Transfer of Manual Flying Skills from PC-Based Simulation to Actual Flight –
A Comparison of In-Flight Measured Data and Instructor Ratings

Jan Joris Roessingh
National Aerospace Laboratory NLR
Anthony Fokker Weg 2
1059 CM Amsterdam
The Netherlands
roess@nlr.nl

ABSTRACT

Three groups of novice pilots received training to fly aerobatic maneuvers in a light aircraft. Trainees in the control group received in-flight instruction and were given the usual briefings before each flight. Trainees in the two experimental groups received extra training: each in-flight lesson was preceded by PC-based simulated flight. A total of 2053 maneuvers were analyzed on the basis of both flight-data recordings and instructor ratings. We hypothesized that complex manual flying skills, learned on the ground, transfer to the aircraft. The results provide no objective support for this hypothesis. There were no significant differences in flying skills between the three groups as measured by the flight-data recordings. However, both experimental (PC-) groups managed to fly significantly more maneuvers in the same amount of flight time in the aircraft. Differences between flight-data recordings and instructor ratings are analyzed in detail. In the discussion, we compare the findings with published transfer-experiments with PC-based simulation.

1.0 INTRODUCTION

1.1 Low-Fidelity Training In Flight Instruction

Traditionally, the design of flight simulators for pilot training has been based on the assumption that the more a simulator behaves, responds, feels and looks like a real aircraft, the better will be the training. This is what we call the ‘high-fidelity view of flight simulation’. However, this view has changed somewhat over the last few decades. Positive transfer to the actual in-flight environment has been demonstrated with low-fidelity PC-based simulation training in a number of experimental transfer studies ([1], [2], [3], [4], [5], [6], [7], [8], [9], [10]) that focus on the initial stage of flight training.

1.2 Moving Away From Fidelity

Intentional deviations from fidelity may even contribute positively to transfer, as was demonstrated by [8]. This evidence is supported by other transfer experiments that fall outside the PC-based category. An example is transfer to landing skills under crosswind conditions, which was higher after training without crosswind than after training with crosswind [11]. A number of experiments with ‘augmenting’ visual objects (such as
gradient lines and poles) in the simulated landing scene also demonstrated an increase in transfer to the flight situation (e.g. [12], [13]). In [14] it was concluded: ‘It is this type of result that establishes the need for a theoretical conception of skill transfer that does not rely on the notion of fidelity’.

Figure 1: The five aerobatic maneuvers in the experimental task: (1) loop, (2) left slow roll, (3) inverted flight (½ left roll, 10 seconds inverted, ½ left roll), (4) Immelmann (½ loop, ½ left roll), and (5) Split-S (½ left roll, ½ loop).

1.3 Experimental Approach

In this research, we investigate learning curves of trainees who practice aerobatic maneuvers in an aircraft under supervision of an instructor. The goal task was to fly five aerobatic maneuvers (the loop, the slow roll, inverted flight, the Immelmann and the split-S) in a fixed-order continuous sequence (figure 1).

We measured the skill level of each trainee by the accuracy with which each maneuver was flown, during ten consecutive flight lessons of 30 minutes each. The learning curve is the plot of skill level (accuracy expressed as performance score) against the number of practice hours in the aircraft.

Trainees were assigned to groups with different training regimes, that is, ‘no ground-training’, ‘ground-training with a standard PC-based simulator’ and ‘ground-training with a PC-based simulator with extra features’. Assignment to groups was balanced with respect to capabilities of trainees.

Aerobatic skills are needed for the execution of a series of complex aircraft control actions while unusual attitudes and forces are being experienced. The working hypothesis in training applications is that these skills only transfer from a situation that is identical or almost identical to the in-flight situation. This is a solid hypothesis in the absence of convincing counter-evidence. Moreover, with regard to these skills, one should not rule out the possibility of negative transfer from training environments that depart considerably from full fidelity.
The alternative hypothesis, which is investigated in this research, is that aerobatic skills learned in a low-fidelity environment have a positive transfer to the aircraft. To this end, one ‘suitable’ low-fidelity environment may be sufficient to prove the alternative hypothesis. However, critical transfer elements in simulations are difficult to identify, since there are no precise theoretical principles (e.g. [14], [15], [16]) such as how to configure such a simulation in order to induce measurable transfer. Therefore, we dealt with this issue in a practical manner. Before the experiment, we asked a number of aerobatic instructors to fly the sequence of maneuvers with the simulation software package [17] and to give their assessment of the value of the package in training the experimental task.

There was agreement among these aerobatic instructors that, despite the limitations of PC-based simulation, the package provided specific features, including a relatively sophisticated aerodynamics software model, out-of-the-window view, instrument panel and engine sounds, all specific for the aircraft type on hand, which in the past could only be achieved on expensive and complex simulation systems.

In the development phase preceding the experiment we additionally undertook a pilot training with novices and experienced pilots. On this basis we speculated which optional features of the software could promote transfer. For example, for learning to fly a maneuver such as the loop, only one reference line on the ground is needed; thus terrain detail did not seem to be overly important. On these grounds we defined two different configurations of the low-fidelity environment in order to extend the range of possible outcomes of the experiment.

The first configuration consists of a software package [17], with which simulated aerobatic maneuvers can be practiced, installed on a standard PC with basic options. The second configuration, based on the same software package [17], has a number of extra features that are thought to improve the first configuration, such as a cockpit-like physical environment. A realistic layout of stick, rudder pedals and throttle improves the mapping of motor responses. Additionally, automatic instructional feedback is provided, which will be explained in the methods section. We additionally tested and fine-tuned the second configuration with input from aerobatics experts. There was a consensus that there was ‘a good chance’ that the thus configured PC-based simulations could improve the manual flying skills of aerobatics trainees. These expectations form the basis for the experiment. The real version of the aircraft on which the software package is based will be used for the in-flight evaluations.

Unlike experimental designs in which the goal is to evaluate a certain aspect of the simulation, such as the level of detail of the visual scene, the current experimental configurations intentionally differ from each other in multiple aspects. We thus increase the probability that differences in transfer are measurable if there is any (either positive or negative) transfer at all, relative to a control condition. Also, we thus disregard the option to determine systematically which elements of the second configuration will lead to differences in transfer.

In the following sections we present the method and the results and analyze the differences in the learning of the three groups, using both the measured flight-data (with equipment installed in the aircraft) and the instructor ratings. In the discussion section we compare the findings with previous transfer studies.

2.0 METHOD

2.1 Task

The task was to fly five aerobatic maneuvers in a fixed-order continuous sequence on a light aerobatic aircraft. The five aerobatic maneuvers are the loop, slow-roll, inverted flight, Immelmann and split-S, the trajectories
of which are sketched in figure 1. Each of these maneuvers takes a skilled pilot approximately 20 seconds to complete.

Fully satisfactory completion of the task required the achievement of five binary (pass/fail) criteria per maneuver, resulting in 25 criteria in total, which are listed in appendix A. The criteria were chosen in consultation with aerobatics experts. The criteria were selected because of their importance for the maneuver and on the basis that the flight instructor should be able to decide, if necessary with the aid of cockpit instruments, whether the criterion has been satisfied or not. Moreover, a suitably low number of criteria were selected to allow the instructor to complete the score form, while seated behind the trainee in the aircraft.

2.2 Trainees

Twenty-four trainees were selected from a larger group of 60 candidates, all students from a school for commercial pilots. Initial selection took place on the basis of body weight (maximum 80 kg, a limit dictated by aircraft performance), age (maximum 27 years), fixed wing flying experience (maximum 250 hours) and absence of aerobatic experience. This initial selection excluded 29 candidates. Three more subjects were excluded for physical reasons during an in-flight aerobatic resistance test. The remaining 28 candidates completed the Aiming Screening Task [18], a task that is known to be a reasonable predictor for training success on complex tasks. Average score on this task was 800, with a standard deviation of 160 and scores ranging from 480 to 1100. The distribution of scores over the candidates was an approximately normal distribution.

On the basis of the score on this task, each trainee was assigned an initial ability level: Low (L), Low-Medium (LM), High-Medium (HM) or High (H). Three groups of eight trainees were formed, each group containing two Ls, two LMs, two HMs and two Hs. The remaining four candidates were discharged. The groups were randomly assigned to conditions: normal treatment (the Control group, which we will label as the ‘C-group’), ground-training with a Standard PC-configuration (the ‘S-group’) and ground-training with a PC-configuration with extra features (the ‘X-group’).

During the course of the experiment, three more trainees failed to meet the procedural standards described in this section. The flight school, at which the trainees were recruited, initially provided incorrect flight-medical information for one trainee from the C-group. On the basis of later information, this trainee could not be considered representative of the population under study. Another trainee, from the S-group, dropped out during the course of the experiment for previously unnoticed medical reasons. Finally, one trainee from the X-group had not reported properly regarding his experience (expressed in number of flight hours) during selection for the experiment. Later information revealed that this trainee had too many flight hours to be representative for the trainee-population under study. The performance scores of these trainees will be excluded from the subsequent analysis. The three trainees were not replaced, consequently the subsequent analysis is based on three groups of seven trainees.

2.3 Procedure

General

All trainees received ten flight lessons of thirty minutes in a light aircraft (see equipment section), with an instructor in the back seat, who was responsible for in-flight instruction and rating. Each trainee received only one flight lesson per day.
The experiment started with the flights of the C-group. Subsequently, the flights of the S-group were flown and finally the flights of the X-group were flown. Since all trainees attended the same flight school daily, this schedule was chosen since it was likely to cause the least ‘cross-talk’ between trainees of the different groups. Hence, trainees of the C-group were prevented from becoming acquainted with the extra training and simulation-configurations of the S- and X-groups, and trainees of the S-group could not be exposed to the simulation-configuration of the X-group. However, it was practically impossible to keep the three flight-instructors unaware of the experimental setup.

Theory

Well before the start of the experiment, all trainees received a paper manual, which included essential information about performing the aerobatic task. Just before the start of the training, all trainees had to pass a formal theoretical test with 23 questions on the principles of the task. In addition, each trainee received a set of five ‘cue cards’, one for each maneuver to be flown. Each of these cards depicted a maneuver and specified the criteria for acceptable performance.

Flight Instruction

Three instructors relieved each other during subsequent flights and days on the basis of their availability. As a result, trainees saw two or three different instructors during the ten flight lessons. Due to the weather, flights could be postponed until a later date. Sometimes the weather was unclear or the cloud base was too low to allow visual flight.

The trainees received normal briefings and debriefings from the designated flight-instructor before and after each flight lesson. Each flight lesson included the transit flight from the airport to the nearby flying area where the maneuvers were flown and vice versa.

The first flight lesson consisted of a practical introduction to flying aerobatics and familiarization with the aircraft. The instructor demonstrated the sequence of five maneuvers, after which the trainee could have a first try at flying the sequence, while being talked-through by the instructor.

In the following lessons, each maneuver was practiced one-by-one in the order listed in the task description. The instructor rated each maneuver flown by the trainee on the basis of the binary criteria of appendix A. The pass or fail (0 or 1) relating to each criterion was scored on a pre-printed score form, which was held on a knee-pad during the flight.

Once a maneuver was mastered, according to criteria listed in appendix A, the next maneuver was practiced until the trainee could fly the whole sequence of five maneuvers in a continuous fashion. However, the instructor could decide to deviate from this schedule whenever this seemed advisable (for example, depending on wind, presence of clouds, physical state of the trainee, etc.). In the last two lessons the trainees had to fly the whole sequence twice per lesson, as accurately as possible.

Ground-training

Trainees in the C-group received no specific ground-training but had to prepare themselves before each flight lesson using the training manual.

The S- and X-groups received simulation sessions preceding each flight lesson. These sessions were organized identically for the two groups. Each session took approximately 50 minutes. The first simulation session
consisted of familiarization with the simulation package, a trial on each maneuver and a trial on the complete sequence. The following simulation sessions consisted of the repetition of problematic maneuvers as indicated by the flight instructor during the previous flight lesson and the preparation of new maneuvers.

When the trainee practiced a maneuver, instructional feedback was presented automatically in text on the computer screen. During the maneuver, the name of the maneuver (‘loop’, ‘slow-roll’, etc.) was displayed. In the center of the computer screen, an arrow indicated the direction in which the aircraft should be flown. After each maneuver, a performance rating was displayed. The nature of the deviations from the desired flight profile was presented in terms of altitude, heading, etc. and the most problematic part of the maneuver was indicated. There was no mediation by a flight instructor during the simulation sessions. However, the sessions were supervised by the experimenters and assistance was provided in case of problems with the equipment.

2.4 Equipment

![Figure 2: The Bellance Super Decathlon used in the experiment, with the flight data measurement equipment in the back of the aircraft, used for 16 Hz sampling of 12 flight parameters.](image)

Aircraft and on-board equipment

A light propeller aircraft, the Bellanca Super Decathlon, suitable for aerobatic operations, with a single piston engine of 180 hp was used for the training (see figure 2).

The following flight data were measured and logged with specially installed on-board equipment: altitude, indicated air speed, the three orientation angles, the three angular rates, the three linear accelerations and type of maneuver (the latter recorded manually via a switch operated by the instructor).

Ground equipment and software

A commercially available software package [17] allows for the practice of aerobatic maneuvers on a PC by simulated flight. The package has relatively accurate aircraft flight models, including that of the Bellanca Decathlon, which is used for the flight lessons. However, the specifications of the simulated Bellanca Decathlon do not fully match those of the real aircraft. A noticeable difference is that the entry speeds for the real aerobatic maneuvers are approximately 20% lower than the entry speeds that are required for acceptable performance in the simulation.

The package was installed on a Pentium PC, equipped with sound card and stereo loudspeakers. The lower half of the color PC screen (640 x 480 pixels) depicted the cockpit instruments; the upper half of the screen presented the forward out-of-the window view (see figure 3).
The renderer was set up such that the terrain (3D photo-realistic) was represented with only a low level of detail. The sky was presented with some haze but without clouds. Engine noise and wind effects were clearly audible. The standard keyboard was replaced by a small keyboard with only the six keys that were needed to run the simulation sessions. Three of the keys, <glance up>, <glance left>, <glance right>, could be used with one hand to replace the forward out-of-the-window view by the view through the roof window, left window or right window, respectively.

The S-configuration, with which the S-group was trained, was equipped with inexpensive plastic spring-loaded game controls: Pro Throttle, Pro Pedals and a right hand stick Flightstick Pro (all by CH-products). Furthermore, this configuration consisted of a 17-inch monitor and standard furniture.

The X-configuration, with which the X-group was trained, was equipped with steel spring-loaded controls mounted on a fixed base such that their shape, position and displacement stroke resembled these characteristics of the controls in the aircraft. The seat resembled the seat in the aircraft and was adjustable as in the aircraft, such that the workspace closely mimicked that of the real cockpit with respect to position and stroke of stick, rudder pedals and throttle. A 21-inch color monitor could be tilted and adjusted in height and provided approximately 30 degrees horizontal and 22 degrees vertical field-of-view.
In this second configuration, two extra instructional options of the software package were installed. First, when the deviations from the desired flight profile exceeded particular limits during a trial on a maneuver, a so-called ‘stick arrow’ and/or ‘pedal arrows’ appeared on the screen. These arrows indicate in which way the stick or the pedals should be moved in order to correct the maneuver. All possible arrow symbols are shown in figure 4. Second, the instructions and automatic feedback that were presented in text and in graphics were also presented in audio via a set of loudspeakers. These spoken comments and directions from a ‘synthetic instructor’ were more elaborate than the plain text and graphics displayed on the computer screen.

3.0 RESULTS

3.1 Number of maneuvers flown

All flight lessons had a fixed duration of 30 minutes. The number of maneuvers to be flown in the first lesson was fixed. This lesson consisted of a demonstration of the sequence of 5 maneuvers, followed by an exercise in which the trainee had to fly the sequence while being talked through by the instructor. In lessons 2 to 8 the number of maneuvers to be flown during each 30 minutes of flight time was flexible. In lessons 9 and 10, a fixed number of two sequences (10 maneuvers) had to be flown.

The 21 trainees who finished the experiment flew a total of 2053 aerobatic maneuvers. The C-group flew 623 maneuvers, the S-group 680 maneuvers and the X-group 750 maneuvers in total. We analyze the differences in the number of maneuvers flown during the ‘flexible’ lessons 2-8 (at a 5 percent significance level).

Trainees in the S- and X-groups flew more maneuvers per lesson than trainees in C-group. Trainees in the C-group completed on average 9.0 maneuvers per lesson, trainees in the S- and X-groups completed on average 10.2 and 11.4 maneuvers per lesson, respectively. We tested the differences with a two-tailed t-test for differences between means; differences in number of maneuvers per lesson were matched on the basis of lesson number.

The differences between the S- and C-group and between the X- and C-group are significant ($t(48)=2.30, p=0.023$ and $t(48)=4.52, p=10^{-5}$, respectively). The difference between S-group and the X-group is not significant ($t(48)=1.97, p=0.052$).

All three groups demonstrated a significant increase in the number of maneuvers flown per lesson. The average start level for all three groups was 7.6 maneuvers per lesson. In each subsequent lesson, trainees in the C-group managed to fly an extra 0.3 maneuver, and trainees in the S- and X-groups managed to fly an extra 0.5 and 0.75 maneuvers respectively. Again, the differences between the S- and C-group and between the X- and C-group are significant ($t(41)=2.0, p=0.046$ and $t(41)=4.75, p=5\cdot10^{-6}$, respectively). The difference between the S- and X-group is also significant ($t(41)=2.48, p=0.015$).

However, it should be noted that the number of maneuvers flown per lesson of thirty minutes was not properly controlled by the experiment. Firstly, the time needed for transit from the airport to the flying area and vice versa is not necessarily constant. Each maneuver takes only about 20 seconds, and the time between maneuvers is taken up by non-specific flying activities, which can be a variety of activities such as physical and mental recovery of the trainee after a maneuver, verbal feedback and instruction, relocation to avoid clouds, etc.
3.2 Pre-flight briefing

A side effect that was observed in the experiment was that trainees in the S- and X-groups needed less pre-flight briefing time after each 50 minutes of simulation. Since trainees reviewed the maneuvers of the previous flight lesson and prepared the maneuvers for the next flight lesson with the aid of simulation, briefing times went down from approximately 15 minutes for the C-group trainees to approximately 5 minutes for the S-group trainees and to almost zero briefing time for the X-group trainees.

3.3 Accuracy of performance

All the maneuvers were recorded with the in-flight data recording equipment. The in-flight performance was analyzed after the experiment using predefined criteria as listed in appendix A. In addition, the instructors scored the performance of the trainee during the flight on the basis of observations of aircraft behavior and instrument readings, using criteria identical to those listed in appendix A.

As an example, we graphed six of the recorded flight parameters during one loop of one of the trainees (figure 5); from these we extract a performance score as follows.

![Graphs of flight parameters](image)

Figure 5: Record of flight parameters for the loop – trainee S7 (S-group) – flight 10.
From the graphs in figure 5 it can be seen that loop-entry starts at t=10 s. At this point, the aircraft has gained speed (in this case from 130 mph to just over 150 mph) and is straight and level. The aircraft loses speed as soon as the nose of the aircraft is pulled up. The trainee pulls the stick towards him to raise the nose of the aircraft and to gain altitude. After few seconds (at t=14 s) the aircraft will have maximum acceleration (G_z), which, as apparent from the acceleration-graph in figure 5, is only 2.9 g in this case.

At the top of the loop (at about t = 20 s), the aircraft is completely upside-down. Note that the pitch angle (i.e. the angle over which the nose of the aircraft is raised) passes the zero degrees level. At this point the trainee has to ensure that the aircraft has its wings level; this criterion is fulfilled in the case depicted in figure 5: absolute roll angle is approximately 180 degrees in the top of the loop.

After the top, the aircraft should regain speed and acceleration in a controlled fashion, towards the bottom of the loop. When the aircraft has leveled-off, at loop-exit (t=30 s), its altitude should be approximately equal to that at loop entry. However, the altitude graph in figure 5 shows that the trainee has lost some altitude. He started the loop well above 1900 ft and ended just above 1800 ft, a loss of well over 100 ft. Also, the compass heading at the exit of the loop should equal that at entry of the loop, which is indeed the case.

Thus, if we apply the criteria listed in appendix A to the loop illustrated in figure 5, the result is that the entry speed is more than 10 mph too high, the acceleration at pull-up is 1.1 g too low, and the altitude loss is more than 100 ft. Consequently, this trainee fulfilled only two out of five criteria, and hence obtains a performance score of only 40% for this maneuver. All 2053 maneuvers were analyzed in this way, using the criteria listed in appendix A.

3.4 Group learning curves

In figure 6(a), we have depicted the in-flight learning curve of the C-group (control group) for lessons 2 to 10. The learning curve was reconstructed from an analysis of the in-flight recorded data. The performance scores of the first lesson are not included since this lesson was a familiarization lesson, with an organization different from that of the subsequent lessons. The performance scores have been averaged over all maneuvers per lesson and over the seven trainees in the group. The error bars represent the standard deviation in the score of the control group, one standard deviation in upward direction and one in downward direction.

It is apparent that the C-group, as a whole, demonstrated substantial progress over the 10 flight lessons (roughly 20 percent performance improvement as measured by the predefined criteria). However, there are considerable differences between individuals, which is typical for all three groups. These will be further analyzed in the next section.

In figure 6(b), we have depicted the in-flight learning curves for all three groups: (1) the control group (C), (2) the group that received ground-training on a standard PC (S) and (3) the group that received ground-training on a simulation configuration with extra features (X). It is apparent that all three groups demonstrated considerable progress over flight lessons 2-10 and that the learning curves on the basis of in-flight recordings reveal few differences between the groups. The S- and X- groups do not seem to benefit from the additional ground-training with PC-based simulation. We will further analyze the effects in the next section.
3.5 Regression analysis of the in-flight data

In order to determine to what extent the additional ground-based simulation contributed to the in-flight performance of the S-group and the X-group, we carried out a standard linear regression analysis to identify the main effects. The dependent variable is the performance score (P, 0-100%), which is the average score of an individual trainee per flight-lesson, derived from the in-flight recorded data, as explained in the previous section. Thus, the score in each flight lesson is considered as an observation. The experimental treatment (C, S or X) is the qualitative independent variable. We used two binary dummy-variables s and x to encode the treatment quantitatively. That is, s is 1 for each flight of a trainee from the S-group, and otherwise 0.
Likewise, \(x \) is 1 for each flight of a trainee from the X-group, and otherwise zero. Because of the large variability in performance, as reflected by the learning curves of figure 6, we used three extra independent variables:

- First, because the learning effect as a result of the flight-lessons is evident, we used lesson-number \((n, 2 \leq n \leq 10) \) as a covariate.

- Second, we received, for each trainee, a data-file which was prepared before the experiment by the Aeromedical Institute, the central pilot selection agency in the Netherlands. These files reported the scores on twelve different tests, which are thought to measure different pilot abilities. The average score for an individual on these twelve tests is a notable figure used in pilot selection by this agency. After linear scaling, we used this score as a covariate, denoted by the symbol \(a \). Average \(a \) was 86%, with a standard deviation of 7% and a range from 74%-100%.

- Third, since three different instructors (U, V, W) served as in-flight instructors, we encoded the presence of the instructor in a flight with two binary dummy-variables, \(u \) and \(v \). For a flight with instructor U, \(u \) is 1. For a flight with instructor V, \(v \) is 1. For a flight with instructor W, both \(u \) and \(v \) are zero.

Hence, our model for performance score \(P \) on the basis of flight-data recordings becomes:

\[
P_i = \beta_0 + \beta_1 S_i + \beta_2 X_i + \beta_3 n_i + \beta_4 a_i + \beta_5 u_i + \beta_6 v_i + e_i, \tag{1}
\]

in which \(e_i \) is the residual error in observation \(i \).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient (\beta)</th>
<th>T-value</th>
<th>p-level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant (intercept)</td>
<td>3.49</td>
<td>0.41</td>
<td>0.69</td>
</tr>
<tr>
<td>Standard PC-configuration (s)</td>
<td>-2.65</td>
<td>-1.52</td>
<td>0.13</td>
</tr>
<tr>
<td>Extra PC-configuration (x)</td>
<td>-1.79</td>
<td>-1.07</td>
<td>0.29</td>
</tr>
<tr>
<td>Flight lesson number (n)</td>
<td>2.71</td>
<td>10.3</td>
<td>(<10^{-6}) *</td>
</tr>
<tr>
<td>Pilot Ability score (a)</td>
<td>0.46</td>
<td>-4.82</td>
<td>(3\times10^{-6}) *</td>
</tr>
<tr>
<td>Instructor (u)</td>
<td>-4.17</td>
<td>-2.15</td>
<td>0.033</td>
</tr>
<tr>
<td>Instructor (v)</td>
<td>-0.61</td>
<td>-0.40</td>
<td>0.69</td>
</tr>
</tbody>
</table>

The results in table 1 show that overall model utility is high \((F(6, 181)=26.5, \ p<10^{-6}) \), but with a coefficient of determination \(R^2 \) of only 0.48, such that 52 percent of the variance in performance scores (see also figure 6) is left unexplained by the model of equation (1). The intercept \(\beta_0 \) is not significantly different from zero.

Most importantly, table 1 reveals that the experimental ground-training had no significant effect on in-flight aerobatic performance, when compared to the control condition. Thus, neither the ground-training with the standard PC-configuration for the S-group, nor the ground-training with the PC-configuration with extra features for the X-group had any effect, according to the linear regression model of equation (1).
The covariates reveal the following:

- The number of flight lessons n had a significant effect on performance, with an estimated increase of 2.71 percent per flight lesson.
- Also, the pilot ability score a, is a significant predictor of in-flight aerobatic performance. A percent increase in score a is estimated to yield a 0.46 percent increase in aerobatic performance.
- Finally, one of the instructors (instructor U) had a significant effect on in-flight performance, which is negative in comparison with the other two instructors.

We subsequently investigated the interactions between independent variables, but these were not significant.

3.6 Group learning curves according to instructor ratings

Instructors agreed to use the binary criteria of appendix A, and rated each maneuver during the flight. When we consider the learning curves on the basis of instructor ratings as depicted in figure 7, two characteristics attract attention. First, all ratings are generally higher than in figure 6, an indication that the instructors were generally more tolerant in the judgment of the criteria than justified by the in-flight measurements. Second, already in the second flight lesson the X-group receives higher ratings than the S-group. The higher ratings persisted throughout the remainder of the training. These differences will be further analyzed in the next section.

![instructor ratings- all groups](image)

Figure 7: in-flight learning curves based on instructor ratings for all three groups; the control group (C), the standard PC-group (S) and the extra PC-configuration –group (X).

3.7 Regression Analysis of the Instructor Ratings

We carried out an additional regression analysis to investigate the instructor ratings. In this analysis, performance score (P', 0-100%) on the basis of instructor ratings is now the dependent variable. As in the previous analysis, the experimental treatment (C, S or X) is the independent variable, and the same covariates (n, a, u, v) are used. Hence, the model for performance P' on the basis of instructor ratings is identical to the model of equation (1).
Table 2: Multiple regression analysis results of instructor ratings for aerobatic performance in nine flight lessons (2-10). Significant effects (at the 5 percent level) are denoted by an asterisk (*).

Model for performance (equation 1) applied to instructor ratings: $R^2 = 0.59, F(6, 180)=42.8, p<10^{-6}$			
Variable	Coeff. β	T-value	p-level
Constant (intercept)	41.8	4.69	$5 \cdot 10^{-6}$ *
Standard PC-configuration s	-1.42	-0.79	0.43
Extra PC-configuration x	5.63	3.21	$2 \cdot 10^{-3}$ *
Flight lesson number n	3.20	11.6	$<10^{-6}$ *
Pilot Ability score a	0.25	2.50	0.013 *
Instructor u	-10.0	-5.04	$1 \cdot 10^{-6}$ *
Instructor v	4.06	2.53	0.012 *

As in the previous analysis, based on the flight data recordings, the current results of table 2 show that overall model utility is high ($F(6, 180)=42.8, p<10^{-6}$). The coefficient of determination R^2 is 0.59, which is higher than in the previous analysis (0.48).

3.8 Comparison between instructor ratings and in-flight data

In contrast to the analysis of in-flight data, the PC-configuration with extra features for the X-group contributed positively and significantly to aerobatic performance, but the ground-training with the standard PC-configuration for the S-group had no significant effect, according to instructor ratings. Table 2 further reveals that the intercept of the model for instructor ratings is significantly larger than zero and is estimated at 41.8 percent, indicating a large overall bias in instructor ratings when compared to the analysis of in-flight data in table 1.

Additionally, table 2 reveals the following:

- The number of flight lessons n contributes significantly to performance rated by the instructors, with an estimated magnitude of the effect of 3.2 percent per flight lesson, which is slightly larger than the effect of n (2.7 percent per flight lesson) in the previous analysis of in-flight data.
- As with the analysis of in-flight-data, pilot ability score a has a significant effect on instructor ratings.
- Finally, different instructors have significantly different effects on the ratings. Instructor U gave significantly lower ratings, and instructor V gave significantly higher ratings than instructor W.

The main result of this analysis is that there is no conformity between instructor ratings and in-flight data. The two scores are in disagreement with respect to the contribution of the PC-configuration with extra features. Moreover, there are significant differences between instructors.

3.9 Analysis of the differences in instructor ratings

To clarify the general differences between instructors-ratings and the in-flight recorded data, we consider how the instructors shared the flights of the three different groups between them (see table 3).
Transfer of Manual Flying Skills from PC-Based Simulation to Actual Flight
– A Comparison of In-Flight Measured Data and Instructor Ratings

Table 3: Distribution of experiment flights over instructors

<table>
<thead>
<tr>
<th>Group</th>
<th>Instructor U</th>
<th>Instructor V</th>
<th>Instructor W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group C</td>
<td>4.8 %</td>
<td>54.0 %</td>
<td>41.2 %</td>
</tr>
<tr>
<td>Group S</td>
<td>36.5 %</td>
<td>39.7 %</td>
<td>23.8 %</td>
</tr>
<tr>
<td>Group X</td>
<td>28.6 %</td>
<td>34.9 %</td>
<td>36.5 %</td>
</tr>
</tbody>
</table>

Table 3 reveals that the distribution of the three instructors over the flights of the C-group was not balanced. For the S- and X-groups, the balance was better, but not perfect. Thus, because the three instructors rated differently and since the flights were not evenly distributed over the three instructors, the differences in rated performance between groups are comprehensible.

However, the data in table 3 does not explain why the X-group was rated significantly higher than the C-group, while the relative share in flights by the ‘negative’ instructor U (as apparent from the analysis of in-flight data) was much higher during the period in which the X-group was trained. This leads to the assumption that the instructor-ratings hide interaction effects between the instructors and groups.

To investigate this assumption we extend our model for performance score \(P' \) on the basis of instructor ratings with four interaction terms (with coefficients \(\beta_7 - \beta_{10} \)) to become:

\[
P_i = \beta_0 + \beta_1 \cdot S_i + \beta_2 \cdot X_i + \beta_3 \cdot n_i + \beta_4 \cdot a_i + \beta_5 \cdot u_i + \beta_6 \cdot v_i + \beta_7 \cdot u_i \cdot S_i + \beta_8 \cdot u_i \cdot X_i + \beta_9 \cdot v_i \cdot S_i + \beta_{10} \cdot v_i \cdot X_i + e_i. \tag{2}
\]

Estimates of the coefficients are summarized in table 4.

Table 4: Multiple regression analysis results of instructor ratings for aerobatic performance in nine flight lessons (2-10), including instructor-group interactions. Significant effects (at the 5 percent level) are denoted by an asterisk (*).

| Model for performance (equation 2) applied to instructor ratings: |
| \(R^2 = 0.62, F(10, 176) = 28.6, \ p < 10^{-6} \) |

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coeff. (\beta)</th>
<th>T-value</th>
<th>p-level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant (intercept)</td>
<td>39.4</td>
<td>4.46</td>
<td>1 \cdot 10^{-5} *</td>
</tr>
<tr>
<td>Standard PC-configuration</td>
<td>-0.55</td>
<td>-0.17</td>
<td>0.85</td>
</tr>
<tr>
<td>Extra PC-configuration</td>
<td>3.37</td>
<td>1.24</td>
<td>0.21</td>
</tr>
<tr>
<td>Flight lesson number</td>
<td>3.18</td>
<td>11.3</td>
<td><10^{-6} *</td>
</tr>
<tr>
<td>Pilot Ability score</td>
<td>0.29</td>
<td>2.91</td>
<td>0.004 *</td>
</tr>
<tr>
<td>Instructor u</td>
<td>-28.2</td>
<td>-5.02</td>
<td>1 \cdot 10^{-6} *</td>
</tr>
<tr>
<td>Instructor v</td>
<td>4.58</td>
<td>1.85</td>
<td>0.066</td>
</tr>
<tr>
<td>Interaction u (\cdot)</td>
<td>17.6</td>
<td>2.73</td>
<td>0.007 *</td>
</tr>
<tr>
<td>Interaction v (\cdot)</td>
<td>21.8</td>
<td>3.41</td>
<td>0.001 *</td>
</tr>
<tr>
<td>Interaction v (\cdot)</td>
<td>-3.69</td>
<td>-0.92</td>
<td>0.36</td>
</tr>
<tr>
<td>Interaction v (\cdot)</td>
<td>1.22</td>
<td>0.33</td>
<td>0.75</td>
</tr>
</tbody>
</table>
We tested whether the inclusion of four interaction terms (equation (2)) provide better predictions for instructor ratings than the model of equation (1), which is significant (F(4, 176)=3.6, p<0.05). In contrast with the results in table 3, table 4 reports that, in the presence of significant interactions, neither the ground training for the S-group nor that for the X-group had a significant effect on instructor ratings.

However, table 4 indicates that instructor U gave significantly lower ratings than the other instructors, that is, to the C-group. Moreover, considering the interactions between S- and X-groups and instructor U, that is, u_s and u_x, the model indicates that instructor U gave significantly higher ratings to the experimental groups S and X than did the other instructors. Possible differences between instructors V and W are not significant. Thus, during the course of the experiment, which started with the flights of the C-group and subsequently those of the S-group and X-group, instructor U significantly changed his rating behavior relative to the other two instructors, to the advantage of the S- and X-groups.

4.0 DISCUSSION OF RESULTS

In this research we analyzed learning curves - on the basis of in-flight recorded data - of three different groups, which received training in manual flying skills (aerobatics). Each group was subjected to a different type of ground-training preceding each flight lesson, that is, no simulation for the C-group, standard PC-simulation for the S-group, and PC simulation with extra features for the X-group.

We analyzed the accuracy of flight profiles for all aerobatic maneuvers during 189 flight lessons (all flight lessons except the first introductory lesson for each trainee) on the basis of 25 pre-defined criteria for the maneuvers to be flown, in terms of altitude, acceleration, speed, roll-angle, pitch-angle and heading. All three groups demonstrated a comparable level of skill at the beginning of the training and comparable progress per lesson of approximately 3 percent per lesson of the maximum attainable score. Despite the 500 minutes extra ground-training of the S- and the X-group, no significant increments or decrements in the level of manual flying skills were found as a result of the skills that were acquired with the simulation on the ground. Thus, there was neither negative transfer nor positive transfer of manual flying skills learned during the simulation lessons.

Measurable aerobatic skills were significantly determined by three other factors: flight-time in the aircraft, pilot ability as determined pre-experimentally by Pilot Ability score a, and the presence of specific flight instructors.

4.1 Instructor ratings

An analysis of in-flight instructor ratings, which were based on the same set of criteria, initially suggested a significant advantage for the X-group, i.e. positive transfer from the simulation lessons with the PC simulation with extra features. However, the analysis also revealed significant differences in the rating behavior of the three instructors. An additional analysis included the interactions between the instructors and the three groups. The change in rating behavior of one instructor explained an important difference between the instructor-ratings and the flight data recordings. It explained why the average ratings of the X-group were significantly higher than those of the C-group, whereas this was not found in the flight data. Thus, notwithstanding the use of clear rating criteria and standards, unreliable instructor ratings could not be prevented, as became apparent from the analysis of the recorded in-flight data and an in-depth analysis of instructor ratings.

The present study is unique in that it used equipment on board the aircraft to record flight data throughout the training of the three groups in order to evaluate flight-performance. All other transfer-of-training studies found
in the open literature (see the introduction section), which also dealt with low-fidelity/PC-based simulation, are based entirely on instructor judgments or instructor ratings. All these studies established positive transfer of certain skills from the simulation to real flight. On the basis of these studies the question that arises is why the present study failed to find transfer of aerobatic skills from PC-based simulation.

4.2 The specificity of transfer

One could argue that transfer effects for manual flying skills are very specific, i.e. that transfer can only take place for specific component skills, under specific conditions, and that transfer effects must be sought at a lower level of task performance. In our case, this could mean that no transfer was found because we measured skill level by an aggregated performance score based on 25 binary criteria. More detailed analysis of the flight data recordings of flight maneuvers could possibly reveal positive transfer for certain component skills and negative transfer for other component skills, such that the net result is zero transfer. However, in the current investigation all the 25 criteria together were generally agreed by aerobatics experts to reflect acceptable performance in the sequence of five maneuvers. Thus, only an aggregated performance score based on these criteria represents ‘manual flying skills’, and our hypothesis was that ‘manual flying skills’ transfer from PC-based simulation to real flight.

Other experimental transfer studies (e.g. [1], [7], [8]) also treated manual flying skills (in these cases, landing skills) as an aggregated whole. The dependent variable was the number of attempted landings by the trainee prior to release for solo flight, i.e. the instructor judged skill level in the aircraft, and on that basis the trainee was sooner or later released for solo flight. The trainees who received simulation training required significantly fewer pre-solo landings. Thus, the only dependent flight variable in these studies is the number of required pre-solo landings (or pre-solo flight time) as judged by a flight instructor. A transfer study [9] was undertaken to investigate the transfer of basic flying skills (straight-and-level flight and standard turns) from PC-based simulation to the in-flight situation. The experimental design was similar to the current study, i.e. a group with no simulation and two groups with simulations that differed in fidelity. Results were based on instructor ratings and subjective workload measures. The authors concluded: ‘The results suggest that PC-based flight simulators do not aid in the psychomotor skills required to fly a light aircraft. Their benefits lie elsewhere’.

4.3 The quality of the simulation and transfer

There might have been systematic qualitative differences in the type of training provided in our experiment with that provided in studies that did report a positive transfer-of-training effect, for example in terms of fidelity of the simulation and/or validity of the skills being learned. There is no way of ruling out this possibility, since there are few valid theoretical concepts on the basis of which it can be determined what the effect will be of deviations from full fidelity on skill transfer. Considering that others did find positive transfer from PC-based simulation, we need to consider how they dealt with the issue of fidelity.

The PCATD study [10] provides an example of how the issue of simulation fidelity is dealt with. In 1997 the US Federal Aviation Administration (FAA) allowed ‘PC-based aviation training devices’ (PCATDs) to be used for a maximum of 10 hours in the instrument training of pilots, whereas previously these 10 hours had to be trained in a more expensive simulator or in the real aircraft. Taylor et al. studied the transfer-of-training from such PCATD to real flight in a formal training program. On the basis of this well-controlled study it was concluded that: ‘transfer savings were generally positive and substantial when new tasks were introduced but low when tasks already learned in previous lessons were reviewed’.
To qualify as an FAA-approved PCATD, the PC-based simulation had to provide a training platform for at least the procedural aspects of flight relating to an instrument-training curriculum [19, p1]. Required features include (a) a displacement yoke or control stick, (b) self-centering rudder-pedals (c) a physical throttle lever, and (d) 12 additional physical controls for aircraft systems (e.g. flaps, propellers, radio, etc.). In [20] references from the literature and from the FAA were sought to support the need for the 12 additional physical controls for aircraft systems but the authors were unable to determine the empirical basis for these features.

4.4 The effect of non-specific flying activities

Could these transfer savings as reported by Taylor et al. be attributed to changes in flying skills? Instrument flying has certainly more procedural components than mere visual flying. However, some of the maneuvers, such as the steep turn on instruments, clearly call for manual flying skills.

Two of the ten flight lessons in the Taylor et al. experiment were fully dedicated to training steep turns. The control group, which only received training in the aircraft, needed on average 3.83 steep turns to reach acceptable performance. The experimental group, after being trained with the PCATD, needed on average 3.40 steep turns in the aircraft. There was no significant difference (0.43 trials) in the number of trials that the control group and the experimental group needed to achieve the criterion performance level.

However, when expressed in flight time, the control group needed on average 1.52 flight hours to demonstrate acceptable steep turns and the experimental group needed on average only 0.95 flight hours to demonstrate acceptable steep turns, a significant difference of 0.57 flight hours. Thus, surprisingly, the control group needed an extra 0.57 flight hours (34 flight minutes) for an extra 0.43 steep turns, whereas the net time for a maneuver such as a steep turn may be a minute or so. The only possible conclusion, which is acknowledged by the authors, is that the control group needed more ‘non-specific flying activities’. Thus, the significant advantage for the experimental group, in the case of training for steep turns, is caused by less non-specific flying time, or rather, by more efficient use of flight time.

In the current study, we also found significant advantages for both experimental groups in terms of less non-specific flying time. However, since non-specific flying activities are not under explicit control of the experimenter, one wonders whether the reduction of non-specific flying time should be regarded as ‘transfer-savings’ induced by the experimental manipulation. Moreover, the current study showed no measurable effect of non-specific flying in the flight data recordings.

4.5 Applications of PC-based simulation for manual flying skills

We found no evidence for the transfer of manual flying skills from PC-based simulation to real flight. In accordance with the PCATD study [10] the present study suggests an advantage in terms of routine for trainees that used PC-based simulation. However, we established that this procedural advantage for trainees that used PC-based simulation did not result in a measurable effect in manual flying performance.

A marginal advantage of PC-based simulation, observed in the current training program, is that trainees needed less briefing time from the instructor after every 50 minutes of simulation. Since trainees reviewed the maneuvers of the previous flight lesson and prepared the maneuvers for the next flight lesson with the aid of simulation, briefing times went down from approximately 15 minutes for the C-group trainees to approximately 5 minutes for the S-group trainees and to almost zero briefing time for the X-group trainees. This indicates that PC-based simulation serves as a kind of automatic briefing tool, which saves flight-instructor time. Obviously, this was an observed side effect and not within the research objectives of the current study.
5.0 REFERENCE SECTION

APPENDIX – PASS/FAIL CRITERIA USED FOR THE RATING OF A SEQUENCE OF AEROBATIC MANEUVERS

Loop
- Entry speed should be between 130 and 150 mph.
- Acceleration at pull-up should be 3.2 to 4.2 g.
- Roll angle in the top should be between 175 and 185 degrees.
- Heading at entry should equal (within 10 degrees) the heading at exit.
- Altitude at entry should equal (within 100 feet) the altitude at exit.

Slow Roll
- The roll-in rate should be less than 30 degrees per second.
- The roll-out rate should be less than 30 degrees per second.
- The variation in roll rate should be less than 10 degrees per second.
- Heading at entry should equal (within 10 degrees) the heading at exit.
- Altitude at entry should equal (within 100 feet) the altitude at exit.

Inverted Flight
- Entry speed should be between 120 and 140 mph.
- Duration of actual inverted flight should be at least 10 seconds.
- While inverted, the variations in roll angle should be less than 10 degrees.
- While inverted, average altitude loss/gain should be less than 10 feet/second.
- Heading at entry should equal (within 10 degrees) the heading at exit.

Immelmann
- Entry speed should be between 150 and 170 mph.
- Roll angle at entry should be smaller than 5 degrees in absolute value.
- Acceleration at pull-up should be 3.2 to 4.2 g.
- Altitude change during roll-out should be less than 100 feet.
- Heading at entry should be opposite to the heading at exit (within 10 degrees).

Split-S
- Entry speed should be less than 100 mph.
- Altitude change during roll-in should be less than 100 feet.
- The acceleration in the half-loop should be 3.2 to 4.2 g.
- Exit speed should be less than 160 mph.
- Heading at entry should be opposite to the heading at exit (within 10 degrees).