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ABSTRACT

Finite-Volume discretization methods for linear PDEs that lead to circulant matrices are discussed in this set of
lecture notes. The quantum-circuit implementation of these sparse matrices is detailed. The resulting quantum-
circuits represent the time-update by a single time-step that can be used in the time-integration of linear Partial
Differential Equations (PDEs). A key feature of the sparse-matrix resulting from the finite-volume discretization
is that in general it is a non-unitary matrix. It is shown how such a non-unitary matrix can be embedded in
a matrix of double the original size. For the linear advection equation with periodic boundary conditions, the
discretization as well as the quantum-circuit construction are detailed. Finally, time-integration methods for
systems of linear PDEs are discussed, in particular a method based on the ’reservoir’ technique. This latter
part forms a first step toward the quantum-circuit implementation of the Discrete-Velocity Method (DVM) for
the kinetic Boltzmann equation, as discussed in a following set of lectures notes in the current Lecture Series.

Contents

1.0 Quantum algorithms for linear PDEs using a circulant matrix 2
1.1 Linear advection equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Review of key properties of unitary matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Toeplitz and circulant matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Quantum circuit implementation based on unitary dilation . . . . . . . . . . . . . . . . . . . 4

2.0 Solution methods for systems of linear PDEs 8
2.1 Reservoir technique as basis for quantum algorithms for linear PDEs . . . . . . . . . . . . . . 8
2.2 Finite-Volume method for one-dimensional collisionless Boltzmann equation . . . . . . . . . 9
2.3 Reservoirs, CFL counters and variable time-step . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.0 Summary and further developments 11

STO-EN-AVT-377 6 - 1

mailto:rene.steijl@glasgow.ac.uk


Quantum Linear PDE Solution Methods

1.0 QUANTUM ALGORITHMS FOR LINEAR PDES USING A CIRCULANT MATRIX

1.1 Linear advection equation

Spatial discetization of the linear advection equation using the Finite-Volume Method (FVM) on a uniform
one-dimensional mesh with N cells (spacing ∆x) leads to the following set of linear differential equations,

∂f

∂t
+ c

∂f

∂x
= 0

⇒ ∂f⃗

∂t
= Af⃗ ; f⃗ =

(
f0, f1, . . . , fN−1

)T (1)

where fi represent the cell-centre value of f in cell i and A represents a sparseN×N matrix resulting from the
discretization. As is well-described in textbooks on the topic, discretization of time using a first-order accurate
forward (explicit) time-stepping approach to Equation (1) leads to the following result,

f⃗n+1 − f⃗n

∆t
= Af⃗n ⇒ f⃗n+1 = f⃗n +∆tAf⃗n =

(
I +∆tA

)
f⃗n (2)

where n represents the (current) time level and ∆t the time step used. I is the N × N identity matrix. For a
quantum computer implementation of the operation performed on the solution vector a key challenge is
the fact that in general I +∆tA will not be a unitary matrix.

1.2 Review of key properties of unitary matrices

The conjugate transpose (or Hermitian adjoint matrix) of a complex matrix is the result of transposing the
matrix and replacing its elements by their conjugates. A Hermitian matrix is a square matrix with complex
entries that is equal to its own conjugate transpose. A real matrix is Hermitian if it is symmetric. A unitary
matrix is a matrix whose inverse equals it conjugate transpose.

1.3 Toeplitz and circulant matrices

An N ×N Toeplitz matrix is a matrix of the form,

T =



t0 t−1 t−2 . . . t−(N−3) t−(N−2) t−(N−1)

t1 t0 t−1 . . . t−(N−4) t−(N−3) t−(N−2)

t2 t1 t0 . . . t−(N−5) t−(N−4) t−(N−3)
...

...
...

...
...

...
tN−3 tN−4 tN−5 . . . t0 t−1 t−2

tN−2 tN−3 tN−4 . . . t1 t0 t−1

tN−1 tN−2 tN−3 . . . t2 t1 t0


(3)

so that theN×N Toeplitz matrix is fully described by the 2N−1 entries of its first row and column. Mahasinghe
and Wang[1] associate the following array to the Toeplitz matrix (using an extra zero element):

ψT = (t0, t−1, t−2, . . . , t−(N−2), t−(N−1), 0, tN−1, tN−2, . . . , t3, t2, t1)

A special kind of Toeplitz matrices involve matrices where for each row the elements have been moved right
by one position relative to the previous row. This characteristic defines a circulant matrix.
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A key property of circulant matrices is their diagonalization using the discrete Fourier transform matrix FN .
For an N ×N circulant matrix C, diagonalization gives,

C = F ∗
Ndiag(λ0, λ1, . . . , λN−1)FN (4)

λj = c0 + c1ω
j + c2ω

2j + . . . cN−1ω
j(N−1)

where λj (j ∈ [0, N − 1]) is the jth eigenvalue of C. Here, c0, . . . , cN−1 are the N elements on the first row of
matrix C and ω = exp(2πi/N). In Equation (4), FN and F ∗

N represent the Discrete Fourier transform and and
the matrix for its reverse, respectively.

Circulant matrices are important in the discretization of the one-dimensional linear advection on a
uniformly-spaced mesh.

Applying a standard finite-volume 1st-order accurate upwind-based discretization to the model problem
considered here leads to an operator of the form,

I +∆tAupw =



1− c∆t
∆x 0 0 . . . 0 0 + c∆t

∆x

+ c∆t
∆x 1− c∆t

∆x 0 . . . 0 0 0

0 + c∆t
∆x 1− c∆t

∆x . . . 0 0 0
...

...
...

...
...

...
0 0 0 . . . 1− c∆t

∆x 0 0

0 0 0 . . . + c∆t
∆x 1− c∆t

∆x 0

0 0 0 . . . 0 + c∆t
∆x 1− c∆t

∆x


(5)

where periodic boundary conditions and c > 0 have been assumed. This discretization matrix is also a circulant
matrix. For the matrix shown in Equation (5), the eigenvalues are:

λj = 1− c∆t

∆x
+
c∆t

∆x
ωj(N−1) ; j ∈ [0, N − 1] (6)

Although a Toeplitz matrix is not circulant in general, any Toeplitz matrix T can be embedded in a circulant
matrix defined by,

CT =

(
T BT

BT T

)
; CT

(
ψ
0

)
=

(
T BT

BT T

)(
ψ
0

)
=

(
Tψ
BTψ

)
(7)

where,

BT =



0 tN−1 tN−20 . . . t3 t2 t1
t−(N−1) 0 tN−1 . . . t4 t3 t2
t−(N−2) t−(N−1) 0 . . . t5 t4 t3

...
...

...
...

...
...

t−3 t−4 t−5 . . . t0 tN−1 tN−2

t−2 t−3 t−4 . . . t−(N−1) t0 tN−1

t−1 t−2 t−3 . . . t−(N−2) t−(N−1) t0


(8)

Considering the diagonalization of a circulant matrix, it can be observed that the discrete Fourier matrix FN as
well as its complex conjugate F ∗

N represent unitary operations. However, the diagonal matrix consisting of the
eigenvalues will in general not be unitary. In order to embed it in a unitary matrix, Mahasinghe and Wang[1]
make use of the principle of unitary dilation.
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1.4 Quantum circuit implementation based on unitary dilation

As discussed in previous sections, the first step involves discretization of the linear advection equation using an
upwind-biased discretization method. With periodic boundary conditions, we limit the approach to cases where
this creates an N ×N circulant matrix A. Then similar to Equation (7) we embed this matrix into a 2N × 2N
matrix CT

CT =

(
A 0
0 A

)
; CT

(
ψ
0

)
=

(
Aψ
0

)
(9)

where matrices BT as in Equation (7) are not required since A is already circulant. This step is introduced so
that adding the extra matrices BT as in Equation (7) would be a step towards extending the current approach
to discretized problems resulting in non-circulant Toeplitz matrices. Also, embedding the state vector ψ into a
length 2N vector with N zero-ampltiudes in the ’second’ half of the vector facilitates the construction of the
quantum implementation. The next step in the proposed algorithm involves the diagonalization of the circulant
matrix A, so that we find,

CT
(
ψ
0

)
=

(
F ∗
NΛAFN 0

0 F ∗
NΛAFN

)(
ψ
0

)
(10)

where ΛA is the N ×N diagonal matrix whose diagonal elements λm correspond to the eigenvalues of A,

λm =
N−1∑
k=0

ckω
k =

N−1∑
k=0

cke
2πimk/N , m = 0, 1, . . . , N − 1 (11)

with c0, . . . , cN−1 the N elements on the first row of matrix A and ω = e2πi/N . In constructing the quantum-
circuit implementation for the matrix-vector multiplication defined in Equation (10), it is important to observe
that the discrete Fourier transform and its inverse defined by FN and F ∗

N , respectively, are unitary opera-
tions. However, the diagonal matrix ΛA is in general non-unitary. The operations acting on (ψ, 0)T defined in
Equation (10) can be split in three steps, i.e. after applying the discrete Fourier transform, the product of the
non-unitary diagonal matrix and the state vector needs to be computed (to be followed by the inverse discrete
Fourier transform). Based on the augmented solution vector (ψ, 0)T of length 2N , unitary dilation can be used
to replace matrix-vector product involving the original non-unitary diagonal matrix defined in Equation (10)
with the following product,  1

kΛA

√
I − 1

k2
ΛAΛ∗

A√
I − 1

k2
Λ∗
AΛA − 1

kΛ
∗
A

( ψ
0

)
(12)

where I is the N × N identity matrix and k is the magnitude of the largest eigenvalue in [λ0, . . . , λN−1] (in
general complex numbers). After applying the multiplication in Equation (12), followed by the inverse discrete
Fourier transform, the augmented solution vector then contains the state,(

1
kF

∗
NΛAFNψ

F ∗
N

√
I − 1

k2
Λ∗
AΛAFNψ

)
(13)

so that up to a scaling factor k, the ’first’ part (first N elements) of the state vector contains the required result.
Key aspect for quantum-circuit implementation:
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• Starting from an augmented solution vector of length 2N (ψ, 0)T , it follows that after the application of
the matrix-vector product as outlined above will create non-zero amplitudes in the the augmented part of
the state vector initialized with zeros;

• In a time-marching approach with repeated application of the approach sketched above this ’noise’ in the
added part of the state vector causes errors in results after the 2nd application of the method - therefore
the circuit can only used for a single time-update;

• In a quantum-circuit implementation there is no (known) method to re-initialize the augmented part of
the state vector with zeros without changing the state of the first N elements of the solution vector -
extension to multiple time-step updates is therefore non-trivial;

• For the first N elements to obtain the correct state 1
kF

∗
NΛAFNψ, the quantum algorithm does not need to

correctly implement the product involving
√

I − 1
k2
Λ∗
AΛA correctly when applied to (ψ, 0)T .

In the following the quantum algorithm is developed further, using the simplification referred to in the last item.
For a one-dimensional problem with N degrees of freedom, the solution vector ψ = (ψ0, ψ1, . . . , ψN−1)

T

can be stored in a qubit register
∣∣∣ψ̃〉 with log2(N) qubits. In the quantum algorithm developed here, we need

an augmented solution vector (as outlined previously). For the one-dimensional problem with N degrees of
freedom, an log2(N) + 1 qubit register |ψ⟩ = |0⟩

∣∣∣ψ̃〉 is used instead. As illustration, for N = 4, and initial

solution ψinit = (ψinit
0 , ψinit

1 , ψinit
2 , ψinit

3 )T , qubit register |ψ⟩ would be initialized as,

|ψ⟩ =



ψ000

ψ001

ψ010

ψ011

ψ100

ψ101

ψ110

ψ111


=



ψinit
0

ψinit
1

ψinit
2

ψinit
3

0
0
0
0


(14)

Applying the diagonal matrix product, using unitary dilation, then involves the following unitary,

λ0
k 0 0 0

√
1− λ0λ∗

0
k2

0 0 0

0 λ1
k 0 0 0

√
1− λ1λ∗

1
k2

0 0

0 0 λ2
k 0 0 0

√
1− λ2λ∗

3
k2

0

0 0 0 λ3
k 0 0 0

√
1− λ3λ∗

3
k2√

1− λ0λ∗
0

k2
0 0 0 −λ∗

0
k 0 0 0

0
√

1− λ1λ∗
1

k2
0 0 0 −λ∗

1
k 0 0

0 0
√

1− λ2λ∗
3

k2
0 0 0 −λ∗

2
k 0

0 0 0
√

1− λ3λ∗
3

k2
0 0 0 −λ∗

3
k


(15)
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Using qubits q1 and q2 within the 3-qubit register as control-qubits, the unitary operation defined in the previous
equation can be split into 4 controlled operations on qubit q0 (i.e. with qubits q1 and q2 acting as control qubits):

|q1q2⟩ controlled single-qubit operation

|00⟩

 λ0
k

√
1− λ0λ∗

0
k2√

1− λ0λ∗
0

k2
−λ∗

0
k

( ψ000

ψ100

)

|01⟩

 λ1
k

√
1− λ1λ∗

1
k2√

1− λ1λ∗
1

k2
−λ∗

1
k

( ψ001

ψ101

)

|10⟩

 λ2
k

√
1− λ2λ∗

2
k2√

1− λ2λ∗
2

k2
−λ∗

2
k

( ψ010

ψ110

)

|11⟩

 λ2
k

√
1− λ3λ∗

3
k2√

1− λ3λ∗
3

k2
−λ∗

3
k

( ψ011

ψ111

)

(16)

Here it is important to stress that the eigenvalues are in general complex numbers. The ’simplification’ referred
to earlier facilitated by having the ’second’ half of the solution vector initialized with zeros in the quantum
algorithm context enables a significant reduction in quantum circuit design. Specifically, it means that in the
controlled single-qubit operations only the λm/k for m = 0, . . . 3 need to be represented exactly to obtain
the required output from the quantum algorithm. In the present work, the unitary operations as illustrated in
Equation (16) are implemented using controlled versions of the elementary rotations Ry(β) and Rz(γ), with β
and γ defining the respective angles over which rotation takes place. Then,

Ry(β)Rz(γ) =

(
cos(β/2)cos(γ/2)− icos(β/2)sin(γ/2) −sin(β/2)cos(γ/2)− isin(β/2)sin(γ/2)
sin(β/2)cos(γ/2)− isin(β/2)sin(γ/2) cos(β/2)cos(γ/2) + icos(β/2)sin(γ/2)

)
(17)

represents the effect of applyingRz(γ) andRy(β) in succession. Here, γ and β are functions of the eigenvalues
of the discretization operator. In the interest of brevity, this is not detailed here further. For more detail we
refer to the Mahasinghe and Wang[1]. Figure 1 illustrates the quantum-circuit implementation for the linear
advection problem for a periodic 8-cell one-dimensional domain.
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|qun⟩ R0 R1 R2 R3 R4 R5 R6 R7

|qx2⟩

QFT IQFT|qx1⟩

|qx0⟩

(a) Quantum circuit with combined rotation gates R = RzRy

. . .

. . .

. . .

. . .

|qun⟩ R0 R1 R2 R3 R4 R5 R6 R7

|qx2⟩

QFT|qx1⟩

|qx0⟩

. . .

. . .

. . .

. . .

|qun⟩ Rz
0 Rz

1 Rz
2 Rz

3 Rz
4 Rz

5 Rz
6 Rz

7

|qx2⟩

IQFT|qx1⟩

|qx0⟩

(b) Quantum circuit with separated rotation gates Rz and Ry

Figure 1: Quantum circuit implementation single-time step update for linear advection equation. Nx = 8, periodic boundary
conditions.
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2.0 SOLUTION METHODS FOR SYSTEMS OF LINEAR PDES

The previous sections showed quantum-circuit construction methods for linear PDEs, in particular the linear ad-
vection equation on a periodic one-dimensional domain. The presented techniques can be extended to systems
of linear PDEs. However, motivated by our current research into quantum algorithms for lattice-based models
of fluid dynamics and gas dynamics, the final part of these notes will introduce time-integration methods for
systems of linear PDEs based on the ’reservoir’ technique[2].

2.1 Reservoir technique as basis for quantum algorithms for linear PDEs

The reservoir technique was analyzed and applied to Godunov-type schemes for gas dynamics with the aim of
achieving zero or very low numerical diffusion by Alouges et al.[2]. In their work it was applied to the Collela-
Glaz solver, showing that for the Sod tube test problem impressive accuracy can be achieved when compared
to results from finite-volume methods involving higher-order reconstructions (MUSCL, ENO WENO), despite
the first-order accuracy of the stencil used in the advection step. In the context of quantum algorithms, we refer
to the work on reservoir-technique based methods by Fillion-Gourdeau and co-workers[3, 4].

The motivation to investigate the reservoir technique in the context of quantum-algorithm designs for
linear PDEs can be summarized as follows:

• Quantum-circuit implementations of discretization methods that are 1st-order accurate in space are ap-
pealing since such methods will not involve complex (non-linear) limiters (e.g. as used in MUSCL-type
methods) or smoothness sensors (ENO, WENO method), etc. The reservoir technique offers the potential
for reduction of numerical dissipation even when using these 1st-order accurate method;

• The ’CFL=1’-like condition used for the different ’waves’ associated different eigenvalues of the consid-
ered system of equations offers the potential to use ’streaming’-type methods where values move between
lattice/mesh points during a time-step.

As a step toward quantum algorithms for the Discrete-Velocity Method (DVM) for the kinetic Boltzmann
equations, the finite-volume discretization of the collisionless Boltzmann equation is presented here. The col-
lisionless Boltzmann equation and quantum-circuit implementations for the DVM will be discussed in more
detail in a following set of lecture notes in the current Lecture Series.

The collisionless Boltzmann equation defines the single-particle distribution in a three-dimensional phase
(velocity-space) for each point in three-dimensional space and therefore involves a seven-dimensional solu-
tion space (including time) for a free-molecular gas consisting of a single monatomic species[5]. In the free-
molecular flow regime, collisions between molecules is neglected, while collisions of particles with solid walls
do need to be included. The collisionless Boltzmann equation can be written for a single-species flow as,

∂F (x⃗, c⃗; t)

∂t
+ c⃗ · ∂F (x⃗, c⃗; t)

∂x⃗
= 0 (18)

Finitial =
ρ(

2πRT
)3/2 exp [−

(
c⃗− u⃗0

)2
2RT

]
(19)

where F (x⃗, c⃗; t) is the single-particle distribution function, and x⃗ = (x, y, z)T and c⃗ = (cx, cy, cz)
T repre-

sent three-dimensional space and three-dimensional phase (velocity) space, respectively. Finitial defines the
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Maxwell-Boltzmann equilibrium distribution, for a local gas mass density ρ, temperature T and mean gas ve-
locity u⃗0, typically used in simulations as initial condition. The particle number density n and gas mass density
ρ are related as ρ = nm, for molecular massm. For the Maxwell-Boltzmann equilibrium distribution it follows
that the most probable (thermal) speed of a particle depends on temperature Vmp =

√
2RT with R the specific

gas constant for the gas considered. For a molecular mass m this gas constant R = kb/m, with kb the Boltz-
mann constant. In the following set of lectures notes, the dimensional reduction of the collisionless Boltzmann
equation will be detailed. Here it suffices to say that for 1D and 2D flows, a system of two linear PDEs of the
type shown in Equation (18) governing two reduced distribution function results.

2.2 Finite-Volume method for one-dimensional collisionless Boltzmann equation

For illustration purposes, a one-dimensional uniformly spaced finite-volume domain is considered with cell
(centre) index j. The cell interface between cells j − 1 and j is denoted with index j − 1/2 and similarly
data related to right cell interface of cell j (connecting cells j and j + 1) are indexed as j + 1/2. The uni-
form cell spacing is ∆x. A discrete-velocity method (DVM) with uniformly spaced segments based on the
trapezoidal integration rule is employed with nDV discrete velocities to discretize the phase space of the one-
dimensional collisionless Boltzmann equation. The discrete velocities are defined as ck ∈ [cmin, . . . , cmax],
for k = 0, . . . , nDV − 1 and a uniform step size in velocity space ∆c = (cmax − cmin)/nDV . Furthermore,
cmin = −cmax. It is assumed that all discrete velocities are non-zero, making the system of equations strictly
hyperbolic. The reduced particle distribution function f(xj , ck; tn) in cell j for discrete-velocity k at time level
tn is denoted here as fnk;j . Equivalently gnk;j for reduced particle distribution function g(xj , ck; tn). Using up-
wind fluxes in velocity space, the discretized one-dimensional collisionless Boltzmann equation then becomes,

(
fk;j
gk;j

)n+1

=

(
fk;j
gk;j

)n

− ck
∆tn
∆x


(
fk;j
gk;j

)n

−
(
fk;j−1

gk;j−1

)n

for ck > 0(
fk;j+1

gk;j+1

)n

−
(
fk;j
gk;j

)n

for ck < 0

(20)

The Euler forward-in-time integration as used in this equation clearly limits the admissible time-step according
to the CFL criterion to ∆tn ≤ ∆x

cmax
where cmax represents the largest discrete velocity in absolute value.

Considering Equation (20) we can observe that if we use a first-order accurate method in space (i.e. distri-
bution functions are assumed constant within each cell), time-integration with CFL=1 leads to an exact prop-
agation for the distribution function(s) fk;j and gk;j corresponding to the largest discrete velocity in absolute
value, i.e. k is such that |ck| = cmax. For all other indices k, the distribution functions will move less than a
cell width ∆x during the time step ∆tn, leading to the need to interpolate the discretized solution within each
cell and therefore introducing numerical dissipation. The reservoir technique as applied here to collisionless
Boltzmann equation is aimed at avoiding this and involves ’exact’ propagation of each of the distribution
functions from one cell-center to next neighbours during the time-integration process. A helpful char-
acteristic of the considered reduced collisionless Boltzmann system is that both reduced distribution functions
convect at the same discrete velocities, i.e. the convection operator in both equations have the same eigenvalues.

2.3 Reservoirs, CFL counters and variable time-step

For each cell face, CFL counters are introduced as cnk;j±1/2 for k = 0, . . . , nDV − 1. At the start of the time-
integration these counters are all initialized to zero. These counters will be updated during each time step by
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|ck|∆tn/∆x. For convenience, the following temporary variables are introduced,

Cn+1
k;j±1/2 = cnk;j±1/2 + |ck|

∆tn
∆x

(21)

Since for the considered system, the eigenvalues (discrete-velocities) in the upwind discretization are identical
for each cell face, the CFL counters are identical for each cell face as well. This greatly simplifies the following
integration method since only a single set of counters for all discrete velocities have to be considered rather
than a set for each cell face.

The time-step ∆tn is limited such that Cn+1
k;j±1/2 ≤ 1. Here, the time-step ∆tn is selected by finding the

minimum among all j and k,

∆tn = minj,k

([
1− cnk;j±1/2

]∆x
|ck|

)
(22)

This choice of time step will result in at least one of the CFL counters to reach 1 in the considered time step,
i.e. Cn+1

k;j±1/2 = 1 for one or more discrete velocities k (typically only for one eigenvalue during each time
step), while never exceeding the value of 1. The underlying idea of the reservoir technique is to introduce
reservoirs for each cell face Rn

k;j±1/2 for k = 0, . . . , nDV − 1 which are initially set to zero at the start of the
time integration. At each time step we fill up the reservoirs Rk;j±1/2 with the current numerical flux difference
upwinding depending on the sign of ck. As long as the CFL counter for the considered discrete velocity remains
less than 1, this process continues, i.e. with the CFL counters gradually updated according to

cn+1
k;j±1/2 = cnk;j±1/2 + |ck|

∆tn
∆x

(23)

Furthermore, temporary variables f̃k;j±1 and g̃k;j±1 are introduced to facilitate the update due to the numerical
flux difference upwinding for both reduced distribution functions. The idea is that the temporary variables
will be updated when the CFL counter hits the value 1, while the update will go into the reservoirs for CFL
counters below 1. The temporary variables f̃k;j±1 and g̃k;j±1 are used to update the solution to the new time
level n+1, therefore the only non-zero updates will occur for the discrete velocity (or velocities) for which the
CFL counter reached 1. Once a CFL counter cnk;j±1/2 for a discrete velocity k has reached 1, this counter as
well as the reservoir associated with this discrete velocity will be set to 0 before the start of the next time-step.

Table 1: Reservoir method for velocity-space boundaries ±8 reference velocity units (
√
2RTr) and ∆x = 1.

nDV ncycle ∆c ck,min ck,max Tcycle ave. ∆t
16 49 1.000 0.5000 7.5000 2.0 0.04167
32 213 0.500 0.2500 7.7500 4.0 0.01887
64 825 0.250 0.1250 7.8750 8.0 0.00971

128 3327 0.125 0.0625 7.9375 16.0 0.00481

To facilitate the development of quantum algorithms based on the reservoir technique, a set of modifications
was introduced by Todorova and Steijl[6].
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3.0 SUMMARY AND FURTHER DEVELOPMENTS

Finite-Volume discretization methods for linear PDEs that lead to circulant matrices were discussed. The
quantum-circuit implementation of these sparse matrices was detailed. The quantum circuits represent the time-
update by a single time-step in time-integration of a linear PDE. A key feature of the sparse-matrix resulting
from the finite-volume discretization is that in general it is a non-unitary matrix. It was shown how such a non-
unitary can be embedded in a matrix of double the original size. For the linear advection equation with periodic
boundary conditions, the discretization as well as the quantum-circuit construction were detailed. Finally, time-
integration for systems of linear PDEs were discussed, in particular method based on the ’reservoir’ technique.
This latter part can be seen as a first step toward the quantum-circuit implementation of the Discrete-Velocity
Method (DVM) for the kinetic Boltzmann equation, as discussed in a following set of lectures notes in the
current Lecture Series.
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