
  

 

Vibration-Based Methods for SHM 

Claus-Peter Fritzen 
Institute of Mechanics and Control Engineering – Mechatronics 

and Center of Sensor Systems (ZESS) 
University of Siegen 

GERMANY 

claus-peter.fritzen@uni-siegen.de 

ABSTRACT 

During the last years, the idea of a “smart” or “intelligent structure” has been extended from controlled 
structural systems to the field of Structural Health Monitoring (SHM), where sensor networks, actuators and 
computational capabilities are used to enable a structure to perform a self-diagnosis with the goal that this 
structure can release early warnings about a critical health state, locate and classify damage or even to 
forecast the remaining life-time. This paper intends to give an overview and point out recent developments of 
vibration-based methods for SHM. All these methods have in common that a structural change due to 
damage results in a more or less significant change of the dynamic behaviour. For the diagnosis an inverse 
problem has to be solved. We discuss the use of modal information as well as the direct use of forced and 
ambient vibrations in the time and frequency domain. Examples from civil and aerospace engineering as 
well as off-shore wind energy plants show the applicability of such SHM methods.  

1.0 INTRODUCTION 

Diagnosis and maintenance of technical structures nowadays is based mainly on periodic, scheduled 
inspections. Visual inspection, dye penetrant inspection, inspections with portable ultrasonic or eddy-current 
devices are the most common methods today. They are labor-intensive and time-consuming and the result 
depends strongly on the knowledge of the investigating expert. Disassembly of secondary parts is often 
required to get access to the important load bearing structural elements. 

With the development of modern sensor technology, we try to adapt the idea of a biological nervous system 
to technical structures and make them smarter by installing a sensor network together with intelligent data 
processing to interpret the measurement data, see Figure 1. This information is directly available and can be 
sent as pre-warnings to the operator to prevent larger damage with extended repair or even catastrophic 
failure. 

In the discussion about the benefit of Structural Health Monitoring (SHM), three aspects appear to be the 
most important : 1) reliability of safety-critical components to avoid disasters and prevent loss of life, 2) 
reliability under economic aspects, reducing financial losses caused by unproductive “down-time” (e.g. 
availability of aircrafts, power plants, etc.) and make inspection and maintenance more efficient, 3) change 
of design of light weight structures because the possibility of monitoring provides more information about 
the structure’s current condition [1]. 

SHM methods are usually divided into local and global methods. This classification is based on the relation 
of the characteristic length of the waves or vibration pattern with respect to the defect size as well as to the 
overall structural dimensions. Local methods use e.g. high frequency ultrasonic waves whose wave lengths 
should be smaller than the size of the defect to be discovered. Therefore, the “hot spots” of the structure 
where damage is expected should be known. On the other hand, global methods typically use the lower 
modes of the structure as their “dynamic fingerprint”. They can work with a much coarser sensor network 
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which is usually distributed over the whole structure. In the latter case, it is not necessary that the sensors are 
located close to the damage site. For obvious reasons local methods can be expected to be more sensitive to 
incipient damage, however, the sensor instrumentation is more costly if large sensor arrays are required. 

Rytter [2] defined 4 levels on the damage assessment scale: Level I: Damage detection; Level II: Damage 
localization; Level III: Damage quantification and Level IV: Prognosis of remaining service life. Level I only 
provides information that damage is present in the structure. For many practical applications this is 
absolutely sufficient. The challenge for future work on this level is the quantification and increase of the 
probability of detection (POD), get sensitive features and detect small damage in an early state without 
getting too many false alarms. Separating the effects resulting from damage from those coming from 
changes in environmental conditions is a further interesting topic. At level II the location(s) of single or 
multiple damage sites are determined. On level III the extent of damage is evaluated. For this purpose a 
model must be available to describe the effect of damage (by means of parameters like crack length, size of a 
delamination or stiffness decrease etc.) on the dynamic behavior. If no such model exists the damage metrics 
have to be determined by calibration experiments. Some authors [3,4] include the determination of the type 
of damage as an additional step between level II and III. The most sophisticated level is the step from 
diagnosis to damage prognosis and predictions of the remaining lifetime. This requires the combination of 
the global structural model with local damage models to predict the evolution of damage, e.g. fatigue crack 
growth, or probabilistic failure models [5,6]. Overviews can be obtained by [3,5,7-15]. However, the paper 
intends to discuss the basic physical ideas and show some recent trends of vibration-based methods. 

 

Figure 1: Smart Structure with self-diagnostic capabilities. 

2.0 VIBRATION-BASED DIAGNOSIS OF STRUCTURES 

2.1 Dynamical Model of Damaged Systems  

We describe the dynamics of a general non-linear, time-varying, damaged structure by the spatially discrete 
and coupled system of the non-linear equation of motion (1) and the non-linear evolution of damage (2) in 
the following way: 

)()(),,,,(),,,( tttt Testopeded ffθθxxgxxθθM     (1) 

),,,,( tedd xxθθΓθ        (2) 

),,,,()( tt edout xxθθhy      (3) 

))(,,()( tt edinTest uθθhf      (4) 
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where M is the mass matrix, g the force vector of elastic forces, damping forces, etc. depending on the 
displacements x and the velocities  and t the time. The external load vector f is split into operational loads 
fop and test loads fTest . The number of degrees of freedom (dof) is m. Equation (

x
1) also allows to express non-

linear effects of damage like stiffness variation due to an opening or closing crack depending on the 
instantaneous deformation [16]. The non-linear function   describes the evolution of the damage parameters 

 (e.g. crack length, play, loss of stiffness, loss of mass etc.). The parameter  in eqs. dθ eθ 1-4 indicates the 

influence of environmental and operational conditions (e.g. temperature, humidity, change of mass 
distribution, rotational speed, etc.) on the equation of motion. The two differential equations 1, 2 interact due 
to their coupling in the mechanical displacements, velocities and parameters. E.g. larger amplitudes of 
vibration x will cause larger stresses in the structure and hence increase the growth of damage. By means of 
eq. 2 it is possible to extrapolate into the future and by this perform a damage prognosis and estimate the 
residual service life [17,18]. Due to the statistical variations in the measurements (e.g. S-N curves), 
assumptions and uncertainties about the future loads and damage growth models (Paris law of crack 
propagations, linear damage accumulation rule according to Palmgren-Miner, etc.), the estimation of the 
remaining life-time is of probabilistic nature and not a purely deterministic problem. A compilation of 
different methods for modeling the change of stiffness of structural elements due to damage is presented e.g. 
in [19]. 

The evolution of the damage on one hand and the dynamics of the structure on the other hand usually takes 
place on two different time scales. Compared to the vibrations of the structure the evolution of damage 
(fatigue, corrosion, etc.) is usually considered to be a rather slow process so that we can assume that  
keeps constant during the short time span of the data acquisition. An exception from this is impact damage, 
where the damaging event takes place in a very short moment. Model-based methods require accurate 
computational models. Thus, model-updating [

dθ

20,21] is an important step to improve the quality of the 
model before it is used for damage identification. 

Eq. 3 delivers a relation between the internal model state variables (displacement, velocities) and parameters 
with the output variables y(t) like strains, voltages, accelerations, etc. which we wish to compare with a 
corresponding output of a measurement device. The fourth equation describes the transformation of an input 
signal u(t) (e.g. a voltage) into forces or moments, e.g. in the case of piezo-actuators. In eq. 3, 4, the damage 
parameters  can also include sensor or actuator failure. dθ

 

Figure 2: Inverse problem: from measurement to damage evaluation. 
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2.2 Inverse Problem 

The deviation of the outputs y = y - y0 from a reference signal y0 (the baseline, representing the undamaged 
system) due to changes of the damage parameters  can be used for diagnosis. While the forward problem 

is  the inverse problem can be written as , see 

dθ

),( ed θθFy  ),(1
ed θyFθ   Figure 2. Generally this 

represents an inverse task with all the problems that can arise like non-uniqueness of the solution in case of 
incomplete information of the measurement data or unstable solutions due to measurement noise. Very often 
the deviations of the time signals y, y0 are not used directly, but an intermediate step is introduced to extract 
characteristic features of the system such as modal data, FRFs, etc. This condenses the information to a 
lower dimensional space. Minimization of the residuals leads to a linear or a non-linear optimization task, 
depending on the formulation of the residuals. In addition, constraints can be introduced. 

2.2.1 Pattern Recognition and Neural Networks  

Damage assessment can also be considered under the aspect of a pattern recognition task [4,22,24-28]. The 
cause-effect relation of damage and changes in the dynamical behavior (features) can be mapped by neural 
networks (NN) which are trained to given input and output vectors. This approach is called supervised 
learning [23]. The output targets represent different damage scenarios while the input patterns represent the 
corresponding features from the dynamic behavior such as deviations of the eigenfrequencies and mode 
shapes from the undamaged state. These changes can be determined from calculations, simulating different 
damage scenarios or by real data from real damage cases if available. Alternatively, other features such as 
wavelet coefficients [27] etc. can be used. The generation of the training pattern using a model makes clear 
that we may run into the same problems as with the inverse problem if we do not have an accurate structural 
model. Contrary to that, unsupervised learning [23] does not make use of labeled training data. Instead we 
have a collection of unlabeled samples and we try to classify them based on the features in the data only. 

2.2.2 Influence of Environmental Conditions 

It is well-known that environmental effects, represented by the parameters  (like temperature, humidity 

etc.), can have a strong influence on the dynamics of the vibrating system (by changing stiffness, damping 
and mass properties), the working conditions of the sensors and actuators (e.g. material properties of piezo-
electric elements, properties of adhesives, etc.) but also on the evolution of the damage, e.g. by corrosion. 
Concerning the first two aspects, it is important that we can separate the dynamic effects caused by the 
environmental parameters  from the changes caused by damage parameters . Otherwise, we are not 

able to come to a reliable decision. As many studies have shown, changes caused by temperature can be 
easily of the same order or higher compared to the changes caused by damage. The compensation of the 
environmental effects, namely temperature, is considered to be one of the major topics today and is essential 
for the success of the diagnosis. One solution is to provide a data base of multiple reference states for 
different environmental conditions, e.g. different temperature levels [

eθ

eθ dθ

29]. To find optimal reference points, in 
[30,37] clustering methods have been applied. 

Other methods for compensation of the effects of changing environmental conditions were developed by 
Sohn et al. using a combination of AR-ARX (AR models with exogenous inputs) models with Non Linear 
Principal Component Analysis (NLPCA) [31]. Kullaa uses missing data analysis [32] or factor analysis 
[33,34] to eliminate the environmental effects from damage sensitive features. Yan et. al [35] propose a local 
PCA for structural damage diagnosis under changing environmental conditions. A review of methods for 
compensation of environmental conditions can be found in [36].  

2.2.3 Sensor Distribution 

The damage identification result depends strongly on how many sensors can be used, the location of these 
sensors and which kind of sensors are used, but also on the frequency spectrum of the sensor signals. The 
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accuracy of the solution of the inverse problem  depends on the amount of information 

we can gather from the measurement data. Of course we want to maximize this information, resp. to 
minimize the uncertainty of the damage parameters 

),(1
ed θyFθ  

d . Practically, this means that we wish to obtain 

parameter values with low variance. A measure for uncertainty is the information entropy [38]. 
Papadimitriou et. al. [38] show that minimizing the entropy is equivalent to maximizing the determinant of 
the Fisher information matrix containing the derivatives of the measured responses with respect to the 
parameters d : jdiy  / . The derivatives represent the sensitivity of the responses with respect to the 

various damage parameters. Furthermore, the inverse Fisher information matrix represents the lower bound 
of the parameter variances (known as Cramer-Rao lower bound). From that it is clear that we should select 
sensors which maximize the determinant of the Fisher matrix. For the selection of appropriate sensor 
locations for damage identification with modal data, in [39,40] an efficient forward-backward selection 
procedure is proposed. Li [41,42] investigates the sensor distribution under the aspect of optimal, 
independent vibration mode determination for SHM.  

Usually, the more sensors we use, the larger is the information, however, from a certain point this is 
impractical for economic reasons. Moreover, the addition of a new sensor does not necessarily guarantee that 
the information is increased significantly, it may happen that the information of the new sensor is already 
included in the other sensor signals. A measure for the redundancy of information is the Mutual Information 
[43]. At the first glance, redundancy looks like a waste of resources, however under certain aspects of sensor 
fault detection, we can make use of this redundancy, see next section.  

2.2.4 Sensor Fault Detection 

This research topic has been paid more attention during the last years. It has been recognized as an important 
issue in SHM that failure of one or more sensors could lead to a point where the whole SHM system -at least 
temporarily- might become useless. In the ideal case we assume that the sensors should have a longer life-
time than the structure they have to monitor but in practice, however, especially under harsh conditions, the 
sensors themselves have a limited life expectation. Sensor faults can be classified after its types as: bias, 
complete failure, drifting and precision degradation [44]. 

Identification of faulty sensors and reconstruction of the faulty sensor signals have been studied e.g. by 
Dunia et al. [44] and Kerchen et al. [45] using the principal component analysis (PCA). Mattern et al. [46] 
used neural networks and Worden [47] combined auto-associative neural networks (AANN) with 
autoregressive models with exogenous inputs (ARX). Kullaa [48] used a so-called missing data analysis. A 
mutual information concept and AR models have been proposed by Kraemer and Fritzen [49] to identify 
faulty sensors in vibrating systems. Most of these methods make use of redundant information of the 
different sensor signals to find out the damaged sensor. Sensor faults of piezo-electric elements can be tested 
using their self-sensing properties and comparing the admittance of the sensor [50,75,76] with a reference 
state. 

3.0 DAMAGE IDENTIFICATION FOR LINEAR SYSTEMS 

Let us assume that the dynamics of the structure can be described by the linear equation of motion with m 
degrees of freedom 

)(tfKxxCxM         (5) 

where M, C and K are the m  m mass, damping and stiffness matrix, respectively. x is the displacement 
vector and f again represents the external load. If the system is undamped or only lightly damped 
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characteristic features of the system are the natural frequencies (eigenvalues ) and the (real) 

normal modes i determined by the solution of the eigenvalue problem  
i

2
ii  

  0MK  ii  2 .       (6) 

A widely used approach is to introduce correction parameters which represent the model changes in the 
system matrices on a substructure or element level: 

 

 
j

jj aKK ;   
j

jj aCC ;   
j

jj aMM .   (7) 

The general damage parameters  are replaced by a simpler approach of linear matrix correction 

parameters . The determination of the unknown correction parameters which localize and quantify the 
damage can be done by solving the inverse problem, minimizing the weighted sum of the components of the 
data error  and constraining the norm of the parameter vector  to “small” values, we get the extended 
weighted least squares (EWLS) functional [

dθ

a

ε Δa
12] 

       with     aaWεWε  a
TJ  raSε  .                           (8) 

Minimizing J with respect to the components of  yields the linear equation system Δa

        (9) rWSΔaWSWS ε
T

aε
T  )(

The vector r represents the changes of the measurement data (different types are discussed in the following 
sections). S is the corresponding sensitivity matrix following directly from the derivation or has to be 
calculated by the first order partial derivatives of the dynamic quantities with respect to the parameters a. 

 and are appropriate positive definite weighting matrices. With εW aW IWa   , Eq. 9  can be considered 

as Tikhonov regularization method, where   is a scalar factor and I is the identity matrix. [51] has derived 
an iterative version of the Tikhonov method. Link [52] has presented an interesting multi-model approach 
adapting the model of the undamaged and damaged system simultaneously. There is a certain disadvantage 
of minimizing the second term in Eq. 8 in the context of damage localization: due to the quadratic nature, the 
algorithm prefers to change many parameters with small changes instead of minimizing only few parameters 
with larger changes. For this reason special attention has to be paid to the problem of the high dimensionality 
of the parameter space, which has to be reduced as far as possible [7,53,54]. The reduced subset of the 
dominant parameters must be able to describe the damage scenario and should finally concentrate on those 
parameters corresponding to the damaged sub-region(s) of the structure. The parameter reduction strategy is 
performed in two steps as described in [54]. As result only those parameters are considered which yield a 
significant contribution to reduce the equation error ε. 

3.1 Modal-based Approaches to Damage Identification 

Modal quantities can be extracted by means of classical modal analysis methods using output measurements 
resulting from special input test signals [20,55,56] or by output-only methods which use the ambient 
excitation from wind, traffic loads, etc. [57,58]. The use of modal data for system identification is discussed 
by Natke [20] or Friswell and Mottershead [21] and assumes linearity of the structure. 
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3.1.1 Eigenfrequency and Mode Shape Residuals 

The first approaches used the resonant frequencies of a structure only, e.g. [59]. A stiffness change produces 

a characteristic shift of the eigenfrequency spectrum , 22 / iii  r ,2,1i  which are used to deduce 
the parameters causing this change. Usually the higher frequencies are more sensitive and show larger shifts. 
Expressing the residuals as relative changes, it can be observed that they are more or less of the same order. 
Problems using eigenfrequencies alone arise in the case of symmetric structures or if the two spectra cannot 
be assigned properly. Further problems appear if the eigenfrequency changes are so small that effects due to 
damage are masked by the changes due to environmental conditions. These changes alone do not allow to 
draw conclusion about the source of the frequency changes. Therefore a model must be available that 
“knows” the relation between frequency and stiffness changes. The model allows also to calculate the first 
order partial derivatives describing sensitivities of the eigenfrequency with respect to parameter changes, see 
[20,21]. 

The mode shapes introduce spatial information about the damage. Local stiffness changes result in a local 
change of the mode shapes curvature and hence in the mode shapes themselves. For a mode no. i (“d” 
denotes damaged, “0” the reference state) the change of the eigenvector is iidi ,0,  r . 

Correct pairing of the eigenvalues/eigenvectors and correct scaling of the mode shapes is solved by applying 
the Modal Assurance Criterion (MAC) and the Modal Scale Factor (MSF), see e.g. [7,21,56]. From the 
author’s point of view using both frequencies and mode shapes simultaneously is preferred. The modal 
sensitivities can be determined by the methods of Fox and Kapoor or by Nelson, see [21] for a compilation. 
Higher mode shapes are more sensitive to local parameter changes, however problems may arise from the 
sensor distribution: the sensor network has to be dense enough to properly describe the mode shape and to 
avoid spatial aliasing. Furthermore, it is more difficult to accurately calculate the higher frequencies and 
mode shapes from the mathematical model. 

3.1.2 Modal Force Residuals 

Another type of residual is the Modal Force Residuals which can be defined by putting the measurement data 
i , i into the eigenvalue problem:  

  diiMFRdidi ,,,0
2
,0  KrφMK  .     (10) 

With the corrected stiffness matrix KKK  0d  (the mass matrix is assumed to be unaffected by the 

damage, “0” indicates the reference system, “d” damaged). Eq. 7 connects the change of the stiffness matrix 
K

di ,,

with the correction parameters . In practice not all dofs of the model can be measured so that nm << 

m. We have to expand the shorter measurement vector to the full model size of m by the transformation 
ja

measdiexpd ,, T  using an appropriate (frequency dependent) transformation matrix T. Expansion 

methods are discussed e.g. in [7,21]. The expansion can introduce additional errors, furthermore this method 
is sensitive to measurement errors. It can be observed that Least Square solutions without parameter 
selection strategies tend to spread the parameter changes over the whole parameter vector instead of focusing 
on a few significant parameters. Therefore, Zimmermann developed an alternative approach, the Minimum 
Rank Pertubation Technique (MRPT), to determine the minimum-rank change of the stiffness matrix [60]. 
Modal force residuals are used with expansion of the mode shape vectors. A detailed derivation can be found 
in [60]. This method has also been applied by Zimmerman et al. to FRFs and also so-called Ritz-vectors, see 
[61]. 

STO-EN-AVT-220 5 - 7 

 



Vibration-Based Methods for SHM  

 

3.1.3 Energy Considerations and Curvature Mode Shapes 

Stubbs, Kim and Farrar [62] developed a formula from strain energy expressions to determine a change of 
the bending stiffness EI due to damage in a flexible beam or beam-like structures. Each element/substructure 
is tested to discover a local change of the bending stiffness. The change-coefficients are determined by 
means of the local curvatures (second derivatives) of the mode shape functions for the reference state “0” 
and the damaged state “d”. Maeck [63] uses a regularization technique to reduce the errors from the 
numerical curvature calculation. A more general approach was presented by Ladeveze and Reynier [64] with 
the MECE concept (Minimization of the Error in the Constitutive Equations). As a result they also get 
indicators from strain energy expression pointing out the most erroneous locations of the reference model. 
These locations indicate the changes due to damage. A sensitivity-based approach in connection with modal 
kinetic energies (MKE) was proposed in [40,65]. 

3.2 Frequency Domain Methods Based on Forced Vibrations 

Instead of first extracting the modal parameters from forced vibration or Frequency Response Function 
(FRF) measurements, it is possible to use these measurement data, eq. 11, directly for damage identification 
[20,21,53]. Transforming Eq. 5 into the frequency domain delivers the complex algebraic equation as further 
basis 

  )()(2  FXKCM i    (11) 

The output error compares the frequency domain responses of the damaged with the undamaged system 
directly. For any frequency (index ) we get the complex deviation )()()(   odO XXr  which 

can be arranged for all  (and possibly for other force configurations) in one big vector r. During the iterative 
minimization of eq. 8 problems with the convergence may arise, because the shifts of the resonant peaks can 
cause very large deviation in the cost function. 

Similar to the modal force residual method, the Input Residual Method (IRM) uses the mistuning of the 
equation of motion when the measurement data do not match the model represented by “0”-system matrices. 
For any frequency index  we get the complex input residual 

)()()( 000
2

  




  ddI i XKCMFr     (12) 

which finally leads to a linear relation between rI and the parameters aj. In the case of incomplete 
measurement the dynamic response X has to be expanded to the full size of the model as before which is 
however a source of errors. Furthermore the IRM is sensitive to measurement noise. Further details are 
described in [7].  

Oeljeklaus [66] has presented an interesting approach called Projected Input Residual Method (PIRM) to 
overcome the problem of incomplete measurement data. The intention is to take advantage of the nice 
properties of the input residual method, especially the convexity of the cost function ensuring convergence to 
the minimum. This is reached by the introduction of a special projection matrix which is constructed in a 
way to mask out the lacking components of the response. Expansion is not required here for the PIRM.  

When using FRFs [53], the input or output errors can be formulated quite similar as shown in the forced 
vibration section, simply replacing the force input by the identity matrix I and the outputs X by the FRF 
matrix H. Usually, not the full FRF matrix is required. In this case only one or more columns of the H matrix 
are used as well as the corresponding columns of the I matrix. It is well-known that the FRFs (and the forced 
vibration as well) can be represented by means of the structure’s modal data and therefore they use the same 
physical information about the system. 
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3.2.1 Transmissibility Ratios 

The transmissibility ratios (TR) are defined as the ratio of two Fourier transformed output signals Xi and Xj . i 
and j denote different responses obtained from different sensor positions/directions,  

( )
( )

( )
i

ij
j

X
T

X


 


,                  (13) 

They also can be used in the case of ambient vibration with output-only measurements if the different 
channels are measured simultaneously. For random signals a formulation based on spectral densities can be 
used instead [67]. Johnson and Adams [68] showed that the representation of the response by its zeros and 
poles is very useful. The poles which appear in all responses and which are influenced by all parameters of 
the system are eliminated when calculating the transmissibility ratio. Only the zeros remain in the equation, 
so that the changes of the TRs can be used for damage localization, [69]. Hilson et al. [70] used the 
transmissibility ratios to train neural networks for pattern recognition. 

3.2.2 Electro-Mechanical Impedance Method (EMIM) 

The impedance method works in the higher frequency range (typically > 30 kHz). At high frequencies, the 
structural resonances are localized and highly sensitive to local damage. Structural changes due to damage 
are observed by changes in the impedance spectrum of the electro-mechanical system. A detailed overview 
on the EMIM is given in [71,72,73,74]. Practically the impedance of the EM-system is determined by the 
input voltage and the output current through the piezo-electric actuator: )(I/)(V)(ZEM  

), PZTZ

at  a 
certain frequency Ω, see Figure 3. By this, we make use of the self-sensing properties of the piezo-element 
which is sensor and actuator at the same time. A frequently used piezo-electric material is lead zirconate 
titanate (PZT). The idea is that the damage in the structure changes the structural impedance and hence the 
resulting impedance spectrum of the coupled EM-system: ( StructEM ZfZ  : 

                     
1

2

)()(

)(
1

1

)(

)(





















structPZT

struct
EM ZZ

Z

Ci
Z

I

V    (14) 

where C is the zero load capacitance and  is an electro-mechanical cross coupling coefficient of the piezo-
electric transducer, Zstruct, ZPZT are the impedances of the structure and the piezo-element, respectively. 
Usually, the real part of the actual spectrum is compared to the stored reference spectrum ZEM,0 of the 
undamaged system. Level I-detection can be performed. The impedance method is a qualitative method and 
possesses a local character. At high frequencies, the structural resonances are localized and highly sensitive 
to local damage. Furthermore the actuator energy is dispersed into the structure so that effects from the 
damage can be seen only closely to the actuator position allowing also Level II diagnosis. The EMIM is also 
well-suited for the self-diagnostics of the piezo-elements, see e.g. [50,75,76]. In this case we are not 
primarily interested in detecting structural damage but in detecting slow degradation and abrupt 
malfunctioning of the sensor system. 
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Figure 3: Measurement of the impedance of the coupled electro-mechanical  
system from voltage and current. 

 

Figure 4: Aluminium plate with two quadratic piezo-electric elements. 

The reciprocal complex value of the impedance is called admittance: 

( ) 1/ ( )EMY Z           (15) 

A typical example for an admittance spectrum is shown in Figure 5, here the imaginary part, the so-called 
susceptance, is displayed. Own experiments have been carried out to explore the changes of the admittance 
spectra due to environmental influences due to temperature e  and also due to different types of damage d . 

In this case, the figure shows the degradation effects of the adhesive layer between the PZT-element and the 
structure. The left part of the spectrum (for lower frequency values) is characterized by a linear curve with 
slope C (the capacitance of the piezo-element) increasing with frequency Ω, compare to eq. 14. Resonance 
of the piezo-element itself characterizes the middle part of the curve. A modelling approach of the system of 
PZT-element/adhesive/structure to better understand its behavior of the can be found in [75,76]. By means of 
machine learning, it is possible to distinguish between environmental effects and damage. 
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Figure 5: Measured Admittance Spectra for a PZT element on an aluminium  
plate under different temperature and health conditions. 

3.3 Time Domain Methods 

The formulation of the diagnosis problem in the time domain especially in state space notation is frequently 
used in control and automation theory to identify faults in general technical systems [77]. These ideas have 
also been used in the context of structural diagnosis and vibration problems. Fassois [78] gives an overview 
on time-domain methods. Some representatives are discussed in the following sections. 

3.3.1 Nullspace-Based Fault Detection Method (NSFD) 

Basically this method has been developed by Basseville et al. [79,80]. It is a Level-I method and works 
under output-only conditions assuming that the system excitation is random Gaussian white noise. However, 
practical experience shows that the method yields good results also under less restrictive conditions. The 
system dynamics are represented as discrete time state space formulation with unknown random input w(k)  
and outputs y(k): 

)()()1( kkk wzAz                             (16) 

  )()()( kkk vzCy                             (17) 

where v(k) denotes the measurement noise, A and C are the system and the measurement matrix, respectively 
and z is the state space vector. The stochastic responses y are used to calculate the Hankel matrix. The first 

step is to determine the covariances of y:     kjkE T
j yyR  , they can be estimated from the sampled 

outputs y(k). The block Hankel matrix H is: 
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nt is the number of data samples per sensor and j is the time shift.   and   determine the maximum 
number of time shifts. The Damage Indicator value is defined as 

            where  ζζ 1ˆ  T
NSFDD   ,HSζ Tvec                (19) 

is the residual vector. ̂  is an estimate of the residual covariance matrix.  vec

ST

 is the stack operator 
returning a vector whose elements are taken column-wise from the original matrix. The column vectors of 

the matrix S span the null space (or left kernel space) of the Hankel matrix so that . S can be 

obtained by means of a SVD of the Hankel matrix and is stored as information about the undamaged system. 
If new measurement data are taken from the undamaged structure and the Hankel matrix is composed of the 
data of the undamaged system, the residual  (n being a current number of measurement data set) should 

be close to zero and vary only within certain statistical bounds due on the measurement errors. If damage 
occurs, 

0H  ,

nζ

n  should differ significantly from zero. For a more detailed discussion of the method see [79,80], an 
applications of the theory within the smart structures concept is described in [81,82]. In [82] it was shown by 
controlled experiments in an oven how changes of the system response due to temperature variations can be 
compensated and still lead to reliable damage indication even under strong temperature variation. In [83] 
different formulations of the NSFD method are compared to principal component analysis (PCA). 

3.3.2 Residual Generation Using Kalman Filters and Time Series Models 

The idea using Kalman Filters (KF) for damage detection is to first identify a multi-input multi-output state 
space model from measured reference data sets and then to determine the corresponding Kalman gain 
matrix. When applying new data sets to the KF, it produces residuals (or also called innovations in the KF 
context) by testing the nominal model against these new measurement data sets. If the actual data set stems 
from a damaged system, however the KF was designed for the reference model, the misfit shows up in a 
change of the statistical properties of the residuals. This change can be used to perform a detection that a 
change of the mechanical structure has occurred (Level I). First, this method was presented in the automation 
literature, e.g. [84]. In [85] the KF was applied to detect a delamination in a CFRP plate. In [16], an 
Extended Kalman Filter (EKF) was used to determine the crack depth of an opening and closing crack in a 
rotating shaft exhibiting nonlinear dynamic behavior. 

Sohn et al. [22] have demonstrated the use of the Auto-Regressive (AR) and AR with Exogenous input 
(ARX) time-series models in a two-stage procedure which is quite similar to the KF approach. Here, the 
basic idea is to identify an ARX reference model from data sets of discrete time series representing the 
undamaged structure in a first stage. This model represents the dynamic behavior of the undamaged system 
(reference state). In the second stage this model is tested with new data sets. The resulting residual error is 
statistically evaluated. As long as the feature extracted from the residuals lies within a defined range of the 
statistical variation there is no evidence that the structure has changed its physical properties. The ratio 

hyy )(/)( 0 , h > 1, is defined here as damage sensitive feature where  is the standard deviation of the 

residual time series. 0y  is the residual error after fitting the ARX model in stage I, y  is the residual error 

testing ARX model against the current data sets in stage II. This method provides a Level I test. An 
appropriate threshold for h has to be chosen. Further aspects of outlier analysis are discussed [22]. 
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4.0 EXAMPLES 

4.1 Z24-Bridge: Use of Modal Data from Ambient Vibrations 

Figure 6: Z24-bridge (Photo: KU Leuven). 

 

Figure 7: Visualization of calculated 
damaged zone: stiffness loss indicated 
by the darker elements determined with 

the modal kinetic energy method. 

 
The Z24-bridge was a 60m long, three-span pre-stressed concrete girder bridge with two lanes crossing the 
Swiss highway A1, Figure 6. This bridge was provided by the Swiss road traffic authorities for the European 
SIMCES project (System Identification to Monitor Civil Engineering Structures) for extensive investigations 
on monitoring using vibration-based methods. During the project different kinds of damage had been 
introduced. As a benchmark example this bridge was also investigated during the EU COST F3 action 
“Structural Dynamics” [86-88]. A scenario of great practical relevance is the dangerous undercutting of a 
pier, a hardly detectable damage that frequently appears in reality. The settlement of the “Koppigen pier” of 
9.5 cm caused an overload in the bridge which resulted in cracks at the connection between the pier and the 
girder box. The model-based approach requires a computational model. For the model-updating process a 
reference set of five eigenfrequencies and real mode shapes was identified from “output-only” measurement 
data [57-58]. The finite element model shown in Figure 7 consists of 650 shell elements and approximately 
3800 dofs, [65]. The updating parameters p were the stiffnesses of the springs that have been used to model 
the boundary conditions (bridge bearings and connection of the piers to the ground) as well as the Young’s 
modulus of the bridge material and the pier material. The used objective function J contains a certain number 
(here nmodes=5) of measured (lower index meas) and simulated (lower index mod) eigenfrequencies   and 
the corresponding mode shapes.  
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The relative difference between the eigenfrequencies and the correlations between the mode shapes (by help 
of Modal Assurance Criterion, MAC) in eq. 20 are weighted by  and  respectively. The results of 

model updating are displayed in and 
w MACw

Table 2. More details can be found in [65].  
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Table 1: Comparison of eigenfrequencies. 

 

Two model-based damage identification procedures, the Inverse Eigensensitivity method and the Modal 
Kinetic Energy method have been applied. They both use frequencies and mode shapes as input, however in 
a different way. The experimental modal data have been extracted from output-only measurement data after 
the bridge was damaged. 

Table 2: MAC-values for measured and simulated mode shapes. 

 

The simulated undercutting of the pier produced cracks on the lower side of the bridge near the pier leading 
to a reduced stiffness in this bridge section. Figure 7 shows that the stiffness reduction can be successfully 
identified by the energy method. The gray elements in Figure 7 illustrate the identified location of damage: 
the darker the color, the higher the indicated stiffness loss (the intensity of damage). The Inverse 
Eigensensitivity Method using frequencies and mode shapes yields a very similar result, see [65]. 

4.2 Airplane Fuselage Structure 

This example shows a stiffened shell structure with stringers from the airplane Airbus A320. The purpose 
was to find out whether damage in the stringers can be detected and localized. The method used here is a 
combination of the self-sensing capabilities of the piezo-elements (as usually used for the impedance 
method) and the evaluation of the output voltages using the NSFD method, see [89] for more details. The 
structure was excited and measured consecutively with nine PZT elements (P1 to P9, see Figure 8). Each 
PZT element is acting as actuator and sensor according to the self-sensing principle. The positions of the 
sensors are displayed in Figure 8. The system was excited by a sweep signal in a frequency range of 10-20 
kHz. The time period for each measurement is 10 s. The total number nm of measurements for each PZT was 
15, 10 for the undamaged and 5 for the damaged state of the structure. Damage, see Figure 8, was introduced 
into one of the stringer of the shell structure between PZT el. no. 9 and 6, but closer to PZT 9. PZT elements 
no. 9, 6 and 3 are placed also on the same stringer. 

The NSFD-Method, see Eq. (14) and (15) , was applied only for the output signals for each sensor 
separately. The results are displayed in Figure 9. The NSFD localized the damage correctly close to the 
sensor 9 in measurements 11 to 15. The next highest change in the damage indicator Dm (see eqn. 6) was 
found by sensor 6, also during the measurements 11-15 (meas. with damage), which is the neighbor of 
sensor no. 9. The application of ARX models yielded quite similar results with a significant change for 
sensor 9.  
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Figure 8: Stiffened shell structure with 
piezo-element on stringers and 

damage close to PZT no. 9. 
 

 
 

 
 
 

Figure 9: Results of the NSFD-Method. 
 

 

4.3 Integrated Monitoring of Off-Shore Wind Energy Plants (OWEP) 

Off-shore development of wind farms is attractive because the annual average wind speed is considerably 
higher off-shore than at most on-shore sites. To ensure a high operational reliability of future off-shore wind 
energy plants (OWEP) with economically acceptable repair and maintenance efforts, comprehensive 
diagnosis and monitoring concepts are required. Automatic monitoring systems will be an essential part of 
such concepts. Within the scope of the IMO-WIND research project, the German Federal Institute of 
Material Research and Testing (BAM), the University of Siegen and six industrial companies have been 
involved in developing an integrated monitoring system for the complete OWEP system including 
foundation, tower structure, rotor blades and machinery [90]. Operation and maintenance aspects are 
considered to be the main design drivers for off-shore wind farms [91]. Remote locations and poor weather 
conditions can postpone maintenance and result in longer downtime and greater loss of production. 
Therefore, the standard for off-shore reliability must be even higher than the already rigorous standards for 
land-based turbines. With respect to this, it becomes obvious that monitoring systems play a significant role. 

Generally, off-shore wind energy plants of the multi-megawatt-class represent a huge technical challenge 
regarding design, construction and utilization of those structures. Concerning the acting loads and the 
corresponding load effects in individual structural members the state of knowledge is not sufficient. Even an 
economically efficient but safe foundation of offshore structures with combined actions from wind and 
waves is not state of the art at the present time. Because of the possibility of settlements of cyclically loaded 
piles in the sea bed the possibility of failure of the whole structure due to increasing fatigue or loss of 
stability has to be investigated [90].  

Figure 10 shows a 5 MW on-shore prototype (with a rotor diameter of 116 m and height of the hub of 98 m) 
installed in Bremerhaven, Germany. Figure 10 gives also an impression of the tripod foundation for off-
shore application. 
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The on-line monitoring concept for the OWEP structure is based on 3 steps. First, damage detection 
algorithms based on NSFD or multivariate AR models are applied to the structure of the OWEP. Since the 
damage detection methods are global, it is important that the output data from the accelerometers is classified 
by operational and environmental conditions of the OWEP. For this purpose classification techniques like k-
means or Expectation-Maximization (EM) are used [23]. If the thresholds of damage indicators are exceeded 
it will be verified that no sensor fault occurred during the measurements (second step). The sensor fault 
identification methods, based on AR modelling or Mutual Information criterion are applied to the measured 
acceleration signals. If damage is discovered, the third step of the concept will be activated and a model-
based algorithm for damage location is applied to the structure. The localization of damage is done by the 
inverse eigensensitivity method. 

Figure 11 shows exemplary that the release of the nuts in one of the feet of a laboratory structure simulating 
the loosening of the foundation could be successfully detected and localized. Eight accelerometers have been 
used which were distributed along the tower. The correct location was found as the foot, with the encircled 
element with  the lighter color in the right part of Figure 11. The procedure for model updating is very 
similar to the Z24-Bridge example. For lack of space the example in this chapter may give just short 
information about a possible strategy for monitoring of the structure of wind energy plants. The methods and 
the requirements on SHM systems for monitoring of wind energy plants are described in more detailed in 
[30]. Another important topic is the reconstruction of loads resulting from wind and waves for the purpose of 
updated life-time predictions, but also for design verification of the real loads [92,93,94]. 

 

Figure 10: 5 MW Multibrid 5000 off-shore wind energy plant as on-shore prototype. 

5.0 CONCLUSION 

This paper gave an overview on the basic principles of vibration-based methods as well as some recent 
developments. Applications using model-based and model-free methods have been shown. A future 
application of integrated monitoring of off-shore wind energy plants has been discussed. Driven by the 
development of advanced data processing, evaluation concepts and new sensor technologies the number of 
researchers in the field is still growing rapidly and the interest of the industry in the potential benefits of 
SHM is also large. 
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Although desirable, it is not always the priority to detect damage at an incipient stage. In many applications it 
is absolutely sufficient to be warned at an intermediate level or to only prevent catastrophic failure. The 
classical modal-based approach makes use of the low-frequency modes. These are global in nature which 
corresponds however to a reduced sensitivity. The usefulness of these methods is based on the fact that the 
whole structure can be monitored only by a few sensors and that the damage location needs not be known in 
advance. Furthermore, the use of ambient excitation often limits the frequency range. The change of the 
dynamic properties due to environmental changes has been recognized as a serious problem. Long-term 
monitoring of structures should therefore include a learning procedure how the structure behaves under 
certain environmental conditions to compensate these influences. Also automatic sensor fault detection is a 
topic of growing interest, especially in the field of aeronautics where sensors are integrated in the structure. 

 

Figure 11: Damage localization on a laboratory structure. 

For some applications high sensitivity might be a critical requirement. The option here is to use local 
methods based on ultrasonic wave propagation with one or more dense local sensor networks. To increase 
the sensitivity of vibration-based methods there is also a trend to develop more damage sensitive residuals 
and to expand the global methods into an intermediate frequency range. Modeling in the higher frequency 
range will become more difficult due to strong modal overlap and the complexity of mode shapes which 
requires also a finer sensor network. Some work should also be spent on reducing this model-dependence. 
To take advantage of the complementary strengths of both groups, global and local methods can be 
combined. Methods dealing with non-linear damage identification are not wide-spread. 

The success of the SHM methods in practice will be determined by the fact whether it is possible to develop 
robust sensor hardware that can live as long as the monitored object. Also the decisions made by the SHM 
system must have a sound statistical foundation to provide reliable results. Too many false alarms as well as 
a missed indication of damage will destroy the confidence in such a system. 
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