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ABSTRACT 

Since the advent of radar as sensor for military remote sensing, the potential benefits in terms of reduced 

operator workload that automated cueing could bring have been clear. In particular, as radar technology 

progressed to provide an imaging capability, the potential to go beyond simple detection and provide a level 

of target recognition has become apparent. This lecture provides an introduction to the fundamentals of 

ground target recognition using radar. In particular, automatic target recognition (ATR) based on ground 

target images provided by synthetic aperture radar (SAR) is considered.  
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1. INTRODUCTION 

1.1 Overview 

Since the advent of radar as sensor for military remote sensing, the potential benefits in terms of reduced 

operator workload that automated cueing could bring have been clear. In particular, as radar technology 

progressed to provide an imaging capability, the potential to go beyond simple detection and provide a level 

of target recognition has become apparent.  

 

Figure 1.1: The origins of ground imaging radar. 

One of the earliest ground imaging radars was the H2S system developed by the Telecommunications 

Research Establishment (TRE) in Malvern, UK during the Second World War. One appealing possible 

explanation for the name of this system was that the Government scientific advisor, Lord Cherwell, 

repeatedly declared that “it stinks” (a typical British expression of disapproval) when told of delays to the 

programme which had resulted from a misunderstanding between him and the developers. As a result, the 

developers gave the project the codename H2S, i.e. the chemical symbol for hydrogen sulphide, which of 

course “stinks” with a rotten egg smell. Figure 1.1 shows a typical image from the H2S with a map for 

comparison. It is fair to say that the resolution of this system is quite coarse by today’s standards, but 

recognition of landmasses is clearly possible. 
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Figure 1.2: Image of tank “graveyard”. (Courtesy of QinetiQ) 

In modern radar imaging systems, much better resolutions are now achievable. Figure 1.2 shows an example 

of a synthetic aperture radar (SAR) image at 15cm resolution (courtesy of QinetiQ). The highlighted area is a 

tank “graveyard” where disused tanks have been abandoned. SAR images are not intuitively interpretable by 

humans who are used to seeing optical images but it is possible to see the periodic bright returns along the 

side of the uppermost vehicle which result from the wheels along the side of the vehicle. This illustrates a 

number of points. It is apparent that some level of vehicle recognition should be possible at such resolutions 

but the target characteristics which are most evident in radar imagery may not correspond to the most 

recognisable optical characteristics. It is therefore important to understand the characteristic “features” of the 

image. It should also be noted that, because radar imagery is not intuitively interpretable, the role of 

automated algorithms is even more important to act as an aid for operators.  

Inspired by the level of information available in high resolution SAR imagery, much research has been 

undertaken over the past 20 years into automatic recognition of ground targets in SAR. The aim of this 

lecture is to provide an overview of the fundamentals of ground target recognition. The lecture begins with a 

discussion of the phenomenology of SAR images, i.e. what are the distinctive characteristics of objects when 

imaged using this radar technique. It should be emphasised that radar images are very different to electro-

optic images as a result of the way that the radar signal interacts with the scene and the way in which the 

returned radar signal is processed and so understanding the phenomenology is a very important part of target 

recognition. The lecture then proceeds to discuss the principles of target detection and recognition in SAR 

imagery and how these need to be integrated into an end-to-end system to provide a full ATR capability. It 

will be seen that ATR relies upon having databases of example imagery of the targets of interest. Given the 

huge degree of variability intrinsic in radar imagery, it is generally impractical to populate such databases 

entirely with real imagery and so imagery obtained from radar scattering prediction tools applied to target 

models must also be used. The topic of training databases and target modelling is thus the next topic that is 

considered. A crucial aspect of any ATR system intended for military purposes is the ability to assess how 

well it will perform in given circumstances. Thus the subject of ATR performance assessment is an essential 

component of any discussion of ground target ATR and forms the last major subject of this lecture. Finally 

however, ATR is considered in the context that there is a continuum of problems to be solved of varying 

15cm resolution 
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degrees of difficulty from very constrained scenarios to a completely general recognition system. All points 

within this continuum provide important military capability and systems that provide a level of radar ATR 

are already in service and helping NATO activities. ATR is a solvable problem and this is evident in 

operational systems. However, the requirement is also to provide greater capability by pushing the 

technology further along the difficult axis. To do this, a number of challenges must be addressed. This 

lecture thus concludes with a discussion of the current challenges facing ATR developers which must be 

overcome to achieve the future advanced capability that will allow NATO to most effectively fulfil its global 

role.  

No references have been included in the text as the student is encouraged to go out and explore the concepts 

introduced using all the internet tools that are now available. However, a set of references has been included 

at the end which could act as the starting point for this exploration.  

1.2 Definitions and acronyms 

The use of automatic techniques to classify radar data gives rise to different acronyms depending on the 

particular radar domain involved. It is usually known as Automatic Target Recognition (ATR) when dealing 

with air-to-ground activities which mostly use Synthetic Aperture Radar (SAR) imaging whilst it is usually 

known as Non-Cooperative Target Recognition (NCTR) for ground-to-air or air-to-air activities which 

mostly use High Resolution Range (HRR) profiles, Jet Engine Modulation (JEM) and Inverse SAR (ISAR) 

imaging.  

What is meant by the word recognition? Care is needed in answering this as the ATR ‘vocabulary’ is still 

evolving. Indeed, only few terms have been standardized by NATO but, somewhat confusingly, of these 

some words actually have more than one formal NATO definition.  

Taking the word “identification” as an example, the NATO AAP-6 Glossary of terms and definitions says 

that identification is the separation of friend and foe. However, in most modern conflicts a third class has to 

be added to this dual separation of the world to take into account the “neutral” targets that exist 

independently of the “classical” enemies. Moreover this third class tends to be the focus of most actual 

identification efforts to avoid collateral damage. It is clear that this identification process will depend on the 

people involved (countries, coalition forces) and on the context (in both space and time): it should also be 

taken into account that a civilian “neutral” vehicle may be easily turned into an enemy weapon. Currently, 

“identification” relies mostly on human interpreters or transponders like the Identification Friend Foe (IFF) 

system. It is somewhat difficult to characterize this definition purely in terms of scientific criteria and thus 

very difficult to automate. 
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In contrast, the word “recognition” as defined by the NATO AAP-6 Glossary of Terms and Definitions is a 

little more precise. The process is decomposed into a kind of classification “tree” in which the targets are 

categorized into more and more precise sub-classes as progress is made through the tree structure. Five 

major classification steps are then described: 

• Detection: separating targets from other objects in the scene  

• Classification: giving the target a meta-class such as aircraft, wheeled vehicle, etc.  

• Recognition: specifying the class of the targets such as fighter aircraft, truck, etc.  

• Identification: giving the sub-class of the target such as MIG29 fighter aircraft, T72 tank, etc.  

• Characterization: taking into account the class variants such as MIG29 PL, T72 tank without fuel 

barrels, etc. 

• Fingerprinting: leading to an even more precise technical analysis such as MIG29 PL with 

reconnaissance pod.  

 

It can be seen that the boundaries between these decomposition steps cannot be clearly fixed for all problems 

and targets. Moreover, these definitions lead to the word “classification” being reserved solely to describe 

the process of meta-class separation whilst it is more often used by scientists to describe the whole process of 

assigning objects to categories irrespective of the status of those categories. This breakdown of definitions is 

even more obvious with the word “identification” which has been seen to take two different meanings within 

a single official glossary.  

The main outcome of this discussion is thus to stress the need for a precise problem formulation and 

description of the operational conditions applying to the particular ATR problem under consideration.  

2. SAR PHENOMENOLOGY 

In order for an ATR system to make best use of all the information contained in a SAR image, it is essential 

that the ATR system formulation must incorporate precise knowledge of radar imaging phenomenology. In 

particular, it must be taken into account that the radar is moving relative to the target which itself may also 

move or change with time. Consequently, 2D SAR imaging is essentially a 2 step process: 

1. High Resolution Range (HRR) profiles are acquired over time: HRR are instantaneous 1D 

projection on the Radar Line Of Sight (RLOS) of the whole scene observed over a large frequency 

bandwidth 

2. 2D image formation: HRRs are integrated over time and focused which means that the potential 

target is observed over a time/angular domain. 

As a result, the SAR image is focused on a projection plane (perpendicular to the apparent target/radar 

rotation axis), which implies: 

• a sensitivity to the direction of illumination (shape, shadows, etc.) 

• a sensitivity to the 3D geometry of target & ground (positions, overlays, masking, etc.)  

• a sensitivity to the possible target motion or mobile parts (wheels, tracks, rotating parts like 

propeller, blades or antennas, etc.) 
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Looking at targets over some angular domain, it can be clearly seen that that the elementary scatterers from 

which the target signatures are composed are highly dependent on the angular directivity of the radar 

observation, e.g. Figure 2.1. The aspect angle dependency can be so strong that a target may look completely 

different when seen from directions separated by only few degrees apart. From an ATR point of view this 

means that it may be necessary to consider the target images taken at different observation angles as many 

“different” classes (each with the same “tag”). 

On the other hand, a 360° azimuth integration of all individual aspect angles (see Figure 2.2) gives a clear 

view of the target that leads to its visual recognition. However, care must be taken as this type of acquisition 

may not be feasible except for turntable data or persistent surveillance of a target on a clear background.  

 

Figure 2.1: Scatterer variability seen in sequence of SAR images taken every 1°. 

 

Figure 2.2: Incoherent combination of target images taken every degree over 360°. The colour 
indicates the direction of illumination of the main contributing radar energy. (Courtesy of 

QinetiQ) 
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Whilst there is some frequency dependence in SAR imagery as seen in Figure 2.3 which shows an example 

of false colour image containing three different frequency bands, the target signature dependency on the 

radar frequency is probably less important than the angular one. However, within the identification process, 

it will be necessary to use reference data taken around the same frequencies as the test data or the signatures 

may look too different.  

 

 

Figure 2.3: Colour coding of SAR image combination with red at 8.82GHz, green at 9.37GHz and 
blue at 10GHz.  

 

Figure 2.4: Sensitivity to geometry: shadows and specular returns (left) and multi-path off 
ladders (right).  
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Sensitivity to the 3D target geometry is another key point: it is possible to see through very simple examples 

how the radar energy interacts with the target and with the ground via multiple bounces resulting in layover 

effects, inner shadowing and multi-path interaction of close objects. These effects, combined with the 

specular nature of the radar reflection, produce target signatures that “look very fuzzy” when compared to 

their optical equivalent: this may explain the relative difficulty to train human interpreters to work on radar 

images.  However, these effects may give geometrical “fingerprints” that are well suited for automated ID. 

Figure 2.4 shows examples of shadows and specular reflections from planes and multipath effects from 

ladders on the side of oil tanks.  

In summary, when considering the SAR phenomenology that should be included in an ATR system, it is 

important to avoid making assumptions based on experience with optical systems. SAR images have 

particular sensitivities to imaging geometry, radar parameters and radar scattering mechanisms which need to 

be taken into account when attempting to characterise target classes.  

3. TARGET DETECTION & RECOGNITION 

3.1 Pre-screening stage 

The first stage in the target recognition process is to automatically detect potential targets in the scene which 

can then be passed on up the processing chain for further analysis. This task in itself can contain a number of 

stages in which candidate detections are identified and then filtered to reject those that do not meet the 

criteria for being a potential target. For this reason, this stage of the processing chain is often called “pre-

screening”.  

The various stages in a possible approach to target pre-screening are shown in Figure 3.1. Given a SAR 

scene, the first stage in the process is to perform a single pixel detection which flags up pixels which are 

anomalously bright in comparison to their neighbouring background pixels. A mask is placed around the 

pixel under test to exclude any pixels which might also belong to the target and hence bias the calculation of 

the background statistics. An outer ring of pixels is then used to calculate the background statistics, typically 

the mean and standard deviation. If the pixel under test exceeds the background mean by more than a given 

number of standard deviations, a detection is declared. This type of approach belongs to the class of Constant 

False Alarm Rate (CFAR) techniques of which there are many variants to cope with problems such as the 

ring being used to estimate the background containing non-background objects. However a discussion of 

such variations is beyond the scope of this lecture.  

A number of single pixel detections will be obtained in this way but there is no understanding of which 

detections may belong to the same potential target. For this reason, a clustering procedure is used as the next 

stage. One way to do this is to start with a detection and to add other detections to the same cluster, provided 

that they are not too far from any detections already contained in the cluster. The definition of “too far” will 

depend on the resolution of the system and the type of targets anticipated to be in the scene. This is the 

approach illustrated in Figure 3.1. Alternative approaches are possible such as those based on the 

morphological operations. 
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Figure 3.1: Illustration of the detection, clustering and discrimination stages of a possible 
approach to target pre-screening. (Courtesy of QinetiQ) 

The final pre-screening stage is to examine each cluster and measure some simple discriminant values such 

as size and power. It is possible then to reject a number of candidate targets as being more likely to be 

discrete clutter objects such as trees rather than man-made objects. In Figure 3.1, a number of clusters along 

the vegetation boundary as well as a decoy target have been rejected by this process.  

3.2 Classification: Template-matching 

Once the candidate targets have been identified by the pre-screening process then the classification process 

can begin. One conceptually simple approach is to compare the object under test with example images of the 

various possible targets known to the system. This is illustrated in Figure 3.2. As discussed with regard to 

phenomenology, radar images are very variable as a function of imaging geometry. So for each possible 

target class, the database must contain example images of that target at all possible geometries. Figure 3.2 

illustrates a target database containing target images over 360° of aspect angle variation although in general 

elevation angle and many other degrees of freedom would need to be taken into account.  

A measure of similarity is required to perform the comparison between the object under test and the images 

in the database. A natural measure is the correlation coefficient between the two images which has a 

maximum value of unity for two identical images. Given this maximum, it is reasonable to set a threshold 

correlation value such that if this threshold is not exceeded than a target classification is not made and the 
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object is declared to be unknown. The option of making an “unknown” declaration is very important and will 

be discussed further with regard to performance assessment.  

Whilst conceptually simple, the problem with this template-matching approach to classification is that the 

required databases can be huge when there are many target classes and many potential degrees-of-freedom. 

Thus template-matching has an important role for classification problems that are relatively constrained but 

an alternative approach is required for less constrained problems.  

•  

Figure 3.2: Template matching involves comparing the object under test with a number of 
examples of possible targets. (Courtesy of QinetiQ) 

3.3 Classification: Feature-based 

Feature-based classification provides an alternative to template-matching which solves the issue of a 

requirement for huge databases of imagery by representing target classes in terms of measured features that 

are intended to characterise the unique properties of the target class. Before any features can be measured, it 

is important to establish accurately which pixels belong to the target and which to the surrounding clutter. 

One way of doing this is to use an active contour or snake algorithm. An initial contour is placed around a 

point defining the position of the target (e.g. the mean position of the detections comprising the cluster). This 

is shown as the approximately circular inner red circle in the image on the left in Figure 3.3 which is defined 

by a number of node positions. This contour is iteratively adapted by randomly moving the positions of the 

nodes. An objective function is defined that measures how well the statistics inside and outside of the 

contour match the assumed statistics for target and background. An annealing approach is taken such that a 

change is accepted if the objective function increases but a change is also accepted with some probability if 

the objective function decreases. This probability decreases as the number of iterations increases. The aim of 

this process is to avoid the iterative procedure becoming stuck in local maxima rather than finding the global 

maximum. Once the process has converged, an outline such as the outer red line shown in Figure 3.3 will be 

obtained.  
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Figure 3.3: An active contour starts with an initial circular contour which is adapted iteratively 
until the statistics inside and outside of the region match a given model. (Courtesy of QinetiQ) 

 

Figure 3.4: The Hough transform maps lines in the image to points in the transform domain so 
that bright lines show up as peaks. (Courtesy of FGAN) 
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Prior to measuring features, it can also be convenient to estimate the pose of the target, i.e. its angle with 

respect to the axes of the image. One way of achieving this is to use the Radon transform. The Radon 

transform defines lines in the image in terms of a distance from the origin and an angle with respect to the x-

axis. The pixel values are summed along these lines and the result placed in the transform domain at the 

corresponding (angle, distance) co-ordinates. Lines which contain many bright pixels are seen as peaks in the 

Radon transform domain so that identifying the brightest peak will identify the brightest line in the image. 

There is a 180° ambiguity but this is not of consequence. Having determined the pose of the target in this 

way it is then possible to measure the length and width, for example, in a consistent way.  

The choice of features used to represent the target classes is the key to classification performance. There are 

many features which have arisen from the general pattern recognition literature including geometric features 

such as target dimensions, moments of inertia, fractal measures and Fourier coefficients as well as 

radiometric features such as mean, standard deviation, spatial correlation measures and the proportion of 

energy contained in the brightest pixels. A reasonable level of classification can be obtained using such 

features but, as will be discussed later, tuning features to the known specific properties of SAR images 

should be the aim of an ATR system design.  

The enormous variability of target appearance as seen by radar is a key challenge. Figure 3.5 shows an 

example of the same target seen at different aspect angles in a SAR image. The appearance of targets can 

vary so much that a sensible approach is to essentially treat intervals of aspect angle as a different class.  

 

Figure 3.5: Ground target image aspect angle variation and air target range profile variation. 
(Courtesy of QinetiQ) 

Once a set of features has been established, these features are measured for examples of the different target 

classes, i.e. the training set. The feature values for an object under test are also measured and compared with 

those of the known target classes. If there is a sufficiently good match between the test and training values 

for a particular class then a classification is declared. This basic principle is illustrated in Figure 3.6 for a two 

class problem where two features are being used. The red crosses mark the positions of feature values 

obtained from the red class training examples and the yellow crosses the same for the yellow class training 

examples. A decision boundary must be drawn such that a test example with features that lie on one side will 

be declared red and on the other will be declared blue.  
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Figure 3.6: Illustration of decision boundary for two class problem. (Courtesy of QinetiQ) 

There are many algorithms available for determining the decision boundary. In Figure 3.6, contours have 

been shown which arise from approximating the distributions of the feature values by two-dimensional 

Gaussian distributions. It is then straightforward to set up the decision via statistical considerations and this 

is known as Bayesian classification. Other techniques include nearest neighbour, linear discriminant analysis, 

neural networks and support vector machines although it is beyond the scope of this lecture to go into these 

methods in detail.  

3.4 End-to-end ATR Processing Chain 

One demonstration of a SAR ATR system has been given QinetiQ in their SAR Machine-Aided Recognition 

Toolbox (SMARTbox) as illustrated in Figure 3.7. This implements the entire processing chain from 

detection of potential targets to recognition. The idea for this demonstration is to have a man-in-the-loop. 

The SAR image is first processed for detection of potential man-made objects which are indicated on the 

SAR image by cross-hairs. The operator can then click on one of the detections for further processing. A 

feature-based classification is performed using features derived from both the target itself and the shadow 

which are both automatically delineated. Possible target classifications are then presented to the operator 

with an associated probability or confidence level. The operator is then able to request a prediction of the 

target image that would be expected to be seen for the declared target type. A slider bar allows the operator 

to view this prediction from a number of different aspect angles to assess the validity of the declaration. In 

this way, the tool acts very much as an automated operator aid. In this way it reduces operator workload but 

any final decision still requires a man-in-the-loop which is an important consideration given rules-of-

engagement.  
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Figure 3.7: Feature-based ATR demonstration. (Courtesy of QinetiQ) 

This is an effective demonstration of an ATR system and there are many other such demonstrations available 

from research groups around the world and in the literature.  

3.5 Choice of features 

Features are measures of target characteristics which hopefully provide some degree of discrimination 

between target classes. A large number of possible target features have been proposed in the literature many 

of which arise from the general pattern recognition literature. As a result, measures such as length, width, 

compactness, elongation, pixel statistics, rank-fill ratio (concentration of energy into a small number of 

pixels), fractal dimension, etc. have been used to varying degrees in proposed ATR schemes.  

Such pattern recognition features have value but in terms of finding features which provide the greatest 

robustness to target variability, it may be argued that features which relate specifically to the underlying 

physical structure of the target are likely to be the most robust as it will be the same underlying structure that 

is present whatever the imaging geometry or level of obscuration. Figure 3.8 shows a composite SAR image 

(this is an incoherent combination of images taken over a full 360° of aspect angle) of a vehicle where 

persistent or dominant scattering events have been associated with real structures on the vehicle.  
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Figure 3.8: Associating characteristic dominant scatterers with vehicle structure. (Courtesy of 
QinetiQ) 

It is such scattering events which may hold the key to robust feature-based classification. However, on the 

basis of a single channel, single aspect image of a target there may not be sufficient information. However, 

polarimetric techniques allow more sophisticated characterisation of scatterers whilst multiple aspect collects 

or non-straight trajectories allow 3D information to be obtained. The future availability of more advanced 

collection modes such as these will thus open up additional avenues for defining robust features.  

4. DATABASES & MODELLING 

Building an ATR reference data-bank for radar presents greater challenges than, for example, building an EO 

database when it may be sufficient to use a handheld camera or search over the internet for a picture of a 

particular vehicle. To obtain representative SAR imagery of targets in the field, multiple flights are needed 

over an area where targets are deployed to get enough data for multiple angle acquisition. The experiment 

will also be more representative if it is possible to provide variants of same targets on the field.  

The first large data collection was done in the 90s by DARPA and is known as the MSTAR database. A 

small part of this database was then released to public at the beginning of the 2000’s and has motivated a 

substantial body of SAR ATR research which has been reported in the literature. Figure 4.1 provides 

examples of targets and imagery from the MSTAR dataset.  

However, when taking into account the totality of real world variability, it is clear that if is not feasible to 

collect real data that would cover all the operating conditions that may be encountered in modern conflicts. 

Thus it is essential that reference databases are populated to a large extent by other means such as turntable 

measurements or modeling. Figure 4.2 shows an example of a radar image of a tank obtained from a 

turntable. This provides a very controlled situation for image formation in which the radar is stationary and 

relative motion is introduced by rotating the turntable. Image formation is then performed using inverse SAR 

techniques. It is important to be aware that such imagery may not be entirely representative of target imagery 

taken in the field. In particular, the background clutter against which the target appears and hence ground / 

target interactions may not be representative.  
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Figure 4.1: The MSTAR public data set collected under a DARPA program. 

 

Figure 4.2: An example of a radar image of a tank obtained from turntable measurements. 
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An alternative, as mentioned earlier, is to use modeling techniques which predict the radar signature from a 

CAD model of the target and thus allow images to be simulated. There exist various simulation tools from 

sophisticated electromagnetic codes that solve Maxwell equation, compute surface currents and so on, to 

more simplistic ones that will only generate the outline of the target’s shadow. The compromise is often 

between accuracy and computation speed. “Exact” codes may take days to compute a single aspect angle 

image and so the simulation tool really has to be fitted to the ATR philosophy. This trade-off between 

accuracy and speed is illustrated in Figure 4.3.  

Figure 4.3: Trade-off between accuracy and speed for SAR image simulation. 

A key consideration is how the accuracy of the CAD model used affects the accuracy of the simulation and 

hence the performance of the ATR system. If the ATR performance is critically dependent on having a very 

exact CAD model representation then this is unlikely to be a robust solution since the actual targets in the 

field may easily vary from the CAD model representation. Also there is a question as to how the CAD 

models are to be obtained. If the vehicle is available then it may be possible to use laser scanning techniques 

to obtain an accurate CAD model. However, in some situations the vehicle will not necessarily be freely 

available to measure and so it will be necessary to produce a CAD model from possibly a limited number of 

photographs of the target. A continuing challenge is to understand the impact of CAD model fidelity on ATR 

performance and how this relates to the accuracy of CAD models that can be obtained from, for example, 

photographs.  
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Figure 4.4: Construction of CAD models from photographs. 

In summary, for most ATR applications some form database of imagery simulated from CAD models is 

likely to be necessary. However, it needs to be taken into account that the target signature is sensitive to 

geometry and radar parameters, the targets may have many variants such as articulations or extra equipment 

attached and that targets are not always available for detailed analysis. There is a need to build CAD models 

either via techniques such as laser-scanning or from photographs but a key question is how the accuracy and 

complexity of the model in terms of number of facets, parts, articulations and material properties affects 

simulation accuracy and hence ATR performance. There is thus a trade-off between accuracy and 

computation speed which needs to be taken into account when designing an SATR system.  
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5. PERFORMANCE ASSESSMENT & ATR THEORY

5.1 Receiver Operating Characteristic (ROC) Curves 

As has been seen previously, the end-to-end ATR processing chain contains a pre-screening stage and a 

classification stage. The pre-screening stage is essentially a two-class problem which aims to identify targets 

and reject clutter. For this type of problem, the receiver operating characteristic (ROC) curve is a convenient 

measure of performance.  

Figure 5.1 illustrates the underlying principle. It is assumed that some discriminant value is measured to 

determine whether an object is target or clutter. For many examples of targets this discriminant value will 

have a probability density function (PDF) and similarly for clutter as shown. A threshold is used to decide 

whether an object is target (threshold exceeded) or clutter (threshold not exceeded). Given a threshold, it is 

possible to calculate the probability of detection (PD) by integrating the target PDF from the threshold to 

infinity and the probability of false alarm by integrating the clutter PDF from the threshold to infinity as 

shown. As the threshold is varied, the PD and PFA will vary and this is shown for two values of the 

threshold.  

Figure 5.1: The effect on probabilities of detection and false alarm of altering the threshold. 

As the threshold is varied, the resulting values of PD and PFA can be plotted against each other as shown in 

Figure 5.2. The ROC curve is thus the locus of PD versus PFA as defined by the threshold parameter. 

However, care must be taken as the same threshold will not correspond to the same PD or PFA for different 

missions and so maintaining equivalent performance in different circumstances can be challenging.  
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Figure 5.3 provides an interesting example of the use of ROC curves to show the performance of a target 

detector. In this example, the targets were either without optical camouflage netting (bare) or with it (cam). 

Also they were either in the open (open) or in light vegetation (scrub). In Figure 5.3 it can be seen that better 

detection performance is obtained when the target is in the open (top two curves) than when in scrub (bottom 

two curves). However, in both open and scrub the detection performance is better when optical camouflage 

netting is used than when it is not. The reason for this has not been determined conclusively but it is 

speculated that the netting was wet and it was a windy day. Hence in the resulting radar imagery, the netting 

caused a bright and smeared return which was more easily detected. The use of ROC curves was thus 

important in understanding what was going on in this example. 

Figure 5.2: ROC curves are the locus of PD versus PFA as the threshold parameter is varied. 
Care must be taken as the same threshold will not correspond to the same point for different 

missions. 

.
6
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Figure 5.3: An example of the use of ROC curves. 

5.2 Confusion Matrices 

At the classification stage of the ATR chain, there will normally be multiple possible classes to which a 

target may belong and so the concept of a ROC curve is less useful. In this case, the performance of the 

system can be more fully understood through use of a confusion matrix. Figure 5.4 shows a basic example of 

a confusion matrix four a four class problem. In this example there are two classes of friendly vehicles (blue) 

and two classes of enemy vehicles (red). The numerical entries in the main body show the proportion of 

targets of a given true class that have been declared as a given declaration class. The probability of correct 

classification (PCC) is the probability that a target of a given class is declared as that class and this is shown 

in the right hand column. However, of more relevance to the war-fighter is the probability of correct label 

(PCL) which is the probability that a target that is declared to be of a given class is actually a member of that 

class. The PCL is shown in the bottom row and clearly tells a different story. For example, targets from class 

Red2 are declared as such 95% of the time. However, if a target is declared as Red2, it is actually only a 

member of that class on 83% of the time.  
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Truth Blue1 Blue2 Red1 Red2 PCC

Blue1 0.78 0.03 0.06 0.13 0.78

Blue2 0.01 0.95 0.02 0.02 0.95

Red1 0.10 0.03 0.83 0.04 0.83

Red2 0.02 0.01 0.03 0.95 0.95

PCL 0.86 0.93 0.88 0.83

ATR System Output

Declaration

Figure 5.4: A basic confusion matrix for the performance of a four-class classifier. 

This distinction between PCC and PCL becomes more evident when the more realistic situation is 

considered in which the targets under test contain vehicles of two class types that are not known to the 

classifier, i.e. confuser classes. Typical results in this case are shown in Figure 5.5. It can be seen that the 

PCC is unaltered in this case but the PCL is dramatically affected. Now a target declared as Red2 will only 

actually belong to the Red2 class 57% of the time and the effect is similar for all classes.  

Truth Blue1 Blue2 Red1 Red2 PCC

Blue1 0.78 0.03 0.06 0.13 0.78

Blue2 0.01 0.95 0.02 0.02 0.95

Red1 0.10 0.03 0.83 0.04 0.83

Red2 0.02 0.01 0.03 0.95 0.95

Conf1 0.24 0.28 0.22 0.27 N/A

Conf2 0.28 0.16 0.31 0.25 N/A

PCL 0.55 0.65 0.56 0.57

ATR System Output

Declaration

Figure 5.5: A confusion matrix for the performance of a four class classifier including confuser 
targets.  

This illustrates a problem with the classifier whose performance is being assessed by these confusion 

matrices. Basically it is being forced to classify every target under test as one of the four classes it knows 

about even though it is being exposed to targets outside its database as is virtually inevitable in ground target 

recognition situations. It is thus important, as has been mentioned earlier, to include an unknown class in the 

classification procedure. Figure 5.6 then shows an example output from the classifier. It can be seen that the 

PCC values are reduced as some of the previous correct declarations were not actually sufficiently confident 

and have now been declared as unknown. However, the PCL is now significantly improved over the case 

when a forced decision was made. This emphasises the importance of including an unknown class.  
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Truth Blue1 Blue2 Red1 Red2 Unknown PCC

Blue1 0.70 0.01 0.00 0.12 0.17 0.70

Blue2 0.00 0.95 0.01 0.00 0.04 0.95

Red1 0.09 0.01 0.79 0.02 0.09 0.79

Red2 0.01 0.01 0.02 0.95 0.02 0.95

Conf1 0.04 0.01 0.00 0.03 0.93 N/A

Conf2 0.04 0.00 0.07 0.04 0.85 N/A

PCL 0.80 0.96 0.89 0.82 N/A

ATR System Output

Declaration

Figure 5.6: A confusion matrix for the performance of a four-class classifier including confuser 
targets and an unknown class.  

Another factor that needs to be taken into account is that some declaration errors can have more serious 

consequences than others. For example, if Blue is declared but the target is Red then an enemy attack may 

not be averted whilst if Red is declared but the target is Blue then friendly fire may occur. Thus it is 

important to include the probability of critical error (PCE) as has been done in Figure 5.7 to understand the 

significance of a false declaration.  

Truth Blue1 Blue2 Red1 Red2 Unknown PCC

Blue1 0.70 0.01 0.00 0.12 0.17 0.70

Blue2 0.00 0.95 0.01 0.00 0.04 0.95

Red1 0.09 0.01 0.79 0.02 0.09 0.79

Red2 0.01 0.01 0.02 0.95 0.02 0.95

Conf1 0.04 0.01 0.00 0.03 0.93 N/A

Conf2 0.04 0.00 0.07 0.04 0.85 N/A

PCL 0.80 0.96 0.89 0.82 N/A

PCE 0.11 0.02 0.09 0.16 N/A

ATR System Output

Declaration

Figure 5.7: A confusion matrix for the performance of a four-class classifier including confuser 
targets, an unknown class and showing probability of critical error. 

Yet another factor that needs to be considered is the “order of battle”, i.e. the probable number of units 

present. In this example, it is assumed that there are 10 times as many Red units as Blue units and confusers. 

The confusion matrix declarations in Figure 5.8 have been adjusted to give the number of declarations if 

there were 1000 of each Red unit and 100 of each other unit. This does not change the PCC but has a drastic 

impact on the PCL and PCE. In this situation, the war-fighter would have a lot more confidence acting on a 

Red declaration but there would be little confidence in a Blue declaration.  
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Truth Blue1 Blue2 Red1 Red2 Unknown PCC

Blue1 70 1 0 12 17 0.70

Blue2 0 95 1 0 4 0.95

Red1 90 10 790 20 90 0.79

Red2 10 10 20 950 20 0.95

Conf1 4 1 0 3 93 N/A

Conf2 4 0 7 4 85 N/A

PCL 0.40 0.81 0.97 0.96 N/A

PCE 0.57 0.17 0.01 0.02 N/A

ATR System Output

Declaration

Figure 5.8: A confusion matrix for the performance of a four class classifier including confuser 
targets, an unknown class and showing probability of critical error. 

Thus it has been seen that the confusion matrix provides a powerful means of representing classifier 

performance but it is important to take all factors into account when interpreting the results. A few key 

considerations have been introduced here but this has by no means been exhaustive.  

5.3 Operational Assessment 

There are many, many sets of ATR performance results published in the literature in the form of confusion 

matrices. Almost every paper presents a new technique and shows that it gives better performance than 

existing techniques. How can this be? Figure 5.9 illustrates a few of the ways in which reported performance 

results may not truly reflect the operational performance of the system. This is a significant issue and 

emphasises the need for a strategy for ATR performance assessment at a national or international level in 

which some independent body maintains a set of test data which is used only for performance assessment 

and rigorously dictates the assessment procedure. Without this, most reported ATR performance figures are 

meaningless.  

Performance assessment should, of course, reflect the performance that will be achieved operationally. 

However, a major issue for operational assessment is that algorithm development and performance 

assessment take place in circumstances that are not necessarily representative of the real operational 

environment. This is illustrated in Figure 5.10. In this illustration, the reference conditions relate to data that 

was gathered to support algorithm development, the model-based conditions relate to data that has been used 

to populate databases, the test conditions relate to data collected to support algorithm performance 

assessment and the operational conditions relate to data to which the system is to be applied operationally. 

As has been illustrated conceptually, the intersection of all these conditions is very small and, in particular, 

there is a large portion of operational space which is not represented. The challenge for the future is to 

develop assessment methodologies which provide the procurer of such systems greater confidence that they 

will indeed perform as intended when used operationally.  
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Figure 5.9: Some common mistakes made when assessing performance. (Courtesy of SET-111) 

Figure 5.10: Illustration of performance assessment issues. (Courtesy of SET-111) 
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6. KEY CHALLENGES

In this section, some of the challenges are discussed which must be addressed to achieve the future advanced 

radar ATR capability that will allow NATO to most effectively fulfil its global role.  

There are many who are sceptical about radar ATR ever providing operational capability. However the fact 

is, of course, that some degree of operational radar ATR capability has already been achieved. A fact that is 

not always appreciated is that a requirement for ATR does not represent a single problem but actually 

represents a continuum of problems of varying degrees of difficulty from very constrained scenarios to a 

completely general recognition system. All points within this continuum provide important military 

capability and systems that provide a level of radar ATR are already in service and helping NATO activities.  

Figure 6.1 gives a simplified (and UK-centric) illustration of the development of radar ATR. From the mid-

80’s there was research into image formation and optimum detectors which were subsequently incorporated 

into land-based and maritime systems. Subsequent research in the 90’s resulted in operational capability such 

as the man-portable MSTAR system which classifies between tracked & wheeled vehicles and personnel on 

the basis of Doppler and the Brimstone missile which classifies between valid and non-valid targets on the 

basis of an automated algorithm. Ongoing research is aiming to push further the difficulty and complexity 

level of ATR algorithms for insertion into future platforms. The point is that ATR is a solvable problem 

which is evident from the existing operational systems. However, the requirement is to provide greater 

capability by pushing the technology further along the difficult and complexity axis. To do this, a number of 

challenges must be addressed as will be discussed next. 

Figure 6.1: Radar ATR: Past and Future – a UK view. (Courtesy of QinetiQ) 



ATR of Ground Targets: Fundamentals and Key Challenges 

STO-EN-SET-172-2013 1 - 27 

6.1 Complex clutter environments 

As has been previously mentioned, progress on NCI / ATR development has proceeded to some extent 

through constraining the problem. For example, for the ground target case, much development has taken 

place assuming that the targets are seen against an essentially featureless background. This assumption is 

valid for some operational scenarios and provides military capability. However, in progressing towards 

further level of complexity and utility, a key consideration is the situation when the targets are located in 

more complex clutter environments, e.g. heavy scrubland or urban areas.  

Some progress can be made by the use of advanced radar modes. Figure 6.2 shows a single channel SAR 

image (left) of an area of scrubland containing some vehicles. These are difficult to see at first glance and 

would be challenging to an operator having to examine huge amounts of SAR imagery. However, the use of 

polarimetric decompositions enhances the contrast between the targets and the background making them 

more visible and hence more easily detected. Fundamentally, hard targets contain a great deal of dihedral 

scattering events, so an odd/even bounce decomposition will highlight these against the mixed polarisation 

of the scrubland.  

Moving towards the challenge of more complex clutter and the urban environment, approaches based on 

image segmentation to delineate and remove the unwanted clutter objects are one way forward. 

Alternatively, collateral information in the form of maps or other sensor information can provide a template 

of the buildings in the scene which can be masked out so that the search for targets is confined to only those 

regions where valid targets can be found. This is an ongoing challenge and leads on to the idea of using 

contextual information.  

Figure 6.2: Use of polarimetry to enhance contrast of target signatures against scrubland 
background. (Courtesy of QinetiQ) 

P 
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6.2 Contextual information 

It has been standard approach to ATR to extract an image chip containing the target and perform the 

classification purely on the basis of this chip. However, certainly in the ground target case, there is a 

substantial amount of contextual information that an operator would use in making a target declaration which 

is ignored in this “tunnel-vision” approach. For example, the nearby lines of communication, the type of 

terrain and the military doctrine which govern deployment of targets will influence the probability of a target 

of a particular type being present.  

To illustrate this, Figure 6.3 shows the process involved in achieving enhanced detection using such 

contextual information. There are three types of contextual information. Firstly it is known that some areas 

of terrain are easier for vehicles to move over than others. Secondly, military doctrine dictates that vehicles 

park up close to hedge boundaries and tree lines rather than in the open. Thirdly, military doctrine dictates 

that vehicles travel in groups rather than individually. On the basis of the first two of these, the thresholds of 

a detector are adjusted as illustrated in the centre image so that regions where it is more likely that targets are 

present are examined more closely (whiter). Once an initial set of detections has been obtained, an iterative 

process is followed in which the thresholds are adjusted in the locality of existing detections to accept more 

detections in these regions on the basis that there are likely to be more targets there. This simulated example 

showed that significant gains in detection performance could be achievable using such contextual 

information.  

More generally, the challenge of contextual information is to bring together collateral information in the 

form of maps and other geospatial products, other sources of imagery and rules of military behaviour to 

provide not only a n enhanced classification scheme but also an enhanced understanding of the entire scene 

from an operational perspective.  

Figure 6.3: Illustration of enhanced detection based on use of contextual information. (Courtesy 
of QinetiQ) 

6.3 Performance assessment & prediction 

A crucial aspect of achieving an operational ATR capability is the process of validating performance against 

the required specification. This is an area with multiple challenges. Firstly, being able to articulate the 

required operational performance in terms that can be meaningfully assessed is not straightforward. 

Typically the metrics used in discussions of performance in the literature will not ideally match the key 

performance metrics for operations.  
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Figure 6.4: Conceptual illustration of output from ATR theory. (Courtesy of AFRL) 

A second issue with performance assessment is that test data will not always be available. It may be that it is 

prohibitively expensive to gather sufficient data to populate the region of operational conditions. 

Alternatively, in the design stage it may be wished to understand the trade-off in radar parameter choices in 

terms of eventual ATR performance prior to building any demonstrator system. The resulting challenge is 

then to develop a theory of ATR that allows prediction of performance as a function of the variable that 

define the radar system, the target set, the operational scenario, the environmental conditions, etc. This is 

illustrated in Figure 6.4, which shows conceptually how performance may be plotted against a number of 

variables as a result of such a theory to allow the interaction of the various defining factors to be explored. It 

is fair to say that this is a huge challenge although research is ongoing in some areas.  

7. CONCLUSIONS

An overview of the fundamentals of ground target recognition using SAR has been given. It has been argued 

that radar ATR is not a single problem that can or cannot be solvable but that it is a continuum of problems 

of varying degrees of difficulty and complexity all of which provide useful military capability. This was 

essentially the viewpoint articulated by the NATO SET111 Task Group on ground target recognition at the 

conclusion of that activity as illustrated in Figure 7.1. Operational radar ATR systems already exist and the 

overarching challenge is to push forward the solution space to achieve successful operation in more difficult 

and complex circumstances. To achieve this, a number of key specific challenges have been identified and 

discussed and to a large extent it is these challenges which current researchers are tackling. Hopefully this 

lecture series will inspire those attending to contribute to the effort to solve these challenges and provide 

NATO with enhanced military capability.  
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bandwidth  … channels (freq., polar., InSAR …)  … multi sensorsSide orders

1  … 10  … all targets on sceneNb.Target/class

Scene :

monolook … multi-looks  … multi-aspects  …Radar(s) mode

Photos … expert … 3D CAD (rough … fine)  ISAR/turntable  SARRef. Data

Reference :

« Free » … radar cost  … multi radars &/ collectionsCost
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0  1  … 10  … unknownNb. targets

bandwidth  … channels (freq., polar., InSAR …)  … multi sensorsSide orders

1  … 10  … all targets on sceneNb.Target/class
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« Free » … radar cost  … multi radars &/ collectionsCost

50%  … 80%  … 90%  … ~100%Success (PD)

10%  … 1%  … 5e-3%Error (PFA)

days  … hours  … minutes  … real timeTime to

detection … classification (rough … fine) … identification … technical analysisLevel

Performance :

uniform (field)  … dense & complex (urban, forest)Clutter

1  … known  … estimated  … unknownNb. variants

0  1  … 10  … unknownNb. targets

Figure 7.1: Complexity of challenges (green easier, red harder) as assessed by SET-111. 
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