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ABSTRACT  
The efficiency and safety of complex high precision human-machine systems such as in aerospace and 
robotic surgery are closely related to the cognitive readiness, ability to manage workload, and situational 
awareness of their operators. Accurate assessment of mental workload could help in preventing operator 
error and allow for pertinent intervention by predicting performance decline that can arise from either work 
overload or understimulation. Neuroergonomic approaches based on measures of human body and brain 
activity collectively can provide sensitive and reliable assessment of human mental workload in complex 
training and work environments. This paper outlines the potential of wearable brain and body imaging 
methods for the assessment of mental workload via neuro/physiological signals, and provides a study design 
for comparative evaluation of workload during multi-domain cognitive tasks with simultaneous multi-modal 
biosensors. Such comprehensive neuroergonomic assessment utilizing both neuroimaging and physiological 
monitoring can inform development of next generation neuroadaptive interfaces and training approaches for 
more efficient human-machine interaction and operator skill acquisition.  

Keywords: Cognitive Workload, fNIRS, EEG, Eye-tracking, Neuroergonomics, Mobile Brain/Body 
Imaging 

1.0 INTRODUCTION 

Human performance on any type of goal or task is related to the amount of cognitive workload that is 
required to be proficient at completing it. Each person will have their own unique cognitive profile, and be 
more mentally efficient at performing certain types of tasks [1]. Through targeted training, operators can 
improve their abilities and become more efficient at their work in a shorter period of time.  

Mental workload plays a critical role in many complex command and control systems. The efficiency and 
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safety of complex high precision human-machine systems such as in aerospace and robotic surgery are 
closely related to the cognitive readiness, ability to manage workload, and situational awareness of their 
operators. Subjective operator reports, physiological, and behavioral measures are not sufficiently reliable to 
monitor cognitive overload that can lead to adverse outcomes. A key feature of the concept of mental 
workload – that reflects how hard the brain is working to meet task demands – is that it can be dissociated 
from behavioral performance data. Experienced human operators can maintain performance at required 
levels for an extended period through increased effort and motivation or strategy changes, even in the face of 
increased task challenge. Sustained task demands, however, eventually lead to performance decline unless 
the upward trend in mental workload can be used to predict subsequent performance breakdown. 
Consequently, it is important to assess mental workload independent of performance measures during 
training and operational missions. Neuroergonomic approaches based on measures of human body and brain 
activity can provide sensitive and reliable assessment of human mental workload in complex training and 
work environments [2]. 

It is particularly important to assess and measure operator cognitive workload in the context of military 
operations, where performance failures could result in catastrophic losses. Accurate assessment of mental 
workload could help in preventing operator error and allow for pertinent intervention by predicting 
performance decline that can arise from either work overload or understimulation.  

Furthermore, a neurophysiology-based measure of expertise must be defined in relationship to behavioral 
performance. However, at any given level of performance, a neuronal measure of expertise that monitors the 
attentional and control resources that the individual must utilize to maintain that level of performance could 
be expected to vary widely between relatively lesser and greater expertise. That is, even at 98-100% 
performance levels, where performance measures cannot differentiate between trainee capacities, some 
individuals will be performing at close to their peak performance because their mental workload is close to 
the limit of their capacity, whereas others will be well below their workload capacity. An assessment of the 
cortical activity necessary to perform at a given level would indicate the cognitive resources available for 
more situational demands, consistent with greater expertise. 

Hence, neuroscience-informed training methods are expected to allow for officers to advance through skill 
modules at a faster rate, saving both time and budget. To that end, we will go through the different 
modalities of biosensor measurements, outline our recent studies, and present a new study design that will 
allow us to determine what is the best way to measure the effects of training using cognitive workload 
assessments, as well as what are the most effective training tasks to improve a confluence of mental skill 
domains simultaneously. 

The study design presented here is based on a training protocol utilizing six distinct cognitive tasks that are 
relevant to a user monitoring flight or unmanned aerial vehicle (UAV) field operations: Situation awareness, 
via monitoring multiple planes in an air traffic controller style simulation; Vigilance, using the continuous 
performance task to sustain attention on visual stimuli over a sustained period; Working memory, using a 
radar indicating the spatial locations of multiple aircraft; Inhibitory control, making split-second decisions on 
whether visual callsigns are friend or foe; Shifting attention, using the trail making task to train multitasking; 
And risk assessment, to maximize gains in low-risk low-reward versus high-risk high-reward situations. 
Each task is trained on for three sessions over a one-month period, and has both low- and high-workload 
conditions.  

To measure the induced cognitive workload of each task, and thus to understand the mental effort of the 
operator in different cognitive areas, we employ a comprehensive neuro and physiological sensor suite that 
aligned with the neuroergonomic approach [2, 3]. For neuroimaging, we used functional near infrared 
spectroscopy (fNIRS) and electroencephalogram (EEG), and for physiological signal monitoring we used 
electrocardiogram (ECG), plethysmography (PPG), electrooculogram (EOG), and remote eye tracking. Each 
of these modalities is known to be sensitive to changes in cognitive workload in their own ways; the study’s 
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goal is to combine them to determine the best combination of factors to most accurately assess workload 
while on task. With a deeper ability to do this, we can better determine the effectiveness of training and 
speed of learning so as not to waste unnecessary resources.  

These also allow us to computationally determine domains of cognition that overlap between the six tasks. 
For example, reaction speed, memory, and visual acuity are relevant parameters to many of the tasks. 
Training can be made more efficient by designing a protocol that enhances these skills in the fewest number 
of tasks and the fastest time.  

This comprehensive workload assessment utilizing both neuroimaging and physiological monitoring can 
inform developing next generation neuro-adaptive training approaches for more efficient skill acquisition. 

2.0 COGNITIVE WORKLOAD AND APPLICATIONS 

2.1 Working Definition 
Cognitive workload is a description of the collective external multidimensional demands necessary for an 
individual to complete a task in proportion with their internal skill level [4, 5]. To simplify, any action, 
whether physical, mental, or a combination, will take some amount of mental effort to complete. This may 
range from the subconscious and trivial action of picking up a cup to the intense focus necessary to 
coordinate a constant stream of planes as an air traffic controller. These external factors place different levels 
of physical, mental, temporal, and frustration demands on the individual, to name a few. In order to 
compensate for these demands and successfully achieve the desired outcome of task performance, a requisite 
level of skill must be acquired through experience and learning. But because humans are not computers, we 
are able to complete tasks successfully at a variety of skill levels by changing the amount of effort we input. 
A low skilled individual can achieve success with high effort just the same as a high skilled individual can 
achieve it with lower effort. It is this amount of effort required that we call cognitive workload.  

2.2 Cognitive Load Theory 
Cognitive load theory describes how mental workload is related to performance and learning. Because 
workload is a product of the inherent biological limits of the brain, it can be equated as the sum content of 
thoughts held concurrently in working memory during task performance [6, 7]. Human working memory 
is limited in the case of new or vital information to around seven “chunks” on average, plus or minus two 
[8, 9]. This chunking is a vital part of learning, and each chunk can be categorized into one of three types 
[10, 11]. There is intrinsic load, which is necessary for the completion of the task and inherent to the 
required actions; extraneous load, which includes distractors and unnecessary workload; and germane 
load, which is inherent to learning and skill acquisition [12]. The two former categories, intrinsic and 
extraneous, can also be classified as “mental load”, whereas germane load is classified as “mental effort”, 
emphasizing that to learn or improve a skill, voluntary effort is required [13].  

2.3 Workload Performance Curve 
The interaction between the current level of mental workload and performance on a task can be described by 
the inverted U-shaped curve known as the Yerkes-Dodson curve [14]. Their experiment, as well as many 
after, determined that the best performance occurs when workload is neither too high nor too low. When the 
difficulty of the task or presence of distractors is too high and causes high levels of workload, performance 
drops as a person becomes frustrated or is unable to meet demands. Conversely, when the task is too easy or 
the operator too skilled, the very low levels of workload required allow mind wandering and a lack of focus, 
which also causes performance to drop. When the induced workload is at the peak of the inverted U-shaped  
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curve, the highest levels of germane load, and therefore learning, occur [15, 16]. Training can be designed 
around this concept in order to optimize the efficient acquisition of skill. 

2.4 Methods of Measurement 
Because cognitive workload is distributed throughout the brain and is an interaction of external and internal 
factors, there are multiple methods used to measure workload. The simplest is to measure behavioral 
performance and grade it on level of success [17]. Although this directly correlates to the output of skill, it is 
unable to accurately define internal states. The next method is by using subjective surveys such as the 
NASA-TLX [18]. This asks individuals to grade their own levels of workload, but is inherently lacking due 
to asking people to objectively score themselves, which is difficult, and may be marred by memory because 
it is always given post-task performance. A third method is to use secondary-task performance, which inserts 
an unrelated task to the primary goal to measure the reserve cognitive capacity [19]. The concept is that any 
mental resources not necessary to be proficient in the main goal will be used by the secondary one, giving a 
measure of percentage total mental capacity, but the obvious downside is that this is both distracting and puts 
a lot of strain on the performer. The final method is to use physiological and neural imaging to achieve an 
objective measure of the inner workings of the mind, without putting undo strain on the performer, 
distracting them, or using unreliable subjective measures. These will be discussed in detail in Section 3. 

2.5 Representative Drexel Collaborative Studies  

2.5.1 Air Traffic Control Simulations 

Air Traffic Control (ATC) operators are required to have high situational awareness, intense focus, and 
strong working memory to safely direct the flight path of multiple airplanes in transit. In collaboration with 
US Federal Aviation Administration William Hughes Technical Center over the last decade, we have 
conducted a series of studies where we utilized mobile and wearable neuroimaging with typical and 
emerging ATC scenarios [20-25].  In one of the first studies where we used fNIRS neuroimaging out of lab, 
the primary objective was to use neurophysiological measures to assess cognitive workload and usability of 
new interfaces developed for complex ATC systems. To test their skills and the workload induced by 
different types of ATC information display, an fNIRS system over the prefrontal cortex was used during a 
series of tasks [26, 27]. To modulate the amount of induced workload, either 6, 12, or 18 aircraft were 
presented for monitoring, and it was found that fNIRS was sensitive enough to distinguish between the 
different levels. In addition, the information in the task was presented in one of two ways: by voice 
communications or electronic data communications. It was found that the voice comms induced a 
significantly higher level of mental workload. The results overall indicated that brain activation as measured 
by fNIRS provides a measure of mental workload in this realistic air traffic control task [23]. In practice, this 
demonstrated the potential of the approach to be translated for practical use for potential assessment of future 
ATC developments in communications and plane monitoring. Finally, taking it a step further, more futuristic 
applications are to apply this for each individual operator in real-time to personalize their workflow during 
operation so that they are best able to perform their duties. 

2.5.2 Piloting Aerial Vehicles 

Many skills that are relevant to ATC operators are also shared by pilots controlling aircrafts, and both 
professions must have a deep understanding of one another in order to work together effectively. In a series 
of studies, we investigated the potential of wearable neurotechnology for cognitive workload and training 
assessment and intervention for aircraft piloting tasks with a range from low-fidelity simulators, to high-
fidelity moving platform simulators, and even during actual flight in real aircraft [23, 24, 28-35]. 

In one of the earlier studies we investigated the impact of training, with novice participants practicing UAV 
piloting tasks over a 9 day period [23, 36]. The two types of flying tasks used were a turn-to-approach the 
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runway, where the UAV had to be maneuvered through a series of rings in the air to simulate a final 
approach, and a landing task, where the actual touchdown occurred. In addition to flight performance, self-
reporting surveys were taken with the NASA-TLX, and fNIRS was measured from anterior prefrontal cortex 
(PFC). Over the span of nine days of training, as expected, it was found that performance improved and self-
reported measures indicated a decrease in perceived workload as expertise was acquired. Moreover, 
localized PFC cortical activity as measured with fNIRS decreased, also indicating a decrease in workload to 
match the increase in skill. In fact, the fNIRS measures displayed a pattern matching a standard learning 
curve, where workload increased slightly as participants accommodated to the task, before dropping 
significantly when a new level of skill was reached [37]. This concurs with our other studies [38] and shows 
the potential of an objective assessment of skill acquisition confirmed with other studies via longitudinal 
monitoring of localized neurophysiology with fNIRS. One futuristic application could be to use 
neuroimaging to proactively adapt the training [35] or optimize neurostimulation [32] and overall can 
provide additional detailed information about participants readiness and level of training. 

2.5.3 Multimodal Physiological and Neuroimaging 

A single neuroimaging measure could provide useful information on the mental state and inner workings of 
the brain at work, and as different modalities have different advantages and disadvantages, multiple imaging 
modalities combined is expected to deliver even more detailed information by utilizing the best aspects of 
each. And, hence, understanding the complementary and shared information in biosignals such as fNIRS, 
EEG, ECG and other physiological modalities is a long-standing interest[39]. In a series of multimodal 
studies, we tested that and incorporated multiple measures to potentially improve accuracy/performance of 
brain computer interfaces  [40-43]. In one recent study, we used a classical verbal N-back task with fNIRS, 
EEG, and cardiovascular measures together [40]. Using a pseudorandom presentation of 0-back, 2-back, and 
3-back letter presentation tasks, linear discriminant analysis was used to classify workload for each 
combination of fNIRS, EEG, and physiological signals to determine the best grouping for workload 
assessment. Here, it was found that while all three modalities have the ability to classify workload levels, the 
fNIRS+EEG combination provided the best results, but the addition of heart rate and respiratory measures 
did not significantly improve classification. While this proves the strength of multimodal imaging, it does not 
dismiss the concept of incorporating body measures, as only a single domain of cognition was tested, and in 
the experiment described in this paper additional modalities including eye tracking are used. 

3.0 WEARABLE BODY AND NEUROIMAGING 

3.1 Neuro-Physiological Measures 
The brain and body hold a wealth of externally measurable information about the mental states and internal 
workings of the mind. Multiple different biosensors can be used simultaneously to collect this 
complementary information to obtain a more complete and deep understanding of operator workload during 
tasks. In our experiment, a suite of six unique sensors was utilized to measure correlates of cognitive 
workload from each participant.  
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Figure 3-1: Sensor suite displaying fNIRS, EEG, ECG, PPG, and EOG (eye tracking not shown here). 

3.1.1 Functional Near-Infrared Spectroscopy 

Functional near-infrared spectroscopy uses light in the wavelengths of around near-infrared range (optical 
window of human tissue is 700nm to 900nm range just around red color) to measure changes in the local 
concentration levels of oxygenated- and deoxygenated-hemoglobin in the cortical tissue. These values are 
hemodynamic response and relate with the specific neuronal activity of the measured brain areas via a well-
known concept of neurovascular coupling, and hence provide brain activity changes information on the 
relative changes of oxygenated blood concentration[44]. Furthermore, fNIRS systems can be built 
miniaturized and are suitable for out-of-lab and even ambulatory measurements[45-51]. In our experiment, 
the fNIR Devices Model 1200 was used to record prefrontal cortical hemodynamics [36]. It recorded from 
16 optode locations at a rate of 2 Hz. Raw light intensity taken at 730 and 850 nm was filtered with a low 
pass FIR filter and a sliding window motion artifact rejection (SMAR) algorithm [52] in Matlab, and then 
processed using the modified Beer-Lambert Law into oxygenated and deoxygenated hemoglobin values.  

3.1.2 Electroencephalogram 

EEG measures highly temporally localized electrical activity of neuron groups in the cortex via 
electrodes, conductive metals, placed over the scalp. Its strength is in determining the precise timing of 
brain reactions to stimuli and thoughts, as well as provide higher order measures of brain waves in the 
alpha, beta, delta, and theta frequency bands of activity [53]. EEG systems have been undergoing decades 
of development, and currently many types of systems such as active vs. passive and dry vs. wet electrodes 
as well as battery-operated and high density shielded stationary systems exist[54, 55]. There has been 
many developments on EEG methodology towards enabling mobile brain imaging in more naturalistic 
settings[56-58]. In our experiment, the Cognionics HD-72 dry electrode EEG was used to record full head 
neuronal excitement measures. Data was collected from 32 electrodes at 500 Hz after checking for 
impedance and processed using a notch filter at 60 Hz, followed by a bandpass filter between 1-59Hz. 
Each channel was evaluated for quality using Automatic Subspace Reconstruction (ASR) [59] with default 
settings implemented in EEGLAB [60]. Continuous band power calculations for each channel were done 
using Welch’s power spectral density of the EEG signal with a moving window of 2 s. Power spectra were 
divided into delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz) and gamma (>30 Hz) bands 
for workload assessment.  
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3.1.3 Electrocardiogram 

Heart activity is affected by mental effort and environmental stressors [61]. This includes not just heart rate 
and heart rate variability, but the shape of the signal and other temporal measures. In this experiment, heart 
activity was recorded from three electrodes via an extension to the Cognionics headset. Heart rate variability 
and other workload measures were processed using Matlab [62]. 

3.1.4 Plethysmography 

Plethysmography (PPG) is a versatile modality for measuring blood flow, and can be used to supplement 
ECG and add additional factors to heart monitoring. Here, systemic blood flow was recorded from an optical 
ear clip extension to the Cognionics headset. PPG assists in measuring heart rate variability and blood flow 
workload measures [61]. 

3.1.5 Electrooculogram 

Blinks, saccades, and eye movements correlate with mental workload [63]. Using a distinct EOG system 
separate from EEG electrodes allows for cleaner signal that is not contaminated by other information. In the 
experiment, eye movements were recorded from four electrodes via an extension to the Cognionics headset, 
two placed above and below the left eye, and two played on the outside of both eyes. 

3.1.6 Eye Tracking 

Saccade velocity, fixations, pupil diameter, and their variations are correlates of cognitive workload [64]. 
Eye tracking can also provide a more accurate assessment of precise gaze location, whereas EOG may be 
able to measure smaller, subtler movements of the eye. In this experiment, the Smart Eye Aurora recorded 
eye gaze and pupil diameter at 60 Hz and was processed using OGAMA software. 

4.0 PROTOCOL 

The methods used in this sample study presented here focus on highly detailed recording for a single session 
of a single task. The purpose is to determine the limits of cognitive workload classification in a short time on 
a naïve operator. 

4.1 Participants 
Twenty-three participants between the ages of 18 to 48 (7 males, mean age 23 years) volunteered for the 
study. All subjects confirmed via survey given in person that they met the eligibility requirements of being 
right-handed with vision correctable to 20/20, did not have a history of brain injury or psychological 
disorder, were not on medication affecting brain activity, and were United States citizens or permanent 
residents. Prior to the study all participants signed consent forms approved by the Institutional Review 
Board of Drexel University. 

4.2 Experimental Setup 
The sample experiment was performed over one session (the first session among longitudinal repetitions) 
lasting up to one hour. Participants were seated upright in front of a computer with a standard mouse and 
keyboard one meter away from the monitor. They were fitted with an fNIR Devices Model 1200 headband 
over the forehead, a Cognionics HD-72 dry electrode cap, and a Cognionics extension providing sticky 
electrodes for the ECG (3 electrodes), EOG (4 electrodes), and PPG ear clip. Eye tracking was calibrated 
using the Smart Eye Aurora system recording gaze location and pupil diameter. The task described below 
was coded using the Python extension PsychoPy. The task was preceded by instructions and practice trials 
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for each difficulty condition where participants could familiarize themselves with the procedure and ask 
clarifying questions. The task was designed to take 5-8 minutes to complete, and each of the two 
difficulties was performed three times in random order.  

4.3 Inhibitory Control Task  
The task tested here was designed to represent simplified operations often required by UAV monitors based 
on previous lab experiments in the literature. The identification of other objects in flight as friendly, neutral, 
or hostile may sometimes take until the last second to happen, or may even be misidentified at first before 
correction. Therefore, quick reaction times to interact with these other objects or even change a reaction 
increases safety in the air. In this vein, an adaptation of the go-stop paradigm was used to test participants’ 
ability to stop a reaction to a stimulus [65, 66]. Participants were instructed to react to a “start” stimulus 
flashing on screen for 150 ms and attempt to press a button. In the low workload condition, the start stimulus 
either remained the same or changed to an “ignore” stimulus for 350 seconds, which participants were told to 
treat identically to the previous target. In the high workload condition, the start stimulus either remained the 
same or changed to a “stop” stimulus, which participants were told to attempt to stop their button press 
before it completed.  

 
Figure 4-1: Cross (go) stimuli is always shown for 150 ms, followed by 350 ms of cross, flag (go), or skull (stop). 

5.0 RESULTS 

Preliminary results from the study are presented below for each modality separately. These focus on a single 
session per subject for the inhibitory control task. 

5.1 Behavioral Performance 
Participants were scored according to their percentage accuracy overall in correct responses for each 
condition, as well as their reaction time to each stimulus. A significant difference was found in both 
measures, with higher accuracy in the easy condition (F1,109 = 189.6, p < 0.001) and lower reaction times in 
the easy condition (F1,109 = 56.3, p < 0.001), both indicating better performance. 
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Figure 5-1: Accuracy percentage and mean reaction times for each condition (bars are SEM). 

5.2 Eye Tracking Metrics 
A variety of eye tracking measures were taken spanning pupil diameter, saccade velocity and distance, and 
number and length of fixations. A significant difference between conditions was found in the average 
saccade length (F1,71.5 = 5.4, p < 0.05), with lower saccade lengths indicating higher workload. 

 
Figure 5-2: Average saccade length for each condition (bars are SEM). 

5.3 Functional Near-Infrared Spectroscopy Measures 
Relative oxygenated hemoglobin concentrations in the prefrontal cortex were compared between conditions. 
Subjects with lower than 60% accuracy were excluded due to not performing the task properly. In optode 1 
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found in the left dorsolateral prefrontal cortex, a significant difference between conditions was found for 
oxygenated hemoglobin (F1,81.6 = 6.04, p < 0.05). 

 
Figure 5-3: fNIRS oxygenated hemoglobin in optode 1 (left dorsolateral prefrontal) and anatomical 

representation. 

5.4 EEG Measures 
Normalized alpha power was calculated to measure workload correlates. Subjects with lower than 60% 
accuracy were excluded due to not performing the task properly. Several electrodes were found to have 
significant differences between the easy and hard conditions, including AFF2 (F1,85.9 = 6.26, p < 0.05), AFF4 
(F1,85.9 = 4.63, p < 0.05), and FFC6h (F1,90.5 = 4.32, p < 0.05). 

 
Figure 5-4: EEG Normalized alpha power for AFF2, AFF4, and FFC6h. 

6.0 DISCUSSION 

This paper highlighted the potential of combined use of neuro/physiological measures for the assessment of 
cognitive workload and training with real-world contexts in mind. There’s a growing literature of evidence 
from diverse labs around the world about the use of neurophysiology for cognitive workload and training 
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[67-75].  As the sensor hardware (e.g. battery-operated & miniaturized), signal processing algorithms (e.g. 
motion artifact rejection & correction), and data analytical approaches (e.g. deep learning & artificial 
intelligence) are improving at a rapid pace, incorporation of neurotechnology in practical training and 
mission critical settings are becoming more feasible. An improved understanding of the complementary use 
of these diverse techniques for different cognitive domains can guide that deployment process.  

In this paper, we described a study design where six different neuro/physiological sensing modalities were 
recorded simultaneously and on the same participant cohort for six different cognitive domain tasks. The 
preliminary results so far indicate the commonly used signals—EEG, fNIRS, and eye-tracking—were able to 
differentiate controlled task difficulty and provided a biomarker modulated significantly with task difficulty. 
This confirms what we know from literature about these individual modalities. Our next step will be 
comparative analysis of modalities and sensitivity analysis of each modality separately and combined to 
identify potential best combinations for different tasks.  

The power of physiological and neuroimaging to achieve a comprehensive and objective measure of the 
internal brain state while on task can revolutionize not only the way that operators are trained, but how they 
perform in the field. By monitoring mental workload while performing their duties, any assigned task can be 
dynamically altered to maintain an ideal level of workload that is neither too high nor too low. Although it 
may seem unrealistic to present smaller chunk tasks as described in this study, each one targets a distinct 
domain of cognition, which may be more involved in different physical brain areas, or even more easily 
measured with different imaging modalities. For example, it may be the case that risk assessment is most 
closely tied to heart rate variability, sustained attention is sensitive to eye movements, and working memory 
is in a particular area of the prefrontal cortex. By simultaneously measuring all of these, even complex, real-
world operations can be accurately assessed in the wild. The strength of the methods covered here is that 
they are not exclusive to air traffic controllers. The basic domains are applicable to any task in different 
amounts and combinations, so this work is easily expandable to a wide range of fields. 

When the concepts of multimodal monitoring are applied to a team of individuals, work can be shared 
between them to maximize the overall group efficiency. Each member may be assigned not just different 
overall amounts of work, but specific types that conform to their strengths. And again, even as this changes 
over time, the discrete assignment can be influenced by workload assessments of each domain. Multiple 
brains can be continuously monitored with new generation mobile neuroimaging and potentially provide 
information about interaction [76-78]. Looking to the future, these teams need not even be comprised of only 
people. Human-robot interaction is a recently burgeoning field that is now being studied with neuroimaging 
[79]. Studies in trust and the ability to rely on robots and AI to manage some of the work is increasingly 
important as we look to the future. Combining humans’ ability to integrate and synthesize complex 
information quickly with a computer’s ability to make fast calculations and reproduce tedious work 
indefinitely will further improve our efficiency. 

Although multimodal measurements could provide new information and assessment opportunities, there are 
also multiple challenges and limitations ahead for these type of studies, First, simultaneous measurement 
with multiple types of sensors (multimodal) is difficult, it takes more time to setup each modality sensor to 
get good quality data, and it needs more time for preparation, system integration, time synchronization, and 
control during the measurement phase. Also, there could be interactions and limitations imposed on each 
modality due to concurrent use; for example sensor placement, space limitations, etc. Individual 
measurement is relatively easier, and could perform better for some mental state decoding scenarios. At the 
current time, single modality recording is expected to be more feasible for routine use of sensors in the field, 
at least initially. Another limitation is the selected sensor modality’s resolution and capabilities such as the 
number of channels, cortical coverage, and sampling rate, which also impact the potential performance of 
mental state decoding performance. Newer generations of sensors are increasingly miniaturized, and higher 
spatial and temporal resolution is expected to improve on the said limitations. 
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Upon the completion of the study presented here, we will have achieved a thorough understanding of the 
brain and body cognitive workload assessments of a comprehensive suite of cognitive domain tasks. This 
can be applied not just to ATC operators, but to a wide variety of complex and real-world jobs. By using 
portable versions of sensors such as fNIRS and EEG, this monitoring can be taken out into the field and 
applied outside the lab in ecologically valid environments. In the future, this sort of everyday measurements 
can help the development of next generation neuroadaptive training and operating for more efficient skill 
acquisition and improved cognitive workload. 
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