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ABSTRACT  
This manuscript describes the mathematical foundations of multiple-hypothesis tracking (MHT), a leading 
paradigm for multi-target tracking (MTT). We address aspects of track management, hypothesis pruning and 
aggregation, and the merits and limitations of centralized, distributed, and asynchronous processing for 
challenging multi-sensor surveillance applications. We extend the MHT formalism to the redundant-
measurement setting. Finally, we derive a useful expression to assist parameter selection for MHT track 
management. 

1.0 MULTI-TARGET TRACKING 

This section introduces the multi-target tracking (MTT) problem and clarifies what is meant by association-
based approaches to MTT, including the multiple-hypothesis tracking (MHT) approach. We address some 
concerns with association-based approaches that have been discussed in the literature. 

1.1 Elements of Classical Estimation 
Let  be a random variable of interest, and let  be an observed random variable. We seek an optimal estimate 

 of , based on its statistical prior as well as the observation . The optimal estimator  is the functional 
mapping from an observation  to the corresponding estimate . 

To speak of an optimal estimator requires that we specify the cost function with respect to which the estimator is 
best. Bayesian estimation prescribes that we consider the Bayes risk ; correspondingly, the optimal 
estimator is that  that minimizes . A simple manipulation shows that the optimal estimator minimizes 
the expected cost given any observation . 

. (1) 

It is well known that optimal estimator  takes an appealing form for a number of choices of the cost . 
For simplicity, we identify these in the scalar-variable case. For , it can be shown that 

: the minimum mean squared error (MMSE) estimate is the conditional mean. For 
, it can be shown that : the minimum mean absolute error (MMAE) estimate 

is the conditional median. For  (with ) and  otherwise, it can be shown 
that : the minimum error estimate, also known as the maximum a posteriori (MAP) 
estimate, is the conditional mode. 
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1.2 Multi-Target Estimation 
In multi-target tracking, the variable of interest over a sequence of times  is a set of trajectories 
that we denote by . Each trajectory in this set has a time of birth, an evolution in target state space, and 
(possibly) a time of death. Hence, we are interest to identify the time evolution of an unknown (and time-
varying) number of objects. We observe a sequence of sets of measurements . The usual simplifying 
assumption in the MTT problem formulation is that each target at each sensor measurement time gives rise to at 
most one measurement. However, it is not known which measurement originates from which object, and there 
are as well false measurements that are not target originated. 

A difficulty in addressing the MTT problem is that it is not obvious how to define the Bayes risk for which we 
seek the optimal estimator. One could sidestep the issue and simply consider the posterior probability 
distribution  and seek one of the optimal estimators noted above, e.g. the MAP estimator. Aside from 
the computational complexity associated with attempting such an operation, there is a conceptual difficulty in 
performing MAP estimation in this setting. This issue is discussed effectively in [1, pp. 494-500]. Essentially, it 
is problematic to compare values of the posterior probability distribution for choices of  that correspond to 
sets of objects with disparate cardinalities or temporal support. MAP estimation cannot meaningfully be 
performed. 

One approach to resolving this conceptual difficult is to consider new types of estimators, as Mahler does with 
the Marginal Multitarget (MaM) estimator and Joint Multitarget (JoM) estimator. The interested reader is 
referred to [1] for details. Here, we note simply that the MaM estimator is conceptually similar to the MHT 
paradigm, which we will arrive to shortly. 

1.3 Association-Based MTT 
Another approach to resolving the conceptual difficulty noted above is explicitly to consider an explanation for 
the data, i.e. to specify which measurements are to be rejected as false and how target-originated measurements 
are to be associated. Let us denote by  one such global hypothesis or explanation. This leads to a probabilistic 
conditioning approach and the following expression for the multi-target posterior probability distribution 

. 

.     (2) 

Unfortunately, it is not clear how eqn. (2) can be exploited to address the MTT problem. Further, it is worth 
noting that the space of global hypotheses is enormous. In fact, considering the possibility that not all targets will 
be detected over the time interval , the set of global hypotheses is infinite. 

The MHT paradigm resolves the conceptual and practical difficulties noted above. The former difficulty is 
addressed by focusing exclusively on , and seeking the MAP estimate for  without facing the 
conceptual difficulty posed by continuous-valued spaces. The latter difficulty is generally addressed by 
neglecting undetected targets, and resolving hypotheses over small time horizons to bound computational 
complexity.  

Thus, the MHT approach may be characterized as seeking the best explanation of the data, and then conditioning 
on this explanation to determine the continuous-space trajectories of interest. The latter task amounts to solving a 
set of nonlinear filtering problems, for which in the linear Gaussian case both MMSE and MAP estimators are 
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given by the recursive Kalman filter; in the linear non-Gaussian case, the Kalman filter remains optimal among 
all linear estimators. 

,      (3) 

.      (4) 

1.4 Association-Based Sub-Optimality 
It is worth emphasizing that association-based approaches like MHT do not directly optimize a criterion based 
on the multi-target posterior probability distribution . Thus, while MHT seeks the MAP association 
hypothesis  – and this surely is a reasonable thing to do – there is no guarantee that selecting  will lead to 
optimal performance with respect to arbitrary MTT performance criteria based on .  

An interesting result in this respect is discussed in [3], where communication-constrained data association is 
considered. The results in [3] demonstrate that statistical nearest neighbor (SNN) association, i.e. the MAP 
solution to the single-target single-scan track maintenance problem, does not minimize the track localization 
error in sufficiently-high clutter environments. One can do better by following the data-association strategy 
detailed in the paper.  

The implication of this research for our purposes is clear. In the general MTT setting, there is no guarantee that 
the choice of  leads to optimal MTT performance. Nonetheless, in practice (and not surprisingly) we find that 
selection of the MAP association hypothesis is generally a good thing to do. 

1.5 Objections to Association-Based MTT 
In [2, pp. 8-9], Vo presents a lucid discussion of potential conceptual difficulties in association-based MTT. His 
focus is on the problematics associated with applying Bayes rule to manipulate . In particular, Bayes 
rule prescribes the following:  

.      (5) 

Vo rightly observes that the use of Bayes rule in this setting, while seemingly benign, does raise some concerns. 
Since  depends on  as it prescribes how to explain the data, is  a valid prior? Likewise, is  a 
valid likelihood function?  

The use of Bayes rule in this setting requires a conditioning argument for it to be valid. To our knowledge, this 
point has been overlooked in the MHT community to date. In particular, we must proceed as follows, where  
is the sequence of measurement set cardinality for the time sequence .  

.    (6) 
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Note that  is conditionally independent of  given , hence  is now a valid prior and 
 is now a valid likelihood function. 

Referring to the numerator in (5), Vo notes further that it is not clear whether  is the joint 
density . Indeed, the marginal  that result by integration of  over  according to (7) 
must not depend on the data, contracting the fact that  does depend on . In (7), we denote by  the dummy 
integration variable. Note that (7) neglects the fact that the integration can only meaningfully be performed over 
those measurement sets that are consistent with . 

.      (7) 

Once more, we can resolve this difficulty by considering instead the joint density conditioned on a given . 
Referring to the numerator in (6), we have: 

     (8) 

Finally, the normalizing constant must again be understood as integration over all global hypotheses consistent 
with a given measurement cardinality. This resolves the concern raised by Vo as to whether the normalizing 
constant even exists. Note that  is discrete-valued, hence (9) is simply a sum. 

.  (9) 

In [2], Vo provides a valuable contribution to the MTT literature by raising the concerns noted here. These 
concerns lead to a more rigorous derivation of the MHT recursion, as described below. 

2.0 MULTIPLE-HYPOTHESIS TRACKING 

This section introduces the fundamental recursion that is utilized in MHT; to our knowledge, the exact form 
considered here has not appeared in the literature, and relies on insight from the discussion in Section 1.5. The 
resulting track-oriented MHT recursion is well known. Additionally, we touch upon additional aspects including 
track management, hypothesis aggregation, and processing architectures. 

2.1 Recursive Formulation of Global Hypotheses 
Computational and real-time constraints require that we adopt a recursive formulation of (6). Thus, we proceed 
as follows. 

.  (10) 

We consider in turn each of the factors in (10). Noting that  is known given , the first numerator factor in 
(10) may be manipulated as follows: 
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.   (11) 

The second numerator factor in (10) may be manipulated as follows: 

 

.    (12) 

The denominator in (10) may be manipulated as follows:  

.     (13) 

Combining (11-13) according to (10) yields the following: 

.    (14) 

This is the global hypothesis recursion that expresses  as a function of  and the current 
scan of data . The noteworthy numerator factor is : in the literature, this factor is 
erroneously identified as  [4]. 

2.2 Track-Oriented MHT 
Though useful, the recursion (14) is generally intractable in the sense that the space of global hypotheses is quite 
large. Fortunately, under some simplifying assumptions, namely Poisson-distributed number of target births and 
number of false alarms at each scan, the posterior probability of a global hypothesis  may be expressed 
as a product over local (or track) hypotheses associated with . This fundamental contribution to the MHT 
literature is derived in [4].  

The Poisson assumptions above are quite reasonable in many settings. Indeed, consider a continuous-time birth-
death process with exponentially-distributed target inter-arrival (birth) times with parameter , and 
exponentially distributed target lifetime with parameter . Discrete-time statistics may be readily obtained, 
leading to a Poisson distributed number of births with mean  and death probability  over an interval 
of duration . The expressions are given in equations (15-16). 

,     (15) 

 .      (16) 

For simplicity, in the following we will omit the time interval  and use the birth rate and death probability  
and , respectively. (Time arguments should be noted explicitly when the sensor revisit interval is time-
varying.) 
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Similarly, the Poisson false alarm assumption (with mean ) is a reasonable one as it matches clutter statistics in 
many application domains. It results as a limiting case of the Binomial distribution with a large number of 
detection cells  and vanishingly small false detection probability , with . We assume that at every 
scan, each target is detected with probability . 

Let  be the number of targets in global hypothesis  at time ,  be the number of measurements 
in the current scan at time , and , , and  are the number of target births, deaths, and measurement updates 
in global hypothesis  at time , respectively. Note that the classical MHT only considers global hypotheses 
for which targets are detected at birth.  

We now express the global hypothesis recursion (14) explicitly. It can be shown that the factor 
 may be written as follows: 

. (17) 

The factor  in (14) accounts for the probability of observing a set of measurements given a 
global hypothesis. It is simply a product over filter residual scores; hence, it may be written as follows, where, 
under ,  is the set of track update measurements,  is the set of false alarms,  is the set of target birth 
measurements, and  is the filter score. 

.  (18) 

Equations (17-18) may be combined into (14), resulting in the following track-oriented MHT recursion. 
Equation (19) is of fundamental importance in that it factors global hypothesis scores into track scores. This 
allows the recursive determination of  as the solution to an integer programming problem, without requiring 
explicit enumeration of global hypotheses. Note that  is the false alarm distribution.  

 

.   (19) 

2.3 Hypothesis Pruning and Track Management 
Though useful, the recursion (19) still is insufficient for viable MHT processing. Indeed, in principle one must 
form all track hypotheses over a temporal batch of data followed by solution to an optimization problem that 
results in . This incurs unacceptable computational expense and solution latency for all but very small 
surveillance problems. 

Hypothesis pruning allows tractable computational expense. Effective pruning schemes exist, based on reduction 
to a single global hypothesis with a bounded temporal delay; this enables both reduced computations and real-
time processing. A straightforward solution to the integer programming problem is via linear programming (LP) 
relaxation; this was studied independently in [5-6]. 
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Optimal processing in principle requires full hypothesis formation (with no hypothesis pruning) as well as track 
extraction as a single processing step. As mentioned above, hypothesis pruning is necessarily required. Further, 
track extraction is generally performed only for resolved hypotheses. Thus, hypothesis resolution and track 
management are generally decoupled in most MHT implementations. Correspondingly, hypothesis resolution 
based on LP relaxation employs equality constraints; that is, all sensor measurements are accounted for in all 
global hypotheses [5]. 

While suboptimal, the use of distinct hypothesis resolution and track extraction functions offers processing 
advantages. In particular, we note that confirmed tracks may be favored in data-association processing; see [7-8] 
for an analysis of advantages resulting from feedback processing from track extraction to data association 
functions.  

2.4 Hypothesis Aggregation 

Generally, we do not distinguish between the data-association hypothesis  and global hypotheses that are 
consistent with it. In general there any many data-indistinguishable global hypotheses associated with the same 
data association hypothesis. In particular, multiple target birth and death times are possible, and there may as 
well be targets with no associated detections. The merits of considering a larger hypothesis space and the ability 
to do so without incurring additional computation expense are discussed in [9]. 

Hypothesis aggregation for data-indistinguishable hypotheses takes at least two forms. One involves aggregating 
over all target birth and death times to result in a single (aggregated) track hypothesis for a single associated-
measurement sequence [10]. The other involves aggregation over indistinguishable sensor measurements, as will 
occur in cardinality-estimation applications [11]. Aggregation over similar (but not data-indistinguishable) 
hypotheses may also be performed with appreciable benefits [12]. 

2.5 Centralized, Distributed, and Asynchronous Processing 
While centralized fusion provides excellent performance in many settings, effective exploitation of multi-sensor 
data with good performance and robustness characteristics often requires advanced processing architectures [13]. 
Fading detection statistics and sensor registration errors are best handled in distributed architectures. In addition 
to improved robustness characteristics, multi-stage data association provides an effective means to handling 
disparate sensor update rates and to exploit same-sensor association performance [14-15]. 

While the success of distributed processing solutions over centralized processing may give pause to those 
familiar with detection and estimation theory and the optimality results associated with centralized solutions, we 
must recognize that the MTT problem is exceedingly complex. Hence, the choice is between suboptimal 
centralized solutions and suboptimal distributed solutions. Hence, distributed processing must be viewed as a 
flexible approach to suboptimal but effective surveillance solutions.  

Similarly, surprising results have been shown recently regarding the value of asynchronous processing in 
forensic settings to content with disparate data sources where the low-rate sensor is highly informative [16]. In 
such settings, the purposeful use of out-of-sequence processing enables effective MHT solutions that are 
impossible to achieve in time-sequential processing.  
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3.0 REDUNDANT-MEASUREMENT MHT 

This section extends the MHT paradigm to allow for multiple measurements per target from a single sensor scan. 
In this context we discuss practical processing considerations, the nature of the track-repulsion effect, and the 
benefits of processing feedback. 

3.1 Redundant-Measurement MTT 
MTT with redundant measurements poses a significant challenge. For simplicity, most paradigms adapt a 
Bernoulli measurement model. There are some exceptions, e.g. the probabilistic MHT (PMHT) and its non-
generative sensor model [17]. A complementary difficulty – merged measurements due to more than one target – 
also is not considered in most MTT treatments. 

Redundant measurements induced by multipath phenomena or multiple emissions have been addressed in an 
MHT setting; see [18-19] and references therein. However, while these papers are of interest, they do not address 
the challenging problem considered here, where all redundant measurements are characterized by the same 
measurement equation. A recent treatment of redundant measurement in the context of probability hypothesis 
density (PHD) research is discussed in [20-22]. Both merged and redundant measurements are addressed using a 
Markov Chain Monte Carlo (MCMC) approach in [23], and in [24-25] with the probabilistic data association 
filter (PDAF). 

3.2 The MHT Recursion 
We are interested to establish a generalization to (17) that relaxes the Bernoulli measurement cardinality 
assumption. Thus, target birth and target update hypotheses now allow for an arbitrary number of measurements. 
We denote by  the measurement-cardinality distribution; this replaces the Bernoulli measurement 
cardinality that is specified by the single parameter . We consider the auxiliary (cardinality) variable  that 
specifies the number of births for each measurement-cluster cardinality, the number of target deaths, and the 
number of targets with measurement update for each measurement-cluster cardinality. In particular,  is the 
number of targets at time ,  is the number of target births with a corresponding measurement cluster of 
size ;  is the number of target deaths; and  is the number of targets with measurement update with a cluster 
of size  (note that this includes the target missed detection case, for which ). We consider  false alarms, 
with each a singleton cluster; i.e. . 

Conditioning on ,  can be expressed as follows: 

,   (20) 

, (21) 

. (22) 

,      (23) 

.        (24) 
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Notes: 

• The factors in (21) represent, respectively: the probability of  deaths among  tracks; the probability of 
measurement cardinalities according to  for surviving tracks, using the multinomial distribution; the 
probability of  false alarms; and the probability of birth cardinalities according to , using Poisson 
sifting. 

• The denominator factors in (22) represent, respectively: the number of ways to select track terminations; 
the number of ways of selecting tracks for specific cardinality updates; the number of ways of assigning 
measurement clusters to tracks; the number of ways of assigning measurements to clusters; and the 
number of ways of selecting birth clusters. 

• The total number of returns is  according to (23); the total number of update clusters is  according 
to (24.). 

• All products and summations are over  Undetected births can be accounted for via generalized 
birth statistics [10]. Thus w.l.o.g. we have . 

Simplifying (20-24), the resulting generalization to (17) is given below. We note that an earlier derivation is 
given in [10], but with an error due to the mistaken assumption that ordering does not matter in assigning 
measurements to clusters.  

.  (25) 

This result is significant in that hypothesis factorization is achieved in a more general setting than previously 
established, so that track-oriented MHT may be adopted in the redundant-measurement setting. Further, the local 
track scores take an intuitive form, directly generalizing what is in (17) to the redundant-measurement case.  

A special case of interest that is applicable in several domains results from a Poisson measurement-cardinality 
assumption, whereby we have: 

 .      (26) 

Under this special case, (25) takes the following form: 

. (27) 

3.3 Two-Stage Processing 
The principled derivation leading to (25) is important. However, in practical settings, we must recognize that 
redundant-measurement MHT – or MTT of any sort – poses a significant computational challenge. A first 
simplification may be achieved by decoupling the measurement-clustering and measurement-to-track association 
stages. Alternatively, one could consider target tracking (under the usual Bernoulli measurement-cardinality 
model) followed by track clustering. With either approach, it is worth noting that, even for a single-sensor 
problem, multi-stage MHT processing can provide benefits over single-stage (centralized) processing. An 
excellent, practical illustration in passive bistatic radar tracking with digital audio broadcast data may be found 
in [26].  
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Even with upfront measurement clustering, the number of ways to cluster  measurements is given by the Bell 
number , which grows roughly as . Thus, modified, suboptimal (heuristic) measurement-clustering 
schemes are necessary in large-scale settings.  

In the simplified setting of 1D measurement data, optimal measurement clustering is achievable, and does lead to 
improved detection statistics under the Optimal Sub-pattern Assignment (OSPA) metric [27]. As a simple 
illustration, Figure 3-1 illustrates on the left one realization of target existence (Poisson number of targets, 
Gaussian 1D positional prior), measurement generation (under the Poisson measurement-cardinality 
assumption), and optimal clustering. In this 1D setting, it can be shown that it is sufficient to consider  ways 
to cluster the measurements. On the right, the benefit of measurement clustering with respect to the OSPA metric 
is shown, based on 100 Monte Carlo realizations of measurement data. 

 

Figure 3-1: Optimal measurement clustering of 1D measurement data. 

Ultimately, we expect that the sub-optimality associated with decoupled measurement clustering and target 
tracking will be mitigated by feedback that informs the clustering process. That is, rather than considering a 
diffuse prior for both the number of targets and their location when performing measurement clustering, 
improved clustering may be achieved with additional knowledge of the number and location of targets. This is 
illustrated in Figure 3-2. 

 

Figure 3-2: A practical two-stage approach to redundant-measurement MHT. 

An interesting limiting case of the redundant-measurement tracking problem remains to be considered: the 
cardinality-estimation problem with indistinguishable measurements [11]. Under the Poisson assumption for 
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both the number of targets and the number of measurements per target, a compound Poisson distribution results 
for the overall number of measurements per scan. Recent analysis of cardinality-estimation performance (under 
the simpler Bernoulli measurement-cardinality assumption) for a naïve Kalman filtering solution and for the 
Cardinalized Probability Hypothesis Density (CPHD) filter may be found in [28]. 

3.4 Track Repulsion 
The track-coalescence effect degrades the performance of probabilistic data association trackers in dense-target 
scenarios [29]; attempts at sub-optimal Bayesian processing to combat this effect have been reported [30]. It has 
been observed that an opposite effect exists with trackers that utilize hard data association, which we denote as 
the track-repulsion effect [31]; the effect can be mitigated with multi-stage multi-hypothesis tracking [32-33]. A 
recently introduced algorithm, known as Set JPDA (SJPDA), successfully overcomes both coalescence and 
repulsion effects but at the cost of track labeling [34]. 

We now explore the question of whether track repulsion is greater in the presence of redundant measurements. 
On the one hand, an increased number of measurements provides additional information that ought to reduce the 
effect. On the other hand, the nature of the optimal clustering solution may increase the effect, since 
measurement outliers from one target might erroneously be clustered with measurements from a nearby target. 

We consider a simple static problem. Two target defined by 1D positional states are displaced by a given 
distance, and give rise to  measurements (we consider up to six). As a function of target displacement and 
number of measurements, we can compute the mean OSPA (MOSPA) error that results from optimal clustering, 
whereby the  smallest measured values are clustered and the  largest values are clustered. The resulting mean 
measurement-clustering error is shown in Figure 3-3, based on a 1m measurement standard deviation error. 

 

Figure 3-3: Average localization error as a function of target displacement and 
measurement cardinality, based on 1000 Monte Carlo realizations of measurement data. 
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There are several points to note. First, for distant targets, localization error improves with increased 
measurement cardinality. This effect is obvious, since more information is gained regarding target state and 
measurement-association errors are minimal. Indeed, the distant-target MOSPA error matches the single-target 
average localization error (black dotted line). For targets that are closer, the MOSPA error is smaller, since the 
metric exploits optimal cluster-to-target mapping. Hence, in this sense there is a localization benefit observed in 
closely-spaced target settings, regardless of measurement cardinality. On the other hand and quite interestingly, 
for very close targets, the MOSPA error is seen to grow. This illustrates the track repulsion effect. Indeed, when 
the two targets are co-located, there is a nontrivial displacement error for both the left cluster (smaller 
measurement values) and right cluster (larger measurement values) with respect to the true target locations. 

While the track repulsion effect may not appear overly pronounced in Figure 3-3, in the sense that the total 
tracking error remains below that of the distant-target case, it is useful to consider the multi-scan case where a 
sequence of measurement sets exist. For the static target case, global nearest neighbour data association (and, in 
fact, MHT processing) dictates that all left clusters observed at multiple scans be fused, and that all right clusters 
be fused. The resulting steady-state tracking error removes the random error component and identifies the 
residual bias error. This is illustrated in Figure 3-4, where measurement clusters are fused over 100 scans. There 
is virtually no steady-state bias error for distant targets, and the effect is most pronounced for nearby targets.  

 

Figure 3-4: Steady-state localization error as a function of target displacement and 
measurement cardinality, based on 1000 Monte Carlo realizations of measurement data. 

Perhaps most interestingly, this bias error is more pronounced with increasing measurement cardinality: more 
measurements on the targets exacerbate the track-repulsion effect. This is shown in the close-up view of 
Figure 3-5. The effect can be explained readily. The measurement-aggregation step in the non-unity -
measurement cardinality cases considers a larger hypothesis space than in the unity-cardinality scan case. The 
grouping of all smaller measurements increases the probability of erroneous measurement assignment over what 
would occur if the measurement scan were treated as a sequence of  unity-cardinality scans. 
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Figure 3-5: Steady-state localization error. 
(Close-up view of previous figure, for small target displacement). 

The statements above are best understood with an illustrative example. At the top of Figure 3-6, we see five 
scans of unity-cardinality returns for two targets. The returns shown in red will be associated and fused; these are 
shown in the middle portion of Figure 3-6. Conversely, if the same measurements originate from a single scan 
with five returns per target, the aggregation decision shown in the bottom portion of Figure 3-6 will result. For 
closely-spaced targets, the latter association approach will tend to increase the track-repulsion effect. 

 

Figure 3-6: Increased track repulsion due to clustering of redundant-return 
measurements (bottom) relative to processing a sequence of unity-return 
measurement scans (top and middle). Red measurements are associated. 

4.0 TRACKER PERFORMANCE MODELING 

Performance models and bounds for MTT systems have been documented in the literature [13]. Typically, such 
analyses rely on simplifying approximations to yield tractable analysis. In this section, we present a temporal 
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sliding-window generalization to the well-known detection statistics associated with M-of-N fusion logic [35]. 
This generalization is useful to estimate logic-based track-confirmation and track-duration statistics as a function 
of track-management parameters. For simplicity, we assume track confirmation on N consecutive detections and 
track termination on K consecutive missed detections. We assume target existence during the surveillance 
interval of  scans. 

4.1 Problem Notation 
 number of (consecutive) detections to confirm 

 number of allowed (consecutive) misses 

 detection probability 

 scenario duration (number of frames) 

 expected track duration (beyond confirmation) 

 expected track duration (total) 

 expected track formation time (before confirmation) 

 expected track formation time (total) 

 expected target completeness 

 expected fragmentation rate 

 expected number of track fragments per target 

4.2 Model-Based Performance 
A useful identity is given by the following: 

.    (28) 

Equation (28) may be established easily as shown below: 

 

 
We now estimate expected track duration (beyond confirmation) as follows: 
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Hence, we have: 

 .   (29) 

Special cases associated with (29) are the following: 

1. : . 
2. : . 

3. :  

Expected track duration (total) is given by: 

.       (30) 

Expected track formation time (before confirmation) can be derived in the same manner as , with , 
. This results in the following: 

, 
    

      (31) 

Expected track formation time (total) is given by: 

.       (32) 

Expected target completeness may be inferred from track duration and track formation times: 

.       (33) 

Finally, the expected track fragmentation rate and expected number of track fragments per target may be 
estimated as well: 

,       (34) 

 
.       (35) 
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4.3 An Example 
As a simple illustration of the performance model derived above, consider a sensor with detection probability 

, a scenario duration of  scans, and track-management logic with  and . The 
following model-based track statistics can be computed: , , , and . 

The model-based analysis discussed here assists system analysis. An equally-important task is system design, 
whereby desired performance statistics are defined and tracker parameters are to be selected. Some discussion of 
MTT parameter selection may be found in [36]. 

5.0 CONCLUSIONS 

This manuscript provides an accessible introduction to association-based multi-target tracking and, in particular, 
to the multiple-hypothesis tracking paradigm. We discuss aspects of track and hypothesis management and 
advanced processing architectures. Next, we present in greater detail a recent extension to multiple-hypothesis 
tracking that accounts for multiple returns per target per sensor scan. Finally, some compact system-analysis 
expressions are introduced. 

The scope of multi-target tracking includes a wealth of technical challenges and a broad set of applications. It is 
hoped that this manuscript will stimulate the interest of engineers and scientists, provide some useful pointers to 
learn more, and encourage contributions to advancing the science of information fusion. 
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