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ABSTRACT 
‘lk thermal conductivitv of ceramic oxtines is a timction of the 
thermal conductivity oft& individual constit&ts (nature of phases, 
presence of point and planar defects, etc.) and of the morphology of 
the coating (pores, cracks). This latter aspect is particularly 
important for TBCs as it explains why their thermal conductivity is 
significantly lower than the corresponding values for dense 
materials. 
This paper presents a model developed to calculate the themwl 
conductivity of porous and microwaked ceramic coatin@ Lewd on a 
finite difference method applied on digitised images of ymia 
partially stabilised zircnnia (YPSZ) coatings deposited by plasma 
spraying. The influence of the different types of morphological 
features on the thermal conductivity is discussed. 

1. INTRODUCTION 
Thermal barrier coatings are constituted of a ceramic external 
layer, most generally composed of partially stabilised zirconis 
(ZrO,-6 to 8wt% Y20,) deposited on top of an oxidation 
resistant metallic layer (MCrAIY alloy or modified aluminide). 
Their main function is to thermally isolate the superalloy 
components, blades or vanes, which they protect from the hot 
gases circulating in the turbine. Typically, the use of a 250 pm 
thick ceramic layer can provide about 200°C temperature 
reduction on the metallic part, thus prolonging its lifetime, 
reducing thermal transients, etc. [I]. 

Up to now, most of the efforts dedicated to thenal barrier 
coatings have been focused on the obtention of performant 
reliable systems and a predominantly empirical approach has 
permitted their introduction in service even on highly stressed 
components such as first stage blades (21. 

Only recently, as witnessed for instance by the dedication of a 
full session during a recent TBC workshop [3] and on-going 
research programmes 141, significant attention has been 
increasingly directed towards characterising, understanding and 
lowering thermal conductivity, an altogether essential property 
for these systems. 

Zirconia-based thermal barrier coatings exhibit already low 
thermal conductivities (typically between I and 2 W1m.K). 
These low values of thermal conductivity arise both from the 
intrinsic value of dense partially (and titlly) stabilised zirconia 
materials and from the heterogeneous micmstmcture of the 
coatings deposited by plasma spraying or EBPVD (electron 
beam physical vapour deposition). 

The introduction of a stabiliser, required to avoid the detrimental 
effect of monoclinic to tetragonal phase transfommtion at typical 
service temperature, is accompanied by the incorporation of a 
substantial amount of vacancies. Thus, in the case of yttria 
stabilised zirconia, the substitution of two tetravalent zirconium 
ions by trivalent yttrium ions is accompanied by the 
incorporation of one oxygen vacancy. For PSZ containing 8wl% 

Y,O,, this corresponds to a vacancy content of the order of 4.4 
mol.%, providmg an efficient source of scattering for phonon 
propagation. This also explains why the thermal conductivity of 
these materials is a decreasing function of the yttrium content (at 
least for relatively low stabiliser contents [S, 61). Another way of 
decreasing the intrinsic thermal conductivity of ceramic layers 
would be to substitute zirconium ions with heavier metallic ions 
[7, 81, an approach followed by Maloney et al. [9] with a work 
on Ce02-Y20, system, at the expense though of an increase in 
density 

Another efficient way to decrease the thermal conductivity of a 
material is to introduce microstructural defects such as pores, 
voids, microcracks which constitute obstacles against the 
through-thickness heat transfer propagation. Fortunately, the 
presence of such defects, produced during fabrication, seems to 
be indispensable for the thermomechanical resistance of these 
systems. It is doubtful however that their distribution in existing 
coatings is optimised regarding the thermal properties and. in 
order to design more performant TBCs. it now appears 
necessary to be able to characterise and understand the 
relationship between thermal conductivity and microstructural 
features constituting these heterogeneous materials. 

It must be reckoned that guidelines that can be derived from the 
literature, in particular from models relating morphology 
(porosity) and thermal conductivity of solid materials are of 
limited usage in the case of thermal barrier coatings due to the 

complexity of the microstructures. 

A variety of models have been developed to estimate the thermal 
conductivity of multiphased solids, in particular porous 
materials. Most of them assume the material constituted of a 
dispersion of a more or less concentrated and randomly 
distributed second phases. While early models proposed by 
Maxwell [lO],Eucken[II],Russel [lZ]andBruggeman [13]for 
example, consider only spherical particles, improved versions 
elaborated by Murabayashi [14], Schulz [15], Koh and Fortini 
[l6], Cunningham [I71 and McLachlan [IS] consider ellipsoids 
characterised by shape and orientation factors. 

As a general rule, the thermal conductivity h of a porous solid 
derived with these models can be expressed as : 

where ho is the thermal conductivity of the pore-free solid, E is 
the volume fraction of the pores and n, are adjustable 
parameters, to be determined empirically, related to the shape 
and/or orientation of pores 

To evaluate the validity of these models, several authors have 
examined the analytical results given by some of these models in 
light of experimental values on different systems [19,20, 21, for 
example]. Examining experimental data on alumina, graphite, 
uranium dioxide, sandstone, silica brick and limestone, and with 
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porosity up to 75%, Rhea [19] found a satisfactory correlation 
with the equation proposed by Aizanov and Domashnev [22]. 
For El-Fekey et al. [ZO] who evaluated the Maxwell, Lceb and 
Murabayashi models on thoria compacts with pomsities up to 
46%. the Murabayashi model [I41 yields the best result among 
the three. More recently, Jackson et al. [21] found that 
McLachlan’s equation [IS] comes closest to modelling the 
experimentally measured thermal conductivity of AIN-Ln201 
systems. 

Remarking that the experiments considered may not be suited to 
determine the quality of theoretical calculations, due to various 
experimental inaccuracies and simplifications, Bakker et al [23] 
have computed the influence of pores of different shapes 
(cylinders, spheres, ellipsoids) with the FEM technique. The 
comparison with the equations describing the effect of 
inclusions on the overall thermal conductivity shows that the 
&lytical equation of Schulz [I51 gives a good description of 
such materials. 

A full review of all the models is beyond the scope of this 
article. However, the puzzling diversity of conclusions derived 
by these authors point out to the fact that all these models with 
simple algebraic expressions assume that the porosity can be 
experimentally assessed with a very limited number of 
parameters (the pore volume fraction E and adjustable 
parameters), which singularly restricts their predictive capacity. 

To overcome these shortcomin@, several authors have 
developed more sophisticated theoretical appmaches as well as 
finite element calculations to estimate the effective thermal 
conductivity of multiphase materials. 

Tzou [24] estimated the thermal conductivity starting from a 
general field theory (supposing uniformly distributed internal 
cavities), deriving tractable analytical expressions for simple 
pore geometries, i.e. insulated spherical cavities and penny- 
shaped cracks. 

In a more sophisticated approach, Furmanski [25] developed an 
effective macroscopic description for heat conduction in 
heterogeneous materials using an averaging technique and 
Green’s function method and applied it to describe a model 
composite with randomly oriented parallelepiped inclusions 
distributed in an epoxy matrix. 

The expressions obtained with these approaches become readily 
complex and apparently they have been used up to now only in 
the case of uniform distributions involving rather simple 
geometrical shapes for the pores (ellipsoid, cubes). For materials 
having complex pore microstructures, such as those met in 
plasma sprayed coatings, and in order to be closer to the real 
structure (interconnected porous structure), however, numerical 
schemes appear to be the most promising approaches. 

With the objective of extending the rather simple analytical 
approaches (and poorly predictive) proposed by McPherson [26] 
and by Moreau et al. 1271 on the thermal conductivity of plasma 
sprayed coatings (and later improved by Bjomeklett et al.[28]), 
Hollis [29] developed a numerical scheme in which the actual 
pore structures of vacuum (VPS) and air (APS) plasma sprayed 
tungsten coatings are used as the basis of finite-element models 
to calculate the effect of pores on the thermal conductivity of 
plasma sprayed coatings. If, for VPS coatings, whose pore 
distribution and shapes are relatively simple, this approach gives 
a reasonable agreement behveen calculated and experimental 
values (respectively 70% and 60% of the bulk value), for APS 
coatings, instead, a large discrepancy exists between calculated 

and measured values. This is attributed to the complex pore 
structure, which cannot be properly taken into account by the 
limited areas on the cross sectional micrographs serving as input 
information into the calculation. 

In a study on the thermal conductivity of UOz pellets, Bakker 
[30] used a finite element method to compute the conductivity of 
a matrix containing a dispersed phase (pores). Starting from a 
photograph of a cross section, the microstructure of the material 
is described as a triangular mesh used as input data. Arbitmty 
temperatures are imposed on the upper and lower boundaries of 
the corresponding area (other boundaries are taken adiabatic) 
and the FEM program computes the conductivity from the 
thermal flux profile. As explained later, it remains doubtful 
whether this type approach can be extended to large areas, 
keeping memory storage reasonable. 

In the work presented here, the objective was to develop and 
evaluate an alternative approach, based on a finite-difference 
calculation for computing the thermal conductivity of thermal 
barrier coating, using as input data digitised images of the real 
material. With this method, the morphology of the ceramic 
coating, as complex as it can be, is properly taken into account. 

2. CHARACTERISATION OF TBCs POROUS 
STRUCTURE 

In order to pmvide data to the thermal conductivity calculation 
soilware, reliable procedures have been developed to quantify 
the real TBCs porous structure. The swcess of the modelling 
strongly depends on the accuracy and reliability of the results of 
these procedures. The complete microscopic characterisation of 
the TBC morphology involves numerous steps as sample 
preparation, image acquisition, image analysis and validation 
with macmscopic porosity determination. 

Sample preparation 
A correct and repmducible metallographic preparation of plasma 
sprayed ZrO, coatings is not straightforward but is essential for 
obtaining a representation of the real porous structure. Porosity 
determination by quantitative image analysis and numerical 
calculation of the themwl conductivity will give reliable results 
provided that no error is intmduced at the sample preparation 
stage. 

All investigations are performed on a I mm thick free standing 
TBC plasma sprayed by SNECMA, initially on aHastelloyX 
substrate without any bondcoat. The powder is a commercial 8 
weight% yttria partially stabilised zirconia spray dried powder 
(HCST Amp&t 827.423). 

The following procedure has been set up. The free standing 
coating is vacuum impregnated (StrwxsiEpovac, P-LOO mbar) 
with a superfluid epoxy dye (Struers/Epotix 301) before 
sectioning. Sample slices are then cut off with a precision saw 
(StmerslAccutom-2) using a thin diamond wheel and the lowest 
rotltion and sample forward speeds to avoid any damage. The 
slices are then manually polished according to the following 
steps : I200 then 4000 SIC papers for grinding polishing using 
B 3 p diamond spray first on a hard cloth (StmersIPan W, blue 
lubricant) then on a smoother cloth (StnwsiDP-Mol. pink 
lubricant), final polishing with a ‘/1 pm diamond paste. 
Polishing quality and absence of pullats are checked with light 
microscopy afler each step. For scanning electron microscopy 
observations a -20 nm thick conducting carbon layer is vacuum 
sputtered within a Baleen MEDOIO unit. 



Image acquisition 
Cross sections of TBC prepared as previously described have 
been observed in a digital scanning electron microscope 
(ZeisslDSM960). Backscattered electron mode is chosen 
preferentially to secondary electron mode due to the higher 
contrast between zirconia matrix and porosity (pores and 
cracks). The adopted acquisition conditions are the following : 
I5 kV acceleration voltage, 9 mm working distance, e low n 
electron current. Brightness and contrast are adjusted in order to 
obtain a reproducible grey level histogram (Fig. I). Two 
magnification levels (180x180 pm’ ; 45x45 &) and two image 
resolutions (512x512 or 1024x1024 pixels) have been used for 
characterising the TBCs morphology. Their influence will be 
discussed later on (see 5 4). 

Signal to noise ratio is increased by pixel averaging so that a 
1024x1024 pixels image acquisition takes about 400 seconds. 
Image acquisition is fully automated owing to computer assisted 
stage displacement. This allows a statistical characterisation of 
the samples. 

Image analysis 
Image analysis procedures have been developed with two 
objectives : 
l provide binary images of TBC cross sections which will be 

used directly as input data for the thermal conductivity 
calculation soflwae, 

l quantify the porous structure in such a way as to be able to 
determine the contribution of each morphological feature to 
the thermal conductivity of a thermal barrier coating. 

This will be the starting point for modelling thermal 
conductivity as a function of the morphology. 

7hresholding 
The transformation of SEM grey level images into binary images 
is the key step on which depends the reliability ofthe subsequent 
results. The threshold level is manually tixed on images with 
optimised and rcprcducible grey lwel histogram (Fig. I). 

This last one contlins two peaks : a very sharp and intensive 
peak at the 0 level (black level) corresponding to the majority of 
the globular pores and a wider one centred at middle grey levels 
which includes cracks and zirconia matrix. 

Figure I: Grey level histogram. 

The adopted threshold level which accounts for the whole 
porosity (pores and cracks) corresponds to the beginning of the 
lightening of isolated pixels in the solid phase (Fig. 2). This 
ensures its reproducibility. 

Figure 2: Thresholding. 

This procedure is based on opening and reconstmction image 
analysts operations. It creates three new images from the initial 
thresholded image : one containing the dispened globular pores, 
one with the crack network and one with the globular pares and 
the cracks directly connected to them. 

This fully automated procedure will be widely used to determine 
the contribution of each morphological feature to the 
conductivity (see 5 4). A still more precise description can be 
achieved using the following procedure. 

From an initial parent binary image if is possible to derive a 
series of images (about 300 or more according to the 
morphology complexity) with evolving porosity. This is done by 
applying a sequence of erosion image analysis operations to the 
parent image which leads to a tinal image containing only 
L ultimate ercdeds u. These pixels exactly correspond to the 
globular pore centrords. Starting from this new image, a step by 
step reconstruction of the porous features creates the derived 
images. The operation is ended when the initial total porosity is 
completely reconstructed (Fig. 5). 

An application of this procedure in relatmn with the thermal 
conductivity computation will be shown in the last section. 

Image assembling 
This algorithm is developed to provide large size nnages of the 
samples which are more representative for the conductivity 
calculation. This is done by an automatic search of maximal 
overlap between two binary images from contiguous and slightly 
overlapping fields. 

Each individual globular pare is characterised by a set of 
parameters (area, perimeter, Feret’s diameten, number of 
neighbours,...). In this way different pore distributions (in 
number, surface,...) can be obtained (Fig. 3). 



Figure 3: Globular pore distribution (% of particles 
“ers”S area) 

Andysis of the crack network 
This procedure is based on the u skeletonizadonr (image 
analysis terminology) of the crack network, followed by a 
decomposition in juxtaposed sements of minimal fixed length. 
A distribution ofthese segments with regards to their orientation 
is then available (Fig. 4). 

Figure 4: Segment orientation (average of segment 
length versus angle) 

Porosity determination 
The total porosity of a TBC can be estimated from binary 
images of cross sections using image analysis provided that the 
number of analysed tields is statistically relevant. A total of 105 
images (I 80x180 pm’ ; 1024x1024 pixels) corresponding to two 
transverse perpendicular cross sections have been considered. 
The mean porosity value obtained for this image set is 15% with 
a 2% standard deviation. 
Furthermore the volumetric total porosity of the whole free 
standing coating (60x45~1 mm”) has been determined to l2il % 
from water immersion experiments and X-ray dii?iaction 
theoretical density data. Closed porosity is less than I %. 

The relatively good agreement between image analysis results 
and volumetric porosity shows that the sample preparation 
procedure as well as the thresholding one do not introduce too 
many arkfacts. The higher value obtained by image analysis is 
attributed to some remaining pull-outs and mostly to the fact that 
backscattered electron detection slightly enlarges the narrowest 
cracks. 



3. NUMERICAL COMPUTATION OF THE THERMAL properties of ‘each node (e.g. the local thermal conductwity) and 
CONDUCTIVITY are stored as coefticients of the oartial derivative eauation to be 

solved. The schematic representation of our problem IS shown 
on figure 6 : 

It has been shown that the morphology of a zirconia plasma 
sprayed coating is relatively complex in so far as it involves 
dispersion of pores with various sizes and shapes and connected 
crack network. As we are concerned with the influence of 
morphology on thermal conductivity and we want all the 
morphological information obtained with SEM to be taken into 
account, the modelling method must face this structure 
complexity without ovenimplitication. 

Analytical or empirical models mentioned in the introduction 
only deal with simplified geometrical shape dispersions and are 
not well suited for connected porosity. The variety of pore 
structure families does not allow an efficient use of such models, 
which are generally restricted to one simple type of shapes and 
cannot handle connectivity effects with a fair accuracy. 

Computations on very complex geometry are tractable with 
some numerical methods. The finite-element method is well 
known for its posslblbtles in this field. Recent works [29,30] 
demonstrate these capabilities by computing the thermal and 
electrical conductivities of porous metals or metallic oxides. 

The finite-element method, among others, uses a grid 
representation of the geometry. The mesh properties of this grid 
are however submitted to some constraints. Theo its application 
to very complex shapes may lead to some difficulties. As each 
shape to be modelled must be decomposed in simple geometric 
elements (triangles or quadrilaterals), the resulting amount of 
nodes and meshes may become tremendous when the geometry 
presents very small details. For example the minimal shape that 
we may encounter is a single square of one pixel size. If we 
want to decompose it in triangular or quadrilateral meshes, this 
single pixel produces, at least, four nodes. Continuity 
constraints on the neighbouring meshes may impose some grid 
refinements on the vicinity of this isolated pixel, even if the 
closest shapes are very large. As a consequence the resulting 
mesh density in the area close to this square may become very 
high. For thin cracks (their minimal thickness is one pixel) this 
may lead to more dense mesh distribution and untractable 
continuity constraints. Therefore, as the solution methods we 
generally global (e.g. they are often reduced to a minimisation 
problem), the associated algebraic system may reach ao 
unpracticable size. So the finite element method seems to be 
difficult to apply in our field of study if no restriction on the 
geometry is acceptable. 

On the other hand, the standard finite-difference method seems 
to undergo equivalent restrictions as it needs some grid 
representation, and therefore, some specific processing on the 
internal boundaries (e.g. boundaries between porosity and 
matrix). 

However, this can be overcome if: 
l the grid can be constructed directly from the input data 

image, 
l the discretisation does not need specific processing on 

internal boundaries, 
. the resulting set of algebraic equation remains practicable. 

Speeifie implementation of the finite difference method 

The grid construction may be reduced to a very simple process if 
we use a regular uniform mesh grid where nodes are simply 
defined by the pixels (square pixels) of the input image. With 
such a grid no geometric internal boundary information is 
associated with meshes. These information are related to the 

Figure 6: Problem detinitlon. 

Then we have to build the finite-difference equation to be solved 
for each node. This is done by means of the well known five 
points scheme, that is : 

(A(ij) +B(l,j) tC(ij) +D(ij))T(ij) 

A(ij)T(ij-i)+B(ij)T(i-I j) 
+C(ij)T(ij+l)+D(ij)T(i+l j) 

If we do not want to treat the discontinuities of these A,B,C.D 
co&cients with specific equations occurring when the local 
conductivity exhibits a step, an implicit way has to be found For 
example the well known [31] five weighted conductivities 
scheme widely used in variable (but continuous) properties 
problems where the coefficients are defined by : 

A(ij)-l/Z(h(ij-l)+X(ij)), 
B(ij)=lR(A(i-lj)+h(ij)); 
C(ij)=l/2(X(ij+l)+X(ij)), 
qij)=l/Z(h(i+lj)+(h(ij)). 

nod which is of second order (for continuous properties) is not 
applicable in our case because it smoothes the discontinuities. 
lodeed, one can easily see that for small sized (e.g. one or two 
pixel thickness) objects this scheme leads to erroneous values as 
no node is assigned its real conductivity. 

More suited schemes can be constructed using asymmetrical 
distributions of conductivity. For example the Upper Lefl 
scheme we commonly use is defined by : 

A(ij)=h(ij-I); 
B(ij)=h(i-I j) ; 
C(ij)=k(ij); 
lJ(ij)=i(ij). 

Four tint order distinct schemes can be constructed on this basis 
(the four comer implementations). It can be shown that they lead 
to a space transformation in the neighbourhood of 
discontinuities as they operate a small translation along bisectrix 
of ij axes. For random geometries they are not strictly 
equivalent as they produce small variations (about 10d or less) 
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of the resulting computed conductivities, but as we will see 
below (Fig. 9) this is not the most critical source of uncertainties 
in the present problem. 

For tbe main boundaries (e.g. the boundaries where Dirichlet or 
Neumann conditions are applied) we use the standard method, 
that is the image method based on the same scheme for 
Neumann condition (the Dirichlet condition does not need any 
computation BS T is imposed). 

When the temperature is known for each node, the average or 
equivalent thermal conductivity of the whole domain is 
computed from : 

where e is the height and I the width of the domain, the 
integration being done on one of the horizontal boundaries. The 
space step being ccmstanr that integration can be performed with 
standard quadrature formulas. 

The solver 
The proposed scheme leads to a set of Nx-2’Ny linear equations 
to be solved. As we are concerned with large values of NY. and 
Ny (computation with Nx-4200 and Ny-5100 has been 
performed), the solver has to be as efficient as possible. 

The first difficulty is to have the most compact form of the 
problem in order to reduce menwry occupation. This can be 
done efficiently by reducing the cwfficient storage. 

With the definition of A,B,C,D we have seen before, it can 
easily be shown that, for a simple diphasic problem, we have to 
store only 2’ + 2’+ Z3different configurations. So the storage for 
A,B,C,D can be drastically reduced provided that we can store 
sane case index for each node. 

As this case number is in the range of tens, an army of bytes is 
convenient. So the minimal storage required is : 
. one Nx*Ny double precision army for T, 
l one Nx*Ny byte army for case markers, 
. 4’20 double precision scalars for coefficients, 
. one Nx’Ny byte array for input data 

This is about IO Moctets for a 1024x1024 problem and up to 
210 Moats for a 42oOxSlOO pmbkm. So if the solver does not 
need intermediate storage, we expect that such problems can be 
solved cm common 256Mo RAM computers. The solution 
method may be chosen with respect to this criterion. The two 
common approaches for this kind of solver are iterative m&ix 
methods and iterative by points methods. 

The first kind is well represented by the conjugate gradient 
method (321 which, as other matrix methods, does not satisfy 
our criterion. It needs, at least, two or three times the minimal 
storage defined above. So the maximal dimensions of the 
problems we could solve with such methods would be reduced 
by a factor of 42 or 43. Alternatively, we would need some 
superwmputer.The~fore, matrix methods are very efficient on 
computers with high vectorisation capabilities (as Cray for 
example), but seems ta be less amactive on x&r or superscalar 
computers (such as commcm workstations) [33]. 
The second kind is commonly know as the Gauss or Gauss- 
Seidel method [32]. 

They can be implemented without extra storage so our criterion 
is satisfied. Provided that we are able to find some well suited 
(Fig. 7) convergence acceleration parameter (over-relaxed 
Gauss-Seidel method), they can outperform matrix methods 
when applied on scalar or superscalar computer [33], but they 
am notably less efficient when deep vectorisation is allowed. 

So we have implemented an over-relaxed Gauss-Seidel solver 
which allows the solution of problems with sizes up to about 
6090x6000 on our 512Mo RAM workstation. With tbe 
commonly used SEM magnification this theoretically allows the 
computation of TBC conductivity far thick samples (I .2x1.2 
mm’), or extended areas of relatively thin coatings (for example 
0.2Ox36mm’). 

tm q 

For huge problems, the main limitation is the duration of 
computation. The following table shows computation duration in 
seconds for a standard 1024x1024 problem with 10’ precision 
criterion (e.g. the convergence criterion on heat flux in relative 
form), for three different superscalar computers : 

HP9000/780 1 DECAlphaSOO [ PentiumPm 
260 I 405 [ 1164 

The computation was achieved with 3OQO itemtions using a 
convergence acceleration parameter of 1.997. Tl~e maximal 
residual ermr on heat flux (relative value) was about 9.4.10”. 

One can consider this case as tbe simplest one because the input 
data image was of medium complexity. For higher complexity 
input the maximal computation time may be twice the indicated 
time. For the 4200x5100 pmblem we have solved only on the 
HP workstation, the computation time WBS about 10 hours in the 
most difficult case. Notice that the complexity (which can be 
evahtated as some function of the number of porous objects) 
increases roughly as the area of the domain. Despite that, the 
relation between the size of the domain and the computation 
time which is a power function of the maximal dimension of the 
domain exhibits an exponent close to 3, which is the theoreticaJ 
value for the over-relaxed Gauss-Seidel method. 

The initial value for T may also strongly influence the speed of 
convergence. Our standard initialisation is the tempemtum 
distibution for the homogeneous medium. A possibly more 
efficient initial distribution may be consbucted 6nm the 
Richardson’s exwapolation concept [34]. Let T,n be the solution 
of the problem for the domain reduced by a factor 2 in each 
dimension (e.g. we compute only one node out of hvo). This 



solution may be achieved within a time tJ8, where t is the 
compuLltion time for the whole problem 

The values of T are then determined on alternate nodes using 
bilinear interpolation. The global cost of these two operations 
remains close to #8. As we do not need an “exact” solution 
for T,n, we can reduce the precision criterion in order to reduce 
this time. So the initial data construction ha a cost less than 
&/IO for example. Our major expectation is that such an 
initialisation would be very close to the whole solution T. Then 
the amount of computltion needed to obtain T would be 
substantially reduced. 

Experiments have shown that the effective global computation 
time may be reduced by a factor of about 2 for low complexity 
input (globular porosity for example). For higher complexity 
input the time reduction is ofien imperceptible as small details 
(cracks for example), which are partially lost in the T-B Tin 
input tmnsfonnation, have a major contribution to the whole 
solution. So this is not a very efficient method for the reduction 
of computation duration because of its lack of generality. 

Computation output 
The computation program outputs some convergence 
information and the computed equivalent thermal conductivity. 
Therefore, the resulting array of temperatures is saved in a 
compacted binay file. This file can be read by another program 
for visualisation purpose. The temperature, its gradient, and the 
heat flux can be visualised by means of isovalue representation 
as shown on firmre 8. 

Such representations performed on images with separated 
porosity give a qualitative useful description of the effect of each 
morphological feature on the heat transfer through a TBC. 

4. APPLICATIONS 
Before applying these tools to various TBCs, three major points 
have to be considered. 

7?1e resolution problem 
The first one concerns the optimal choice for input image 
resolution. As figure 9 shows, the computed conductivity 
stmngly depends on the input image dimensions. 

Images of the same physical field with various resolutions (e.g. 
256x256, 512x512, 1024x1024, 2048x2048 pixels) lead to four 
inputs which have been used for conductivity computation. An 

Figure 9: Thermal conductivity versus resolution. 

extra 1024x1024 image (referenced l-2) is obtained from the 
512x512 one by a pixel duplication technique. The computed 
conductivity is a decreasing function of the resolution whereas 
the foral porosity is nearly a constant. As results for the 512x512 
and the l-2 cases are quasi identical we can assert this is not a 
discretisation effect. The main justitication we found is the loss 
of small morphological details (loss of crack continuity for 
example) which results from the resolution decrease but does 
not strongly affect the total porosity. The computed conductivity 
seems to be related to the resolution by : 

where lInr is the value we would obtain for an ideal resolution 
and N is the resolution expressed as the number of pixels on one 
side of the image. Thus we are able to find a resolution 
independent value of the thermal conductivity for each field if 
we have two different resolution input images. This is an easy 
thing to do as a 512x512 input image can be constructed from a 
1024x1024 one by pixel destruction. So all the following results 
are presented with three values (the 1024 resolution, the 512 
resolution computed values and the ideal resolution extrapolated 
value) for the computed conductivities. 

The matrix thermal conductivity problem 
The second problem concerns the conductivity data of the 
different phases. For the computations, the needed data are the 
morphology and the thermal conductivity of each phase. 

For the porous one, we can use the thermal conductivity of air 
which is well known. The major problem is for the zirconia 
matrix thermal conductivity. At pwent only bibliographical 
values are available. They fall between 2 and 3 W.ni’K’ [S], so 
the related uncertainties on computed thermal conductivities are 
large. Some in-situ evaluations of the matrix conductivity are in 
progress by means of microscopic thermal diffusivity 
measurements on real TBCs. They may lead to more realistic 
values of matrix properties in a near future. In the meantime, we 
have used an arbitrary value of 2 W.m”K’ for all 
computations. 

The 2D ,o 30 effects 
The third paint is related to restriction on actual geometry. All 
the data and results we are able to obtain with these methods are 



two-dimensional. Three-dimensional effects can heavily change 
the conductivity if inclusions have geometrical properties which 
cannot be evaluated with two-dimensional sections. As Bakker 
[29] mentionned, the three-dimensional problem is unreachable 
with wrent computers. Therefore the construction of the 
relevant three-dimensional input data sets would be 
unpracticable with the resolution we use. So the present work is 
limited to the two-dimensional approach. Fractogmphies 
performed on plasma sprayed TBCs suggest that the cracks, 
which are responsible of the main conductivity reduction, have 
depth/width ratios far exceeding one and a two-dimensional 
section is an acceptable representation for such geometries. But 
this is not the case for globular pomsity. 

Owing to these various uncertainties the computation results 
have to be considered indicative rather than exact. 

These tools were tint applied to a t?ee standing TBC plasma 
sprayed by SNECMA. Extensive analysis and computations 
were done on such coating in order to : 

l test and validate the different procedures, 
l study the influence of different classes of porosity on 

thermal conductivity. 

Figure IO: Plasma sprayed TBC computed thermal 
conductivity versus porosity. 

A set of 35 adjacent (1024x1024 pixels) fields was obtained 
with the SEM. The thermal conductivity has been computed on 
each field and is represented versus porosity on figure IO 

‘hk ’ IM am oa e aa UD all ati 

Figure I I : Globular porosity contribution. 

(medium line). The lower line corresponds to ideal resolution 
images and is derived from calculations with 1024x1024 and 
512x512 resolutions as explained above. The open symbols 

correspond to the thermal conductivity computed from the 
global 4234x5148 image resulting from the assembly of the 35 
fields according to 52. 
The tint important result is that the average values of the 35 
fields computed conductivities are very close to those obtained 
for the global field as it can be seen on figure IO. 

Figure 12: Crack contribution. 

Therefore the decomposition in small (180x180 pm*) domains 
with somewhat arbitrary boundary conditions leads to a correct 
estimation of the equivalent conductivity of a larger element of 
TBC. 

The second important result comes from computations done for 
each class of porosity (Fig. I I and 12). 

For almost identical porosity content, fields containing only the 
crack network present a thermal conductivity IO to 30% smaller 
than that of fields with only globular pores. Analysis of 
computed conductivities reinforce the intuition that the major 
conductivity reduction results from the cracks which are mostly 
oriented in a direction perpendicular to the heat flow (see Fig. 4) 
in plasma sprayed TBCs. 

This can be demonstrated even nwre clearly using porosity 
reconstmction (see $2) as computation input (Fig. 13). The rate 
of variation of the thermal conductivity with the porosity (e.g. 
&/a) strongly depends on the morphological class. 

As the crack family has the highest rate of variation this class of 
porosity is the most efficient in reducing thermal conductivity in 
the case of plasma sprayed TBCs. 
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5. CONCLUSION 
A sottware has been developed for the computation of the 
thermal conductivity of porous coatings (plasma sprayed TBCs) 
from binary images of real material cross sections. This 
approach based on a finite difference method takes directly into 
account the actual complex morphology of the ceramic which is 
mostly original with regard to existing models. This numerical 
model is able to determine the contribution of each 
morphological feature to the thermal conductivity and therefore 
compare different microstructures or coating architectures. In a 
near timue it will be associated to a morphology generator for 
building a predictive tool. This one will be used in particular by 
engine manufacturers as guideline for modifying coating 
spraying conditions in order to obtain specific morphologies 
leading to optimised coating thermal properties. 
It is important to note that this approach, developed on TBCs is 
most general and can be applied to a variety of multiphase media 
(refractories, composites, etc.). 
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