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ABSTRACT  
The future air-combat scenery sees an emerging change in air-combat tactics due to stealth and modern 
missiles. Fast, visual encounters could be decided by very rapid instantaneous maneuvers at high angle-of-
attack and transonic speed for shooting advantages being finalized by rapid missile exchanges. Controlled 
vortex flows also at higher transonic speeds must be mastered for controlled motions about all three axes. 
The aircraft planform, wing-sweep and the leading-edge type have to be arranged for the mutual benefit of 
these complex flows throughout the flight envelope also regarding signature considerations. Often controlled 
flight limits are reached at sideslip conditions. Here asymmetric vortex instabilities cause unstable rolling 
moments together with adverse yaw. To push these limits an extended understanding of vortex separation, 
their interaction and breakdown is necessary. The probing of the design aerodynamic characteristics is to be 
assisted by modern flow simulation tools to be validated on the basis of appropriate physical understanding. 
 
 

1.0 AERODYNAMIC COMBAT AIRCRAFT DESIGN 
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Fig 19-1.: History of Aerodynamic Combat Aircraft Design 
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From the very beginning of flight stability and control capabilities were the prime aerodynamic objective for 
the performance and even more so the maneuverability of combat aircraft [1]. Attached flow and/or 
controllable separation effects [2] are the key to the agility of any aircraft namely combat aircraft whose 
prowess is the combination of speed, specific access power, lift to drag ratio, agility and stealth capabilities. 

The first combat aircraft (Fig. 19-1 a) [3, 4] caused more fatalities from of loss of control during take-off 
rather than from air-combat maneuvers. High lift conditions at maximum power often led to flow separation 
at wing-tips overpowering the control elements. Asymmetric wing flow separation provoked spin-entry due 
to asymmetric induced drag which had to be overcome by directional or vertical tail and rudder stability and 
control. Eventually unrecoverable spin ensued and had to be avoided by skilled human control.  

The ongoing development of propeller fighter design (Fig. 19-1 b) [5–8] brought the design of wing twist, 
slotted outer wing panels or outboard leading-edge flaps and sharpened inboard wing-root profiles which 
alleviated the problems. The measures provided attached flow conditions in the most vital roll control 
element areas, the pilot being forewarned by buffeting caused by at the inner wing sections. High speed 
demands (Fig. 1 c) into the transonic regime saw the drastic reduction of the relative airfoil thickness with 
their sharpened nose shapes aggravated the situation even further.  

The advent of the first swept wing jet-aircraft (Fig. 19-1 d) [9-14] added to the flow separation issue at the 
vital outer wing areas. Together with the up-wash caused be the induced effects of the forward inner wing 
area together with a span-wise boundary layer build-up called for more drastic measures by the introduction 
of adjustable leading-edge slats and even more pronounced wing twist. The ever increasing speed demands 
into the supersonic regime [13-16] – even more pronounced by the slenderness demands of area-ruling [15-
17] – changed the relation of the combat aircraft inertias from yaw to roll of approximately 1-2 to about 4-6 
for the arriving supersonic aircraft.  

 

 

 

 

 

 

 

 

 

Adverse yaw and roll stability and control issues usually were countered by vortex generator arrays, fence 
systems or the well proven leading-edge slats. Means of effective flow control devices (Fig. 19-2) were 
thought eventually to improve the aerodynamic characteristics by keeping performance capabilities high. 
Eventually very effective but highly complex slat, flap systems together with active circulation control 
devices were introduced. Rather large vertical fins and horizontal tails emerged for sufficient stability and 
control for maneuvering conditions. 

The designers of legacy supersonic jet combat aircraft (Fig. 19-1 d, e) soon selected delta-wings [13, 14, 18-
20] and their derivatives for their high speed slenderness allowing for large absolute wing-root thickness 

Fig. 19-2: Typical Agility Envelope of a  
Modern Combat Aircraft 

Fig. 19-3: Performance, Maneuverability and  
Signature of a Modern Combat Aircraft 
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benefitting internal volume and structural strength countering wing bending moments. Leading-edge shaping 
- e.g. via conical camber - not only helped to exploit leading-edge suction for drag reduction at trans- and 
supersonic speed but also to delay pitch-up tendencies caused by uncontrolled separation.  

The early discovery of the non-linear lift characteristics of controlled leading-edge flow separation rolled up 
into stable longitudinal vortices [2, 21-23] eased the exploitation of their high angle of attack (AOA) suction 
lift at take-off and landing speeds. Depending of leading-edge sweep these benefits may be curtailed by the 
vortex breakdown phenomenon. Longitudinal vortices travelling into adverse pressure gradient field 
experience the abrupt change of their structure of jet type into a reversed flow bubble, thereby drastically 
reducing the suction on the underlying wing-surface. This may lead to lift reduction and even more so to 
severe pitch-up situations.  

Demands for affordable superior fighter agility [24-26] led to double delta, strake trapezoidal or canard delta 
wing configurations (Fig. 1 e, f) exploiting the potential of controlled vortex flows for high lift and 
maneuverability.  However, vortex breakdown [27-32] also causes adverse roll at sideslip and eventual loss 
of directional stability of the vertical fins. Meticulous shaping work eventually was performed to push 
towards the maximum controlled lift conditions. Powerful tail and fin arrangements together with automatic 
leading-edge slats and eventual passive flow control devices allowed for a widened envelope up into the 
maximum lift area before stability and control issues may have ended the safe flight regime. Very good 
knowledge of the complex vortex flow systems eventually allows the extension of the maneuvering flight 
envelope into even higher post stall AOA-regimes [33-45]. The more efficient measure is the support of 
vortex flow areas which stabilize the roll- and yaw-conditions and the preservation of aerodynamic 
efficiency. The provocation of vortex breakdown by so called vortex fences or spoilers may have stabilizing 
effects but at the cost of reduced efficiency. 

 

 

 

 

 

 
 
Modern and emerging combat aircraft (Fig. 19-1 f, g) [46] have to cover an even wide scope of performance 
and maneuverability (Fig. 19-2), eventually also considering signature restrictions (Fig. 19-3) and to meet 
range and payload capacities. Latest developments in the air-combat scenery see an emerging change in air-
combat tactics due to stealth tactics and modern missiles. These may change classic BVR-encounters as well 
as dog-fights. It may be foreseen that fast visual encounters could be decided by very rapid instantaneous 
maneuvers at high AOA (Fig. 19-4) and transonic speed for shooting advantages being finalized by rapid 
missile exchanges. To these ends vortex flows must be mastered also at higher transonic speeds where 
complex shocks of cross-flow type and spiraling shape may interact with the vortices sensitivity or even may 
be caused by vortex breakdown. To achieve favorable aerodynamic properties these flow-features must be 
incorporated into the aircraft planform, wing-sweep and -profiles, the leading-edge type, eventual strakes and 
the like. 

Stealth compatibility (Fig. 19-5) [46-49] manifests into more blended configurations, wing sweeps tend to be 
increased, horizontal and vertical tails tend to smaller sizes, and compromises have to be thought for control 
surfaces. The higher the RADAR cross section (RCS) demands are being set, the more restricted the 

Fig. 19-5: Shaping Effects of high RCS-Requirements  
[49] 

Fig. 19-4: Rapid Stealth Air-to-Air Scenarios  
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application of legacy flow control devices (e.g. strakes, notches, fences) become. Just to mention here, 
infrared (IR) signature may add to these problems with regard to heated structures and nozzle flow 
arrangements. 

The link in between design shaping and aerodynamic characteristics and more importantly vice-versa found 
little attention outside industrial design offices. Here rules and procedures for aerodynamic and flight 
physical definition for conflicting requirements are to be worked out. They have to scout and explore for 
robust areas in the design space. The economic probing of the aerodynamics is accessible by modern flow 
simulation tools and sophisticated test-facilities. Validated computational fluid dynamics (CFD) prediction 
capability for vortex flow topics for risk reduction and reliable design turnaround times exist, however need 
further enhancement with regard to turbulence modelling and efficient integration into the overall design 
process. 

2.0 FLIGHT MECHANICAL REQUIREMENTS 

 

 

 

 

 

 

 

 

 

 

The development of flight control systems (FCS) (Fig. 19-6) [50] from mechanical system with full servo, 
full authority analogue FCS to digital full authority fly-by-wire FCS allowed for relaxed or even unstable 
flight-physical layout [51]. This provided levels of increased performance and maneuverability into the 
transonic and supersonic regimes of the flight envelope. However, FCS only can provide safe agility when 
stability and control is provided through a controllable aerodynamic behavior [51]. The dynamic interplay of 
the aerodynamic characteristics, the actuators, control surfaces, the aero-elastic effects,  the aircraft’s inertia 
and the reliability of air-data information requires are certain piece wise linearity in which the aerodynamic 
flow may be the dominating challenge. 

The flight dynamical consequences [51] are described by the combination of the lateral and directional 
derivatives in yaw Cnβ and roll Clβ (Fig. 19-7) in the dynamic derivative Cnβdyn. While the yawing 
derivative diminishes with the cosine of AOA, the rolling moment derivative increases with the AOA sinus, 
it becomes dominant. This is enhanced by the relation of the yaw- and roll-inertia for modern combat aircraft 
lying in between 4-6 typically. At lower and medium AOA the aircraft remains stable as long as the 
windward side wing is raised and the yawing moment turns the aircraft into the wind, with a stable Clβ being 
negative and a stable Cnβ being positive. For unstable configurations the longitudinal controllability calls for 

Fig.19-6: Elements of a Modern Flight Control System FCS 
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sufficient pitch-down control power throughout the flight envelope. 

 

 

 
 

 

 

 

 

 

 
 
 
 
The aircraft shape and its control devices must allow for the smooth transition from attached flows to 
controlled separation into the favorable formation of leading-edge vortices [52, 53]. However, the 
phenomenon of vortex breakdown causes abrupt reduced local suction effects, causing pitch-up, roll- and 
yaw-instability.  
 

3.0 VORTEX FLOW SYSTEMS – KNOWLEDGE AND GAPS 

 

 

 

 

 

 

 

 

 
 

 Fig. 19-8: Aerodynamic flow phenomena in a typical combat type agility envelope 

Fig. 19-7: Requirements for Longitudinal and Lateral Stability and Control [51, 52] 
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The aerodynamics design of combat aircraft has to cover a multitude of flight conditions as shown in Figure 
19-8.  Supersonic speeds e.g. for super cruise will call for area-ruled shapes [14-16], while the wing and 
empennage planforms as well as the control layout should provide the basic needs for robust medium and 
high AOA agility well beyond maximum lift at sub- and transonic speeds. At the same time the largest 
possible wing aspect ratio together with a blended wing-fuselage shape would help to increase range and 
endurance aspects. While supersonic performance and stable vortex-flows for stability and control 
considerations would support the slender wing concept, endurance and range prefer the high aspect ratio 
wing for induced drag reduction. The compromise may be found in the combination of trapezoidal or delta 
wings of low sweep with leading-edge extension strakes or canard configurations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the early 50-ties, some otherwise very successful and prominent combat aircraft designers [58] were rather 
doubtful about the delta wing shape, regarding the straight low aspect ratio wing with very thin airfoils being 
superior at supersonic speeds. However, the multipoint demands soon converted them to the delta shape 
which overcame its rather low lift-curve slopes by the theoretical reasoning and experimental finding of the 
controlled leading-edge vortex flow separation (Fig 19-9). Their high circumferential velocities induce high 
suction peaks (Fig. 19-10), thereby providing extra non-linear lift [2, 25, 26, 39, 54-57, 59-61]. 

Fig. 19-10: Vortex Flow Induced Pressure Distribution  
[55] 

Fig. 19-9: Conditions of Leading-Edge Vortices  
[54, 55]  

Fig. 19-12: Progress of Vortex Breakdown with  
AOA for Delta Wings of Low and High Sweep [29] 

Fig.19-11: Vortex Breakdown Flow Field  
[31] 
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Depending of leading-edge sweep [29] these benefits may be curtailed by the vortex breakdown 
phenomenon (Fig. 19-11). Longitudinal vortices travelling into adverse pressure gradient field experience the 
abrupt change of their structure of jet type into a reversed flow bubble, thereby drastically reducing the 
suction on the underlying wing-surface (Fig. 19-10). This may lead to lift reduction and even more so to 
severe pitch-up situations. The higher the leading-edge sweep the more stable the vortices with breakdown 
occurring at higher AOA. Lower sweep increases the vortex strength but at the expense of its stability 
causing breakdown at lower AOA. Figure 19-12 gives an overview of forward movement of vortex 
breakdown, advancing towards the wing apex with increasing AOA. 

 

 

 

 

 

 

 

 

Often controlled flight limit is reached at sideslip conditions (Fig. 19-13). Here asymmetric vortex 
breakdown [27, 32]] causes unstable rolling moments together with adverse yawing reaction. The advancing, 
windward side wing with its lower effective sweep experiences breakdown conditions earlier than the 
leeward wing side, which sees an increased effective leading-edge sweep. As long as the advancing wing 
vortex can produce more lift than the leeward vortex system a stable rolling moment will result, the 
advancing wing is lifted and the sideslip is converted into an angle of attack [61, 62]. At a certain AOA the 
advancing wing vortex will breakdown early, thereby diminishing its suction in the apex-region which is 
overcome by the weaker but stable suction peak over most of the lee-side wing. The rolling moment 
reverses, while the sideslip angle increases and roll control may be lost, the limits of maneuverability are 
reached. 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
Transonic compressibility effects aggravate this behavior (Fig. 19-14) [63-65]. It can become more intense 

Fig. 19-14: Vortex breakdown at sub- and transonic conditions [63] 

Fig. 19-13: Asymmetric Vortex Breakdown at Sideslip Conditions [27] 
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because of the conical character of the flow which brings the vortices closer to the wing surface where the 
breakdown is more concentrated. Also cross-flow shocks may increase the pitch-effects. 

More recently the onset of vortex separation especially on round edged leading-edges, its secondary effects 
and the development into vortex breakdown even at medium AOA (10o < α < 15o) for delta wings of lower 
sweep was investigated in more detail (Fig. 19-15) [66-69]. Some similar investigations concentrating onto 
vortex development were done in [60, 61], however, none explored the upper subsonic and the transonic 
regime. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 
Interaction effects among either co-rotating or counter-rotating vortices, vortex breakdown, and their 
neighboring flow-field, can significantly alter the vortex-induced effects [70, 71]. In some cases the 
interacting vortices remain side by side, in other cases one vortex will braid around the other, and in yet other 
cases one vortex will be absorbed by the other (Fig. 19-16). Basic understanding for vortex shock and vortex 
boundary-layer interactions also is lacking, and these vortex interactions alter other important features such 
as vortex breakdown and secondary separation. 

Fig. 19-15: Vortex onset, progression and breakdown at subsonic speeds at AOA 12o [69] 

Fig. 19-16: Vortex Interaction of a Double Delta Configuration [70] 
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An idea of vortex systems on combat aircraft designed and flown throughout a wide envelope Mach-number 
and up into the limits of high AOA-stall conditions is given in Figures 19-17, 18-18 and 19-19. The delta-
canard configuration [61, 72] shows a very complex mixture of longitudinal vortices together with large 
areas of reversed flow due to vortex breakdown. The shear-layers of the leading-edge and the slat vortices 
shown by the lambda-2 criterion wrap around the reversed flow as to be expected for vortex breakdown of a 
delta-wing with low sweep.  Because of the long coupled canard its vortex system hardly interferes with the 
wing flow. The wing’s apex strake area produces additional vortices as does a small but highly important 
vortex from the fuselage-strake beside the cockpit (Fig. 19-17). Their role is the stabilization of the complete 
vortex system and avoids adverse rolling moments allowing very high maneuverability and superior agility. 
The design was achieved by CFD-based investigations into the interference of strake-type vortices 
reenergizing basic wing without compromising performance demands. A comparison of experiment and 
simulation of the lift, pitching and rolling moment is shown in Figure 19-18. Here the standard configuration 
is compared with an agility improved configuration. The aircraft modified with a delta-shaped fuselage 
strake and the addition of a wing apex strake is roll-stable, thereby extending its possible maneuvering 
envelope much further than the standard configuration. The latter’s instability putting a limit to the 
maximum AOA, which not only curtails agility but also performance.  

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

Fig. 19-18: Subsonic High AOA Behavior of a Delta-Canard Configuration [61] 

Both configuration simulations show the trends correctly, however, the standard configuration is very far of 
the rolling moment of the experimental results. Since the computational effort, the mesh quality and the 
turbulence models applied was almost identical this difference may be claimed to some lack in the 
turbulence models capability to allow for the proper development of uncontrolled vortex flows, the strake- 

Fig. 19-17: Vortex Systems and Interaction at Very High AOA at Subsonic Speeds [61, 72] 
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modified version offering a much better guidance of for vortex separation and interaction of more 
concentrated longitudinal vortices. 

 

 

 

 

 

 

 
Fig. 19-19: Combat Aircraft Vortex System at Sub- and Transonic Speeds [78, 79] 

The double-delta configuration (Fig. 19-19) shows the development of sub- and transonic high AOA flow 
[73-79]. The inner, highly swept wing causes a concentrated leading-edge vortex which breaks down at the 
junction of the inner and outer wing panel. The outer wing panel shows a vortex which breaks down very 
early – shown by the erratic pattern of the vortex-sheets shown by the lambda-2 criterion. A vortex-fence or 
vortex breakdown fence provides a deliberate destruction of the inner leading-edge vortex to avoid 
unfavorable sideslip pressure distributions, thereby stabilizing the rolling moment, here at the expense in the 
wing’s performance by the reduction of maximum lift (Fig. 19-19). The transonic case shows the mutual 
interference of shock systems with the vortex-system. Some shocks are caused by the vortex breakdown 
flow field, while others are caused by aircraft components or changes of its geometry such as the vertical fin, 
the end of the cockpit and the kink of the wing leading-edge. The expansion of the flow around the leading-
edge vortex into supersonic speeds produces also a cross-flow shock in between the wing surface and the 
leading-edge vortex. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 19-20: Passive Flow Control Devices to Enhance high AOA Capabilities [25, 26, 37, 38, 42, 61, 83, 85, 86] 
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Figure 19-20 gives a selection of passive flow control devices which may enhance the stability and 
controllability of the high AOA flow. To fly beyond maximum lift and the controllability limits means have 
to be found to delay breakdown on the windward side or to destroy the leeward vortex deliberately. The past 
saw devices such as canards, strakes and leading-edge slats as well as other means for the individual 
configuration at hand. Many aircraft are limited to some AOA around 30o. Eventually means can be found to 
extend or even break through the lateral instability barriers. By aerodynamic means such as an apex strake 
and a triangular fuselage strake the EFEM-Typhoon fighter increased its agility as shown in Figure 19-18 
[61].  

 

 

 

 

 

 

 
Last, not least to forget are the effects of vortices from slender forward fuselage shapes (Fig. 19-21). Their 
asymmetric development beyond some AOA of 30o may cause strong yawing-moments eventually even 
causing unfavorable interference in roll as well. However, well defined forward fuselage shaping – e.g. with 
a chine or strake - may fix and control these vortices into small but highly stable vortices which could even 
improve the wing or tail flow conditions. 

As already mentioned in chapter 1 together with Figure 19-5, many of these devices may compromise 
signature – especially RCS – requirements and the aerodynamic layout may have resort to basis wing 
planform, fuselage blending und airfoil shaping together with means such as slats and spoilers which only 
may be articulated in the high AOA-regime.  

The effort to push the envelope not only performance-wise but also to the brinks of stalling maneuverability 
may be highlighted by an example of the width of the design space (Fig. 19-22) explored for the Eurofighter 
combat aircraft. According to the status of CFD and the available computational power most of this work 
had to be based on expensive wind-tunnel measurements [43-45]. 

The design problem to shape for controllable vortex systems, which could maximize maneuvering 
performance, is very much dependent on the basic layout of the aircraft and is very sensitive to details in 
shape and relative position. Many and even more flow control devices (Fig. 19-20) were thought for specific 
configurations [80-89]. Intense research and development was dominated by wing-tunnel work only, probing 
for satisfying shapes, eventually adding expensive add-on solutions in late in the flight-test campaigns [35]. 
The link in between shape and aerodynamic characteristics and more importantly vice-versa found little 
attention outside design offices; these often being restricted by cost considerations. Increasing controllability 
at instantaneous maneuvering flight conditions – eventually regarding stealth restrictions only are achievable 
with the improved understanding of the onset of separation under the influence of: 

• Leading-edge slats and strakes 

• The relative sweep and leading-edge shape of double-delta, strake-wing configuration 

• The development of vortex flows at medium swept wings (< 55o ) with and without strakes 

Fig. 19-21: Development of Asymmetric  
Fore-body Fuselage Vortices 

Cnβ 
 

α 

Fig. 19-22: Exploration of Legacy Combat Aircraft 
Design Space [43-45] 
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• The interactions of co- and counter-rotating vortices for vortex breakdown control 

• The vortex system development at transonic speeds  

• The vortex breakdown at transonic speeds together with the mutual effect of shock systems 

• The interaction of wing and eventual fuselage vortices 

4.0  HIGH AGILITY AERODYNAMICS DESIGN SPACE EXPLORATION 

For the development of future advanced combat aircraft the design space – especially for high agility 
demands - will be prepared via CFD-design exploration [62, 90], supported by validation and check wind-
tunnel experiments (Fig. 19-23). A selection of subsonic high AOA stability investigations – centered on 
delta wing configurations of various sweep (Fig. 19-24) is given as an example from the NATO-STO-AVT-
316 research task group on vortex interaction of combat aircraft wings [91]. The CFD results are compared 
to the subsonic measurements of the Technical University of Munich (TUM) wing-tunnel [93, 94] and for 
simplicity show only the lift, the pitching moment and the rolling moment from 0o – 40o AOA at 0o and -5o 
sideslip AOS. Double delta configurations with a leading-edge sweep combination 75o for the strake and 52o 
for the main wing are compared to triple delta shapes of the same leading-edge sweeps with the first leading-
edge also set at the main wing value. The effect of deployed leading-edge slats (set at 22.5o) on the main 
wing is included as well. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 19-23: Providing the Design Space for Future Combat Aircraft [62] 

Fig. 19-24: Delta wing configurations for high AOA stability investigations [91]  
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The overall design objective is the most robust configuration with regard to stability and control while 
maintaining an overall configuration aspect ratio that offers the least induced drag for range and endurance, 
naturally regarding the necessities of efficient supersonic flight. The main wing aims for high aspect ratio 
being supported by a strake configuration allowing for robust high AOA agility with no limits till maximum 
lift and sufficient controllability beyond. Since air-combat usually starts at high transonic speeds the 
transonic regime together with the upper subsonic area are of major interest. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 19-25a: Subsonic Lift and Pitching Moment versus AOA of Double Delta xx7552 and Triple Delta 527552  

Fig. 19-25b: Subsonic Rolling Moment versus AOA of Double Delta xx7552 and Triple Delta 527552    

Fig. 19-26: Pressure Distribution of the xx7552 and 527552 Wing Configuration  
at Subsonic Speed at Sideslip  
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The subsonic CFD-simulations are compared (Fig. 19-25 a, b) to the experimental results of the delta wing 
types of Figure 19-24 [93, 94]. Here only the most important stability and control related moments (pitch and 
roll) are shown, the forces are in good agreement and of similar quality as in Figure 19-18. At lower and 
medium AOA the CFD pitching moments are very much in line with the experiments, while the high AOA 
range still shows very similar trends but significant difference beyond the 30o mark. Interestingly the 527552 
configuration fares much better, showing only minor differences in between simulation and measurement. 
The trends of the rolling moment evaluation (Fig. 19-25b) are encouraging in so far that they indicate the 
occurrence of the developing instability; also the stabilizing effect of the leading-edge slats is given 
correctly. However, the AOA-position into the unstable flow conditions as well as the local gradients and the 
absolute rolling moment values are not met with sufficient accuracy to use the results for eventual air-data 
modules. Other configuration – not shown here – with lower sweep may even show a less favorable 
agreement, while configurations with higher sweep show a better agreement. 

This more favorable, more stable character of the 527552 wing may be attributed to the origin of the strake 
vortex in the low sweep (52o) forward area, which already produces retarded, wake-like flow in the vortex 
core, while the highly swept strake vortex sheet may wrap around and be stabilized by the total pressure 
losses in its center. Similar effects have been found in the flow field of the F-16 XL investigations [78, 79]. 
The double delta xx7552 wing produces a jet-like core flow, which may be more susceptible to increasing 
pressure gradients and with that more to vortex breakdown. The explanation still is subject to research and 
awaits clarification. 

Figure 19-26 show the surface pressure distribution for the configurations discussed with and without 
leading-edge slats deployed. The range of AOA is selected in the vicinity of the rolling moment cross-over 
from stable to unstable conditions. Without slat deployment the forward strake vortex soon merges with the 
main wing leading-edge vortex. At AOA 16o the merger is almost complete and the pressure distribution 
shows the unified effect of it. As know from pure delta wings the combined vortex system breaks down on 
the advancing wing first, while the leeward side still shows a stable system, the suction of which finally 
leading to an unstable rolling moment. The deployed slats keep the strake and main wing vortices separate 
until much higher AOA. The slat vortex itself supports a stable roll and AOA-margins up to 10o are possible. 

 

 

 

 

. 

 

 

Fig. 19-27: Lift, Pitching and Rolling Moment of the 527552 Configuration with and without 
Sideslip at Mach = 0.856 [95] 

Transonic simulations are shown in Figure 19-27 [94, 95]. In between AOA 20o and 22o vortex breakdown 
of the vortex system occurs shortly after the merger of the strake and wing vortex. As can be seen in Figure 
19-28 a shock system develops at the breakdown position. Its reversed flow forms a kind of fluidic 
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displacement shape, the shock of which also reversed the previously supersonic jet-like core flow into a 
rotating dead water flow regime similar to the delta and double delta result of Figure 19-14 and 19-19. 

 

 

 

 

 

 

 

 

 

 

 

 
 
Because of its low leading-edge sweep the outer main wing vortex breakdown position at AOA 16o occurs at 
approx. 50% local wing-depth. At the very same position a weak shock pattern develops across the whole 
wing-span. At sideslip the advancing wing burst effect becomes stronger and also affects the inboard strake 
vortex system. On the leeward side the vortices show no breakdown and no shock pattern exists. Increasing 
the AOA to 22o pushes the breakdown upstream and an even stronger vortex breakdown induced shock 
systems develops now also destroying the concentrated strake vortex. At sideslip the strake vortex is 
destroyed much earlier, possibly due to cross-flow shock vortex breakdown interference, while the leeward 
vortex system appears to be undisturbed. The ensuing difference in lift in between the advancing and the 
trailing wing side explains the almost discontinuous loss of roll stability (Fig. 19-27). 

It must be expected that the complexity of these transonic conditions will increase the effort to install high 
maneuverability for the agility of future fighter aircraft. The development of steep gradients even at medium 
AOA together with an eventual coupling of pitch and roll behavior can only be overcome by the 
understanding of the shock-vortex interactions as shown here. At the same time shapes and means are in 
demand to cope with these effects to avoid or at least to mitigate the limits of the maneuverability envelope. 
The knowledge and experience accrued and the latest results by revisiting the high AOA design of wings for 
highly agile combat aircraft point out how complex vortex flow characteristics can become especially at 
transonic speeds for even simplified and generic wing configuration. In the view of the design of new-
generation combat aircraft, for which increased requirements are also present to the aerodynamic design, the 
understanding of associated flow field characteristics and the resulting stability and control behavior is thus 
essential. The transonic regime plays in this context a decisive role, as robust and controllable stability and 
control characteristics are hardly to reach but contribute to a large extent to agility and maneuverability of 
fighter-type aircraft. 

In current industrial simulations the complete flow-development starting from surface separation, evaluating 

Fig. 19-28: Transonic Flow Field with q-criterion Q * lμ2 / U∞2 = 50 colored  
by total pressure loss of the 527552 Delta Configuration [95] 
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the development of shear-layers and the formation of vortex-cores up to the breakdown phenomenon usually 
is treated by one and the same turbulence model Currently most simulations are preformed via one-equation, 
eventually two-equation models [96, 97]. Although elaborated techniques for the simulation of complete 
polars – eventually even including control deployments – for turn-around time and economic reasons the 
standard application of more sophisticated turbulence models such as DES [98] or Reynolds-Stress-Models 
RSM is forbidding under industrial conditions and the vast amount of configurations and data to be provided 
and checked.  Even these models cannot guarantee the proper treatment of separation, shear-layer roll-up, 
their interference with other vortices, the viscous effects inside a vortex core especially at breakdown 
conditions. At higher transonic speeds vortices can be highly influenced by strong expansions and are 
accompanied by additional cross-flow shocks. How these, as well as the vortex breakdown shocks are treated 
correctly is subject to further physical knowledge and improved – eventually adapted - turbulence model 
techniques [99]. 

5.0  STATUS AND SUGGESTIONS 

Till recently the design shaping side which could maximize maneuvering performance saw limited attention. 
To provide for a high agility design space for the finding of robust, controllable aerodynamics improved and 
widened knowledge about certain means of flow effectors is necessary. Often expensive add-on solutions 
had to be introduced late in the flight-test campaign to ensure otherwise guaranteed turn-rates, while the 
aerodynamicist key expertise to allow for a superior, efficient, flexible and customer satisfying system 
aircraft had been restricted by low budget, pushing schedules and insufficient multidisciplinary 
understanding and planning. Increasing controllability also for at instantaneous maneuvering flight at low 
risk conditions – eventually regarding stealth restrictions - only are achievable without program delays with 
the improved understanding of the onset of vortex flow separation, their formation, their character and their 
interference under the influence of aerodynamic means to name only a few such as: 

• Strakes and advanced leading-edge slats 

• The relative sweep and leading-edge shape of double-delta, strake-wing configuration 

• The development of vortex flows at medium swept wings (< 55o ) with and without strakes 

• The interactions of co- and counter-rotating vortices for vortex breakdown control 

• The vortex system development at transonic speeds  

• The vortex breakdown at transonic speeds together with the mutual effect of shock systems 

• The interaction of wing and eventual fuselage vortices 

The application of numerical simulation tools (CFD) with a thorough review of the most appropriate 
turbulence models for the simulation of: 

• Vortex separation onset 

• The interference of vortex sheets 

• The sensitivities of vortex breakdown 

• Vortex-cores of jet-type, wake-type and breakdown conditions. 

• Vortex-interaction controlling vortex-breakdown.  

• Investigations and data for the transonic regime.  

• Adapted and optimized turbulence modelling  

• A validation data base: forces, moments, pressure distributions and 3-D flow-structures 
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