Contents

			Page
Exec	utive S	Summary	iii
Synt	hèse		iv
List	of Abl	breviations	xi
•••	e El	J Tables	viv
List	or Fig	ares and rables	
Ack	nowled	Igements	xv
1.	INTF	RODUCTION	1
	1.1	Post-War Evolution1.1.1Operations and Maintenance1.1.2Production and Purchase1.1.3Development and Testing	1 1 1 2
	1.2	Present Scenario 1.2.1 Western Europe 1.2.2 United States 1.2.3 Other Countries	2 2 3 3
2.	TRE	NDS IN OPERATIONAL REQUIREMENTS	4
	2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12	Establishing Air Superiority Effective Strike Missions Electronic Support Aircraft Reduced Tolerance to Casualties Minimisation of Collateral Damage Proliferation of Advanced Weapons Weapons of Mass Destruction Long-Range and Remote-Site Operations Civil Wars and Terrorism Peacekeeping and Peacemaking Against all Odds More Requirements, with less Resources and fewer Systems Some Critical Decisions or Options	4 4 5 5 5 5 5 5 5 6
3.	THE	E TECHNOLOGY CONTRIBUTIONS	6
	3.1	Aerodynamics3.1.1High Angle-of-Attack Manoeuvres3.1.2The Use of Post-Stall Control3.1.3Supersonic Cruise3.1.4Aerodynamics of Control3.1.5Aerodynamics of Stealth Configurations3.1.6Laminar Flow Technology3.1.7Forebody Vortex Control (FVC)3.1.8Control of Leading-Edge Vortices3.1.9Dynamic Lift3.1.10Other Aerodynamics Enhancements	6 8 8 9 9 9 9 9 9 9 9 10 10
	3.2	Propulsion3.2.1Evolution of Propulsion Technology3.2.2The Single-Engine Multi-Role Aircraft	10 10 10

		3.2.3	Specific Fuel Consumption		10
		3.2.4	Two-Axis Thrust Vectoring		10
		3.2.5	Ine Variable-Cycle Engine		11
		3.2.0	Improvements in Engine Components		11
		5.2.1	Lower Acquisition and Operating Costs		••
	3.3	.3 Flight Dynamics and Control			11
		3.3.1	Active Control Technology		11
		3.3.2	Requirements for Helicopter Flight Control		12
		3.3.3	Benefits of Fly-By-Wire/Light Systems		12
		3.3.4	Open Issues to be Resolved		13
		3.3.3	Some Cases of PIOs		13
		3.3.0 2.2.7	The Control System Curus		14
		3.3.7	Some Current Programmes		14
			1 Standard and Metericle		15
	3.4	Advance	Lightweight and Composite Materials		15
		34.1	High-Strength Materials and Structures		15
		343	Armour for Helicopters and Aircraft		15
		3.4.4	Intelligent and Adaptative Structures		15
		3.4.5	Steathy Control and Manoeuvres		16
		3.4.6	De-coupled Control Modes		16
		3.4.7	Attitude and Velocity Vectors		16
		3.4.8	Synthesis of Design Disciplines		16
		3.4.9	Production Cost and Time		16
		3.4.10	Low-Rate, Low-Cost, Fast Production		16
		3.4.11	Maintenance and Operating Cost		17
	3.5	Crew S	tations		17
		3.5.1	The Electromechanical Cockpit		17
		3.5.2	The Digital Cockpit		17
		3.5.3	The Glass Cockpit		17
		3.5.4	The Remote Cockpit		18
		3.5.5	Cockpit Generations		18
		3.5.6	Man-Machine Interaction		18
		3.5.7	Display Technologies		18
		3.5.8	Data and Command Inputs		10
		3.5.9	Situational Awareness		10
	3.6	Aerome	edical Aspects		20
		3.6.1	Human Performance Aspects		20
		3.6.2	Laser Eye Protection		20
		3.6.3	Physiological Aspects of High Agility		20
		3.6.4	Fatigue in Long-Range Operations		21
		3.6.5	Effects of Long-Endurance Flights		21
		3.0.0	Some Perennial Issues		21
4.	SYS	TEMS I	NTEGRATION		21
	4.1	Missior	1 System		21
		4.1.1	Acquisition and Updating Costs		22
		4.1.2	Multi-Mode Phased-Array Radar		22
		4.1.3	Passive and Electro-Optical Sensors		22
		4.1.4	Flight Stabilisation Systems		22
		4.1.5	Combination of Navigation Systems		∠ <i>3</i> 23
		4.1.0	Flic Collifol Systems Identification and Sensor Fusion		23
		4.1./ //1.9	Communications and Data Exchange		23
		4.1.0 4.1.0	Defensive Systems and Manoeuvring		24
		4.1.10	Offensive Systems and Defence Suppression		24
		4.1.11	Computing and Data Exchange		24
			1 0 0		

k

	4.2	Weapo	ns	24
		4.2.1	Air-to-Air Weapons	24
		4.2.2	Short-Range Air-to-Air Missiles (AAMs)	24
		4.2.3	Beyond Visual Range (BRV) AAMs	25
		4.2.4	Airbone Laser Weapons	25
		4.2.5	Dumb or 'Iron' Bombs and Dispensers	25
		4.2.6	Accurate Guided Weapons	25
		4.2.7	Precision Guided Munitions	25
		4.2.8	Increased Stand-Off Ranges	26
		4.2.9	Trends for the Future Weapons	26
		4.2.10	The Role of the Airborne Gun	26
	4.3	Stealth	or Low-Observability Features	27
		4.3.1	Potential of Mission Planning	27
		4.3.2	Tactical Advantages in Detection	27
		4.3.3	Radar Scattering Cross-section (RCS)	30
		4.3.4	Techniques for RCS Reduction	31
		4.3.5	Infra-red Signature Reduction	32
		4.3.6	Visual Signature and Identification	37
		4.3.7	Noise of Airplanes and Helicopters	37
		4.3.8	Combination of Low Observability Features	37
	4.4	Stores	Саттіаде	37
		4.4.1	Internal Guns or Gun Pods	21
		4.4.2	Carriage of Air-to-Air Missiles	31 20
		4.4.3	External or Semi-Recessed Carriage	20
		4.4.4	The Internal Weapons Bay	30
		4.4.5	Carriage of Bombs and PGMs	20 20
		4.4.6	Miniaturisation of Bomb Warheads	38
		4.4.7	Stand-off Air-to-Surface Weapon	20
		4.4.8	Navigation and Guidance Pods	38
	4.5	Desig	n Integration	38
		4.5.1	Minimising Production Cost	20
		4.5.2	Reducing Support Requirements	30
		4.5.3	Multi-Function Design Features	39
5.	TY	PES OF	AIR VEHICLES	39
	5.1	Air Sı	uperiority and Interception	39
		5.1.1	AAMs with Large OBA Capability	40
		5.1.2	The Expanding 'No-Escape Envelope'	40
		5.1.3	The Self-Kill and Fraticide Problems	40
		5.1.4	Beyond-Visual Range (BVR) AAMs	40
		5.1.5	The Mutual Kill Problem	40
		5.1.6	Achieving High Exchange Ratios	41
		5.1.7	Combination of Short-Range and BVR AAMs	41
		5.1.8	Is the Air-to-Air Gun Needed?	41
	5.2	Grour	nd Attack and Interdiction	41
		5.2.1	The 'Iron' Bomb, Multiple Attack Age	41
		5.2.2	Radar-Guided Anti-Aircraft Guns	42
		5.2.3	Shoulder-Fired Surface-to-Air Missiles	42
		5.2.4	Mobile and Fixed Surface-to-Air Missiles	42
		5.2.5	Cost of Destroying a Target	42
		5.2.6	Electronic Support Measures (ESM)	43
		5.2.7	Suppression of Enemy Air Defences (SEAD)	43
		5.2.8	Specialised ESM and SEAD Aircraft	43
	5.3	Adva	nced Short Take-Off and Vertical Landing (ASTOVL)	43
		5.3.1	The Airfield Vulnerability Issue	43 44
		5.3.2	Dispersed Site Operations	

		5.3.3	Operation from Through Deck Cruisers	44
		5.3.4	The Future Prospects of STOVL	44
		5.3.5	Commonality of ASTOVL and CTOL Aircraft	44
		5.3.6	Lift Systems for ASTOVL	45
		5.3.7	The Combined Lift-Cruise Engine	45
		5.3.8	Separate Lift and Cruise Propulsion	45
		5.3.9	ASTOVL vs. CTOL Issues	46
	5.4	Rotary-V	Wing and Convertibles	46
		5.4.1	Anti-Tank and Air Combat Helicopters	46
		5.4.2	Night Flying/Fighting	46
		5.4.3	The Mast-Mounted Sight	47
		5.4.4	Agility and Nap-of-the-Earth Flying	47
		5.4.5	Size, Weight and Warload	47
		5.4.6	Millimetre-Wave Radar and All-Weather Capability	47
		5.4.7	Helicopter vs. the Convertible, e.g. Tilt-rotor	47
		5.4.8	Naval, Transport and Rescue Roles	47
		5.4.9	Medium and Light Helicopters	48
	5.5	Unmanr	hed Air Vehicles (UAVS)	48
		5.5.1	From the RPV to the UAV/UIA/UCAV	40
		5.5.2	An Expanding Range of Missions	40
		5.5.3	Advantages of the UAV Design	49
		5.5.4	Benefits of Absence the Cockpit	49
		5.5.5 5.5.6	Reduced Size of the Airfraine	49 50
		5.5.0	Improved Stealul realises	50
		5.5.1	Lower Peliobility Standards	50
		5.5.0	Semi Automated Maintenance and Operations	50
		5.5.5	Reduced Peacetime Flying	50
		5511	Lower Life-Cycle Costs	51
		5 5 12	Combined Manned-Unmanned Operations	51
		5513	A Large UAV Carrier or Mixed Force	52
		5.5.14	Location of the Pilot Station	52
		5 5.15	Risks of Proliferation and Misuse	53
		5.5.16	Long-Term Trends and Consequences	53
6.	AFF	ORDAB	ILITY OF FORCES	53
	6.1	Design	for Low Life-Cycle Cost	53
		6.1.1	The Elements of Life-Cycle Cost	53
		6.1.2	Actual vs. Committed Expenditure	54
		6.1.3	Degradation and Elusive Savings	54
		6.1.4	Flexibility in Setting Requirements	54
		6.1.5	Preliminary and Frozen Design	55
		6.1.6	Concurrent Engineering Design Practices (CED)	55
		6.1.7	Integrated Product Development (IPD)	55
		6.1.8	Breakdown of Program Costs	56
		6.1.9	Components of RDT&E Expenditure	57
		6.1.10	Predominance of Production/Procurement	57
		6.1.11	Some Cost-Cutting Options	57
		6.1.12	Principles of LCC Cost-Reduction	58
	6.2	Testing	, Maintainability and Availability	58
		6.2.1	Consolidation of Test Facilities	58
		6.2.2	Internetting of Test Ranges	28
		6.2.3	Simulation in Support of Testing	JY
		6.2.4	Accident-free Testing of New Systems	59
		b.2.5 С 2 С	Ground Test Facilities and Availability	59
		0.2.0	Testing for Rehability and Availability Maintainability and Supportability Trials	50
		0.2.7	Manhamaonity and Supportability Thais	J9

b

		6.2.8	Documentation and Interoperability Aspects	59
		6.2.9	Option of Autonomous Operation	59
		6.2.10	Benefits and Cost-Effectiveness of Testing	60
		6.2.11	An Overwhelming Case for Supportability	60
	6.3	Surviva	bility of Aircraft and Crews	60
		6.3.1	Vulnerability to Anti-Aircraft Missiles	60
		6.3.2	Expendable and Towed Decoys	61
		6.3.3	Multi-Spectral, Multi-Mode and Imaging Seekers	61
		6.3.4	Active Self-Defence Systems	61
		6.3.5	Self-Defence by Short-Range Rockets	61
		6.3.6	Low-Power Lasers for Self-Defence	61
		6.3.7	Surviving a Shell Hit or Splinters	61
		6.3.8	Helicopter and Airplane Survivability	62
		6.3.9	Ejection Seat Improvements	62
		6.3.10	Recovery of Downed Aircrew	62
				63
	6.4	Upgrad	ed vs. All-New Aircraft	62
		0.4.1	Fitting New Weapons	63
		6.4.2	The Need for Upgraded Avionics	63
		6.4.3	Improved Detensive Systems	62
		6.4.4	Updated Cockpit and Displays	63
		6.4.5	Cost of Mission Systems	03 42
		6.4.6	Structural Life Extension	03 67
		6.4.7	Fitting more Modern Engines	60
		6.4.8	Re-Engining Tanker Aircraft	04
	6.5	Force I	Mix	64
		6.5.1	Missions for Fighter Types	64
		6.5.2	High and Low-Force Mix	64
		6.5.3	Partial Replacement of Forces	64
		6.5.4	Tankers, AWACS and J-STARS	65
		6.5.5	Tactical Transport Derivatives	65
		6.5.6	Strategic Transport and Command	65
		6.5.7	Long-Range Maritime Patrol	65
		6.5.8	Helicopter Types and Roles	65
		6.5.9	Medium Helicopter or Convertible	65
		6510	Regional Turboprop	66
		6.5.11	Assignment of Types and Missions	66
			0	
7.	REC	OMME	ENDATIONS AND PROSPECTS	66
	71	An Ad	vanced 20-ton Thrust Engine	66
	7.1	Deduci	ing the Crew Complement	66
	73	Modul	ar Multi-Mission Airframe	67
	7.5	Low	nd High Family Mix	67
	75	Keenin	ing mithin a Cost Target	68
	7.5	Choice	of Mission Systems	68
	7.0	Incom	oration of Stealthy Features	68
	78	Americ	can and European Programs	68
	79	Show	Stonners and Detractors	69
	7 10	Reduci	ing Numbers of Aircraft Types	69
	7 11	A Mod	lular UAV Family	70
	7 12	A Trin	le Force Mix	70
	7.13	Keenir	ng Alive Design Terms	70
	7.14	Preserv	ving the Industrial Base	71
	7.15	Condit	ioning the Free Enterprise	71
	7 16	The N	ew Development/Deployment Cycle	71
	7.17	Broad	vs. Directed Research	71
	7.18	Future	Development Activities	72
			•	

8.	CONCLUSION
----	------------

9.

CO	NCLUSION	73
8.1	Near-Term Alternatives 8.1.1 System Improvements 8.1.2 The Limits of Stealth 8.1.3 The Unmanned Tactical Aircraft	73 73 73 74
8.2	Long-Term Trends 8.2.1 Pooling of Resources 8.2.2 Mutual Dependence 8.2.3 Shift of Missions	74 74 74 75
8.3	The Second Century of Aviation	75
APH	PENDIX	76
9.1	Fighters9.1.1Fighter Aircraft per Country of Origin9.1.2Seven Generations of Fighters9.1.3Specification Tables for Fighters	76 76 77 85
9.2	Fighter-Bombers9.2.1Seven Generations of Fighter-Bombers9.2.2Specification Tables for Fighter-Bombers	92 92 92
9.3	Bombers9.3.1Five Generations of Bombers9.3.2Light, Medium and Heavy Bombers9.3.3Specification Tables for Bombers	95 95 96 100

x

k

List of Abbreviations

AA	Armée de l'Air
AAM	Air-to-Air-Missile
AB	Afterburning
ABL	Airborne Laser
ADV	Air Defence Variant
AFCS	Automatic Flight Control System
ALCM	Air Launched Cruise Missile
AMRAAM	Advanced Medium-Range AAM
AI	Artificial Intelligence
AOA	Angle-of-Attack
APU	Air Power Unit
ASRAAM	Advanced Short-Range AAM
ASTOVL	Advanced STOVL
ATR	Automatic Target Recognition
AWACS	Airborne Warning and Control System
BDA	Bomb Damage Assessment
BVI	Blade-Vortex Interaction
BITE	Built-In (self) Test Equipment
BVR	Beyond Visual Range
CAW	Carrier Air Wing
CCV	Control Configured Vehicle
CED	Concurrent Engineering Design
CIO	Computer Induced Oscillation
СМ	Cruise Missile
COD	Carrier On-board Delivery
CRT	Cathode Ray Tube
CTOL	Conventional Take-Off and Landing
DARPA	Defence Advanced Research Projects Agency
DVI	Direct Voice Input
EC	European Community
ECCM	Electronic Counter-Countermeasures
ECM	Electronic Countermeasures
ECR	Electronic Countermeasures and Reconnaissance
EFA	European Fighter Aircraft
EHF	Extremely high frequency
ЕМ	Electromagnetic
ЕО	Electro-Optical
ESM	Electronic Support Measures
EU	European Union
EW	Electronic Warfare
FAMRAAM	Future AMRAAM
FAR	False Alarm Rate
FBW	Fly-By-Wire
FCS	Flight Control System
FLIR	Forward-looking Infra-Red
FOA	Future Offensive Aircraft
FOV	Field-of-View
FVC	Forebody Vortex Control
GCI	Ground-controlled Intercept

GPS	Global Positioning System
HALO	High-Agility Low-Observability
HAS	Hardened Aircraft Shelter
HDD	Head-Down Display
HF	High-Frequency
HMD	Helmet-Mounted Display
HMS	Helmet-Mounted Sight
HOTAS	Hands on Throttle and Stick
HUD	Head-Up Display
IDS	Interdiction-Strike
INS	Inertial Navigation System
IOC	Initial Operational Capacity
IPD	Integrated Product Development
IR	Infra-Red
IRST	Infra-Red Search and Track
JSF	Joint Strike Fighter
ISTARS	Joint Surveillance, Targeting, Acquisition and Reconnaissance System
IASSM	Joint Air-to-Surface Stand-off Munition
IAST	Joint Advanced Strike Technology
IDAM	Joint Direct Attack Munition
UTDS	Joint Information and Tactical Data System
ISOW	Joint Stand-Off Weapon
KISS	Keen It Small and Simple
LADAR	Laser Detection And Ranging
LCC	Life-Cycle Cost
LCD	Liquid Crystal Display
LE	Leading Edge
LE	Laminar Flow
LCR	Laser-Guided Bomb
LUD	Left Hand Side
	Low-Light Level Television
LMA	Locally Manned Aircraft
LO	Low Observability
LOCAAS	Low-Cost Autonomous Attack System
LORAN	Long Range Navigation
LOS	Line-of-sight
LPI	Low-Probability of Intercept
LW	Long-Wave
MALD	Miniature Air Launched Decov
MEM	Micro-electromechanical Devices
MFD	Multi-Function Display
MITL	Man-In-The-Loop
MLU	Mid-Life Update
MMI	Man-Machine Interaction
MMHFH	Maintenance Man-Hours per Flight Hour
MMW	Millimetre Wave
MNS	Mast-mounted Sight
MTBF	Mean Time Between Failures
MTTR	Mean Time To Repair
MUF	Modular UAV Family (see 7.11)
MW	Medium-Wave
NGF	New Generation Fighter (see 7.1-7.10)
NOF	Nan of the Earth
	The star starts

1

OBA	Off-Boresight Ability
O&S	Operations and Support
PGM	Precision-Guided Munition
PIO	Pilot Induced Oscillation
P&P	Production and Procurement
PST	Post-Stall Control
RAF	Royal Air Force
RN	Royal Navy
RAM	Radar Absorbing Material
RAS	Radar Absorbing Structure
RCS	Radar Cross-section
RDT&E	Research, Development, Testing and Evaluation
RF	Radio or Radar Frequency
RPM	Rounds per Minute
RHS	Right Hand Side
RPV	Remotely-Piloted Vehicle
RSTA	Reconnaissance, Surveillance and Target Acquisition
RV	Re-entry Vehicle
RWR	Radar Warning Receiver
SA	Situational Awareness
SAM	Surface-to-Air Missile
SAR	Synthetic Aperture Radar
SEAD	Suppression of Enemy Air Defences
SFC	Specific Fuel Consumption
SRAM	Short-Range Attack Missile
STOVL	Short Take-Off and Vertical Landing
SW	Short-Wave
TACAN	Tactical Navigation
ТВМ	Tactical Ballistic Missile
TERCOM	Terrain Comparison
TFOV	Total Field-Of-View
TVC	Thrust Vector Control
TWR	Threat Warning Receiver
UAV	Unmanned Air Vehicle
UCAV	Unmanned Combat Air Vehicle
UHF	Ultra-High Frequency
USAF	United States Air Force
USN	United States Navy
USMC	United States Marine Corps
UTA	Uninhabited Tactical Aircraft
UV	Ultra-Violet
V/STOL	Vertical/Short Take-off and Landing
VHF	Very high frequency
V&V	Validation and Verification
WEU	Western European Union
WFOV	Wide Field-Of-View
WWII	World War Two

List of Figures and Tables

Figure 1 p.19	- Cockpit Design - Past, Present and Future
Figure 2 p.29	- Radar cross-section as a function of look angle
Figure 3 - p. 33	- Aircraft radio frequency scattering sources
Figure 4 p.34	- Typical design features for low radar cross-section
Figure 5 p.35	- Aircraft infra-red radiation sources and wavelengths
Figure 6 p.54	- Comparison of committed cost vs. actual expenditure over lifetime of a program
Figure 7 p.55	- Comparison of cost versus achievable capability
Figure 8 p.55	- Program outlay as a function of time for distinct development strategies
Table I - p.7	- Post-War jet fighter generations
Table II - p.28	- Radar cross-sections (RCS) in frontal aspect from open literature
Table III - p.30	- Rough order of magnitude indication of head-on RCS of air vehicles
Table IV - p.31	- Techniques for reduction of radar cross-section
Table V - p.36	- Factors affecting infra-red signature
Table VI - p.56	- Breakdown of Aerospace Program Costs
Table VII - p.76	- Seven Post-War Generations of Fighters
Table VIII - p.95	- Five post-war generations of bombers

t

Acknowledgements

The present paper includes contributions from the following authors:

- Leland M. Nicolai, Lockheed-Martin, Skunk Works: (Palmdale, California); Sections 4.2.1 to 4.2.9. on weapons; 4.3 on stealth/counter stealth; 4.5 on design integration; and 5.5.3 to 5.5.11 on unmanned air vehicles;
- Colin Massey, Westland Helicopter Advanced Engineering, Yeovil, England: Sections 3.3.2. to 3.3.4.

These Sections owe substantially to their input.

Other contributions are included in a more diffuse manner, and were received on the topic of aerodynamics (Section 3.1.4) from:

• F.B. Quagliotti, Politecnico di Torino, Dipartamento di Ingenieria Aerospaziale, Itália,

and on the topic of propulsion (Section 3.2.), due to the efforts of:

- Jean d'Autumme, Aerospatiale, Direction de Recherche et Technologie, Paris, from two authors:
 - Anthony J. Cifone, U.S. Navy, Naval Air Warfare Center, Patuxent River, Maryland;
 - · Jean Choplin, Dassault Aviation, Paris,

and also from the French engine manufacturer SNECMA.

An intermediate case of use both of verbatim text and diffuse ideas, concerns the contribution to the aerodynamics (3.1) Section by:

• Kasik Orlik-Ruckeman, National Research Council, Toronto, Canada,

and the contribution on cockpit technologies (Sections 3.5.6 to 3.5.10) from:

• S.W. Baillie, National Research Council, Ottawa, Canada.

Two transparency presentations on the Sections (4.1) mission system and (6.5) force mix were received from:

• Donald P. McErlean, Technical Director, JAST Program Office, Wright-Patterson AFB, Ohio, plus a text on Life-Cycle Costs (input to 6.1.8. to 6-1-10).

My thanks are due again to Leland M. Nicolai for his comments on the complete manuscript, and to him and Donald P. McErlean for discussion of a draft.

The benefit of all this material is gratefully acknowledged. Since the editor did a substantial amount of writing and gap filling, he must assume all responsibility for any deficiencies of context or content.

This report was originally written as a contribution to AGARD Study 2020*, covering one of the topical areas, namely aircraft design and affordability. Since it was too long, it has been replaced by another input to volume 2 of that study, of about one-quarter the size, with a completely re-written text, covering some of the areas, with less technical detail. The 2020 Study Group that specified the shorter version, also proposed that the original version be published in its entirety as a separate AGARDograph, if endorsed by the FVP (Flight Vehicle Integration Panel). Thus the present report is not constrained by the scope of the 2020 study, allowing the author to discuss issues like industrial organisation, without committing any organisation, to the views expressed. Also, the author has taken the freedom to merge major contributions, with information from other disparate sources, submitting the whole to a re-thinking process, which will reflect inevitably some individual opinions, and makes tracing back to the original sources prone to false guesses. This is one more reason not to hold the contributors responsible for the mergers, modifications, transformations, additions or even opposing views eventually presented by the author. Their contribution in terms of information and food for thought transcends what appears in detail in the final text.

^{*} Published as AR-360, Vols I, II & III.