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1.0 INTRODUCTION TO LATTICE-BOLTZMANN METHOD

This lecture is devoted to the presentation of Lattice Boltzmann Methods (LBM) for Computational Fluid
Dynamics [1–4], with emphasis on its use for engineering purposes. The main features and properties of LBM
will be discussed in order to point the generic structure of all LBM, making it possible to analyze the issues that
may arise when addressing their extension for Quantum CFD.

Here, it is worth noting that several classes of extensions may be identified:

• Type I: Extension of classical Lattice methods for the simulation of quantum systems (e.g. solving the
Schrödinger equation) using classical algorithms/computers.

• Type II: Extension of classical Lattice methods for the simulation of quantum systems using quantum
algorithms/computers.

• Type III: Extension of classical Lattice methods for the simulation of classical systems using quantum
algorithms/computers.

Despite Type II methods may lead to some relevant results in the field of theoretical physics (e.g. simulation
of macroscopic hydrodynamic behavior of superfluids, including superfluid turbulence), at present time the
main challenge for the design of efficient Quantum CFD LBM-like approaches for applied engineering is to
design methods belonging to Type III. One of the main reason for that is that engineering applications require
a fine tuning the dissipative and dispersive features of the numerical methods along with the addition of a
huge number of physical submodels to the basic governing equations: boundary conditions, turbulence models,
turbulent wall models ... All of them having been obtained thanks to a tremendous amount of work during the
last 50 years. Therefore, a ”short-to-mid-term” view should be based on the fact that Quantum CFD should
inherit these results of classical CFD as much as possible, quantum computing being seen as a way to gain an
additional speedup versus classical computers.

The possibility to predict macroscopic states of full scale engineering systems via the simulation of quantum
systems on quantum computers should be kept in mind as a long-term perspective, since it will requires to design
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large-scale quantum computers along with fully renewed submodels that will necessitates decades of effort to
be calibrated to satisfy engineering constraints related to accuracy and robustness.

An hybrid path could be to use classical computers with quantum-based accelerators, in a way similar to
the CPU-GPU hybrid architectures.

1.1 The 3 historical paths to LBM

Lattice Boltzmann Methods inherit from a 50 years-long tradition in mathematics, physics and scientific com-
puting. Looking at the recent state-of-the-art, one can distinguish at least 3 main steps, corresponding to changes
in the fundamental paradigm that was used to develop this numerical method.

1.1.1 The Lattice Gas Automata era

The first step consists of the development of cellular automata, which yielded the Lattice Gas Automata (LGA)
approach. Cellular automata, popularized by the famous article by Gradner in 1970 about John Conway’s
”Game of Life” [5], have first been as implementations of Türing machine (an automaton acting as a universal
computing machine), and were used to address many theoretical topics such as algorithmics, theoretical com-
puter theory, thermodynamics of computation, possibility for self-duplicating machines and many more, e.g.
[6–9]

To illustrate this point, we remind below the rules of Conway’s Game of Life

• Births: Each dead cell adjacent to exactly three live neighbors will become live in the next generation.

• Death by isolation: Each live cell with one or fewer live neighbors will die in the next generation.

• Death by overcrowding: Each live cell with four or more live neighbors will die in the next generation.

• Survival: Each live cell with either two or three live neighbors will remain alive for the next generation.

It is striking that with such a simple automata all logical functions/gates (AND, NOT ...) can be imple-
mented (see Fig.1), leading to the possibility to ”build” a universal 2D computer based on this cellular automata
[10].

A Lattice Gas Automaton is a cellular automation that is interpreted as a microscopic model for a gas based
on Boolean unknowns (the interested reader is referred to [11? –13] for a deeper analysis of LGA). At each
grid node one defines a lattice made of a finite number neighbouring points to which it is connected. A particule
can come from/go to lattices points, and at each time step collisions can take place. After collision, colliding
particles are assumed to travel with new velocities toward points of the lattice. Here, one can see that such
an automaton has two degrees of freedom, namely the lattice topology and the collision rules. In 2D, on a
uniform Cartesian grid, restricting the lattice stencil to the first neighbours, one can define a 5-point lattice
and a 9-point lattice. On an hexagonal grid, one can define a 7-point lattice. Lattices with more points can
be defined by considering neighbours of neighbouring points. The collision rules (the ancestor of the collision
model in modern LBM) were historically derived to mimic elastic collisions of hard spheres. Important steps
in the development of LGA for hydrodynamics were the Hardy-Pomeau-Pazzis (HPP) model [14] (based on
uniform Cartesian grids, i.e. 5-point lattice with 4 velocities) later improved by the Frisch-Hasslacher-Pomeau
(FHP) model [15] (based on triangular cells, i.e. 7-point lattice with 6 velocities), see Fig. 2.
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Figure 1: Examples of the AND-gate implemented via Conway’s Life automaton for various inputs. From [10].

We now illustrate these methods considering the HPP LGA. Introducing a set of 4 admissible velocities and
the Boolean variables σ(i, j;n) such that

σ(i, j, k;n) =

{
1 if the site (i,j) is occupied by a particule with velocity number n at iteration k
0 otherwise

(1)

the time evolution of σ(i, j, k;n) is governed by the following rules:

σ(i, j, k + 1; 1) = σ(i− 1, j, k; 1)−Ψ(i, j, k) (2a)

σ(i, j, k + 1; 2) = σ(i, j − 1, k; 2) + Ψ(i, j, k) (2b)

σ(i, j, k + 1; 3) = σ(i+ 1, j, k; 3)−Ψ(i, j, k) (2c)

σ(i, j, k + 1; 4) = σ(i, j + 1, k; 4) + Ψ(i, j, k) (2d)

where the collision operator is defined as

Ψ(i, j, k) = σ(i− 1, j, k; 1)σ(i+ 1, j, k; 3)σ̄(i, j − 1, k; 2)σ̄(i, j + 1, k; 4) (3)

−σ̄(i− 1, j, k; 1)σ̄(i+ 1, j, k; 3)σ(i, j − 1, k; 2)σ(i, j + 1, k; 4)

where σ̄(i, j, k;n) = 1−σ(i, j, k;n). The sum of the collision operator over the 4 velocities at a given node
(i, j) is always null. It allows for the conservation of both the number of particules (i.e. mass conservation) and
the total momentum.

Lattice Gas Automata have mostly been used as ”experimental devices” in theoretical physics, since they
exhibit some statistical features of real fluid. A Boltzmann-like kinetic theory can be build for them, along with
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a statistical thermodynamic theory [16]. As an example, time evolution of LGA satisfies an H-theorem. It can
be shown [17] that on a 2D hexagonal lattice, if all particules have the same speed and obey Fermi statistics,
then the allowed collisions lead to a Fermi-Dirac single-particule equilibrium with distribution function

feqn =
1

1 + eα+βββ·en
(4)

where en is the particule velocity in the n-th direction and α and βββ are determined by the conservation law.
In the limit of small velocity, this equilibrium can be expanded in dimension D as follows:

feqn =
ρ

b
+
ρD

c2b
en · u +

ρD(D + 2)

2c4b
G(ρ)Qijnuiuj +O(u3), Qijn = enienj − 1/Dδij (5)

where ρ and u denote the averaged density particule per site and the averaged particule velocity per site,
respectively. The function G(ρ) depends on both the dimension and the lattice topology. c is the particle speed
which is equal to one lattice unit per lattice time for a hexagonal lattice, and b is the number of allowed velocities
for particules. Associated macroscopic equations can also be derived via a multi-scale analysis, which resemble
the Navier–Stokes equations. For the above equilibrium, one obtains the following macroscopic momentum
equation:

∂

∂t
(ρui) +

∂

∂xj
(ρG(ρ)uiuj) = − ∂

∂xj
p+

∂

∂xi

(
ν
∂

∂xj
(ρui)

)
+

∂

∂xj

(
ζ
∂

∂xi
(ρui)

)
(6)

where ν and ζ are the kinematic viscosity and the bulk viscosity, respectively. The associated equation of
state is

p =
c2ρ

D

(
1−G(ρ)

u2

c2

)
(7)

One can see that these macroscopic equations are unphysical with respect to classical laws because 1)
Galilean invariance is broken by the appearance of G(ρ) and 2) the pressure depends on the velocity u.

Despite the fact that they can be very easily implemented and that they are numerically unconditionally
stable (thanks to their Boolean nature), LGA never became a quantitative predictive tool in Computational
Fluid Dynamics. The main problems are that

• they lead to noisy results (due to their Boolean character, statistical moments of the solution converge
very slowly)

• they do not converge toward Galilean-invariant macroscopic equations

• the equation of state is unphysical because of G(ρ)

• a spurious conserved quantity is present because of the simple symmetry of the lattice of LGA

In order to alleviate these shortcomings, Lattice Gas Automata with enriched, more physical collision rules
have been proposed. Among the first proposals, one can mention sequels of the FHP model, in which the
collision rules are complexified (see [19] for a review of these advanced variants). The concept of Integer LGA
(ILGA) was later introduced in 1997 (so after the rise of classical LBM) by Boghosian et al. [20] to allow for
an arbitrary number of particules to travel in the same direction. Increasing the number of sampled particules,
better collision statistics may be obtained. Doing that, Galilean invariance is restored and an expression for
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Figure 2: Lattice Gas Automata collision rules: HPP (left, from [12]) and FHP (right, from [18])

the fluid viscosity is explicitly derived, along with a decrease of the statistical noise. Integer LGA were further
improved in 2018 by Blommel and Wagner [21] who proposed the Monte Carlo LGA, whose key idea is to
use a Monte Carlo collision operator (therefore further increasing the number of samples used to compute the
collision) that explicitly conserves mass and momentum, and which recovers the correct equilibrium function,
reinforcing the link with Lattice Boltzmann Methods. During the same period, Parsa and Wagner developed
the Molecular Dynamics LGA (MDLGA) in which the collision operator is computed by coarse-graining a
Molecular Dynamics simulation [18, 22–28]. Here, the sampling is made more physical since particules in the
MD simulation are allowed to move freely in space and are not restricted to follow a set of discrete directions
as in other LGA methods (see Fig. 3). The coarse-graining step is done by averaging the Molecular Dynamics
results in each cell of the lattice. On can show that resulting collision operator (and equilibrium state) is the one
that LBM collision operator asymptotically approximates. In this sense, one can say that MDLGA and LBM
are asymptotically statistically similar (at least at equilibrium), if not equivalent (but there are many collision
models in the LBM approach, see below).

It is also interesting to note that some trials have been made to use LGA to describe other physical systems,
such as magnetohydrodynamics, plasma physics and wave propagation (see [29] for a survey).

1.1.2 The birth of LBM as a discretized fluid model

The Lattice Boltzmann Methods were born in the late 1980s and the early 1990s thanks to seminal papers by
McNamara and Zanetti [30], Qian, D’Humières and Lallemand [31] and Higuera et al. [32, 33]. The later is
often considered as the birth record of modern LBM, since the McNamara-Zanetti and Higuera papers are very
brief and don’t provide enough details about collision terms and practical implementation.
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Figure 3: Molecular Dynamics Lattice Gas collision. Coarse grid cells are in blue, the dual grid is in orange. Particules of the
Molecular Dynamics simulation are shown. From [22].

In order to cure the flaws of LGA, it is proposed to use real variables instead of Boolean ones (therefore
removing noise) and by expressing the collision operator as a relaxation process toward an equilibrium state, the
expression of the later originating in a truncated polynomial expansion of the classical continuous Maxwellian.
This change amounts to switch from a microscopic view in which individual collisions are simulated (and the
equilibrium state is a by-product) to a mesoscopic approach based on density probability functions in which
the equilibrium state is arbitrarily chosen and enforced. Using such a collision model, Galilean invariance of
macroscopic equations is enforced and the usual Euler and Navier–Stokes are recovered. The final form of
modern LBM appears in [31] for the first time to the knowledge of the author, including the nomenclature for
the lattices was introduced in this article: a lattice with n points in m dimension is denoted DmQn.

Important facts are that LBM is not an LGA and that it is a quantitative predictive tool that provide reliable
results for engineering purposes.

These seminal works were carried out within the discrete velocity framework inherited from the LGA
structure. A last very important step was to derive the LBM directly from the continuous Boltzmann equation,
i.e. to show that LBM can be seen as a numerical method to solve the continuous Boltzmann equation. This
step was done in the mid 1990s in two seminal papers [34, 35] (see also [4, 36] for reviews). This way, the link
with classical hydrodynamic theory and kinetic theory is established, and LBM can be analyzed a a classical
numerical method using usual tools. To this end, LBM schemes are obtained considering a triple discretization
procedure in the velocity space (phase space), in space and time. The discretization in velocity space yields the
Discrete Velocity Boltzmann Equation (DVBE), whose further discretisation is space and time leads to LBM.
Let us note that the convergence of DVBE toward Boltzmann equation and Navier–Stokes equations is an active
research topic . The asymptotic consistency of LBM with both nearly incompressible Navier–Stokes equations
and rarefied gas dynamics is also a theoretical issue, referred to as the asymptotic preserving properties [37].
Let us just mention that all LBM schemes are not asymptotic preserving.

Once a computational grid has been defined, DVBE can be discretized and solved using any usual method:
Finite Difference, Finite Volume, Finite Element, Discontinuous Galerkin, Pseuso-spectral methods, Galerkin
Least-Square ... As a matter of fact, all these methods have been applied to DVBE since the 1990s. Using these
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Figure 4: General sketch of the different choices leading to an LBM method starting from the continuous Boltzmann equation.

approaches, the constraint to use regular lattices, i.e. uniform computational grids inherited from LGA, was
removed, and all grid topologies have been used: structured, unstructured, body-fitted, non-body-fitted ... and
also gridless methods.

What is referred to as Lattice Boltzmann Methods is observed to stem from a particular choice of dis-
cretization, which preserves the collide-and-stream structure, the streaming step being done via a simple shift
in memory (see Section 2.0). Other methods are not LBM stricto sensu, and there exist a broad panel of meth-
ods that share some features of LBM but are not LBM and whose names are misleading, e.g. Finite Volume
LBM whose correct name should be Finite Volume DVBE (the same for Finite Element LBM ...) A general
sketch of the choice graph that leads to LBM is displayed in Fig. 4.

LBM is now widely spread among CFD teams and is a mature CFD approach. It has been extended to
a large class of flows, among which compressible flows, multiphase flows, combustion ... Commercial CFD
softwares have been developed (e.g. Powerflow, ProLB, Xflow) that are observed to challenge traditional CFD
solvers, thanks to some beneficial features: very small spurious numerical dissipation and dispersion, high
scalability on massively parallel computer, compactness of lattices, automatic generation of computational grid
.... Some illustrations are given in Section 1.2. Let us mention that the search for improved LBM schemes with
increased efficiency is a very active field of research.

1.1.3 The renewal of LBM as a general numerical method

The last mutation of LBM was to decouple it from fluid mechanics and to show that it is a general numerical
approaches that can be used to solved a large family of PDEs that are not tied to fluid mechanics and that even
do not belong to mathematical physics. As a matter of fact, searching for improved LBM schemes, researchers
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have proposed collision models that cannot be obtained from the continuous Maxwellian for a long time. But, in
most of the cases, these improved collision schemes were presented as empirical modifications of pre-existing
methods or as plugs of classical numerical tools (e.g. slope limiters in CFD) without a general theoretical
framework. In the same way, LBM-like methods for solving non-hydrodynamic equations (solid mechanics,
Maxwell equations ... epidemiology) have been proposed in isolated ways, as illustrated by Section 3.0.

Decoupling LBM from fluid mechanics and making it a general numerical approach is the most recent
renewal of this field of research. Here, LBM is mainly seen as a smart change of variables which

1. change/increase the number of unknowns of the problem

2. convert the original set of macroscopic PDEs into a set of coupled advection-relaxation equations, with
linear advection and nonlinear local relaxation

The key step is to keep in mind that convergence toward a given macroscopic equation is governed by a few
consistency constraints, and that numerical efficiency (accuracy, robustness, computational cost) are additional
constraints. To tune adequately LBM, one has to derive generic equations for the associated macroscopic model
and to use classical theoretical tools of numerical analysis (Equivalent Differential Equation obtained via Taylor
expansion [38], Von Neumann-like Linearized Spectral Analysis [38, 39], structure-preserving features [40]).
This approach is the one selected for the present survey.

Re-embedding LBM within the general CFD framework offers new perspectives in terms of theoretical
analysis but also in terms of ways of improvement. Hybridization with classical numerical techniques [41–46]
or finding numerical schemes for macroscopic equations that are equivalent from the discrete point of view to a
given LBM scheme (and which exhibit the same features in terms of accuracy, robustness, efficiency) are very
active fields of research to derive improved LBM-like numerical schemes, e.g. [47–49].

1.2 LBM for applied CFD: a (brief) survey

As mentioned above, Lattice Boltzmann Methods are predictive methods that can be used for engineering
purposes. Main applications are driven by the availability of both adequate LBM schemes and user-friendly
softwares. The first commercial CFD software based on LBM to reach the market about 20 years ago was Pow-
erFlow (by Exa Corporation, now Dassault Systems) with application to automotive industry (more precisely
for aerodynamics, heat transfer and aeroacoustics of vehicules), then followed about 10 years ago by ProLB
and Xflow, see Fig. 5. As a consequence, very efficient methods for low-Mach weakly compressible flows have
been developed to get a reliable engineering tools. An important point is that coupling with a large number of
physical submodels (e.g. turbulence models) have been developed, along a many numerical elements such as
boundary conditions [50–52], grid refinement [53–56], immersed boundary conditions [57], multiple reference
frame approach for rotating bodies [58, 59] and stabilized LBM schemes for highly convective flows (basic
LBM schemes are not stable in such flows, all realistic applications rely on advanced LBM models, see Section
4.3).

A by-product of these developments is the capability of LBM to be an efficient tools for other family
of applications that exhibit the same physics as automotive industry, e.g. urban physics, wind engineering,
micrometeorology and air quality (see Figs. 7 and 6) [60–64]. Some dedicated LBM software for urban
physics have been developed, e.g. Simscale.

The second market addressed by developers of commercial LBM softwares was aerospace engineering (see
Fig. 8), leading to the development of LBM schemes for compressible flows, including supersonic flows with
shocks, e.g. [42–46, 66–71]. All-Mach number LBM schemes do not exist [72], and the state-of-the-art shows
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Figure 5: Illustration of LBM simulations in automotive engineering. Left: simulation of the flow around a car for aerodynamics;
Right: flow in underhood for heat transfer and engine cooling. Courtesy of Renault and CS. All simulations have been carried
out with the ProLB software.

Figure 6: Illustration of LBM simulations in wind engineering. Left: flow in an urban area; Right: flow around a Fregate ship.
Courtesy of M2P2 Laboratory. All simulations have been carried out with the ProLB software.

that different collision models should be used for subsonic flows and compressible flows. At present time, LBM
for hypersonic flows is still at an embryonic stage of development, since the demand is weak. Extension to
combustion (which is a crucial topic for the design of aircraft/helicopter/missile engines) is presently underway
[73–80], the ProLB software being the first one to offer combustion capabilities (see Fig. 9). An important point
is that the development of efficient LBM schemes that account for the energy equation is a non-trivial task, since
a direct extension of low-Mach athermal LBM schemes leads to the use of a huge number of degrees of freedom
(more than 130 unknowns per cell in practice in 3D simulations). Decreasing the number of unknowns requires
the development of segregated methods, in which the energy equation is treated in a separate way. The difficulty
dealing with the definition of fully conservative methods based on total energy, which is mandatory for shock
capturing, was solved very recently in [43, 70, 81].

The last main field of application is oil and gas, which led to the development of efficient LBM schemes for
multiphase multispecies flows, including physical mechanisms such as evaporation, melting and solidification
(see [82] for a review).

One should also mention applications of LBM to bio-mechanics [83–87], including non-Newtonian fluids
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Figure 7: Illustration of LBM simulations air quality engineering. Evacuation of a cinema room (left) and a concert hall (right)
accounting for person’s displacement. From [65]. All simulations have been carried out with the ProLB software.

Figure 8: Illustration of LBM simulations in aerospace engineering. Left: take-off of A350 aircraft; Right: noise generated by
landing gears on a full aircraft configuration during landing. Courtesy of Airbus. All simulations have been carried out with the
ProLB software.

[88] and fluid-structure interaction [89–95].

1.3 LBM as a general numerical method: beyond CFD

The fact that LBM can be used to solve PDEs that do not describe classical fluid dynamics (i.e. systems
that totally escape the physics underlying the development of statistical physics and kinetic theory) has been
recognized since a long time, despite a general theory for ”LBM numerics” is still missing.

Among the most striking achievements, one can mention:

• LBM for solid mechanics, with emphasis on wave propagation in elastic solids ans seismic simulations,
e.g. [96–98].

• LBM for Maxwell equations for electrodynamics [99, 100], with emphasis on electromagnetic wave
propagation, with extension to magnetohydrodynamics (MHD) [101–108]
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Figure 9: Illustration of LBM simulations for combustion. Left: reactive turbulent jet; Right: turbulent jet with auto-ignition.
Courtesy of M2P2 Laboratory. All simulations have been carried out with the ProLB software.

• LBM for heat transfer, including conduction and radiative transfer equations, e.g. [109–112]

• LBM for relativistic fluids with application to astrophysics, e.g. [113–115]

• LBM for shallow water equations, with application to environmental flows, e.g. river simulation includ-
ing topography effect, erosion, sediment transport and tsunami simulation, e.g. [116–121]

• LBM for miscellaneous topics, e.g. epidemics [122] and crowd dynamics [65, 123, 124]

• LBM for Dirac and Schrödinger equations, superfluid hydrodynamics and quantum turbulence (See Sec-
tion 6.0)

2.0 IMPLEMENTING LATTICE-BOLTZMANN METHOD

This section discuss the derivation and implementation of a generic Lattice Boltzmann Method to solve a set
of PDEs. It follows the recent works by G. Farag and G. Wissocq and colleagues at M2P2 laboratory, see
[42, 43, 125–130].

2.1 A generic Discrete Velocity Boltzmann Equation (DVBE)

Lattice Boltzmann Methods rely on the Discrete Velocity Boltzmann equation, which is very often interpreted
as a discretization of the continuous Boltzmann equation in the velocity space [34–36, 131]. This interpretation
is inherited from the history of LBM, as mentioned above, and also from the works dealing with discretization
of kinetic equations for fluid mechanics, e.g. [132–138]. This interpretation is no longer true when LBM is
used to discretize macroscopic governing equations that have no link with statistical gas kinetic theory (e.g.
solid mechanics, Schrödinger equation ...) It is important to keep in mind that the DVBE is still continuous
in time and space and therefore require to be further discretized to allow for numerical simulation. A generic
DVBE based on a set of N discrete velocities ci can be written as follows

∂fi
∂t

+ ciα
∂fi
∂xα

= Ωi, i = 0, N − 1, α = 1, 3 (8)
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where fi(t,x) = f(t,x, ci) and Ωi denote the distribution function associated to the discrete velocity ci
and its collision term, respectively. It is worth noting that since discrete velocities are constant, uniform, fi-
independent variables, the advection operator in (8) is linear. The collision term is a priori non-linear in the
general case. It is local in both space and time in newtonian fluid mechanics.

The link with a targeted system of macroscopic equations is usually obtained introducing Grad’s raw mo-
ments of the distribution functions and the collision terms in the velocity space:

Π
f,(n)
α1···αn =

∑
i

ciα1 · · · ciαnfi, Π
Ω,(n)
α1···αn =

∑
i

ciα1 · · · ciαnΩi (9)

This corresponds to a linear transformation (or change of variables)(
Πf,(j)

)
j=0,P−1

= M(fj)j=0,N−1 (10)

where the matrix M , whose elements are polynomial functions of the components of the discrete velocity
vectors ci, is invertible ifM = N , i.e. if the number of moments is equal to the number of distribution functions
(which is equal to the number of discrete velocities).

Taking the N -th first moments of Eq. (8), one obtains evolution equations for the Π
f,(n)
α1···αn :

∂Π
f,(n)
α1···αn
∂t

+
∂Π

f,(n+1)
α1···αn+1

∂xαn+1

= Π
Ω,(n)
α1···αn , n = 0, N − 1 (11)

This set of equations is strictly equivalent to system (8). It is observed that it is not closed, since the
unknown moments Π

f,(N)
α1···αN appears in the equation for the last known moment, Π

f,(N−1)
α1···αN−1 . Therefore, a

closure will be needed to obtain a computable solution.
Its is worth noting that, at this point, both systems (8) and (11) are fully general and are not tied to fluid

mechanics. Choosing the set of targeted macroscopic equations to be solved via LBM amounts 1) to bridge
between moments of f and the macroscopic variables and 2) giving an expression for the collision operators
Ωi. Before deriving the macroscopic equations, it is useful to split fi as

fi = feqi + fneqi , (12)

where feqi is such that Ωi(f
eq
i ) = 0. An important point is that feqi is a function of macroscopic variables

only. Moments of fi can be split in the same way, yielding

Π
f,(n)
α1···αn = Π

feq ,(n)
α1···αn + Π

fneq ,(n)
α1···αn . (13)

In classical kinetic gas theory, feqi is related to the Maxwell-Boltzmann equilibrium, for which the entropy
is stationary and the collision term vanishes. Inserting this decomposition into Eqs. (8) and (11), one obtains in
a straighforward way:

∂feqi
∂t

+ ciα
∂feqi
∂xα

= 0, (14a)

∂fneqi

∂t
+ ciα

∂fneqi

∂xα
= Ωi, (14b)

and
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∂Π
feq ,(n)
α1···αn
∂t

+
∂Π

feq ,(n+1)
α1···αn+1

∂xαn+1

= 0, (15a)

∂Π
fneq ,(n)
α1···αn
∂t

+
∂Π

fneq ,(n+1)
α1···αn+1

∂xαn+1

= Π
Ω,(n)
α1···αn . (15b)

Let us illustrate that using the (very popular) case of low-Mach athermal flows. The density ρ, momentum
ρu and momentum flux are defined as follows

ρ = Πf,(0) =
∑
i

fi, (16a)

ρuα = Πf,(1)
α =

∑
i

ciαfi, (16b)

(ρuαuβ + pδαβ) = Π
feq ,(2)
αβ =

∑
i

ciαciβf
eq
i (16c)

and it is chosen to define equilibrium and non-equilibrium components such that the low-order moments of
fneqi are null (up to an arbitrarily fixed order in practice, which is case-dependent). This is illustrated by the
following relations, that are enforced for low-Mach athermal flow simulations:

∑
i

fneqi = 0⇐⇒
∑
i

fi =
∑
i

feqi = Πf,(0) = Πfeq ,(0) (17a)∑
i

ciαf
neq
i = 0⇐⇒

∑
i

ciαfi =
∑
i

ciαf
eq
i = Πf,(1)

α = Πfeq ,(1)
α , α = 1, 3 (17b)

Now inserting these definitions into (11), one obtains after some algebra

∂ρ

∂t
+
∂ρuα
∂xα

= ΠΩ,(0) =
∑
i

Ωi (18a)

∂ρuα
∂t

+
∂
(
ρuαuβ + pδαβ + Π

fneq ,(2)
αβ

)
∂xα

= ΠΩ,(1)
α =

∑
i

ciαΩi (18b)

In order to recover governing equations of fluid mechanics, one has two mandatory constraints on the
collision term, i.e.

ΠΩ,(0) =
∑
i

Ωi = 0 (mass conservation), (19a)

ΠΩ,(1)
α =

∑
i

ciαΩi = 0 (momentum conservation) (19b)
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The second-order non-equilibrium moment tensor (Π
fneq ,(2)
αβ ) should vanish in the case of Euler equations

for inviscid flows and be equal to the viscous stress tensor in the case of Navier–Stokes equations for viscous
fluids, i.e.

Π
fneq ,(2)
αβ ' ν

(
∂uα
∂xβ

+
∂uβ
∂xα

− 2

3
δαβ

∂uγ
∂xγ

)
= Sαβ (20)

It is worth noting that defining the momentum flux is implicitly equivalent to defining the pressure p. The
expression for the pressure, i.e. the equation of state underlying the DVBE will be discussed in the next
subsection. But just let us note at this point that it is enslaved to the choice of both the lattice and the collision
operator.

2.2 Designing the Lattice

The lattice (i.e. the set of point that are used to update the solution for one time step at a given point) is enslaved
to the choice of the set of discrete velocities ci. It is worth noting that the later appears to be quadrature points
in the velocity space when computing the moments defined in (11). These discrete velocities are chosen to fulfil
the two following constraints:

• Accuracy: they should allow for an accurate computation of low-order moments required to recover the
targeted macroscopic equations (second-order moments are necessary to recover Navier-Stokes equations
in a consistent way).

• Lattice preservation: discrete velocities must be chosen in such a way that, when updating the solution
for one time step ∆t, the advection step should exactly stream the solution from the starting point to
points of its lattice. This means that no interpolation step is needed as in Lagrangian-projection methods.
This is expressed by the fact that if x is a node of the lattice (in practice a grid point in the classical CFD
parlance), then (x + ci∆t), i = 0, N − 1 is also a point of the lattice (i.e. a grid point).

These two constraints have a deep impact on the LBM grid topology, since the computational grid must be
based on a space-filling pattern: isosceles triangle, square and hexagon in 2D, platonic solids in 3D, cubic cells
being used in almost all existing implementation of LBM.

Once the lattice has been designed, one must compute the corresponding quadrature rule and quadrature
weights to evaluate moments in the velocity space [139–143]. As a matter of fact, considering a dummy
function ψ(c), its integral is approximated via a discrete lattice-based quadrature rule:∫

ψ(c)dc =
∑
i

ωiψ(ci) + Υψ (21)

where Υψ is the error committed when integrating ψ, ωi is the quadrature coefficient associated to the
discrete velocity ci. It is worth to note that these coefficients depend on the lattice. More generally, the
quadrature error committed on the p-th order moment of ψ will be denoted Υψ,(p), i.e.

Υ
ψ,(p)
α0···α(p−1)

=

∫
cα0 · · · cα(p−1)

ψdc−
∑

i=0,N−1

ωiciα0 · · · ciα(p−1)
ψ (22)

Since in LBM the discrete velocities are enslaved to the computational grid topology (to achieve the stream-
ing step without interpolation), the sole free adjustable parameters are the weights ωi. Therefore, one needs
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P +1 a lattice with discrete velocities to integrate exactly a polynomial function of order P . As a consequence,
for a given lattice, their exists a (finite, usually low !) maximum moment order that can be exactly computed.
Increasing the order of physical moments that must be exactly computed induces a growth of the lattice size (in
number of grid points and sometimes in terms of stencil size, which may render implementation more difficult).

Another important point is that the distribution function fi appearing above is pre-multiplied by ωi for the
relations in (16) to be interpreted as discrete versions of continuous moments in the velocity space. Therefore,
variables fi (resp. Ωi) appearing in above sections are in fact products of a ”physical” distribution function
(resp. collision term) and the associated quadrature coefficient.

Discrete velocities and quadrature coefficients are chosen such that (for a lattice with N points):

∑
i=0,N−1

ωi = 1 (23)

∑
i=0,N−1

ωiciα = 0 (24)

∑
i=0,N−1

ωiciαciβ = c2
sδαβ (25)

∑
i=0,N−1

ωiciαciβciγ = 0 (26)

∑
i=0,N−1

ωiciαciβciγciµ = c4
s(δαβδγµ + δαγδβµ + δαµδβγ) (27)

∑
i=0,N−1

ωiciαciβciγciµciν = 0 (28)

These relations are often referred to as the symmetries of the lattice. Here, cs is a constant related to the
lattice. For a uniform grid with mesh size ∆x, one has cs = ∆x/(

√
3∆t). This quantity is interpreted as the

lattice speed of sound in fluid flow simulations. The pressure p appearing in the definition of the macroscopic
momentum flux is given by p = ρc2

s, which is not equal to the pressure appearing in the incompressible Navier–
Stokes equations. This equation of state exhibit some similarity with the definition of acoustic pressure.

The D2Q9 lattice (with 9 discrete velocities in 2D on square cells) is illustrated in Fig. 10.

2.3 Space discretization, time integration, change of variables

We now address the numerical scheme that underlies LBM. Starting from (8), one can write

fi(t+ ∆t,x + ci∆t) = fi(t,x) +

∫ ∆t

0
Ωi(t+ s,x + cis)ds (29)

The right-hand side is usually computed using the trapezoidal rule, leading to the Crank–Nicolson scheme
[144], yielding

fi(t+ ∆t,x + ci∆t) = fi(t,x) +
∆t

2
(Ωi(t,x) + Ωi(t+ ∆t,x + ci∆t)) (30)
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Figure 10: Sketch of the D2Q9 lattice (top) and D3Q19 and D3Q7 (bottom) .

which is a second-order accurate implicit formula, since Ωi(t + ∆t,x + ci∆t) a priori depends on fi(t +
∆t,x + ci∆t). In order to recover an explicit method, one introduce the following change of variable:

gi = fi −
∆t

2
Ωi (31)

Considering the case fi = feqi , one straightforwardly obtains

geqi = feqi −
∆t

2
Ωi(f

eq
i ) = feqi (32)

along with

gneqi = gi − geqi = (fi −
∆t

2
Ωi)− feqi = fneqi − ∆t

2
Ωi (33)

These relations shows that all moments of feqi and geqi are identical, while those of fneqi and gneqi are equal
up to the maximum order at which the moment of the collision term vanish.
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Inserting this into (30), one obtains the following explicit formula

gi(t+ ∆t,x) = gi(t,x− ci∆t) + ∆tΩi(t,x− ci∆t) (34)

This expression is fully general and doesn’t rely on some particular expression of the collision term Ωi.
For hydrodynamic simulations, accounting for the relations (19), one can see that macroscopic variables can be
easily computed:

ρ =
∑
i

fi =
∑
i

gi, ρuα =
∑
i

ciαfi =
∑
i

ciαgi (35)

but higher-order moments are a priori more difficult to compute, since∑
i

ciαciβgi =
∑
i

ciαciβfi −
∆t

2

∑
i

ciαciβΩi 6=
∑
i

ciαciβfi (36)

showing that a collision-kernel-dependent formula must be developed to recover higher-order moments
from the gi, e.g. for the second order moment associated to the viscous stresses.

2.4 Single Relaxation Time (SRT) collision models

We now address the expression for the collision model Ωi, which was fully general in previous developments.
The present discussion will be restricted to collision models that are based on a near-equilibrium approximation,
meaning that the collision effect is to relax the solution towards its equilibrium state.

Therefore, in practice, the collision term is expressed as a relaxation term, which includes one or more
characteristic relaxation times. Most existing LBM for hydrodynamics rely on a single relaxation time (SRT)
approximation, leading to

Ωi = −1

τ
(fi − feqi ) = −1

τ
fneqi (37)

where the expression of feqi remains to be found. The expression of the equilibrium distributions (as func-
tions of the macroscopic variables) is the sole element that differs between the SRT-LBM algorithms. It is
worth noting that this general formulation for Ωi leads to an advection-relaxation equations for the fi, with
linear advection and local non-linear relaxation, which makes very significant differences with the associated
macroscopic equations, which exhibit non-linear advection.

Now considering the variables gi, Eq. (31) leads to

gneqi =

(
1 +

∆t

2τ

)
fneqi =⇒ Ωi = − 1

τ + ∆t
2

gneqi (38)

The associated closed version of the discrete evolution equation for gi, Eq. (34), is then

gi(t+ ∆t,x) = gi(t,x− ci∆t)−

(
∆t

τ + ∆t
2

)
gneqi (t,x− ci∆t) (39)

which can be recast as

gi(t+ ∆t,x) = geqi (t,x− ci∆t) +

(
1− ∆t

τg

)
gneqi (t,x− ci∆t) (40)
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where τg = τ + ∆t/2. This final expression shows that, for SRT models, the equilibrium part is conserved
by the collision process while the non-equilibrium part is relaxed (which is coherent with the concept underlying
the splitting of fi and gi).

It is worth noting that SRT models induce a general closure for the second-order non-equilibrium moment
tensor (Π

fneq ,(2)
αβ ) that appears in the macroscopic momentum equation (18). First, one can write the SRT-

closed version of (11):

∂Π
f,(n)
α1···αn
∂t

+
∂Π

f,(n+1)
α1···αn+1

∂xαn+1

= −1

τ
Π
fneq ,(n)
α1···αn , n = 0, N − 1 (41)

which leads for n = 2 to the following evolution equation:

∂Π
f,(2)
αβ

∂t
+
∂Π

f,(3)
αβγ

∂xγ
= −1

τ
Π
fneq ,(2)
αβ (42)

Then splitting moments appearing in the left-hand-side, one obtains

∂Π
feq ,(2)
αβ

∂t
+
∂Π

fneq ,(2)
αβ

∂t
+
∂Π

feq ,(3)
αβγ

∂xγ
+
∂Π

fneq ,(3)
αβγ

∂xγ
= −1

τ
Π
fneq ,(2)
αβ (43)

which can be rewritten as follows to obtain the intrinsic definition of the non-equilibrium:

Π
fneq ,(2)
αβ = −τ

∂Π
feq ,(2)
αβ

∂t
− τ

∂Π
fneq ,(2)
αβ

∂t
− τ

∂Π
feq ,(3)
αβγ

∂xγ
− τ

∂Π
fneq ,(3)
αβγ

∂xγ
(44)

Here, all equilibrium moments are known, since they can be expressed as explicit functions of macroscopic
variables. The term Π

fneq ,(3)
αβγ is unknown and must be closed.

One can also see that, in practice, a change in the collision model Ωi will only acts on the third-order
non-equilibrium moment Π

fneq ,(3)
αβγ .

The evolution equation (76) can be rewritten in a simpler way. In the case of a SRT collision model, the
evolution equation (14b) for fneqi becomes

∂fneqi

∂t
+ ciα

∂fneqi

∂xα
= −1

τ
(fneqi − Λi) , with Λi = −τ

(
∂feqi
∂t

+ ciα
∂feqi
∂xα

)
(45)

which shows that fneqi relaxes towards Λi with the characteristic time τ . Taking the second-order moment,
one obtains the following evolution equation for the stresses

∂Π
fneq ,(2)
αβ

∂t
+
∂Π

fneq ,(3)
αβγ

∂xγ
= −1

τ

(
Π
fneq ,(2)
αβ −Π

Λ,(2)
αβ

)
. (46)

This relation is intrinsic to the SRT model, and it shows how the stresses evolves in LBM, even if it is not
explicitly solved.

It is worth noting that since Π
fneq ,(3)
αβγ is a high-order term, a low-rank lattice will not enable a good evalu-

ation of it because of quadrature errors, leading to the fact that it is not an independent variable and that it can
be expressed as a combination a lower-order moments on this lattice. This results in a kind of numerical-error-
induced closure induced by an aliasing-like phenomenon. To account for this phenomena, Π

fneq ,(3)
αβγ should be

replaced by (Π
fneq ,(3)
αβγ −Υ

fneq ,(3)
αβγ ) in the above formulas.
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Let us illustrate this in the case of the athermal low-Mach number approximation for hydrodynamics. After
some algebra, using relations (16) and (18), one obtains

−Π
fneq ,(2)
αβ = τρc2

s

(
∂uα
∂xβ

+
∂uβ
∂xα

− δαβ
2

3

∂uγ
∂xγ

)
(47)

+τ

∂Π
fneq ,(2)
αβ

∂t
+
∂Π

fneq ,(3)
αβγ

∂xγ

− τ (uα∂Π
fneq ,(2)
αγ

∂xγ
+ uβ

∂Π
fneq ,(2)
αγ

∂xγ

)

The first term on the right-hand-side is the Navier–Stokes viscous stress tensor, with a viscosity ν = τρc2
s,

the rest being an error that depends on both the collision model, the lattice, the Mach number and the Reynolds
number. An important result is that consistency is not a priori guaranteed for all published collision models !

2.5 Structure of a generic LBM algorithm

A general form of the implementation of LBM-SRT algorithm is given below.

• Step 1: Preparation of the collision step

– Compute macroscopic variables appearing in the expression of feqi (t,x), i.e. compute the required
moments of gi(t,x) and combine them adequately

– Compute feqi (t,x)(= geqi (t,x)) associated to the selected collision model

– Compute fneqi (t,x) = (fi(t,x)− feqi (t,x))

– Compute gneqi (t,x) =
(
1 + ∆t

2τ

)
fneqi (t,x)

• Step 2: collision step : compute the post-collision state

gcolli (x) = geqi (t,x) +

(
1− ∆t

τg

)
gneqi (t,x), τg = τ + ∆t/2

• Step 3: streaming step : compute the updated solution at time t+ ∆t

gi(t+ ∆t,x) = gcolli (x− ci∆t)

• Step 4 (Optional): post-processing : compute outputs for your application

3.0 LBM COLLISION MODELS TO SOLVE SOME ELEMENTARY PROBLEMS

The general structure of an LBM algorithm has been discussed in the previous section. We now illustrate the
versatility and the generality of this approach by addressing some basic simple scalar problems with increasing
complexity.
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3.1 Poisson equation

Solving a Poisson equation via LBM has been addressed by several authors, who proposed different LBM
algorithms to solve the following scalar equation

−ε∇2φ = A (48)

In the method proposed by [145], one has∑
i

fi = φ, feqi = ωiφ, Hi = −DωiA (49)

where Hi is a forcing term added on the right-hand-side of Eq. (8), and D > 1 a free parameter. The
associated macroscopic equation is

1

D

∂φ

∂t
= ε∇2φ+A, ε = c2

s (50)

This equation show that the solution of the original Poisson equation (48) corresponds to the steady-state
solution of (50). LBM is then here equivalent to an iterative time-marching method to solve the original elliptic
problem.

A variant was proposed in [146], in which

∑
i=0,N−1

fi = 0, φ =
1

1− ω0

∑
i=1,N−1

fi, f
eq
i =

{
(ω0 − 1)φ i = 0

ωiφ i = 1, N − 1
, Hi = −∆tDωiA (51)

It is worthy noting that in the present case the equilibrium functions contain only the zeroth-order moment
of fi, making it possible to use lattice with reduced number of grid points (referred to as ”low-order” lattices,
since the associated quadrature will be exact for low-order polynomial functions only). In practice, these two
methods have been implemented successfully on D1Q3, D2Q5 and D3Q13 lattices

3.2 Scalar linear advection-diffusion equation

A slightly more complex case is the scalar advection-diffusion equation:

∂φ

∂t
+∇ · (uφ) = ν∇2φ (52)

where u(t,x) is a prescribed velocity field. The equilibrium function must now account for the advection
term (uφ), leading to

∑
i=0,N−1

fi = φ, feqi = ωiφ(t,x)

(
1 +

ci · u
c2
s

)
(53)

This simple model has been used on D2Q5 and D2Q9 lattices with success, but it is restricted to first-order
accuracy since the associated Equivalent Differential Equation is

∂φ

∂t
+∇ · (uφ) = ν∇2φ+

ν

c2
s

∂φ

∂t
(∇ · (uφ)) (54)
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where the last term in the r.h.s is related to the numerical error. For the case of a constant velocity field, this
error term can be rewritten in a simpler way, leading to

∂φ

∂t
+∇ · (uφ) = ν

(
1− u · u

c2
s

)
∇2φ (55)

showing that the method is unstable when |u| is larger than the lattice speed of sound cs.
This scheme can be improved [147] by adding a source term Fi to the r.h.s of Eq. (8), which is designed

to balance the leading error term, leading to a gain in accuracy and a real second-order accuracy in both space
and time in the present case. It is worth keeping in mind that this strategy is commonly used in classical CFD
to derived higher-order scheme for convective problems, e.g. Lax-Wendroff, Fromm and Lerat-Peyret schemes
for the advection equation and more complex hyperbolic systems [38]. The correction term reads

Fi = ωi
ci
c2
s

(
1− 1

2τ

)
∂

∂t
(uφ) (56)

In practical implementation, the time derivative is computed by using a Finite Differences scheme on the
macroscopic variables.

This method can be further improved (considering both robustness and absolute level of error) by consider-
ing the following nonlinear collision model, which is observed to yield better results than the linear one when
u obeys the Navier–Stokes equation:

feqi = ωiφ(t,x)

(
1 +

ci · u
c2
s

+
1

2c4
s

Qiαβuαuβ

)
, Qiαβ =

(
ciαciβ − c2

sδαβ
)

(57)

along with the adequate correction term

Fi = ωi
ci
c2
s

(
1− 1

2τ

)
φ

ρf
∇pf (58)

where ρf and pf denote the density and the pressure of the advecting fluid, respectively.

3.3 Scalar wave equation

We show here how to solve the following wave equation via LBM:

∂J

∂t
+∇ ·Πf,(2) = 0 (59a)

∂p

∂t
+∇ · J = 0 (59b)

which is equivalent to

∂J

∂t
+ c2∇p = 0 (60a)

∂2p

∂t2
− c2∇p = 0 (60b)
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where c is the wave phase velocity. To this end, one has to define a set of distribution functions fi such that∑
i

fi = p,
∑
i

cifi = J, Π
f,(2)
αβ =

∑
i

ciαciβfi = c2pδαβ (61)

The equilibrium function proposed in [148] for uniform Cartesian grids with a D3Q7 lattice is

feqi =

p−
(

5p
2 −

3c2p
2c2s

)
(1− ω0) + 3c2p

2c2s
(c2 − c2

s) if i = 0

ωi

(
p+ (ci·J)

c2s
+ p

2c4s
(c2 − c2

s)(ci · ci − 3c2
s)
)

otherwise
(62)

A completely different approach was proposed in [149]. Here, one considers

∑
i

fi =
∂p

∂t
,
∑
i

ciαf
eq
i = 0,

∑
i

ciαciβf
eq
i = λpδαβ, λ =

c2

∆t(τ − 1/2)
(63)

along with the following equilibrium functions:

feqi =

{
∂p
∂t −

λpD
c2

i = 0

− λpD
(N−1)c2

i = 1, N − 1
(64)

where D is the spatial dimension. The associated Equivalent Differential Equation obtained via a Taylor
expansion is

∂2p

∂t2
− c2∇2p = −2∆t2λ

(
τ2 − τ +

1

6

)
∇2∂p

∂t
(65)

showing that the method achieves second order accuracy in time. The stability depends on the sign of the
polynomial in τ on the r.h.s. Physical values of τ are very small for realistic applications, leading to a stable
method.

The comparison of the two methods above illustrate the flexibility of LBM. In the first one, the zeroth-
order moment of the distribution function is equal to p, while in the second case it is ∂p/∂t, leading to very
different expressions for the equilibrium functions and numerical properties. Here, one should keep in mind
that there is an infinite number of admissible equilibrium functions to solve the problem, exactly as for the
classical methods (Finite Differences, Finite Volumes, Finite Elements ...) one can design and infinite number
of numerical methods to solve a given equation.

4.0 COLLISION MODELS FOR CLASSICAL HYDRODYNAMICS

4.1 The Bathnagar-Gross-Krook (BGK) collision model

We now discuss the simplest SRT collision model, namely the Bathnagar-Gross-Krook (BGK) collision model,
for which the equilibrium function for athermal low-Mach hydrodynamics is given by

feq,BGKi = ωiρ

(
1 +

(ci · u)

c2
s

+
1

2

(ci · u)2

c4
s

− 1

2

(u · u)

c2
s

)
(66)
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This expression can be found by performing a Hermite-polynomial expansion of the exact continuous equi-
librium function (referred to as the Maxwellian in statistical kinetic theory) on the polynomial basis associated
with Cartesian lattices [1, 36]:

feq,Maxwell
i = ρ

(
1

2πRT

)
exp

(
−(ci · u)2

2RT

)
(67)

where R and T are the gas constant and the temperature, respectively. It is worth noting that (66) is not
the unique possible expression for the equilibrium functions. Some purely synthetic (i.e. not derived from the
physical continuous Maxwellian) expressions can be found, that are tuned to fulfil the constraints discussed
above dealing with Ωi and the moments of fi. A general expression (restricted to quadratic terms, but it can be
straightforwardly extended to any order)

feq,generali = ωiρ
(
ai,0 + ai,1(ci · u) + ai,2(ci · u)2 + ai,3(u · u)

)
(68)

As an example, Yan et al. [150] considered the following formulation :

feq,Y ani =

{
ω0ρ (B0 +B6(u · u)) if i = 0

ωiρ
(
A0 +A2(ci · u) +A5(ci · u)2 +A6(u · u)

)
otherwise

(69)

and found that correct expressions of the arbitrary coefficients A0, A2, A5, A6, B0, B6 to recover athermal
low-Mach flows in dimension D on a lattice with N points are

A0 = B0 =
1

N
, A2 =

D

(N − 1)c2
, A5 =

D(D + 2)

2(N − 1)c4
, A6 = − D

2(N − 1)c2
, B6 =

1

c2
(70)

where c denotes |ci|. The lattice speed of sound is given by

c2
s =

(N − 1)c2

ND
(71)

Non-polynomial expressions have also been proposed, e.g. in Entropic LBM (see Sect. 4.3.2).
On uniform Cartesian grids, one should use at least the D2Q9 lattice to get reliable solutions in 2D simula-

tions, and D3Q19 or D3Q27 lattices in 3D.
This size of the lattice can be reduced in 2D considering hexagonal cells with a D2Q7 lattice. On a 2D

hexagonal grid (on which 1) the discrete velocities and 2) the quadrature coefficients and 3) the polynomial
basis are not the same as on the Cartesian grid !), the new expression of the equilibrium function derived from
the physical Maxwellian is

feq,hexai = ωiρ
(
1 + 4(ci · u) + 8(ci · u)2 − 2(u · u)

)
(72)

Another formula could be obtained setting N = 7 and D = 2 in Eq.(69).

4.2 BGK-like model for Streamfunction-Vorticity formulation

A way to minimize the lattice size for 2D incompressible flows is to consider the Streamfunction-Vorticity
(ψ − Ω) formulation of the incompressible Navier–Stokes equations [151, 152]:
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∂Ω

∂t
+

∂

∂x
(uΩ) +

∂

∂y
(vΩ) = ν

(
∂2Ω

∂x2
+
∂2Ω

∂x2

)
, (73a)(

∂2ψ

∂x2
+
∂2ψ

∂x2

)
= −Ω (73b)

Here the transport equations for Ω is a linear advection-diffusion equation, that can be solved on a D2Q5
Cartesian lattice, while the equation for ψ is a scalar Poisson equation, which can also be solved on the same
D2Q5 lattice (see Section 3.0). Since there are two different variables obeying different equations, it is conve-
nient to define one set of distribution functions and an associated equilibrium function for each variable, leading
to a Double Distribution Function (DDF) method:

• For the vorticity:

∑
i=0,4

fΩ
i = Ω, fΩ,eq

i = ωiΩ

(
1 +

(ci · u)

c2
s

)
(74)

• For the Streamfunction:

∑
i=0,4

fψi = ψ, fψ,eqi = ωiψ (75)

Using this approach, one 1) decreases the size of the stencil and 2) simplifies the expressions of the equilib-
rium functions by decreasing their polynomial order but ) increases the total number of distribution functions
with respect to D2Q9 LBM based on the conservative formulation of the Navier–Stokes equations. The reduced
nonlinearity leads to select this formulation for implementation using Quantum Algorithms by Budinski [152].

4.3 More efficient collision models for hydrodynamics

The BGK-SRT models discussed in the preceding sections are observed to lack robustness in complex flows,
e.g. high-Reynolds turbulent flows in complex geometries. To cure this problem, several ways to improve
robustness while preserving the SRT approach have been recently proposed. As a matter of fact, derivation
of robust LBM with controlled dissipation is a very active field of reasearch (in the same way as numerical
schemes for convective terms for Euler and Navier–Stokes equations).

As discussed above, changing the collision model amounts to change the definition of feqi to get a better
control of Π

fneq ,(2)
αβ , i.e. the viscous stresses and higher-order terms, while still enforcing definitions (16). In

practice, this amounts to modify Π
fneq ,(3)
αβγ (and Υ

fneq ,(3)
αβγ if the lattice has no enough point to compute exactly

the related integral). This amounts to close the constitutive equation for the stress tensor, and one can make an
analogy with physics of non-Newtonian fluids. This point is made clear rewriting the evolution equation (76)
for Π

fneq ,(2)
αβ as

∂Π
fneq ,(2)
αβ

∂t
+
∂Π

fneq ,(3)
αβγ

∂xγ
−

uα∂Π
fneq ,(2)
βγ

∂xγ
+ uβ

∂Π
fneq ,(2)
αγ

∂xγ

 = −1

τ

(
Π
fneq ,(2)
αβ + Sαβ

)
(76)
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in which moments of feqi have been replaced by their expressions as functions of density and velocity. It
is seen that Π

fneq ,(3)
αβγ is the only tunable parameter, since Sαβ denotes the exact physical viscous stress tensor.

The quadrature error Υ
fneq ,(3)
αβγ may be added for the sake of completeness.

For the classical BGK-SRT model (66) their is no explicit closure: Π
fneq ,(3)
αβγ originates in quadrature errors

and higher-order moments equations. Therefore, there is no explicit control on the committed error and related
numerical stability issues.

Two popular stabilizing approaches are presented below, which illustrate very different and powerful ap-
proaches.

4.3.1 Regularized collision models

The key idea underlying regularized collision models is to remove the contribution of Π
fneq ,(3)
αβγ and higher-

order moments [125, 126, 153–160]. To implement this, it is worth noting that, combining the definition of
feqi with Eq. (37) and relations (17), one can formally expand the non-equilibrium components of fi and gi as
functions of moments of order greater or equal than 2, yielding

fneqi = ωi
∑
p≥2

apΠ
fneq ,(p), gneqi = ωi

∑
p≥2

bpΠ
gneq ,(p) (77)

where ap and bp are real square matrices of rank p. Their expression is not given here for the sake of brevity,
but it is worth noting that they are lattice-dependent. Here arise a classical problem in numerical analysis, i.e.
finding the best low-order polynomial (with fixed order) that leads to the best fit for a given function on a
selected interval.

The Projective Regularization consists of simply truncating the expansion to the second order, leading to

gneq,PRi = ωib2Π
gneq ,(2), Π

gneq ,(2)
αβ =

∑
i=0,N−1

ciαciβ(gi − geqi ) (78)

The Recursive Regularization proposed by Malaspinas is based on a more complex approach, which is based
on recursive relations that exist between Hermite polynomials (the fi being expanded on a Hermite polynomial
basis). The closure is expressed as

Π
gneq ,(3),RR
αβγ = uαΠ

gneq ,(2)
βγ + uβΠ

gneq ,(2)
γα + uγΠ

gneq ,(2)
αβ (79)

leading to

gneq,RRi = ωi

(
b2Π

gneq ,(2) + b3Π
gneq ,(3),RR

)
(80)

A more recent version [158], referred to as Hybrid Recursive Regularization consists of hydridizing the
LBM stress tensor with a Finite Difference-based evaluation of the viscous stress tensor (denoted SFDαβ ):

gneq,HRRi = ωib2Π
gneq ,(2),HRR, Π

gneq ,(2),HRR
αβ = σ

∑
i=0,N−1

ciαciβ(gi − geqi )− (1− σ)SFDαβ (81)

These modified expressions of gneqi are used during the collision step are are computed during the recon-
struction step (see Section 2.5). Let us mention that regularized models are very powerful, since they lead to
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robust simulations with controlled dissipation. From the theoretical point of view, it can be shown that they
mostly damp non-physical numerical modes (see Section 5.2). They are used in the PowerFlow and ProLB
commercial LBM softwares and in the Palabos open source code. Regularized collision models have also
proven their efficiency in more complex cases: compressible flows, multiphase flows, combustion ...

The previous developments are based on the raw moments Πf,(n) which are computed using the discrete
velocities ci. Improved collision models can also be obtained replacing the later by Hermite polynomials of
ci (Hermite moments), by centred velocities (ci − u) [161–164] and even Hermite polynomials of centered
velocities. Moments can also be replaced by cumulants [165–168]. In all cases, one tries to find a truncated
expansion of the equilibrium function that leads to a more efficient (robustness, accuracy, numerical efficiency)
closure for unknown high-order moments. Since we are truncating an infinite series expansion, an aliasing-
like phenomena occurs, which can corrupt the computed moments. To prevent or minimize this aliasing, the
commonly shared idea is to find a basis in which it will be naturally weak. An ideal basis would be an orthogonal
basis: in this case, the truncated expansion is the best approximation on the subspace on which the truncation
is performed. This formal change in the expansion yield new expressions for the equilibrium functions feqi and
then define implicitly new non-equilibrium functions. As a consequence, the closure for Π

fneq ,(3)
αβγ automatically

change. The reader is referred to [169] for an exhaustive and comprehensive analysis of the links between
different expansions.

It is worth noting that changing the statistical quantities used to expand the collision kernel don’t just
amount to apply a linear transformation: as a matter of fact, there exist some nonlinear relations between them.
As an example, the n-th order cumulant κn is related to the raw moments mi by the following general relation:

κn = mn −
∑

k=1,n−1

(
n− 1
k − 1

)
κkmn−k (82)

showing that the n-th order raw moment is a polynomial function of degree n of the first n cumulants:

m1 = κ1 (83a)

m2 = κ2 + κ2
1 (83b)

m3 = κ3 + 3κ2κ1 + κ3
1 (83c)

m4 = κ4 + 4κ3κ1 + 3κ2
2 + 6κ2κ

2
1 + κ4

1 (83d)

The centered moments µi are revovered taking κ1 = m1 = 0:

µ1 = 0 (84a)

µ2 = κ2 (84b)

µ3 = κ3 (84c)

µ4 = κ4 + 3κ2
2 (84d)

The centered moments and the raw moments can be obtained from each other using the following formula:

µr =
∑
i=0,r

(
i
r

)
mr−i(−m1)i =

∑
i=0,r

(
i
r

)
mi(−m1)r−i, mr =

∑
i=0,r

(
i
r

)
µr−iµ

i =
∑
i=0,r

(
i
r

)
µiµ

r−i

(85)
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where µ denotes the mean value, leading to

m2 = µ2 + µ2 (86a)

m3 = µ3 + 3µ2µ+ µ3 (86b)

m4 = µ4 + 4µ3µ+ 6µ2µ
2 + µ4 (86c)

(86d)

along with

µ0 = 1 (87a)

µ1 = 0 (87b)

µ2 = m2 −m2
1 (87c)

µ3 = m3 − 3m2m1 + 2m3
1 (87d)

µ4 = m4 − 4m3m1 + 6m2m
2
1 − 3m4

1 (87e)

This approach was also extended to the case of Multiple Relaxation Time LBM, e.g. the Cascaded LBM
proposed by Geier [161, 164], which relies on a recursive orthogonalization procedure of the moments (some
kind of Gramm-Schmidt method for the moments), which can be understood as the search for an orthogonal-
function-based approximation of the non-truncated expansion of the non-equilibrium functions. This procedure
amounts to defining new expressions for the equilibrium functions [170].

4.3.2 Entropic models

Enforcing stability in LBM is a non-trivial task, as for classical macroscopic numerical methods. But it is worth
noting that the LBM framework is less friendly, since the viscosity is not explicitly appearing in governing
equations, and that an additional step is needed to get equivalent macroscopic equations in which the effect of
leading error terms can be interpreted in a classical way (see Section 5.0).

Therefore, the idea of enforcing an additional constraint to improve stability is appealing [171, 172](this
is the field of structure-preserving methods [40]). This approach is well illustrated by the concept of entropic
numerical schemes for shock-capturing when solving the Euler equations: numerical schemes are designed in
order to satisfy a discrete entropy constraint to prevent the occurence of spurious wiggles near discontinuities.
This idea has been used in the LBM framework to derive stabilized collision models: since wiggles are unphys-
ical, they violate the second law of thermodynamics (i.e. they don’t obey Boltzmann’s H-theorem), leading to
the entropic derivation of LBM schemes pioneered by Karlin, Ansumali and colleagues in the late 1990s and
early 2000s [173–186]. In such a scheme, the collision model is designed such that the discrete equation obeys
a built-in H-theorem.

A first difficulty originates in the fact that the classical statistical definition entropy function associated to
the continuous Boltzmann equation (and kinetic theory) does not hold in the discrete case. Therefore, a new
synthetic definition must be found. Second, a way to enforce the associated discrete pseudo-H-theorem must
be found.

Most existing works dealing with entropic LBM use the following discrete entropy function 
H(f0, ..., fN−1; ω0, ..., ωN−1):

H(f0, ..., fN−1;ω0, ..., ωN−1) =
∑

i=1,N−1

fi ln

(
fi
ωi

)
(88)
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The expression of the equilibrium functions that minimize this discrete entropy in dimension D (while still
enforcing relations (16) and (19)) in the athermal case is

feqi = ωiρΠα=1,D

(
2−

√
1 + u′α

2

) 2√
3
u′α +

√
1 + u′α

2

1− u′α/
√

3


ciα/
√

3cs

, u′α = uα/cs (89)

which is a very illustration of the fact that non-polynomial expressions of the equilibrium function may be
used. It is important noting this expression doesn’t hold for thermal flows, for which more complex formulations
exist. The collision step is essentially a relaxation step toward feqi . Since the macroscopic quantities are left
unchanged by the collision, the entropy H should also be kept constant (according to the definition of the
local equilibrium and to the fact that an extremum of H is sought for). In order to find the correct relaxation
parameter β, one must solve the following problem:

find β such that H(f) = H(f + β(f eq − f)) (90)

In practice, the optimal value of β is found by solving this nonlinear problem by a Newton-type iterative
procedure at each grid point and each time step. In order to decrease the computational cost, some approximate
fixed values can be used but the exact enforcement of the entropy constraint is no longer guaranteed. Once β is
computed, the time step ∆t is replaced by β∆t.

This approach leads to very robust LBM schemes. Like regularized models, it has been extended to many
cases, e.g. multiphase flows and compressible flows. Some Essentially Entropic LBM schemes with reduced
computational cost have been proposed [187], with a weaker entropy constraints that does not totally preclude
wiggles (in the same way that ENO schemes for Euler equations are not strictly wiggle-free).

4.4 More physics on same lattices: segregated methods

It has been seen above that the number of points in a lattice governs the maximum order of the moments of fi
that can be accurately captured. Increasing the maximum degree of the moments that must be captured, one has
to face the following problems if the procedure described above is strictly followed:

• Curse of nonlinearity: increasing the maximum degree, one must increase the order of truncation in the
expansion of the equilibrium functions feqi . Therefore the collision model nonlinearity is increased.

• Curse of dimensionality: increasing the maximum degree of the physical moments, one must increase
the order of the quadrature in the velocity space used to compute them. Therefore, the number of discrete
velocities ci and distribution function fi is increased.

• Curse of complexity: Each fi being a computational unknown, one must solve one evolution equation
per discrete velocity. Therefore the curse of dimensionality also leads to an increase in the complexity,
since more equations must be solved.

This is illustrated by the cas of hydrodynamic equations. In 3D, athermal low-Mach Navier-Stokes equa-
tions are recovered using SRT-BGK with a quadratic equilibrium function on a D3Q27 lattice, while a quartic
equilibrium function on a D3Q137 lattice is required to recover the compressible Navier-Stokes equations.
This illustrate the fact that increasing the maximum degree of physically captured moment by 1 (here, one adds
the energy equation to the mass and momentum equations to capture compressibility effects) one increases the
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computational cost of the method in a very significant way. The same phenomena appears when switching from
a Newtonian fluid to a non-Newtonian fluid for which stresses must be computed solving adequate evolution
equations.

In order to avoid the definition of LBM schemes that would be too expensive to be used for practical
applications, some techniques have been developed to prevent the complexity explosion. The underlying idea
is based on the observation that the problem comes from the highest-order moment, which governs the size of
the full method. To overcome this issue, segregated methods in which the highest-order moment (energy for
compressible or thermal flows, stresses for non-Newtonian fluids ...) is treated in a separate way from other
moments. This way, the other moments may (at least theoretically) be computed on the same lattice as the
one required to solve the problem without this highest-order moment. In practice, this means that one will try
to solve compressible LBM problem on the same lattice as for the athermal nearly-compressible LBM. Here,
dimensionality and complexity are now under control.

Two main families of segregated methods have been proposed:

• Multiple Distribution Functions : a new set of distribution functions (with associated collision model)
are introduced to compute the evolution of the highest-order moment. In the case of compressible thermal
flows, one introduces a set hi such that

∑
i hi = T (for temperature) or

∑
i hi = ρE, while still having∑

i fi = ρ and
∑

i ciαfi = ρuα. The main problems here are i) to develop the collision model for the
hi, i.e. finding heqi and ii) coupling the two sets fi and hi. The case of extension to thermal and/or
compressible flows has been addressed in many papers, among which [66, 67]. Another example is
provided in [188], in which an LBM with three sets of distribution functions is developed to simulate
three-phase non-Newtonian flows. Last examples mentioned here are the two-distribution-function sets
used in [108] for magnetohydrodynamics, with one set for hydrodynamic mass and momentum equations
and a second one for the magnetic induction equation, and the four-distribution-function sets method of
Mendoza and Munoz [99] for three-dimensional electrodynamics.

• Hybrid Methods : the macroscopic equation for the highest-order moment is solved in a classical way
via Finite Difference, Finite Volume, Finite Element or another method. This approach was introduced
in [41] for thermal flows. The main identified problems are i) to discretize the new equation in an
efficient way and ii) to enforce the discrete compatibility between the LBM part and the macroscopic
equations. The later problem originates in the fact that the highest-order moments appears as the flux of
the preceding one (see Eq. 11). Therefore some discrete compatibility issues arise if no specific care is
taken when discretizing the macroscopic equations. This approach is illustrated for compressible flows
in several papers, among which [42, 44–46, 71? ]. As an example, this may lead to some conservativity
and stability problems when addressing compressible flows [70, 81], a problem that can be solved as
demonstrated very recently [43]. Similar approaches were used in [189–191] for viscoelastic fluids, in
which mass and momentum equations are solved using LBM while macroscopic constitutive equations
for stresses are solved using Finite Difference or Finite Volume Methods. Another example is the hyrbid
method developed in [60, 63, 192] to account for humid air equation of state, in which the prognostic
equations for water phase mass fractions are solved using a Finite Difference method.

5.0 NUMERICAL ANALYSIS OF SRT-BGK MODEL FOR NEARLY-INCOMPRESSIBLE
HYDRODYNAMICS

We now briefly survey the numerical analysis of LBM. It must be kept in mind that very complicated collision
models escape detailed theoretical analysis. Therefore, the discussion below will be mostly restricted to the
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SRT-BGK scheme.

5.1 Order of accuracy and Equivalent Differential Equation

A classical way to characterize a numerical scheme is to derive its Equivalent Differential Equation performing
a Taylor series expansion. This approach has been addressed by several authors, e.g [193–195], but the first
complete analysis of the SRT-BGK was performed very recently [127, 129]. The work by Wissocq [127] is
used in the present section, and the reader is referred to it for details. The starting point is the streaming step
presented in Section 2.5, which can be rewritten as follows for the sake of simplicity

gi(t+ ∆t,x + ci∆t) = gcolli (t,x) (91)

where gcolli (t,x) is the result of the collision step. Before carrying out the Taylor expansion, it is useful
to non-dimensionalize this equation. The reason for that is that there are two small parameters in the full
expansion, and that non-dimensional expressions render the comparison between the amplitudes of the error
terms easier.

Introducing a reference length ` = 1/k (where k is the associated wavenumber), one obtains the following
dimensionless quantities (denoted by an asterisk)

t∗ =
kct

cs
, x∗α = kxα =

xα
`
, and c∗i = ci

cs
c
, c =

cs∆x

∆t
(92)

It is worth noting that the components of the dimensionless vectors c∗i exhibit integer values. The streaming
step can be rewritten as

gi

(
t∗ + ε

∆t

τ
,x∗ + ε

∆t

τ
c∗i

)
= gcolli (t∗,x∗), ε =

kτc

cs
=
τc

`cs
(93)

The small parameter ε is interpreted as being the Knudsen number Kn in classical hydrodynamics. In this
case, the mean free path of fluid particules is very small compared to the analysis scale, yielding ε = Kn� 1.
The second parameter arising here is ∆t/τ , i.e. the ratio of the numerical time step to the relaxation time.

Expanding the right-hand side of (93), one obtain after some algebra (space and time coordinates are not
denoted for the sake of clarity since all terms are taken at the same time and same location)

Digi = − τ

∆t

1

ε
(gi − gcolli )−

∑
n≥2

εn−1

n!

(
∆t

τ

)n−1

Dn
i gi (94)

where Di is the advection operator:

Di =

(
∂

∂t∗
+ c∗iα

∂

∂x∗α

)
(95)

After some (tedious and cumbersome) algebra, this expression can be recast in the following final formula-
tion for the Equivalent Differential Equation related to fi

Difi = −1

ε
(fi − feqi ) +

ε2

12

(
∆t

τ

)2

D3
i fi −

ε4

5!

(
∆t

τ

)4

D5
i fi +

∑
p≥3

c2p+1

(2p+ 1)!
ε2p

(
∆t

τ

)2p

D2p+1
i fi (96)
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where the coefficients cn are given by

c0 = 2, cn = −
∑
k=0

n

(
n
k

)
ck = 2

Gn+1

n+ 1
, n ≥ 1 (97)

where Gn is the n-th Genocchi number.
A first comment is that the leading error term is O(∆t2), leading to the fact that the SRT-BGK method is

second-order accurate in both space and time. It can also be seen that only odd power of the advection operator
Di arise in the error term, meaning that only dispersive numerical error is expected, explaining why this method
exhibit very low spurious dissipation, making it very efficient for simulation of long-time propagation.

As a matter of fact, this analysis can be further refined by reminding that

fi = feqi − εDif
eq
i +O(ε2) (98)

leading to

ε2

12

(
∆t

τ

)2

D3
i fi =

ε2

12

(
∆t

τ

)2

D3
i f

eq
i −

ε3

12

(
∆t

τ

)2

D4
i f

eq
i +O(ε4) (99)

This new expression exhibits the operator D4
i f

eq
i which corresponds to an hyperviscosity term. As a con-

sequence, a small amounts of numerical dissipation may be expected, mainly concentrated at small scales. The
associated error terms arising in the macroscopic equations will not be discussed here, since their analysis is a
very heavy task (see [127] for some detailed expressions on 1D and 2D lattices).

5.2 Von Neumann-like Linearized Spectral Analysis and modal decomposition

Being a numerical method, LBM can be analyzed using the Linearized Spectral Analysis which allows for
1) the identification of numerical modes that underly the computed solution and to 2) measure the numerical
dispersion and the numerical dissipation experienced by each mode at a given wavenumber k. This kind of
analysis has been applied to LBM since the mid-1990s, and many schemes have been scrutinized this way,
e.g. [56, 196–201]. A recent an important new step for LSA of LBM was done by Wissocq et al. [202], who
bridge between the analysis of the numerical modes related to the distribution functions fi and those of the
macroscopic quantities.

Following the classical steps of the von Neumann analysis, one first define a steady uniform base flow (ρ̄, ū)
which is associated to base distribution functions f̄i = feqi (ρ̄, ū). The perturbation field is then

f ′i = fi − f̄i (100)

and the post-collision state can be expanded, leading to

f colli (fj) = f colli (f̄j) +
∂f colli

∂fj

∣∣∣∣
fj=f̄j

f ′j +O(f ′j
2
) (101)

The streaming step for the fluctuating field is

f ′i(x + ci∆t, t+ ∆t) =
∂f colli

∂fj

∣∣∣∣
fj=f̄j

f ′j(x, t) (102)
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The next step consists of considering plane monochromatic wave fluctuations:

f ′i(x, t) = f̂i exp(i(k · x− ωt)) (103)

where f̂i ∈ C,k and ω = (ωr + iωi) ∈ C are the complex tiamplitude, the wavenumber and the complex
frequency, respectively. It is reminded here that ωr is related to the velocity of the wave, since the group velocity
vg and the phase velocity vφ are given by

vφ =
ωr
‖k‖

, vg =
∂ωr
∂‖k‖

(104)

Introducing the amplitude vector F̂ = (f̂0, · · ·, f̂N−1)T and inserting (103) into (102), one obtains a gener-
alized eigenvalue problem:

e−iωF̂ = MF̂ (105)

where the N × N matrix M depends on the collision model. On a lattice with N points/discrete ve-
locities/distribution functions, one has N eigenvectors and N complex frequencies, which are wave-number-
dependent. While the analysis of ωr and ωi is commonly performed to study numerical stability and dispersive
errors, eigenvectors are usually not discussed.

Wissocq has recently shown that these eigenvectors carry a very interesting informations dealing with phys-
ical macroscopic fluctuations. Reminding that an eigenvector of M is a vector of size N whose components
are the complex amplitudes of distribution function fluctuations, one can reconstruct fluctuations of density, ρ′,
and momentum, (ρu)′ using in linear combinations of these eigenvectors.

Computing the moments of a single eigenvector, one can evaluate the macroscopic information associated to
it. Keeping in mind the fact that macroscopic fluctuations can be decomposed as the sum of three physical waves
(namely upstream travelling acoustic wave, dowstream travelling acoustic wave and vorticity wave according
to the Kovasznay decomposition in the present athermal case, see [203] for an exhaustive discussion of this
decomposition and its weakly nonlinear extension), one can compute the part of each physical wave associated
to each eigenvectors. On the ground of this decomposition, numerical modes (a mode being associated to an
eigenvector) can be classified into 3 groups:

• Observable physical modes: modes that carry non-zero fluctuations of macroscopic quantities which
correspond to a physical wave, i.e. (ρ′, (ρu)′) 6= (0,0) with acoustic or vortical fluctuations

• Observable unphysical modes: modes that carry non-zero fluctuations of macroscopic quantities which
don’t correspond to a physical wave, i.e. (ρ′, (ρu)′) 6= (0,0) with non-acoustic and non-vortical fluctua-
tions

• Non-observable modes: modes that carry no macroscopic information, i.e. (ρ′, (ρu)′) = (0,0)

Typical results are shown below, see Figs.11 to 13. The analysis of the basic SRT-BGK scheme is displayed
in Fig. 11 for different values of the uniform base flow speed. The main observations are that i) the propagation
speeds of the three captured physical modes is well predicted up to k∆x ' π/2, ii) the vorticity mode is
beared by three numerical modes and is captured at all wavenumbers, iii) the two acoustic modes are not
represented at high wavenumbers and iv) some components of the vorticity modes travel at unphysical speed
at high wavenumbers v) the numerical viscosity is negligible at all physically captured wavenumber on all
physical modes. The later feature explains why LBM is very efficient for wave propagation problems.
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Figure 11: Linearized Stability Analysis of the SRT-BGK scheme on the D2Q9 lattice for different values of the base flow speed
U0 (left: U0/cs = 0.2, middle: U0/cs = 0.4, right: U0/cs = 0.6). Top: phase speed of the 9 numerical modes. Bottom: numerical
viscosity normalized by the physical viscosity. Symbols denote observable physical modes at a given normalized wavenumber
k∆x; Green triangles: upstream travelling acoustic mode, Blue triangles: downstream travelling acoustic mode, Red squares:
vorticity mode, thick solid line: observable unphysical modes, crosses: non-observable modes. From [200].

Results of the same analysis are displayed in Figure 12 for the PR and RR regularized scheme. Those
associated to the Hybrid Recursive Regularized scheme are shown in Fig. 13.

6.0 QUANTUM LATTICE METHODS AND LBM FOR QUANTUM HYDRODYNAMICS

6.1 Type I: Lattice methods for quantum systems using classical computers

6.1.1 Very (very) brief reminder about equations of Quantum Physics

Lattice-based numerical methods discussed in this chapter are essentially designed to solve some basic equa-
tions of Quantum Physics. Therefore, before introducing the numerical approaches, we remind here the contin-
uous equations that will be useful hereafter.

The Dirac equation for a free particle of mass m in 3D is

∂ψψψ

∂t
+ c

(
−αααx ∂

∂x
+ β

∂

∂y
−αααz ∂

∂z

)
ψψψ = −i

mc2

~
αααyψψψ = −iωcαααyψψψ (106)

where ψψψ and ωc are the Dirac quadrispinor and the Compton frequency, respectively. The standard 4 × 4
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Figure 12: Linearized Stability Analysis of some regularized versions of the SRT-BGK scheme on the D2Q9 lattice (left: Projective
Regularization, middle: Recursive Regularization - first version, right: Recursive Regularization - second version). Same caption
as preceding figure. From [200].

Dirac matrices are defined as

αααx =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 , αααy =


0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

 , (107a)

αααz =


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

 , βββ =


1 0 0 0
0 0 1 0
0 0 −1 0
0 0 0 −1

 , (107b)

It is known that the Schrödinger equation can be derived from the Dirac equation in the non-relativistic
limit by summation upon the four components of the quadrispinor, i.e. the complex wave function Ψ appearing
the the Schrödinger equation is defined as Ψ =

∑
i=1,4 ψi.

A classical formulation of the Schrödinger equation is

i~
∂Ψ

∂t
= − ~2

2m
∇2Ψ + VΨ (108)

where V is a potential. Using the Magdelung formulation

Ψ(x, t) =
√
ρ(x, t)eiθ(x,t)/2, ρ = |Ψ|2, v = ∇θ (109)

and an ad hoc rescaling, one obtains the equivalent set of two equations with hydrodynamic-like features:
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Figure 13: Linearized Stability Analysis of the Hybrid Recursive Regularized scheme on the D2Q9 lattice. Left: phase speed of
the 9 numerical modes. Right: numerical viscosity normalized by the physical viscosity. Symbols denote observable physical
modes at a given normalized wavenumber k∆x; Green triangles: upstream travelling acoustic mode, Blue triangles: downstream
travelling acoustic mode, Red squares: vorticity mode. From [201].

∂ρ

∂t
+∇ · (ρv) = 0 (110a)

ρ

(
∂v

∂t
+ v · ∇v

)
= −g∇(ρ2) + 2ρ∇

(
∇2√ρ
√
ρ

)
(110b)

which are referred to as the Gross-Pitaevskii equations, that are commonly used for the analysis of Quantum
Turbulence dynamics (see [203–208] for reviews about Quantum Turbulence).

The Dirac equation can also be rewritten as the following fluid-like equation

∂(ψψψ†ψψψ)

∂t
+ c∇(ψψψ†αααψψψ) = 0 (111)

which emphasizes the formal analogy with fluid mechanics equations.

6.1.2 Quantum LBM for the Dirac and Schrödinger equations

The Quantum Lattice-Boltzmann Method (QLBM) proposed coined by Succi and Benzi in 1993 [209–214]
aims at solving the Dirac equation to obtain solutions of the non-relativistic Schrödinger equation. The rationale
to develop QLBM is the formal analogy that exists between the derivation of this equation from the relativistic
Dirac equation and the derivation of Navier-Stokes equations from the Boltzmann equation. Here, the proposed
method is used to solve a non-hydrodynamic equations, not using it as a fully general numerical method as in
classical LBM, but on the ground of a formal analogy.

In the QLBM approach, the distribution functions fi of LBM will be assimilated to the wave functions
composing the quadrispinor ψψψ = (ψ1, ψ2, ψ3, ψ4)T ) (i.e. its four components) in the Dirac equation. The
discrete velocity in LBM will be associated to the streaming matrice L = c(−αααx,βββ,−αααz). The collision
operator will be the analogue of the scattering term that appears in the r.h.s of (106).
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The development of an LBM-type numerical method for the Dirac equation is not a straightforward ex-
tension since the operator L cannot be diagonalized in all directions at the same time. Therefore a directional
splitting method must be used to recast the full problem as a sequence of three 1D problems, an additional
rotation step being required between each monodimensional sequence.

The sketch of QLBM in 3D is

• Step 1: time integration along direction z

– Compute Collision

ψψψcoll,zz (x) = Q̂ψψψ(x, t)

where Q̂ denotes the collision matrix (see below)

– Compute Streaming
ψψψz(x + cz∆z) = Szψψψ

coll,z(x)

where cz and Sz are the velocity vector in direction z and the streaming operator in that direction,
respectively.

• Step 2: time integration along direction y

– Compute Rotation

ψψψ(x)yz = Yψψψz(x), Q̂y = Y −1Q̂Y

where Y is the rotation matrix from direction z to direction y

– Compute Collision

ψψψcoll,y(x + cz∆z) = Q̂yψψψyz(x + cz∆z)

– Compute Streaming

ψψψyz(x + cy∆y + cz∆z) = ψψψcoll,y(x + cz∆z)

where cy and Sy are the velocity vector in direction z and the streaming operator in that direction,
respectively.

• Step 3: time integration along direction x

– Compute Rotation

ψψψxyz(x) = Xψψψyz(x), Q̂x = X−1Q̂yX

where X is the rotation matrix from direction y to direction x

– Compute Collision

ψψψcoll,x(x + cy∆y + cz∆z) = Q̂xψψψxyz(x + cy∆y + cz∆z)
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– Compute Streaming

ψψψxyz(x + cx∆x+ cy∆z + cz∆z) = ψψψcoll,x(x + cy∆y + cz∆z)

where cx and Sx are the velocity vector in direction z and the streaming operator in that direction,
respectively.

• Step 4: Final update

ψψψ(x + cx∆x+ cy∆z + cz∆z, t+ ∆t) = Y −1X−1ψψψxyz(x + cx∆x+ cy∆z + cz∆z)

It is important noting that the collision matrix Q̂ is not the collision matrix associated to the 1D Dirac
equation. Its expression is dimension-dependent. The reader is referred to [215] for its expression in 2D. This
algorithm doesn’t belong to the class of Lattice-Boltzmann Method stricto sensu. As a matter of fact, it is
a regular numerical method to solve the Dirac equation, based on both a directional splitting and a first order
operator splitting in each direction. The operator splitting is such that it shares some features of LBM, including
the fact that there exists a hierarchy of continuous equations.

As a conclusion, QLBM is a classical numerical method to solve the Dirac equation that looks like a LBM-
type algorithm for the Schrödinger equation, in the same way as LBM is a numerical method for the Discrete
Velocity Boltzmann Equation that provides solutions of the macroscopic hydrodynamic equation.

QLBM has been used to compute some elementary test cases, e.g. free particule propagation, harmonic
oscillator and scattering barrier.

6.1.3 Unitary Qbit Lattice Gas Algorithm for the Gross-Pitaevskii equation

Another method to solve the scalar Gross-Pitaevskii equations (110) and other variants of the Schrödinger
equation was developed by Yepez, Vahala, Vahala and colleagues since the 1990s in a series of papers [216–
229], which is referred to as the Unitary Qbit Lattice Gas Algorithm (UQLGA).

In this approach, two Qbits are defined at each lattice point to follow the time evolution of the scalar wave
function Ψ appearing in the Schrödinger equation (108), leading to the definition of 22 states. The later are
encoded on a classical computer using the two complex amplitudes α(x, t) and β(x, t). Numerically, the two-
spinor vector ψ(x, t) is updated at each time step at each lattice point, with

ψ(x, t) =

(
α(x, t)
β(x, t)

)
, α ∈ C, β ∈ C (112)

The algorithm is splitted into three substeps at each time step, which are symmetrized in order to recover a
higher-order method, in agreement Strang’s analysis of spliting methods:

• Compute unitary collision to locally entangle α and β. This is performed using the ”square-root-of-
swap” operator as a collision operator, which is associated to the 2× 2 matrix:

C =
1

2

(
1− i 1 + i
1 + i 1− i

)
, C2 =

(
α
β

)
=

(
β
α

)
, C4 = Id (113)
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• Compute unitary streaming to shift the post-collision amplitudes to the neighboring points of the lattice.
To this end, the following general streaming operator is introduced:

S∆x,1

(
α(x, t)
β(x, t)

)
=

(
α(x + ∆x, t)

β(x, t)

)
, S−∆x,2

(
α(x, t)
β(x, t)

)
=

(
α(x, t)

β(x−∆x, t)

)
(114)

where the subscripts 1 and 2 denote shifts applied to α and β, respectively.

• Compute exponential phase operator effect to account for nonlinear terms of the Gross-Pitaevskii
equations. This operator is defined as exp(−iε2Ω), where ε� 1 is a small parameter.

A time step in practice computed as follows:

ψ(x, t+ ∆t) = U2(Ω/2)U1(Ω/2)ψ(x, t) (115)

where Uγ(Ω) is the following evolution operator:

Uγ(Ω) = J2
xγJ

2
yγJ

2
zγe
−iε2Ω, Jxγ = S−∆x,γCS∆x,γC (116)

Using the diffusive scaling ∆t = O(ε2) and ∆x = 0(ε), Taylor series expansion leads to the following
Equivalent Differential Equation

i
∂ψ

∂t
= −

(
−1

2
σx∇2 + Ω

)
+O(ε2), σx =

(
0 1
1 0

)
(117)

The scalar Gross-Pitaevskii equation solution φ is recovered by adding α and β, φ = α + β, rescaling the
gradient by a factor 1/a and chosing Ω = g|φ|2 − 1, leading to

i
∂φ

∂t
= −∇2φ+ a(g|φ|2 − 1)φ+O(ε2) (118)

This algorithm is unconditionally stable since it is defined by a unitary operation at each time step. This
property is shared by classical Boolean Lattice Gas Automata. It has been proved to very efficient on classical
massively parallel computers (up to 163 000 core on a Blue Gene computer), and then allowed for large-scale
simulations of quantum turbulence on 57603 computational grids using 12 000 cores. One of the most striking
use of this method in the field of hydrodynamics is a landmark simulation of superfluid turbulence [222] that
exhibits two inertial ranges : the classical Kolmogorov range with a k−5/3 scaling at large hydrodynamic scales
and a second inertial range at sub-hydrodynamic range, associated to Kelvin waves and quantized vortices
dynamics, with a k−3 scaling (see Fig. 14).

6.1.4 LBM for the Gross-Pitaevskii equation

A ”true classical” Lattice-Boltzmann Method that solves the following (rescaled) scalar Gross-Pitaevskii equa-
tions has been proposed by Wang [230]:

i
∂φ

∂t
= −1

2
∇2φ+ |φ|2φ− V φ+O(ε2) (119)
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Figure 14: UQLGA simulation of superfluid turbulence on a 57603 grid. Top: instantaneous view of the vortical field showing
the existence of quantum vortices. Bottom: kinetic energy spectrum of the solenoidal part of the velocity field showing the
existence of two inertial ranges. From [222].

This Lattice Boltzmann Method is defined by the following relations on a D2Q9 lattice:

∑
i=0,8

fi =
∑
i=0,8

feqi = iφ, feqi =


(

i− 3
τ2c2s

)
φ i = 0

φ
4τc2s

α = 1, 2, 3, 4
φ

8τc2s
α = 5, 6, 7, 8

(120)

where τ is the relaxation time of the SRT-BGK collision operator. A forcing term Fi is added for the sake
of consistency with

Fi =
−V φ+ |φ|2φ

9τ
, ∀i (121)

This method has been assessed on 1D and 2D elementary test cases.

6.1.5 LBM for the Hall-Vinen-Bekarevich-Khalatnikov equations

The last example presented here is a classical Lattice Boltzmann Method to analyze superfluid hydrodynamics
and turbulence solving the governing equations of the Hall-Vinen-Bekarevich-Khalatnikov (HVBK) model,
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e.g. [231, 232]. The HVBK model originates in the modelling of superfluid hydrodynamics by Titza and
Landau as the results of the coupling of an incompressible inviscid fluid with a viscous incompressible fluid,
the coupling origination in a so-called mutual friction mechanism. Introducing a normal fluid component with
velocity un , viscosity µnand density ρn and an inviscid superfluid component with velocity us and density ρs,
the momentum equations reads

ρs

(
∂us
∂t

+ us∇us

)
= −ρs

ρ
∇p+ ρss∇T +

ρsρn
2ρ
∇(un − us)

2 − fns (122)

ρn

(
∂un
∂t

+ un∇un

)
= −ρn

ρ
∇p− ρss∇T −

ρsρn
2ρ
∇(un − us)

2 + uns + µn∇2un (123)

where µn is the normal fluid viscosity, along with

∇ · us = 0, ∇ · un = 0 (124)

where fns denotes the mutual friction force, with

fns = −ρnρs
2ρ

(
Bω̂ωω × [ωωω × (us − un)] +B′ω̂ωω × (us − un)

)
(125)

where ωωω = curl (un) denotes the vorticity and ω̂ωω = ωωω/‖ωωω‖ is the associated unit vector, and B and B′ are
tabulated coefficients.

In [231, 232], classical SRT-BGK for athermal flows on D2Q9 and D3Q19 grid were used, with a forcing
term to account for the mutual friction. Since the basic HVBK model is a macroscopic hydrodynamic model,
there is no specific modification of the classical LBM approach to solve it. A major achievement was performed
by Inui and Tsubota [231] who have simulated 3D quantum vortices dynamics, as illustrated in Fig. 15.

6.2 Type III: Lattice methods for classical systems using quantum computers

We now discuss (briefly) some features of the implementation of Lattice-type methods for classical CFD prob-
lems on Quantum Computers, i.e. using quantum circuits/gates and quantum algorithm. Before that, let us
remind that the four steps of the development of a method for practical engineering purposes:

• Step 1: Consistency: the method should provide solutions that are physically consistent, in the sens that
main physical mechanisms are captured

• Step 2: Robustness: the method must be robust enough to allow for the simulation of a broad range of
configurations without need for ad hoc tuning for each new computational setup

• Step 3: Accuracy: the results must be accurate enough to be reliable, and there should exist ways to
increase the accuracy if needed without modifying the numerical method, e.g. refinement

• Step 4: Speed/computational cost: the method should be fast enough to be compatible with the engi-
neering cycle (typically a few hours/ tens of hours to compute an industrial flow).

Some remarks may be done about the development of industrial CFD tools on Quantum Computers, i.e. us-
ing quantum circuits. Since their architectures and underlying physics are very different from those of classical
computers, one must face the following problems:
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Figure 15: LBM simulation of the development of a quantum vortex tangle in superfluid turbulence with D3Q19 lattice solving the
HVBK hydrodynamic model. Black lines: quantum vortices. Blue and red isosurfaces: isovalues of the instantaneous normal
velocity field. From [231].

• Most existing methods can’t be straightforwardly reimplemented, since some key parts of the classical
algorithm are not compatible with quantum circuit ”as is”. To alleviate this problem, classical numerical
methods/algorithms must be rewritten in order to use existing quantum algorithms (if possible), or must
be modified to do that. In the worse case, a fully new method must be developed. In the case of LBM,
the problem is the nonlinearity of the collision model.

• The method must not be sensitive to noise, since existing machine still produce noisy results compared
with classical computers on which the sensitivity of the computed solution to round-off errors is identified
to be also an issue.

• Speed-up of the simulation: the numerical method should be based on quantum algorithms that exhibit a
significant speed-up (polynomial, exponential) with their classical counterparts.

• The pre-processing step and the measure step must be efficiently implemented.

Looking at existing implementations of Lattice-type method for CFD (see also other lectures in this series),
one can observed that collision operators (more precisely their nonlinear character) are the main problem. A
collisionless LBM was considered by Todorova and Steijl [233] in which this issue was bypassed, but at the cost
of a reduced physical consistency (as a matter of fact, collisionless can only mimic inviscid fluid dynamics).
Another approach was followed by Budinski [152], who used the Streamfunction-Vorticity formulation of the
Navier–Stokes equations in 2D for incompressible fluids (see Section 4.2). Doing that, the problem simplifies
as the coupling of a Poisson equation and an advection-diffusion equation discretized using a linear collision
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Figure 16: Comparison of the results obtained on a classical computer and with quantum algorithms in the case of a 2D steady
laminar cavity flow. Navier–Stokes equations are solved in the ψ − ω formulation using LBM on a D2Q5 lattice. From [152], with
courtesy of L. Budinski @ Quanscient.

model, yielding very satisfactory results compared to the same LBM implemented on a classical computer (see
Fig. 16). The same author had previously implemented the linear advection-diffusion case [234]. Therefore,
the nonlinearity issue must be solved to obtain fully efficient LBM on quantum computers.

In an earlier work dealing with LGA, Chen et al. [235] did implement the Yepez’ LGA method on a hybrid
system to solve the 1D nonlinear Burger equation. Here, Quantum-Information Processors were modelled using
Nuclear Magnetic Resonance.The main identified problems were the robustness and the accuracy, both arising
in the collision step. A randomization step was added to prevent the error pile-up. Theoretical problems dealing
with the implementation of the collision step in Lattice Gas Automata have been pointed out recently by Love
[236].
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Song Zhao.

REFERENCES

[1] Timm, K., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G., and Viggen, E., The lattice Boltzmann
method: principles and practice, Springer, 2016.

[2] Succi, S., The lattice Boltzmann equation: for fluid dynamics and beyond, Oxford university press, 2001.

[3] Nourgaliev, R. R., Dinh, T.-N., Theofanous, T. G., and Joseph, D., “The lattice Boltzmann equation
method: theoretical interpretation, numerics and implications,” International Journal of Multiphase
Flow, Vol. 29, No. 1, 2003, pp. 117–169.

[4] Chen, S. and Doolen, G. D., “Lattice Boltzmann method for fluid flows,” Annual review of fluid mechan-
ics, Vol. 30, No. 1, 1998, pp. 329–364.

STO-EN-AVT-377 8 - 43



Classical Lattice-Boltzmann Methods for fluid dynamics

[5] Gradner, M., “The Fantastic Combinations of John Conway’s New Solitaire Game Life [J],” Scientific
American, Vol. 223, No. 4, 1970, pp. 120–123.

[6] Benioff, P., “The computer as a physical system: A microscopic quantum mechanical Hamiltonian model
of computers as represented by Turing machines,” Journal of statistical physics, Vol. 22, No. 5, 1980,
pp. 563–591.

[7] Bennett, C. H., “The thermodynamics of computation: A review,” International Journal of Theoretical
Physics, Vol. 21, No. 12, 1982, pp. 905–940.

[8] Wolfram, S., “Universality and complexity in cellular automata,” Physica D: Nonlinear Phenomena,
Vol. 10, No. 1-2, 1984, pp. 1–35.
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[197] Marié, S., Ricot, D., and Sagaut, P., “Comparison between lattice Boltzmann method and Navier–Stokes
high order schemes for computational aeroacoustics,” Journal of Computational Physics, Vol. 228, No. 4,
2009, pp. 1056–1070.

[198] Xu, H., Malaspinas, O., and Sagaut, P., “Sensitivity analysis and determination of free relaxation param-
eters for the weakly-compressible MRT–LBM schemes,” Journal of Computational Physics, Vol. 231,
No. 21, 2012, pp. 7335–7367.

[199] Hosseini, S. A., Coreixas, C., Darabiha, N., and Thévenin, D., “Stability of the lattice kinetic scheme
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