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ABSTRACT  
The very essential functionality of electronic intelligence systems (ELINT) is the ability to automatically 
identify ELINT objects. In the practical operation of these systems, the results of the ELINT objects 
identification process are conditioned by proper analysis and measurement of their signal parameters. 
The more complex the signals generated by these objects, the more complex are the processes of identifying 
them. As the first step of the above-mentioned ELINT objects identification process in this paper, 
the automatic identifier is designed to automatically divide the signals of these objects into one of the four 
groups:  without intra-pulse modulation (WO-IM), continuous frequency intra-pulse modulation (FM-IM), 
multiple frequency-shift keying intra-pulse modulation (MFSK-IM) and binary phase-shift keying intra-pulse 
modulation (BPSK-IM). Prior to this process, it was necessary to perform an appropriate pre-processing 
of the data corresponding to the signal of these resources. The algorithm of automatic classification based 
on this pre-processing with neural network using is proposed. The neural network type Pattern Recognition 
Network (PRN) was evaluated as the most suitable for the automatic ELINT objects classification. 
The results of modeling and simulations are absolutely sufficient for their practical use. 

1.0 INTRODUCTION 

The accurate measurement of signal source’s pulse parameters in real time is very essential to determine 
the type and source identification in Electronic Intelligence (ELINT) systems. First, it is important 
to determine the primary parameters like frequency, pulse width, amplitude, direction and time of arrival 
of the radar signals. Subsequently, the advanced parameters like pulse modulation, frequency modulation 
and phase modulation can be determined. Measurement of these parameters accurately is very important, 
because it will help to identify two similar sources. The digital receiver is a standard solution for the modern 
ELINT systems. Advanced signal processing algorithms with time frequency analysis in real time to extract 
all the basic as well as advanced parameters of frequency and phase modulations such as chirp, barker, 
and poly-phase codes in addition to the pulse and continuous wave signals are described in [1]. Especially, 
the methods of inter-pulse, intra-pulse and intragroup modulations of modern signals are diverse 
and complicated. Traditional signal analyzing methods based on five conventional parameter features such 
as carrier frequency (fN), time of arrival (TOA), pulse amplitude (PA), pulse width (PW) and pulse repetition 
interval (PRI) respectively are unsuitable to modern ELINT systems. Modern ELINT system needs to be not 
only intelligent, automatic, real-time, error-tolerant, also must contain equipment of learning and judgment 
ability. Some recognition and classification technologies based on extracted intra-impulse features 
are applied in [2]. Online clustering model-based algorithm using the minimum description length (MDL) 
criterion and algorithm based on the competitive learning for radar emitter classification are compared in [3]. 
To enhance the ability of specific emitter identification (SEI) to meet the requirement of modern ELINT, 
a novel identification approach for radar emitter signals based on type-2 fuzzy classifier is presented in [4]. 
Based on the ELINT feature extraction of radar emitter signals, the type-2 fuzzy classifier is applied 
to identification of radar emitters. An overview of the methods of measurement emitter signal features 
parameters in the time and the frequency domain is provided in [5]. More advanced recognition methods, 
which may recognize particular copies of radars of the same type, are called identification. The comparison 
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of Hierarchical Agglomerative Clustering Algorithm (HACA) based on Generalized Agglomerative Scheme 
(GAS) with other SEI methods is implemented in [6]. The Signal-to-Noise-Ratio (SNR) is one 
of the fundamental limits to what can be learned about a signal through ELINT [7]. This problem and the 
statistical techniques used in ELINT are briefly discussed in [8]. The role of knowledge-based processing 
methods and how they may be applied to the key ELINT/ESM signal processing functions of deinterleaving, 
merge and emitter identification is discussed in [9]. One of the methods of recognizing the radar pulse signal 
in ELINT/ESM is proposed in [10]. This method recognizes the PRI modulation types using classifiers based 
on the property of the autocorrelation of the PRI sequences for each PRI modulation type. 

During the last years we have observed fast development of the electronic devices and ELINT systems. 
Simultaneously, utilization of some tools of artificial intelligence (AI) during the process of emitter 
identification is discussed too. The process of SEI based on extraction of distinctive radiated emission 
features by specific database (DB) for identifying a detectable radar emission is presented in [11]. A neural 
network (NN) in many variations as kind of AI is proposed for classification of radar pulses in autonomous 
ESM systems standardly [12],[13]. After performing the principal component analysis (PCA), the hidden 
layer neurons of the NN have been modelled by considering intra-class discriminating characteristics 
of the training images. This helps the NN to acquire wide variations in the lower-dimensional input space 
and improves its generalization capabilities.  The neural networks and support vector machines are adopted 
to design classifiers to identify the signal parameters automatically. The fuzzy NN is used to classify streams 
of pulses according to radar type using their functional parameters [14]. 

The aim of this work is classification and identification of ELINT objects which use any kind of intra-pulse 
modulation. As the first step of the identification process, the automatic dividing the signals of these objects 
into one of the four groups is proposed:  without intra-pulse modulation (WO-IM), continuous frequency 
intra-pulse modulation (FM-IM), multiple frequency-shift keying intra-pulse modulation (MFSK-IM) 
and binary phase-shift keying intra-pulse modulation (BPSK-IM). Prior to this process, it was necessary 
to perform an appropriate pre-processing of the data corresponding to the signal of these resources. 
The algorithm of automatic classification based on this pre-processing with neural network using 
is proposed. 

2.0 ELINT SIGNALS 

The possibilities of generating different types of complex signals by ELINT objects are growing up 
with the development of microwave and digital technologies. The more complex the signals generated by 
these objects, the more complex are the processes of identifying them. At present, it is possible to divide up 
the modern ELINT signals into the following groups: 

1. Radio pulses without intra-pulse modulation (WO-IM), i.e. signals with constant amplitude, frequency 
and phase, the behavior of which in time domain can be described by the following equation: 
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where A is a signal amplitude, ω is an angle frequency, PRI is a pulse repetition interval, PW is a pulse 
width, DT is a dwell time, ϕ is initial phase, N(t) is a Gaussian noise and i = 0, 1, 2, … I  is an integer. 

2. Radio pulses with continuous frequency intra-pulse modulation (FM-IM), i.e. constant amplitude 
and phase and variable frequency signals. Frequency changes may be linear (LFM-IM) or non-linear 
(NLFM-IM), with frequency increasing or decreasing. The behavior of LFM-IM signals in time domain 
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where Δω is an angle frequency deviation. The behavior of NLFM-IM signals in time domain can be 
described by the following equation: 
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3. Radio pulses with multiple frequency-shift keying intra-pulse modulation (MFSK-IM), i.e. constant 
amplitude and phase signals with variable frequencies, the behavior of which in time domain can be 
described by the following equation: 
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where ωm is a signal angle frequency used in a subpulse. 

4. Radio pulses with binary phase-shift keying intra-pulse modulation (BPSK-IM), i.e. constant amplitude 
and frequency signals with variable phase, the behavior of which in time domain can be described 
by the following equation: 
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where Δψm is a phase deviation in  m-th subpulse, which in the case of BPSK reach the value 0 for 
modulation signal equals +1 and value π for modulation signal equals -1. 

A presentation of all above mentioned ELINT signals in time domain without noise are shown in Figure 1. 

The very essential functionality of ELINT systems is the ability to automatically identify ELINT objects. 
In the practical operation of these systems, the results of the ELINT objects identification process 
are conditioned by proper analysis and measurement of their signal parameters. Parameter analysis 
and measurements are mostly performed in time, frequency or in time-frequency domain. In this way, 
the so-called descriptors are obtained, whose values are characteristics for each type of ELINT objects 
and are used to identify them. The basic types of these descriptors include carrier frequency fN, pulse 
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repetition interval PRI and pulse width PW. 
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Figure 1: Types of ELINT signals in time domain without additive noise. 

As mentioned above, with the development of microwave and digital technologies, the possibilities 
of generating different types of complex signals also grow. In this regard, additional descriptors are defined 
in the ELINT objects identification process, which are characteristic of only some types of signals, i.e. some 
ELINT objects. Therefore, it is necessary to process the individual signal types (groups of signals) 
separately. Emphasis is placed not only on the measurement of basic descriptors but also on the correct 
extraction of further (specific) descriptors of these signals. Specific descriptors include e.g. frequency 
deviation and frequency changes slope of FM-IM signals, subpulse width, frequency values for every 
subpulse, subpulses sequence for MFSK-IM signals, and subpulse width and code sequence for BPSK-IM 
signals. 

The principle of the work of most modern ELINT systems is based on the involvement of so called software 
defined receivers with sampling at the intermediate frequency. Since the processing of signals in these 
devices is predominantly in digital form, the use of different methods of digital data processing is also 
envisaged in the process of identifying ELINT objects. The key issue in the ELINT objects identification 
process is then to design and program a generally robust algorithm to ensure proper preprocessing 
and processing of data for neural network or database systems. 

3.0 STRUCTURE OF AUTOMATIC IDENTIFICATION SYSTEM 

In this part of the paper, attention is paid to the classification part design of the automatic ELINT objects 
identification system. From a qualitative point of view, it is possible to divide the ELINT objects 
identification process into the next three stages: 

1. Objects classification, 

2. Object type recognition, 

3. Object mode recognition. 
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Based on the experiments and practical experience from the signal and data processing, the authors proposed 
a two-stage automatic ELINT objects identification system, whose structural diagram is shown in Figure 2. 
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Figure 2: Structural schema – two-stage automatic ELINT objects identification system. 

The input of the automatic identification system consists of an A/D converter and a FIFO memory where 
sampled signals are stored in a data matrix in the shape 
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where m = 1, 2 … M is the number of received signal periods and n = 1, 2 … N is number of samples 
per reception period. 

The output of FIFO memory is connected to the data preprocessing part (the operation will be explained 
in Section 3) and to the data multiplexer. Preprocessed data proceeds to an automated NN-based classifier 
which controls both data multiplexer and database as a segment of recognition part. Based on classification 
results, data multiplexer switches individual data into their corresponding data processing part. On this place, 
the measurement and analysis of the corresponding signal descriptors (parameters) are compared with 
the data specified in the database using the extractor of data descriptors (EDD). The outcome of the proposed 
automatic identification system is the object type recognition or object mode recognition. In the next part 
of the paper, attention will be paid to the process of data pre-processing and automatic classification 
of ELINT objects using neural network. 
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4.0 CLASSIFICATION OF ELINT OBJECTS USING NEURAL NETWORK 

In the first step of the above-mentioned ELINT objects identification process, the automatic identifier 
is designed to automatically divide the signals of these objects into one of the four groups (WO-IM, FM-IM, 
MFSK-IM or BPSK-IM), i.e. their automatic classification is realized. However, prior to this process 
of ELINT objects classification, it was necessary to perform an appropriate pre-processing of the data 
corresponding to the signal of these resources. This ensured the quality requirements for their automatic 
classification. At the same time as the algorithm for data pre-processing was verified, the selection of the 
appropriate type and robustness of the neural network was performed. Structural schema of preprocessing 
and classification part is shown in Figure 3. 
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Figure 3: Structural schema of preprocessing and classification part. 

The data from the data matrix for each row enters to the input of preprocessing part. Each row is normalized 
according to the amplitude, and then for this line the autocorrelation function is calculated according 
to the equation: 
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where q is a sequence index of autocorrelation function, s[n] is a data signal and * represents the complex 
conjugate. Consequently, in the sense of the equation 

[ ] [ ]
[ ]( )qR

qRqR
XX

XX
XX max

=          (8) 

performs the normalization of the autocorrelation function, determines the position of its maximum value 
posmax and corresponding number of samples of the descending part of the autocorrelation function 
is selected by the windowing function w[u]. For expressing the windowing function w[u] is valid 
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the equation: 
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where u is a number of samples of windowing function (window size) and v is number of first sample 
to perform windowing function from all samples of autocorrelation function (window shift). After this step, 
each row from data matrix is normalized according to number of samples. 

Window size value of windowing function w[u] was optimized during the simulations and the value 4096 
samples seems to be optimal with respect to the quality of results and the classification time. So called 
normalized function is product of windowing function for every mentioned group (WO-IM, FM-IM, MFSK-
IM and BPSK-IM). A presentation of the normalized function examples for every single group of ELINT 
signals used in classification are shown in Figure 4. 

 

1. without IM (WO-IM) signal – normalized function w[u] 2. FM-IM signal - normalized function w[u] 

3. MFSK-IM signal – normalized function w[u] 4. BPSK-IM signal – normalized function w[u] 

 

Figure 4: Normalized function w[u] examples for every single group of ELINT signals. 

From the waveforms of the normalized functions w[u], it is clear that for each of the four defined signal 
types there is a specific pattern. Automatic classification of the ELINT object is performed by following 
differences in this patterns. 

5.0 MODELING AND SIMULATION RESULTS 

To verify the ELINT objects classification process using neural network with proposed data pre-processing, 
the model programmed in the Matlab program environment was used. Structural schema of model used for 
ELINT objects classification is shown in Figure 5. 
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In the simulations performed, the following parameters of the above model were used: 

- range of generated pulses carrier frequency fN values: fN  = (125÷375) MHz; 

- range of pulse width values: PW  = (8÷128) μs; 

- range of frequency deviation values: ΔfN = (1÷10) MHz (just for FM-IM signals); 

- frequency modulations for FM-IM signals: increasing linear FM, decreasing linear FM, increasing 
quadratic FM, increasing logarithmic FM, convex quadratic FM, concave quadratic FM; 

- number of subpulses for MFSK-IM signals: 3, 5, or 7; 

- used intra-pulse modulations of BPSK-IM signals: Walsh–Hadamard 16 (14th or 6th row in Walsh–
Hadamard 16 codes matrix), Walsh–Hadamard 32 (30th or 22nd row in Walsh–Hadamard 32 codes 
matrix), regular Barker 13, inverse Barker 13; the rows in Walsh–Hadamard 16 and Walsh–Hadamard 32 
matrices were selected based on the findings in [15]; 

- sampling time: TS = 1/(30*fN); 

- signal to noise ratio (SNR) for training dataset … 20 dB; 

- number of vectors in training dataset … 512 for every mentioned group of ELINT signals (4 groups), i.e. 
2048 overall; 

- number of classified vectors (signals) … 1024 for every mentioned group, i.e. 4096 overall; 

- computer used for simulations: CPU AMD Athlon II X2 255, RAM 4096 MB DDR3, GPU Radeon HD 
4250, operating system Windows 10 64-bit, Matlab 2016a program environment. 
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Figure 5: Structural schema of used ELINT objects classification model. 

Verification of the correct operation of the automatic ELINT objects classifier was performed in several 
stages. Several simulations and tests were carried out, which resulted in the following facts: 

a) In the first stage of simulations, different types of neural networks were tested. The neural network type 
"Pattern Recognition Network" was evaluated as the most suitable for the automatic ELINT objects 
classification with the designed pre-processing. Schematic structure of used neural network- Pattern 
Recognition Network is shown in Figure 6. 
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Figure 6: Schematic structure of used neural network - Pattern Recognition Network. 

b) In the second stage of the simulations, the problem of optimization of the robustness of this type of neural 
network was resolved with respect to the number of hidden neurons (4, 8, 16 or 32) and the number 
of hidden layers (1 or 2). The following parameters were evaluated in the neural network robustness 
optimization process: 

i. Number of correct classified inputs vs. signal to noise ratio (SNR) in decibels for tested neural 
network; 

ii. Neural network performance values vs. SNR; 

iii. Neural network regression values vs. SNR; 

iv. Mean time for classification of single pulse (include preprocessing algorithm) TC. Mean time 
was evaluated only for two Pattern Recognition Network structures (with the best results). 

The results of the robustness optimization of Pattern Recognition Network is shown in Table 1-1, Table 
1-2, Table 1-3 and Table 1-4. 

Table 1-1: Number of correct classified inputs vs. SNR 

NN - Correct classified inputs SNR [dB] 
-8 -6 -4 -2 0 2 4 

Neural 
network 

patternnet 4 0,809 0,947 0,973 0,985 0,983 0,985 0,987 
patternnet 8 0,891 0,966 0,977 0,986 0,983 0,986 0,986 
patternnet 16 0,86 0,963 0,977 0,984 0,982 0,984 0,986 
patternnet 32 0,802 0,948 0,974 0,986 0,983 0,984 0,987 
patternnet 16 16 0,797 0,944 0,975 0,985 0,983 0,984 0,987 
patternnet 32 16 0,77 0,931 0,97 0,983 0,981 0,982 0,985 

Table 1-2: Neural network performance values vs. SNR 

NN – Performance values SNR [dB] 
-8 -6 -4 -2 0 2 4 

Neural 
network 

patternnet 4 0,1271 0,0442 0,025 0,0181 0,0179 0,0159 0,0158 
patternnet 8 0,0664 0,0278 0,0181 0,0145 0,0153 0,0138 0,0134 
patternnet 16 0,0786 0,028 0,0164 0,0126 0,0132 0,0116 0,0114 
patternnet 32 0,1328 0,0388 0,0173 0,0109 0,0119 0,01 0,0096 
patternnet 16 16 0,119 0,0407 0,0204 0,0142 0,0149 0,0133 0,0128 
patternnet 32 16 0,1591 0,0525 0,0235 0,0162 0,0165 0,0149 0,0145 
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Table 1-3: Neural network regression values vs. SNR 

NN – Regression values SNR [dB] 
-8 -6 -4 -2 0 2 4 

Neural 
network 

patternnet 4 0,79504 0,93954 0,97166 0,98276 0,98166 0,98439 0,98488 
patternnet 8 0,88669 0,96279 0,97929 0,98549 0,98322 0,98561 0,98654 
patternnet 16 0,86109 0,95898 0,97819 0,9848 0,98248 0,98533 0,98601 
patternnet 32 0,79332 0,94191 0,97549 0,98555 0,98331 0,98587 0,98697 
patternnet 16 16 0,79169 0,93979 0,97483 0,98509 0,98295 0,98546 0,98667 
patternnet 32 16 0,74794 0,9201 0,97035 0,98286 0,98125 0,98388 0,9848 

Table 1-4: Mean time for classification of single pulse (include preprocessing algorithm) 
Tc - Mean time [ms] WO-IM FM-IM MFSK-IM BPSK-IM Mean value 

Neural 
network 

patternnet 8 13,6 14,5 14,1 13,8 14 
patternnet 16 15,2 15,6 15,9 16,1 15,7 

Based on the evaluation of the above mentioned parameters, it can be stated that the best results 
in this approach for ELINT objects classification were achieved by a neural network with one hidden 
layer containing 16 resp. 8 neurons. 

c) In the final phase of the simulations, it was tested how likely it is to classify the above defined signals 
of ELINT objects using the Pattern Recognition Network structures with the best results. The best results 
were reached using the Pattern Recognition Networks with one hidden layer containing 16 (NN No 1), 
respectively 8 neurons (NN No 2). For each signal class, a set of M = 1024 signals with random variables 
at the given SNRs was generated. Probability of correct classification pC is given by the equation 

,
M

Mp C
C =          (10) 

where MC is the number of correctly classified signals from a given class. 
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Figure 7: Probability vs. SNR (left) and number of correct classified inputs by neural network No 
1 for SNR = -3,75 dB (right). 



 ELINT Objects Identification Based on Intra-Pulse Modulation Classification 

 STO-MP-IST-160 PT-5 - 11 

 

 

  

988 
(96,5 %) 

1024 
(100 %) 1024 

(100 %) 973 
(95 %) 

BPSK-IM 

MFSK-IM 

FM-IM 

WO-IM 
WO-IM 

FM-IM 
MFSK-IM 

BPSK-IM Output Class 
Target Class 

0 

200 

400 

600 

800 

1000 

1200 

 
 

 

  

 

Figure 8: Probability vs. SNR (left) and number of correct classified inputs by neural network No 
2 for SNR = -4 dB (right). 

 

The results obtained in the ELINT objects classification by the neural network with one hidden layer 
containing 16 neurons (NN No 1) is shown in Figure 7 and containing 8 neurons (NN No 2) is shown 
in Figure 8. 

It is clear from the above figure that neural network No 1 very reliably classifies ELINT objects with intra-
pulse modulation (pC > 0,95 also for SNR = -8 dB). For ELINT object signals without intra-pulse 
modulation, this condition applies to SNR = -3,75 dB. 

Neural network No 2 is working a bit more reliable. It also classifies all of the ELINT objects with intra-pulse 
modulation with pC > 0,95 for SNR = -8 dB. For ELINT object signals without intra-pulse modulation, 
this condition applies to SNR = -4 dB. The results obtained with the classification of ELINT objects 
with the best tested neural networks (patternnet 16 and patternnet 8) are absolutely sufficient for their 
practical use. 

6.0 CONCLUSIONS 

A novel method of the ELINT object signals identification approach based on intra-pulse modulation 
classification is presented in this paper. The algorithm for classification is based on the pre-processing stage 
and classification stage with neural network (NN) using. The number of correct classified inputs vs. signal 
to noise ratio for tested NN was recognized and other NN parameters was evaluated. Mean time 
for classification of single pulse was evaluated for two Pattern Recognition Network structures. Probability 
of correct classification above 0,95 was reached up to SNR = -4dB. Those results are absolutely sufficient 
for their practical use. 
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