
CONTINUUM AND NON-CONTINUUM MODELLING OF 
NANOFLUIDICS

Justyna Czerwinska

Institute of Fundamental Technological Research

Polish Academy of Science, Warsaw, Poland

1. Introduction

 Recent  development  in  nano-  and biotechnology  has  opened a  new field  of  micro-  and 
nanofluidics. Many  MEMS (micro-electro-mechanical-systems) and NEMS ( nano-electro-
mechanical-systems ) are based on the fluid motion. Additionally, the analysis of biological 
samples, drug design and nanomedicine are connected to nanoliter fluid flow. The challenge 
for understanding such small systems lies in the difficulty to perform experiments as well as 
in developing theory and simulations methods. Modeling of nanoscale fluid flow is especially 
complicated, because in contrary to macroscale, general equation are not well defined. Hence, 
even if the numerical method is well suited for solution of considered problem, the theory 
needs always be extensively validated with experiments. In this brief summary, the focus will 
be paid to the numerical models suitable for such systems.

Th micro- and nanofluidics flows are characterized by confinement of the fluid environment. 
Additionally, the reduction of  scale implies that surface effects start to dominate over volume 
related phenomena (see Table 1).  Hence,   all  models must  involve very accurate surface 
interaction. 

         Oak Ride National Laboratory                                    MIT  microturbine                                                         Water    turbine

                         Nanomotor

           nanoscale                                     microscale                                       macroscale

Figure 1.  Multiscale engineering design. Devices can resemble some similarities (though  
rarely), but the physical principles are generally very different. In nanoscale, atomistic and 
molecular  interaction  needs  to  be  considered.  Microscale  resemble  continuum  is  some 
aspects, but few have to take to account granularity of the matter. Macroscale engineering is  
based on the continuum, developed through centuries and much more easy to comprehend by 
everyday life experience.

This overview at first tries to answer the question about the validity of the continuum model at 
specific scale, provides short description, how it breaks and what models should be used in 
such  circumstances.  Second part  presents  a  description  of  different  models  which  can  be 
applied in micro- and nanoscale environment. 
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Breakup of the continuum model

The continuum models of fluidic systems are very well developed. Computational methods 
applied  to  such  configurations  give  relatively  fast,  accurate  and  predictable  results.  The 
engineers designing devices in aeronautics and aerospace, turbomachinery,  power and heat 
transfer,  are extensively using continuum based simulation tools.  The same way does not 
apply  for  micro-  and  nanotechnology.  The  theoretical  models  are  still  under  significant 
development  and  numerical  tools  are  rather  expensive  and  time  consuming.  Hence,  the 
engineering design is largely done experimentally. The motivation of the work in micro- and 
nanofluidics modeling is to change this fact and to develop fast and uniform methods, which 
can provide visible assistance for engineers.   One of the obstacles in this goal lies in the 
complex  physics  behind  MEMS design.  Another  limitation  is  provided  by  the  design  of 
efficient and accurate computational methods. Hence, to understand methodology of micro- 
and nanofluidics simulations some details of complex physics behind are necessary.

surface  to volume ratio for 1µm3 cube 10-6 m

the distance that two  water molecules
 will separate by diffusion in 1s

30µm

time for a DNA chain 
to diffuse distance of it own length

108 s

gravitational constant 9.81 N/kg

surface tension (water) 0.728 N/m

ion size  (Cl-) covalent radii (neutral) 0.099nm;
 ionic radii 0.181nm

ion size (Na+) covalent radii (neutral) 0.157nm;
 ionic radii 0.095nm

mean free path (air 1atm)  70 nm

average distance between water molecules 3.3 nm

size of water molecule 0.2nm

λB (Bjerrum length) water 0.7νm

λD (Debye length) water solution  0.7nm-1µm

λ-DNA size diameter 2nm; 
length up to few µm

cell-size 0.5µm-2µm

human hair diameter 17µm

relaxation time for polymers 1ps - 5ns

number of molecules in 1µm3 25 million (water)

number of molecules in 1µm3 34 billion (air)

Table 1. Characteristic space and time dimensions for processes in micro- and nanoscale.

Continuum model have several  important  assumptions  about  the fluid,  and the fluid–solid 
interaction.  The first simplification states that the existence of the internal structure in the 
fluid is neglected.  

The  assumption  of  the  continuous  nature  of  the  media  allows  to  derive  average  bulk  
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properties,  which are defined in every point of the fluid domain. Examples of such physical 
properties  are:  velocity,  density,  temperature,  viscosity,  thermal  conductivity,  electric 
conductivity, ionic solution strength etc.  Internal fluid properties, are generally assumed to be 
constant or change accordingly to well defined theoretical or empirical relations. In real gases, 
liquids  and solids  such  assumption  is  not  always  valid,  especially  in  small  and  confined 
environment.  Knudsen number  is  a  non-dimensional  parameter  describing  validity  of  that 
approximation.  It  relates  the  average  mean  free  path  to  the  characteristic  length  scale 
(example  to the channel diameter)

Kn=


L
;        =

k BT

2 d 2 p
. (1)

Large Knudsen number implies that the characteristics scale is comparable to the mean free 
path (collision distance between molecules). Such situation occurs if there are fewer atoms in 
the volume (rarefied medium) or in the confine environment. If the molecules are closed in 
very small volume, than they can collide with wall more frequent than between themselves. 
Hence, for microdevices the Knudsen number is large even for dense gases. Knudsen number 
is mostly defined for gases, but adequate parameter can be applied to liquids. In such a case 
the intermolecular distance replaces mean free path. 

              

[a]                                                                                 [b]

Figure  2.  Conceptual  representation  of  the  continuum  and  real  molecular  media.  [a]  
Difference in the molecule packing and organization between gases, liquids and solids. [b]  
Example  of  radial  distribution  function  for  gas,  liquid  and  solid.  The  number  of  peaks 
corresponds to the visibility of the local neighbor structure. In the interaction range for a gas  
molecules are no distinguishable neighbors. On contrary, solid molecules are influenced by  
the wide range of neighboring particles. 

Taking the Knudsen number definition very strictly, only for Kn = 0 the medium is considered 
to  be  continuum.  However,  the  experiments  show that  continuum regime  is  still  a  good 
assumption for Kn <0.001. For larger Knudsen numbers the continuum approximation breaks. 
For gases it is an extensive study [1,2,3] started by Maxwell (1879) [4]. For liquids the work 
is still not as clear, as the scale is of the order of nanometers and experimental techniques still 
are a bit limited for extensive investigation of such phenomena. Hence, mostly theoretical 
work was done using molecular dynamics simulations [5,6].

For  the  large  Knudsen number  the  fluid  bulk  properties  cannot  be  considered  or  defined 

gas liquid solid

continuum
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continuously.  Therefore,  bulk properties are being replaced by averages over a number of 
particles. Fewer particles in the volume will lead to the larger fluctuations in the estimation of 
mesoscale properties. 

Second important approximation imposed in the continuum model is infinitesimally short time 
of solid-fluid interaction,  which implies  no-slip boundary condition. This is not the case in 
real systems. However, the approximation is fulfilled for a wide range of dimensional scales. 
In gaseous  micro-devices  it  can break in  about  0.1 mm regime and for liquid  for 0.1µm 
system. For such circumstances, the fluid-solid interaction time starts to be comparable with 
the   average  flow  time.  The  molecules  have  not  enough  time  to  obtain  equilibrium  for 
momentum and energy transport between fluid and the solid.  This, in macroscale world, leads 
to velocity slip and temperature jump on the solid wall [4,7]

There are another two effects related to the granular properties of matter. The fact that the 
solid is not a continuum, but has a layer of particles leads to non-uniform interaction field 
distribution. Hence, the interaction will be stronger and weaker at some points depending on 
the crystalline or amorphous structure of solid. The solid structure is locally imposed into the 
fluid domain (especially liquid). The molecular dynamics simulations and also experiments 
shows such cohesive layers  in liquids near solid boundaries [8,9]. 

Granular property of the matter manifest itself also in the case of  particles immersed in the 
fluid. In principle the particles could be gas, liquid or solid.  The microscopic nature of the 
fluid with immersed particles is represented by  Brownian motion (1827). This phenomenon 
relates thermal fluctuations with the viscosity of the solvent and implies that assumption of 
flow irreversibly in time breaks. The importance of Brownian motion can be measured by 
non-dimensional  quantity  -  Peclet  number.  It  defines  the  ratio  between  convection  and 
diffusion forces acting on the particles in the solvent. For large Peclet  number convective 
effects are dominant and Brownian motion influence can be neglected. 

Pe=
Lu
D

(2)

If the Peclet number is small than the diffusive effects need to be taken to account. The flow 
will be time dependent and irreversible.  Additionally, in the low Peclet regime the mass and 
heat transport can be different resulting in double-diffusive convection.  Brownian motion is 
already an approximation, obtained with assumption that solvent molecules are much smaller 
than  the  immersed  particles.  However,  validity  of  that  statement   was  confirmed 
experimentally for very small scales (example experiments on rod-like particles of anthracene 
[10]).   If the sizes of particles are comparable with the solvent molecules, than the diffusive 
motion become more of the ballistic type [11].  

The another important issue in microfluidics is related to the two fluid interface. The behavior 
of such surface will be distinguishably different than the one between fluid and the solid. 
Fluid particles can move freely.  Hence, there are two types of possible interactions: miscible 
and immiscible fluids. The first one will mixed together by means of molecular diffusion. 
This  is  the  case  for  all  gases  and  some  liquids.  More  complex  behavior  takes  place  for 
immiscible fluids. The interface between them tries to optimized surface energy and forms 
droplets or bubbles. The continuum model assume that the interface is a discontinuity with the 
boundary condition for pressure gradient. The pressure gradient will depend on the surface 
tension  and  interface  curvature.  Two  non-dimensional  numbers  describe  magnitude  of 
interfacial effects: capillary number (ratio of viscous to surface tension effects) and Weber 
number (ratio of inertia to surface tension forces). 

Ca=
u


We=
u2 L


(3)
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The  most  micro-  and  nanoscale  flows  have  rather  small  inertial  forces.  Hence  capillary 
number is generally more important parameter to follow than Weber number. However, both 
criteria do not represent a parameter for a continuum breakup. The surface tension will be 
continuous up to the molecular scale and for the sizes much smaller than the one of fluid-solid 
interaction (0.9 nm, [12,13] ).  The another important phenomena related to the two-phase 
flows in microscale originates from the fact, that gas molecules are not so dense packed as 
molecules in liquid. Hence, the gases can diffuse in liquids. In macroscale this process is slow 
to notice. However, in microscale, due to that property, gas bubbles smaller than 50µm diffuse 
very quickly in water, but water droplets of that size or even a nanometer scale are still very 
stable. Therefore,  practically  micro-bubbles do not exist,  but micro- and nano-droples are 
very common [14].

  

                                        [a]       [b]

Figure 3. Microfluidics mono-dispersed droplet formation in T-junction [a] and flow focusing 
device [b]  as a function of mass flow rate [15]. For each device left side represents slower  
flow than the right figure. 

The interface between two fluids can also interact with solid surfaces. In such a case, there are 
three possibilities.  The surface can be completely,  partially  or  non-wettable.   The contact 
angle, between fluid-fluid and the solid, can be altered by: changes in the surface properties 
such as material type or roughness; or by adding surfactants to modify surface tension.

Finally  it  needs  to  be  noted,  that  surface  tension  is  one  of  the  most  important  forces  in 
microscale. It is a result of the fact, that  surface forces are dominant over the volume one  
(example  gravity  force).   Micro-droplets  are  a  fundamental  part  of  many  micro-devices 
(digital microfluidics [16,17] ). Moreover, the phase transitions in micro-systems is currently 
extensively investigated. At present, however, there are no general and simple models to give 
guidelines, when the continuum approximation breakup occurs.

Additional  length  and  time  scales  are  introduced  by  immersing  elastic  bodies,  such  as 
polymers, in the micro-system environment. The measure of elastic effects can be estimated 
by three non-dimensional numbers:  Weissenberg  number - Wi (relates  polymer relaxation 
time  to  shear  rate  time),  Deborah  number  -  De   (relates  polymer  relaxation  time  to 
characteristic flow time)  and elasticity  number - El ( relates elastic to inertial effects)

           Wi=̇  ;     De=


t
 ;    El=



L2 . (4)

Similarly  as  with  the  rigid  particles,  the  elastic  object  experience  Brownian  fluctuations, 
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which is  an additional  time scale  to the scales mentioned above.  In macroscale  the  small 
elastic objects in the flow are modeled as an altered  fluid properties with internal memory. In 
microscale,  each elastic  particles  needs to be considered separately.  Some elastic  particles 
such  as  DNA can  have  length  of  the  order  of  millimeters  and  diameter  of  the  order  of 
nanometers. Hence, the continuum approximation for complex fluidics environment breaks 
for relatively large scale and depends mostly on the properties of elastic objects. [18,19] 

Atoms and molecules are generally charged or polarized objects. Reduction of the device size 
leads to the amplification of the influence of the electromagnetic effects. The most common 
liquid  – water  is  a  polar  liquid.  The  ions  will  interact  with the  surface,  creating  charged 
molecular  layers  mainly  electric  double  layer  (EDL).   On  the  larger  scale,  this  effect  is 
represented as electro-osmotic slip. In nanoscale flow, distribution of the separate charges 
needs to be taken to account. Similarly,  as  in electrically neutral media, in charged media 
ions experience layering due to the solid structure [20].

                      [a]                              [b]

                     [c]                               [d]

Figure 4. Concentration of dye. The lines indicate electric field. Sample is transported from 
left  to  right.  [a]  Initial  configuration.  [b]  Electro-osmotic  transport,  when  induced  slip  
equilibrates with pressure driven flow. [c] Electro-osmotic slip is too small to compensate  
viscous effects. [d] Electro-osmotic slip  dominates over pressure driven motion.

The parameter representing the electromagnetic granularity effects is a Debye length

  D=
1

8B N A I
.  (5) 

The definition resemble mean free path definition and has similar implication. NA is Avogadro 
number, I – ionic solution strength and lB - Bjerrum length.  The non dimensional number 
characterized these type flows is called Debye ratio

De=
L

D
, (6)

where  L  represents  characteristic  diameter.  Similarly,  as  for  Knudsen  number,  there  are 
several regime of distinguishable ions and solution behavior. For small De separate ions need 
to be modeled. Depending on ionic strength and ion size, charged molecules layers  can be 
visible even in the millimeter-scale. Hence, electro-osmotic and electro-kinetic effects are a 
driven  force  for  many  microfluidics  devices.  Additionally,  high  electric  fields  are  easily 
obtained on that scale, much easier than pressure drop or magnetic interaction [21].

The non-dimensional number, which is widely used in macroscale is Reynolds number. It is 
representing  the ration of inertia to viscous forces
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Re=
u L


(7)

For the majority of micro- and nanodevices Re << 1. Hence, in microscale inertia forces do 
not play as important role as in the macroscale. 

The micro- and nanoflows have a wide application especially in bio-chemical industry [22, 
23,24]. However, application generally have combination of most of the effects mentioned 
earlier. Hence, the modeling is very complex as it requires of the reduction in physics as well 
as adequate computational techniques choices. Some of the example of devices can be found 
at  micro-pumps [25], micro-mixers[26], micro-reactors [27]. The most common and know 
one is the acceleration sensor in airbag of the car. The advantage of miniaturization lies in fact 
that smaller device has much shorter reaction time than the lager one,  is more sensitive  to 
small changes (example molecule detectors ) and it needs much smaller sample for analysis 
(DNA  analyzers).  Some  comprehensive  reviews  considering  the  physics  of  micro-  and 
nanoflows are presented in  [28,29] . 

Computational models

As it was shown in previous section modeling of micro- and nanofluidics is challenging task 
due to the complex physics. However, there are  also several complicated numerical issues 
which need to be taken to account. Knowing the basic physics of the considered problem and 
if and when the continuum approximation breaks, correct numerical approach can be taken to 
account: 

● Purely continuum approach; complex fluid phenomena; continuum equations;

● Relatively small continuum breakage:

● fluid-surface interaction – slip model required;

● immersed particles, small Peclet number-  Langevin equations;

● Invalidity of the continuum approximation

● molecular models;

● mesoscale models for computational efficiency

● coarse grained models (LBM, RSD, DPD, DSMC)

● hybrid approximation (continuum and molecular model superposition; 
continuum and mesoscale models; mesoscale models and molecular models 
combination).

There are two important properties, which should be satisfied by any micro- and nanofluidic 
numerical model. Firstly, surface effects are dominant at that scale. Hence, correct models for 
boundaries  are  necessity.  Ideally  the  values  at  the  boundary  would  be  a  result  of  the 
simulation itself. Secondly, any meso- and molecular approach needs to predict parameters of 
motion and properties of media at the same time. This is a challenge, hence, the properties 
will  be an average  over  molecular  parameters  and will  change with time,  while  the flow 
progresses. 

Basic Continuum Equations

Continuum approximation  is  widely  used  for  modeling  many  micro-devices  –  especially 
droplet  based  micro-reactors  (see  figure  3),  micro-mixers  or  electro-kinetic  reactors  (see 
figure 4). As it  was shown in previous section Navier-Stokes relation holds very well  for 
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liquids up to the nanoscale and for gases up to microscale

∂

∂ t ∇⋅u=0 ; (8)

 ∂u
∂ t

u⋅∇ u=∇ pu f . (9)

Due to  the fact,  that  generally  inertia  forces  are  small,  Navier-Stokes  equations  are  often 
reduced to the Stokes approximation for creeping flow. The complexity of  simulations does 
not lie in the solution of the Navier-Stokes equations,  as it  is a case for macroscale  flow 
simulations.  Generally  additional  equations  need  to  be  added  to  accommodate  complex 
physics. And this is the reason, why microfluidics simulations at the continuum level are also 
difficult and computationally costly.

As it was shown, many micro devices are driven by electric field. Hence, for simulations 
additionally the Poisson-Boltzmann equation need to be taken to account

∇
2
=

−4 e


∑k=1

N
nk

∞ zk exp − z k e

k BT  . (10)

Addition  of that equation significantly complicates simulations. However, in many cases 
linearization of Poisson-Boltzmann equation can be sufficient (Debye-Hückel theory). 

For two phase flow, Laplace equation for the interface curvature needs to be included

 p=  1
R1


1
R2

 . (11)

Additionally to include elastic effects Oldroyd-B equations can be considered:

∇⋅u=0 ;

 ∂u
∂ t

u⋅∇ u=∇⋅ ; (12)

=−p I∇ u∇ u 
T
G A ;

∂ A
∂ t

u⋅∇ A−A⋅∇ u−∇ u
T
⋅A=−

1


A−I  .

Continuum model first breaks near the wall and later in the bulk fluid. Hence, it can be still 
applicable for more cases, if the special treatment of walls is implemented [30]. Slip equation 
for gas flow are introduced by Maxwell and Smoluchowski and in general form are as present:

ugas−uwall=
2−σ v

σ v

λ
∂u
∂ y


3
4

μ
ρT

∂T
∂ x

;

(13)

T gas−T wall=
2−σT

σ T

2γ
γ1

λ
Pr

∂T
∂ y

.

In figure is given an computational example of the complex flow structures induced only by 
slip related effects.
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Figure 6. Secondary slip induced structures in gas flow in micro-channel. The plot shows 
Reynolds and Knudsen number dependency [31].

For electro-osmotic and electro-kinetic flow ionic induced slip is as follow

u fluid−usolid=−
 E
4 

. (14)

Example of electro-kinetic flow behavior was presented in figure 5.

In the case of the flow, which has many moving surfaces (particle immersed in the fluid), 
Langevin (1908) equations can be applied. It takes to account fluid molecular structures. The 
thermal  motion  of  molecules  induces  random fluctuations,   which  act  on  particle  in  the 
solvent. Langevin equation is applicable under the condition that immersed particles are much 
larger than the fluid molecules. For such circumstances intermolecular interaction averages 
into the stochastic Markovian forces. This implies that the particle does not have a  memory 
about the past. The equation has a form:

m
d2 x
dt2

=−
1
B

dx
dt

F  t  , (15)

where F(t) represent random force. The choice of the force value is, however, restricted by 
Einstein-Smoluchowski fluctuation-dissipation theorem

x 2=
k BT t

3 πη r
, (16)

which connects magnitude of the random fluctuations with the macroscale viscosity of the 
fluidic solution.
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                [a]            [b]    [c]

Figure 7.  Example  of  Brownian motion of  ellipsoidal  particles.  [a]  molecular  simulation  
instantaneous snapshot; [b] random path over the time of few particles in the confined box – 
represent translational diffusion coefficient; [c] position of the axis of the particles over time 
– represent rotational diffusion. Translational and rotational diffusions act independently on 
the immersed particles.  

Numerical methods for the continuum approximation are the same as in the physics of large 
systems. The only part which need special treatment are stochastic differential equation. The 
methodology  to  find  solution  of   such  equations  is  a   bit  more  complicated  than  for 
deterministic  systems.  The  stochastic  solution  can  converge  to  the  specific  solution  path 
(strong convergence) or to the estimated value (weak solution). Hence, there is a whole set of 
numerical schemes to accommodate different ways of converging. Details can be found in 
[32]. 

The simulation  techniques  for the continuum approach are  relatively well  established and 
widely used in  development  of  various  microfluidics  devices.  However,  nanoscale  fluidic 
systems requires much more sophisticated models. Over years physicists has developed tools 
to  study  numerically  molecular  systems.  Part  of  that  knowledge  can  be  applied  for 
nanofluidics. Brief description of molecular modeling will be shown in next section.

Molecular models

Molecular approximation  is a particle based model. Molecules are Hamiltonian systems. The 
particle is define by its position and  velocity in three-dimensional space. The particles can 
interact between themselves. Hence, each particle has kinetic energy and potential energy of 
two,  three,  four  etc.  bodies  interaction.   The  latter,  in  practical  application,  is  generally 
restricted to two-particle interaction potential. The important difference between continuum 
and molecular approach is that the model has to give bulk properties as well as the motion at 
the same time. The continuum model assumes properties from other theories or experiments 
and only the motion is simulated.   

Mesoscale properties

On the molecular scale  particles will interact the same regardless if the considered material is 
in a solid,  liquid or gaseous phase. Only the molecular packing factor will change. Hence, the 
important step, in molecular simulation, is to determine if considered results correspond to the 
solid, liquid or gas. This can be done, for example, by studying radial distribution function 
(RDF). 

 g r =
−2

〈∑i ∑ j≠i
r i r j−r 〉=

V

N 2
〈∑i ∑ j≠i

 r−r i j〉  (17)
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RDF  is  a  measure  of  the  distance  from the  molecules  to  the  neighboring  particles.  The 
function can be also compared with the one for the ideal gas

n id
b =

4

3
[ r r 

3
−r 3

] ;

(18)

g r1
2
 r =n b/nid

b .

This allows to determine the thermodynamical state of the simulation media. The example of 
RDF are presented schematically in figure 2. 

               [a]               [b]                    [c]                 [d]

Figure  8.  Simulation  of  the  non-spherical  particles  in  nanotube.  Depending  on  the  
thermodynamic properties the flow can behave as a self-organized structure [a],[b],[c] or an  
entirely random [d]. In each of the simulations, the average properties after extraction give  
parabolic velocity profile.

Estimation of RDF also allows to define macroscopic parameters such as energy

E=
3
2
N k BT2 N ∫0

∞

r2 v r g  r dr ;  (19)

pressure

PV =N k BT−
2
3

N ∫0

∞

r 2w r g r dr ;             (20)

 or viscosity

=k BT ln 
3
4 ∫0

1
d ∫0

∞

r2 v r g r ;d r ; =
h2

2mk BT

1 /2 

.     (21)

However, for that purpose, more accurate and  efficient are several other algorithms.
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Macroscale properties of fluids, such as viscosity or thermal conductivity,  are defined as a 
response to the applied stress. The viscosity is defined from stress-strain relation

u =
1
2  ∂u

∂ x 


∂u

∂ x
 , ,=x , y , z ;

=B u2Gu−
1
3
u ;                               (22)

 x , y=2G ux , y .

Similarly the response to applied stress can be defined in elastic solids:

 =
1
2  ∂ v

∂ v


∂v 

∂ v
 ;

 x , y=2 x , y  .                                                 ( 23)

Molecular approach is very similar. The properties are defined as a response to the applied 
force. However, the response on the molecular level manifest itself in the random fluctuations. 
Hence, the properties are a correlation functions of initial  (with applied force) and current 
state  of  the  system  (undergoing  relaxation).  The  equations  providing  mesoscale  fluid 
properties are called Green-Kubo relation and were proposed in 1950

=
V
k BT

∫0

∞

ds 〈 J 0∣J t 〉 .                                    (24)

There are several algorithms which allow to obtain in efficient manner average properties of 
fluid [33]. 

Figure 9. Schematic representation of Molecular Dynamics fluid and the particle bilateral interaction 
potential.

Molecular simulations: Monte Carlo and Molecular Dynamics Methods

There  are  two  basic  approaches  to  molecular  modeling:  purely  stochastic  and  purely 
deterministic. Both assume the media as a set of discrete particles, which can interact between 
themselves. The stochastic model – Monte Carlo simulations describe the configuration only 
by  random  choice  of  the  states  of  the  system  and  additionally  the  acceptance-rejection 
criterion is imposed. It allows to determine if the state can be taken to account for average 
properties. More detailed description of  Monte Carlo technique can be found in [34]. Monte 
Carlo   method  works  well  for  obtaining  macroscale  properties  of  media.  However,  is 
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inefficient for simulation of coherent, global motion of fluid. Much more efficient for fluid 
motion  is  a deterministic  approach – Molecular  Dynamics.  Hence,  the focus here will  be 
mostly on the definition of that simulation technique. However, it needs to be underline, that 
despite inefficiency for molecular simulations, some aspects of the Monte Carlo method will 
be present in the construction of the mesoscale models .These will be shown in more detains 
in the following sections.

Molecular Dynamics  (MD) simulations are based on the Newton's second law applied to 
Hamiltonian system:   

m
d2 r i
d t2 =F i=−∇ iV N  ri ; (24)

where interaction potential can be adjusted accordingly. Most commonly used is Lennard-
Jones potential:

V r =[4 

r 
12

−

r 
6

] .        (25)

However, there are several other potential such as DLVO (for colloidal suspensions), Morse 
(for dissociation energy),  Gay-Berne (for non-symmetric  particles),  Born (ionic  potential), 
Tersoff  (for  3  atoms,  mostly  metals)  etc.  Additionally  quantum mechanical  computations 
supply wide variety of more complex potentials [35].

The second order  ordinary differential  equations  are  relatively easy to  integrate.  Example 
Verlet integration algorithm:

r it t =−r it− t 2 r it 
 t 2

2
F i t O  t 4

 . (26)

There are several other algorithms developed, example Gear  predictor-corrector method. The 
extensive details considering algorithms can be found in [36,37].

Molecular  Dynamics  is  a  very efficient  and well  established  techniques,  which  allows  to 
simulate  wide  variety  of  the  systems.  Lennard-Jones  fluid  properties  are  extensively 
summarized in [38,39]. Hydrodynamics in confined environment is presented in [40]. Water 
properties  are studied in [41].  Non- equilibrium and equilibrium simulation properties  are 
shown in [42]. Finally flow simulations are  presented in binary-mixtures [43] and Rayleigh-
Bernard flow [44].

The limitation of the method lies, at present,  mainly in the computer power. The number of 
molecules, which can be handled is still not sufficient or will not be in the nearest future to 
enhance engineering design (see table 1 for number  of molecules in  µm cube).  Hence,  at 
present,  there  is  an  extensive  effort  to  develop  mesoscale  models,  which  will  be  able 
efficiently  simulate  physical  phenomena  in  micro-  and  nano  devices.  Some  of  such 
approaches  will be presented in the next sections.

Mesoscale models

As we have seen in previous sections, the real micro- and nanofluidics systems  cannot be 
computed by continuum approximation, because in a lot of cases it is not applicable for such 
cases.  Molecular  approach,  on the other  hand,  is  still  too expensive  to  be able  to proved 
interesting results in the reasonable time. Hence, an extensive interest in mesoscale models.
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Stochastic Rotational Dynamics

● Fluid particles: velocities vj and positions rj.
● Rotation of particle velocity relative to mean velocity u 

by angle ±α

Dissipative Particle Dynamics

● Newton equation of motion
● Three types of forces; conservative, dissipative 

and random
● No artificial lattice

Lattice Boltzmann Method

● Particle interact and move on the fixed lattice
● Kinetic gas theory equations satisfied

Direct Simulation Monte Carlo

● Translation of particle position
● Calculation of collision rate; select collision pairs; 

adjust trajectories in the imposed mesh;

Figure  10.  Schematic  representation  of  basic  mesoscale  models:  Stochastic  Rotational 
Dynamics,  Dissipative  Particle  Dynamics,  Lattice  Boltzmann  Method,  Direct  Simulation 
Monte Carlo. 

There  are  two distinguishable  ways  for  obtaining  mesoscale  modeling.  One based  on the 
combining molecular and continuum approach, called a hybrid approach. Second way is to 
derive the mesoscale model from the molecular one, by considering some simplification. The 
hybrid approach is easy to apply due to the existence of continuum and molecular model. 
Generally, molecular model is applied near the surfaces and interfaces and in the continuum 
approach in the bulk region. However, the overlap domain is difficult to define and  the proper 
boundary conditions between molecular and continuum region are hard to impose. Hence, the 
inner-boundary introduces an error to the model, which is difficult to estimate.  Additionally 
the time scale for continuum and molecular approach do not match and that requires attention. 
General procedure is to take few mesoscale parameters from the molecular approach and add 
them the  the  continuum simulation.  This  implies  that  simulations  run  independently  and 
communicate data between themselves, occasionally. Another large drawback relates to fact, 
that hybrid methods become inefficient, when there is a need for many interfaces – example 
colloidal suspension. In such a case multiple surfaces would have to be modeled and than cost 
of the communication between domain is often larger than purely molecular approach. Hence, 
here the focus will be placed on the mesoscale models, which are more promising for micro- 
and  nanofluidics  computations.  The  example  of  some  successful  applications  of  hybrid 
approach can be found in [45,46,47].
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Mesoscale models, similarly as molecular one need to provide mesoscale bulk properties of 
fluid and at the same time also a correct fluid motion. However, the simplification leads also 
to several drawbacks and in general it is very difficult to obtain both bulk properties and the 
correct movement. There are two ways of performing the coarse graining procedure. One is to 
make a discreet lattice, hence to restrict system degrees of freedom. The second is to simplify 
interaction for the unrestricted particles. For each case every coarse grained particle represent 
a set real molecules.

Four most common methods will be presented in next few sections.

Lattice Boltzmann Method (LBM)

The Lattice Boltzmann Method was developed from simpler Lattice Gas  and is based on the 
idea of Broadwell (1964) of the simplification of  the kinetic equation for particle interaction. 
The full model for studying time dependent 3-D gas was proposed by Hardy et al (1976) [48]. 
The method  assumes that the molecules move on the fixed latticed and have only specific 
paths which can follow. Based on that lattice the equation of motion and  fluid properties can 
be derived [49]. 

 Velocity of the particle is given by the characteristic lattice spacing and the characteristic 
time interval

v i=



C i ;i=0. ..5  (27)

Based on this assumption the  properties such as density and fluid velocity can be derived

ρ r , t =∑i=0

5
f i r , t  ;

  (28)

u r , t =
∑i=0

5
v i f i r , t 

∑i=0

5
f i r ,t 

.

Additionally, particles will collide with each other and in such  a case the rules guiding 
collision parameters need to be given:

f i rC i , t= f i r , t Θ  f r ,t  . (29)

Based on this assumption 

∑i=0

5
 i f r ,t =0 ;

(30)

∑i=0

5
vi  i  f r , t =0 .

The fixed mesh shaped is forced by the need of fulfillment of Galilean invariant (properties 
should not depend on the direction). Figure shows example lattice for 2D; for 3D cases the 
lattice has even more complex structure. This is the major drawback of the method, which is 
difficult to apply for complex geometries and also for moving or immersed objects. There are 
however, several interesting computations performed using LBM [50,51].

Continuum and Non-Continuum Modelling of Nanofluidics 

RTO-EN-AV-169 8 - 15 

 

 



Direct Simulations Monte Carlo (DSMC)

Direct Simulation Monte Carlo is a method highly based on the stochastic properties of fluid. 
Hence, it is very efficient for gas. It was proposed by Bird (1956) [52]. The idea is based on 
uncoupling molecular  motion from the collisional  step and both are performed separately. 
Molecular motion is model deterministically following. Advection step is characterized by 
ballistic motion of each particle

r j=r jv j  t  (33)

In next step the lattice is imposed and each particle is allocated in cell.   In each cell  the 
number of pair undergoing stochastic exchange of momentum and energy are chosen.

∂t f vα∂α f F α∂ vα
f =  f  ; (34) 

Collisions are performed in a way to satisfy kinetic  theory of gases.  Hence the velocities 
satisfy Maxwell velocity distribution function

f v j= m
k BT 

3
2 v j e

−m v j
2
/2k BT ; (35)

which is also imposed on the solid boundaries.
The  method  works  especially  well  for  rarefied  gases.  However,  can  be  used  in  other 
application too. The method is sensitive to the random number generation errors and ratio of 
the lattice size to the mean free path.  Some simulation example can be found in [53,54]

Stochastic Rotational Dynamics (SRD)

Stochastic  Rotational Dynamics was proposed by Malevanets and Kapral in 1999 and has 
many commonalities with DSMC. The particle move in two distinguished steps. First is the 
ballistic motion

r j=r jv j  t . (36)

Second the particles velocities direction are shifted randomly by specific value

v j=u jv j−u ;

= cos  sin 
−sin  cos ;            (37)

u=
1
N ∑ j=1

N
v j .

The  step  of  shift  assures  that  Galilean  invariants  are  preserved.  However,  in  contrary  to 
DSMC there  are  no  imposed  rules  on  the  properties  of  stochastic  step.  All  particles  are 
adjusted,  not only the chosen one. Hence,  this  model  fits better  for simulation of liquids, 
where the intermolecular interaction is much stronger. The adequate relations for mesoscale 
properties, such as Green-Kubo formula can be derived [55,56,57].
Currently,  however, there are not many microfulidcs simulations using SRD. Some can be 
found in [58,59,60].
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Dissipative Particle Dynamics (DPD)

Dissipative  Particle  Dynamics  is  a  coarse  grained   model  having  its  origin  in  Molecular 
Dynamics.  The DPD was introduced by Koelman and Hoogerbrugge (1992) [61]  to model 
colloidal suspension behavior.  The particles can move freely and have interaction potential, 
which is simplification of Lennard-Jones Potential (see Figure). The potential is generally of 
the form

r jk= f 1−
r jk
n

r c   (38)

.
Equations of motion are as follow:

d r j

dt
=v j t ;

(39)

m
d v j

dt
=∑ j≠k

[F jk
C

r jk F jk
D

 r jk ,v jk F jk
R

r jk] .

The  corresponding  forces   assure  correct  fluid  behavior.  Conservative  force  is  a  purely 
repulsive force and represents pressure.  

F jk
C

= r jke jk . (40)

Dissipative force reduces velocities between particles. Therefore, it represents friction 

F jk
D

=m r jk e jk⋅v jke jk . (41)

The random force  ensures fulfillment of thermodynamic properties of fluid

F jk
R

=
 jk

 t
r jke jk  (42)

Random force ensures that fluctuation-dissipation theorem is satisfied

d  d 
T
=2k Bx dt  (43)

Dissipative Particle Dynamics suits well for complex geometries. The drawback, however lies 
in  the  modeling  the  correct  Schmidt  number(ratio  of  dissipation  to  viscous  forces).  The 
special  thermostats  are required [62], hence thermal effects are not modeled. Additionally, 
imposing correct boundary conditions is a challenge. There are however some microfluidics 
simulations utilizing DPD properties [63,64,65].

Conclusion

Modeling of micro- and nanofluidics is a challenge. the physical phenomena are generally 
complex and simplification very rarely can be obtained. Additionally, due to the complexity 
of the numerical  procedure, computations are expensive. Hence, the engineering design of 
MEMS and NEMS, at present, is not as extensively supported by computer simulations as it is 
on the macroscale.
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Over many years several techniques were developed to obtain fast and accurate mesoscale 
models. However, such approaches require simultaneously to obtain mesoscale properties and 
the motion.  The coarse graining procedure reduces several  interaction from the molecular 
scale  to make it  more  efficient.   For micro-  and nanofluidics  mesoscale  methods still  are 
inefficient and not accurate enough, because they were mostly developed for bulk flow.  The 
crucial  physics  of  fluid-wall  interactions  is  not  properly  capture.  Hence,  the  micro-  and 
nanofluidics simulation research is still very new and fast growing research field.
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