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ABSTRACT  
In 2021 and 2022, supported by an AFOSR grant (USAF FA9550-21-1-0104), our team demonstrated that 
we could collect and analyze sensor data from a complex simulated scenario that included NASA Mission 
Control, the Jet Propulsion Laboratory, a lunar Human-Machine Team (HMT), a lunar orbiter, the 
International Space Station with two astronauts, a Mars Orbiter, and a Mars Rover. Sensor data in the form 
of communication flow, heart rate variability, and vehicle positioning were collected as eight individuals 
enacted a scripted scenario. Data analytics were applied to test the ability of the analytic techniques to 
identify the timing, location, and cascading effects of those perturbations across system layers and the 
system as a whole. Machine learning approaches were applied to identify features of the anomalies. Results 
provide proof of concept that system state can be captured by applying the dynamic data analytic techniques 
to the sensor data. 

1.0  THE VISION 

Geographically and temporally distributed coordination is a challenge for space-based missions, Joint All 
Domain Operations (JADO), and, more generally, heterogenous, multi-domain teaming. This challenge is 
exacerbated by the complexity of teaming in a heterogeneous multi-team system composed of humans, 
robots, and Artificial Intelligence (AI) agents that can be confronted with unexpected/novel challenges 
(“perturbations”) and communication bottlenecks/delays. One solution is to harness artificial intelligence to 
monitor and manage these complex systems. An AI Manager System (AIMS) could potentially assess the 
dynamic effects of changes in the state of Distributed Teaming Systems (DTS) and in cases of anomalous 
states, provide a suitable intervention to stabilize the DTS.  

More specifically, AIMS could help to manage Joint All Domain Operations (JADO). The future of defense 
command and control involves an interconnected web of sensors and shooters linked by a centralized 
command node. In this future network, air, ground, sea, and space-based sensors provide real-time 
intelligence of adversary activities. Sensors and shooters composed of AI-aided human operators, (semi) 
autonomous agents, and multiple disparate applications push and pull data from this network. Data is the 
lifeblood of this system, with multiple communications layers automatically moving massive amounts of 
information between sensors and users, often with little to no human intervention. A human cannot 
realistically monitor such a system, so AIMS could continuously monitor the flow of information throughout 
the network to: 1) ingest communication signals, multi-domain sensor data, Position, Navigation, and 
Timing (PNT) data, and human physiological signals; 2) flag and locate the source of unexpected 
coordination patterns throughout the network and; 3) classify the type of abnormal coordination 
pattern/perturbation and then automatically recommend mitigations that re-establish trust in the system. For 
instance, AIMS may detect jamming of the C2 network of a Manned-Unmanned Team (MUM-T) executing 
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a Suppression of Enemy Air Defenses (SEAD) mission in hostile airspace and automatically recommend an 
alternate C2 network that provides sufficient bandwidth to continue the mission. 

 

Figure 1: Artificial Intelligence Management System. 

2.0  OVERVIEW OF APPROACH  
To accomplish this vision, we leverage a non-linear dynamical systems approach (layered dynamics [1]; to 
assess intra-and-inter system dynamics and machine learning to classify the dynamic patterns as team states. 
Using dynamical systems metrics that have been validated in a variety of training domains and use cases 
(maritime, medical, air vehicle operations) as indicators of how and when teams should adapt, we seek to 
provide real-time unobtrusive tracking of anomalous system states and how/when teams should adapt using 
machine learning models. 

Several steps were taken to test proof of concept of this approach: 1) Generation of a complex distributed 
space operation envisioned world scenario with scripted perturbations, 2) Scenario enactment and collection 
of sensor data, 3) Data analysis using the layered dynamics approach [1], and 4) Identify machine learning 
approaches for anomaly detection.  

2.1  Scenario Generation  
In 2021 and 2022, supported by an AFOSR grant (USAF FA9550-21-1-0104), our team demonstrated that 
we could collect and analyze sensor data from a complex simulated scenario that included NASA Mission 
Control, the Jet Propulsion Laboratory, a lunar Human-Machine Team (HMT), a lunar orbiter, the 
International Space Station with two astronauts, a Mars Orbiter, and a Mars Rover. To inform scenario 
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development, nine interviews were conducted from three astronauts with 50-150 days experience in space, 
two astrogeologists, and four individuals with space robotics experience. Challenges in distributed space 
operations were identified around communications, training, distributed teaming, and system complexity [2]. 

Scenario perturbations aligned with the challenges identified in the interviews were integrated into the 
scenario to designate system anomalies. These included the sudden need to collect a substance called 
“Enerphoto” from the surface of the moon and Mars to replenish the earth’s energy supply, an untrustworthy 
robot in the lunar colony, a lunar asteroid strike that creates a need to rebuild equipment to preserve oxygen 
supply, and a space walker at the International Space Station that becomes untethered. In addition, 
communication latency challenges between the earth and the Mars Rover were simulated. The untethered 
space walker’s experience was made immersive through the use of a “Meta Quest Pro” Virtual Reality 
headset. A Husky unmanned ground vehicle with an integrated motion capture system was used to portray 
the Mars Rover. The human in the lunar colony rebuilt “equipment” by replicating a specified Legos 
structure. A human played the role of an untrustworthy robot on the moon. Individuals assigned to control 
the orbiters operated them through a Remotely Piloted Aircraft System (RPAS) simulator. Communications 
among the entities took place through a custom push-to-talk radio system that recorded time-stamped who 
talked to whom events. The scripted interactions among entities in the scenario are represented in Figure 2. 

 

Figure 2: Communication flow among entities [2]. 

Sensors were included to generate data pertinent to the system state. These included communication flow, 
heart rate variability, and vehicle and robot activity. Communication flow was captured by the custom radio 
system (time-stamped who talked to whom). The spacewalker and human on the lunar surface were 
instrumented with iMotions sensors to collect heart rate variability. The Rover movements were captured by 
the motion capture system and the orbiters’ positioning was captured by the RPAS simulator. 
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2.2  Data Collection 
Eight individuals, each representing one of the agents depicted in Figure 2, enacted the scenario using a 
script. Individuals playing the roles of the space walker and human on the lunar colony were instrumented 
with iMotion sensors to detect heart rate variability. Depending on their role, individuals moved orbiters or 
the Rover, rebuilt equipment, or engaged in the VR spacewalk, all while communicating per the script over 
radios. Perturbations were inserted at designated times with the goal of testing the ability of the analytic 
techniques to identify the timing, location, and cascading effects of those perturbations across system layers 
and the system as a whole. Baseline runs were conducted per script. Other runs were conducted to compare 
resilient responses to non-resilient responses (written into the script) again to test the ability of the analytic 
techniques to discriminate responses. 

2.3  Data Analysis 
AIMS will ingest real-time data on system reorganization that quantifies components of resilience (enaction, 
adaptation, and recovery; [3]) in response to space challenge perturbations, which layers are reorganizing 
(communications, vehicles, physiological variables), and the amount of influence individual system 
components have on system reorganization. The reorganization and influence metrics that feed into AIMS 
are derived from a layered dynamics model [1] built for the space teaming scenario that captures the 
changing state of system organization across time. 

A layered dynamics model is defined across the set of sensors available for monitoring a system. In the space 
teaming scenario, the model includes all communication channels, physiological monitoring, and 
vehicle/robot movements and actions [4]. Streaming data from each sensor are discretized into symbolic time 
series including on/off for communication channel and vehicle control states and number of embedding 
dimensions [5] for continuous variables (e.g., heart rate variability), and these symbolic time series are time 
aligned at 1Hz. Importantly, the symbols used to track each sensor’s state are defined to be mutually 
exclusive and exhaustive over the symbol set, which means that 1) every possible combination across sensor 
states specifies a unique system state and 2) subsets of sensors (e.g., all communication channels; just the 
vehicle states) can be grouped together to measure their influence on overall system reorganization [6]. 
Symbolic time series from the layered dynamics model are then analyzed to quantify system reorganization 
in response to space challenge perturbations. 

For a symbolic timeseries of length 1,800 (1Hz), continuous reorganization was computed by calculating 
information entropy using a moving window of size 60s. In the moving window approach, entropy is 
calculated for the distribution of the 60 data points currently in the window, and then updated each second by 
discarding the oldest value and ingesting a new value at a 1Hz update speed. The result is a reorganization 
timeseries wherein positive spikes indicate moments of increased system reorganization, during which the 
system is not any fixed pattern (e.g., repeating a routine), but is in a mix of states, akin to a phase transition 
in dynamical systems [7]. We observe resilience during a space challenge by measuring time to reach 1) a 
statistically extreme (> 99% confidence interval cutoff) entropy value (“initial” or enaction), 2) time to reach 
peak reorganization (“peak” or adaptation), and 3) time to recover a nominal level of reorganization (“end” 
or recovery) that comprise a resilience curve [3]. Figure 3 shows the response of the communication system 
reorganization time series for resilient vs. non-resilient runs of the space challenge scenario. This engineering 
test demonstrates tracking of system reorganization spikes in response to perturbations and that the resilient 
run resulted in shorter times to move through the resilience curve compared to a non-resilient run (Figure 3), 
which conforms with prior results in other teaming domains [3],[6],[7].  
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Figure 3: Top: A run of the space challenge scenario in which the researchers enacted timely 
responses that overcame the perturbations in addition to their routine, scripted interactions; 
Bottom: A run in which the researchers delayed and or temporarily ignored the perturbation 
while focusing on their routine, scripted interactions. Both figures show the system response in 
terms of communication reorganization, indicating visually detectable shifts in the stabilization 
of the communication system (reorganization peaks indicate stabilizing into a new system 
pattern). However, the resilience curve (“initial”, “peak”, “end”) closes faster in the resilient (top) 
run. (Adapted from [4]). 
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Influence is defined as the capacity for the actions of a system element (e.g., an individual team member or 
piece of equipment/vehicle) or collection of system elements (e.g., a subset of team members or equipment) 
to change patterns in the systems [8]. For the space project, we quantified influence as the average mutual 
information (AMI; [9]) between subsets of states and overall system state from the layered dynamics model 
using the same moving window approach described earlier [4]. The result is a moving window influence 
time series that can be computed for any subset of system elements on system state from available sensor 
data. Table 1 shows the aggregate influence results for the communication layer for the resilient and non-
resilient runs from Figure 3. Some of the most frequently used channels are the most influential up to 
Ranking 4; however, frequently used channels are not necessarily the most influential, as indicated by the 
inconsistencies between communication channel frequency and influence beyond Ranking 4. This 
inconsistency may be more evident when looking at just the perturbation sections of a space challenge run, in 
which infrequently used channels may be highly influential [10]. 

Table 1: Communication frequency and influence for resilient and non-resilient space challenge 
runs. (Adapted from [4]). 

Resilient Run 

Ranking Most Frequent Channel 
Using Communication 

Frequency 

Communication 
Frequency 

Percent Most Influential 
Channel Using AMI 

AMI 
Percent 

1 ISS Delta->NASA MCC 16 4.692 ISS Delta->NASA MCC 0.069 

2 Lunar Bravo->Lunar 
Orbiter 

14 4.106 Lunar Bravo->Lunar 
Orbiter 

0.047 

3 ISS Delta->ISS Charlie 10 2.933 ISS Delta->ISS Charlie 0.042 

4 ISS Delta->Lunar Orbiter 10 2.933 Lunar Bravo->Lunar 
Alpha & Mars Orbiter-
>NASA MCC 

0.040 

5 NASA MCC->Mars Orbiter 10 2.933 ISS Delta->Lunar Orbiter 0.040 

6 Lunar Alpha->Lunar Bravo 
& Mars Orbiter->NASA 
MCC 

9 2.639 ISS Delta->NASA MCC & 
Lunar Orbiter->Lunar 
Bravo 

0.031 

7 Lunar Bravo->Lunar Alpha 
& Mars Orbiter->NASA 
MCC 

9 2.639 ISS Charlie->ISS Delta & 
ISS Delta->ISS Charlie 

0.031 

8 Mars Orbiter->JPL & NASA 
MCC->Lunar Bravo 

8 2.346 JPL->Mars Orbiter 0.030 

9 ISS Charlie->ISS Delta & 
ISS Delta->ISS Charlie 

7 2.053 ISS Delta->ISS Charlie & 
Lunar Bravo->Lunar 
Orbiter & Mars Orbiter-
>NASA MCC 

0.026 

10 ISS Delta->NASA MCC & 
Lunar Orbiter->Lunar 
Bravo 

7 2.053 ISS Delta->NASA MCC & 
Lunar Alpha->Lunar 
Bravo 

0.026 
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Non-Resilient Run 

Ranking Most Frequent Channel 
Using Communication 

Frequency 

Communication 
Frequency 

Percent Most Influential 
Channel Using AMI 

AMI 
Percent 

1 Mars Orbiter->NASA 
MCC 

34 9.605 Mars Orbiter->NASA 
MCC 

0.081 

2 ISS Delta->ISS Charlie 22 6.215 ISS Delta->ISS 
Charlie 

0.073 

3 Lunar Bravo->Lunar 
Alpha 

13 3.672 Lunar Bravo->Lunar 
Alpha 

0.038 

4 Lunar Orbiter->Lunar 
Bravo 

12 3.390 NASA MCC->ISS 
Delta 

0.030 

5 Lunar Alpha->Lunar 
Bravo 

10 2.825 Lunar Orbiter->ISS 
Delta & Mars Orbiter-
>NASA MCC 

0.030 

6 Lunar Bravo->ISS Charlie 
& Mars Orbiter->NASA 
MCC 

10 2.825 Lunar Alpha->Lunar 
Bravo 

0.029 

7 NASA MCC->ISS Delta 10 2.825 ISS Delta->NASA 
MCC 

0.028 

8 Lunar Bravo->Lunar 
Orbiter 

9 2.542 ISS Delta->ISS 
Charlie & Lunar 
Bravo->Lunar Orbiter 

0.028 

9 Lunar Orbiter->ISS Delta 
& Mars Orbiter->NASA 
MCC 

9 2.542 Lunar Orbiter->Lunar 
Bravo & NASA MCC-
>ISS Delta 

0.025 

10 NASA MCC->Mars 
Orbiter 

9 2.542 ISS Charlie->ISS 
Delta 

0.024 

2.4  Machine Learning of Anomalous Patterns  
We envision that AIMS will enable real-time autonomous monitoring of system and subsystem level states 
across spatiotemporal layered dynamics time series to detect anomalies and their sources. Anomalies can 
take the form of significant reorganization shifts within the system, which can be characterized in terms of 
the source(s) of reorganization and influence within the system. AIMS will utilize ML techniques such as 
anomaly detection, classification, and reinforcement learning to probabilistically classify anomalies 
compared to previously observed patterns of system reorganization, allowing AIMS to provide the user with 
a list of probable situations underlying the anomaly and suggest corrective action(s). We note, however, that 
as the pace of operations and complexity of the monitored system grows, uncertainty will grow beyond the 
bounds of traditional ML control policies, which often assume fixed sets. Therefore, AIMS incorporates 
human-autonomy teaming to allow for novel solutions to previously unimagined anomalies. To this purpose, 
AIMS can use an LLM interface to communicate the nature of the anomaly in terms of the underlying 
source(s) of sources of reorganization and distribution of influence across the monitored system elements. 
The human can use the LLM interface to communicate features of the situation based on their knowledge of 
situation-specific idiosyncrasies that may not match the situation identified by AIMS. In the human-
autonomy teaming mode, AIMS will enable the user and machine to work together to find a path for 
stabilizing the anomaly (e.g., rerouting communications through an unused channel; increasing influence 
levels of currently unused but available system components such as vehicles). The capacity to introduce an 
unlimited number of system states by bringing in or culling out system components, as suggested by the 
human, is enabled by the inherent expansibility of the AIMS layered dynamics model, which is key to our 
vision of human-autonomy teaming in AIMS. Table 2 summarizes these envisioned capabilities of AIMS 
and associated key technologies and/or theories underlying them. 
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Table 2: List of Envisioned AIMS Capabilities and Associated Key Technologies and Theories. 

AIMS Capability Key Technology/Theory 
1) Identify Anomalies Using Traditional ML Approaches ML for Sparse Data Sets 
2) Continuously Monitor Influence and Reorganization Across the 

System Layered Dynamics 

3) Communicate Nature of the Anomaly to the Human 
(Explainability, Trust) LLM Interface 

4) Match Anomaly with Known Anomalies to Provide a List of 
Probable Situations and Corrective Actions ML, LLM Interface 

5) Communicate with the User to Find Novel Paths for Stabilizing 
Unimagined Anomalies (Explainability, Trust) 

Human-Autonomy 
Teaming 

3.0  FUTURE DIRECTIONS  

Work thus far has generated proof that the AIMs vision is tenable. However, there are additional issues to be 
addressed. 1) Future directions include inserting different perturbations and types of system responses into 
the scenario in order to test the ability of the analytics to capture a variety of system states. 2) In addition, a 
challenge for dynamic system measurement is converting the real-time dynamics metrics, such as 
reorganization and influence, into actionable information suited to the situation. Although the metrics 
generally predict performance and user experience, we have found that this step is unique to each use case. 
In the future, we plan to investigate technologies that support human-autonomy teaming (e.g., LLM) and 
theories of team cognition to help determine the nature (e.g., verbal communication) and format (e.g., what 
information to display) of human-autonomy teaming information in AIMS. 3) Finally, the methodology 
proposed here relies on scripted enactment of scenarios with purposefully placed perturbations. It does not 
produce the amount of data amenable to machine learning techniques as will be available from actual 
systems. But still in the case of actual systems, critical perturbations are rare. Therefore, we are exploring 
machine learning with sparse data and possibilities such as synthetic data generation. 

4.0  CONCLUSION  

The dynamic measurement of system reorganization and influence offers a framework for continuously 
monitoring anomalies and adaptations in large, distributed team tasks and human-machine systems. AIMS 
can process, analyze, and characterize large amounts of data across complex teaming paradigms such as 
those envisioned for JADO. Artificial intelligence is uniquely suited to this task of ingesting and quickly 
interpreting vast amounts of data from complex distributed systems. Humans are inherently adaptable, and 
by leveraging the capabilities of AI, they can team with AIMS to provide uniquely adaptable solutions to 
stabilize system anomalies. 
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