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ABSTRACT 
Generative adversarial networks (GAN) have successfully been applied to the training of deep generative 
networks. Currently, their usage is being extended to the stabilization of sequential learning and language. 
In this work, we propose a GAN model that works on Air Surveillance data to detect anomalies. OpenSky 
Network API is well suited to the task of collecting real air surveillance data to analyze inners of the flight 
data using current AI techniques to support decisions makers. 
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I. INTRODUCTION 

Transportation has been well integrated to our lives since the times of working with the animals, through 
road vehicles and rail roads, water and air ways. It provided the means of transporting goods and people in 
every stages. This led governments to define it as a part of their critical infrastructure [1].Therefore, an 
advancement in such an important field affects our society drastically. Advancement of technology has 
shaped transportation, and led to the creation of new types of transportation according to human needs. Air 
transportation is the youngest mode of all. At the same time, it provides the safest mode of traveling by 
steadily improving the safety measures, according to Bureau of Transportation statistics1 2 3.Even though 
aviation technology has improved quite and reduced the probability of accidents, the later still exist. 
According to plane crash info 4 58% of accidents can be traced back to pilot errors. Other significant factors 
in plane crashes are: traffic control, maintenance, preparation, instability of weather conditions, failures in 
mechanical equipment, sabotage, terrorism, and other rare causes. These measures indicate that actions of 
pilots are the most critical element in the situation or in the prediction of accidents. Anomaly detection in 
flight surveillance data is a way of anticipating accidents. It involves the finding of interesting data points in 
observations. Identifying those points brings the requirement of selecting relevant features. Systematic 
analysis of the anomalies leads to taking the right decisions during the unexpected events, and reduces the 
chance of fatalities. Deep learning has become the de facto approach for automating feature engineering in 
many high dimensional machine learning tasks. It achieves impressive results in experimental performance. 
It sets new standards in many domains including speech recognition [2], [3], image classification [4], [5], 
and natural language processing [6], [7], [8]. In this paper, we attempt to address the ability of deep learning 
to automate the anomaly detection in flight surveillance data. We begin in section II by introducing the 
OpenSky Network. Then, in section III we provide a brief introduction to Generative Adversarial Networks, 
                                                      

1 https://www.bts.gov/ 

2 https://www.ntsb.gov/investigations/AccidentReports/Pages/AccidentReports.aspx 

3http://www.bbc.com/news/business-42538053 

4 http://www.planecrashinfo.com/cause.htm  

http://www.planecrashinfo.com/cause.htm
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and Long Short Term Memory. Then, in section IV, we present the methodology to create and collect the 
data set. Section V describes the anomaly detection algorithm and section VI concludes our work. 

II. BACKGROUND 

Here we briefly review the related work on an air surveillance API, called OpenSky Network. OpenSky 
Network [9] is a live API, which provides air space information for research and noncommercial purposes, is 
shown in figure 1. The information provided by the API contains Automatic Dependent Surveillance - 
Broadcast (ADS-B) messages [10]. Airplanes in OpenSky Network are associated with a state vector. The 
state is a summary of the tracking information like position, velocity, and identity. Detailed information 
regarding the state vector can be found in table I. 

 

Fig. 1. OpenSky Network 

Systematic construction of anomaly detection benchmark from real data [11] introduces four requirements 
for the process of detecting anomalies: normal data points should be drawn from a real-world generating 
process, anomalous data points should also be from a real-world process, many benchmark datasets are 
needed, benchmark datasets should be characterized systematically. In our use case, OpenSky network is 
used as provider of real data. 

III. METHODOLOGY 

Deep learning provides diverse selection of algorithms to be applied on particular problems to solve. In this 
section, the selection of the relevant methodologies GANs and LSTMs will be introduced in respective 
order.  

A) Generative Adversarial Networks 

Deep generative models, compared to discriminative models, have received less attention due to the 
difficulty in approximating complex probability calculations. In the frame of GANs, complexity of this 
calculations is deferred to competing two neural networks; generative and discriminative [12]. The Training 
criterion in adversarial networks can be summarized as following. A prior on input noise variables pz(Z) is 
defined. Then, with a differentiable function G, the data space is mapped to those variables as G(z; θg). 
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Then, a discriminator network with a single scalar output can be described as a mapping. Given a sample x, 
the probability of being from original data rather then generated one; 

Table I: State Vectors  

 

D(x; θd). Both networks are trained simultaneously, D tries to maximize the correct label assignment, and G 
tries to minimize log(1 - D(G(z))) . Then the value function can be described as following; 

 

Given the value function, formal training of the adversarial network can be formalized as in the algorithm 1. 

 

B). Long Short Term Memory 

Air surveillance data is sequential context-dependent data like any other surveillance data. Incorporating the 
context in sequences is mainly solved by the following two ways in neural networks; overlapping time 
windows, or recurrent connections in the model. The Time window option has certain problems with finding 
the optimal window. The optimal window is generally task-dependent. Additionally, the shift operation to 
allow different elements to consider in the same window cannot be generalized. Standard  

Index Property Description 
0 icao24 Unique ICAO 24-bit address of the transponder in hex string representation. 
1 callsign Callsign of the vehicle (8 chars). 
2 origin country Country name inferred from the ICAO 24-bit address. 
3 time position Unix timestamp (seconds) for the last position update within the past 15s. 
4 last contact Unix timestamp (seconds) for the last valid message received from the transponder. 
5 longitude WGS-84 longitude in decimal degrees. 
6 latitude WGS-84 latitude in decimal degrees. 
7 geo altitude Geometric altitude in meters. 
8 on ground Boolean value which indicates whether the position was retrieved from a surface position report. 
9 velocity Velocity over ground in m/s. 
10 heading Heading in decimal degrees clockwise from north (i.e. north=0◦). 
11 vertical rate Vertical rate in m/s. A positive value for climbing, a negative value for descending. 
12 sensors IDs of the receivers which contributed to this state vector. 
13 baro altitude Barometric altitude in meters. 
14 squawk The transponder code aka Squawk 
15 spi Whether flight status indicates special purpose indicator. 
16 position source Origin of this state’s position: 0 = ADS-B, 1 = ASTERIX, 2 = MLAT 
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Recurrent Neural Networks (RNN) also have their own limitations and problems, such as temporal order and 
learning difficulties in long sequences with vanishing or exploding gradients [13], [14]. Figure 2 
demonstrates the architecture introduced by LSTMs to tackle the difficulties that are occurred in RNNs. 
Instead of blindly folding inputs to recurrent steps, LSTM introduces state and gate concept. Each block has 
two states that are transferable to the next one; cell state and hidden state. These states can be modified with 
three gate operations; forget, input, output. 

 

Fig. 2. LSTM Chain 

The First thing that happens is the computation of the current cell state. The ”Forget” gate is responsible for 
this. It provides options from keeping state as it is, to completely ignoring it. They can be expressed as the 
following formula:  
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The following decision is whether or not to accept the new information. The responsible gate is ”Input”. It 
has two parts: 

 

 

 

The current state of the cell depends on the decision based on ”Input” and ”Forget” gate and can further be 
described as following: 

 

 

The ”Output” of the cell is decided based on: 
 

 

 

The following section will describe our data collection and enrichment strategy. 

IV. DATA COLLECTION 

The OpenSky Network provides the API to connect and collect the data in sequential manner as the content 
described in the state vector. Each individual update is captured and stored per airplane. Further, in our 
collection we enriched the data as we considered important. Periodicity of the flight data is an additional 
criterion that is not captured in the provided API. Seasonal flights can be captured with the addition of 
weakly, monthly, and yearly periodicity to data. 

The following section will describe the proposed solution for the anomaly detection with using the 
combination of LSTM and GAN. 

V. ALGORITHM 

An anomaly detection algorithm will be introduced in this section using the baseline from section III-A. 
Baseline algorithm describes the value function for learning. There are two further requirements to describe 
anomalies with an unsupervised manner; 1. given the test data sample, finding an encoding that describes the 
latent space mapping, 2. score function for the anomalies [15]. 

Describing the mapping from new samples to latent space is not introduced in the baseline value function. 
Therefore, either a post training step is needed to be applied with the smooth transition assumption on the 
latent space [16], or a modification on the objective function is required to include the data to latent space 
mapping [17]. The following objective function contains the modification required for learning the encoder 
E = G--1. 
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With the modification in the objective function, the network learns to map the data points to the latent feature 
space. Now we can describe an anomaly score based on the given new examples’ reconstruction loss. 

In this way, the anomaly score will be assigned to each individual test sample. High values will be 
representing the higher chances of the anomalies 

VI. CONCLUSION 

This paper discussed the possibility of the extending the base training objective function to capture the input 
to latent space mappings to describe the anomalies based on the introduced air surveillance data samples 
with out using particular labeling mechanism. This method enables the anomaly detection on high-
dimensional and complex data sets. The plan for the future is to conduct an evaluation of the method with 
respect to field validity, and explore further possibilities with the anomaly detection. 
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