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High Altitude Operations

Exploration Extravehicular Activity

Development of new prebreathe protocols
(ref. Abercromby, Gernhardt and Conkin)

Actual DCS occurrence is still reasonable foreseeable
(ref. NATO standard AAMedP-1.18)
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INTRODUCTION:

METHODS:

RESULTS:

Nitrogen Washout and Venous Gas Emboli During
Sustained vs. Discontinuous High-Altitude Exposures

Rickard Anell: Mikael Grénkvist; Ola Eiken; Mikael Gennser

The frequency of long-duration, high-altitude missions with fighter aircraft is increasing, which may increase the
incidence of decompression sickness (DCS). The aim of the present study was to compare decompression stress during
simulated sustained high-altitude flying vs. high-altitude flying interrupted by periods of moderate or marked cabin
pressure increase.

The level of venous gas emboli (VGE) was assessed from cardiac ultrasound images using the 5-degree Eftedal-Brubakk
scale. Nitrogen washout/uptake was measured using a closed-circuit rebreather. Eight men were investigated in three
conditions: one 80-min continuous exposure to a simulated cabin altitude of A) 24,000 ft, or four 20-min exposures to
24,000 ft interspersed by three 20-min intervals at B) 20,000 ft or C) 900 ft.

A and B induced marked and persistent VGE, with peak bubble scores of [median (range)]: A: 2.5 (1-3); B: 3.5 (2-4). Peak
VGE score was less in C [1.0 (1-2), P << 0.01]. Condition A exhibited an initially high and exponentially decaying rate of
nitrogen washout. In C the washout rate was similar in each period at 24,000 ft, and the nitrogen uptake rate was similar
during each 900-ft exposure. B exhibited nitrogen washout during each period at 24,000 ft and the initial period at
20,000 ft, but on average no washout or uptake during the last period at 20,000 ft.

Intermittent reductions of cabin altitude fram 24,000 to 20,000 ft do not appear to alleviate the DCS risk, presumably
because the pressure increase is not sufficient to eliminate VGE. The nitrogen washout/uptake rate did not reflect DC5
risk in the present exposures.

decompression sickness risk, fighter aircraft, gas bubble formation, hypobaric DCS, in-flight refueling, nitrogen elimina-
tion, repeated altitude decompression.

Anell R, Grisnkvist M, Eiken O, Gennser M. Nitrogen washout and venous gas emboli during sustained vs. discontinuous high-altitude exposures.
Aerosp Med Hum Perform. 2019; 90(6):524-530.
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STUDY OVERVIEW

Conditions:

* A: continuous exposure to 24000ft for 80 min
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Altitude [m]

MEASURED N, WASHOUT
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MEASURED VENOUS GAS EMBOLI
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The incidence of VGE during an 80min exposure to 24000ft is substantially reduced by
intermittent 20min excursions to 900ft, but was slightly
excursions to 20000ft.
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INERT GAS TENSION

Theoretical N, gas tension using
pre-determined fixed half-times

Buhlmann ZH-L16B model
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Different approach: step away from using
fixed half-times, and model instead the
underlying physiological parameters




BIOPHYSICAL INERT GAS EXCHANGE MODEL

Data based on ‘A.A. Bihlmann and E.B. Vollm,
Tauchmedizin, Springer, 2002’

Mass Volume H;/Hg Perfusion | Half-time

. _ (ke] L] [L/min] [min]
VaCr VaCa A brain & spinal cord 17 185 100 085 151
\ ) B central circulation 2.1 2.64 1.00 2.58 0.71
L] qc = cardiac output C skin 40 436 1.00 0.32 9.44
Aol V, = alveolar ventilation D jointsand bones 12.0 13.07 1.00 0.36 25.17

C; = inhaled concentration inert gas E skeletal musculature 30.0 28.30 1.00 1.20 16.35

C, = alveolar and measured output concentration inert gas F fatty tissues 12.0 13.07 5.15 0.36 129.72

C, = arterial blood concentration inert gas

C, = venous blood concentration inert gas cardiac output [L/min] 5.67

Cp = tissue concentration inert gas alveolar ventilation [I/min]  6.80

Compartment A .
V, = alveoli compartment volume
(Bubble)

Cr Vr Vr = tissue compartment volume
RA =right atrium

Six parallel compartments with physiological and anatomical
parameters of particular tissues.

RV =right ventricle

Compartment F LA = left atrium
cTVT LV = left ventricle The half-times are a result of the physiological parameters.
Physiological changes have a direct impact on these half-
co, o, time values.

Only 2 out of 6 compartments are shown in the figure

The transportation of N, is modelled by a set of Ordinary
Differential Equations based on the ‘conservation of mass’

R(R}[A principle.
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MODEL OUTPUT

N2 Gas Tension Curves
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The physiological model provides additional information on
the N, volume and N, volume flow.

The benefit of the physiological model is that its output can
be directly compared with measurable signals.
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Biophysical Gas Model Predictions
Exchange Model and Analysis

Experimental Data

Washout Curves Physiological Changes Flow Components Bubble Growth Predictions
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N, WASHOUT - SIMULATION
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Washout Curves
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N, WASHOUT - OBSERVATIONS
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#1: Simulated N, washout is higher

than the measured N, washout N, gas dynamics during last intermittent recompression at 20000ft:

* 5 subjects with uptake, 2 subjects with slow washout and 1 subject with a
very high washout rate
* Overall: N, uptake when 1 subject is discarded

#2: The model does not predict an N, uptake, and it underestimates the N,
outflow during the last altitude exposure
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Washout Curves



IMPACT OF PHYSIOLOGICAL CHANGES

Cardiac Output (CO) measurements during the experiment showed a significant
reduction of CO during the experimental period, in rest.

Nominal Cardiac Output Reduced Cardiac Output (-30%0)
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The benefit of a biophysical model is that physiological changes during
decompression exposures can be accounted for.

RN_[A Physiological Changes
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N, FLOW COMPONENTS — PROFILE A

The total flow can be decomposed into the flow components of the different compartments
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N, FLOW COMPONENTS — PROFILE B
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VGE — BUBBLE GROWTH

Measured
VGE
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Bubble growth prediction as a decompression stress predictor

Tissue Bubble Dynamics Model (TBDM) (ref. Gernhardt)
®* 10 compartments with fixed half-times; single bubble in each compartment

* input: inert gas tension
®* Bubble Growth Index (BGI): maximum bubble size attained in any of the

compartments, relative to an inital bubble nucleus size.

TBDM prediction

Bubble Growth Index (BGI)
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Incorrect evaluation of decompression procedures using the theoretical bubble growth (TBDM)

as decompression stress predictor
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BGI: TISSUE COMPONENTS FOR EACH PROFILE

Maximum = BGI

BGI components
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WEIGHING FACTORS — N, FLOW COMPONENTS

Traditionally, all compartments are assumed equally important.
However, some body compartments will have a more pronounced impact on the inert gas exchange.

N, flow as a weighing factor

N2 Flow Profile B N2 Flow Profile C
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Steady N, gas exchange is governed by fatty tissue Dynamic N, gas exchange is governed by skeletal musculature

RN_[A Bubble Growth Predictions
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BGI INCLUDING WEIGHING FACTORS
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Evaluation using BGI incl weighing factors appears much more correct than using original TBDM.
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CONCLUSIONS

Fixed tissue half-times do not accurately describe the measured inert gas flow.

. More accurate gas dynamic models should include variable physiological and

anthropometric parameters.

. Bubble growth models, with a ‘one-fits-all’ gas dynamic model as input, do not always

correctly predict the decompression stress.

Different exposures yield different gas dynamics. Including N, flow-based weighing
factors should be considered to obtain a more correct evaluation of operational altitude
decompression profiles.
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