOF
helicopter derivatives only approximate the conventional quasi-static values. This
is a direct result of not including the rotor degrees of freedom in the identification.
Reference 2 discusses the results of identification of both a 6 DOF rigid body model
and a 9 DOF rotor and fuselage model from a nonlinear computer simulation of a
helicopter. The results demonstrate that the 9 DOF identified model represents
short period time histories considerably better than does the 6 DOF model. These
studies indicate the need to investigate the general rotorcraft modeling problem and
determine the accuracy in identified derivatives that can be obtained for the various
approximate models.

The modeling problem is considered in two parts. The first part discusses
the method for transforming rotorcraft equations of motion into various approximate
constant coefficient models of the rotor and fuselage. Both hingeless and articulated
rotors are considered. The second part gives results of a nonlinear computer simula-
tion study that investigated the derivative accuracy obtainable for two approximate
constant coeficient linear models using system identification from input/output data.

*Part of this research was supported by USAAMRDL Langley Directorate and NASA, LRC,
Hampton, Va.
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A number of studies reported in the literature discuss the problem of rotor-
craft modeling. Hohenemser in Reference 3 was probably the first to formulate the
rigid body quasi-static derivative model for rotorcraft. The quasi-static derivative
assumption is based on the fact that the rotor degrees of freedom are of higher
frequency than the fuselage. As a result, the contribution of the rotor can be lumped
into the fuselage to form a 6 degree of freedom derivative model. This approximate
model is generally satisfactory for low-frequency handling qualities studies and for
preliminary aircraft stability and control assessment. Such a model is generally not
acceptable for high-frequency transient predictions or high-gain feedback studies.
The question of adequate hingeless rotor modeling in flight dynamics is treated in
References 4 and S, which conclude that for low-advance ratios, first flap bending
is required. References 6 and 7 consider the multiblade coordinate representation of
rotor dynamics and determine the regions in which the constant coefficient multiblade
coordinate model is a good representation of the periodic coefficient rotating
coordinate model. A further approximation is presented in Reference 8, in which a
flapping rotor is represented by a first-order rotor model.

Rotorcraft modeling requirements for accurate derivative identification from
input/output data remain to be answered. In particular, this paper addresses the
question of how accurately derivatives can be identified for the various approximate
models. In addition, a generalized procedure is presented for development of constant
coefficient models for the rotor and fuselage of both hingeless and articulated
rotors. Both rigid blade flapping and blade flexibility are considered.

The second fundamental step necessary for accurate identification of rotor-
craft derivatives from flight data is the requirement for a computationally efficient
yet accurate algorithm. A review of methods for parameter and state estimation is
presented with particular emphasis on advance statistical methods of identification.
These include (1) maximum likelihood (ML), (2) maximum a posteriori parameter
estimation (MAP-parameter) and (3) maximum a posteriori state estimation (MAP-statej.
Approximate methods of solution are discussed for each of these methods. The solutions
all result in a Kalman filter, with the ML and MAP-parameter estimation methods
requiring an iterative algorithm, such as quasi-linearization; and the MAP-state
estimation method resulting in an extended Kalman filter or second-order filter.
The method used for application to flight test data is the extended Kalman filter.
The effect of various data filters is examined, using both the extended Kalman filter
and a least squares method.

The third fundamental step necessary for accurate identification is applica-
tion to flight test data and correlation with analytic prediction methods. The flight
test applications presented use a 6 degree of freedom identification model. The flight
data used are from a CH-S3A helicopter at 100 knot trim condition, and the identified
derivatives are correlated with derivatives obtained from a nonlinear helicopter
analytic computer model that includes fuselage and blade flapping degree of freedom.

The three fundamental steps are reported in this paper. The results conclude
the first iteration in the development of a successful procedure for obtaining rotor-
craft derivatives from flight test data.

ROTORCRAFT MODELING

The rotorcraft modeling problem is difficult because of the large number of
degrees of freedom that occur both in the nonrotating and rotating axes and because
of the complexity in the aerodynamics. The most important degrees of freedom required
to describe the rigid aircraft motion are the rigid body and the flapping rotor, but
inplane (lag), torsion, higher blade modes, or air mass dynamics may be required for
particular studies or for investigation of rotor instability problems. Figure 1
summarizes various degrees of freedom that may contribute to vehicle motion.

Low-frequency rigid-body flight dynamics can be modeled adequately with 6
deerees of freedom, but transient data contain both body and rotor motions. Identifica-
tion using only 6 degrees of freedom results in derivatives that are only approximations
of conventional quasi-static derivatives. Accurate rigid body derivatives can be
obtained by first identifying the derivatives of a larger model, which includes the
fuselage and separate rotor degrees of freedom, and then reducing this model to 6 DOF
quasi-static derivatives. In addition, the individual derivative contributions from
the rotor degrees of freedom can be obtained from the larger fuselage and rotor model.

The rotorcraft modeling problem is discussed in the following sections, with
emphasis on developing a simple and accurate characterization of the rotor for use
in system identification.
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Figure 1. - Illustrative Diagram of a Rotorcraft Showing the Degrees of
Freedom Which Describe the Total Vehicle Motion.

Rotor Characterization

Four basic rotor system types can be classified: (1) articulated, (2) semi-
rigid (teetering), (3) hingeless, and (4) rigid (including propellers). Reference 9
discusses typical rotor configurations for each of the rotor systems. Each rotor system

is distinguished according to the blade
natural frequency in the flapping and in-
plane directions. An articulated rotor
system consists of rigid blade flap and
lag motion, and a hingeless rotor consists
of elastic deflection in the flatwise and
inplane directions. This characteriza-
tion is shown in Figure 2, obtained from
Reference 9. Frequencies for several
rotorcraft have been superimposed on
this figure. The significance of this
characterization for rotorcraft is that
the four basic rotor concepts can be

(Sikorsky)
(Sikorsky)
(Lockheed)
(•Bell)
(Bolkow)
(Westland)

1.5

0.5

SEMIRIGID
ROTORS
(TEETERING)y
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treated comparably, with the difference
appearing in the natural frequency of
the blade motion.

In addition to the flapping
and inplane blade motion, each blade
will generally consist of torsional
and higher order blade elastic deflec-
tions. For the purposes of flight
dynamics, these modes can generally
be ignored due to their small influence
on basic aircraft motions.

BLADE FLAPPING FREQUENCY

Figure 2. Rotor Characterization by
Flapping and Inplane Natural
Frequency Showing Location for
Typical Rotorcraft.

Transformation of Rotating to Fixed Axes

The nonlinear equations of motion of a rotorcraft in forward flight contain
coefficients that are periodic with rotor azimuth and result from assymetric rotor
aerodynamic loading in forward flight. Linearization of the nonlinear equations
result in linear equations with periodic coefficients. The rotor state variables for
blade flap motion can be represented conveniently in the fixed-axes system by a
multiblade coordinate transformation. This transformation is of the fourier type and
is given by equation (1)
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l/Nb

3nc - 2/Nb
 Bi COS n *i

2/Nb I Bi sin n *i (D

Nb i
Bd = l/Nb I B! (-1) ; Nb even only

The flapping motion of the ith blade is then

B sin
n=l

(2)

where

fl/2 (Nb -1), Nb odd

[l/2(Nb - 2), Nb even

The coordinates to the left of the equal sign in equation (1) are now in
the nonrotating axes system. When transforming the periodic coefficient equations,
an additional fourier operation is made in the equations, as discussed in Reference 7.
This second operation eliminates many of the periodic coefficients from the equations
in the nonrotating system and results in constant coefficients plus higher order
harmonic terms. The constant coefficient approximation is then obtained by using the
time-averaged coefficients in the nonrotating frame.

The procedure for accomplishing this transformation will be shown for both
articulated and hingeless rotor systems. The state variable notation will be used
whenever convenient, and the number of rotor modes will in general depend on the
degrees of freedom chosen for the model.

Generalized modeling procedure for articulated rotors. The nonlinear equa-
tions of motion of a rotorcraft can be written in state notation according to equation
(3), where xi represents the state vector of fuselage variables in the nonrotating axis,
and'x| represents the rotor state variables in the rotating axis.

—2
*1 fi(x!, x , u, t)

The superscript R implies that the state vector is in the rotating axis system, and
the variable t represents the fact that the equations contain terms that are periodic
with period tj. The vector u represents the control input vector.

Linearization of equation (3) results in linear equations with periodic
coefficients, as shown in equation (4).

xj + F12(t)x§ •••

G2(t)u (4)

The matrix arrays Fii(t) represents periodic coefficient functions of period t^.
This periodicity is denoted by t.

Transformation to the nonrotating axis is accomplished by the transformation
given in equation (5)

T(t)

where the state vector x,, without the superscript, represents coordinates in the
nonrotating axis. The matrix T(t) represents' a transformation that will generally be
periodic. Substitution of equation (5) into equation (4) results in equation (6).

Fi2(t) T x2 + Gi(t)u

T-1(F22(t)T - f) x2 + T-lG2(t)u (6)
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The variable t has been dropped for simplicity in the transformation matrix T(t).
Equation (6) is now in the nonrotating axis system, and the coefficients are periodic
with period tj_. The transformation matrix T(t) is generally chosen to satisfy the
transformation given by equation (1) which results in multiblade coordinates.

The constant coefficient approximation is then obtained by averaging the
periodic coefficients over one period. The resulting constant coefficient equations
in the nonrotating axis system are given by equation (7), where the coefficients
AJJ and B^ represent the average value of the appropriate terms in equation (6).

h A12*2 + B-LU (7)

*2 = A21*2 * A22*2 * B2H

Equation (7) represents a suitable form for use in rotorcraft derivative
identification. The actual number of rotor coordinates used will depend on the
number of blades, the degree of approximation desired, and the number of modes used
to represent the rotor. This will be discussed further in a subsequent section.

Associated with equation (7) will be a set of measurement equations. These
are given by equation (8):

Z-j = HI X2

(8)

£2 "
 H2 x.2 = H2T(t) X2

The matrix H^ and rb represents the relationship between state variables and measure-
ments and is generally known. For an articulated rotor, z§ will represent the vector
of blade flap and lag angles measured in the rotating axisf The formulation above is
nonstochastic, so additive measurement noise is not included in equation (8) and
process noise is absent in equation (7). The stochastic formulation will be treated
later.

A convenient alternative formulation for rotorcraft is to transform the rotor
states of equation (7) to normal coordinates £2. This is accomplished by the trans-
formation in equation (9), in which M2 represents the modal matrix associated with
rotor state variables x2:

*2 " M2 Z2 (9)

This results in equation (10) in which A22 is a diagonal matrix of eigenvalues:

*1 = All *1 + A12 Z2 + Bl y. (10)

TL • A21 *1 * A22 Y.2 + B2 y
where

and B2 = M2 B2. The measurement equations are now given by equation (11):

il = Hl *1
R Cll)z§ = H2 T(t) M2 £2

Equations (10) and (11) represent an alternative form for use in derivative
identification. This form is particularly convenient, because the identification can
be treated in two stages. In the first stage, spike inputs into the controls of a
rotorcraft will permit simple inspection of the rotor measurements to obtain the
frequency and damping of the rotor modes along with the modal matrix M2. Although
the details of this procedure will not be given here, use of a zero phase shift band-
pass digital filter and free response data resulting from spike inputs enables deter-
mination of the matrices M2, A22 and B2. The second stage is then to identify the
remaining elements of the matrices AJJ, A12, BJ and A21, using the identification
algorithm to be discussed in a subsequent section. The first stage permits accurate
determination of the rotor, because the rotor modes all lie near the imaginery axis
(low damping) for rotorcraft and can be accurately separated with a bandpass digital
filter, such as the one developed by Martin and Graham in Reference 10.

Generalized modeling procedure for hingeless rotors. Hingeless rotor systems
can be modeled using the normal mode representation of an elastic blade. This
assumption is based on the fact that the deflection along a blade can be approximated
as the product of mode shapes and time functions (participation factors). The inplane,
vertical, and torsional deflections of a flexible blade can be written as
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y(r,t)

z(r,t)

8(r,t)

nm

n=l

zn(r) (12)

where y(r,t), z(r,t) and e(r,t) represent the inplane, vertical, and torsional
deflections in the shaft axis system as a function of blade span r and time t, and
nm equals the number of modes. The matrix on the right of the equal sign in equation
(12) is the matrix of mode shapes and depends on blade span r. The participation
factors 5n(t) are independent of blade span and depend only on time. The participa-
tion factors are the solution to equation (13).

«n + (13)

The structural damping and natural frequency of each mode are given by Cn and ">n
respectively. The generalized forces are denoted by Fn( ). The parentheses denote
that Fn is a function of aerodynamics, participation factors, control inputs, and
all state variables. In represents the generalized inertia associated with each

Equations (12) and (13) can be used to describe the motion of each blade
in the rotating system. Rather than use equation (12), a more convenient form can
be obtained by writing the bending moment at a radial station rj in terms of the
participation factors. This is shown in equation (14):

mode.

nm

n=l

(14)

where VBM(r,, t), IBM(
ri>t), and TBM(ri,t) represent the vertical, inplane, and

torsional bending moment at radial station ri. The load coefficients are given
by VBM (rl)> IBMn(

rl5. and TBMn(
rl) and are independent of time. The load

coefficients will depend generally on the blade mode shapes, mass and inertia
distribution, rotor rotational speed, and natural frequency of the modes. The
development of equation (14) can be found in Reference 11. Equation (13) and
(14) will be used to represent the rotor degrees of freedom and measurement
equations respectively. Equation (14) is more convenient than equation (12) for
the measurement equation, since blade bending moments can be measured readily with
strain gage instrumentation.

The participation factors «n in equation (13) represent the generalized
coordinates in the inplane and out-of-plane shaft axis. Since the blade bending
moments are measured in the blade axis and not the shaft axis, the measurement
equation must transform the inplane and out-of-plane coordinates to blade bending
coordinates. This transformation is shown in state variable notation in equation
(15):

= H2(6R)t) x2 (ri, t) (15)

where x?(ri,t) represents the state vector of inplane and out-of-plane bending
moment? and H2(9n t) represents the appropriate transformation to convert to the
blade bending moments zjkri.t) at radial station rj.. Generally H2(8R,t) will be
a function of geometric blade pitch angle 9R and hub geometry and can assume to
be known.

Equations (13) and (15) can be combined with the rigid body equations to
form the rotorcraft equations of motion given by equation (16) and measurement
equations given by equation (17):

*1
6n + 2C r 'n«n + un 6n = Fn (*!» *n' H-

^

z§ - H 2 ( 6 R ) t ) x* Cr l t i

= H 2 (6 R , t )

(16)

(17)

where M(r,) represents the load coefficients with respect to the inplane and out-of-
plane coordinates, and «n is represented by the state vector x2(t).
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Linearization of equation (16) and conversion of the generalized coordinates
°0 to state variables x2 results in linear equations with periodic coefficients. The
linearized equations are given by equation (18) and the measurements by equation (19) .

xi = F11(t)x1 + F12(t)x| + G!(t)u

.R R
*2 " F2l(t)*l + F22Ct)2£2 * G2(t)u

il - Hl *1
R (19)

zf(rlft) - H2(eR,t)M(r1)x5(t)

The superscript R in equations (18) and (19) indicate that the coordinates are in the
rotating reference axis, and the variable ri in equation (19) indicates that the blade
bending measurement zJCr^.t) is at blade radial station T.

Equations (18) and (19) represent the state variable description of a
rotorcraft with flexible blades. The rotor state measurements are given by equation
(19), which contains the unknown load coefficient matrix M(ri). Since this matrix
cannot be uniquely determined in an identification, a transformation is required to
remove M(rj) from the measurement equation, as shown in equation (20).

x| (rltt) - M(ri) x§ (t) (20)

Substitution of equation (20) into equations (18) and (19) results in
equations (21) and (22)

xi " Fn(t)xi + Fi2(t)x§ (rj,t) + G1(t)u

F22(t) xf (rltt) + G2(t)u

11 - Hl xj.
R R
z§ (rltt) = H2(6R,t) x£ (rlft)

where F'12(t) = F12(t)M-l(ri) , F21(t) = M(r1)F21(t),

F22(t) = M(r1)F22(t)M-l(r) and G2(t) = M(ri)G2(t).

The rotorcraft equations (21) and (22) are now identical in structure with
the periodic coefficient equations of the articulated rotor development given by
equations (4) and (8). Thus, equations (21) and (22), which are periodic, can now be
transformed into constant coefficient equations in the nonrotating axis, using the
multiblade coordinate transformation given by equation (5). This results in equations
of the structure given by equations (7) and (8) for multiblade coordinates and
equations (10) and (11) for normal coordinates.

The rotorcraft derivatives can be identified from input/output data, using
either equations (7) and (8) or equations (10) and (11). The procedure outlined in
the last section for obtaining rotor eigenvalues and eigenvectors from free response
data is also applicable to the elastic formulation presented in this section.

Rotor State Variables in Nonrotating System and Further Approximations

The number of state variables required to represent the rotor degrees of
freedom in the nonrotating frame equals the number of state variables required in the
rotating frame. Thus, a 3-bladed flapping rotor requires 3 DOF in the nonrotating
frame, and a 6-bladed rotor requires 6 DOF.

Figure 3 lists the coordinates for a flapping rotor in rotating and non-
rotating frames of reference. The number of degrees of freedom is the same for both
the rotating and nonrotating frame, and the differential coning mode Bd appears only
in rotor systems consisting of even numbers of blades.

The transformation accounts for the motions of all blades. For a 3-bladed
rotor, the degrees of freedom are coning, BO; (all blades flap together); rotor tilting
in pitch, Blc, (cosine- f lapping) ; and rotor tilting in roll, B,s, (sine- f lapping) .
Adding a fourth blade adds a differential coning mode in which blades 1 and 3 flap
in one direction and blades 2 and 4 flap in the other direction. Adding more blades
adds degrees of freedom that warp the tip path plane.
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Coordinates B,(differential
coning), B- fwarp cosine),
and B2s (warp sine) are
reactionless modes, since at
hover they do not produce a
net reaction at the hub.
For this reason, these modes
can often be neglected for
open-loop flight dynamics
studies.

Notes: (l) Number DOF is the same in both rotating and nonrotating system.

(2) 6d, differential coning, appears only for even bladed rotors.

(3) nimbaled rotors require modification of the coordinates duo to
hub moment carryover.

Figure 3. Description of Coordinates for a Flapping
Rotor in the Rotating and Nonrotating System
for Various Rotor Systems with Different
Number of Blades.
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Figure 4. Rotorcraft Analytic Models Showing the State Variables
Required to Describe the Rotor Flapping Degrees of
Freedom. (6 Bladed Rotor Assumed).

Figure 4 shows typical analytic models for a 6-bladed rotor that can be used
in rotorcraft flight dynamics studies. The models shown include only flapping degree
of freedom for the rotor. The state variables for each model are indicated, and the
three reactionless modes are ignored in the 9 DOF model. The models consist of 6 body
degrees of freedom and the appropriate number of rotor degrees of freedom. The 8 DOF
model uses a first-order representation for the rotor and is the same model described
in Reference 8. This is the simplest model that includes the rotor degrees of
freedom separately and models accurately the first-flap regressing mode.

Typical characteristic roots for a 6-bladed flapping rotor in the nonrotating
frame are shown in Figure 5. The 6 body degrees of freedom are of low frequency, and
the rotor roots are generally of higher frequency. The most important rotor root with
regard to rigid body motion is the flap regressing mode, but the other rotor roots will
generally be of significance for high-gain feedback investigations.
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Flapping Rotor. for a Three-Bladed Hingeless

(Rigid) Rotor.

In addition to the flapping motion, high-gain feedback studies may require
inclusion of the rotor inplane degree of freedom. Inplane degree of freedom generally
does not introduce a significant net reaction at the hub and is usually ignored for
most flight dynamics studies. High-gain feedback studies may require this mode for
accurate rotor stability boundary prediction and for studies concerned with the effect
of feedback on air resonance. In addition, the inplane mode may cause errors in
identified derivatives if not modeled in the identification process.

Figure 6 shows typical rotor inplane and flapping characteristic roots in
the nonrotating system for a 3-bladed stiff rotor system. Thus, 3 DOF for inplane
and 3 DOF for flapping motion would be required for representation of the rotor in
the nonrotating system. Systems identification of this model would require 12 DOF-
6 DOF for the body, 3 DOF for flapping, and 3 DOF for inplane.

Figure 7 shows alternative models of various levels of approximation for
a rotorcraft which include both flap and inplane degree of freedom. The constant
coefficient models consist of flap-lag and flap-only representations of the rotor.
The 10 DOF first-order rotor flap-lag model contains a first-order representation for
both flap and lag degree of freedom similar to the 8 DOF first-order rotor flap model
discussed previously. This model retains the lower frequency flap-regressing and
lag-regressing characteristic roots.

The 9 DOF flap and 8 DOF first-order rotor flap model are included in this
figure, since the typical rotorcraft will contain both flap and lag degrees of freedom,
and it would be desirable to use only the flapping degrees of freedom in the identifica-
tion. Whether the presence of lag DOF will degrade system-identified derivatives needs
further investigation.

Also shown in Figure 7 is the quasi-static 6 DOF model obtained directly by
perturbing the nonlinear model. This model may or may not have the identical deriva-
tive values as the reduced quasi-static model shown in Figure 7. A difference in
derivatives could arise if the linear constant coefficient models, which include
separate rotor degrees of freedom, are not good representations of the nonlinear model.
This problem will be discussed in a subsequent section.
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* Number in parenthesis represents the
number of state variables.
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REDUCTION TO QUASI-STATIC DERIVATIVES
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Body DOF:

Rotor DOF: x~ =

Figure 7. Rotorcraft Analytic Models Including Flap and
Lag DOF for a 6-Bladed Rotor.

Reduction to Quasi-Static and First Order Rotor Models

The linear constant coefficient models, which include separate body and rotor
degrees of freedom, can be reduced to a 6-DOF rigid body quasi-static model. This is
accomplished by first partitioning the model into separate rotor and body degrees of
freedom. This is shown in Table 1, where xj. represents the state vector of body
variables, and x2 represents the state vector of rotor variables.t The rotor degrees
of freedom are Tumped into the body degree of freedom by setting x2 = 0, solving for
x2 from equation (2), and substituting the resulting expression for x2 into equation (1).
The quasi-static derivative model is shown in equation (5) of Table T.

This technique can be
used for reducing any linear model
with separate rotor degrees of
freedom to the conventional quasi-
static derivative model. This
model will be referred to as the
reduced quasi-static model.

Table 2 shows the
procedure for reducing the body
with separate rotor degrees of
freedom to the first-order rotor
representation discussed previous-
ly. The rotor state variables
are represented by the vector x2.
The coefficients circled in the
derivative matrix of Table 2 are
usually smaller than the other
coefficients and can be neglected.
This approximation results in a
second-order equation for coning,
as shown in equation (3), and two
first-order equations for flapping,
as shown in equation (4) of Table
2. The coning equation yields
estimates of the damping and
frequency of the coning mode and,
since the natural frequency is
much greater than the flap-
regressing mode, the coning mode
can be ignored. The first-order
rotor representation of equation
(4) yields an accurate estimate
of the flap regressing mode.

d)

(2)

(3)

(k)

Substitute Equation ( U ) into Equation (l) results in

Quasi-Static Stability
Derivative Matrix,

( 5 )

Quasi-Static Control
Derivative Matrix, B

Table 1. Method to Reduce Rotorcraft Linear Rotor/Body
Models to the Quasi-Static Derivative Model.
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REDUCTION TO FIRST ORDER ROTOR

(1)

16 i

i1- -.-3? J 33 "31. "35 "36

(2 )

Neglect (Set = 0)

Coning Eq.:

First Order

Rotor (Flap):

"11 "0 T "12 °0

31,

a36

(3)

( I t )

"36

33

Table 2. Method for Deriving First Order Rotor Model
From Rotor-Body Models.

Also shown in Table 2 is the form of the first-order rotor model for the
hover condition which is particularly simple due to the symmetry of the rotor.

This concludes the discussion of rotorcraft modeling. This section has
considered the modeling problem in considerable depth and is necessary, since the
ultimate goal of using system identification is to correlate flight-identified
derivatives with analytic prediction to isolate and remove model deficiencies. To
accomplish this, the approximations used in formulating the derivative model must be
clearly understood. Also, the most suitable model to be used will depend on the
particular problem or investigation at hand.

COMPUTER MODEL STUDIES

This section discusses the results of several studies in which derivative
models were identified from a computer simulation of a helicopter. Both a 6-DOF linear
model which contains 60 derivatives and a 9-DOF linear model which contains 144 deriva-
tives were identified from a nonlinear simulation of a rotorcraft. The results demon-
strate the degree of accuracy that can be obtained for the various identified models.
Three separate computer studies are discussed, and some of the results were published
previously in References 1, 2 and 12. In each case, a least squares method was used to
identify the derivatives from transient input/output data. Since the computer simula-
tion contains no state variable measurement noise, the lease squares method yields
unbiased estimates of the derivatives, provided that all modes are properly excited.
Thus, the results of this section are not hindered by approximate identification
algorithms as is in-flight data identification.

Linear and Nonlinear 6-DOF Study

Reference 1 presented a study of derivative identification from a 6-DOF linear
computer simulation of an S-61 helicopter, in which it was shown that all 60 derivatives
could be identified to six significant figures. It was found that two maneuvers generated
by pulse inputs and lasting six seconds each were sufficient to excite all modes properly
for successful identification.

Reference 1 also presented results of a 6-DOF linear derivative identification
from a nonlinear coaxial rotor helicopter simulation. It was found that the identified
derivatives only approximate the conventional quasi-static derivatives. Table 3 compares
the quasi-static and 6-DOF system identified derivatives for many of the primary deriva-
tives from this study. It is apparent that the system identified derivatives only
approximate the quasi-static values. Some derivatives are accurately identified, while
others differ by as much as 100%. These differences are a direct result of using only
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Longitudinal
Derivatives

Quasi -
Static

Xu -.031

XS -33.7

Zw -1.22

Z 133.6

MU -012

Mv- -.013

M^ -3.98

Sis -310

MBls -^

ZS c -6.9k

M8 c .k80

6 DOF
System
Ident.

-.002

-31.2

-1.13

135.9

.on

-.02k

-1.26

-.019

.36k

-6.38

.213

Lateral Directional
Derivatives

Quasi -
Static

Yy -.139

Y -13k. 0

Lv -.038

Lp -7-96

Lr .252

Nv .011

Np -.1.50

Nr -.705

*Als '532

I-Als 2-°2

KAls -185

6 DOF
System
Ident,

-.108

-13k. 5

-.012

-2.78

2.08

.012

-.536

-.378

.25k

.939

.110

Table 3. Comparison of Quasi-Static and 6-DOF
System Identified Derivatives from
a Nonlinear Helicopter Computer
Simulation (Coaxial Rotor, 80 Kts).

6-DOF in the identification model,
which should include separate rotor
degrees of freedom. Although the
quasi-static and system identified
derivatives show different values,
the characteristic roots were found
to be similar for the two models.

Nonlinear 6-DOF and 9-DOF Study

Reference 2 presents
results of a study in which both
6-DOF and 9-DOF linear derivative
models were identified from a
nonlinear computer simulation of
a CH-53A helicopter. The nonlinear
model contained 6 blades with
flapping degree of freedom and
6 degrees of freedom for the rigid
body. The rotor was simulated
with full nonlinear aerodynamics,
and uniform inflow filtered with
a first-order lag was used for the
air mass dynamics.

The nonlinear simulation
represents the 12-DOF nonlinear
model, as indicated in Figure 4.
The least squares identification
method was used to obtain a 9-DOF
linear and a 6-DOF system identified
model. In addition, the 9-DOF model
was reduced to the 6-DOF reduced
quasi-static model, as indicated in
Figure 4. The 6-DOF models can thus
be compared directly with the

conventional 6-DOF perturbed quasi-static derivative model, also diagramed in Figure 4.
Only a 3-DOF tip path plane representation for the rotor was used in these studies.
Since the rotor has 6 blades, the correct number of modes is 6 which includes
differential coning, warp sine, and warp cosine.

Tip path plane resolver. Two methods are available for resolving rotating
The first method is the fourier trans-i Pi __

coordinates BJ to the nonrotating axes system.
formation given in equation (1). The second method makes use of a Kalman filter, which
for an isotropic rotor is essentially equation (1) passed through a first-order low-pass
filter. The Kalman filter method is shown in Reference 12 and was found to be superior
to the fourier method when the flapping measurements are contaminated with noise and
thus is the superior method for use with flight test data. The Kalman filter method
can be made to approach the fourier resolver of equation (1) by letting the effective
time constant of the Kalman filter approach zero. Thus, all studies of identification
from the computer used the Kalman filter to estimate the tip path plane coordinates.
Reference 12 discusses this technique in detail.

Identified derivative models.

CONTROL
INPUTS

Figure 8. Procedure Used to Identify 6 and 9-DOF
Linear Derivatives from Nonlinear
Computer Simulation.

Figure 8 shows a block diagram of the procedure
used to identify the 9-DOF and
6-DOF linear models. The
nonlinear model was excited
with pulse-type inputs, and
22 maneuvers of 4 seconds
duration were used in the

a - a, . b, identification. A sampling rate
of .0135 second was used through-
out the study. The 9-DOF
identified derivative array
resulting from this study is
shown in Table 4. Table 5
compares the 6-DOF perturbed
quasi-static derivatives, the
6-DOF reduced derivatives
obtained from the 9-DOF
identified model, and the 6-DOF
identified derivatives. This
comparison shows that the
6-DOF reduced derivatives
agree closely with the 6-DOF
perturbed quasi-static values.
The 6-DOF identified deriva-
tives in some cases show errors
of 100%, whereas the 6-DOF
reduced derivatives are a much
better representation of the
perturbed quasi-static values.

[A : B] - STABILITY & CONTROL
DERIVATIVE MATRIX
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Longitudinal Derivatives

Quasi-
Static.

^ .0061|

Mq -.579

MU .0017

Mp -212

"Bis -°96

M8o .075

Z -.880w

Zv -.028

Z00 -1'lh

Xu -.0458

Xw .074

Xp -1.78

"BIS -365

9 DOF»
Reduced

to 6 DOF

.006lt

-.61.1.

.0021

.232

-.101

.079

-1.30

-.029

-10.03

-.OlU8

.128

-1.1.3

.209

6 DOF
Identified

-.OOOlt

.018

-.0012

.092

-.077

.056

-.877

-.031

-8.72

-.0283

.113

-1.17

.226

Lateral

Quasi-
Static.

\ -.023

Lp -1.59

L -1.02

Lr .395

^AlB -39°

LOT -°66

Nv .0072

N_ -.71.2r

Np -.085

HOT -.0896

YT -.081

Yp 5.22

YAls -6lh

Directional

9 DOF»
Reduced

to 6 DOF

-.021.

-1.70

-1.21

.250

.1.22

.065

.0070

-.718

-.100

-.0899

-.068

5.10

.677

Derivatives

6 DOF
Identified

-.017

-1.27

.85

.71.3

.378

.073

.0079

-.63

.0025

-.0890

-.051.

5.69

.602

« 9 DOF Identified Reduced to 6 DOF

Table S. Comparison of Quasi-Static, 6-DOF Reduced and 6-DOF Identified
Derivatives from a Nonlinear Helicopter Computer Simulation.
(CH-53A, 33,500 Ibs, 100 kts).

FLAP
yS ADVANCING

CONING

X

FLAP
REPRESSING

X *

-10.0 ' X "*

X

ui

20.0
n

•10.0

s
'

< K

O - 6 D.O.F. QUASI-STATIC

X - 9 D.O.F. IDENTIFIED

A - 6 D.O.F. REDUCED FROM 9

LONG. TO LAT.
COUPLING

X

AO

X

a

DUTCH
/>• ROLL

. 1.0

7GO ID

6

• -1.0

BODY ROOTS

ROTOR AND BODY ROOTS

Figure 9. Characteristic Roots from the Various
Linear Models Obtained from the Non-
linear Simulation Showing Root Location
for Rotor Modes, and Low Frequency.Body
Modes.

The characteristic
roots for the rotor degrees
of freedom are shown in Figure
9. Also shown are the 6-DOF
quasi-static and 6-DOF reduced
roots. The low frequency body
roots show excellent agreement
for the three models. Time
histories and further charac-
teristic root comparisons can
be found in References 2 and
12. An anomaly is noted in
the location of the frequency
of the coning root. The
coning root is expected to have
a natural frequency approximately
equal to the rotor rotational
speed, 19.3 radians/sec.
The coning root shown in Figure
9, however, is at 11 radian/sec.
This lower than expected
frequency is a result of
selecting the effective Kalman
resolver cutoff frequency to be
o>c = 15.96. Additional studies
were conducted with larger
cutoff frequencies, and it was
found that the coning root
approached the rotor rotational
speed. The most important root
with regard to rigid body
dynamics is the flap regressing
mode, which is of much lower
frequency and thus not affected
by the Kalman resolver.

The 6-DOF reduced derivatives of Table 5 show slight discrepancies when compared
with the perturbed quasi-static values. These discrepancies most likely result from (1)
nonlinearities in the nonlinear model, which are not modeled in the 9-DOF linear model,
(2) absence of the differential coning, warp sine, and warp cosine modes, (3) absence of
the first-order air mass dynamics (time constant = .256 sees.), (4) effective filtering
in the Kalman resolver, and (5) approximation of the periodic coefficient model by constant
coefficients. Although the exact reason for the discrepancy requires further investiga-
tion, the improvement in the 6-DOF reduced derivatives is clearly shown when compared with
the 6-DOF identified derivatives.
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Evaluation of derivative accuracy. Several tests must be made to evaluate the
accuracy of the linear 9-DOF identified derivative array. Although this procedure can
be applied to any of the linear models that include separate rotor degrees of freedom,
the technique will be discussed using the 9-DOF model identified from the CH-53A non-
linear computer simulation shown in Table 4.

The 9-DOF model approximates the larger 12-DOF periodic coefficient model dis-
cussed previously. It is necessary therefore to make several tests with this array and

compare them with the nonlinear simula-
tion from which the array was obtained.
These tests consist of evaluating (1)
the reduced 6-DOF model, (2) the
elements of the 9-DOF array, and
(3) transient response data. All
these tests can be made by perturbing
the nonlinear model and the linear
9-DOF model in the conventional manner

QUASI-STATIC required to obtain quasi-static deriva-
DERIVATIVE tives, and then recording the complete

derivative time plot. A sample result
of this perturbation is shown in
Figure 10. The transient response
shown in Figure 10 represents the
body pitch acceleration due to a
1-unit change in roll rate (Mp =Aq/AP)- The solid line is obtained
from the nonlinear model and the
dashed line from the 9-DOF linear
model. The conventional 6-DOF quasi--
static derivative is shown by the
circle symbol, and the triangle
represents the 6-DOF reduced deriva-
tive which is in good agreement with
the conventional quasi-static deriva-
tive. The diamond symbol represents
the 9-DOF identified coefficient
and is in good agreement with the
initial response (t=0) of the nonlinear
transient. Finally a comparison
of the transient response of the

nonlinear and 9-DOF model due to a perturbation in p demonstrates that the rotor dynamics
are correctly identified. The above procedure should be applied to all the derivative
time plots for a complete check of the 9-DOF model accuracy.

Alternative Method to Obtain Linear 9-DOF Model From a Nonlinear Simulation

The previous section discussed the physical interpretation of the various
derivative models (6-DOF quasi-static, 6-DOF reduced, 9-DOF). This interpretation
suggests a method for obtaining derivative values from the nonlinear model by perturbing
only the body state variables. Three steps are required and will be discussed with the
aid of Figure 11.

Figure 10.

1 —i
1 2

RECORD LENGTH, SECONDS

Derivative Time Plot Obtained
by Pertubing the Nonlinear
Model and the 9-DOF Linear
Model, Showing Method to Check
the Validity of System Identified
Derivatives.

u

v

w

p

q

r

aos

ais

bis

©
3aos
o-u

©

3aos 9aos d'dos
3aos 3ais 3bis©

©

©

1 .1.0 1 ij 1 - 1 1 - in

0

Figure 11. Nine DOF Derivative Array Partitioned into 6 Areas Demon-
strating Method to Obtain Full Derivative Array by
Perturbing Only the Body Variables of a Nonlinear
Simulation.
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Step 1. Figure 11 shows the array for the 9-DOF derivative model. This array
is positioned into 6 areas. Derivatives in area blocks (1) and (2) of Figure 11 can be
obtained by independently perturbing each column in these blocks. A time plot in the
form of Figure 9 is obtained for each derivative. The value at t=0 for each plot is
then the appropriate derivative for blocks (1) and (2). The quasi-static tip path plane
change must be saved for each perturbation and is used to obtain block areas (3) and (4).
Also the derivative time plots (Figure 10) must be saved and are used to obtain blocks
(5) and (6).

Step 2. Block (3) and (4) can be obtained one row at a time by using the
quasi-static tip path plane change due to each perturbation from step 1. For example,
the coning derivatives in block (3) of Figure 11 can be obtained from the AU perturba-
tion of step 1 by forming the equation:

os =/3aosV
u + (**os\ Aaos + /3aos \ 4als

- **os) I

Ah
ls

where 4aos,
 Aaos,

 Aais, and Abls become the tip path plane change due to a Au = 1
perturbation obtained from step 1 and /3aos\

 is known from steP !•

Equation (23) represents one equation in the three unknown derivatives 3'ant. , 3'an<;
3aos 3als

and 3'a • Two more equations can be obtained from the Ay

and AW perturbation to yield 3 equations with 3 unknowns that can be solved for the
3 unknown coning derivatives. Since the 9-DOF model is only an approximation of a
more complicated model, the remaining perturbation variables p, q, r, Bls, and Als, and
9C can be used to obtain 6 more equations. This will provide 9 equations in 3 unknowns
and can be solved using a simple least squares fit. This procedure will guarantee the
rotor derivatives that yield the best possible approximation to conventional quasi-static
values when the 9-DOF model is reduced to the 6-DOF reduced model.

This procedure should be repeated for each row of blocks (3) and (4) to
obtain all rotor static derivatives.

Step 5. Blocks (5) and (6) of Figure 11 represent derivatives associated with
the rotor rate state variables aOs , ais, and b'ls. The derivatives for these blocks can
be obtained by using the transient derivative time plots saved from the first step. Each
row of blocks (5) and (6) must be determined separately. This is done by using the
derivative time plots (one is shown in Figure 10) for each perturbation and determining
the 3 rate derivatives of a row by a least squares fit. The resulting solution will
provide the rotor rate derivatives that best match the transient rotor behavior.

The least squares curve fit is required in the above procedure, because aos,
als> bls> aos» als» and b'ls are difficult to perturb independently in a nonlinear simula-
tion. An alternative procedure that may be acceptable would be to perturb the rotor
flapping variables P i according to equation (1). This would result in the appropriate
independent perturbation of the rotor state variables in the nonrotating system.

The least squares method discussed above is a simple and effective method for
obtaining linear derivatives for large rotor/body models and can be extended to obtain
models of order larger than the 9-DOF model discussed.

Empirical Correction to 6-DOF Identified Derivatives

The 6-DOF identified derivatives in many cases were found to differ from the
quasi-static values. This difference arises because the rotor degrees of freedom are
not modeled in the identification. An empirical procedure based on a nonlinear simu-
lation can be used to correct flight identified derivatives to approximate quasi-static
values. This correction amounts to a correction factor multiplied by the system
identified derivative, as shown in equation (24).

Approx. 6-DOF
Quasi-static Flight x Correction (24)
Derivative = Identified Factor
(Flight Test) Derivative

The correction factor can be obtained from a nonlinear simulation and is shown
in equation (25)

Computer
Quasi-static

Correction = Derivative (25)
Factor Computer

System Identified
Derivative
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The validity of this correction factor depends upon the computer model having
rotor response similar to flight data. Although this procedure depends on how well the
nonlinear model represents the flight vehicle, the correction factor will yield a much
better representation of the quasi-static definition. Examples of this correction
applied to flight identified derivatives will be shown in a subsequent section.

DERIVATIVE IDENTIFICATION METHODS

This section discusses many of the methods available for helicopter derivative
identification. Particular emphasis is given to the advanced statistical methods for
identification, since both measurement noise and process noise are included in the
problem.

Identification techniques can be classified as equation error methods, output
error methods, or advanced statistical methods. Equation error methods yield biased
derivative estimates when measurement noise is present. Output error methods yield
biased derivative estimates when process noise is present. Advanced statistical methods
include both measurement noise and process noise as part of the formulation. Table 6
lists the 3 classifications and shows 7 methods available for derivative identification.
The least squares method (Method 1) yields biased derivatives when measurement noise is
present, but this method is the only one in Table 6 that has an exact closed form
solution. All the other methods require alogrithms that are iteratively applied or
approximate. The least squares method must be used with high-quality data filters to
obtain reasonable accuracy in the identified derivatives. Using digital and optimum
filtering of the data provides acceptable quality data in many cases. Results obtained
using the least squares method with various data filters will be discussed in a sub-
sequent section. The least squares method has the advantage of efficient and simple
computer computation for problems described by large derivative arrays, whereas the
other methods of Table 6 are computationally inefficient.

METHODS FOR AIRCRAFT STATE AND PARAMETER ESTIMATION

CLASSIFICATION

Equation Error

Output Error

Advanced
Statistical

METHOD

1 . Least Squares
(Regression)

2. Gradient

3. Conjugate Gradient

k. Quasilinearization
Modified Nevton-
Raphson

5. Max. Likelihood (ML)

6. Max. A Posteriori
Parameter Estimation
(MAP-Parameter)

7. Max. A Posteriori
State Estimation
(MAP-State)

CEITERIA

J = Quadratic
Function of
Equation Error

s-

J - Quadratic
Function of

S Output Error

^»

p(z/x )
P

p(x /z)
p

p(x^, x/z)F

SOLUTION

Closed Form Using Method 1.

Iterative Using Method 2, 3 or h

C Iterative using Method 2, 3 or U
J
\
I.

Sequential Using
. Invarient Imbedding (Extended

Kalman Filter)
. 2nd Order Filter
. Filter/Smoothing Methods

Notes: a) Method 6 is related to Method 5 by Bayes1 Rule. (A priori information available),

b) Methods 5, 6 and 7 reduce to criteria of Method 1 when measurement noise is absent.

Table 6. Summary of Methods for Aircraft State and Parameter Estimation.

The output error techniques shown in Table 6 include gradient, conjugate
gradient, and quasilinearization (modified Newton-Raphson) methods. The difficulty in
using these methods in the helicopter identification problem is that they attempt to
curve fit the response of the derivative model to the test data. Since the helicopter
contains large amounts of process noise and is almost always unstable in the longitudinal
mode, the error between the derivative model and flight data is expected to diverge
after four or five seconds of data, even with the correct derivatives in the linear
derivative model. The output error methods are formulated to provide a best match to the
test data, so the derivatives will be incorrectly adjusted to minimize the fit error.

The advanced statistical methods in Table 6 are formulated to include both
process noise and measurement noise and represent the correct formulation for the
helicopter derivative identification problem. These methods will be discussed in the
following sections.
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Advanced Statistical Methods

The advanced statistical methods treat process noise and measurement noise as
random disturbances with assumed probability distributions. The noise statistics are
assumed to be gaussian with known mean and variance, although this assumption is not
required. The formulation of the derivative identification problem is applicable
using the 3 advanced statistical methods of Table 6.

The differential equations of motion for the derivative model can be
expressed as

where x is an n x 1 vector of state variables
xp is an p x 1 vector of parameters (derivatives)
u is an m x 1 vector of control inputs
I is an n x 1 vector expressing the nonlinear functional relationship

of the state and input vector
w is an n x 1 zero mean white gaussian process noise vector.

The measurement equations can be expressed as

z_ <* h(x) * n (27)

where z is an r x 1 vector of physical measurements
K is an r x 1 vector of nonlinear functional relationships of
~~ the state variables
n is an r x 1 zero mean white gaussian measurement noise vector.

If the equations of motion described by equation (26) are linear, they may
be written as

x = Ax + Bu + w (28)

and the measurement equations become

z = Hx + n (29)

The stability and control derivatives are contained in the parameter vector
xn for both the linear and nonlinear formulation. The problem is to identify the
parameters xp in the differential equation (26), given measurements of the system state
variables by equation (27). To determine the unknown parameters (derivatives) of
equation (26), a criteria must be specified which measures the goodness with which the
unknown derivatives are identified. This criterion differentiates the three statistical
methods of Table 6. The difference between methods 5, 6, and 7 of Table 6 is found in
the criteria and the method chosen for solution. These methods along with solutions
will be discussed briefly below for the continuous-time formulation with noise covariance
assumed to be known.

Maximum Likelihood (ML). The ML estimate of the unknown derivatives is
obtained by maximizing the conditional probability density of ̂  given xp and is
obtained by

Max p(z/xp) (30)

This problem reduces to the equivalent formulation below and is discussed in Reference
13 for the continuous case and Reference 14 for the discrete case.

Determine the parameters xp that minimize

J = 1/2/fc - Hx^R'^z. - Hx)dt (31)
to

Subject to the Kalman filter equations

K B DD"*H*ft\ ft

X = AX + Bu + K(£-Hx)

p = AP + PAT + Q - PHTR-IHP (34)
This optimization problem is simplified by assuming that the covariance

equation (34) rapidly reaches a steady value and thus is removed from the formula-
tion. The problem now becomes that of minimizing equation (31) with respect to the
parameters xp and K (Kalman gain), subject to constraint equation (33).

This simplified problem can then be solved using a quasi-linearization or
suitable computational algorithm. This approach requires that the Kalman gain has
reached steady value. Unstable systems may violate this assumption, so the covariance
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equations must be included as additional constraints in the optimization problem.
Since most rotorcraft are unstable without automatic flight control systems, the
optimization problem must include the covariance constraint equations. This is
computationally prohibitive for large derivative models, such as rotorcraft.

Maximum A Posteriori Parameter Estimation (MAP-parameter). The MAP-
parameter estimate of the unknown derivatives is obtained by maximizing the con-
ditional probability density of xp given £ and is obtained by:

Max p(xpA) (35)
*p

This criterion is related to the ML criterion by Bayes1 rule:

p(*p/i) " P(z/xp) P(xp)/p(z) (36)

This changes the criterion by adding the term

l/2(xp(t0)-Xp)Tpp
1(xp(t0)-xp) (37)

to the performance index of equation (31). The criteria now includes a priori
estimates of the parameters xp and variance in the estimate of the parameters PD.
The constraint equations remain the same, and a similar computational technique
is required for a solution.

Maximum A Posteriori State Estimation (MAP - state). The MAP-state estimate
of the unknown parameters is obtained by treating the parameters as state variables
and maximizing the conditional probability density of x and xp given z. This is
expressed in equation (38). ~

Max p(x,xp/z) (38)
X,Xp

Using Bayes1 rule this is written as

Max p(z/x,xp) p(x,xp)/p(z) (39)
X,Xp

This criterion is shown in Reference 15 to reduce to an equivalent optimiza-
tion problem as follows.

Determine the initial conditions xp(to), x(to)
 and process noise w(t) that

minimize the quadratic performance criteria ~

J = l/2?(^-Hx)TR-l(£-Hx)dt + 1/2 /fw ̂ ^wdt
t0 t0 ~

+ l/2(x(t0) - x0)TP-
1(x(t0)-x0) (40)

+ I/2 Up (to)' Sp̂ P'̂ -̂Ip)

subject to the differential constraint equation

x = Ax +Bu + w (41)

The resulting solution for xp(t0) represents the MAP-state estimate of the unknown
parameters.

The solution to the formulation given in equations (40) and (41) is obtained
by first obtaining the necessary equations that minimize equation (40), using the
maximum principle or taking first variations. The necessary conditions result in a
two-point boundary value problem that can be solved by the invariant imbedding
technique (Reference 15) or by assuming a solution x = x - PA. as is done in Reference
1. The resulting recurssive solution is approximate ancf requires a reasonably good
a priori derivative estimate to assure that the linearizations made to obtain the
solutions are valid.

The recurssive solution reduces to the extended Kalman filter if the measure-
ment equations are linearized. The extended Kalman filter solution has a similar
structure to the solution obtained for the ML method. The extended Kalman filter
solution is given in equations (42) through (46):

* = AX + Bu + PHTR"1(£-H*) (42)

*p • PplHTR-1(z^-HX) (43)

P - AP + PAT -PHTR-iHP + Q + ApPpl + (ApPpl)
T (44)

Ppl ' pplAT * pppAj - Pp^R-iMP (45)

ppp - -PplHVlHpJj (46)
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where A A = 3f and H » 3h represent linearizations about the current

state x and parameter estimate, xp.

Equations (42) and (43) provide estimates of the state and parameter vector,
respectively, while equations (44) and (46) give the covariance for the state and
parameter, respectively. Equation (45) yields the cross covariance between the state
and parameters.

The similarity between the ML solution and the MAP-state solution is seen
by comparing equation (33) with equation (42) and equation (34) with equation (44).
In the ML method, the solution is obtained by a Kalman filter. The parameters and
Kalman gain are iterated to minimize the performance index of equation (31). In the
MAP-state method, the parameters and state are obtained recurssively with a Kalman
filter for the state and parameters.

The ML performance index of equation (31) with constraint equations (32),
(33), and (34) can be shown to be similar to the MAP-state performance index of
equation (40) with constraint equation (41). This relationship is shown in Reference
13.

Practical Considerations in Using the Extended Kalman Filter

Two methods are used for derivative identification in this paper: a least
squares method and the extended Kalman filter. Before application of these methods,
the data must be processed to remove high-frequency signals and bias errors. In
addition, the measurement noise should be minimized when using the least squares
method, since measurement noise results in biased estimates. These and other con-
siderations are discussed below along with the overall method used to obtain deriva-
tives from helicopter flight data.

Identification of derivatives. The overall flow diagram of the method used
for derivative identification in this paper is shown in Figure 12. Several maneuvers
about a specified trim are used in the identification to assure that sufficient data
are used in the process. The derivatives are identified to yield the best array that
simultaneously matches the independent maneuvers. This approach modifies the performance
criteria of equation (40) to read

m r tf T , tf T ,
I 1 I/2 / (z-Hx)V1(z-Hx)dt + 1/2 / w/Q "Wt
i=l L t ~ - - - t

l/2(x(t0) - x0)TP0 (x(t0) - x0)}

l/2(xp(t0) - xp)TPp1(xp(t0) -

(47)

Where the summation is from 1 to NM maneuvers. Solution of this problem requires slight
modification in the solution given in equations (42) through (46) and is presented in
References 1 and 16. This approach couples the maneuvers and is similar to ensemble
averaging.
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Figure 12. Overall Method Used to Identify 6-DOF
Derivatives From Flight Test Data.

As shown in Figure 12, the data are first passed through a digital filter to
remove high-frequency contamination. (Helicopter flight data are contaminated with
frequencies of large magnitudes at 1 per rev intervals and at all modes of vibration.)
The digital filter suppresses this high frequency contamination without introducing phase
shift in the data. A Martin-Graham filter described in Reference 10 is used for the
digital filter.
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The data are then processed with a Kalman filter, which (1) removes bias error
in the data, (2) minimizes errors in the state variables, and (3) reproduces state
variables and accelerations that are not available. The equations used in the Kalman
filter are the known Euler equations and inertial terms in the general rigid-body
equations of motion. The equations used are presented in Reference 16 and consist of
22 state variables (15 state variables are the biases to be determined) and IS measure-
ments. The equations do not include any of the aerodynamic derivatives.

The data are then used with the least squares method, and the derivatives are
identified. The identified derivatives are used as a priori estimates for the multi-
maneuver extended Kalman filter. The number of state variables for the extended Kalman
filter will depend on the number of maneuvers used and the model size chosen.

An extensive study is described in Reference 16 which examined various filters
and methods for the a priori estimate for use with the extended Kalman filter. The results
of this study will be discussed in a subsequent section.

In a previous section, the modeling requirements for helicopter derivative
identification were discussed. It was found that considerable errors in the identified
derivatives result if the rotor degrees of freedom are not modeled as independent degrees
of freedom. If the derivative model contains only the rigid-body degrees of freedom,
a correction factor is required to convert the identified derivatives to the quasi-static
values. The identification of derivatives from helicopter flight data in this paper is
conducted with a 6-DOF rigid-body model and thus requires a correction factor, which is
indicated in Figure 12. Results using this correction factor will be discussed in the
flight data identification section.

Evaluating the flight identified derivatives. Once the derivatives have been
identified, the standard procedure for assessing their accuracy is to simulate the
derivative model with the flight data inputs and compare the time history response with
the flight data. Helicopters generally have unstable longitudinal characteristic roots,
so a derivative model identified with perfect accuracy will diverge from the flight data,
due to small errors in initial conditions, modeling terms, or wind disturbances. There-
fore, when testing the accuracy of identified derivatives, only short data segments
(typically 4 to 6 sees) can be used with confidence. In addition data not used in the
identification should be used for comparison, since comparing against data used in the
identification is not a conclusive test.

An alternative method is available for comparing time history data that do not
diverge with an unstable model. This is done by multiplying each of the measured state
variables and inputs by the appropriate derivative and summing the result. The resulting
reconstructed acceleration can be compared directly with the flight measured acceleration.
This approach also has the advantage of allowing assessment of the individual contribu-
tions of each derivative and provides a measure of whether sufficient signal-to-noise
ratio exists to identify each derivative accurately.

Flight test methods have been used in the past to isolate certain of the control
derivatives or characteristic roots. For example, the Dutch roll mode can be obtained by
visual inspection of test data from most helicopters by using the pitch stability augmenta-
tion to stabilize the instability in pitch and exciting the Dutch roll with a small spike
input in the pedals or lateral cyclic input. Also pulse inputs cause acceleration changes
and the ratio of acceleration change to pulse input can be used to estimate the control
derivatives. These and other specialized testing procedures can be used as checks on the
accuracy of the system identified derivatives.

APPLICATIONS TO FLIGHT DATA

The method described in the previous sections and shown in Figure 12 was applied
to the following rotorcraft: (1) CH-53A, (2) CH-54B, and (3) a coaxial hingeless rotor
helicopter. In addition, the effects of different data filters and a priori derivative
estimates were examined to assess their impact on the identified derivatives, using the
least squares method and the extended Kalman filter. The detailed investigations for some
of these studies are documented in References 2, 16, and 17, and the results are summarized
herein. All these studies use a 6-DOF derivative model in the identification. The actual
form of the model used is given in Reference 16. As indicated in Figure 12, a correction
factor is required to correct for absence of rotor degrees of freedom in the model.

Application to CH-53A

The CH-53A is a 6-bladed articulated rotor helicopter. The flight test data
from the CH-53A were obtained from a handling qualities flight test program conducted
for the U. S. Navy by Sikorsky Aircraft. The test data selected were from an aft center-
of-gravity condition, 35000-lb aircraft at 100 knots trim airspeed. The data consist of
time history responses to pulsed control inputs. Six maneuvers of 6 seconds duration
sampled 100 times a second were used in this study. Four maneuvers were used in the
identification process, and two maneuvers were selected to assess the ability of the
identified derivative model to predict data not used in the identification.

Effects of different data filters on identified derivatives. Three filters
were investigated to determine their effects when used with both the least squares and
extended Kalman filter derivative estimators: (1) a first-order low pass filter with
cutoff frequency of 10 Hz, (2) a Martin-Graham digital filter with cutoff frequency of
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Raw Data Filter

First Order

Digital

Kalman

RMS Error* in Test Data and Time Histories
From Identified Derivative Model

Maneuvers
1, 2, 3, It

(Used in the Identification)

117.3

29.3

19.2

Maneuvers
5, 6

(Not used in the Identification)

70.6

3!t.O

19. "i

" Total RMS error obtained for all channels for the maneuvers shovn

Table 7. Results of Filtering on RMS Error Time
History Match for the Least Square Identified
Derivative Model.

3.0 Hz and termination frequency of 4.0 Hz, and (3) an optimum data filter (extended
Kalman filter) with data processed first by the digital filter. The third filter is the
one described in Figure 12 and is the method found to be most accurate. The criterion
used to determine the most accurate filter is as follows. Time histories were generated
from each of the identified derivative arrays and compared with the four maneuvers of
flight test data used in the identification and with the two maneuvers not used in the
identification. The root mean square (RMS) error between the test data and derivative
model time histories for all state variables and accelerations were computed, and the
total RMS error (RMS summation of all states and accelerations) was computed for each
maneuver. The total RMS errors for the four maneuvers used in the identification and
the total RMS errors for the two maneuvers not used in the identification were computed.
The above total RMS errors for each filter were compared, and the filtering method that
yielded the smallest RMS error was considered to be the most accurate.

The results of the three filters using the least squares derivative estimator
are shown in Table 7, and
the results using the extended
Kalman filter are shown in
Table 8. Table 7 shows the
improvement in RMS error when
using the Kalman filter for
the least squares derivative
identification method. The
data used in the identification

Process and the data not usedn the identification process
have the smallest RMS error
when the Kalman technique
for filtering data is used.
This is as expected, since
the Kalman filter provides
the best estimates of the
state variables of the three
filtering methods. Since
the least square method
yields biased derivatives
when measurement noise is
present, the filtering
method that gives the most
accurate state variable
estimate should perform
best.

Table 8 gives
results of using the
extended Kalman filter
derivative estimation
method. Again, the data
filter yielding the best
results is the Kalman
filter, but the digital
filter results in an RMS
error nearly as good as
the Kalman filter. This
is as expected, since this
derivative estimator is
formulated to include
measurement noise.

Table 8. Results of Filtering on RMS Error Time History
- - - The digital and

and Kalman filter both
remove high frequency

contamination, and the improvement in RMS error over the low-pass filter is significant
for both the least squares and extended Kalman filter identification method. Thus,
flight data should be filtered to remove high-frequency contamination regardless of the
identification method used.

A significant finding from this study is that the least squares method used
with the Kalman data filter yields an RMS error nearly as accurate as the extended
Kalman filter derivative identification method. This is important, since the least
squares method used with the Kalman data filter is computationally more efficient than
the extended Kalman filter derivative identification method. Also, the least square
method is practical for identification problems with large derivative arrays, whereas
the extended Kalman filter becomes increasingly more inefficient.

Table 9 compares the lateral directional derivatives for the least squares
method and extended Kalman filter method of derivative identification. Both methods
used the Kalman data filter. Also shown in Table 9 are the derivative values obtained
from a nonlinear analytic computer program. For the most part, the derivatives from the
least squares method and extended Kalman filter method are comparable, with neither
showing better accuracy. The analytic derivatives show good correlation for some

Rav Data Filter

First Order

Digital

Kalman

RMS Error* in Test Data and Time Histories
From Identified Derivative Model

Maneuvers
1, 2, 3, It

(Used in the Identification)

19.lt

20.1

18.9

Maneuvers
5, 6

(Not used in the Identification)

27.8

19.8

19.9

* Total RMS error obtained for all channels for the maneuvers shown

Results of Filtering on RMS Error Time History
Match for the Extended Kalman Filter Identified
Derivative Model.
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derivatives and poor correlation for others. The longitudinal derivatives were found
to show poor correlation for many important derivatives. This was also found to be
true with the computer model studies discussed earlier. The lateral directional
derivatives generally are identified more accurately, so a meaningful comparison such
as in Table 9 can be made.

Derivative

L
v

L
P

Lq
Lr

LAls
L

N
v

N
r

N
P

N6
T

Y
v

Y
P

\8

Units

1/sec

1/sec

1/sec

1/sec

l/sec2-deg

l/sec2-deg

1/ft-sec

1/sec

1/sec
p

1/sec -deg

1/sec

ft/sec

ft/sec2-deg

Least"
Squares
Method

-.0052

-.3855

1.7k

.862

.199

.081t

.OOltO

-.786

-.Olll

-.097

.0029

20.8

.6k2

Extended*
Kalman
Filter
Method

-.0051

-.k55

1.32

.679

.21k

.069

.00k9

-.756

-.ItlO

-.095

-.Olt7

20.1i6

.559

Analytic
Prediction

(Quasi-Static)

-.023

-1.59

-1.02

.395

.390

.067

.0072

-.7k2

-.085

-.0895 •

-.081

5.22

.61.

» Flight data was first filtered with the Kalman data filter.

Table 9. Comparison of the Lateral Directional Derivatives Identified from
Flight Data Using the Least Squares and Extended Kalman Filter
Methods. Derivatives from Analytic Prediction Also Shown.
(CH-53A, 100 kts, 35000 Ibs.)

Effect of a priori derivative guess on extended Kalman filter. The least
squares derivatives and an arbitrary derivative guess were both used to initialize
the extended Kalman filter derivative identification method. The arbitrary guess
consists of setting all derivatives to zero, except for some of the control derivatives
that could easily be estimated from the flight data. The derivative values for the
arbitrary guess are given in Reference 16. Both the digital filter and Kalman data
filter were used. The RMS errors between the identified derivative model time
histories and flight data are presented in Table 10. The RMS errors are shown to be
slightly improved when using the least squares a priori derivative guess.

Raw Data
Filter

Digital

Digital

Kalman

Kalman

Initial
Derivative
Guess

Arbitrary

Least Square

Arbitrary

Least Square

RMS Error" in Test Data and Time Histories
from Identified Derivative Model

Maneuvers
1, 2, 3, It

(Used in the Identification)

20.1

16.0

18.9

17.8

Maneuvers

5- 6(Not Used in the Identification)

19.8

17.8

19.9

19-7

* Total RMS error obtained for all channels for the maneuvers shown.

** Kaljnan data filter was used with the Least Square method.

Table 10. Results of A Priori Derivative Estimate on RMS Error Time
History Match Using the Extended Kalman Filter.

Correction of Derivatives to Quasi-Static Values

The derivative model identified from flight data did not include separate
degrees of freedom to represent the rotor. Thus, it is necessary to convert the
identified 6-DOF derivatives to quasi-static values, as discussed in a previous section.
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Table 11 shows the flight identified derivatives both with and without the correction,
along with the analytic model quasi-static derivatives. Table 11 shows that the
correction factor yields flight identified derivatives more representative of analytic
prediction. This is particularly true for the lateral directional derivatives. The
longitudinal derivatives are poorly represented. This was also true for the computer
model studies examined previously.

Longitudinal
Derivatives

M¥

Mq
M
u

P
M
BIS

M.o

\

Zv

\
X
u

Xw

X
P

XB1S

Analytic
Prediction
(Quasi-Static)

.006k

-.579

.0017

.212

-.096

• 07k7

-.880

-.027

-7.114

-.OU58

.07lt

-1.76

.365

Flight
Identified

(Corrected to
Quasi-Static)

-.0016

-2.76
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-.311

-.01.3
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-.393
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-It. 16

-.308

-.035

-8.9

.029

Flight
Identified
Uncorrected]

.0001

.086
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-.135

-.0351

.Ok07

-.392

.099
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-.05lt

-5.856

.0186
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Derivatives

Lv
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Lq
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LA1S

X

H
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Nr

K
P

\

Yv

Y
P
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Analytic
Prediction

(Quasi-Static)

-.023

-1.59

-1.02

.395

.390

.uoop

.C072

-.7142

-.085

-.0896

-.081

5.22

.61k

Flight
Identified
Corrected to
Quasi-Static)

-.021

-1.12

-1-55

.227

.230

.0662

.00k It

-1 . 03

-

-.0808

-.157

17-3

-It. 2

Flight
Identified
(Uncorrected)

-.015

-.887' • '

1.29

.k26

.2231

.073k

.OOkk

-.876

-.022

-.0809

-.106

18.6

-k.215

Table 11. Comparison of Analytically Predicted Derivatives, Flight
Identified (Corrected to Quasi-Static) and Flight Identified
(Uncorrected) (CH-53A, 100 kts).

The 6-DOF flight identification is consistent with the identification results
found from the nonlinear computer studies. That is, the 6-DOF identified derivatives
are only approximations of quasi-static derivatives. The degree of accuracy is unknown
and difficult to assess by time history match, because the 6-DOF model is approximate
and the system is unstable. The correction factor used on the flight-identified
derivatives provides corrected flight identified derivatives that are better approxi-
mations of the flight vehicle quasi-static derivatives than are the corresponding
computer identified derivatives of the computer quasi-static derivatives.

Time History Comparisons and Characteristic Roots

The flight identified derivative model was simulated with the inputs used to
generate the actual flight test data. This was done for all six maneuvers. The
complete results can be found in Reference 16, and several of the comparisons are
shown in Figures 13a and 13b. Many of the time histories matched well, but others
provided a poor match to the flight data. The effect of the blade degree of freedom
is clearly seen in the acceleration data.

The pitch attitude and longitudinal and vertical velocity comparisons shown
in Figure 13a provide a reasonably good match, yet the longitudinal derivatives were
known to be in error. This demonstrates that the derivative accuracy of a 6-DOF model
cannot be assessed by comparing time history data. Time history match with test data
will only be meaningful if all the significant modes of a rotorcraft are included ,in
the model. This fact explains why rotorcraft model investigations and computer model
identification must be conducted. Comparisons for a maneuver that was not used in the
identification are shown in Figure 13b. The acceleration data shown in Figure 13b also
show the high frequency rotor degrees of freedom.

The characteristic roots of the flight identified derivatives and the analytic
model roots are presented in Figure 14. The characteristic root locations are shown to
be in good agreement for low frequency roots, even though the longitudinal derivatives
are considerably different. Roots are also presented in Figure IS for results of
identification at 150 knots. The Dutch roll mode is known to be unstable at this
condition. The flight identified roots correctly predict this, but the analytic model
roots are in error.
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• FLIGHT TEST DATA (6 D.O.F. IDENTIFIED)
0 THEORY (9 D.O.F. IDENTIFIED)

FLIGHT TEST DATA (6 D.O F. IDENTIFIED)
THEORY (9 0.0.F. IDENTIFIED 1

DUTCH ROLL

I 1-

1.0

-DUTCH ROLL OBTAINED BY VISUALLY
/INSPECTING DATA ( W I T H PITCH AFCS ON)

xDUTCH ROLL

Figure 14. Characteristic Roots Identified
from Flight Data by the Kalman
Filter Method vs. Analytic
Model Roots (CH-S3A, 100 kts,
AFCS Off).

Figure 15. Characteristic Roots Identified
from Flight Data by the Kalman
Filter Method vs. Analytic
Model Roots (CH-S3A, 150 kts,
AFCS Off).

Further Applications

The 6-DOF identification method of Figure 12 was also applied to a CH-54B at
45 knots airspeed and the ABC coaxial hingeless rotor helicopter. The CH-54B resulted
in similar conclusions regarding 6-DOF modeling.

Application to the ABC resulted in several different conclusions. The flight
data used for the ABC identification were taken at 25 knots. At this condition, the
motion of hingeless rotor helicopters is generally dominated by several static deriva-
tives. In particular, the derivatives Mu- and Mw contribute to much of the motion in
pitch. The data used consisted of many low-frequency control inputs, so the time
history response was accurately represented by a rigid body model. This fact allows
accurate identification of many of the static derivatives. The conclusion reached from
this study is that a 6-DOF model is more accurately identified from flight data if low
frequencies dominate the response. This is as expected, since the rigid body model
is accurate only for low-frequency motion.

CONCLUSIONS

A general procedure has been presented for systematic development of rotor-
craft models with articulated or hingeless rotors for use in systems identification.
It was demonstrated that many approximate models which include the rotor and fuselage
degrees of freedom can be developed for use in systems identification. In general,
the simple models are dimensionally smaller, but result in identified derivatives with
less accuracy. It was shown that the least squares identification method used on a
nonlinear simulation is valuable in determining the number of rotor degrees of freedom
that should be included in the model. A nonlinear computer simulation of an articulated
rotor helicopter with 6 fuselage DOF, 6 blades with flapping DOF, and uniform first-
order inflow dynamics was used to examine the accuracy attainable for a 6-DOF and 9-DOF
linear identified derivative model. The results show that the 9-DOF model with 6
fuselage and 3 rotor degrees of freedom yield more than 50% of the identified deriva-
tives to within 104 of the true value. The 6-DOF fuselage model results in considerable
errors for many of the identified derivatives. The 6-DOF lateral directional deriva-
tives were found to be more accurate than the longitudinal derivatives, with 40% of
the lateral derivatives within 10% of the true value. These results demonstrate
the importance of selecting an accurate model for use in identification.

An alternative model that may provide acceptable derivative accuracy is the
first-order rotor representation for blade flap and lag developed in this paper. The
approximations used to develop this model were shown, and the derivative accuracy
attainable with this model needs further examination. Identification without lag DOF
in the model will result in further errors in identified derivatives. Thus, further
studies of the accuracy attainable for the various approximate models developed in this
paper should be conducted using a nonlinear computer simulation. The nonlinear model
should include at least blade flap and lag and first-order air mass dynamics.

The normal mode representation for hingeless rotor systems was shown to
reduce to the same model structure as articulated rotor systems. An examination is
required of the accuracy attainable using the normal mode formulation. The least
squares method used with a nonlinear rotorcraft simulation should be used to assess
this approximation.
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The advanced statistical methods applicable to rotorcraft identification
include the (1) maximum likelihood, (2) maximum a posteriori - parameter, and (3)
maximum a posteriori - state estimation methods. The criterion for these three methods
for the continuous formulation is similar: the primary difference is in the
algorithm selected for solution. The many degrees of freedom (8 to 12) required in
rotorcraft identification make computation efficiency a primary concern. The two-
stage method of simple flight test experiments to determine the rotor model, followed
by a standard identification, can considerably reduce the computational requirements
thus permitting use of the advanced statistical methods.

Six-DOF identification from flight test data confirms the results of computer
model studies. The lateral directional derivatives were clearly superior in accuracy
to the longitudinal. The correction factor applied to the 6-DOF flight identified
derivatives to account for absence of the rotor DOF was shown to improve accuracy
further.

Six-DOF flight identification may provide models acceptable for simulation
purposes, but the accuracy is generally not good enough for correlation. The flight
identified characteristic roots were found to be accurate for the low frequency modes,
even with derivatives of questionable accuracy.

The least squares (LS) method used with the optimum data filter resulted in
flight identified derivatives of nearly the same quality as the extended Kalman filter.
This conclusion may not hold for higher measurement noise levels typical at higher
airspeeds. The computational simplicity of the LS method, combined with a simple
optimum filter, makes this approach worthy of consideration in problems with large
derivative arrays.

Rotorcraft modeling, identification algorithms, and flight test applications
with correlation have been addressed. Continued applications using the approximate
models developed and procedures presented in this paper are necessary before deriva-
tives of the required accuracy can be identified from rotorcraft flight test data.
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NOTATION

A, AIJ Matrix of stability derivatives, subscripts ij indicate partitioned
matrix

A° A* Initial and final stability derivative matricies respectively
(Fig. 12)

Ap Matrix used in the extended Kalman filter formulation, Ap = ||v -P

Quasi-static stability derivative matrix defined in Eq. 5 of Table 1

Als Rotor lateral cyclic pitch control input, positive for right stick
deflection, degrees (scalar)

aij Elements of the rotor stability derivative matrix A22 (Table 2)

Coning and cosine component of first harmonic flapping respectively
w.r.t. shaft axis, radians

B,Bi,B2 Matrix of control derivatives, subscripts 1 and 2 indicate partitioned
matrix

B°,B* Initial and final control derivative matricies respectively (Fig. 12)

Quasi-static control derivative matrix defined in Eq. 5 of Table 1

B1S Rotor longitudinal cyclic pitch control input, positive for forward
stick deflection, degrees (scalar)

bls Sine component of first harmonic flapping w.r.t. shaft axis, radians

F4.J (t) Periodic coefficient stability derivative matrices appearing in
linearized rotorcraft equations of motion, t denotes periodicity
(Eq. 4)

F ( ) Generalized forces appearing in elastic blade solution for nth
n mode response (scalar)

£ f, fj Nonlinear vector equations of motion relating state vector and
' A control inputs to the time derivative of the state, subscripts 1

and 2 indicate the fuselage and rotor respectively.

G i (t) G?(t) Periodic coefficient control derivative matrices appearing in
linearized rotorcraft equations of motion, t denotes periodicity
(Eq. 4)

h(x) Nonlinear vector equations relating the measurements to the state
vector (Eq. 27)

H, HI, H? Matrix relating measurements and state vector, subscripts 1 and
2 indicate the fuselage and rotor respectively

H2(8R» *) Matrix transforming the inplane/out of plane bending moments in
the shaft axis to blade bending moments

I Generalized inertia associated with the nth mode of a rotor blade
n (scalar)

InM(ri t),InM (ri) Inplane bending moment and load coefficient respectively at bladeBMi l. BMn^ I' 1 scalarstation ri in the sha£t ̂ 13 (scalar)

j Quadratic performance criteria (scalar)

K Kalman gain matrix found in the Kalman filter equations
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L( j Normalized rolling moment derivative of the rigid body, 3p/3( )
(scalar)

M( ) Normalized pitching moment derivative of the rigid body, 3q/3( )
(scalar)

M̂ j) Matrix of load coefficients associated with the blade bending
moments in the shaft axis

M2 Matrix of eigenvectors associated with the rotor degrees of
freedom

Max p(xp/z) Implies maximization of the conditional probability density
xp p(xp/z) w.r.t. Xp

nm Number of modes used to represent the blade elastic response

n Random white gaussian measurement noise vector

N( ) Normalized yawing moment derivative of the rigid body, 3r/3( )
(scalar)

NO Number of blades (scalar)

NM Number of simultaneous maneuvers used to identify derivatives
(scalar)

p Body roll rate, radians/sec

P. PO Covariance of the error in the state vector estimate, subscript
o denotes initial; P = E((x - x)(x - x)T), where E denotes expected
value

?lp Covariance of the state vector and parameter vector
pp» Ppo Covariance of the error in the parameter vector estimate,

subscript o denotes initial

P°, P* Covariance in the initial and final derivative estimate (Fig. 12)

p(xp/z) Conditional probability density function of Xn given z (assumed
gaussian)

q Body pitch rate, radians/sec

Q Process noise intensity matrix Q » At-E (w wT)

r Body yaw rate, radians/sec

r, TI Blade radial station

R Measurement noise intensity matrix R = At'E(n nT)

tf t0, tf Time, initial time and final time respectively, sees

T(t) Periodic coefficient matrix which transforms coordinates in the
rotating axis to the nonrotating axis

TBM(rl»t^. TBMn(
rl) Torsional bending moment and load coefficient respectively at

blade radial station ri in the shaft axis (scalar)

u Longitudinal velocity in the body axis, positive forward, ft/sec

u Vector of control inputs

v Lateral velocity in the body axis, positive to the right, ft/sec
vBM(rl«*)>VBM (rl) Vertical bending moment and load coefficient respectively at blade

" radial station T± in the shaft axis (scalar)

w Vertical velocity in the body axis, positive down, ft/sec

w Random white gaussian process noise

X( •) Normalized longitudinal force derivative of the rigid body
3u/3( ) (scalar)

x, xj, X2 State vector of rotor and body variables, state vector of body
variables, and state vector of rotor variables respectively in
the nonrotating axis

R
x.2 State vector of rotor variables in the rotating axis
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x State vector of parameters which include stability and control
derivatives

x0, Xp Initial estimate in the state and parameter vector respectively

x(t0) • XpCto) Initial value of the state and parameter vector respectively

x, xp Current estimate of the state and parameter vector as given by
~~ the Kalman filter

x-j(r, t) State vector of rotating coordinates as a function of blade
~ radial station r

y. State vector of normal coordinates for the rotor state variables

y(r,t), yn(r) Inplane blade deflection and mode shapes respectively as a
function of blade radial station r in the shaft axis

Yf •) Normalized lateral force derivative of the rigid body, 3v/3( )

z, £ , £? Vector of fuselage and rotating state measurements, vector of
~ ~~1 fuselage state measurements, and vector of rotating state measure-

ments respectively.

z(r,t), zn(r) Vertical blade deflection and mode shapes respectively as a function
of blade radial station r in the shaft axis

Z2^rl' t^ Measurement vector of blade bending moments at radial station r^ in
~ the blade axis

Zr i Normalized vertical force derivative of the rigid body, 3w/3( )
1 J (scalar)

di Rotor blade flapping of ith blade in the rotating axis, radians

B0, 6(j Coning and differential coning coordinates respectively in the
nonrotating axis, radians

8nc» Bns Cosine and sine coordinates respectively in the nonrotating axis
for the nth harmonic, radians

4( ) Indicates a perturbation of quantity in parenthesis

S Generalized coordinate associated with the nth mode shape of an
elastic blade

C Blade lag angle in Figure 1 and damping ratio in Table 2

5n Damping ratio associated with nth mode shape

6,(j> Fuselage pitch and roll attitude respectively in inertial axis,
radian

6(r,t), ent
r) Torsional blade deflection and mode shapes respectively as a

function of blade radial station r in the shaft axis

6TRl eT Tail rotor collective pitch angle, radians

60, ec Main rotor collective pitch angle, radians

eR Blade geometric pitch angle, radians

X, a Real axis in the complex plane

X Adjoint vector resulting from application of the maximum principle

A.- Matricies resulting when transforming state equations to normal
J form (Eq. 10)

^ Phase angle for each blade in the disk of the rotor, *i = «t + +j_
where <t>̂  represents the asymuthal angle of each blade,
radians

a Imaginary axis in the complex plane

uu Natural frequency associated with the nth mode shape, rad/sec

ia, /n^ug/Q Natural frequency of the inplane and flapping 1st blade mode
respectively normalized by rotor rotational speed

n Rotor rotational speed, radians/sec (scalar)
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Special symbols

(*) Denotes time derivative, d
i ~~

( ) Denotes matrix inversion
T( ) Denotes matrix transpose

(*) Denotes current Kalman filter estimate

(_) A bar below a lower case variable denotes a vector and all upper
case variables are matrices except where noted in the list of
symbols

3( )/3( ) Denotes partial derivative of numerator w.r.t. denomenator
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ROTOR SYSTEMS RESEARCH AIRCRAFT (RSRA)
REQUIREMENTS FOR, AND CONTRIBUTIONS TO, ROTORCRAFT STATE ESTIMATION

AND PARAMETER IDENTIFICATION
by

Gregory W. Condon
Langley Directorate

U.S. Army Air Mobility R&D Laboratory
NASA Langley Research Center
Hampton, Virginia 23665

SUMMARY

! The National Aeronautics and Space Administration and the United States
Army have jointly contracted for the development of two Rotor Systems Research
Aircraft (RSRA). These flight research vehicles are being designed specifi-
cally to provide the United States Government with the capabilities necessary
for the effective and efficient in-flight test and verification of promising
new rotor concepts and supporting technology developments. The research mis-
sion and unique features of the RSRA will require the new and expanded appli-
cation of state estimation and parameter identification technology and will
provide heretofore unavailable flight capabilities with which to expand the
state of the art of the parameter identification technology. This paper will
present the RSRA requirements for, and possible contributions to, rotorcraft
state estimation and parameter identification technology. The intent of this
paper is to engender the timely consideration of the RSRA in the current and
future developments of this technology.

SYMBOLS

A,B,C,D,E,F ; Transmission mounting reactive forces in the body axis system, Ib
2aTX' aTY' aTZ Inertial accelerations of the transmission in the body axis system, ft/sec

â , â , a^z . Inertial accelerations of the wing in the body axis system, ft/sec

ax> a^, az Inertial accelerations of the body in the body axis system, ft/sec

H,I,J,K,L,M ! Wing mounting reactive forces in the body axis system, Ib

2ITXX, IJYY' "'rZZ Transmission principal moments of inertia, slug-ft
2

IWXX' IWYY' """WZZ Win8 PrlnciPal rooments of inertia, slug-ft

iT ; Transmission incidence with respect to the longitudinal body axis, radians

iy - Wing incidence with respect to longitudinal body axis, radians

L,M,N Body aerodynamic moments in the body axis system, ft-lb

LIT, MIT, NIT Transmission inertia moments in the body axis system, ft-lb

LIW' MIW Wing lnertia moments in the wing principal axis system, ft-lb

LIW> MIW, NIW Wing inertia moments in the body axis system, ft-lb

LR, Mg, NR Rotor moments at the hub in the body axis system, ft-lb

Ly, My Wing aerodynamic moments at the wing pivot in the body axis system, ft-lb

mj Mass of the transmission, slugs

ny Mass of the wing, slugs

P» q> r Angular velocity components of the body expressed in the body axis system, rad/sec

QT Sum of the engine and tail rotor drive-shaft torques, ft-lb

V Airspeed, knots

X, Y, Z Body aerodynamic forces in the body axis system, Ib

XIT, YIT, ZIT Transmission inertia forces in the body axis system, Ib

XIW' YIW' ZIW Wing inertia forces in the body axis system, Ib

Xg, YR, ZR Rotor forces at the hub in the body axis system, Ib
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Y , Z Wing aerodynamic forces at the wing pivot in the body axis system, Ib

x , y , z Rotor mounting geometry dimensions in the transmission principal axis system, ft

x , zu Distances from the wing pivot axis to the wing center of gravity in the wing principal
axis system, ft

xi» y-i» y7 Wing mounting geometry dimensions in the wing principal axis system, ft

z_ Distance from the rotor hub to the transmission center of gravity along the shaft, ft
t\

a. Fuselage angle of attack, radians

3 Fuselage sideslip angle, radians

B' Wing-tilt mechanism angular deflection, radians

6 Control deflection, radians

j5 Longitudinal, lateral, directional, collective stick deflections, inches

1. INTRODUCTION

There are many new rotor concepts and supporting research efforts in various stages of development that
have the potential capability of alleviating some of the limitations associated with current rotorcraft.
These rotor concepts and technology developments must, in the final analysis, be flight tested in order to
quantify their performance and characteristics in the real and dynamic environment of flight. In the past,
flight testing has been accomplished by either modifying an existing vehicle or building a new vehicle. In
addition to being quite expensive, this approach has resulted in severe restrictions on the test envelope,
measurement accuracy, and in some cases flight safety.

In order to overcome these shortcomings, the United States Army and the National Aeronautics and Space
Administration have contracted with Sikorsky Aircraft for the development of two Rotor Systems Research Air-
craft (RSRA). These flight research vehicles are being specially designed with the inherent capabilities
necessary for effective and efficient in-flight test and verification of promising new rotor concepts and
supporting technology developments.

Of prime importance to successful completion of the flight research mission is the accurate estimation
of the state of the research rotor system or technology development under test and of the parameters depict-
ing its characteristics. In general, the desired quantitative measures may be of aerodynamic, structural,
or performance states or characteristics. These quantitative measures will be used to evaluate system per-
formance, to verify and provide impetus for improved prediction techniques, to develop control system laws,
and for ground-based simulation.

The unique research mission and several of the unique features of the RSRA air vehicle will require the
unique or expanded application of state estimation and parameter identification techniques as regards rotor-
craft. In addition, the RSRA possesses several unique capabilities heretofore unavailable with which to
expand the state of the art of rotorcraft parameter identification technology.

This paper will outline the RSRA concept, describe the RSRA flight research capabilities, and present
the RSRA requirements for and possible contributions to rotorcraft state estimation and parameter identifi-
cation technology. The objective of this paper is to engender the timely consideration of the RSRA in the
current and future developments of this technology.

2. ROTOR SYSTEMS RESEARCH AIRCRAFT

In order for the RSRA to be an effective tool with which to conduct rotorcraft flight research for a
broad spectrum of research rotors and research tasks, certain capabilities are necessary. The vehicle must
be able to provide a flight and rotor test envelope that is sufficiently broad to encompass the expected
envelopes of future rotor systems under both trim and transient conditions. The flight control capabilities
must be sufficiently versatile in order to exploit this broad test envelope for a multitude of research
tasks and to provide accurate and repeatable test conditions, both trim and transient, throughout the enve-
lope. The success of the RSRA as a research tool will depend greatly on the ability to measure accurately
the appropriate vehicle and rotor parameters that define the pertinent characteristics of the rotor or
supporting research development under examination.

2.1 Airframe

The RSRA must be able to provide a broad envelope of rotor and flight test conditions in order to permit
the systematic mapping of the characteristics of the candidate research rotors throughout their operating
envelopes under both trim and transient conditions. Hence, the RSRA airframe must possess the capabilities
necessary to generate, above some airspeed, reactive forces and moments of sufficient magnitude to exercise
the candidate research rotors throughout their operating envelopes. As shown in Figure 1, a variable inci-
dence wing will provide a force to react the rotor trim lift. High-speed flaps will generate transient
reactive lift on the rotor about the trim rotor lift. In the longitudinal axis, auxiliary thrust engines
will provide a force to react the rotor trim drag and high-speed drag brakes will react the rotor trim pro-
pulsive force and generate transient reactive longitudinal force. In addition to being required to generate
forces to react the rotor forces, the RSRA, as shown in Figure 1, will generate trim and transient moments
to react the rotor moments. An elevator, ailerons, and a rudder will provide this capability. The platform,
that is, the fixed-wing airplane, force and moment generation capabilities are shown in Figure 2. Hence
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the RSRA has a full set of rotorcraft control surfaces, that is, a main rotor and a tail rotor; and a full
set of airplane controls, that is, a variable-incidence wing, propulsive engines, flaps, drag brakes,
ailerons, elevator, and a rudder.

The physical characteristics of the RSRA are shown on Figure 3 and listed in Table 1. As shown in
Figure 4, the RSRA will be flown as a helicopter, an airplane, and a compound helicopter. The performance
characteristics are listed in Table 2.

Flight operation of the RSRA will require the identification of the stability and control derivatives
for all three baseline configurations and hence the application of stability and control derivative extrac-
tion technology applicable to both airplanes and helicopters. The compound helicopter configuration will
require the application of the combined technology.

2.2 Flight Control System

The flight control system must possess sufficient capabilities and versatility to effectively utilize
the broad test envelope for many and varied research tasks and to provide accurate and repeatable test condi-
tions, both trim and transient, throughout this envelope. The required flight control capabilities and
versatility will be provided by the RSRA fly-by-wire flight control system. The fly-by-wire flight control
system exercises control of the control surfaces through an on-line backup mechanical flight control system.
This backup mechanical system provides a highly reliable flight control capability suitable for acceptable
flight operation of the RSRA throughout its flight envelope; the fly-by-wire flight control system provides
the flight control capability and versatility required for the research mission.

Figure 5 shows the functional layout of the mechanical flight control system for each axis of the pri-
mary and secondary flight controls. The control system in the pitch, roll, and yaw axes provides the safety
pilot with integrated control of the rotorcraft and airplane control surfaces. For example, the safety
pilot's longitudinal stick exercises control of the elevator deflection and longitudinal cyclic pitch accord-
ing to the ratio selected in the control phasing unit. The selection of the control phasing setting and,
therefore, the relative contribution of the rotor and airplane controls is based upon achieving acceptable
control effectiveness throughout the RSRA flight regime. The control system provides direct control of
collective pitch, wing tilt, flap deflection, and drag brake deflection. The mechanical flight control
system also has an analog stability augmentation system for the three angular degrees of freedom.

Figure 6 shows the functional layout of the fly-by-wire flight control system for each axis of control.
The system exercises control of the main rotor, tail rotor, elevator, ailerons, rudder, flaps, and drag
brakes. Control commands are calculated in the digital computer controller based upon the programed control
laws and input variables, the input variables consisting of pilot control positions and rotor and fuselage
states. Control surface commands are input through force feel actuators and series actuators. In pitch and
roll, control command inputs through the force feel actuators provide integrated control of the rotor and
airplane surfaces according to the setting of the control phasing unit. The series actuators, in both the
rotor and airplane control runs, provide the capability to input control commands to the rotor and the air-
plane control surfaces independently and, therefore, for example, to react rotor moments with airplane
moments. This independence of control of the airplane and helicopter control surface motions allows the
independent optimization of the airplane and helicopter control inputs in order to enhance the ability to
identify stability and control derivatives for the compound helicopter configuration. This capability is
not available through the mechanical flight control system since the airplane and helicopter control surface
motions are related according to the setting of the control phasing unit.

Time-variant dependent control of the rotor and the airplane surfaces can be achieved by inputting
time-variant dependent control commands to the series actuators. This capability is not available through
the force feel actuator since the fly-by-wire flight control system does not exercise control of the control
phasing units. The series actuators in each control channel (rotor or airplane) are comprised of a low-
speed large-authority actuator for use in generating trim inputs and high-speed, low-authority actuator for
use in generating transient inputs. In yaw, control commands are input through the force feel actuators to
provide integrated control of the rudder and tail rotor according to the setting of the control phasing unit.
High-speed, low-authority series actuators are provided for use in directional stability augmentation. In
the collective channel, force feel actuators are utilized to input control commands; high-speed low-authority
series actuators are used for stability augmentation. High-speed, limited-authority series actuators are
utilized to input control commands to the flaps and drag brakes.

The core of the fly-by-wire flight control system (see Fig. 7) is the Teledyne Systems Company TDY-43
general-purpose flight-qualified digital computer, the characteristics of which are listed in Table 3. The
16K of memory coupled with the basic processor computational speed and accuracy provides the capability to
handle relatively complex and sophisticated control tasks.

A control panel (see Fig. 8) located in the cockpit provides the pilots with the in-flight control and
monitoring capabilities necessary to fully utilize the functions implemented in the fly-by-wire system. The
system provides five basic functions: stability augmentation, autopilot, control stick force feel, automatic
control inputs, and research control modes. The stability augmentation and autopilot systems are utilized
by either the safety or evaluation pilots to facilitate the normal flight of the RSRA and the setting of
trim conditions prior to engaging the research control modes. The force feel system is used during all
aspects of RSRA flight by either the safety pilot or the evaluation pilot in order to provide force feel
characteristics on the control sticks to improve the vehicle handling qualities. The automatic control input
feature provides a repeatable pulse or step input, the characteristics of which are precisely defined as
stored in memory. The desired axis and, where appropriate, the desired control device (main rotor or eleva-
tor in pitch, main rotor or ailerons in roll, tail rotor and rudder in yaw, main rotor or flaps in vertical,
and drag brakes in the longitudinal) are selected by the pilot. Since the shape of the automatic pulse
input is under software control, this input can be defined by any arbitrarily shaped function within the
capabilities of the control system to reproduce this motion at the control surface. Hence, this feature pro-
vides the capability to study individually, for each control surface, optimal control inputs for enhancing
the ability to identify stability and control derivatives from flight-test data.
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The research versatility of the RSRA is provided by utilization of the research control modes. Three
basic modes are provided: manual, automatic, and auto/manual, and form the basic format within which the
control laws to be utilized for the research mission will be implemented. In the manual mode, all of the
RSRA control surfaces are under the manual control of the evaluation pilot. For example, this mode will be
utilized in the helicopter configuration to accomplish handling qualities research using the RSRA as a six-
degree-of-freedom variable stability, in-flight simulator. In the manual/auto mode, several of the RSRA
control surfaces, or degrees of freedom, are under the manual control of the evaluation pilot, the remaining
control surfaces or degrees of freedom under the automatic control of the fly-by-wire system. For example,
as shown in Figure 9, the evaluation pilot could exercise manual control of the rotor under test while the
fly-by-wire system utilized the five-degree-of-freedom fixed-wing controls to automatically simulate a fuse-
lage of different aerodynamic and mass/inertia properties, thus simulating a range of fuselage characteris-
tics for a given rotor system under test. This control task is the case that was used to size the flight
computer computational capability. In the automatic mode, all of the RSRA control surfaces are under the
control of the fly-by-wire flight control system. This mode will be utilized in the helicopter simulation
configuration for the automatic control and indexing of rotor test conditions. For example, the fly-by-wire
system would step main rotor collective pitch over a range of values as stored in an array in memory while
holding cyclic pitch constant and maintaining the vehicle flight path and airspeed constant by use of the
fixed-wing control surfaces. This flight control capability coupled with the platform force and moment
generation capability permits mapping of rotor performance over a broad range of each variable, independently
of the other variables and in a precise and repeatable manner.

The automatic control input feature only permitted the input of control surface motions for one control
surface at a time. The automatic mode provides the capability to independently input control surface motions
simultaneously to any combination of the control surfaces. Hence, the capability exists to study any combi-
nation of optimum control inputs for enhancing the ability to identify stability and control derivatives
from flight-test data.

Peripheral to the flight computer is a Program Monitor and Control Unit (PMCU). This unit, shown in
Figure 7, is under the control of the third crewman, the flight engineer, and provides the in-flight capa-
bility to modify and/or observe the operational software; in particular to slew any of the 128 constants
located in memory by 0 to 200 percent of their value, to display the contents of any memory location, accumu-
lator, index register or special register, and to initiate a printout on the onboard printer. For example,
the pulse duration of the preprogramed automatic control inputs may be defined by one of the 128 constants
and therefore changed in flight. It will also be used on the ground to load and verify programs and to
check out or debug the program in a continuous or step-by-step mode.

The fly-by-wire control commands interface with the mechanical flight control system through the Actua-
tor Control and Monitor Unit (ACMU) which provides the circuitry required for control of the electrical-
input force feel and series actuators and for monitoring of their operation.

The Failure Monitor Unit (FMU) monitors the safety pilot primary control stick motions and the main
rotor longitudinal pitch, elevator, collective, and flaps series actuator commands for "hardovers" —
exceedance of their respective rate and amplitude envelopes — and upon detection of a hardover disengages
the fly-by-wire flight control system.

In order to utilize the fly-by-wire flight control system to provide accurate and repeatable test con-
ditions, both trim and transient, for the many and varied research tasks envisioned for the RSRA, compre-
hensive rotor and' vehicle state information must be available in the flight computer. This state information
is derived from input signals supplied by aircraft mounted sensors. The particular input signals for the
flight computer and the characteristics of the corresponding channel of the computer input are as specified
in Table 4. The sensor characteristics are compatible with those specified for the research instrumentation
system and listed in Table 5.

The RSRA has two unique measurement systems that provide heretofore unavailable state information with
which to achieve direct setting and control of test conditions: a rotor force and moment measurement system
and a wing force and moment measurement system. As depicted in Figure 10, each system is mounted to the air-
frame on load cells. The output signals are sent to the flight computer where the forces and moments are
estimated on-line and hence are available for use in control by the fly-by-wire system or for display to
the pilot. The details to these systems will be discussed in the following section on research
instrumentation.

2.3 Research Instrumentation

Successful flight research is greatly dependent upon the ability to accurately measure and record the
appropriate data from which to estimate the states and parameters defining the characteristics of interest.
This is best accomplished if the system for obtaining each measurement is designed as an integral part of,
and permanently incorporated into, the vehicle, and if the data recording system is specifically designed
for the flight research role. This philosophy has been applied to the measurement systems for the RSRA.
The data recording system is the Piloted Aircraft Data System (PADS), a new and versatile data collection
system designed at Langley Research Center (LRC) specifically for aeronautical flight research programs
including rotorcraft.

A schematic of the research instrumentation system for the RSRA is shown as Figure 11. The data
recording system is comprised of two PADS. Each PADS provides up to 104 PCM channels for use in recording
up to 10 Hz data, and up to 40 constant bandwidth FM channels for use in recording up to 400 Hz data. In
addition, one channel is provided for recording voice and events and one channel for recording PCM time code
for use in correlating measurements recorded onboard and measurements telemetered to the ground station.
The telemetry capability provides for up to 104 channels for PCM data and 10 channels for FM data to be
telemetered from the number 1 PADS. The PCM uses a nine-bit analog to digital converter to provide an
accuracy of +0.2 percent of full scale for +5 volt inputs and +0.5 percent full scale for +10 millivolt
inputs. The CBW-FM subsystem is comprised of voltage controlled oscillators and mixer-amplifiers, the
root sum squared error being less than or equal to 2 percent full scale. The signal conditioner provides
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a root sum squared error of less than or equal to 0.5 percent full scale. The ground station provides for
real-time display and hard-copy recording of a limited number of selected channels of data, for recording
on tape all of the telemetered data channels and for off-line data editing, reformating, and generation of
a digital tape for use in automatic data processing.

The research instrumentation system as configured on the delivered vehicles will provide the measure-
ments listed in Table 5. Hence, there will be 140 spare channels of PCM and 74 spare channels of FM for use
in recording data from sensors to be installed in the future for particular research programs. A 192-channel
slipring assembly mounted on the main rotor shaft provides the capability to transmit to the PADS, for
recording on these spare channels, rotor information required for future research programs. For example,
Molusis and Briczinski1 have pointed out the importance of the contribution of the rotor degrees of freedom
to the short-term high-frequency accelerations of the body due to rotor transients and the resultant neces-
sity for using a nine-degree-of-freedom rotor/body model in order to properly represent this short-term
response. The slipring assembly provides the capability to record the rotor information for identification
of such a model.

The baseline measurements listed in Table 5 are provided by standard flight research sensors which
measure attitudes, rates, control surface positions, airspeed, and so forth, and by RSRA peculiar measure-
ments systems which measure subsystem flight loads. The standard flight research measurements are provided
by state-of-the-art, off-the-shelf sensors. The characteristics of the transducers are listed in Table 5.
It is to be noted that the choice of sensors has been based upon flight research requirements in general,
and in order to provide sufficiently accurate data for a particular research program it may be necessary to
change sensors. For example, in gathering data for stability derivative extraction research it may be
necessary to replace the rate gyros with sensors of greater sensitivity over a smaller range in order to
increase the accuracy of the measurements.

The RSRA-peculiar force and moment measurement systems provide the capability to measure flight loads
for particular subsystems of interest and thereby provide a breakdown of the contribution of each of these
systems to the total flight loads experienced by the aircraft. In general, the subsystems are mounted to
the airframe on load cells in configurations so as to most accurately provide the data necessary to define
the particular flight loads of interest for that subsystem. The main rotor transmission is mounted to the
airframe, as shown in Figure 10, by six uniaxial load cells, the outputs of which will be utilized to esti-
mate all of the three-axis force and moments on the main rotor. That is,

Main rotor longitudinal force
Main rotor side force
Main rotor vertical force
Main rotor pitching moment
Main rotor rolling moment
Main rotor yawing moment

The wing is mounted to the airframe, as shown in Figure 10, with a biaxial load cell at each of the two
pivot points and with an uniaxial load cell incorporated in each of the two wing-tilt actuators. The load
cell outputs will be used in estimating:

Wing lift
Wing drag
Wing pitching moment
Wing rolling moment

Each auxiliary thrust TF-34 engine is mounted to the airframe as shown in Figure 12, with the uniaxial
load cell output used in estimating the auxiliary engine thrust. The tail rotor is mounted to the airframe
as shown in Figure 12 with the uniaxial load cell output used in estimating the tail rotor thrust.

The capability to measure in-flight the forces and moments generated by the rotor will provide the
necessary data with which to correlate directly the outputs of analytical rotor models. In the past, the
forces and moments generated by the rotor had to be inferred from measured body motions and inertia charac-
teristics and from measured/estimated aerodynamic characteristics of the fuselage. In addition, the capa-
bility to automatically control the vehicle state with the fixed-wing control surfaces provides the
capability to independently vary the rotor states or rotor controls and thereby quantify their individual
relationships with the rotor forces and moments. These capabilities should provide strong impetus for the
development and verification of rotor models.

The output signals of the main rotor and wing loads cells are supplied as inputs to the fly-by-wire
system computer wherein the force and moments are estimated on-line and hence are available for use in
control by the fly-by-wire system or for display to the pilot. The main rotor forces and moments will be
estimated using Equations (1) through (6) in Appendix A. The forces are resolved in an axis system, as
shown in Figure 13, at the center of the rotor hub and parallel to the body axis system. It is to be noted
that transmission inertia loads, shaft engine torque, tail rotor torque, system geometry, and interactions
are accounted for in the equations. The interactions will be neglected for the in-flight system. It is
expected that due to the small load cell deflections (- 0.001 inch) these interactions will be sufficiently
small and that acceptable accuracy will be achieved for the in-flight system. The results of calibration
will be utilized in calculating the load cell forces from load cell output signals. The wing forces and
moments will be estimated using Equations (7) through (12) in Appendix A. The wing forces are resolved in
an axis system, as shown in Figure 14, at the midpoint between the pivot hinges and parallel to the body axis
system. The equations account for the same factors as do the equations for the rotor and additionally
account for the variable-wing incidence.

The output signals of each load cell for the main rotor, wing, auxiliary engines, and tail rotor meas-
urement systems are recorded on PADS. These signals will be utilized in off-line estimating of the forces
and moments for data purposes. In order to provide the greatest possible accuracy for data purposes, the
forces and moments will be estimated using the equations of Appendix A to include the interactions. Sub-
sequent paragraphs describe the interactions and the method of determination.
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The load cells are state-of-the-art, off-the-shelf transducers with the characteristics as listed in
Table 5. In order to minimize errors due to load cell inaccuracies, load cells have been chosen with as
small a range as possible within the constraints of the expected in-flight loads for the particular rotor
and within the availability of off-the-shelf transducers. Different rotors may require load cells of dif-
ferent sensitivity and range.

An accuracy analysis has been conducted by Dr. Ping Tcheng of Old Dominion University, Norfolk,
Virginia, for the on-line (flight computer) rotor force and moment measurement system and the results are
shown in Table 6. The one-a accuracies quoted are for the values of forces and moments estimated in the
flight computer. The errors quoted are random errors resulting from nonlinearities, hysteresis, resolution,
sensitivity drift, zero shift, and noise in the measurement system to include the sensors. The one-a
accuracies do not include random errors due to hysteresis, friction, and alternate load paths (such as
hydraulic lines) in the mounting system. These inaccuracies will be quantified during calibration of the
mounting system. The fixture for calibrating the four RSRA peculiar force and moment measurement systems
is shown as Figure 15. The system will permit the application of calibrating forces and moments independent
of one another or in combination with one another stepped over approximately 75 percent of the full range of
loads. The calibration procedure will be in general accordance with the procedure discussed in Reference 2
and will permit the quantification of all of the first- and second-order interactions in the load cell bal-
ance mounting thereby eliminating these effects including their nonlinearity, in the estimation of the
applied forces and moments by the off-line system (PADS) .

3.0 CONCLUDING REMARKS

The unique research mission and several of the unique features of the RSRA will require the new and
expanded application of state estimation and parameter identification technology as regards rotorcraft.
The identification of stability and control parameters for the RSRA needs to include the stability deriva-
tives associated with the rotor degrees of freedom and the control derivatives associated with the combined
helicopter and airplane control surfaces. The RSRA will provide unique state estimation capabilities in the
form of measurements of the flight loads for the main rotor, wing, auxiliary propulsion, and tail rotor
subsystems.

Due to unique airframe, flight control, and instrumentation system capabilities, the RSRA is an ideal
vehicle with which to conduct flight development studies on rotorcraft stability and control derivative
identification technology. The automatic flight control capabilities include prescribed independent inputs
to each control surface, individually or concurrently, and provide accurate, repeatable test conditions.
The instrumentation system provides accurate measurement of the pertinent vehicle and rotor states to include
the flight loads on the rotor, wing, auxiliary propulsion, and tail rotor subsystems.
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APPENDIX A

A. 1 Rotor Force and Moment Estimation

The forces and moments on the main rotor transmission are resolved in an axis system with the origin
at the center of the rotor hub and parallel to the aircraft body axis system. The rotor forces and moments
are determined by solving Newton's laws in this moving coordinate system. Figure 13 was used to derive the
equations that follow:
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(3b)

(3c)

ZR COS

(5a)

(5b)

(6a)

(6b)

The interaction terms for each force and moment represent the cross-coupling effects of the load cell
reaction forces and will be defined by static calibration of the balance mounting.

A. 2 Wing Force and Moment Estimation

The forces and moments on the wing are resolved in an axis system with origin on the wing hinge line
halfway between the pivot points and parallel to the body axis system. The wing forces are determined by
solving Newton's laws in this moving coordinate system. Figure 14 was used to derive the equations which
follow:
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The interaction terms for each force and moment represent the cross-coupling effects of the load cell
reaction forces and will be defined by static calibration of the balance mounting.
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TABLE 1. RSRA DESIGN CONFIGURATION CHARACTERISTICS

Stress gross weight
Design gross weight, compound mission
Gross weight, hover mission
Weight empty, compound configuration
Weight empty, helicopter configuration

Main rotor system (Sikorsky H-3)
Diameter
Number of blades
Chord
Normal tip speed
Blade twist

Tail rotor system (Sikorsky H-3)
Diameter
Number of blades
Chord
Normal tip speed
Blade twist

26,200 Ib
26,200 Ib
18,400 Ib
20,968 Ib
14,633 Ib

62 ft
5
1.52 ft
660 ft/sec
-8°

10.6 ft
5
0.612 ft
689 ft/sec
0°

Wing
Area
Span
Airfoil section

Aspect ratio
Variable-incidence range
Taper

Lower horizontal stabilizer (except helicopter)
Area
Span
Chord (mean)
Elevator area
Incidence (coupled to wing tilt)

Upper horizontal Stabilizer
Area
Span
Chord (mean)

369 sq ft
44.8 ft
NACA 63,415

5.45
-9° to +15°
0.62

98.1 sq ft
25.0 ft
3.93 ft
12.5 sq ft
+8°

Except helicopter
17.2 sq ft
8.58 ft
2.04 ft

Helicopter
35.4 sq ft
13.25 ft
2.78 ft

Vertical stabilizer
Area
Span
Chord (mean)
Rudder (area)

101.1 sq ft
15.9 ft
6.83 ft
24.8 sq ft

Turboshaft engines
Type
Military rating, SLS

Main gearbox (Sikorsky H-3)
Power rating, 30 minutes

Turbofan engines
Type
Military rating, SLS, static
Military rating, SLS, 300 knots

T58-GE (2)
1400 hp

2500 hp

TF-34-GE-400(2)
8159 Ib
5340 Ib

TABLE 2. RSRA PERFORMANCE REQUIREMENTS

Item Requirement

Hover OGE (helicopter)
Hover payload
Speed
Helicopter simulation speed envelope
Wing design lift
Clean
With flap
Stall margin

SL 95° F
2000 Ib
300 kt @ mil pwr
120 - 200 kt

DGW @ 150 kt
DGW @ 120 kt
10 percent
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TABLE 3. TDY-43 FLIGHT COMPUTER CHARACTERISTICS

Memory

Computation process

Formats
Data
Word length
Instruction
Addressing
Addressing range

Instructions

Clock frequency

Registers

Execution speeds
(direct, relative, indexed)

Add/subtract

'Multiply

Divide

iDP add/subtract

Input/output

Core, 16K x 16, 1.3 Vs cycle

Parallel

Fixed point, fractional binary, 2's complement
16 bits
Single address, single instruction
Immediate direct, relative, indexed, and indirect
To 65K words

70

3 MHz

Dual 8-register file

2.67 us

6.00 us

8.67 Us

5.33 us

4 synchro inputs
13 ac inputs (2nd order filters)
34 dc inputs (2nd order filters)
39 dc inputs (single pole filters)
35 dc inputs (unfiltered)
62 dc outputs (single pole filters)
64 28 VdC discrete inputs
31 28 Vdc discrete outputs

Interrupts

Real-time clock

BITEi

Signal

attitude

Roll
attitude

Heading

Pitch rate

Roll rate

Yaw rate

Pitch
acceleration

Roll
acceleration

Yaw
acceleration

Longitudinal
acceleration

Lateral
acceleration

8 (3 dedicated internally)

16 bits; program accessible
0.1 msec resolution
6.5536 seconds range

Memory check
Instruction check
Wrap-around I/O check
Reset timer

TABLE 4. FLY-BY-WIRE FLIGHT CONTROL SYSTEM INPUTS

i

Conversion
' range

+90 deg

+180 deg

+180 deg

+40 deg/sec

+40 deg/sec

+40 deg/sec

2
+75 deg/sec

+150 deg/
sec

2
+75 deg/sec

+2 g's

+2 g's

Accuracy

+.2 deg

+.2 deg

+.2 deg

+.1 deg

+.1 deg/sec

+.1 deg/sec

+.13 deg/sec

+.27 deg/sec

+.13 deg/sec

+.12 fps2

+.12 fps2

Minimum
conversion
per second

20

20

20

40

40

40

2 40

2 40

2 40

40

40

Signal

Vertical
acceleration

Airspeed

Fuselage
angle of
attack

Sideslip
angle

Drag brake
position

Wing
incidence

Stabilator
incidence

Flap
deflection

Aileron
deflection

Conversion
range

+4 g's

0 to 360 kts

+40 deg

+15 deg

0 to 60 deg

+25 deg

+25 deg

+25 deg

+25 deg

Accuracy

+.24 fps2

+.7 kts

+.1 deg

+.1 deg

+.12 deg

+.05 deg

+.05 deg

+.05 deg

+.05 deg

Minimum
conversion
per second

40

40

20

20

20

20

20

20

20
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TABLE 4. TDY-43 FLIGHT COMPUTER CHARACTERISTICS — Concluded

Cringe10"

f̂ er , +50 deg +.10 degdeflection — ~

Elevator +5Q +>2 d
deflection — —

Collective Q tQ 1QO% +>2%
mixer input —

Pitch 0 to 100% +.2%mixer input —

Ro11 . 0 to 100% +.2%mixer input —

Auxiliary
engine No. 1 0 to 100% +.2%
thrust

Auxiliary
engine No. 2 0 to 100% +.2%
thrust

Pilot
longitudinal +>2%
FFS trim —
control

Copilot
longitudinal +>2%
FFS trim —
control

Pilot
lateral FFS 0 to 100% +.2%
trim control

Copilot
lateral FFS 0 to 100% +.2%
trim control

Pilot
collective Q 10Q% +_2%
FFS trim —
control

Copilot
collective +_2%
FFS trim —
control

Pilot
pedal FFS 0 to 100% +.2%
trim control

Copilot
pedal FFS 0 to 100% +.2%
trim control

Pilot
lateral 0 to 100% +.2%
control

Copilot
lateral 0 to 100% +.2%
control

Pilot
longitudinal 0 to 100% +.2%
control

Copilot
longitudinal 0 to 100% +.2%
control

Pilot
collective 0 to 100% +.2%
control

Copilot
collective 0 to 100% +.2%
control

Pilot
pedal 0 to 100% +.2%
control

Minimum
conversion Signal
per second

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

40

40

40

40

40

40

40

Copilot
pedal
control

Longitudinal
control
phasing

Lateral
control
phasing

Directional
control
phasing

Longitudinal
cyclic
series trim
actuator
position

Lateral
cyclic
series trim
actuator
position

Elevator
series trim
actuator
position

Aileron
series trim
actuator
position

Load cell A

Load cell B

Load cell C

Load cell D

Load cell E

Load cell F

Load cell J

Load cell K

Load cell L

Load cell M

Load cell H

Load cell I

Barometric
altitude

Outside air
temperature

Rotor rpm

Rotor
azimuth

Rotor blade
flapping

Rotor blade
lead lag

Pitch at
blade cuff

Spare
input (16)

Spare
input (20)

Spare
input (10)

Conversion
range

0 to 100%

0 to 100%

0 to 100%

0 to 100%

0 to 100%

0 to 100%

0 to 100%

0 to 100%

+35,000 Ib

+25,000 Ib

+25,000 Ib
~~

+25,000 Ib

+25,000 Ib

+8,000 Ib
"~~

+28,000 Ib

+28,000 Ib

+12,000 Ib

+12,000 Ib

+25,000 Ib

+25,000 Ib

-1,000 to
+19,000

+60° C

0 to 100%

0 to 360°

-30 to +30 deg

-60 to +60 deg

-10 to +30 deg

-10 to +10 Vdc

-10 to +10 Vdc

-10 to +10 Vdc

Minimum
Accuracy conversion

per second

+.2%

+.2%

+.2%

+.2%

+.2%

+.2%

+.2%

+.2%

+70 Ib

+50 Ib

+50 Ib

+50 Ib

+50 Ib

+16 Ib

+40 Ib

+40 Ib

+16 Ib
^

+17 Ib

+.2% of
full scale

+.2% of
full scale

+20 ft

+.12° C

+.2%

+.2 deg

+.1 deg

+.12 deg

+.1 deg

+.2%

+.2%

+.2%

40

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

40

40

40

40

20

40

40
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TABLE 5. RESEARCH INSTRUMENTATION MEASUREMENTS

MS3. sur CTH fin, t *****

Rotor lift cell ,"A"
Rotor lift cell "B"
Rotor lift cell "C"
Main rotor torque drive shaft
Transmission torque cell "D"
Transmission torque cell "E"
Long, force cell "F"
MR rpm
MR azimuth 1/72 per rev.
MR blade flap B >>
MR blade hunt Y I
MR blade pitch 6 J
Rt. lat. servo position
Lt. lat. servo position
Long, servo position
Airspeed (swiveling probe)
Pitch attitude
Roll attitude
Yaw attitude
Pitch rate
Roll rate
Yaw rate
Pitch acceleration
Roll acceleration
Yaw acceleration
Vertical linear accel.
Lateral linear accel.
Longitudinal linear accel.
Angle of attack
Sideslip
Drag brake position
Wing pitch actuator cell "H"
Wing pitch actuator cell "I"
Wing pivot point cell "J"
Wing pivot point cell "K"
Wing pivot point cell "L"
Wing pivot point cell "M"
Wing incidence angle
Right aileron position
Right flap position

Antitorque cell "N"

Tail drive shaft Q
Horiz. stab, elevator pos.
Rudder position
Left engine aux. thrust
Right engine aux. thrust
Pilot's lat. control pos.
Copilot's lat. control pos.
Pilot's long, control pos.
Copilot's long, control pos.
Pilot's coll. control pos.
Copilot's coll. control pos.
Antitorque control pos.
Lateral control stick force
Long, control stick force
Coll. control stick force
Anti Q control force
Pitch phasing unit pos.
Roll phasing unit pos.
Yaw phasing unit pos.
Helo. long, servo series trim
Stab, series trim control pos.
Helo. lat. servo ser. trim pos.
Roll series trim control pos.
No. 1 eng. T-58 torque
No. 2 eng. T-58 torque
Main rotor push rod
Altitude
OAT
Rate of climb
Stabilizer position

Type

Load cell
Load cell
Load cell
S.G.
Load cell
Load cell
Load cell
Photo cell
Photo cell

Linear
gener .

Pot.
Pot.
Pot.
TBD
Gyro
Gyro
Gyro
Gyro
Gyro
Gyro
Gyro
Gyro
Gyro
Accel.
Accel.
Accel.
Pot.
Pot.
Pot.
Load cell
Load cell
Load cell
Load cell
Load cell
Load cell
Pot.
Pot.
Pot.

Load cell

S.G.
Pot.
Pot.
Load cell •»
Load cell /
Pot.
Pot.
Pot.
Pot.
Pot.
Pot.
Pot.
S.G.
Sifc.
S.G.
S.G.
Pot.
Pot.
Pot.
Pot.
Pot.
Pot.
Pot.
Press.
Press.
S.G.
Press.
Res.
Press.
Pot.

Transducer

Accuracy

+.1%
+.1%
+.1%
+1%
+.1%
+.1%
+.1%
TBD
TBD
TBD
TBD
TBD
+1%
+1%
+1%
TBD
TBD
TBD
TBD
+1%
+1%
+1%
+1%
+1%
+1%
+1%
+1%
+1%
+1%
+1%
+1%
+ .1%
+ .1%
+.1%
+.1%
+.1%
+.1%
+1%
+1%
+1%

+.1%

+1%
+1%
+1%

+ .1%

+1%
+1%
+1%
+1%
+1%
+1%
+1%
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
+1%
+1%
+3%
+1%
+0.5%
TBD
+1%

Full scale

35,000 Ib
25,000 Ib
25,000 Ib
2400 Uin./in.
25,000 Ib
25,000 Ib
8,000 Ib
120%
1/72/rev.
360°
360°
360°
6 in.
6 in.
6 in.
400 kts
+82°
360°
360°
75°/sec
150° /sec
75°/sec
+75°/sec2

+150° /sec2

+75°/sec2

-1 +4G
+0.5G
+0.5G
+60°
+60°
TBD
25,000 Ib
25,000 Ib
20,000 Ib
20,000 Ib
8,000 Ib
8,000 Ib

TBD
TBD
TBD

5,000 Ib

2400 yin./in.
TBD
TBD
5,000 Ib
5,000 Ib
TBD
TBD
TBD
TBD
TBD
TBD
TBD
2400 Uin./in.
2400 Uin./in
2400 Uin./in.
2400 Uin./in.
TBD
TBD
TBD
TBD
TBD
TBD
TBD
150 psi
150 psi
2400 Uin./in
TBD
+60° C
+6000 fpm
TBD

Measurement
full scale

43,500 Ib
34,900 Ib
34,900 Ib
65,000 ft Ib
25,000 Ib
25,000 Ib
10,400 Ib
120%
72/rev.
-5.5° +20°
-3° +20°
-6.5° +20.4°
100%
100%
100%
400 kts
+30°
+90°
+30°
60°/sec
90°/sec
60°/sec
+30° /sec2

+30°/sec2

+30° /sec2

-1 +4G
+0.5G
+0.5G
+40°
+40°
0-100%
31,300 Ib
31,300 Ib
28,000 Ib
28,000 Ib
10,000 Ib
10,000 Ib
-9° +15°
0-100%
0-100%
5,000 Ib
-1,000 Ib
1200 ft-lb
0-100%
0-100%
3800 Ib
3800 Ib
0-100%
0-100%
0-100%
0-100%
0-100%
0-100%
0-100%
25 Ib
25 Ib
25 Ib
75 Ib
0-100%
0-100%
0-100%
0-100%
0-100%
0-100%
0-100%
75 psi
75 psi
1500 Ib
-1000, +15, 000
+60° C
+6000 fpm
+8°

PCM/FM

PCM
PCM
PCM
PCM
PCM
PCM
PCM
PCM
FM
FM
FM
FM
PCM
PCM
PCM
PCM
PCM
PCM
PCM
PCM
PCM
PCM
PCM
PCM
PCM
PCM
PCM
PCM
PCM
PCM
PCM
PCM
PCM
PCM
PCM
PCM
PCM
PCM
PCM
PCM

FM

PCM
PCM
PCM
PCM
PCM
PCM
PCM
PCM
PCM
PCM
PCM
PCM
PCM
PCM
PCM
PCM
PCM
PCM
PCM
PCM
PCM
PCM
PCM
PCM
PCM
FM
PCM
PCM
PCM
PCM

Frequency
response

10
10
10
10
10
10

10-30
10
300
30
30
30
10
10
10
6
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10

10-30

10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
100
QS
QS
QS
10

TBD: To be determined. QS: Quasi-static. S.G.: Strain gage.
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TABLE 6. ROTOR FLIGHT LOADS MEASUREMENT SYSTEM ACCURACY

FORCES:

MOMENTS:

Force/moment
component

Range
Accuracy
(10)

Vertical force (Ib)
Longitudinal force (Ib)
Lateral force (Ib)
Pitching moment (ft-lb)
Rolling moment (ft-lb)
Yawing moment (ft-lb)

-3K/ +48.8K +313/ +152
+10K +71
+10K +110
+24K +796/ +421
+12K +669/ +507
-3K/ +65K +424/ +220

• 1-g , STRAIGHT AND LEVEL FLIGHT ABOVE 120 KNOTS

LIFT
-BASIC FUSELAGE

WING TILT; AUX. THRUST - TRIM

FLAPS; DRAG BRAKES - TRANSIENT

ROTOR ENVELOPE

AILERONS. ELEVATOR) TRIM AND
& RUDDER J TRANSIENT

^ ROLLING
MOMENT

-BASIC FUSELAGE

Figure 1. Control surface requirements based upon rotor test envelope requirement.
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50

25
VERTICAL FORCE, .
(NET) LBS X 10'3 U

-25

-50

-75

20

10
LONGITUDINAL
FORCE, Q

(NET) LBS X IO"3

COMPOUND HELICOPTER, 1-g. STRAIGHT AND LEVEL FLIGHT CAPABILITY

4G LIMIT

-FLAPSi/ WINGS

10 FLAPS-

25C -CLEAN

400

PITCHING 200
MOMENTS,
FT-LBS X 1(P

0

65.4 K ROTOR
LIMIT -200

0 LIFT -15 K ROTOR
LIMIT

1G LIFT

1G LIFT

100 r

ROLLING n
MOMENTS, ,
FT-LBS X 10 *

+ 15K ROTOR
LIMIT

-100 L

'0 100 200 300
AIRSPEED. KNOTS

AUUVy
-72 K ROTOR

LIMIT

A\\\ \ \ \V+72 K ROTOR
LIMIT

-48 K ROTOR
LIMIT

ROTOR
LIMIT

0 100 200 300
AIRSPEED. KNOTS

Figure 2. RSRA platform force and moment generation capability.
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2 TF-34GE-400 ENGINES

2T58-GE-5ENGINES^

(15-6")
(6'-8")—

FUSELAGE HGT.
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COMMENTS ON COMPUTATION OF
AIRCRAFT FLIGHT CHARACTERISTICS

by

C.L.Livingston,
Group Engineer, Stability & Control,

Bell Helicopter Company,
Fort Worth, Texas 76101, USA

A digital computer program (C81) is used to compute performance, dynamics, and loads of a wide variety of
aircraft shown in Figure 1. Figure 2 shows some of the configurations which have been simulated on C81. The
configuration simulated depends upon the values specified in the input data card deck and vhe program logic control
switch settings.

The computer program was initially designed to solve for helicopter rotor loads in steady and maneuvering
flight. Fuselage aerodynamics and a quasistatic dynamic flight stability section were added next. Gust penetration
by the rotor disk was simulated for ramp, sine-squared, and later vortex gusts. The rotor dynamic model was
restructured into the present normal modes model so that rotor transient response can be computed. Auxiliary
propulsion (jets or propellers), drag brake, store drop and improved aerodynamic interference equations were added
also. Figure 3 summarizes the major features of the current program which is fully documented in USAAMRDL
TR 74-10 (3 volumes), "Rotorcraft Flight Simulation with Aeroelastic Rotor and Improved Aerodynamic
Representation", June, 1974, by J.M.Davis, R.L.Bennett, and B.L.Blankenship. The control linkage array enables
the control surfaces of all the configurations shown in Figure 2 to be connected to the pilot's controls and phased
with each other or mast tilt as necessary. Wake tables can be used when a very detailed rotor induced velocity
distribution as a function of rotor thrust, advance ratio, and inflow ratio is determined from a separate analysis.
Separate wake tables are available to represent impingement from each rotor on each aerodynamic surface. The
simplified wake interference equations which are integral to the program are usually adequate for most performance
and stability analyses.

The computer program solves for the equilibrium solution of the force and moment equations first. This trim
solution may be obtained in accelerated or unaccelerated flight, regardless of the flight path angle or power required
as long as a realistic trajectory is specified. The trim solution provides control positions and performance data.
Rotor loads are also available if requested.

Either the small perturbation theory stability data or maneuver sections of the program may be entered once
trim is established. The maneuver section computes response and loads to disturbances caused by control motion,
gusts, weapon recoil, store drop, throttle chop, etc. At any point in the maneuver, both stability and rotor loads
data are available upon request. The stability section uses quasistatic rotor aerodynamics and computes the eigen-
values and eigenvectors to the characteristic equations of motion. Up to 14 degrees of freedom may be specified:
6 rigid body, 2 flapping for each rotor and 2 pylon deflections for each pylon. The number of degrees of freedom
to be used is specified in the input data - from two, uncoupled, 3 by 3 matrices for longitudinal and lateral-
directional flight modes, up to the fully coupled 14 by 14 matrix. Transfer functions of attitude response to
control displacement are calculated as well as phase angles and magnitudes for direct plotting of Bode diagrams.
Figure 4 summarizes these modes of C81 operation.

A typical time history of a cyclic pull up in autorotation is shown in Figure 5. To compute this with C81,
the initial autorotational trim is computed, the maneuver section entered, and the flight test measured control
motions are input. C81 then computes the response of the helicopter, which is shown in the figure as a solid line.
Flight test measured values are shown as open circles. Notice that the calculated loads either agree with or have
peaks higher than measured in flight test. This is typical of the results of flight test comparisons and the conserva-
tive difference assures adequate strength of first designs of components.

Use of the normal mode approach for representing aeroelastic rotor loads resulted in an improvement in the
prediction of pitch link oscillatory loads. Figure 6 compares measured and calculated loads for different weight
and store configurations. Loads were computed with and without bearing friction and compare quite well with
measured data.
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Figure 7 illustrates one of many features of the maneuver section of the program. The "g-tracker" feature
computes the control motions necessary to produce the time history of normal acceleration which is specified in
the input data. The variation of all other flight parameters and loads during the resulting maneuver may then be
plotted. The rapid change in g of Figure 7 excites the short period mode of the example helicopter. The
inherent damping and frequency is clearly shown and can serve as a check on the frequency and damping computed
by small perturbation theory used in the stability analysis.

The possible linkages between the pilot controls and the control surfaces of the helicopter are shown in Figure J
For fixed wing aircraft, the collective control can become the throttle and the rotor swashplate angles become
ailerons, elevator and rudder. Both fixed wing control surfaces and rotor controls may be connected by linear or
non-linear linkages for compound aircraft such as autogyros, winged helicopters with auxiliary propulsion, or tilt-
rotor helicopters.

The degrees of freedom and force and moment equations used in the linear stability analysis are indicated on
Figure 9. The user of C81 can select which degrees of freedom to use for any problem by appropriate input data
switches (0 or ¥=0). Also shown on this figure are the two most frequently used representations; the uncoupled
longitudinal and lateral-directional equations and the fully coupled 6 x 6 flight-path equations. Degrees of freedom
not used are treated quasistatically; that is, after the perturbation in the stability variable of interest is made, all
degrees of freedom not used in the stability matrix are allowed to seek new equilibrium values caused by the
changes forces and moments. The resulting derivatives are total derivatives and include the partial derivatives of
all excluded degrees of freedom.

The C81 program is used in the design stage to compute performance, stability, and loads data. The capability
to compute maneuver data enables realistic design loads to maneuvers called out in customer specification require-
ments. Stability and transfer function data allow rapid design of stabilization systems and determination of design
trade-offs involved when stability actuator authority is varied. Response to gusts include the diminished loads
caused by aircraft response. If the "autopilot" feature is used, the required autopilot actuator authority can be
determined at a glance, as well as maximum and minimum variations of all flight parameters and loads.
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PROGRAM USES
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THE EFFICIENT APPLICATION OF DIGITAL IDENTIFICATION TECHNIQUES

TO FLIGHT DATA FROM A VARIABLE STABILITY V/STOL AIRCRAFT

By

J. Victor Lebacqz

X-22A Project Engineer

Flight Research Department

Calspan Corporation

Buffalo, New York 14221

SUMMARY

A prerequisite in the use of response-feedback variable stability aircraft to obtain flying qualities
data is an accurate method for estimating stability and control parameters from flight data. It is neces-
sary, however, that such methods be efficient and cost-effective to minimize the effort and expense spent
performing the estimation. This paper discusses the application of a digital identification technique
based on Kalman filter theory to flight data from flying qualities experiments using the variable stability
X-22A V/STOL research aircraft. The emphasis of the discussion is on practical aspects of identifying
efficiently data covering a wide range of dynamic characteristics; particular attention is paid to the
elimination of adjustments in the technique for each data run and the use of particular pilot control inputs
to maximize identifiability. Results are presented for a variety of simulated dynamics.

INTRODUCTION

In general, experimental flying qualities investigations seek to correlate dynamic characteristics of
an aircraft to pilot ratings of the suitability of the characteristics for the performance of a prescribed
task. Variable stability aircraft incorporate electronic implementation of control laws that vary the
dynamic characteristics of the aircraft in a prescribed manner. The most prevalent mechanization of this
capability, and the one used in the X-22A V/STOL variable stability aircraft, is the response-feedback
system. With this technique, response variables of the aircraft are sensed directly and used to command
control deflections proportionally, thereby changing the closed-loop aircraft characteristics; by varying
the matrix of feedback gains, a wide variety of aircraft characteristics can be simulated for piloted eval-
uations. Unlike a ground simulator or model-following variable stability aircraft, however, the resulting
dynamic characteristics are not accurately known a priori; it is therefore mandatory to have an accurate
and efficient means of identifying the characteristics obtained from flight records.

Since the inception of variable stability aircraft in the early 1950's by the NACA and Cornell Aero-
nautical Laboratory (now Calspan Corporation), this problem of identification of the dynamics of the simu-
lated aircraft, both for calibration purposes and for the correlation of pilot ratings with the achieved
dynamic configurations, has been of extreme theoretical and practical concern. Early methods included
various analytic treatments based on hand measurement of recorded responses to prescribed inputs and the
matching of responses with the outputs of an analog computer (References 1 and 2). With the advent of the
digital computer, it became feasible to handle large amounts of data that might require numerical analyses.
This capability led first to equation-error techniques (Reference 3) and then to response-error methods
(References 4, 5, and 6), which were applied with various degrees of success to the aircraft identification
problem. As is by now well known, however, accurate identification of aircraft parameters generally re-
quires advanced methods that can treat both equation errors (process noise) and response errors (measure-
ment noise). Methods which have this capability include techniques which maximize a classical, non-Bay-
esian likelihood function (Reference 7) or which extend Kalman filter (Bayesian maximum likelihood) theory
to nonlinear situations (References 8, 9).

This paper discusses the application of the identification technique developed in Reference 9 to flight
data from the X-22A variable stability V/STOL aircraft (Figure 1). The X-22A aircraft is a unique research
tool which is capable of reproducing a wide range of vehicle dynamic characteristics at many fixed-operat-
ing STOL flight conditions as well as through a complete V/STOL transition (120 kts -»• 0 kts). To date
the aircraft has been used in two STOL and one V/STOL flight experiments. The first STOL experiment invest-
igated longitudinal short-term dynamic characteristics for landing approach (References 10,11), and the
second studied lateral-directional dynamic characteristics and roll control power requirements for landing
approach (References 12, 13). The V/STOL experiment, currently underway, is concerned with the control,
guidance, and display requirements for descending decelerating VTOL instrument approaches and landings
(References 14, 15). The plethora of dynamic situations simulated in these programs, coupled with the re-
lative inaccuracy of aerodynamic data for the basic aircraft and the requirements for accurate yet economi-
cally efficient identification, provides an extensive data base for the evaluation of the practical useful-
ness of an advanced identification technique.

The organization of this paper is as follows. A brief review of the identification technique and a
summary of the X-22A data acquisition and handling procedures are given in the next two sections. The
succeeding two sections describe the selection of the a priori information needed by the algorithms and re-
view recent theoretical aspects of designing control inputs to enhance identifiability. Representative re-
sults from the lateral-directional STOL program are then presented, followed by preliminary results from
approximated control input designs obtained in the third program. A few remarks and recommendations
conclude the paper.
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IDENTIFICATION TECHNIQUE

The identification techniques used on the X-22A flight data are:

• A classical least-squares equation-error method, which can be used by
itself but which generally provides initial estimates for

• A Bayesian maximum-likelihood estimator, using a recursive, locally
iterated Kalman filter.

As is generally known, equation-error techniques lead in theory to biased parameter estimates in the pre-
sence of measurement noise. In practice, modern gyros and air sensors have good signal-to-noise ratios,
and in fact equation-error techniques often provide sufficiently accurate results (Reference 16); experi-
ence with X-22A data analyses has shown that damping ratios of oscillatory motions tend to be underestimated
but that frequencies are generally quite accurate using equation-error derivative estimates. The primary
advantage of the equation-error technique is that it is rapid and inexpensive, and that it is sufficiently
accurate given the quality of the X-22A sensors to provide good initial estimates for the locally iterated
Kalman filter.

The development of this version of a Kalman filter for aircraft identification has been described in
detail elsewhere (References 9, 17) and hence will be reviewed only briefly here. The central idea is to
obtain a suboptimal minimum variance estimate of the parameters (and states) from the measured data for
generally nonlinear systems by extension of Kalman filter theory. To this end, we consider an augmented
state consisting of the aircraft states and the parameters to be identified; the resulting state equation
is, of course, nonlinear even if the unaugmented state equation is linear, and therefore some form of
approximation to the optimal nonlinear filter is required. A common approximation is to use an extended
Kalman filter to estimate the states; this technique, however, has been shown to yield biased estimates,
the cause for which may be viewed as inaccuracies in the reference trajectory about which the linearization
takes place. To improve the reference trajectory, therefore, a locally iterated filter-smoother is used
(References 9, 18, 19), which is possible because of the recursive nature of the technique. This procedure
updates the reference trajectory between every two time points through alternate one-stage extended Kalman
filtering and one-stage smoothing, the iterations continuing until there is negligible change in the refer-
ence trajectory between successive iterations. It can be shown formally that this procedure reduces the
bias caused by state and measurement nonlinearities (Reference 9).

The salient features of this identification technique may be summarized as follows (Reference 20):

1. The technique seeks minimum variance estimates (i.e., the conditional mean) of general
systems described by nonlinear state and measurement equations including both process
and measurement noise. The formulation of the algorithms is predicated on this general-
ity; hence for example, the implicit nonlinearity introduced by augmenting the state
with the parameters to be identified does not compromise the formulation.

2. The technique is recursive in nature. It is theoretically possible to apply the algorithms
on line in real time, although this capability is not included at present in the X-22A
data acquisition equipment.

3. The technique as currently employed on the X-22A programs does not estimate the measure-
ment and process noise covariances. Methods which directly maximize the likelihood
function do perform this estimation well for linear systems (Reference 7), and the lack
of this capability is somewhat of a drawback of the technique. For the application of
the technique to X-22A flying qualities flight data, however, the deficiency is minor,
as (1) the model structure is generally well defined and calibration flight records are
obtained in relatively smooth air, both of which decrease the process noise in the system,
and (2) the quality of the data acquisition procedures and measuring sensors is high
enough to obtain valid a priori measurement noise statistics from the flight records.
The determination of the process and measurement noise covariances for the X-22A is
discussed in more detail in a later section.

DATA ACQUISITION EQUIPMENT AND PROCEDURES

The data acquisition systems and procedures used for X-22A flight programs are described in Ref-
erences 21 and 22, and only those aspects which bear on identification of the flight records are
repeated here.

A schematic of the digital data acquisition system is shown in Figure 2. Sensors in the aircraft mea-
sure all pertinent quantities, such as rigid body responses, control deflections, and variable stability
system command signals. This information is sampled 200 times per second and telemetered via an L-band
pulse-code-modulated telemetry link to a mobile ground station, where it is decoded and recorded on line
on the "bit-stream" recorder. For post flight data analyses, the bit-stream information is processed
through the digital mini-computer to produce an IBM 370/65 compatible digital tape.

The data on this digital tape are then processed and edited to be compatible with the identification
computer programs. In the first X-22A flight program, the data were initially digitally filtered by a
third-order Butterworth filter in order to reduce the sampling rate to the 1/0.08 samples/second of the
identification technique without introducing aliasing errors. It was ascertained experimentally, however,
that this filtering is not necessary; hence, on the succeeding programs, no digital or other filtering of
the telemetered data was performed.
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ALGORITHM INPUT INFORMATION

The purpose in using a Bayesian, rather than non-Bayesian, maximum likelihood estimator is to make use
of known information concerning the qualities of the measurements or initial parameter estimates rather than
estimating them along with the actual parameter values. The following a priori information is therefore
required to initiate the Kalman filter algorithm:

1. Initial estimates of the parameters

2. Variances of the initial estimates

3. Measurement noise variances

4. Process noise variances

Thorough discussions of the selection of these values are given in References 10, 12, 20, and 22, and hence
only a brief qualitative summary is given here. The primary point of importance is that, although the
performance of the algorithm can be improved by "optimizing" this information for each data set, it is
necessary to seek compromise values whenever possible if doing so makes the identification process more
efficient and hence economical.

As was mentioned earlier, the least-squares equation-error method is used to provide initial estimates
for the Kalman filter algorithm. In addition to the parameter-estimates, the equation-error method also
provides estimates of their variances; these variances, however, are incorrect absolutely (too small) and
relatively (wrong indications of relative accuracy). It is preferable theoretically, therefore, to compute
the initial variance estimates by an independent method. As is discussed in References 9 and 20, one such
method is to compute the Cramer-Rao lower bounds on the variances, which are functions of the control in-
puts as well as the parameter values, and multiply them all by a large factor. Experimental experience
has shown, however, that multiplying the equation-error variances equally by an arbitrary, large factor
(i.e. 100) appears to provide adequate results (hence indicating relative insensitivity of the technique
to the initial ratios of the variances), and thereby eliminates an additional computational step.

The measurement noise statistics are obtained by visual examination of the flight records. This esti-
mate is then checked qualitatively by comparing plots of the residual sequences of the filter operation
with the assumed noise statistics, and readjusting the statistics if required. The X-22A data acquisition
system provides data with excellent signal-to-noise ratios in general, and therefore this method of esti-
mating the measurement noise variances is sufficiently precise. Again, in the interests of rapid and
efficient identification procedures, the measurement noise statistics are kept the same for all data records
if possible.

The most difficult choice of required a priori information is that of the process noise statistics.
To some degree, the process noise covariance matrix Q is a "fiddle parameter" in the algorithm which may
be used to improve its performance for a given data record. On the other hand, the requirement for rapid
post-flight identification as nearly automatic as possible leads to a desire to hold these statistics at
a fixed value for all flight records. To make this tradeoff, then, it is important to define precisely
what the sources of process noise might be. For the X-22A data, there are essentially three sources of
process noise:

1. Gust or turbulence inputs

2. The variable stability system

3. Modeling errors

Of these, the gust inputs are of the least significance for the records that are analyzed, because the ma-
jority of calibration identification records are obtained in turbulence-free air to facilitate rapid checks
on the frequency and damping of prevalent rigid-body modes of motion. The variable stability system is
the source of "noise" both as a result of its dynamics not being included in the model and through its
operation on noisy measurement signals. Modeling errors are primarily a result of the fundamental restric-
tion that we seek the best linear model for the aircraft dynamics that will fit the data, as most flying
qualities parameters are defined in terms of linear systems.

For identification of the X-22A data, it is assumed that one set of process noise statistics is accept-
able for all configurations save those which involve the de-augmentation of several stability derivatives
(in which case the linear model becomes a poor approximation), and this set is used for the rapid processing
of the data. The values of the statistics are selected primarily by iteration on early data sets to achieve
adequate performance, and then held constant. A more complete description of this procedure is given in
References 20 and 22.

IDENTIFIABILITY OF DATA

Perhaps the most important aspect of maximizing the efficiency of the identification process concerns
choosing control inputs to enhance the "identifiability" of the desired parameters from the data. The
best identification performance possible, in the sense of minimum mean square estimation error, is given by
the Cramer-Rao lower bound on the variances, which is a direct function of the characteristics of the input.
A fairly sizable body of literature has therefore developed concerning "optimal" input designs which are
predicated on minimizing some scalar indication of these bounds (References 23, 24) or maximizing a simi-
lar scalar measure from the Fisher information matrix, the elements of which are the sensitivities (Refer-
ence 25). The difficulty with these designs is that the question of what is being optimized becomes impor-
tant: in all cases, some scalar must be chosen for optimization, since there is no defined "optimal" for
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a matrix. In addition, the design problem formulated this way is a fixed interval optimization problem,
and hence does not indicate the amount of data necessary to achieve a desired accuracy, which is an impor-
tant question from a flight-test-conduct point of view. A recent reformulation of the input design problem
by Chen appears theoretically to offer a more useful result (Reference 26).

Chen formulates the problem as a time-optimal control problem subject to constraints on the maximum
allowable variances. With this formulation, the design procedure yields a "bang-bang" control for many
applications, with the switching intervals being dependent on the system parameters; this characteristic
is exploited in the use of less expensive "suboptimal" designs, in which the switching points are chosen
by recursively computing the Cramer-Rao lower bounds on the variances and using their time-rates-of-change
as switching indicators. The input designs using this new approach are compared in Reference 26 to other
designs, and the results appear to demonstrate increased identifiability.

On the three X-22A flight programs, three different approaches to input design for identification have
been followed. The first program used simple elevator stick doublet inputs, since angle of attack stabil-
ity and pitch rate damping were the primary variations between configurations, and this simple input pro-
vides good sensitivities for these derivatives. The second program involved variation of a majority of
the lateral-directional derivatives, however, and a single simple input could not provide sufficient identi-
fiability. On this program, therefore, an attempt was made to have the pilots put in "switching" inputs
in both roll and yaw, with the frequency requested as being close to the natural frequencies of the simu-
lated aircraft. This approach generally provides good identifiability (Reference 20), although the fact
that the pilot may tend to act as a feedback controller can rapidly degrade the identifiability, since then
the inputs become linearly related to at least one aircraft output. On the third program, these "switching"
pilot inputs were again used, and, in addition, an attempt was made to implement a suboptimal time-optimal
input design based on the results of Reference 26.

To check on the "goodness" of the inputs, two alternatives are available. First, as we have discussed,
the Cramer-Rao lower bound may be calculated for the record using the estimated stability derivatives. In
a relative sense between several records, however, it is not necessary to perform this additional calcu-
lation. If we assume that the identification technique approaches an efficient estimator (unbiased, mini-
mum variance), then the final variance of the parameters computed by the technique should approach the
Cramer-Rao lower bound (Reference 9); therefore, a comparison of the magnitudes of the diagonal terms in
the final covariance matrix provides some indication of the identifiability. It is also instructive to
normalize this matrix and examine the normalized covariances between the parameters, as high values (e.g.,
^ 0.9) indicate a strong degree of linear dependence.

APPLICATION TO FLIGHT DATA

Representative Results: Lateral-Directional Dynamics

To provide an indication of the quality of the results obtained with this identification technique,
representative time history matches from the second flight program are given in Figures 3-5. Results from
the first program are given in Reference 10, and a more detailed presentation from the second program is
given in Reference 12.

The second X-22A flight program investigated lateral-directional flying qualities and roll control
power requirements for STOL landing approach. Primary variables in the experiment were roll mode time con-
stant, Dutch roll frequency, and the roll-to-sideslip ratio, out of which seven base dynamic configurations
were selected; for each of these, yaw due to aileron was varied, and, for selected cases, the available roll
control power was electrically limited. To achieve these dynamic configurations, all of the roll and yaw
moment derivatives of the X-22A were changed by the variable stability system, and a large quantity of
resulting calibration configurations were generated whose characteristics had to be determined from flight
calibration records.

The identification of these data was performed using a set of equations which included nonlinear
kinematic terms and linear expansions of the aerodynamics (see Reference 12). The results shown in the
figures span the range of dynamics investigated in the experiment. Configuration 1 in Figure 3 has highly
augmented roll damping and de-augmented directional stiffness; Configuration 4 in Figure 4 has augmented
directional stiffness, approximately the same roll damping as the X-22A, and de-augmented dihedral effect;
Configuration 6 in Figure 5 is similar to Configuration 4 except that the roll damping is de-augmented.

The results shown in these figures were obtained by the "production line" techniques dictated by
the exigencies of a flight program as discussed earlier; that is, a set of measurement and process noise
statistics selected by iteration during the early calibration data analyses were used uniformly. The ini-
tial covariance matrix of the estimates was also obtained by simply multiplying the equation-error variances
by a constant factor; the factor used for these data was 10^, which did not precipitate filter instability
in these cases and yet ensured sufficient filter gain.

Effect of Initial Estimates

Although, for good signal-to-noise characteristics of the measurements, the equation-error techni-
que provides initial parameter estimates that are quite accurate, it is nonetheless useful to ascertain if
the locally iterated filter smoother algorithm can be shown to provide good results regardless of the
initial estimates. Figure 6 gives the results of identifying the same data as in Figure 4, but with the
initial estimates set at zero. The initial variances, measurement noise statistics, and process noise
statistics are identical. As can be seen, the final derivative estimates and modal characteristics are
identical. This demonstrated insensitivity to the initial estimates and resulting decrease in non-unique-
ness problems is extremely valuable to the "production line" identification required on flying qualities
programs, as it eliminates the need for any "optimal" processing of the data prior to identification.
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Effect of Control Inputs

As we have discussed, the time histories of the control inputs are very important to obtain valid
identification results. Figures 7 and 8 show time histories of two calibration records from the current
flight program; the configurations are approximately the same, and involve attitude and rate augmentation
added to the basic X-22A dynamics. As can be seen by referring to the figures, two types of control inputs
were used. In Figure 7, the pilot was told to use longitudinal stick inputs with switching at intervals
which were near what he judged the characteristic period to be. In Figure 8, a unique feature of the vari-
ble stability system which permits automatic implementation of "perfect" step, pulse, or doublet inputs
was used to provide an approximation to an input designed using a suboptimal variation of the procedure
discussed in Reference 26. The design called for switching intervals of approximately 3.8 seconds but the
actual interval implemented was unfortunately more on the order of 4.5 seconds, and so this example does
not quite provide the "best" results that might be expected.

Both of these control inputs represent attempts to enhance identifiability in the sense of pro-
viding both small variances and covariances of the final estimates. On this basis, they are quite success-
ful. The only significant normalized covariances (CT-- > .5) for either are listed below for the deriva-
tives affected: J

t-)
Mg,Mv

Ms M

/\/l j A/,*
i

au
Manual

-0.92

-0.65

-0.29

Auto

-0.74

-0.46

-0.50

For both of these data sets, the only high convariances are between the % and M9 estimates, which is a
result of the configuration having attitude augmentation. The fact that the remainder are low indicates
a lack of linear dependence between the parameters themselves as well as the states, which is necessary for
good identifiability (Reference 9).

With respect to the.variances of the final estimates, it would be expected that the automatic
input would provide somewhat smaller ones, since the input design procedure is predicated on picking de-
sired values for the variances. The table below gives the desired accuracy of some of the derivatives used
in the suboptimal input design (Reference 26), the final variances achieved with the automatic input approx-
imation to this design, and the variances achieved with the manual input:

i

MU.

Mur

M<i

M0

MSaes
*u
* USy*esz*
'•Zur

**«

°iv
Desired

.0005

.0005

.10

.50

.03

.05

.01

.10

.20
.02

.50

Auto
.0011

.00055

.03

.09

.0045

.01

.006

.001

.025

.014

.005

Manual

.0013

.001

.03

.12

.0045

.009

.007

.055

.024

.021

.12

The final variance estimates for both input types are within the desired values except A/ , although in
general the automatic input designed on a suboptimal basis provides increased accuracy.

. , .^i* ™Tiances and normalized covariances are extremely useful in a relative sense for determin-
ing identifiability, but care must be taken in the interpretation of the variances as indicators of abso-
lute accuracy. To illustrate this point, the derivative estimates from these two data sets are compared
in the £3.016 belowj in addition th° c"mc **£ -«-v.«. +.,.,« „.: i _^» .̂i. _ . . . "

:he differences.
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Derivative

Mu

Mtv
Mr,

MQ

MS£S

Xu

V

**U

Z-u.
Zur
Z^s

Manual

- .00249

- .0280

-1.276

-2.595*

.368

- .224

.023

.014

- .230

- .439

.59

Auto

-.0233

-.0128

-1.231

-5.474*

.45

- .193

.034

.084

- .176

- .464

.81

Zamon+ Z<fauto

.004

.003

.12

.48

.018

.038

.028

.11

.10

.07

.25

*Not comparable: different amounts of attitude augmentation.

Note particularly that while the differences in the force derivative estimates (X(>and 2̂ . ) are correctly
predicted by the variance estimates, those in some of the moment estimates are not. This discrepancy is
a result of the correlations between these estimates as given in a previous table; it is clear that low
correlations are necessary for the variance estimates to have meaning in an absolute sense between records.
A refinement to the design technique of Reference 26 which would constrain the covariances as well as the
variances might alleviate some of this difficulty.

These examples, and previous experimental experience discussed in Reference 20, indicate that it
is possible to provide inputs that enhance identifiability in actual flight experience, given a little
forethought. It is particularly encouraging to find that pilots can be instructed to use inputs which
approach "optimal" designs in efficacy.

Equation-Error Estimates

For completeness, the time history matches of the equation-error technique estimates for the same
data as in Figure 8 are given in Figure 9. As was discussed previously, the X-22A measurement system pro-
vides data with excellent signal-to-noise ratios, and hence the equation-error estimates generally are
quite accurate, which can be seen in Figure 9; the derivative estimates are compared in the table below.

Derivatives

MU.

AV
Mq.

Me

MS£S

yu

y^
Xg£s

z«.
Zur
•z§e

Eq'n Error

- .0149

- .0105

-1.027

-4.942

.402
- .169

- .053

.063

- .235

- .410

.32

Kal. Filter

- .0233

- .0128

-1.231

-5.474

.450

- .193

- .034

.084

- .176

- .464

.81

This fortunate circumstance allows "quick looks" at calibration records in an economical fashion to ascer-
tain whether the achieved dynamics are close to those desired, since the equation-error technique is less
expensive to use than the Kalman filter. In the example of Figure 9, in fact, the equation-error and final
filter results generally are within 20% of each other, a fact which is partially a result of the well de-
signed input.

CONCLUDING REMARKS

This paper has discussed the application of digital identification techniques, and in particular a
Bayesian maximum likelihood method based on Kalman filter theory, to actual flight data from the variable
stability X-22A aircraft. In the course of the three flying qualities programs conducted with this aircraft,
a large quantity of dynamic situations have been simulated and the resulting flight records analyzed (e.g.
over 300 records on the second program alone); the emphasis of the paper has therefore been on the practical
aspects of identifying many data efficiently and economically. Based on this experience in applying the
technique, a general conclusion that can be drawn is that it provides a useful and efficient tool for iden-
tifying stability and control derivatives from flight data, and that, in fact, it can be applied in a
"production line" fashion required during a flight program with little loss in accuracy.
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With respect to the results discussed in this paper, specific conclusions that are pertinent are:

• The locally iterated filter-smoother algorithm developed for nonlinear systems provides
very good identification results for the quasilinear (linear aerodynamics) systems discussed
in this paper.

• The technique appears to offer the advantage of insensitivity to the initial parameter
estimates for X-22A data, thereby eliminating any necessity for data processing prior to
identification.

• The required input information to the algorithm (i.e., the covariance matrices) may be
held essentially constant for "production line" identification during a flight program
after an initial iteration period.

• The control input time histories are very critical to good identification results. Pilot
inputs which attempt "switching" near characteristic frequencies provide good identifi-
ability. Inputs which approximate the suboptimal designs developed in Reference 26 further
enhance identifiability.
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NOTATION

I moment of inertia about body % -axis, ft-lb sec
2T moment of inertia about body u - axis, ft-lb sec
2moment of inertia about body .* - axis, ft-lb sec

' 2I^a product of inertia in body axis, ft-lb sec

/, ( j = {f ll^dUdi ), dimensional roll moment derivative, (rad/sec )/( )

lJ = V-x*jlivlj' ô"'T̂ ±A/o)' (rad/sec2)/( )
/W.) = (t lly)dM/3(.'), dimensional pitch moment derivative, (rad/sec )/( )

A//I = (t ll^BMldf. ) , dimensional yaw moment derivative, (rad/sec )/( )
z - / 'I,, 2

N()
 = (/- £Val/IvI ) (/V. * ' L )> (rad/sec )/( )

77 body Lj -axis acceleration, 57.3 ft/sec

^> body axis roll rate, deg/sec

^ body axis pitch rate, deg/sec

r body axis yaw rate, deg/sec

t time, seconds

U. body # -axis velocity, ft/sec

V true velocity, ft/ sec

UT body /2.-axis velocity, ft/sec

Y = ( t IM) dYldt), dimensional K -force derivative, (ft/sec2)/( )

Ye) = (/ M)ffY/ff(), dimensional (/-force derivative, (ft/sec2)/( )
2

Zt) - (1 IM)9Z.I9( )j dimensional s -force derivative, (st/sec )/( )

ot, angle of attack, degrees

A angle of sideslip, degrees

S£5 longitudinal stick position, positive aft, inches

g lateral stick position, positive right, inches

§'„ rudder pedal position, positive right, inches
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%
e

damping ratio of Dutch roll characteristic response

pitch attitude, degrees

variance of ( ) in units of { )

roll mode time constant, seconds

roll attitude, degrees

magnitude of roll-to-sideslip ratio in Dutch roll component

Dutch roll undamped natural frequency, rad/sec

time rate of change of ( ), ( )/sec

Figure 1. Variable Stability X-22A V/STOL Aircraft
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T E L E M E T R Y ' ' 137 DATA
LINK I ' CHANNELS

MOBILf VAN

T E L E M E T R Y
RECEIVER.

DECODING EQUIPMENT

-« FLIGHT OPERATION
•* DATA PROCESSING

Figure 2. Schematic Diagram of Digital Data Acquisition System
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Figure 3. Identification of Configuration 1
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Figure 4. Identification of Configuration 4
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Figure 5. Identification of Configuration 6
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Figure 6. Identification of Configuration 4 With Initial Estimates at Zero
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PARAMETER ESTIMATION OF POWERED-LIFT STOL AIRCRAFT CHARACTERISTICS

INCLUDING TURBULENCE AND GROUND EFFECTS

Rodney C. Wingrove
Ames Research Center, NASA

Mpffett Field, California, 94035

SUMMARY

This paper considers the estimation of longitudinal aerodynamic coefficients from data recorded dur-
ing flight tests of a powered-lift STOL aircraft. First, a comparison is made between the coefficient
values determined by the regression and quasilinearization identification techniques from records taken
during elevator pulse maneuvers. The results show that for these tests the regression method provides
less scatter in coefficient estimates and provides better correlation with the predicted values. Special
techniques are then developed which allow identification of the coefficients from records taken during
landing maneuvers in which the aircraft encounters turbulence while flying in ground effect. Flight test
results are presented to illustrate the effects of air turbulence and ground proximity on the estimated
coefficient values.

NOMENCLATURE

a,,, pitching acceleration, rad/sec2 T thrust term

ax acceleration measured along X-axis, g units u velocity along X-axis, m/sec

az acceleration measured along Z-axis, g units V total velocity, m/sec

c mean aerodynamic chord, m w velocity along Z-axis, m/sec

C aerodynamic coefficient x vector of state variables

g acceleration of gravity, m/sec2 a angle-of-attack, rad

h height-above-ground-level, m 6 elevator deflection, rad

lyy inertia about the Y-axis . e pitch angle, rad

K constant parameter p atmospheric density

M aircraft weight a standard deviation (rms)

q pitching rate, rad/sec <» free air value, out-of-ground effect

Q dynamic pressure - estimated value

S aircraft wing area, m2

1. INTRODUCTION

NASA is conducting a rather broad research program on powered-lift concepts for future use with jet
STOL transport aircraft. As part of this program a C-8A Buffalo aircraft has been modified with an aug-
mented jet-flap system (ref. 1). This aircraft has been undergoing flight tests to determine the in-flight
aerodynamic performance and handling qualities. In support of this program a study has been made to
evaluate the use of parameter identification techniques in determining the aerodynamic coefficient values
from the recorded flight data.

Several identification methods are available from previous studies (refs. 2-10) to identify the air-
craft parameters from the records taken where the aircraft is excited only by elevator inputs in calm air.
These previous methods, however, are generally unable to treat the problems associated with identification
of the aircraft parameters during landing maneuvers where there are significant external disturbances due
to the air turbulence and ground proximity.

In this investigation two different parameter identification techniques have been"applied to data
recorded during pulse-type maneuvers where the aircraft dynamics are excited by elevator inputs. This
paper will review the accuracy in determining the coefficient values using these different identification
techniques. Special techniques are then applied to data recorded during landing maneuvers where the air-
craft is excited by the combination of air turbulence, ground proximity, and the pilot's normal control
actions. This paper reviews the development of these special techniques and presents results which illus-
trate the effects of air turbulence and ground proximity on the estimated coefficient values.

The intent of the paper is to present the genesis of each of the problems and the identification
algorithms used in the problem solution along with a discussion of some of the more important findings.
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2. AIRCRAFT AND INSTRUMENTATION SYSTEM

The results in this paper were obtained from flight test data recorded during test maneuvers with an
augmented jet-flap STOL research aircraft (ref. 1). This vehicle (fig. 1) is a high-wing STOL aircraft
powered by two turbofan engines mounted in nacelles located under the wing. The relatively cold flow from
the front fans is ducted to augmentor jet flaps. The engine exhaust is directed through nozzles, one on
each side of the nacelles, to provide vectored propulsive lift.

The flight test instrumentation included a nose boom with a pitot-static system and vanes, body-
mounted accelerometers and rate gyros, vertical gyros, position transducers on the control surfaces, pres-
sure and temperature transducers to measure the propulsive characteristics, and a radar altimeter to
measure height-above-ground-level. The vane-measured angle-of-attack, o, has been corrected to account
for angular rates and for upwash (as a function of height-above-ground) . The pitching angular accelera-
tion, aj,, has been derived from the pitch rate signal. The linear accelerations, az and ax, have been
obtained from the body mounted accelerometer signals and corrected (to the aircraft center-of-gravity) to
account for angular accelerations. The flight data were obtained with an airborne digital recorder and
then processed at discrete points, 10 points/sec, on a ground based digital computer.

3. COMPARISON OF ESTIMATION TECHNIQUES

This section will review some estimation results for standard pulse-type maneuvers in which the air-
craft is relatively free from turbulence effects and is above ground proximity effects. Emphasis will be
to compare results from the different identification techniques and to gain some understanding of their
relative accuracy in estimating the values for the aerodynamic coefficients.

Several previous studies (refs. 2-10) have compared different identification algorithms for estimat-
ing aircraft parameters and have found that the results may depend on the technique used. These identifi-
cation techniques generally fall into two categories: equation error and output error. With noise in the
measured aircraft states, the equation error technique can produce biased estimates of the coefficient
values (refs. 2-4). The output error technique can reduce the bias error; however, it is affected by
modeling errors and also may produce the larger standard deviations in the estimated coefficient values
(ref. 10) . This paper will compare results of both a regression technique (equation error) and a quasi-
linearization technique (output error) .

3.1 Identification algorithms

The non-linear equations used to mathematically model the aircraft longitudinal forces and pitching
moment were taken as:

(QS/M) [cx + Cx a + Cx 6 + C (qc/2V)l + T
L Ao a 6 q J

C

q

(2)

(QSc/Iyy)[cmo + C^a + ̂ 6 + Cmq(qc/2V)]

Coefficient terms are included which account for variations in the aircraft angle-of-attack, a; elevator
deflection, 6; and pitch rate, q. This model also includes a Cz term due to the powered-lift function,
Cj, (Cj = thrust of cold air/QS). Using this model the unknown coefficient values have been determined by
the regression (also called equations of motion, or least squares) and the quasilinearization (also called
modified Newton-Raphson) parameter identification methods. (Reference 10 outlines the details of these
techniques as used for the results in this report.)

Regression is a relatively simple technique which determines the coefficient values that minimize the
least squares difference between the time histories for each of the measured accelerations, ax, az, and
am, and the corresponding model outputs, ax, az, and ara. The coefficient values are determined in three
independent solutions, eqs. (l)-(3), using the well-known matrix inversion procedure (ref. 7).

Quasilinearization, in contrast to the regression method, integrates the following kinematic equa-
tions to obtain estimated time histories of the aircraft states.

*\ A /.

u = g(ax - sin 6) - qw + Ky , u(o) = uo (4)

w = g(az + cos 6) + qu + Kw » w(°) = wo (5)

* Kq , q(o) = q0 (6)

+ ice , e(o) = e0 (7)

This technique determines the coefficient values (and bias terms) that minimize the weighted least squares
difference between the time histories of the measured variables, ax, az, am, u, w, q, and 6, and their
corresponding estimated values. With this technique, initial estimates for the unknown parameter values
are made (e.g., from the regression results) and then the estimates are successively improved in an
iterative manner, using the quasilinearization algorithm (refs. 2, 3 and 6).
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One primary difference between these two methods is that with the regression method the variables, q,
a, V, and Q, in eqs. (l)-(3) are taken as the measured values, whereas, with quasilinearization these
variables in eqs. (l)-(3) are represented by the estimated values; q, a = tan"1 (w/u), V = /u* + w^ and
Q = pV2/2.

3.2 Comparison of estimated and measured time histories

Figures 2 and 3 present a comparison of measured time histories with those computed using the two
identification methods. Figure 2 presents the regression results and fig. 3 presents the quasilineariza-
tion results. Values for the rms difference between the measured and estimated data are listed in table 1.
Figures 2 and 3 illustrate that the estimated time histories generally fall within the scatter of the
measured data. As shown in table 1, the rms fit to the pitching acceleration, a,,,, is about the same for
both methods; however, the regression method provides as much as a 30% better fit to the measured linear
accelerations, ax and az.

3.3 Comparison of coefficient values

The coefficient values determined by the two techniques are presented in fig. 4. Also shown (dotted
lines) are the corresponding values which have been predicted from other independent sources, such as
steady-state flight tests, wind tunnel tests, and theory (refs. 1, 11-13).

In general, the more important coefficients such as C2 , Cx , Cm , and Cm , are in agreement both
a a 6 q

between the two methods and with the predicted values. The standard deviations (e.g., run-to-run scatter)
of these estimated parameters are also relatively small.

Other coefficients, such as Cz , Cz , Cx , and Cx , show somewhat more scatter. The inability of
S q 6 q

either technique to estimate these terms accurately is probably because the influence of these terms on
the aircraft forces is small. And also, there is a strong dependency between the elevator deflection, S,
and the pitch rate, q. Previous studies (e.g., refs. 7, 14-16) have also noted the large standard devia-
tion associated with estimating these terms.

For almost all of the coefficients, the regression values have less run-to-run scatter and agree
better with the predicted values. A majority of the regression values (with the exceptions noted above)
are within about ±10% of the predicted values.

3.4 Discussion of identification techniques

The results presented show that the regression method provides better results than the quasilineariza-
tion method. For instance, the regression method provides a better fit to the measured accelerations,
less scatter in the estimated coefficient values, and better agreement with the predicted values.

Any errors to be expected with the regression method depend, to a large extent, on the amount of
measurement noise. Any noise in the measurement of the variables, q, a, V, or Q, could cause bias errors
with the regression method. Although the amount of noise cannot be determined with certainty, the
recorded data (e.g., fig. 3b) show very little of what may be termed white or near white measurement noise
(e.g., there is a low noise-to-signal ratio). Apparently, for the flight test situations considered in
this study, there are no large amounts of measurement noise that could cause significant errors with the
regression method.

The errors to be expected^with the quasilinearization method are related to inaccuracies in the esti-
mates of the variables, q, 5, V, and Q (fig. 3b). In particular, any modeling errors (e.g., neglect of
higher-order aerodynamic terms and cross-coupling from the lateral-directional mode) will cause inaccu-
racies in these estimated states. Also, the quasilinearization technique usually has larger standard
deviations in the estimated coefficient values because all of the coefficients are determined within one
dependent set of equations, eqs. (l)-(7); whereas using the regression method, the coefficients are
determined with three independent equations, eqs. (l)-(3).

For this particular application, regression appears to be the better method to use in obtaining the
coefficient values. This should not imply that in other situations (i.e., where there may be larger
amounts of measurement noise, or where all the states are not directly measured) regression would be the
better method to use. Experience has shown that it is good practice to consider both methods utilizing,
wherever possible, the advantages of each method.

4. PARAMETER IDENTIFICATION IN TURBULENCE

One of the problems in parameter identification during landing maneuvers is to account for the air
turbulence which is usually present at low altitudes. Most of the previous studies have considered air-
craft parameter identification in the absence of turbulence (refs. 2-10), or have made simplifying
assumptions about the noise spectrum of turbulence and its interaction with the airframe (refs. 17-18).
In this paper, a state estimation technique (ref. 19) is used to measure the time history of the turbu-
lence gust disturbances. This measured turbulence is then treated as a forcing function in the aero-
dynamic equations. This technique makes no assumptions about the turbulence noise characteristics and
further allows an examination of the manner in which the turbulence interacts with the airframe.

4.1 State estimation

The inertial velocities and position of the aircraft have been estimated by a solution of the follow-
ing kinematic equations:
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u = g(ax - sin 6) - qw + Ku , u(o) = Ku (8)

w = g(az + cos 6) + qu + jKw , w(o) = Kw (9)
b o

6 = q + icq , 6(0) = Ke (10)
b o

ii = u sin 6 - w cos e + Kh , h(o) = Kh (11)
b o

where the unknown constant (K) terms are determined by quasilinearization. This application of quasi-
linearization requires no mathematical model of the aerodynamics; rather, the direct measurements of the
accelerations, az and ax, and the pitching rate, q, are used in a manner similar to that in a strapped-
down inertial system (see ref. 19 for further details and the formulation including lateral motions).

For the landing approach maneuvers in this study, state estimation provides smoothing of the measured
states, (h, 9), along with the estimates of the inertial velocities, (u, w), and the inertial angle-of-
attack, a^ = tan"1 (w/u). Figure 5 presents some of the estimated states along with the measured data for
a representative landing approach maneuver. The upper portion of the figure illustrates good correlation
between the radio altimeter measurement and the estimated height-above-the-runway. The lower portion of
the figure compares the estimated inertial angle-of-attack, Sj, and the airflow (vane-measured) angle-of-
attack, aa. For these representative landing approach maneuvers there seems to be a large random fluc-
tuation of the airflow vane. The difference between the airflow and inertial angle-of-attack provides a
measure of turbulence acting on the airframe.

Note: An examination has been made to determine possible errors in the airflow angle-of-attack
measured by the vane. As noted previously, the airflow measurement, aa, includes corrections for angular
rate and upwash (as a function of height-above-ground). It has been found that for flight maneuvers out
of turbulence there is excellent agreement between the airflow measurement, aa, and the estimate, a^.

4.2 Interaction of turbulence with the airframe

A necessary consideration in parameter estimation for STOL aircraft, traveling at low speeds, has
been to determine the manner in which this measured turbulence interacts with the airframe. The turbu-
lence as measured by the vane located forward of the aircraft will not immediately interact with the major
aerodynamic surfaces. A first approximation for this delayed interaction is to use a time shift, At, to
account for the time it takes for the measured gusts to travel from the vane until they strike the major
aerodynamic surfaces.

Noting that the total angle-of-attack at any time consists of both the gust and inertial components,
we have

Measured turbulence Inertial
shifted by At angle-of-attack

"W = agust(t - At) + ai(t)

where the turbulence gust component is obtained as the difference between the measured airflow angle-of-
attack and the inertial angle-of-attack at the time, t - At.

<*gust(t - At) = aa(t - At) - ai(t - At) (13)

Figure 6 illustrates the effect of the time shift, At, on the rms fit errors, oa , oa , and oa , for6 z x m
a typical segment of a landing approach maneuver. As shown, there appears to be a different value of time
shift, At, which will provide a minimum rms fit error to each of the measured terms, ax, az, and ara.
These values of time shift appear to be reasonable from aerodynamic considerations. The fit error for the
linear forces, oa and aa , are minimized if the measured turbulence is delayed by the amount of time

required for the gusts to travel from the vane to near the aircraft aerodynamic center (At = 0.4 sec at
V = 36 m/sec). The fit error for the moment term, Oo , however, is minimized using the time required for

the turbulence to reach the stabilizer (At = 0.7 sec at V = 36 m/sec).

The relative amounts of rms fit error reduction, with the time delay, also appear reasonable. The
linear z force is strongly affected by angle-of-attack gusts and, as shown by using the appropriate time
shift, the rms error, oa , is reduced by about 30%. The moment term and the linear x force are influ-

enced less with a reduction of about 10% in aa and 5% in o, , by the appropriate choice of time shifts.
TI x

A further indication of the importance of time shift becomes apparent in fig. 7 where the effect of
At on the estimate values for the coefficients, C7 , C, , and C, , is shown. Without a time shift (at

a q &

At = 0) the estimated values are much different than predicted. However, using an appropriate time shift
(At = 0.4 sec) these terms are near their predicted value.

4.3 Discussion of turbulence effects

The appropriate value of time shift is related to the ratio, length/speed. For the linear forces, az

and ax, the time shift can be taken approximately as:
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.t ., distance from vane to aircraft A.C.
forward airspeed

For the pitching moment the time shift is approximately:

.» distance from vane to stabilizerHt ~ ——^———~~-^—^————^—————
forward airspeed

With large STOL aircraft flying at low speeds the appropriate time delay will be in the order of seconds.
For small aircraft at high speeds, however, the time delay may be quite small.

Previous parameter identification studies, which have included turbulence effects, apparently did not
find a requirement to time-correlate the vane-measured turbulence. These previous studies (refs. 17-18)
have considered smaller aircraft at higher speeds where the inclusion of the time shift may not be so
critical. However, as shown by the results in this paper, the time-dependent interaction of turbulence on
the airframe can affect significantly the estimated coefficient values and, therefore, should be considered
in each application.

One additional note is that turbulence may, in fact, aid in the identification of some of the param-
eters. This is because turbulence acts as another forcing function in addition to the usual control input
forcing function. The results from this study indicate that some of the aerodynamic coefficients may be
determined more accurately from maneuvers in turbulent air (e.g., the aircraft is excited by both gusts
and elevator inputs) as compared with maneuvers in clear air (excited by only elevator inputs). For
instance, as noted previously, the terms Cz and Cz are highly correlated and difficult to determine

q 6
accurately using elevator pulse maneuvers (fig. 4). However, the estimated values in turbulence are
generally found to be near their predicted values (fig. 7).

5. PARAMETER IDENTIFICATION OF GROUND EFFECTS

Ground proximity effects are of concern with STOL aircraft because wind tunnel tests and theory have
predicted significant changes (both static and dynamic) in the aerodynamic flow field for such high-lift
aircraft near the ground (refs. 20-23). These effects on the aerodynamic coefficient values have not yet
been determined by accurate in-flight measurements from landing maneuvers. This section reviews a pre-
liminary application of parameter identification to determine the changes in the aerodynamic coefficients
due to ground proximity. Parameter identification has been used in two ways. First, it has been used to
determine the gross changes in the aerodynamic coefficients due to ground effect. Second, it has been
used in the development of a mathematical model which indicates the amount of change in the aerodynamic
coefficients as a function of height-above-ground, angle-of-attack, etc.

Representative maneuvers, which have been used to analyze the ground effects, are presented in fig. 8.
In each of these runs the pilot controlled the aircraft near a constant angle-of-attack. Maneuvers are
shown at different levels of angle-of-attack for different nozzle angle settings (i.e., different levels
of aerodynamic and propulsive.lift).

5.1 Gross effects of ground proximity

The gross effects of ground proximity on the aerodynamic coefficients can be isolated as follows:

ACLG = CL - [CLJ (14)

ACoG = CD - [CDJ (15)

&CMG = CM - [CMJ (16)

where the terms, ACi , ACn , and ACu , represent the gross changes due to ground effect; the terms, Ci,
G u G

Cp, and CM, are the measured aerodynamic coefficients,

CL = t-(az - Tz) cos « + (ax - Tx) sin a] (M/QS) (17)

CD = [-(az - Tz) sin a - (ax - Tx) cos a] (M/QS) . (18)

CM = (am - Tm) (lyy/QSc) (19)

and the terms, [CL̂ ], [CD ], and [CM ] are the predicted coefficient values (total sums) derived from
parameter identification out of ground effect (as discussed previously).

CLQ
 + CLa a + CL{ 6 + . . . (20)

[CD ] = CD + CD a + CD 6 + . . . (21)
o a o

[CM ] = Cm + C,,' a + Cm 6 + . . . (22)00 o a S

Figure 9 presents representative results showing the gross changes in aerodynamic coefficients as a
function of height-above-ground level. An examination of the data presented in this figure provides
insight into some of the variables which influence the changes in the aerodynamic coefficients and also
indicates the type of terms which must be included in the mathematical model for ground effect.
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First, the magnitude of the ground effects generally vary in an exponential manner as the aircraft
nears the ground. This type of variation with height is similar to that noted in most previous studies of
ground effect.

Second, the ground effects vary from run to run depending upon the aircraft operating conditions.
For run 1 (shown by circle symbols) there is a more positive change in lift and a more negative change in
drag as compared with run 2. These differences apparently account for the greater increase in flight path
angle and speed near the ground in run 1 as compared with run 2 (fig. 8). For run 1 the ground effect
appears "buoyant" enough to cause the aircraft to float up away from the ground; whereas with run 2, the
ground effect appears less buoyant, and the aircraft continues to descend to the ground.

Third, fig. 9 shows that the magnitude of the ground effects is somewhat different for descent and
ascent (shown by the arrows). This apparent "dynamic" ground effect is illustrated in more detail with
fig. 10 where the time history of ACL is presented for the portion of run 1 where the aircraft descends

and ascends above ground level. As shown, there is a rather abrupt loss in lift associated with the change
from the descending to ascending flight path. This decrease occurs after the passage of the minimum alti-
tude point. Apparently, the effect of the ground plane on the flow field is time-dependent. Near the
ground the flow field is effectively straightened, causing a lift loss (see sketch in fig. 10). Such a
lift loss, with a time lag, has been predicted from previous small scale dynamic tests (ref. 20); however,
it had not yet been verified from actual flight test data.

5.2 Mathematical model for ground effect

An examination of the data presented in fig. 9 (and similar data from other runs) gives insight into
the form of equations required to model mathematically the changes in the aerodynamic coefficients due to
ground proximity. A preliminary mathematical model which is being evaluated is of the form

ACM

[K]x (23)

where the term e"h'Kh represents the exponential variation of the ground effect with height; [K] repre-
sents a matrix (3xn) of unknown constant coefficients; and x represents a time varying vector (nxl) of
state variables which influence the amount of change in the aerodynamic coefficients due to ground effect
(e.g., angle-of-attack, rate of descent, etc.).

The parameter^which has been found to have the most significant effect on the rms fit error is scale
Ijeight parameter, Kj,. Figure 11 illustrates the relative rms values for CL, CD, and CM as a function of
Kh. As shown in fig. 11, the best fit is obtained, for all three coefficients, with a scale height param-
eter of Kh « 4.5 meters (15 ft).

Using the values obtained by parameter identification we can see how each of the variables (e.g., h,
a, etc.) affect the aerodynamic coefficients. As an example, fig. 12 presents the estimated aerodynamic
coefficients as a function of angle-of-attack both in and out of ground effect. Ground proximity is shown
to cause (1) a slight increase in CL at low angles-of-attack along with a slight decrease in the lift
curves slope, CL , (2) a reduction of about 30% in CD, and (3) a significant shift in the moment, CM,
with an increaseain the static stability, -CM .

a

The trends, due to ground proximity, found in this flight test study are in general agreement with
results found in a wind tunnel study using a similar powered-lift STOL configuration. That is, the wind
tunnel tests also show similar changes in lift and lift curve slope, a decrease in drag, and similar shift
in moment with increased static stability. However, the magnitude of the changes are somewhat different
in the flight tests as compared with the wind tunnel tests. Figure 13 compares the changes due to ground

, and ACM , as obtained from flight and wind tunnel tests. In comparing these data theeffect, ACL ,

height above the ground level has been normalized with respect to the chord length; also ACL and ACD
G G

are normalized with respect to their free-air values. As shown, the changes in lift and moment are in
general agreement with the wind tunnel, however, the decrease in drag determined in the flight test is
about three times greater than the decrease in drag determined in the wind tunnel. Some differences were
to be expected between the flight and wind tunnel results because, in the wind tunnel, the angle-of-flow
between the ground plane and airframe is not the same as in actual flight; and also, in the wind tunnel
there is a boundary layer on the ground plane (for fixed planes), again not the same as in actual flight.
Because of the difficulties of accurately duplicating the ground proximity effects (both static and
dynamic) from wind tunnel tests alone, it would appear that parameter identification, as used in this
study, can be an important tool in the analysis of ground effects for future vehicles.

6. CONCLUDING REMARKS

This paper has reviewed some recent flight experience in the identification of longitudinal aero-
dynamic coefficients for a powered-lift STOL aircraft. Comparisons were made between results obtained by
the regression and quasilinearization identification techniques. Also, special techniques were presented
for the identification of aerodynamic coefficients when the aircraft encounters air turbulence and
ground proximity.

This study shows that for the data analyzed in this investigation the regression method provides
better results than the quasilinearization method. The regression method provides a better fit to the
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measured accelerations, less scatter in the estimated coefficient values, and better agreement with the
predicted values.

The technique for estimating parameters in turbulence involves the use of state estimation, combined
with airflow (i.e., vane) measurements, to determine the time history of the gust disturbances. The
results show that the measured turbulence must be time-correlated to account for interaction of the gusts
along the airframe. Using this technique, the results indicate that some of the aerodynamic coefficients
may be determined more accurately from maneuvers in turbulent air (e.g., the aircraft is excited by both
gusts and elevator inputs) as compared with maneuvers in clear air (excited by only elevator inputs).

In the estimation of ground proximity effects parameter identification has been used in two ways.
First, it has been used to determine the gross changes in the aerodynamic coefficients due to ground
effect, and second, it has been used in the development of a mathematical model for ground effect. The
results show that ground proximity causes a slight increase in lift, a moderate decrease in drag, and a
significant change in pitching moment.

This review illustrates that there are some differences between the results obtained by the various
identification methods, but of more importance, is a determination of the form of the aerodynamic equa-
tions (i.e., number and type of nonlinear and time-dependent terms) required to model mathematically the
aircraft and its interaction with external forces. For this study of STOL aircraft, during landing
maneuvers in turbulence, the primary consideration has been to define the form of the mathematical models.
Future work appears warranted to investigate the problems of developing the most accurate mathematical
models for advanced STOL and V/STOL aircraft. The development of these mathematical models requires an
analysis of the recorded flight data along with an understanding of those physical processes which may
affect the vehicle dynamics.
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TABLE 1. RMS DIFFERENCE BETWEEN ESTIMATED AND MEASURED TIME HISTORIES

°a 8 units
z

aa g units
x

oa deg/sec2
m

au m/sec

ow m/sec

Oq deg/sec

ae deg

Regression

0.0127

0.00605

0.708

...

---

---

---

Quasilinearization

0.0176

0.00788

0.726

0.552

0.230

0.295

0.630
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ESTIMATION OF ELASTIC AIRCRAFT AERODYNAMIC PARAMETERS

by

Robert C. Schwanz
W i l l i a m R. W e l l s

Air Force Flight Dynamics Laboratory
Wright-Patterson A i r Force Base, Ohio 45^33, USA

SUMMARY

The importance of including aeroelast ici ty in aircraft parameter estimation is discussed using the
B-52E and C-5A aircraft as examples. A parameter estimation method, employing the modal truncation
dynamics math model and the maximum likelihood estimation algorithm, is selected to i l lustrate the
computational d i f f icu l t ies that must be solved. A combined in-house and contractual research program
is then outlined that addresses these anticipated problem areas. The aircraft selected for the init ial
applications of the methods is the B-52E that was flown in the Control Configured Vehicle (CCV) research
program of the AF Flight Dynamics Laboratory.

LIST OF SYMBOLS

Arabic Symbol

ax

a¥

az

b

C,,

1/2

Greek Symbol

a

al

&

Defin!t ion

Fore and aft acceleration, inches/second squared.

Side acceleration, inches/second squared.

Vert ica l acceleration, inches/second squared.

Wing reference span, inches.

Coeff ic ient of drag, Drag/qS.

Coefficient of l ift, Lift/qS.

Coefficient of rol l ing moment, Roll ing Moment/qSb.

Coeff icient of pitching moment, Pi tching Moment/qSc.

Coeff icient of yawing moment, Yawing Moment/qSb.

Coeff ic ient of side force, Side Force/qS.

I Wing reference chord, inches.

: Non-dimensional roll rate, (Roll Rate) x (b/2U,).

Dynamic Pressure, pounds/inches squared.

•Non-dimensional pitch rate, (Pi tch Rate) x (c/2U,).

;Non-dimensional yaw rate, (Yaw Rate) x (b/2U.).

Wing reference area, inches squared.

iTime to one-half amplitude, seconds.
i

Reference forward veloci ty, inches/second.

Defini tion

Perturbation angle-of-attack, degree.

Reference (trim) angle-of-attack, degree.

.Non-dimensional rate of angle of attack, ctc/2U..

'Perturbation s ides l ip angle, degree.

Perturbation ai leron angle, degree.
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Greek Symbol

<5

Defini tion

Perturbation elevator angle, degree.

Perturbation s tab i l i zer angle, degree.

UH1 Reference (trim) s tab i l i zer angle, degree.

Perturbation rudder angle, degree.

Pitch attitude, degree.

Pitch rate, degree/second.

Pitch acceleration, degree/second squared.

Bank angle, degree.

Rate of bank angle change, degree/second.

Acceleration of bank angle change, degree/second squared.

Damped frequency of osci l lat ion, Hertz

Heading angle, degree.

Rate of heading angle change, degree/second.

Acceleration of heading angle change, degree/second squared.

1. INTRODUCTION

During the past decade a substantial research effort has been directed toward the est imation of aero-
dynamic s tabi l i ty and control parameters from aircraft f l ight test data. A recent symposium (Reference 1)
sponsored by the Flight Research Center of the National Aeronautics and Space Administrat ion highlighted
many of the research efforts that have been init iated by the government and industry. Some of the
motivations for these recent efforts are the veri f icat ion of the basic aircraft analyt ical design methods,
the minimization of the expense of s tab i l i ty and control flight test experiments, and the improvement of
mathematical models of aircraft that are implemented on the fl ight simulators.

Most of the parameter estimation results presented to date have emphasized the correlation of
fl ight test data to data measured during wind tunnel tests of r ig id aircraft . The reason for this
emphasis on r igid aircraft is that most exist ing parameter estimation methods mathematically model the
aircraft as a "rigid" structure, thus el iminating the possibi l i ty of expl ic i t ly est imating stat ic and
dynamic aeroelastic parameters that affect the measured f l ight data. At the very best, the exist ing
methods can approximately model the vehicle as 0_uasi Stat ic by assuming the structural distortion occurs
instantaneously. Thus, the structural motion is assumed to have the phase of the body-fixed axis
system motions such as a, (3, p, q, r, etc.

If the flight test of a vehicle indicates a Quasi Stat ic behavior, modern methods w i l l estimate
vehicle parameters that are a product of the aerodynamic s tabi l i ty and control derivatives of the r ig id
vehicle modified by a stat ic aeroelastic correction factor, e.g., C. = C. R ig id + AT

a a a
The inclusion of even the simplest aeroelastic correction factor complicates the desired design verif ica-
tions, since the data determined from flight test must then be correlated with wind tunnel measured
data that have been modified by analyt ical ly determined Quasi Stat ic correction factors.

The objective of this paper is to describe the flexible aircraft parameter estimation research of
the Control Cr i ter ia Branch of the A i r Force Flight Dynamics Laboratory. This work began in 1972 wi th
a study by Schwanz and Wel ls (Reference 2) that identi f ied the possible combinations of the formulations
of elast ic aircraft dynamic wi th the available parameter estimation methods. The results of that study
led to the selection of the Modal truncation formulation to describe the aircraft dynamics and the maxi-
mum likelihood parameter estimation algorithm. The intent here is to estimate both the aerodynamic
parameters of the body-fixed axis system motions (stabi l i ty and control derivatives) and the aerodynamic
parameters of structural motion relative to the body-fixed axis system (generalized aerodynamic forces
proportional to position, velocity, and acceleration). As such, the sensors are mathematically
modeled to include the structural dynamics motions as wel l as the body-fixed axis system motions.

2. FORMULATION OF THE PROBLEM

A review of the literature indicates that a successful attempt to estimate the aerodynamic
parameters of f lexible aircraft has not been reported. Consequently, this init ial attempt to estimate
these parameters is restricted. The linearized equations discussed in this paper describe the symmetric,
small distrubance motions of an elast ic flight vehicle. Further, the problem is restricted to the init ial
conditions of steady, non-rotating flight, with the wings level, and wi th the relative velocity vector
of the center of mass parallel to the flat earth. In addition, the following simpl i f icat ions and assumptions
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are employed:

The thrust is assumed to be constant during the perturbation motion and its magnitude determined
solely by the i n i t i a l conditions of flight.

A l l motions, body-fixed axis system and elastic deformation, are of small perturbation magnitude
and are of the same order.

The sensor locations are assumed to be precisely prescribed for some aircraft shape and the signals
of the sensors are assumed to be free of bias.

The generalized stiffness, mass, and damping as well as the total mass and inertia of the aircraft
are assumed to be known (within some tolerance) by previous measurements or calculations.

The elastic flight vehicle is adequately represented by lumped masses related structurally and
aerodynamically by finite element theory as sketched in Figure 1.

Process noise, or atmospheric turbulence, is assumed negligible.

RIGHT TEST
MEASUREMENTS
• ACCELEROMETER
•RATE GYRO
•INERTIAL

PLATFORM
L « A I R SENSOR J

MEASUREMENT "NOISE"
• INSTRUMENT
•PROCESS (ATMOSPHERIC)
• STRUCTURAL DEFORMATIONS

t -SECONDS

Figure 1. Lumped Mass Representation of a Flexible A i rcraf t

3- EQUATIONS OF ,MOTION

I^ll?!a:iZed_??UaUonS °f motion for f lexib1e ' ' rcraft found in the l i terature are of var ied form
the many formulations can be d iv idec

f s:

Modal Subst i tut ion - The motions of the structure are assumed to be related to the orthogonal
mvacuum eigenvectors (mode shapes). The eigenvectors contain only real numbers. orth°9onal-

St i f fness ' The mode shapes representing the e las t i c motion in the Modal Subst i tut ion

Residual F lex ib i l i ty - S i m i l a r to the Residual S t i f fness formulation, except the s ta t i c e las t i c

structure!0 C°rreCt'°n ' S felated tO the retained m°des and the f lexibi l . iy matr ix of the free-free

' ° " ""***
ReSidUa ' St i f fn"S and Residual F lex ib i l i t y formulations

—elastic formulat™

An i l lus t rat ion of the possib le magnitude of the Quasi S t a t i c correction factors for a large bomber
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aircraf t such as the B-52E is presented in the fol lowing table. These factors, that modify the primary
s tab i l i t y and control der ivat ives of the B-52E (Reference 5), are theoretically est imated using the
Level 2 FLEXSTAB Computer Program System (Reference 6). A cursory examination of the s ta t i c aeroelastic
increments and ratios l isted in the table indicates that stat ic aeroelast ic i ty substant ia l ly changes the
derivat ives of the B-52E aircraf t . For example, Cma is reduced by a factor of k and C&,. is reduced by a

factor of 2. These order of changes can have a large effect on the dynamics of the a i rcraf t as Mach
number, dynamic pressure, or mass distr ibut ion are changed.

Table 1. Level 2 FLEXSTAB Est imates of the B-52E S tab i l i t y and Control Derivat ives

Mach Number 0.569
Att i tude, feet 1(,000
Weight , pounds _ 350,000
Center of Mass , % c 29-8

Tr im State
a. , degrees

6H ] , degrees

S tab i l i t y Derivat ives
CLa, per degree
cma> Per degree

s
C|Tl&

Cj , per degree

Cn , per degree
6

C«.-

Cn?

Control Power Der ivat ives
Cm , per degree

Cm , per degree
e

Cj, , per degree
°a

Cn& , per degree

R i g i d ( R )

-3-79

1.86

0.098

-0.0197

-19-35

-7-56

-0.0016

0.0023

-0.522

-0.153

-0.0328

-0.0)1)7

-0.00079

-0.0013

E las t i c (E )

-2.28

2.27

0.072

-0.0050

-15.58

-7.30

-0.0012

0.0016

-0.261

-0.119

-0.0280

-0.0068

-0.0001)5

-0.0006

Increment
(E-R)

1.51

0.1)1

-0.026

0.011)7

3-77

0.26

O.OOQi)

-0.0007

0.261

0.03!)

0.001)8

0.0079

0.00031)

0.0007

Rat io (EXR)

0.60

1.22

0.73
0.25

0.81

0.97

0.75
0.70

0.50

0.78

0.85

0.1)6

0.57

0.1)6

For those cases in which the Quasi S ta t i c formulation of the dynamics is inadequate for the design
task, the Modal Truncation or Residual F lex ib i l i t y formulations are most commonly employed. The relat ive
numerical s ign i f icance of these two formulations can be i l lus t ra ted using the C-5A Act ive L i f t Distr ibu-
tion Control System (ALDCS) development described in Reference 7- The effect of the r ig id airplane,
Quasi S ta t i c , Modal Truncation, and Residual F lex ib i l i t y formulations on selected s tab i l i t y and control
der ivat ives of the C-5A and on the center of mass motion parameters of the C-5A are presented in Figures 2
and 3. These data are theoretically est imated by the Level 2 FLEXSTAB System for the cases of 0, 3, 7, and
13 retained invacuum modes and then connected wi th straight lines to fac i l i t a te their v isua l i za t ion .

-.03*

-.032

-.030

(DEG

O R I G I D

& QUASI STATIC

MODAL TRUNCATION

RESIDUAL FLEXIBILITY

(RAD ~')o_

-28.

-2, f

NUMBER OF RETAINED INVACUUM MODES NUMBER OF RETAINED INVACUUM MODES

Figure 2. O5A Longitudinal S tab i l i t y De r i va t i ves , ALDCS Cru ise Design Point ^12301
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O RIGID

A QUASI STATIC

MODAL TRUNCATION

RESIDUAL FLEXIBILITY

PHUGOID SHORT PERIOD

0 1 8 12 0 1| 8 12

NUMBER OF RETAINED INVACUUM MODES NUMBER OF RETAINED INVACUUM MODES

Figure 3- C-5A Center of Mass Dynamics, Unaugmented A i rcra f t , ALDCS Cruise Design Point 1)12301

Figure 2 i l lustrates the effect of s ta t i c aeroelast ic i ty on the der ivat ives; the theoretical estimate
of the "rigid" C-5A der ivat ives are presented for contrast. The difference between the r igid and Quasi
S ta t i c value of the derivat ive at zero "retained modes" is the e last ic increment such as previously
presented for the B-52E. Note in part icular that the Modal Truncation formulation expl ic i t ly employs the
r igid airplane der ivat ive values regardless of the number of invacuum modes that are dynamical ly retained.
In contrast, the Residual F lex ib i l i t y formulation "adjusts" the value of all the der ivat ives for stat ic
e las t ic i ty depending upon the number of retained invacuum modes. As shown, the Residual F lex ib i l i ty
numbers vary strongly w i th the number of retained modes, eventually converging approximately to the Quasi
S ta t ic value when all the dynamic aeroelast ic effects of the invacuum modes are deleted.

Figure 3 i l lustrates a disadvantage of the Modal Truncation formulation when contrasted to other
formulations. As shown, the phugoid and short period dynamics of the C-5A are dependent upon formulation.
The most theoretically correct estimates shown in Figure 3 are the Quasi S ta t i c solut ion, at zero
number of retained invacuum modes, and the Residual F lex ib i l i t y solution at the other cases. The number
of invacuum modes that must be retained to adequately represent the dynamics of the elast ic aircraft in
the Modal Truncation formulation is highly dependent upon the problem being analyzed and nearly always is
larger than the number required for the Residual F lex ib i l i t y formulation.

The Modal Truncation formulation has been selected by the Control Cr i te r ia Branch for the in i t ia l
study of f lex ib le airplane parameter est imation. As shown in Figures 2 and 3, its advantage is that the
equations of motion for the body-fixed reference axis system contain expl ic i t r ig id airplane s tab i l i t y
and control der ivat ives. In addit ion, it can be shown that the sensor equations of this formulation for
the accelerometers are s impler than those of the other e las t i c airplane dynamics formulations and are
also independent of the parameters being estimated. The disadvantage of the formulation is that it
requires a substantial number of modes to represent both, the s ta t i c and dynamic aeroelastic effects of
the invacuum modes. As examples of the number required, the C-5A Act ive Li f t Distr ibut ion Control
System (Reference 7) required from 6 to 15 modes, whi le the B-52E CCV Ride Control System (Reference 8)
required as few as 5 to as many as 27 invacuum modes.

The l inearized equations of symmetric motion for the e las t i c airplane may be wri t ten (Reference^):

[F j jHZ j } = [B j jHZ j } + [G i k ] { 6 k } + { N j } , i, j = 1, 1) + 2r; and k = 1 , 2c (la)

(Z j ( t=o) } = {Z j (o ) } (Ib)

where [ F j : ] , [ B j . ] , and [G^] contain the aerodynamic elements to be estimated.

{ Z : } is the state vector containing axis system motion and structural deformation rates.

{6^ } is the control vector of position and rate.

{ N j } is the process noise, such as atmospheric turbulence, and is assumed to be negligible
in this analys is .

r is the number of retained invacuum modal coordinates in the Modal truncation formulation,

c is the number of act ively moving control surfaces.
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1). SENSOR AND MEASUREMENT EQUATIONS

The acceleration sensor representations {A£ } that are required may be derived (Reference 2) in terms
of the states {Zj }:

{a£} {gi} i. = 1, L
j = 1, 1) + 2r

(2)

where {a*} is the theoretical value of ttie acceleration measurement at L number of selected
locations on the aircraft.

{g^} is the gravity vector at each accelerometer whose axis is parallel to the x body axis.

L is the total number of accel erometeirs.

[N^.] is of constant value and proportional to either the distance of the accelerometer from
the center of mass of the aiiircir.aft or to the initial velocity of the aircraft .

In order to duplicate the experimentall measurements, the accel eroraeter representations are augmented:

<Y!m> = [Hmn]
1, L * *
1, 1) H- .2r + L

(3)

where {ym} is a measurement vector whose ordered elements are forward velocity, vert ical
velocity, pitch rate,, pitch attitude, and then L number of accelerations.

{Xm} is a state vector of 1) + 2r states, {Z j } , augmented by L accelerations, {a^}.

[Hmn] is a transformation matrix relating the state vector to the theoretical measurement
vector. Its elements are proportional to unity and the slope of the invacuum mode at the
location of the rate and att i tude gyros.

The experimental measurements, {Ym } , have the same element order as {ym} and are wr i t ten
(Reference 2) :

{Ym> = [Tmn] {sn} + {nm} m, n = 1, L + 1) W

where {sn} is the measurement output of the sensors in their local axis systems.

[Tmn] is the direction cosine transformation matrix that relates sensor output in the local
measurement axis to measurement components in the body f ixed axis system of equations
(1) and (2).

{nm} is instrument noise in the measurements having the expectancy properties.

E { n 2 ( t j ) } = 0

E [ {n 2 ( t j ) } {n2 ( t j ) }T ] i, j = 1, 1) + L

In "rigid" airplane parameter est imation problems the transformation [Tmn] is not required, i.e.,
{Y } = {s }, as the sensor axis system can be insta l led to be paral lel to the body-f ixed reference axis

system of equations (l) and (2). However, for e last ic a i rc ra f t , such as the B-52E, sensors on the
extremes of the fuselage or wing and ta i ls can have s igni f icant angular reorientation from their
instal led orientat ion to the orientation during the reference condit ion of f l ight . Figure 1) i l lustrates
the effect of wing dihedral on sensor reorientation due to s tat ic aeroelast ic i ty . Obviously , perturba-
tion deformations that are measured w i l l also cause some addit ional reorientation of the measurement axes
of the sensors. This additional reorientation is assumed small in the analysis presented herein.

^^^^

Figure 1). Effect of Vehic le E las t i c i t y on Sensor Measurement Ax is Reorientation
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5. MAXIMUM L IKELIHOOD ESTIMATION

The methods used to est imate the s tab i l i t y and control parameters of r ig id a i rcraf t may be charac-
ter ized (Reference 9) as "Equation Error," "Output Error," and "Advanced Non-linear." The maximum l ikel i -
hood method fal ls into the latter characterizat ion along w i th the extended Kalman f i l ter. The advantages
of the advanced methods are that they can be applied to problems which contain both process noise
(turbulence-induced aircraf t motions) and instrument noise.

The maximum likelihood method has been selected for the analys is presented herein due to i ts prior
success on "rigid" aircraft . In addition, the computer demands of the method serve to identi fy the
areas of major f l ight testing and computational d i f f i cu l t ies prior to an expansion of the work ef fort
to other estimator methods.

The f i rs t step in this est imat ion process is to determine which of the aerodynamic parameters in
[F j j ] , [ B j j ] , and [G j k ] are to be estimated. In the case of the f lex ib le a i rcraf t , these parameters are
b in number (Reference 2) , where

b = 3r2 + 3rc + 9c + 15r + 20

Clear ly , for the case of r and c moderately large, b is very large.

The parameters expressed as components of a vector, { p , } are est imated as (Reference 2) :

{pb} = {pb} + I I [ [H] [A( t i ) ] ]T [R]"1 [ H ] [ A ( t , ) i 1 •1.
Li=l J

j ) } J{v m ( t j

where N is the number of measurements.

m = 1, L + 1)

(5)

(6)

{ v m ( t , ) > = { Y m ( t , ) > - { y m ( t j ) } m = 1, L + 4

{p(j} is the init ial est imate for {pb} from theoretical methods such as Level 2 FLEXSTAB.

[A] is the matrix of sens i t i v i ty coeff ic ients,

(7)

[3Zj/3pb ][A] =

The sensi t iv i ty coeff icients are calculated by d i f ferent iat ing equations (l) and (2) w i th respect
to the parameters {pb} found in [F j j ] , [ B j j ] , and [G j k ] . This means that the elements of [A] may be

determined by solv ing a matrix di f ferent ial equation for [3Z;/3pb ] and an algebraic equation for
[3a£/3pb ] , (Reference 2) :

[3Zj/3pb ] ,= dt [3Zj/3pb ] = [F]
-1

3G
ill 61 - [F]

-1 3F; d

,-1
where {dj} = [F]"1 { [B j n ] {Z p } + [G jk] {6 k } }

[3ajl/3pb] = [NAj] [3Zj/3pb ]

(8a)

(8b)

(t-o)
3Pb

(t-o) (8c)

The solution of equations (8) is substituted into equation (5) to calculate {pb} where {pb"} in
equations (l) and (2), and {Xn} and {ym} are again calculated for all tj. The new values for
{v(tj)} from equation (7) are then used to repeat the process to arrive at a second update of {pb}.
The process is repeated until {pb} converges to its maximum likelihood value as measured by the
convergence of J(pb). the performance function:

J(pb) det f
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6. PROBLEMS OF COMPUTATION AND APPLICATION

To date, seven problems of computation and application have been identi f ied by the in-house research:

Proper input design for exci tat ion of all state components.

Ava i l ab i l i t y of the direction cosine transformation matr ix, [T], in equation (1)).

Determination of the optimum number, type, and location of sensors on the ai rcraf t .

The absence of rea l is t ic start-up data for {pb} in equation (5).

The inversion of large and possibly i l l -condit ioned matrices in equation (5 ) •

The integration of a large number of sens i t i v i t y equations in equations (8).

Rational choice for the particular parameter to be included in the analys is .

The excitat ion of the body-fixed axis motions and important e las t ic deformations is essent ia l if
the s ignal to noise ratio is to be large enough for optimum parameter extraction from the fl ight test
data. Hopefully, this can be assured by careful selection of precision instrumentation and by well-planned
fl ight tests and by previous analyt ical simulat ions using the large digi tal computer.

The second problem, the calculation of [T] in equation (1)), can be solved using the combined output
data of the NASTRAN and the Level 2 FLEXSTAB Computer Program Systems. Other less precise calculations
of [T] are possible from FLEXSTAB alone, provided only dihedral angle changes and aerodynamically
s ign i f icant rotations are of interest. Since [T] is in part a function of {pb}, an i terat ive cycle
between a parameter estimation method and Level 2 FLEXSTAB may be required for some applications. For
expediency in our restr icted in-house effort, [T] has been assumed to be a diagonal unity matrix.

The determination of the optimum number, type, and location of sensors, has plagued the methods
developed for "rigid" ai rcraf t . The inclusion of aeroelast ic i ty effects could conceivably either
complicate or a l lev ia te the problem. The complication introduced is the requirement for a larger number
of sensors. The al lev iat ion introduced is a more precise representation of the sensor s igna ls in
equations (1)). Figure 5 presents a fraction of the total number of sensors on the B-52E. The type and
location of these sensors is thought to be adequate for the f i rs t fl ight test applications of our in-house
method. W i th these thoughts in mind, the in-house study has assumed that proper air data sensors, rate
gyros, and accelerometer measurements are now avai lable. These avai lable sensor signals have been
approximated w i th s imi lar - type sensor s ignals which have been analyt ica l ly created by the Level 2
FLEXSTAB programs. Prior to applying the estimation program to actual f l ight data, the analyt ical test
cases w i l l be corrupted wi th instrumentation noise and bias to provide insight into the fl ight test
problems.

Figure 5. Sensors Ava i lab le on NB-52E CCV Ai rcra f t

The absence of rea l is t ic start-up data for {pb} in equation (5) poses a d i f f icu l t computational
problem. Many of the parameters defined in equation (5) may be of small magnitude, d i f f icu l t to
est imate analyt ical ly and impossible to measure experimentally during wind tunnel tests of "rigid" and
e las t ic models of the f l ight vehicle. Fortunately most of the parameters of importance are calculated
analyt ical ly by exist ing aeroelastic s tab i l i t y and control methods. Also, the Modal Truncation formula-
tion of the dynamics al lows direct inclusions of the avai lable w ind tunnel measurements of "rigid"
airplane s tab i l i t y and control der ivat ives. I n a d d i t i o n , s impler est imation methods, such as least
squares, may also prove of value to estimate
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The f i f th problem, the inversion of large and possibly il l-conditioned matrices in equation (5) ,
is a major computational di f f icul ty. The inversion of the matr ix

_ [R]'1

poses a d i f f icul t problem since this matrix has the dimensions of b x b. As stated previously, b can be
very large for a moderate number of r retained invacuum modes and c number of active aerodynamic control
surfaces. For the ini t ial in-house studies, only 3 modes and one control surface are used, resulting
in b = 110 parameters.

The t ime-wise integration of the large number of sens i t i v i t y equations is another major computational
problem. The size of the sens i t i v i ty matrix [3Zj/3pb ] is (1) + 2r) x (b). For the ini t ial in-house
case of 3 retained invacuum modes and one act ive control surface, 10 x 110 equations must be integrated.
Fortunately, these are linear f i rs t order equations for which several acceptable methods are avai lable.

The rational select ion of the parameters of {pb} that are to be estimated is d i f f icu l t and
numerical sens i t i v i t y studies using aeroelast ic s tab i l i t y and control programs such as Level 2 FLEXSTAB
should be of great value. For instance, the aerodynamic parameters for control surface rate and
acceleration and for the structural accelerations are found to be negl igible in our previously ci ted
study of the C - 5 A w i t h FLEXSTAB. As an obvious f i rs t step the, these parameters could be f ixed at
their theoretical values during the f i rs t f l ight test data analyses of the C-5A. This would reduce b
to the s ize 2r2 + 2rc + lOr + 6c + 20, a substantial reduction in the number of parameters, {pb}, to
be est imated.

7. IN IT IAL APPL ICAT ION

The B-52E CCV program sponsored by the AFFDL w i l l provide the test data that constitutes the f i rs t
application of f lex ib le a i rcraf t parameter estimation methods. This program examined and f l ight
demonstrated f ive CCV concepts: Ride Control, Maneuver Load Control, Gust-Induced Structural Fatigue
Rel ief , Flutter Mode Control, and Augmented S tab i l i t y . A large number of data were recorded during
the program to develop the systems and to demonstrate their performance - over 200 var iables and more
than 120 hours or f l ight test time. Although these data were not in i t ia l ly recorded for parameter
estimation purposes, they constitute one of the best sets of f l ight test data for f lex ib le a i rcraf t that
are presently avai lable. The data require cal ibrat ion and format changes, and then correlation to CCV
design methods to make them of substant ia l value to researchers in parameter est imation or in other
areas of aeroelastic s tab i l i t y and control.

In 1975 the Control C r i te r ia Branch w i l l fund the B-52E CCV data reduction and correlation. The
plan to be followed ca l ls for the identi f ication of twelve data sets for symmetric and ant i -symmetr ic
perturbation f l ight. Typical of the data to be analyzed and correlated to theory are:

Control system inputs
Control surface rotations
A i r data from the nose boom
Rate gyro data
Linear and angular accelerations
Structural internal loads
Gross a i rc ra f t inert ia character is t ics

A planned contractual effort in 1975-1976 w i l l employ these data to develop an alternate parameter
est imat ion method that complements the in-house effort. As th is work has been ident i f ied as a high
risk/high payoff research effort , the contractual ef fort w i l l emphasize a l ternat ive numerical approaches
to e l iminate the ident i f ied 'computational d i f f i cu l t i es of the maximum likelihood method developed
in-house.

8. CONCLUDING REMARKS

The trend toward higher-performance, l ighter-weight vehic les introduces complex aeroelast ic
phenomena that can contribute s ign i f i cant problems to vehicle design. At present, the s tab i l i t y and
control parameter est imat ion methods avai lab le treat only the s implest of aeroelast ic phenomena and
even then, require an accurate analyt ical method to est imate aeroelast ic corrections to the "rigid"
airplane s tab i l i t y and control der iva t ives .

This paper has presented the results of a feas ib i l i t y study for the ident i f icat ion of aeroelast ic
parameters in the dynamical model for e las t i c a i rcraf t motion. Several pract ical problems seen l ikely
in the implementation of a computer program to est imate these parameters. Even for the s imple case of
symmetric, steady, non-rotating, wings level in i t ia l f l ight condition, the number of parameters is
large and is l ikely to contribute to numerical problems. These problems w i l l be a l lev iated by further
understanding of the physical s ign i f i cance and sens i t i v i t y of the a i rcraf t response to these aeroelast ic
deri vati ves.

As is usual ly the case, high payoff in research and development a lso impl ies a r isk. The risk is
that computational problems involved in mechanizing the maximum l ikel ihood parameter est imation method
on a dig i ta l computer may be too d i f f icu l t to overcome. To date this does not appear to be the case,
although analy t ica l test cases from Level 2 FLEXSTAB and experimental test cases from the B-52 CCV
program have not been analyzed. The dollar cost of the r isk is minimized through the emphasis placed
upon an in-house effort by the Flight Dynamics Laboratory prior to an extensive contractor effort. The
key element in min imiz ing the r isk to achieve the high payoff is the Level 2 FLEXSTAB computer programs
that w i l l be used to create analy t ica l test cases.
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