

John Gabriel Monroe, Matthew Doude, Tomasz Haupt, Gregory Henley, Angela Card, and

Michael Mazzola
Mississippi State University, USA

Scott Shurin
US Army TARDEC, USA

Christopher Goodin
 US Army ERDC, USA

John.G.Monroe@erdc.dren.mil

ABSTRACT

Ready for a High-Performance Computing (HPC) environment, the Powertrain Analysis and Computational
Environment (PACE) is a forward-looking, C++ simulation tool that provides advanced behavioral modeling of
the powertrain subsystem of a hybrid-electric or conventional vehicle. More specifically, PACE allows a power
train simulation created in Matlab/Simulink to be ported into a high-performance cluster computing
environment. Previously results with PACE involved advanced hardware and control features simulation of
modern vehicle architectures, but it did not include comprehensive thermal modeling of power train components.
Thus, a lumped-mass thermal model has been developed in Simulink separately from the original power train
model used in PACE. The thermal model is integrated into PACE using PACE’s built-in automated code
generation functionality and taking advantage of the PACE powertrain model’s modular structure. The
integrated thermal model’s output data demonstrates accurate results as compared to the standalone thermal
model developed in Simulink. This paper reports on the workflow and validation of a new capability added to
PACE that allows third-party (meaning non-Autonomie derived) external models to be integrated into PACE.

1.0 INTRODUCTION

The advancement of military ground vehicle technology necessitates state-of-the art simulation tools to design
and model systems that may not be physically realized; this is especially true for advanced fighting vehicles.
To this end, the U.S. Department of Defense’s CREATE-GV program is developing a comprehensive, multi-
physics simulation environment called MERCURY to facilitate high-resolution exploration of ground-vehicle
designs. MERCURY implements independent modules called ‘federates’ in parallel to model all aspects of
military ground vehicle mobility. An overview of the MERCURY Co-simulation Framework is given in
Figure 1. Because the MERCURY federates are co-dependent, solving the high-resolution model requires a
high-performance cluster computer.

STO-MP-AVT-265 10 - 1

PUBLIC RELEASE

PUBLIC RELEASE

Thermal Modeling in the Powertrain Analysis
and Computational Environment (PACE)

mailto:John.G.Monroe@erdc.dren.mil

Figure 1. The Mercury Co-simulation Framework.

The powertrain federate in MERCURY is the Powertrain Analysis and Computing Environment (PACE) [1].
PACE provides MERCURY with a comprehensive powertrain behavioral-model that includes all components
typical in a hybrid vehicle (engine, energy storage, transmission, electric motor, etc.). In the original report [1]
the powertrain model was built in the Autonomie modeling environment, which is a forward-looking modeling
tool developed by the Argonne National Laboratory [2]. Autonomie is based in Matlab/Simulink and was
created for the design and simulation of civilian vehicle powertrains. Autonomie is a validated [3–5] design tool
that provides accurate simulation of transient powertrain hardware and control features. However, PACE does
not replicate Autonomie models. Instead, it can convert a specific powertrain architecture developed in
Autonomie into C++ code that operates independent from Autonomie (a Microsoft Windows application) as a
domain-specific federate (i.e., functional module) of MERCURY running on Linux operating systems typical of
cluster computers. But it can also create or modify a powertrain federate for MERCURY from Matlab/Simulink
simulation blocks independent of Autonomie. The thermal model described in this paper is one example.

The present work outlines a lumped-mass thermal model of a hybrid vehicle powertrain built in Simulink outside
of the Autonomie environment. This model was then integrated into PACE by automatically generating HPC-
ready C++ code from the Simulink SLX file, a development reported in a companion paper. Although PACE is
only one federate in the MERCURY environment, the integration of the thermal model demonstrates the ability
of the automatic SLX parser to convert ‘third party’ Simulink modules into HPC-ready C++ code for integration
into MERCURY in general.

2.0 DEVELOPMENT OF INDEPENDENT POWERTRAIN COMPONENT MODEL

The current PACE powertrain model consists of approximately 20 modules such as engine, gearbox, battery,
etc. The physical parameters of each component module may be adjusted as part of the typical PACE
workflow. However, within the PACE architecture, any of these modules can also be exchanged for
externally developed models, provided the replacement models provide the same inputs and outputs. The
existing modules can also be modified and augmented, such as with the thermal model functionality
demonstrated in this paper. The thermal model outlined below was implemented as an addition to an existing
Simulink model already used in PACE.

2.1 Model Description

The thermal model contains two coolant loops, each with its own pump: one for electrical devices (i.e. battery,
power converter, and electric motor) and one for the engine. The four system components are modelled as
transient lumped mass systems, i.e. only temporal temperature gradients are considered. Two coolant loops
are used due the disparity between the engine and electrical operating temperatures (e.g. 100°C vs. 50°C), but
the two radiators are placed in series with a single fan. The temperatures of the pumps themselves are not

Thermal Modeling in the
Powertrain Analysis and Computational Environment (PACE)

10 - 2 STO-MP-AVT-265

PUBLIC RELEASE

PUBLIC RELEASE

tracked, but the heat loss from the pumps is calculated and added to the appropriate coolant flow. A general
schematic of the Simulink thermal model is given in Figure 2.

Figure 2. Schematic of Simulink thermal model.

The governing equations for the transient subsystems are given in Figure 3 [7]. By energy conservation, thermal
energy produced by a component (qloss) is either stored in the component (qstr) or transferred to the coolant (qc).
All of the thermal model’s thermodynamic properties are assumed constant, but the overall heat transfer
coefficient, U, in Figure 3 is a function of coolant flow rate (which is assumed constant for a given simulation).

Figure 3. System of equations for transient subsystems

In the context of Figure 2, the important outputs of Figure 3 are the new component temperature, Tnew, and the
outlet temperature of the coolant, Tc,out; the former is tracked to determine if the component’s operational or
maximum temperature has been reached, while the latter is an input for the next component in the coolant loop.
The equations in Figure 3 can be combined to explicitly solve for Tnew and Tc,out in terms of known values and the
intermediary variable qc (i.e. heat added to the coolant).

At each simulation time step the temperatures of the battery, power converter, electric motor, and engine are
checked against specified operating and maximum temperatures (Top and Tmax, respectively). Simple logic gates
are used to cause the fan speed to increase if a component temperature is above its Top; this acceleration
continues until Tc < Top or a specified maximum fan speed is reached. The cooling performance of the two

Thermal Modeling in the
Powertrain Analysis and Computational Environment (PACE)

STO-MP-AVT-265 10 - 3

PUBLIC RELEASE

PUBLIC RELEASE

radiators varies as a function of air flow rate, and either cooling loop can trigger an increase in fan speed. If the
cooling load decreases, or the component temperatures decrease for some other reason (e.g. lower ambient
temperature), the fan speed will slowly reduce to conserve energy until a component’s operating temperature is
again exceeded.

2.2 Model Implementation

Once finished, the thermal model was integrated with the Simulink representation of the Autonomie model as a
‘secondary plant’ in the “mechanical accessory” module. Although a second plant is unique within the PACE
model architecture, this implementation was beneficial from the perspective of the overall PACE architecture
because it provided easy access to the data required by the thermal model and it conforms to the logic of the
automated Simulink-to-C++ process – i.e. the definition as a plant well identifies the XML branch to be
processed (as is described below). Note that the "integration" of the thermal module was done at the level of the
PACE driver routine. To this end all buses were removed, and a direct map was created between output and
input ports of the subsystems. Currently, the thermal model is not integrated with other power controllers to
initiate component performance truncation when component begin overheating.

Although rudimentary, the thermal model demonstrates the original functionality of PACE 1.0 being augmented
with an independently-developed model. Furthermore, this development occurred entirely in Simulink. It will be
shown that adding the thermal model is almost trivial from the perspective of generating C++ code since no
distinction is made between the thermal model and any another (i.e. original) module.

3.0 INTEGRATION OF INDEPENDENT MODEL INTO PACE

From the PACE vantage point, the thermal model is just another powertrain component, a peer to engine plant,
gearbox controller, and others, implemented as a Simulink block of type Subsystem. Consequently, it is
integrated into PACE in the same way as the other components. The details of this process are described in
related papers focused on the PACE implementation [1], [8]. Here, for the sake of completeness, a brief
summary is given.

The integration is done in two steps: first, the C++ implementation of the Thermal Model subsystem is
generated, which results in a standalone C++ class, and then, the PACE driving routine is modified: the Thermal
Model object is instantiated, initialized, and added to the PACE’s workflow, so that it is executed at each time
step of the powertrain simulation fed by the current values of the Thermal Model input variables resulting from
execution of the other components.

Generation of the C++ code (step one) is automated - that is, preformed programmatically - by transforming its
XML description: (hierarchical) list of Simulink blocks, their parameters, and connectivity. The transformation
involves “translation” of an XML t<block> tags into executable code: an assignment, a simple expression (e.g,
summation or multiplication), and/or a call to a function from an independently developed C++ library. The
library is a part of the PACE system, and it comprises implementation of the basic Simulink blocks (such as
integrator, switch, and lookup_nD). The library has been developed applying the common knowledge of
numerical methods as guided by the Simulink documentation.

The process of the generating C++ code from a Simulink subsystem is very generic, and nothing that is specific
to the thermal modeling was needed to be added in order to incorporate the Thermal Model described in this
paper into PACE. The successful integration of it shows the flexibility of our approach: any valid component

Thermal Modeling in the
Powertrain Analysis and Computational Environment (PACE)

10 - 4 STO-MP-AVT-265

PUBLIC RELEASE

PUBLIC RELEASE

developed as Simulink subsystem can be easily assimilated with PACE. Of course, the models can be developed
directly in C++, skipping the “translation phase” (step one) altogether. However, this requires the model
developer be not only fluent with C++, but also be familiar with the PACE software architecture. The capability
of developing new models in Simulink makes PACE more accessible to automotive engineers.

The Simulink implementation of the Thermal Model has been integrated with the rest of the Simulink
implementation of the Powertrain model. Although it is not necessary, it is advantageous. Firstly, it uniquely
defines the integration of the Thermal Model with the rest of the system – thus guiding the step two of the
integration process. Secondly, it serves as the baseline for our PACE verification and validation process, as
described below.

4.0 FUNCTIONAL VALIDATION

4.1 Thermal Model Results

To demonstrate the model’s behavior, the component temperatures and the air flow rate (as set by the fan) are
plotted for four combinations of engine power loss and ambient temperature. The electrical loop components’
heat losses are kept constant across the four simulations and are set sufficiently low as to not trigger an increase
in fan speed. This allows the clear demonstration of the fan logic in direct response to engine temperature alone.
The simulation constants for the system components (including the engine) are given in Table 1. The coolant
(water) flow rate for the two loops is kept constant at 0.378 kg/s and 4.54 kg/s for the electrical and engine loops,
respectively [8].

Table 1. Simulation constants for components

Tinit (oC) Top/Tmax
(oC)

m
(kg)

cp
(J/kg∙K) qloss (W)

Battery 25 45/50 130 910 450
Inverter 25 45/50 15 910 30
Motor 25 45/50 50 910 125
Engine 25 90/100 200 910

The transient component temperatures and the resulting air flow rate are given for qloss,eng = (80, 120) kW in
Figure 4 and Figure 5 at Tamb = 20°C and 40°C, respectively. In the model, the air flow rate (i.e. fan speed)
increases and decreases at different rates. In the cases shown in Figures 4 and 5, the flow rates change at 0.756
m3/s2 and 0.0378 m3/s2 ascending and descending, respectively (i.e. 0.5 s and 10 s for a full range change).
However, these rates (m3/s2) could be changed based on the simulation time step and the specifications of the fan
being modelled.

Thermal Modeling in the
Powertrain Analysis and Computational Environment (PACE)

STO-MP-AVT-265 10 - 5

PUBLIC RELEASE

PUBLIC RELEASE

.

For all simulations, the air flow rate is initialized at its maximum value of 0.378 m3/s. Because the initial
component temperatures are all below their respective operating temperatures, the air flow decreases for the
first 10 s before reaching the set minimum air flow rate of 0.1 m3/s. In Figure 4(a) the low qeng and cool
ambient temperature results in the air flow rate remaining at 0.1 m3/s for the duration of the simulation since
the steady state engine temperature is below Top,eng. However, for both Figure 4(b) and Figure 5(a), the engine
temperature surpasses Top,eng. causing the air flow rate to increase. Once Teng < Top,eng due to the increased
cooling, the fan speed begins to drop again. This cycle is repeated for the remainder of the simulation. In
Figure 5(b), the maximum air flow rate is insufficient to keep Teng < Top,eng (or even Tmax,eng) due to the high
qeng and hot ambient temperature. Therefore the air flow rate increases to a constant 0.378 m3/s. The variation
in the electrical components’ transient responses (most noticeable in Figure 5(a) and (b)) is due to the different
heat losses and masses.

4.2 PACE Validation

To verify the automatic parsing of the Simulink SLX file into C++ code, the conditions in [8] were replicated
with the generated C++ code and the results compared with the original Simulink model. As an example,
Figure 6 shows the result of the comparison for battery and power connector temperatures. On the left hand
side, a scatter plot Matlab/Simulink vs C++ model results are shown, and on the right, the C++ results are
superimposed on those generated by Simulink/Matlab. As seen in 6, the generated C++ code accurately
replicates the results seen in the original Simulink model.

Figure 4. Simulink simulation results
of component temperatures and air
flow rate for engine heat loss of (a) 80
kW and (b) 120 kW at Tamb = 20°C

Figure 5. Simulink simulation results of
component temperatures and air flow rate for
engine heat loss of (a) 80 kW and (b) 120 kW

at Tamb = 40°C.

Thermal Modeling in the
Powertrain Analysis and Computational Environment (PACE)

10 - 6 STO-MP-AVT-265

PUBLIC RELEASE

PUBLIC RELEASE

Figure 6. Comparison of battery (top row) and power converter (bottom row) in Simulink and C++.

5.0 SUMMARY

A Simulink thermal model of a hybrid-electric vehicle has been developed for integration into PACE by
converting the Simulink SLX file into HPC-ready C++ code. The lumped-mass thermal model estimates the
temperatures of components placed on two coolant loops and incorporates simple logic for the air flow rate
through in-series radiators (one for each loop) based on the components temperature responses. Future
versions of the thermal module will include more sophisticated control algorithms. The Simulink thermal
model was developed outside of Autonomie before integration into PACE, which shows that independent
Simulink models can be converted into HPC-ready C++ code, significantly increasing the generalization of
the powertrain federate in MERCURY by supporting independent third-party developed Simulink modules.

6.0 ACKNOWLEDGMENTS

Permission to publish was granted by Director, Geotechnical & Structures Laboratory, U.S. Army Engineer
Research and Development Center.

Material presented in this paper is a product of the CREATE-GV Element of the Computational Research and
Engineering Acquisition Tools and Environments (CREATE) Program sponsored by the U.S. Department of
Defense HPC Modernization Program Office. This effort was sponsored under contract number W912HZ-13-
C-0037. Public Release, Distribution Unlimited.
Autonomie, is a product of the Argonne National Laboratory. Readers can go to http://www.autonomie.net/
for more information about Autonomie.

Thermal Modeling in the
Powertrain Analysis and Computational Environment (PACE)

STO-MP-AVT-265 10 - 7

PUBLIC RELEASE

PUBLIC RELEASE

http://www.autonomie.net/

7.0 REFERENCES

[1] Haupt, T.A., Card, A.E., Doude, M., Mazzola, et al., “Powertrain Analysis and Computational
Environment (PACE) for Multi-Physics Simulations Using High Performance Computing,” SAE Tech.
Pap. (2016-01–0308), 2016, doi:10.4271/2016-01-0308.

[2] Autonomie, www.autonomie.net.

[3] Kim, N., Rousseau, A., and Rask, E., “Autonomie Model Validation with Test Data for 2010 Toyota
Prius,” SAE Tech. Pap. (2012-01–1040), 2012, doi:10.4271/2012-01-1040.

[4] Kim, N., Rousseau, A., and Lohse-Busch, H., “Advanced Automatic Transmission Model Validation
Using Dynamometer Test Data,” SAE Tech. Pap. (2014-01–1778), 2014, doi:10.4271/2014-01-1778.

[5] Lee, D., Rousseau, A., and Rask, E., “Development and Validation of the Ford Focus Battery Electric
Vehicle Model,” SAE Tech. Pap. (2014-01–1809), 2014, doi:10.4271/2014-01-1809.

[6] Hodge, B.K. and Taylor, R.P., “Analysis and Design of Energy Systems,” 3rd ed., Prentice Hall, Upper
Saddle River, N.J, ISBN 978-0135-25973-3, 1999.

[7] Bergman, T.L., Lavine, A.S., Incropera, F., and Dewitt, D.P., “Fundamentals of Heat and Mass Transfer,”
7th ed., John Wiley & Sons, Hoboken, NJ, ISBN 978-0470-50197-9, 2011.

[8] Haupt, T., Henley, G., Card, A., Mazzola, M., Doude, M., Shurin, S., and Goodin, C., “Near Automatic
Translation of Autonomie-based Power Train Architectures for Multi-Physics Simulations using High
Performance Computing,” Accepted for publication 2017 SAE World Congress.

Thermal Modeling in the
Powertrain Analysis and Computational Environment (PACE)

10 - 8 STO-MP-AVT-265

PUBLIC RELEASE

PUBLIC RELEASE

