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ABSTRACT 
Recent developments in artificial intelligence (AI) have resulted in a breakthrough for many classical AI- 
applications, such as computer vision, natural language processing, robotics, and data mining. Therefore, 
there are many efforts to exploit these developments for military applications, such as surveillance, recon- 
naissance, threat evaluation, underwater mine warfare, cyber security, intelligence analysis, command and 
control, and education and training. However, despite the possibilities for AI in military applications, there 
are many challenges to consider. For instance, 1) high risks means that military AI-systems need to be 
transparent to gain decision maker trust and to facilitate risk analysis; this is a challenge since many AI- 
techniques are black boxes that lack sufficient transparency, 2) military AI-systems need to be robust and 
reliable; this is a challenge since it has been shown that AI-techniques may be vulnerable to imperceptible 
manipulations of input data even without any knowledge about the AI-technique that is used, and 3) many AI-
techniques are based on machine learning that requires large amounts of training data; this is challenge since 
there is often a lack of sufficient data in military applications. This paper present results from ongoing projects 
to identity possibilities for AI in military applications, as well as how to address these challenges. 

1 INTRODUCTION 

Artificial intelligence (AI), specifically the subfields machine learning (ML) and deep learning (DL), has 
within a decade moved from prototyping at research institutes and universities to industry and real-world ap- 
plication. Modern AI using DL-techniques has revolutionized the performance of traditional AI-applications 
such as machine translation [10], QA-systems [62], and speech recognition [1]. The many advancements in 
this field has also turned other ingenious ideas into remarkable AI-applications capable of image caption- ing 
[61], lip reading [2], voice imitation [52], video synthesis [57], continuous control [7], etc. These results 
suggest that a machine capable of programming itself has the potential to: 1) improve efficiency with respect 
the development costs of both software and hardware, 2) perform specific tasks at a superhuman level, 3) 
provide creative solutions to problems not previously considered by humans, and 4) provide objective and fair 
decisions where humans are known for being subjective, biased, unfair, corrupt, etc. 

In a military context, the potential for AI is present in all domains (i.e. land, sea, air, space and informa- tion) 
and all levels of warfare (i.e. political, strategic, operational and tactical). For instance, at the political and 
strategical levels, AI can be used to destabilize an opponent by producing and publishing massive quan- tities 
of fake information. In this case, AI will most likely also be the best candidate to defend against such attacks. 
At the tactical level, AI can improve partly autonomous control in unmanned systems so that human operators 
can operate unmanned systems more efficiently to, ultimately, increase battlefield impact. 
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However, as we will point out in this work, there are several key challenges that could potentially slow down 
or otherwise limit the use of modern AI in military applications 

• Insufficient transparency and interpretability of ML-models. As an example, using DL to model the 
control of a self-driving car using a deep neural network (DNN) requires several hundreds of 
thousands of parameters [7]. Clearly such a complex program can not easily be interpreted. Even 
models generated using alternative ML-algorithms where the model can be graphically visualized, 
such as parser trees or decision trees, are hard if not impossible to interpret even when applied to toy-
problems [35]. A related and perhaps even more important challenge is the ability, or in this case 
inability, for the AI-system to explain its reasoning to the decision maker or human operator. 

• Models developed using ML are known to be vulnerable to adversarial attacks. For instance, a DL- 
based model can easily be deceived through manipulation of the input signal even if the model is 
unknown to the attacker. As an example, unmanned aerial vehicles (UAVs) using state-of-the-art 
object detection can potentially be deceived by a carefully designed camouflage pattern on the ground. 

• The main ingredient in any ML-application is data from which the machines can learn and, ultimately, 
provide insight into. Military organizations are often good at collecting data for debriefing or recon- 
struction purposes. However, there is no guarantee that the same data can be used successfully for 
ML. As a result, military organizations may have to adapt their data collection processes to take full 
advantage of modern AI-techniques, such as DL. 

The purpose of this paper is to highlight possibilities and major challenges for AI in military appli- cations. 
Section 2 provides a brief introduction to DL, which is the main AI-technique of interest in this paper. Section 
3 provides a few examples of military AI-applications. Section 4 describes key challenges associated with AI 
in the military domain, as well as techniques that can be used to partially address these challenges. Conclusions 
are presented in Section 5. 

2 DEEP LEARNING 

By DL we refer to machine learning models consisting of multiple of layers of nonlinear processing units. 
Typically, these models are represented by artificial neural networks. In this context, a neuron refers to a single 
computation unit where the output is a weighted sum of inputs that passed a (nonlinear) activation function 
(e.g., a function that passes the signal only if it is positive). DNNs refer to systems with a large number of 
serially connected layers of parallel-connected neurons. The contrast to a DNN is a shallow neural network 
that has only one layer of parallel-connected neurons. 

Until about ten years ago, training of DNNs was virtually impossible. The first successful training strategies 
for deep networks were based on training one layer at a time [21, 6]. The parameters of the layer- by-layer-
trained deep networks were finally fine-tuned (simultaneously) using stochastic gradient methods [49] to 
maximize the classification accuracy. Since then, many research advances have made it possible to directly 
train DNNs without having a layer-by-layer training. For example, it has been found that initializa- tion 
strategies for the weights of the network in combination with activation function selection are crucial [16]. 
Even techniques such as randomly disabling neurons during the training phase [22], and normalizing the 
signals before they reach the activation functions [25] have shown to be of great importance in achieving good 
results with DNNs. 

Representation learning is one of main reasons for the high performance of DNNs. Using DL and DNNs it is 
no longer necessary to manually craft the features required to learn a specific task. Instead, discriminating 
features are automatically learned during the training of a DNN. 
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Techniques and tools supporting DL-applications are more available today than ever before. Advanced DL 
can be successfully applied and customized using only limited programming/scripting skills through cheap 
computational resources, free ML-frameworks, pre-trained models, open-source data and code. 

3 MILITARY AI-APPLICATIONS 

This section presents a few examples where AI can be applied to enhance military capability. 

3.1 Surveillance 
Maritime surveillance is performed using fixed radar stations, patrol aircrafts, ships, and in recent years 
electronic tracking for maritime vessels using the automatic identification system (AIS). These information 
sources provide voluminous amounts of information about vessel movement that may reveal illegal, unsafe, 
threatening, and anomalous behavior. However, the large amounts of information about vessel movement 
makes it difficult to manually detect such behavior. Instead ML-approaches are used to generate normality 
models from vessel movement data. Any vessel movement that deviates from the normality models is 
considered anomalous and presented to operators for manual inspection. 

An early approach to maritime anomaly detection use the Fuzzy ARTMAP neural network architecture to 
model normal vessel speed based on port location [47]. Another approach use associative learning of motion 
patterns to predict vessel movement based on its current location and direction of travel [48]. Others use 
unsupervised clustering based on Gaussian mixture models (GMM) [30] and kernel density estimation (KDE) 
[31]. The models enable detection of vessels that change direction, cross sea lanes, move in the opposite 
direction or travel at high speed. More recent approaches use Bayesian networks to detect false ship type, as 
well as discontinuous, impossible, and loitering vessel movement [36]. Future developments of maritime 
anomaly detection should also consider surrounding vessels and interaction among multiple vessels. 

3.2 Underwater mine warfare 
Underwater mines pose a significant threat to marine vessels and are used to channel movement or deny pas- 
sage through restricted waters. Mine countermeasures (MCM) therefore tries to locate and neutralize mines to 
enable freedom of movement. Mine searches are increasingly performed with an autonomous underwater 
vehicle (AUV) that is equipped with synthetic aperture sonar (SAS), which provides centimeter-resolution 
acoustic imagery of the seafloor. Since AUVs collect large amounts of SAS imagery, automatic target classi- 
fication is useful to discriminate potential mines from other objects. While automatic target classification of 
mines has been studied for a long time, the high performance of DNNs for image classification has created an 
interest in how such approaches may be useful for automatic mine detection. 

A few studies show the potential of DNN for mine detection. For example, [63] describes how dummy mine 
shapes, mine-like targets, man-made objects and rocks where placed on the seafloor on various geo- graphic 
locations. An AUV was then used to survey the seafloor with an SAS. The results show that the DNN has 
significantly higher performance with higher probability of detection of mine shapes and lower false alarm 
rates compared to a traditional target classifier. Similarly, [12] describes how to generate syn- thetic SAS 
images of cylinder-shaped objects and various seafloor landscapes that were used to train the DNN. Further 
studies may investigate how to discriminate mines from all types of clutter objects, combine detection and 
classification, as well as robustness to noise, blur, and occlusion. 

3.3 Cyber security 
Intrusion detection is an important part of cyber security to detect malicious network activity before it 
compromises information availability, integrity, or confidentiality. Intrusion detection is performed using an 
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intrusion detection system (IDS) that classifies the network traffic as normal or intrusive. However, since 
normal network traffic often have similar signature as actual attacks, cyber security analysts analyze the 
situation for all intrusion alerts to determine whether there is an actual attack. While signature-based IDSs are 
often good at detecting known attack patterns, they cannot detect previously unseen attacks. Further, 
development of signature-based detection is often slow and expensive since it requires significant expertise. 
This hampers the systems adaptability to rapidly evolving cyber threats. 

Many studies use ML and other AI-techniques to increase the classification accuracy of known attacks, detect 
anomalous network traffic (since this may indicate new attack patterns that deviate from normal net- work 
traffic), and automate model construction [27]. However, few of these systems are used operationally. The 
reason for this is that intrusion detection presents specific challenges such as lack of training data, large 
variability in network traffic, high cost of errors, and difficulty of performing relevant evaluations [9, 55]. 
Although large volumes of network traffic can be collected, the information is often sensitive and can only 
partially be anonymized. Using simulated data is another alternative, but it is often not sufficiently realistic. 
The data must then be labeled for supervised learning in terms of whether the patterns are normal or an 
intrusion, or for anomaly detection assured to attack-free, which is often difficult to do. Finally, the models 
need to be transparent so that researchers can understand the detection limits and significance of features [55]. 

Another measure to increase cyber security is penetration testing during security audits for identification of 
potentially exploitable security weaknesses. Penetration testing is often automated due to the complexity and 
large number of hosts in many networks. Some studies have investigated how AI-techniques may be used for 
simulated penetration testing using logical models of the network rather than the actual network. The network 
is often represented with attack graphs or trees that depict how an adversary can exploit vul- nerabilities to 
break into a system. However, [23] describes how models differ in terms of the way they characterize: 1) 
uncertainty for the attacker from abstract success and detection probabilities to uncertainty of network state, 
and 2) attacker actions from known pre- and post-conditions to general sensing and ob- servation of outcomes. 
Further, with formal models of networks and hosts, it is possible to perform what-if analysis of different 
mitigation strategies [5]. Future research on penetration testing will likely use cogni- tively valid models of 
the interaction between attacker and defender, e.g. [26], as well as deep reinforcement learning to explore the 
large problem space of possible attacks. 

4 CHALLENGES 

As indicated by the cases in Section 3, there are unsolved challenges that are important to be aware of prior to 
developing and deploying an AI-based application for military purposes. In this section we will discuss, in our 
opinion, the most critical ones for military AI: 1) transparency, 2) vulnerabilities, and 3) learning even in the 
presence of limited training data. Other important, but less critical, challenges related to optimiza- tion, 
generalization, architectural design, hyper-parameter tuning, and production grade deployment are not further 
discussed in this work. 

4.1 Transparency 
Many applications require, in addition to high performance, high transparency, high safety, and user trust or 
understanding. Such requirements are typical in safety critical systems [29], surveillance systems [60], 
autonomous agents [37], medicine [14], and other similar applications. With the recent breakthrough for AI, 
there is also an increased research interest in transparency to support end-users in such applications (e.g. [20, 
24, 42]). 

 



Possibilities and Challenges for Artificial Intelligence in Military Applications 

SSTO-MP-IST-160 S1-5 - 5 

 

 

4.1.1 Expectations on transparency 

The required transparency of AI depends on the end-users needs. Lipton [34] describes how transparency may 
concern five types of user need for: 

1. Trust in situations where it is difficult for users to question system recommendations. However, it may 
be unclear whether user trust is based on system performance or robustness, performance relative the 
user, or how comfortable the user is with system recommendations. 

2. Insight into previously unknown causal relationships that may be tested with other methods. 

3. Knowledge of system performance limits due to limited model generalizability compared to the users 
abilities. 

4. Some additional information about system recommendations. 

5. Fairness to avoid systematic biases that may result in unequal treatment for some cases. For example, 
evaluation of credit applications should not be based on personal attributes, such as sex or ethnicity, 
although such attributes may distinguish population groups on an overall statistical level. 

There are in principle, two ways to make AI-systems transparent. Firstly, some types of models are perceived 
as more interpretable than others, such as linear models, rule-based systems, or decision trees. In- spection of 
such models gives an understanding of their composition and computation. Lipton [34] describes how the 
interpretability depends on whether users can predict system recommendations, understand model parameters, 
and understand the training algorithm. Secondly, the system may explain its recommendations. Such 
explanations may be textual or visual. For example, by indicating what aspects of an image that mostly 
contributes to its classification. Miller [38] provides an extensive review of explanations in social sciences 
research and how this knowledge may be used to design explanations for AI systems.  Typically, people 
explain other agents behavior in terms of their perceived beliefs, desires, and intentions. For AI systems, be- 
liefs correspond to the systems information about the situation, desires correspond to the systems goals, and 
intentions correspond to intermediate states. Further, explanations may encompass abnormality of actions, 
preferences to minimize cost or risk, deviations from expected norms, recency of events, and controllability of 
actions. The major findings are that: 

• Explanations are contrastive in response to particular counter-factual cases. Explanations therefore 
focus on why the particular recommendation was given instead of some other recommendation. 

• Explanations are selected and focus on one or two possible causes and not all causes for the recom- 
mendation. 

• Explanations are a social conversation and interaction for transfer of knowledge. 

4.1.2 Examples of interpretable models 

Bayesian rule lists (BRL) is one example of interpretable models. BRL consist of series of if (condition) then 
(consequent) else (alternative) statements. Letham et al. [33] describes how BRL can be generated for a highly 
accurate and interpretable model to estimate the risk of stroke. The conditions discretize a high-dimensional 
multivariate feature space that influence the risk of stroke and the consequent describes the predicted risk of 
stroke. The BRL has similar performance as other ML-methods for predicting the risk of stroke and is just as 
interpretable as other existing scoring systems that are less accurate. 

Lexicon-based classifiers is another example of interpretable models for text classification. Lexicon- based 
classifiers multiplies the frequency of terms with the probability for terms occurring in each class. The class 
with the highest score is chosen as the prediction. Clos et al. [11] models lexicons using a gated recurrent 
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network that jointly learns both terms and modifiers, such as adverbs and conjunctions. The lexicons where 
trained on whether posts in forum are for or against death penalty and sentiments towards commercial 
productions. The lexicons perform better than other ML-methods and are at the same time interpretable. 

4.1.3 Examples of feature visualization 

Although DNNs offer high performance in many applications, their sub-symbolic computations with per- haps 
millions of parameters makes it difficult to understand exactly how input features contribute to system 
recommendations. Since DNNs high performance is critical for many applications, there is a considerable 
interest in how to make them more interpretable (see [39] for a review). Many algorithms for interpreting 
DNNs transform the DNN-processing into the original input space in order to visualize discriminating fea- 
tures. Typically, two general approaches are used for feature visualization, activation maximation and DNN 
explanation. 

Activation maximation computes which inputs features that will maximally activate possible system 
recommendations. For image classification, this represents the ideal images that show discriminating and 
recognizable features for each class. However, the images often look unnatural since the classes may use many 
aspects of the same object and the semantic information in images is often spread out [43]. Some examples of 
methods for activation maximation are gradient ascent [13], better regularization to increase generalizability 
[54], and synthesizing preferred images [41, 40]. 

DNN explanation explains system recommendations by highlighting discriminating input features. In image 
classification, such visualizations may highlight areas that provide evidence for or against a certain class [68] 
or only show regions that contain discriminating features [3]. One approach for calculating dis- criminating 
features is sensitivity analysis using local gradients or other measure of variation [39]. However, one problem 
with sensitivity analysis is that it may indicate discriminating features that are not present in the input. For 
example, in image classification the sensitivity analysis may indicate obscured parts of an object rather than 
the visible parts [51]. Layer-wise relevance propagation avoids this problem by considering both feature 
presence and model reaction [4]. 

4.1.4 Examples of application specific explanations 

In contrast to classification, AI-planning is based on models of domain dynamics. Fox et al. [15] describe 
how explanations for planning may use domain models to explain why actions were performed or not, why 
some action cannot be performed, causal relationships that enable future actions, and the need for 
replanning. 
Since fairness is important for many AI-applications, Tan et al. [59] describe how model distillation can be 
used to detect bias in black-box models. Model distillation simplifies larger more complex models without 
significant loss of accuracy. For transparency, they use generalized additive models based on shallow trees 
that model each parameter and the interaction between two parameters. They train a transparent model on 
system recommendations from the black-box model and one transparent model on the actual outcome. 
Hypothesis testing of differences in recommendations from the two models shows cases where the black- 
box model introduce a bias, which may then be diagnosed by comparing the two transparent models. The 
system was evaluated on recidivism risk, lending loan risk, and individual risk for being involved in a 
shooting incident. The results show that one black-box model underestimates recidivism risk for young 
criminals and Caucasians, while overestimating the risk for Native and African Americans. 
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4.2 Vulnerabilities 
In this section, we discuss two different aspects of vulnerabilities of DNNs: 1) vulnerability for manipulation 
of input and 2) vulnerability for manipulation of the model. We start by looking at manipulation of the input 
signal. 

4.2.1 Adversarial crafting of the input 

Provided a DNN, it has been found that it is easy to adjust input signal so that the classification system fails 
completely [58, 18, 45].  When the dimension of the input signal is large, which is typically the case for e.g. 
pictures, it is often enough with an imperceptible small adjustment of each element (i.e. pixel) in the input to 
fool the system. With the same technique used to train the DNN, typically a stochastic gradient method [49], 
you can easily find in which direction, by looking at the sign of the gradient, each element should be changed 
to allow the classifier to wrongly pick a target class or simply just misclassify. With only a few lines of code, 
the best image recognition systems are deceived to believe that a picture of a vehicle instead shows a dog. 
Figure 1 below shows the image before and after manipulation and the likelihood of the classes before and 
after manipulation. 

The above method assumes having full access to the DNN, i.e., a so-called white-box attack. It has been found 
that even so-called black-box attacks, where you only have insight into the system’s type of input and output, 
are possible [44, 56]. In [44], the authors train a substitute network using data obtained from sparse sampling 
of the black-box system they want to attack. Given the substitute network you can then use the white-box 
attack method mentioned above to craft adversarial inputs. An alternative to learning a substitute network is 
presented in [56], where instead a genetic algorithm is used to create attack vectors leading to misclassifications 
by the system. The same authors even show that it is often enough to modify a single pixel in the image, 
although often perceptible, to achieve a successful attack. 

  
 

 

Figure 1: From minivan to Siberian husky. The absolute difference (amplified a factor 20) 
between the original and manipulated (adversarially crafted) image is shown to the right. The 

adversarial example (center) is generated using Kurakin’s basic iterative method (BIM) 
described in [28]. 

4.2.2 Exploiting hidden backdoors in pre-trained DNNs 

When designing a DNN, but only having access to a small amount of training data, it is common to use pre-
trained models to achieve good performance. The concept is called transfer learning and a common procedure 
is to take a model that is trained on a large amount of data, replace and customize the last layers in the network 
to the specific problem, and then fine-tune the parameters in the final stages (and sometimes even the entire 
system) using the available training data. There are already a large amount of pre-trained models available for 
download from the Internet. A relevant question is then “How do we know that those who uploaded the model 
have no bad intentions?”. This type of vulnerability is considered in [19] where the authors insert backdoors 
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into a model for recognizing US traffic signs. For example, a sticker is trained on a stop sign to belong to a 
class other than stop signs. They then show that a system, based the US traffic sign network, for recognizing 
Swedish traffic signs reacts negatively (greatly impairing the classification accuracy of the Swedish traffic sign 
system) when using the backdoor (i.e., placing a sticker on the traffic sign). 

4.2.3 Defense methods 

One way to reduce the vulnerability of the DNNs to manipulation of the input signal is to explicitly include 
manipulated/adversarial examples in the training process of the model [18, 28]. That is, in addition to the 
original training data adversarial examples are generated and used in the training of the model. 

Another method is to use a concept called defense distillation [46]. Briefly described, the method tries to reduce 
the requirement that the output signal only point out the true class and force the other classes to have zero 
probability. This is done in [46] in two steps. The first step is a regular training of a DNN. In the second step, 
the output (class probabilities) of the first neuron network is used as a new class labels and a new system (with 
the same architecture) is trained using the new (soft) class labels. This has been shown to reduce vulnerability, 
because you do not fit the DNN too tight against the training data, and preserve some reasonable class 
interrelations. 

Other defense methods, are for instance feature squeezing techniques such as e.g., mean or median filtering 
[64] or nonlinear pixel representations such as one-hot or thermometer encodings [8]. 

Unfortunately, neither of the methods described completely solves the vulnerability problem, especially not if 
the attacker has full insight into the model and the defense method. 

4.3 Data 
Developing ML-based applications in a military context is challenging because the data collection proce- dures 
in military organizations, training facilities, platforms, sensor networks, weapons, etc. were initially not 
designed for ML-purposes. As a result, in this domain it is often difficult to find real-world, high-quality and 
sufficiently large datasets that can be used to learn from and gain insight into. In this section we will explore 
techniques that can be used to build ML-applications even in the presence of limited training data. 

4.3.1 Transfer learning 

Transfer learning (also mentioned in Section 4.2.2) is a technique that is commonly used when datasets are 
small and when computational resources are limited. The idea is to reuse the parameters of pre-trained models, 
typically represented by DNNs, when developing new models targeting other, but similar, tasks. There are at 
least two approaches that can be used for transfer learning in DL-applications: 

• Relearning the output layer: Using this approach, the last layer of the pre-trained model is replaced 
with a new output layer that matches the expected output of the new task. During training, only the 
weights of the new output layer are updated, all others are fixed. 

• Fine tuning the entire model: This approach is similar to the first but in this case the weights of the 
entire DNN may be updated. This approach typically requires more training data. 

It has been shown that transfer learning may also boost the generalization capabilities of a model. How- ever, 
the positive effects of transfer learning tend to decrease as the distance between the source task and target task 
increases [66]. 
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4.3.2 Generative adversarial networks 

Generative adversarial networks (GANs), invented by Goodfellow et al. [17], is a generative model that can 
be used for semi-supervised learning where a small set of labeled data is combined with a larger set of 
unlabeled data to improve the performance of a model [50]. The basic GAN implementation consists of two 
DNNs representing a generator and a discriminator. The generator is trained to produce fake data and the 
discriminator is trained to classify data as real or fake. When the two networks are simultaneously trained, 
improvements to one network will also result in improvements to the other network until, finally, an 
equilibrium has been reached. In semi-supervised learning, the main objective of the generator is to produce 
unlabeled data that can be used to improve the overall performance of the final model. GANs have, in addition 
to semi-supervised learning, also been used for: 

• Reconstruction: Filling the gaps of partly occluded images or objects [65]. 

• Super-resolution: Converting images from low resolution to high resolution [32]. 

• Image-to-image translation: Converting images from winter to summer, night to day, etc. [67]. A 
military application of this technique could be to convert night-vision images to daylight images. 

 

4.3.3 Modeling and simulation 

Modeling and simulation has been used extensively by the military for training, decision support, studies, etc. 
As a result, there are lots of already validated models that have been developed over long periods of time that 
could also potentially be used to generate synthetic data for ML-applications. As an example, a flight-simulator 
could be used to generate synthetic images of aircrafts placed in different environmental settings. Labeling is 
in this case automatic since the aircraft type is known prior to generating the synthetic image. However, not 
surprisingly, using synthetic images may result in poor performance when applying the model to real-world 
images. One approach that is currently being explored is to enhance the synthetic image using GANs to make 
it photo-realistic. This approach was successfully applied in [53]. 

5 CONCLUSIONS 

The recent breakthrough of AI is gradually reaching a point where it can be used in military applications. The 
paper describes some possibilities for using AI in surveillance, underwater mine warfare, and cyber se- curity. 
Other potential applications are reconnaissance using partly autonomous vehicles and sensor systems, threat 
evaluation in air defense systems with high temporal requirements, intelligence analysis of emerging patterns, 
command and control systems, and education and training. However, military applications of AI need to 
consider challenges in terms of: 

• Transparency to assure model performance that is consistent with military requirements. 

• Vulnerabilities that may drastically reduce system performance. 

• Insufficient training data for ML. 

Many advancements have already been made by researchers focusing on the transparency, interpretabil- ity, 
and explainability issues of AI. Many of these advancements can likely also be used in military AI- 
applications. However, a more thorough requirements analysis is needed to understand how to utilize these 
research results. Military requirements may be very different regarding risk, data quality, legal demands, etc. 
and some types of transparency may not even be applicable. Further, more studies are needed on how to utilize 
social science research to improve AI-explainability. Future studies should also include how to utilize the rich 
set of visualization techniques that are developed in the visual analytics research area. 
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Since there is currently no silver bullet for the vulnerability problem, it is important to monitor this research 
area and continuously look for promising solutions. However, until such solutions are available it is necessary 
to minimize external access to models and defence techniques. Opponents may otherwise try to utilize the 
vulnerabilities to their advantage. 

Finally, transfer learning makes it possible to adapt pre-trained models to military applications where there is 
both limited training data and computational resources. GAN is another promising technique that enables 
learning using labeled and unlabeled data (semi-supervised learning). GAN can also be used in combination 
with simulation to improve the realism of synthetically generated training data. 
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