£ -<K273

Modelling the Thermal Conductivity of Thermal Barrier Coatings

J.-M. Dorvaux, O. Lavigne, R. Mévrel, M. Poulain, Y. Renollet, C. Rio
ONERA - Materials Science Department
29, av. de la Division Leclerc
92322 Chétillon Cédex
France

ABSTRACT

The thermal conductivity of ceramic coatings is a function of the
thermal conductivity of the individual constituents (nature of phases,
presence of point and planar defects, etc.) and of the morphology of
the coating (pores, cracks). This latter aspect is particularly
important for TBCs as it explains why their thermal conductivity is
significantly lower than the corresponding values for dense
materials.

This paper presents a model developed to calculate the thermal
conductivity of porous and microcraked ceramic coatings based on a
finite difference method applied on digitised images of yttria
partially stabilised zirconia (YPSZ) coatings deposited by plasma
spraying. The influence of the different types of morphological
features on the therrnal conductivity is discussed.

1. INTRODUCTION

Thermal barrier coatings are constituted of a ceramic external
layer, most generally composed of partially stabilised zirconia
(Zr0y-6 to 8wt% Y,0,) deposited on top of an oxidation
resistant metallic layer (MCrAlY alloy or modified aluminide).
Their main function is to thermally isolate the superalloy
components, blades or vanes, which they protect from the hot
gases circulating in the turbine. Typically, the use of a 250 pm
thick ceramic layer can provide about 200°C temperature
reduction on the metallic part, thus prolonging its lifetime,
reducing thermal transients, etc. [1].

Up to now, most of the efforts dedicated to thermal barrier
coatings have been focused on the obtention of performant
reliable systems and a predominantly empirical approach has
permitted their introduction in service even on highly stressed
components such as first stage blades [2].

Only recently, as witnessed for instance by the dedication of a
full session during a recent TBC workshop [3] and on-going
research programmes [4], significant attention has been
increasingly directed towards characterising, understanding and
lowering thermal conductivity, an altogether essential property
for these systems.

Zirconia-based thermal barrier coatings exhibit already low
thermal conductivities (typically between 1 and 2 W/mK).
These low values of thermal conductivity arise both from the
intrinsic value of dense partially (and fully) stabilised zirconia
materials and from the heterogeneous microstructure of the
coatings deposited by plasma spraying or EBPVD (electron
beam physical vapour deposition).

The introduction of a stabiliser, required to avoid the detrimental
effect of monoclinic to tetragonal phase transformation at typical
service temperature, is accompanied by the incorporation of a
substantial amount of vacancies. Thus, in the case of yttria
stabilised zirconia, the substitution of two tetravalent zirconium
ions by trivalent yitrium ijons is accompanied by the
incorporation of one oxygen vacancy. For PSZ containing 8wt%

Y03, this corresponds to a vacancy content of the order of 4.4
mol.%, providing an efficient source of scattering for phonon
propagation. This also explains why the thermal conductivity of
these materials is a decreasing function of the yttrium content (at
least for relatively low stabiliser contents [5, 6]). Another way of
decreasing the intrinsic thermal conductivity of ceramic layers
would be to substitute zirconium jons with heavier metallic ions
[7, 8), an approach followed by Maloney et al. [9] with a work
on Ce04-Y,0; systemn, at the expense though of an increase in
density.

Another efficient way to decrease the thermal conductivity of a
material is to introduce microstructural defects such as pores,
voids, microcracks which constitute obstacles against the
through-thickness heat transfer propagation. Fortunately, the
presence of such defects, produced during fabrication, seems to
be indispensable for the thermomechanical resistance of these
systems. It is doubtful however that their distribution in existing
coatings is optimised regarding the thermal properties and, in
order to design more performant TBCs, it now appears
necessary to be able to characterise and understand the
relationship between thermal conductivity and microstructural
features constituting these heterogeneous materials.

It must be reckoned that guidelines that can be derived from the
literature, in particular from models relating morphology
(porosity) and thermal conductivity of solid materials are of
limited usage in the case of thermal barrier coatings due to the
complexity of the microstructures,

A variety of models have been developed to estimate the thermal
conductivity of multiphased solids, in particular porous
materials. Most of them assume the material constituted of a
dispersion of a more or less concentrated and randomly
distributed second phases. While early models proposed by
Maxwell [10], Eucken [11], Russel {12] and Bruggeman [13] for
example, consider only spherical particles, improved versions
elaborated by Murabayashi [14], Schulz [15], Koh and Fortini
[16], Cunningham [17] and McLachlan [18] consider ellipsoids
characterised by shape and orientation facters.

As a general rule, the thermal conductivity X of a porous solid
derived with these models can be expressed as :

M)H):f(asni)

where Ay is the thermal conductivity of the pore-free solid, £ is
the volume fraction of the pores and n; are adjustable
parameters, to be determined empirically, related to the shape
and/or orientation of pores .

To evaluate the validity of these models, several authors have
examined the analytical results given by some of these models in
light of experimental values on different systems [19, 20, 21, for
example]. Examining experimental data on alumina, graphite,
uranium dioxide, sandstone, silica brick and limestone, and with
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porosity up to 75%, Rhee [19] found a satisfactory correlation
with the equation proposed by Aizanov and Domashnev [22].
For El-Fekey et al. [20] who evaluated the Maxwell, Loeb and
Murabayashi models on thoria compacts with porosities up to
46%, the Murabayashi model [14] yields the best result among
the three. More recently, Jackson et al. [21] found that
McLachlan’s equation [!8] comes closest to modelling the
experimentally measured thermal conductivity of AIN-Ln,O,
systems.

Remarking that the experiments considered may not be suited to
determine the quality of theoretical calculations, due to various
experimental inaccuracies and simplifications, Bakker et al [23]
have computed the influence of pores of different shapes
{cylinders, spheres, ellipsoids) with the FEM technique. The
comparison with the equations describing the effect of
inclusions on the overall thermal conductivity shows that the
analytical equation of Schulz [15] gives a good description of
such materials.

A full review of all the models is beyond the scope of this
article. However, the puzzling diversity of conclusions derived
by these authors point out to the fact that all these models with
simple algebraic expressions assume that the porosity can be
experimentally assessed with a very limited number of
parameters (the pore volume fraction & and adjustable
parameters), which singularly restricts their predictive capacity.

To overcome these shortcomings, several authors have
developed more sophisticated theoretical approaches as well as
finite element calculations to estimate the effective thermal
conductivity of multiphase materials.

Tzou [24] estimated the thermal conductivity starting from a
general field theory (supposing uniformly distributed internal
cavities), deriving tractable analytical expressions for simple
pore geometries, i.e. insulated spherical cavities and penny-
shaped cracks.

In a more sophisticated approach, Furmanski [25] developed an
effective macroscopic description for heat conduction in
heterogeneous materials using an averaging technique and
Green’s function method and applied it to describe a model
composite with randomly oriented parallelepiped inclusions
distributed in an epoxy matrix.

The expressions obtained with these approaches become readily
complex and apparently they have been used up to now only in
the case of uniform distributions involving rather simple
geometrical shapes for the pores (ellipsoid, cubes). For materials
having complex pore microstructures, such as those met in
plasma sprayed coatings, and in order to be closer to the real
structure {interconnected porous structure), however, numerical
schemes appear to be the most promising approaches.

With the objective of extending the rather simple analytical
approaches (and poorly predictive) proposed by McPherson [26]
and by Moreau et al. [27] on the thermal conductivity of plasma
sprayed coatings (and later improved by Bjornekiett et al.[28]),
Hollis {29] developed a numerical scheme in which the actual
pore structures of vacuum (VPS) and air (APS) plasma sprayed
tungsten coatings are used as the basis of finite-element models
to calculate the effect of pores on the thermal conductivity of
plasma sprayed coatings. If, for VPS coatings, whose pore
distribution and shapes are relatively simple, this approach gives
a reasonable agreement between calculated and experimental
values (respectively 70% and 60% of the bulk value), for APS
coatings, instead, a large discrepancy exists between caiculated

and tmeasured values. This is attributed to the complex pore
structure, which cannot be properly taken into account by the
limited areas on the cross sectional micrographs serving as input
information into the calculation.

In a study on the thermal conductivity of UQ, pellets, Bakker
[30] used a finite element method to compute the conductivity of
a matrix containing a dispersed phase (pores). Starting from a
photograph of a cross section, the microstructure of the material
is described as a triangular mesh used as input data. Arbitrary
temperatures are imposed on the upper and lower boundaries of
the corresponding area (other boundaries are taken adiabatic)
and the FEM program computes the conductivity from the
thermal flux profile. As explained later, it remains doubtful
whether this type approach can be extended to large areas,
keeping memory storage reasonable.

In the work presented here, the objective was to develop and
evaluate an alternative approach, based on a finite-difference
calculation for computing the thermal conductivity of thermal
barrier coating, using as input data digitised images of the real
material. With this method, the morphology of the ceramic
coating, as complex as it can be, is properly taken into account.

2. CHARACTERISATION OF
STRUCTURE

In order to provide data to the thermal conductivity calculation
software, reliable procedures have been developed to quantify
the real TBCs porous structure. The success of the modelling
strongly depends on the accuracy and reliability of the results of
these procedures. The complete microscopic characterisation of
the TBC morphology involves numerous steps as sample
preparation, image acquisition, image analysis and validation
with macroscopic porosity determination.

TBCs POROUS

Sample preparation

A correct and reproducible metallographic preparation of ptasma
sprayed ZrQ; coatings is not straightforward but is essential for
obtaining a representation of the real porous structure. Porosity
determination by quantitative image analysis and numerical
calculation of the thermal conductivity will give reliable results
provided that no error is introduced at the sample preparation
stage.

Materials

All investigations are performed on a 1| mm thick free standing
TBC plasma sprayed by SNECMA, initially on a HastelloyX
substrate without any bondcoat. The powder is a commercial 8
weight% yttria partially stabilised zirconia spray dried powder
(HCST Amperit 827.423).

Sample preparation

The following procedure has been set up. The free standing
coating is vacuum impregnated (Struers/Epovac, P~100 mbar)
with a superfluid epoxy dye (Struers/Epofix 301) before
sectioning. Sample slices are then cut off with a precision saw
(Struers/Accutom-2) using a thin diamond wheel and the lowest
rotation and sample forward speeds to avoid any damage. The
slices are then manually polished according to the following
steps : 1200 then 4000 SiC papers for grinding, polishing using
a 3 pm diamond spray first on a hard cloth (Struers/Pan W, blue
lubricant) then on a smoother cloth (Struers/DP-Mol, pink
lubricant), final polishing with a %4 pm diamond paste.
Polishing quality and absence of pull-outs are checked with light
microscopy after each step. For scanning electron microscopy
observations a ~20 nm thick conducting carbon layer is vacuum
sputtered within a Balzers MEDO10 unit.



Image acquisition

Cross sections of TBC prepared as previously described have
been observed in a digital scanning electron microscope
(Zeiss/DSM960). Backscattered electron mode is chosen
preferentially to secondary electron mode due to the higher
contrast between zirconia matrix and porosity (pores and
cracks). The adopted acquisition conditions are the following :
15 kV acceleration voltage, 9 mm working distance, « low »
electron current. Brightness and contrast are adjusted in order to
obtain a reproducible grey level histogram (Fig. 1). Two
magnification levels (180x180 pm? ; 45x45 pm?) and two image
resolutions (512x512 or 1024x1024 pixels) have been used for
characterising the TBCs morphology. Their influence will be
discussed later on (see § 4).

Signal to noise ratio is increased by pixel averaging so that a
1024x1024 pixels image acquisition takes about 400 seconds.
Image acquisition is fully automated owing to computer assisted
stage displacement. This allows a statistical characterisation of
the samples.

Image analysis

Image analysis procedures have been developed with two

objectives :

« provide binary images of TBC cross sections which will be
used directly as input data for the thermal conductivity
calculation software,

« quantify the porous structure in such a way as to be able to
determine the contribution of each morphological feature to
the thermal conductivity of a thermal barrier coating.

This will be the starting point for modelling thermal
conductivity as a function of the morphology.

Thresholding

The transformation of SEM grey level images into binary images
is the key step on which depends the reliability of the subsequent
results. The threshold level is manually fixed on images with
optimised and reproducible grey level histogram (Fig. 1).

This last one contains two peaks : a very sharp and intensive
peak at the 0 level (black level) corresponding to the majority of
the globular pores and a wider cne centred at middle grey levels
which includes cracks and zirconia matrix.
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Figure 1: Grey level histogram.

The adopted threshold level which accounts for the whole
porosity {pores and cracks) corresponds to the beginning of the
lightening of isolated pixels in the solid phase (Fig. 2). This
ensures its reproducibility.
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Figure 2: Thresholding.

Porosity separation

This procedure is based on opening and reconstruction image
analysis operations. It creates three new images from the initial
thresholded image : one containing the dispersed globular pores,
one with the crack network and one with the globular pores and
the cracks directly connected to them.

This fully automated procedure will be widely used to determine
the contribution of each morphological feature to the
conductivity (see § 4). A still more precise description can be
achieved using the following procedure.

Porasity reconstruction

From an initial parent binary image it is possible to derive a
series of images (about 300 or more according to the
morphology complexity) with evolving porosity. This is done by
applying a sequence of erosion image analysis operations to the
parent image which leads to a final image containing only
« ultimate erodeds ». These pixels exactly correspond to the
globular pore centroids. Starting from this new image, a step by
step reconstruction of the porous features creates the derived
images. The operation is ended when the initial total porosity is
completely reconstructed (Fig. 5).

An application of this procedure in relation with the thermal
conductivity computation will be shown in the last section.

Image assembling
This algorithm is developed to provide large size images of the
samples which are more representative for the conductivity
calculation. This is done by an automatic search of maximal
overlap between two binary images from contiguous and slightly
overlapping fields.

Analysis of globular pores

Each individual globular pore is characterised by a set of
patameters (area, perimeter, Feret's diameters, number of
neighbours,...). In this way different pore distributions {in
number, surface,...) can be obtained (Fig. 3).
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Figure 3: Globular pore distribution (% of particies
VErsus area)

Analysis of the crack network

This procedure is based on the « skeletonization» (image
analysis terminology) of the crack network, followed by a
decompeosition in juxtaposed segments of minimal fixed length.
A distribution of these segments with regards to their erientation
is then available (Fig. 4).
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Figure 4: Segment orientation {(average of segment
length versus angle)

Porosity determination

The total porosity of a TBC can be estimated from binary
images of cross sections using image analysis provided that the
number of analysed fields is statistically relevant. A total of 105
images (180x180 pm® ; 1024x1024 pixels) corresponding to two
transverse perpendicular cross sections have been considered.
The mean porosity value obtained for this image set is 15% with
a 2% standard deviation.

Furthermore the volumetric total porosity of the whole free
standing coating (60x45x1 mm®) has been determined to 1211 %
from water immersion experiments and X-ray diffraction
theoretical density data. Closed porosity is less than 1 %.

The relatively good agreement between image analysis results
and volumetric porosity shows that the sample preparation
procedure as well as the thresholding one do not introduce too
many artefacts. The higher value obtained by image analysis is
attributed to some remaining pull-outs and mostly to the fact that
backscattered electron detection slightly enlarges the narrowest
cracks.




3. NUMERICAL COMPUTATION OF THE THERMAL
CONDUCTIVITY

It has been shown that the morphology of a zirconia plasma
sprayed coating is relatively complex in so far as it involves
dispersion of pores with various sizes and shapes and connected
crack network. As we are concemed with the influence of
morphology on thermal conductivity and we want all the
morphelogical information obtained with SEM to be taken into
account, the modelling method must face this structure
complexity without oversimplification.

Analytical or empirical models mentioned in the introduction
only deal with simplified geometrical shape dispersions and are
not well suited for connected porosity. The variety of pore
structure families does not allow an efficient use of such models,
which are generally restricted to one simple type of shapes and
cannot handle connectivity effects with a fair accuracy.

Computations on very complex geometry are tractable with
some numerical metheds. The finite-element method is well
known for its possibilities in this field. Recent works [29,30]
demonstrate these capabilities by computing the thermal and
electrical conductivities of porous metals or metallic oxides.

The finite-element method, among others, uses a grid
representation of the geometry. The mesh properties of this grid
are however submitted to some constraints. Then its application
to very complex shapes may lead to some difficulties. As each
shape to be modelled must be decomposed in simple geometric
elements (triangles or quadrilaterals), the resulting amount of
nodes and meshes may become tremendous when the geometry
presents very small details. For example the minimal shape that
we may encounter is a single square of one pixel size. If we
want to decompose it in triangular or quadrilateral meshes, this
single pixel produces, at least, four nodes. Continuity
constraints on the neighbouring meshes may impose some grid
refinements on the vicinity of this isolated pixel, even if the
closest shapes are very large. As a consequence the resulting
mesh density in the area close 1o this square may become very
high. For thin cracks (their minimal thickness is one pixel) this
may lead to more dense mesh distribution and untractable
continuity constraints. Therefore, as the solution methods are
generally global (e.g. they are often reduced to a2 minimisation
problem), the associated algebraic system may reach an
unpracticable size. So the finite element method seems to be
difficult to apply in our field of study if no restriction on the
geometry is acceptable.

On the other hand, the standard finite-difference method seems
to undergo equivalent restrictions as it needs some grid
representation, and therefore, some specific processing on the
internal boundaries (e.g. boundaries between porosity and
matrix).

However, this can be overcome if :

¢ the grid can be constructed directly from the input data
image,

¢ the discretisation
internal boundaries,

* the resulting set of algebraic equation remains practicable.

does not need specific processing on

Specific implementation of the finite difference method

The grid construction may be reduced to a very simple process if
we use a regular uniform mesh grid where nodes are simply
defined by the pixels (square pixels) of the input image. With
such a grid no geometric internal boundary information is
associated with meshes. These information are related to the
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properties of each node (e.g. the local thermal conductivity) and
are stored as coeflicients of the partial derivative equation to be
solved. The schematic representation of our problem is shown
on figure 6 :

AN

aTn-0 N an-0

div(d grad(T))-0

Figure 6: Problem definition.

Then we have to build the finite-difference equation to be solved
for each node. This is done by means of the well known five
points scheme, that is :

(AL} +B(i,j) +C(1,j) D NTE)

AGNTEJ-1HBENTG-14)
+C(LITj+ DHDEGT(+LL)

If we do not want to treat the discontinuities of these A,B,C,D
coefficients with specific equations occurring when the local
conductivity exhibits a step, an implicit way has to be found. For
example the well known [31] five weighted conductivities
scheme widely used in variable (but continuous) properties
problems where the coefficients are defined by :

A{LFV2AML- ML)
B(i,j)=1/2(A0- 1)+ Mij)) 5
CO= 1205+ 1)+ Mid)) 5
DX 12000+ 1,3 (AGL)) -

and which is of second order (for continuous properties) is not
applicable in our case because it smoothes the discontinuities.
Indeed, one can easily see that for small sized (e.g. one or two
pixel thickness) objects this scheme leads to erroneous vajues as
no node is assigned its real conductivity.

More suited schemes can be constructed using asymmetrical
distributions of conductivity. For example the Upper Left
scheme we commonly use is defined by :

Al A1)
B(Lj=A(i-1j) ;
Cjy=ALi) 5
DX, jy=h (i) -

Four first order distinct schemes can be constructed on this basis
(the four corner implementations). It can be shown that they lead
to a space transformation in the neighbourhood of
discontinuities as they operate a small translation along bisectrix
of 1j axes. For random geometries they are not strictly
equivalent as they produce small variations (about 10™ or less)
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of the resulting computed conductivities, but as we will see
below (Fig. 9) this is not the most critical source of uncertainties
in the present problem.

For the main boundaries (e.g. the boundaries where Dirichlet or
Neumann conditions are applied) we use the standard method,
that is the image method based on the same scheme for
Neumann condition (the Dirichlet condition does not need any
computation as T is imposed).

When the temperature is known for each node, the average or
equivalent thermal conductivity of the whole domain is
computed from :

where ¢ is the height and | the width of the domain, the
integration being done on one of the horizontal boundaries. The
space step being constant, that integration can be performed with
standard quadrature formulas.

The solver

The proposed scheme leads to a set of Nx-2*Ny linear equations
to be solved. As we are concerned with large values of Nx and
Ny (computation with Nx~4200 and Ny~5100¢ has been
performed), the solver has to be as efficient as possible.

The first difficulty is to have the most compact form of the
problem in order to reduce memory occupation. This can be
done efficiently by reducing the coefficient storage.

With the definmition of A,B,C,D we have seen before, it can
easily be shown that, for a simple diphasic problem, we have to
store only 2° + 2%+ 2° different configurations. So the storage for
A,B,C,D can be drastically reduced provided that we can store
some case index for each node.

As this case number is in the range of tens, an array of bytes is
convenient. So the minimal storage required is :

e one Nx*Ny double precision array for T,

s one Nx*Ny byte array for case markers,

® 4*20 double precision scalars for coefficients,

» one Nx*Ny byte array for input data.

This is about 10 Moctets for a 1024x1024 problem and up to
210 Moctets for a 4200x5100 problem. So if the solver does not
need intermediate storage, we expect that such problems can be
solved on common 256Mo RAM computers. The solution
method may be chosen with respect to this criterion. The two
common approaches for this kind of solver are iterative matrix
methods and iterative by points methods.

The first kind is well represented by the conjugate gradient
method {32] which, as other matrix methods, does not satisfy
our criterion. It needs, at least, two or three times the minimal
storage defined above. So the maximal dimensions of the
problems we could solve with such methods would be reduced
by a factor of ¥2 or V3. Alternatively, we would need some
supercomputer. Therefore, matrix methods are very efficient on
computers with high vectorisation capabilites (as Cray for
example), but seems to be less attractive on scalar or superscalar
computers (such as common workstations) [33].

The second kind is commonly known as the Gauss or Gauss-
Seidel method [32].

They can be implemented without extra storage so our criterion
is satisfied. Provided that we are able to find some well suited
(Fig. 7) convergence acceleration parameter (over-relaxed
Gauss-Seidel method), they can outperform matrix methods
when applied on scalar or superscalar computer [33], but they
are notably less efficient when deep vectorisation is allowed.

So we have implemented an over-relaxed Gauss-Seidel solver
which allows the solution of problems with sizes up to about
6000x6000 on our S512Mo RAM workstation. With the
commonly used SEM magnification this theoretically allows the
computation of TBC conductivity for thick samples (1.2x1.2
mm?), or extended areas of relatively thin coatings (for example
¢.20x36mm>).

Guass-Seidel over—relaxation factor

100 1000 10000
Tinaln

Figure 7: Convergence acceleration parameter.

For huge problems, the main limitation is the duration of
computation. The following table shows computation duration in
seconds for a standard 1024x1024 problem with 10* precision
criterion (e.g. the convergence criterion on heat flux in relative
form), for three different superscalar computers :

HP9000/780 | DEC Alpha 500
260 405

Pentium Pro
1164

The computation was achieved with 3000 iterations using a
convergence acceleration parameter of 1.997. The maximal
residual error on heat flux (relative value) was about 9.4.10°5.

One can consider this case as the simplest one because the input
data image was of medium complexity. For higher complexity
input the maximal computation time may be twice the indicated
time. For the 4200x5100 problem we have solved only on the
HP workstation, the computation time was about 10 hours in the
most difficult case. Notice that the complexity (which can be
evaluated as some function of the number of porous objects)
increases roughly as the area of the domain. Despite that, the
relation between the size of the domain and the computation
time which is a power function of the maximal dimension of the
domain exhibits an exponent close to 3, which is the theoretical
value for the over-relaxed Gauss-Seidel method.

The initial value for T may also strongly influence the speed of
convergence. Our standard initialisation is the temperature
distribution for the homogeneous medium. A possibly more
efficient initial distribution may be constructed from the
Richardson’s extrapolation concept [34}. Let Ty, be the solution
of the problem for the domain reduced by a factor 2 in each
dimension (e.g. we compute only one node out of twa). This



selution may be achieved within a time t/8, where t, is the
computation time for the whole problem .

The values of T are then determined on alternate nodes using
bilinear interpolation. The global cost of these two operations
remains close to /8. As we do not need an “’exact’® solution
for T,», we can reduce the precision criterion in order to reduce
this time. So the initial data construction has a cost less than
t,/10 for example. Our major expectation is that such an
initialisation would be very close to the whole solution T. Then
the amount of computation needed to obtain T would be
substantially reduced.

Experiments have shown that the effective global computation
time may be reduced by a factor of about 2 for low complexity
input (globular porosity for example). For higher complexity
input the time reduction is often imperceptible as small details
(cracks for example), which are partially lost in the T Ty,
input transformation, have a major contribution to the whole
solution. So this is not a very efficient method for the reduction
of computation duration because of its lack of generality.

Computation output

The computation program outputs some convergence
information and the computed equivalent thermal conductivity.
Therefore, the resulting array of temperatures is saved in a
compacted binary file. This file can be read by another program
for visualisation purpose. The temperature, its gradient, and the
heat flux can be visualised by means of isovalue representation
as shown on figure 8.

Figure 8: Heat flux representation.

Such representations performed on images with separated
porosity give a qualitative useful description of the effect of each
morphological feature on the heat transfer through a TBC.,

4. APPLICATIONS
Before applying these tools to various TBCs, three major points
have to be considered.

The resolution problem

The first one concerns the optimal choice for input image
resolution, As figure 9 shows, the computed conductivity
strongly depends on the input image dimensions.

Images of the same physical field with various resolutions (e.g.
256x256, 512x512, 1024x1024, 2048x2048 pixels) lead to four
inputs which have been used for conductivity computation. An

Thermal conductivity computations
MP70A square fedds, 500X magnifleation.
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Figure 9: Thermal conductivity versus resolution.

extra 1024x1024 image (referenced 1-2) is obtained from the
512x512 one by a pixel duplication technique. The computed
conductivity is a decreasing function of the resolution whereas
the toral porosity is nearly a constant, As results for the 512x512
and the 1-2 cases are quasi identical we can assert this is not a
discretisation effect. The main justification we found is the loss
of small morphological details (loss of crack continuity for
example) which results from the resolution decrease but does
not strongly affect the total porosity. The computed conductivity
seems to be related to the resolution by :

A =4 —
L4 lnf+N

where Ajr is the value we would obtain for an ideal resolution
and N is the resolution expressed as the number of pixels on one
side of the image. Thus we are able to find a resolution
independent value of the thermal conductivity for each field if
we have two different resolution input images. This is an easy
thing to do as a 512x512 input image can be constructed from a
1024x1024 one by pixel destruction. So all the following results
are presented with three values (the 1024 resolution, the 512
resolution computed values and the ideal resolution extrapolated
value) for the computed ¢onductivities,

The matrix thermal conductivity problem

The second problem concerns the conductivity data of the
different phases. For the computations, the needed data are the
morphology and the thermal conductivity of each phase.

For the porous one, we can use the thermal conductivity of air
which is well known. The major problem is for the zirconia
matrix thermal conductivity. At present only bibliographical
values are available. They fall between 2 and 3 W.m™ K™ [5], so
the related uncertainties on computed thermal conductivities are
large. Some in-situ evaluations of the matrix conductivity are in
progress by means of microscopic thermal diffusivity
measurements on real TBCs. They may lead to more realistic
values of matrix properties in a near future. In the meantime, we
have used an arbitrary value of 2 W.m'K' for all
computations.

The 2D to 3D effects
The third point is related to restriction on actual geometry. All
the data and results we are able to obtain with these methods are
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two-dimensional. Three-dimensional effects can heavily change
the conductivity if inclusions have peometrical properties which
cannot be evaluated with two-dimensional sections. As Bakker
[29] mentionned, the three-dimensional problem is unreachable
with current computers. Therefore the construction of the
relevant three-dimensional input data sets would be
unpracticable with the resolution we use. So the present work is
limited to the two-dimensional approach. Fractographies
performed on plasma sprayed TBCs suggest that the cracks,
which are responsible of the main conductivity reduction, have
depth/width ratios far exceeding one and a two-dimensional
section is an acceptable representation for such geometries. But
this is not the case for globular porosity.

Owing to these various uncertainties the computation results
have to be considered indicative rather than exact.

Results

These tools were first applied to a free standing TBC plasma
sprayed by SNECMA. Extensive analysis and computations
were done on such coating in order to :

e test and validate the different procedures,
e study the influence of different classes of porosity on
thermal conductivity.
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Figure 10: Plasma sprayed TBC computed thermal
conductivity versus porosity.

A set of 35 adjacent (1024x1024 pixels) fields was obtained
with the SEM. The thermal conductivity has been computed on
each field and is represented versus porosity on figure 10
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Figure 11: Globular porosity contribution.

(medium line). The lower line corresponds to ideal resolution
images and is derived from calculations with 1024x1024 and
512x512 resolutions as explained above. The open symbals

correspond to the thermal conductivity computed from the
global 4234x5148 image resulting from the assembly of the 35
fields according to §2.

The first important result is that the average values of the 35
fields computed conductivities are very close to those obtained
for the global field as it can be seen on figure 10.
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Figure 12: Crack contribution.

Therefore the decomposition in small (180x180 pm®) domains
with somewhat arbitrary boundary conditions leads to a correct
estimation of the equivalent conductivity of a larger element of
TBC.

The second important result comes from computations done for
each class of porosity (Fig. 11 and 12).
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Figure 13: Influence of porosity class.

For almost identical porosity content, fields containing only the
crack network present a thermal conductivity 10 to 30% smaller
than that of fields with only globular pores. Analysis of
computed conductivities reinforce the intuition that the major
conductivity reduction results from the cracks which are mostly
oriented in a direction perpendicular to the heat flow (see Fig. 4)
in plasma sprayed TBCs.

This can be demonstraied even more clearly using porosity
reconstruction (see §2) as computation input {Fig. 13). The rate
of variation of the thermal conductivity with the porosity (e.g.
dL/0e) strongly depends on the morphological class.

As the crack family has the highest rate of variation this class of
porosity is the most efficient in reducing thermal conductivity in
the case of plasma sprayed TBCs.



5. CONCLUSION

A software has been developed for the computation of the
thermal conductivity of porous coatings (plasma sprayed TBCs)
from binary images of real material cross sections. This
approach based on a finite difference method takes directly into
account the actual complex morphology of the ceramic which is
mostly original with regard to existing models. This numerical
model is able to determine the contribution of each
morphological feature 10 the thermal conductivity and therefore
compare different microstructures or coating architectures. In a
near future it will be associated to a morphology generator for
building a predictive tool. This one will be used in particular by
engine manufacturers as guideline for modifying coating
spraying conditions in order to obtain specific morphologies
leading to optimised coating thermal properties.

It is important to note that this approach, developed on TBCs is
most general and can be applied to a variety of multiphase media
(refractories, composites, etc.).
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