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Abstract—This paper addresses machine learning-based 
task allocation in edge-computing networks with diverse end-
user devices (IoT devices) and diverse edge-computing servers. 
The task allocation problem is solved by generated-requests 
classification that can be mapped to servers with enough com-
putational power and proximity to devices that translates to ser-
vice latency and reliability. Moreover, the impact of cyberat-
tacks on the classification algorithm is also studied.  
This paper was originally presented at the NATO Science and 
Technology Organization Symposium (ICMCIS) organized by 
the Information Systems Technology (IST) Panel, IST-200RSY 
– the ICMCIS, held in Skopje, North Macedonia, 16-17 May
2023
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I. INTRODUCTION 

According to the recent Ericsson Mobility Report [1], 
there will be 5 billion of 5G mobile subscriptions by 2028. 
Moreover, wireless communication of 34,7 billion machines 
and devices is expected by that year to comprise the Internet 
of Things (IoT). This predicted massive communication of 
humans and machines stimulates the research and 
development of new generations of mobile communication 
systems. While 5G standards are still on the way (3GPP 
Release 18 to be frozen in 2024), 6G networking has already 
been proposed [2]-[5]. One of the key paradigms of 6G is edge 
computing and edge intelligence.  

In the prospective 5G/6G architecture, a mobile edge host 
runs a mobile edge platform that facilitates the execution of 
applications and services at the edge. From the data analytics 
perspective, edge intelligence refers to data analysis and the 
development of solutions at or near the site where the data is 
generated and further utilized. Edge intelligence thus allows 
the reduction of latency, costs, and security risks, making the 
associated business more efficient. From the network 
perspective, edge intelligence mainly refers to intelligent 
services and functions deployed at the network’s edge [6], [7]. 
The focus of the research is on self-learning networks and 
systems that can autonomously manage resources and control 
functions. Here, by resources, communication (radio 
spectrum) and computing (computational power) resources 
are meant, as well as the relevant energy both in 
communication and computing. It is impractical to transmit a 
massive amount of local data to the centralized cloud for 
training and inference. This calls for new architectures and 
associated communication-efficient training algorithms over 
wireless links while making real-time and reliable inferences 
at the network edge. Such architectures also pose new 
challenges: limited access to training data, low inference 
accuracy, lack of generalization, and limitations of processing 
power and memory for edge devices [8]. 

In this paper, we consider edge computing network archi-
tecture with diverse servers (with diverse computing and stor-
age capabilities) and diverse IoT devices (generating diverse 
communication and computing requests). This architecture is 
presented in Fig. 1.  

Fig. 1. Edge computing network architecture. Arrows represent diverse 
communication and computing tasks flow. 

The optimal communication and computing (2C) task al-
location to the appropriate servers is a challenging problem. It 
has been addressed in [9][10]. However, such optimization is 
not always possible given the limited knowledge of the net-
work components at the edge. Therefore, here, we consider 
using Machine Learning (ML) to classify generated 2C re-
quests. This classification is intended to support the near-op-
timal delegation of a request to an appropriate server at the 
edge of a network. 

The architecture of the 5G/6G network will be almost 
entirely virtualized and based on software functionalities. 
Consequently, it is vulnerable to being used, attacked, and 
disrupted by hackers. Attacks on ML algorithms used for traf-
fic steering may lead to fatal errors in the case of sensitive 
applications, such as mission-critical ones that require ultra-
low latency and ultra-high reliability (URLLC) [11]-[13]. In 
our considered edge-computing network, 2C tasks should be 
classified based on service requirements (for example, the 
end-to-end latency, the packet error rate PER, the 
computational complexity of a delegated task…etc.) The 
classification criteria may change, but considering, for 
example, the multi-class classification with defined sensitivity 
levels (starting from noncritical tasks to highly critical ones), 
any miss-classification may cause a fatal classification error, 
especially when the classes are close to the classifier.  
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Here below, we investigate how these attacks impact the 
classification of the 2C tasks and their offloading to edge com-
puting servers. In Section II, we describe selected ML-based 
tasks classification methods and in Section III we consider se-
curity attacks on these algorithms. In Section IV we define 
critical use-cases selected for security evaluation. Section V 
presents simulation results. In Section VI we conclude our 
work and discuss further research directions. 

II. ML-BASED CLASSIFICATION OF COMMUNICATION 
AND COMPUTING TASKS 

Supervised or unsupervised ML algorithms can handle 
the binary classification issue, for example, to describe the 
spectrum sensing process, which requires the classifier to dis-
tinguish between the availability and unavailability of the two 
potential states of the radio frequency channel. Energy vec-
tors or probability vectors, also known as feature vectors in 
the context of ML, are used by the classifier to determine 
whether the spectrum is available [14]. The classification of 
the 6G services traffics might be classified using multi-clas-
sifications algorithms from both supervised and unsupervised 
learning, such as the softmax algorithm at the output layer of 
a neural network (NN) as a classifier. Transfer learning might 
also be helpful, borrowing some already existing NN algo-
rithms from 5G [15], and then either retraining the output 
layer or retraining the entire layers using the existing model’s 
parameters as initial ones for the desired model. Other stand-
ard classification algorithms that can be applied are the fol-
lowing: Naive Bayes Classifier, Logistic Regression, Deci-
sion Tree, Random Forests, Support Vector Machines, k-
Nearest Neighbors, and k-Means Clustering [12]. 

In our considered scenario, 2C task categorization is used 
to allocate end-user requests to edge-computing servers. Data 
representing 2C tasks have features reflecting the required 
Quality of Service (QoS) of communication and computing. 
For 2C services, these are end-to-end latency (including prop-
agation delay, queuing delay, and time of computations), reli-
ability (or reversely bit- or packet error rate), data rate (includ-
ing transmission bit-rate and computing speed in terms of 
floating-point operations per second), and the energy con-
sumption (including energy spent on wireless and wired com-
munication and computations). Two algorithms will be 
discussed and evaluated in the remainder of this paper: one is 
the unsupervised machine learning algorithm, namely k-
means clustering [16], and the other is the supervised machine 
learning algorithm called k nearest neighbors (k-NN) [17]. 

A. k-means algorithm for task allocation

In k-means clustering, the examples are divided into k clus-
ters, with each example belonging to the cluster with the clos-
est mean (cluster centers or cluster centroids), which serves 
as the cluster's prototype. The variance within a cluster is 
minimized. The most common algorithm uses an iterative re-
finement technique as follows: k clusters are created by asso-
ciating every observation with the nearest mean, and then the 
centroid of each of the k clusters becomes the new mean. 

The advantages of the k-means classification algorithm in-
clude applicability to large datasets and guaranteed 
convergence for locating clusters. Disadvantages include 
providing the initial value for k and sensitivity to outliers. k-
means clustering performance is usually not as competitive as 
the other sophisticated clustering techniques because slight 
variations in the data could lead to high variance. Furthermore, 
clusters are assumed to be spherical and evenly sized, which 

may reduce the accuracy of this algorithm for data represent-
ing generated 2C tasks. Therefore this kind of data requires 
some preprocessing. 

B. k-NN algorithm for task allocation and prediction

k-NN-based classification is a supervised algorithm,
which means that in the training phase, it requires full 
knowledge of the output corresponding to the training input 
data. In other words, the examples (training data) are labeled. 
Based on the training data set, new input data can be classi-
fied into one of the output categories by calculating distances 
(usually Euclidean distance in multidimensional space) to k 
closest neighbors in used features space. For example, if k = 
1 only one closest data point is considered, and its category 
is assigned as the label of that point. In the case of k > 1, the 
most numerous group of neighboring points of one category 
determines the result. Thus, the prediction of a new example 
is based on the voting of the k nearest neighbors, and the pre-
dicted label is assigned to the majority vote.  

The advantage of this algorithm is that it can be applied 
to datasets of any distribution. Disadvantages that are usually 
noted are that: it is easily affected by outliers, it is biased to-
wards a class that has more instances in the dataset, and it is 
challenging to find the optimal number for k. In our scenario, 
the disadvantage of k-NN being affected by outliers can be 
considered an advantage for security algorithms since it can 
detect outliers. 

Finally, note that the unsupervised learning classification 
is not enough to handle the newly generated tasks and for-
ward them to the appropriate server at the edge of the net-
work, hence, algorithms are needed to predict the new tasks 
based on the results obtained using unsupervised classifica-
tion. One example scenario is to use the classes obtained by 
k-means classification to feed the supervised k-NN, so the k-
NN voting is based on the distance between the centers of the
classes from k-means and the newly generated task.

III. CLASSIFICATION SECURITY ISSUES

ML-based systems suffer from a subset of vulnerabilities
caused by the inherent limitations of the learning algorithms. 
Moreover, ML deployment for wireless communication 
makes it more subjected to attacks due to the open nature of 
the transmission medium in the case of wireless channels. An 
adversary can use conventional wireless attacks and 
intelligent ML-based techniques known in adversarial 
machine learning (AML). Recent studies have shown that 
these types of attacks are possible [18][19][20]. 

Most machine learning approaches are designed to operate 
on a certain problem known under the field of artificial narrow 
intelligence (ANI) or weak intelligence, which is a data-set-
dependent field, and small changes in the operating environ-
ment or operating data affect the performance of ML 
algorithms [21]. Moreover, studies of AML, although in the 
advanced stage for computer vision and natural language 
processing, are still in the early stage for wireless 
communications [18]. Thus, many ML techniques applied in 
a wireless environment are borrowed from other domains, 
which may lead the adversary to learn more about the models 
and techniques used.  

As the Radio Access Network (RAN) provides access to 
and coordinates the management of resources across the radio 
environment, an adversary may attack the system differently 
and target several goals. For example, an adversary may be a 
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source of a jamming signal, he or she may violate the 
legitimate user’s privacy to exploit the user equipment (UE), 
exhaust the systems by impacting the energy consumption, 
impede a multi-access algorithm, intercept the information 
using adversarial demodulation and decoding, use the 
legitimate user identity as spoofing, poison data and ML mod-
els in a system, etc...  

All these adversary actions may have diverse results on the 
system’s performance, including the classification of 2C 
tasks, which is the focus of this paper. The data representing 
requests generated by the users (and their features) under at-
tack may cause false classification and as a consequence, 
wrong allocation of 2C tasks to servers, overload of some 
servers, and inability to serve the users. In what follows, we 
examine the impact of massive data poisoning on the classifi-
cation of 2C tasks.  

IV. USE CASES

Out of multiple scenarios of requested 2C tasks, we have 
selected some representative use cases, which are described 
below. Most of all, they are defined by the datasets and re-
quired preprocessing of data for two considered classification 
algorithms: k-means and k-NN. In our use cases, the classifi-
cation using k-NN (supervised) is performed with labels ob-
tained from the k-means algorithm (unsupervised). Moreo-
ver, for the datasets, we consider massive data poisoning. It 
means that all data representing 2C requests are altered by 
jamming in a wireless environment. 

A. Data sets
The dataset consists of a number of examples (represent-

ing 2C requests) with three features: the end-to-end latency in 
[ms], the PER (packet error rate), and the computational 
complexity in FLOPs (floating operation points per second). 
The first two features can be obtained according to the QoS of 
5G defined by ETSI in "(2022-05)1683GPP TS 23.501 
version 17.4.0" Release 17". The following services are 
selected to build the dataset: 

• IP-Multi-Service (IMS) signaling with 100 ms latency
and 10-6 PER.

• Conversational voice with 100ms latency and 10-2

PER.

• Low latency eMBB applications (Augmented reality)
with 10ms latency and 10-6 PER.

• Discrete automation with 10ms latency and 10-4 PER.

• Intelligent transportation system with 30ms latency
and 10-5 PER.

• V2X (Collision avoidance) with 5ms latency and 10-4

PER.

• Electricity distribution-high voltage with 5ms latency
and 10-4 PER.

• Non-conversational video (buffered streaming) with
300 ms latency and 10-6 PER.

• Interactive gaming with 100ms latency and 10-3 PER.

• Mission critical data with 200ms latency and 10-6 PER.

While the computational complexity is generated around
1 kFLOPs (kilo-FLOPs = 103 FLOPss), 1 MFLOPS (Mega-
FLOPs = 106 FLOPs), 1 GFLOPs (Giga-FLOPs = 109 

FLOPs), 1 TFLOPs (Tera-FLOPs= 1012 FLOPs), 1 PFLOPs 
(Peta-FLOPs = 1015 FLOPs). These quantities may differ from 
one task to another, for example, image and video processing 
requires higher FLOPs than signaling text messages, while 
ML training processing may achieve 1019 TFLOPs per epoch 
(10 TFLOPs SP for 1 epoch per hour). The values are 
considered for FP32, and the servers considered CPU/GPU 
process the tasks.  

The different services’ signals are generated using random 
generators with Gaussian distributions with means equal to the 
service features values and variances equal to 10%, and 20% 
of the means. The reasoning behind the choice of Gaussian 
distributions is to create some of the data points which are near 
(because they are generated by the same type of IoT devices), 
and some which are far from each other (because they are 
generated abnormally by the same type of devices or by other 
types of devices). The purpose of such a choice is to test the 
prediction scenario between two far examples and two near 
examples. 

Fig. 2. The visualization of the generated and post-processed dataset. 

The dataset is presented in a linear scale when the axes 
with PER and computational complexity are logarithmically 
scaled to visualize the examples, in addition to the negative 
sign introduction for the PER. The dataset consists of 1000 
examples, more examples might be used depending on the 
computation budget of the device running the ML algorithms 
used later. Other services might also be considered. 

B. Data preprocessing
And as classification algorithms are mathematically

derived, one must convert all input and output data to 
numerical values. The first step of a classification algorithm is 
to ensure that the variables, whether input or output, have been 
encoded correctly. Secondly, because both k-means and k-NN 
require uniformly distributed data on all the axes, data 
preprocessing is necessary to run the algorithms correctly. 

For the dataset features: computational complexity and 
packet error rate, the instances of these features are mapped 
using logarithm base 10 transformation. Moreover, we can 
observe that both features’ intervals’ length after mapping is 
more or less 10, for this purpose the latency feature instances 
are also mapped to an interval length of 10 units using linear 
interpolation function (1):  

𝑓𝑓(𝑥𝑥) = 𝑐𝑐 + (𝑑𝑑−𝑐𝑐
𝑏𝑏−𝑎𝑎

)(𝑥𝑥 − 𝑎𝑎), (1)
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where f(x) is the post-processed example,  function of x which 
is pre-processed (mapped) example, a and b are the lower and 
upper x-interval’s borders respectively, while c and d are the 
lower and upper post-processed-interval’s borders 
respectively. For our case, only the latency is mapped using 
interpolation function, and a is the minimum latency value 
equal to 5 ms and b is the maximum latency value 300 ms, c 
equals 1 and d equals 10. As a result, the new latency interval 
is [0.0, 0.4] ms. The two other axes are mapped 
logarithmically. Quantile-Quantile (Q-Q) plots for each fea-
ture were used to check the similarity of the post-processed 
features to uniform distributions with means and variances ob-
tained using statistical tools from the Stats library on the post-
processed features. The obtained results are good enough (ap-
proximately straight line). Also Silhouette Score test was per-
formed to check whether the post-processed dataset is opti-
mal, the Silhouette Score results are above 0 for the different 
k values [2, 12]. The intervals of the post-processed features 
will be used later for all the plots. 

C. Attacks on the task classification algorithms
In our scenario, we consider massive data poisoning. It

means that all data representing 2C requests are altered by an 
additive Gaussian-noise-like jamming in a wireless 
environment. An attacker injects a jamming signal into data 
sets originating from various users and their locations. Jam-
ming events follow the Poisson distribution. We also assume 
that the attack has one-hundredth time unit precision (if, for 
example, the legitimate data signal is sent at time nT, the 
jammer affects the legitimate data if the jamming event occurs 
at a moment between nT – T/100 and nT + T/100, where T is 
the data interval). An increase of the number of transmitting 
sources (UEs) increases the attack efficiency by achieving a 
higher probability of hitting legitimate signals. 

The attack is sensing-independent, i.e., the jammer sends 
the illegitimate signals independently on the legitimate sig-
nals. Both legitimate and illegitimate sources generate signals 
at events’ time instances which follow Poisson distribution de-
scribed by the following probability density function (PDF): 

𝑓𝑓(𝑘𝑘, 𝜆𝜆) = 𝜆𝜆𝑘𝑘𝑒𝑒−𝜆𝜆

𝑘𝑘!
, (2) 

where: λ is the mean number of successes that occur during a 
specific interval and equals 0.5, k is the number of successes, 
and e is a constant equal to approximately 2.71828. To gener-
ate this distribution a new function is defined and tested using 
Chi-Squared test instead of predefined Poisson distributions 
from Numpy or other libraries. Both event lists consist of 1000 
instances. Moreover, the jammer has 10-2 hitting-target time 
precision, which means that an example is affected if |Tjamming-

event – Tlegitimate-event| >= 0.01 time unit. 

V. SIMULATION RESULTS

A. k-means classification results
As mentioned above, the k-means algorithm is unsuper-

vised and classifies the dataset examples into some classes 
which are centered around centroids that are not predefined. 
The algorithm runs iteratively till convergence. For this 
purpose, a cost function is defined together with some thresh-
old to stop. For our use cases, the cost function is a simple 
Mean Square Error (MSE) function, and the stop condition is 
met when MSE < ε, where ε = 10-15. The MSE here is the sum 
over all the classes’ centroids of the difference between the 
Euclidean distances of the current-run n-th centroid of the i-

class and the preceding (n-1)-th centroid ∑ |𝐶𝐶𝑛𝑛𝑖𝑖 − 𝐶𝐶𝑛𝑛−1𝑖𝑖 |𝐿𝐿
𝑖𝑖=1 , 

where L is the number of the classes. 

The dataset is loaded to the algorithm with a different 
number of centroids k {3, 6, 9, 12}. The results of this classi-
fication are presented in Fig. 3 and 4. The histograms repre-
sent the distribution of the examples over the different classes. 
For different numbers of classes we have different classifica-
tions, the classes are not equally dense, after classification 
some tasks are more probable to belong to a particular class 
due to the facts that i) the weighing coefficients of axes chosen 
to preprocess the data, and ii) the dataset is not uniformly dis-
tributed over the 3D plane.  

k = 3   k = 6 

k = 9   k = 12 
Fig. 3. k-means classification of tasks for different centroids’ number. 

k = 3    k = 6 

k = 9  k = 12 
Fig. 4. Histograms of the examples (tasks) assigned to centroids. 
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The results show that the k-means classification is an efficient, 
accurate, and flexible unsupervised learning algorithm. How-
ever, the drawback is that the centroids’ number and value 
define the classification criteria, i.e., for data closely spaced in 
the 3D plane, different centroids’ initialization leads to 
different classifications. To obtain a desired classification, one 
should carefully choose centroids numbers and initial posi-
tioning based on data distribution (this is more challenging for 
datasets with higher dimensionality 4D and above).  

In Fig. 5 and 6, classification results can be observed when 
6 centroids are chosen, with different random initializations. 
Indeed, the different initializations lead to different 
classifications. Correctly pre-defined centroids result in better 
(more accurate) classification, help the algorithm to converge 
fast. Another factor that may change the classification is the 
mapping weights, where an axis with a wider unit forces the 
algorithm to give the priority of classification to that axis. The 
final centroids are used for the prediction of new examples 
using for example MMSE between the new examples and the 
centroids. The final centroids may have different features’ 
values but not too far from the initial centroids. 

Fig. 5. k-means classification of tasks for different 6 centroids’ 
initialization; (a) first run, (b) second run, (c) third run. 

Fig. 6. Histograms of the examples assigned to centroids for the different 
runs. 

Based on Silhouette Score test, the k-means algorithm has 
been examined for the number of centroids with the highest 
Silhouette Score result (k=9, 8). First to present the algorithm, 
nine centroids have been selected as follows (in the form of 
(latency, PER, computation complexity) vector): centroid 1: 
(0.05,10-6,105), centroid 2: (0.1, 10-2,105), centroid 3: (0.25,10-

5,105), centroid 4: (0.05,10-6,109), centroid 5: (0.01,10-4,109), 
centroid 6: (0.1,10-2,1013), centroid 7: (0.25,10-5,1013), 
centroid 8: (0.01, 10-4,1013), centroid 9: (0.1, 10-2,1015). The 
classification results after 100 iterations are presented in Fig. 
7. One can see well-separated clusters and a more evenly dis-
tributed histogram.

There is no direct test for k-means separately because the 
algorithm involves a stochastic component, it is exceedingly 
improbable that we would receive the same result in a test un-
less we utilize the identical implementation and starting setup. 
However, we may check whether our results coincide with 
well-known implementations. To do so, when comparing two 
series of data, label swapping remains an issue if it is repeated 
several times. A solution is to use freely accessible data to 
benchmark our implementation, or we may simulate a specific 
data set (e.g., using a finite mixture model, as in the MixSim 
package for “Simulating Data to Study Performance of 
Clustering Algorithms” in the CRAN repository). Results 
show 89% average accuracy for our implementation. 

B. k nearest neighbors (k-NN) prediction
The classification using k-NN is performed with labels

obtained from the k-means algorithm. The prediction of new 
examples depends on the weights of the features. Let us 
assume the same weights as before, for example, a new 
example (0.4, 10-2, 109) we know that the example is most 
likely assigned to the 5th centroid (obtained from k-means) 
(2.00437371e-02 3.44864990e-05 5.75269952e+09). 
Running the k-NN algorithm to predict this example’s class 
had the result presented in Fig. 8. 

Fig. 7. (a) 3D visualization of the run with 9 pre-defined centroids, (b) The 
histogram of the examples assigned to the final centroids after running the k- 
means for 100 iterations with pre-defined centroids. 
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Fig. 8. One example prediction with k-NN 

From the plot in Fig. 8, we see that the class of the example 
is the class with the purple color, which has been obtained 
with the majority voting of 50 neighbors. Moreover, the 
example was chosen on purpose, i.e., to be far from the 
clusters, other scenarios for closer locations will be addressed 
in the security part. Note that other prediction algorithms 
might be used, such as the l-2 norm. Our purpose, however, is 
not to test and compare the ML algorithms for task allocation 
prediction, but to analyze the impact of security threats on the 
algorithms selected for our use cases.  

The test dataset with 500 examples was created using the 
same parameters for distributions discussed earlier to test the 
k-NN separately. The obtained accuracy was 92%.

To check the k-means/k-NN overall algorithm optimality
a hybrid Round-Robin item allocation and Round-Robin 
CPU/GPU scheduling were used as benchmark algorithm. In 
this algorithm first, tasks are allocated to the task-processing 
servers based on Round-Robin allocation and on the arrival 
time. After that, the tasks assigned to each server are 
scheduled using Round-Robin CPU/GPU scheduling. The 
servers buffers were assumed unlimited, i.e. no outage of the 
computational tasks were considered (if the server processing-
unit is busy, an arrived task was rescheduled and placed in the 
server buffer). The results show that the ML based algorithm 
outperforms the conventional Round-Robin, and the benefits 
are significantly higher for higher task complexities. (see Fig. 
9.)  

Fig. 9. The overall processing time vs. task complexities and processing 
performance for k-NN and Round-Robin task allocation. 

C. Random jamming results – Attack 1
The effects of attacks have been tested in the training and

prediction phases of task classification. For the training phase, 
MSE has been used as a measure of the difference between the 
affected dataset and the original one. For the prediction phase, 
new examples have been generated deliberately to fall 
between two close clusters. This approach allowed testing the 
prediction quality in face of an attack in the most demanding 
scenario. 

The effects of the attack are considered regarding the 
power budget of an attacker reflected in the generated jam-
ming signal power and in the inter-arrival time between the 
attack events. In the classification phase, results have been ob-
tained for a reference (legitimate) dataset and a single run of 
the k-means classification algorithm for 8 deliberately initial-
ized centroids. The results in terms of MSE between the clas-
sified data in case of the absence of the attacker and in case of 
the attack are presented in Fig. 10. The MSE is calculated as 
the average of 1000 runs for different (legitimate) signal 
power to (jamming) noise power ratio (SNR). Moreover, MSE 
was calculated after data preprocessing. 

Fig. 10. MSE versus SNR for 8 centroids in k-means algorithm. 

As expected, the higher SNR, the lower the considered MSE. 
Moreover, we can observe the difference between the final 
centroids got by the k-means before and after the attack. More-
over, in these simulation experiments, we observed that the 
attacker hit the legitimate data 60 out of 1000 times. Thus, the 
dataset was affected by only 6%. 

The task classification results in the same scenario without 
the attack and under attack can be observed in Fig. 11 and 12. 
Looking at the regions between the classes in the 3D plots, we 
can observe the change in the allocation of task (only 60 ex-
amples are affected), but using the histograms it is not so much 
obvious because the attack effect may interchange the tasks 
between the classes. 

The following tests evaluate the attack effects on the 
prediction using k-NN. In these tests, the examples are labeled 
based on the previous centroids obtained by the k-means for 
the same SNR values. The k-NN with 50 neighbors used to 
predict the classes of the following example under no attack. 
The simple test was made for the latency feature as follows. 
First, the k-NN algorithm was tested with 50 neighbors to pre-
dict the classes of the new example [0.4, 1-6, 1014] under no 
attack. The voting result was 26/50 for Class 5. Next, the vot-
ing of the same example under attack was tested by the same 
method. The results of this k-NN prediction are in Table I. 
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(a) (b) 
Fig. 11.  3D visualization of the run with 8 pre-defined centroids, (a) no 
attack scenario (b) under attack. 

(a) (b) 
Fig. 12. The histograms of the examples assigned to the final centroids after 
running the k- means, (a) no attack scenario (b) under attack. 

Table I. Voting results of 50 neighbors of [0.4,1-6,1014] under attack 

SNR value Voting of 50 neighbors 
2.5 Class 7 
5 Class 7 
7.5 Class 7 
10 Class 4 
12.5 Class 4 
15 Class 4 
17.5 Class 4 
20 Class 4 
22.5 Class 4 

Results presented in Table I show that even high SNR does 
not mitigate the attack, where the best vote (the closest to the 
correct original selection of Class 5) was Class 4. 

D. Jamming with 50% of the probability of targetting –
Attack 2
Now, let us assume that the attacker senses the medium

and the probability of success to target the example is 50% 
(500 affected examples). Fig. 13 shows the original and af-
fected histograms. The results show that the clustering is sig-
nificantly fooled, where 8 groups are present, also the Silhou-
ette Score test results in below 0 score for some k values in-
cluding our example (k = 9). Moreover, our tests show that the 
MSE between the original results of random hitting (about 6% 
of successful hitting) and the results under this attack (50% of 
successful hitting) increases for all features. 

Fig. 13. The histograms of the examples assigned to the final centroids after 
running the k- means, (a) no attack scenario (b) under attack when the 
probability of success to target the example is 50%. 

Now, let us consider the case of the lower number of neigh-
bors participating in voting. The results under both scenarios 
(6% and 50% affection) for 20 (near and far) examples are 
listed in Table II below. Attack 1 is the 6% affection attack 
and Attack 2 is the 50% affection attack. The results are rep-
resented in terms of the accuracy of the model voting for the 
affected dataset compared to the original dataset. Using lower 
voting neighbors’ number or concentrated dataset leads to fa-
tal miss-classification/clustering for far examples from the 
centroids, but has no impact on the near examples (Around 
100%), it may impact the near examples for the higher number 
of clusters. 

Table II. Voting accuracy results of different neighbors under both attacks for 
the chosen examples for SNR 22.5 dB compared to voting under no attack. 

Neighbors k Attack 1 Attack 2 
50 63% 42% 
40 59% 39% 
30 50% 33% 
20 39% 24% 
15 15% 5% 
10 8% 0 
5 3% 0 

VI. CONCLUSIONS

As discussed above in this paper, the ML algorithms are 
very efficient in terms of their application to task classification 
and their allocation to executing servers in edge-computing 
networks. However, the classification algorithms and their re-
sults are prone to cyber-attacks. In this work, we have exam-
ined the impact of the attack on the k-means and k-NN classi-
fication and prediction. MSE has been used to analyze the 
attack results for the k-means algorithm, and the prediction 
voting was used to observe the attack effects on the k-NN 
method. 

Several issues might be addressed for future work. First, 
other datasets shall be examined, possibly less dense but more 
uniformly distributed, by choosing services near to each other 
in terms of all the features. Data preprocessing should follow 
new criteria, where the feature coefficients play an important 
role in the results. Moreover, the selected poisoning attack 
scenario might be considered where there exist a few mali-
cious users that deliver falsified data and impact the classifi-
cation algorithm. Other attack types could also be considered. 
CPU/GPU performance under attack might be studied, where 
the attacker may use a sophisticated approach to down-per-
form or/and control the processing unit. 
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A very important aspect of the wireless environment and 
edge-computing scenario is the dynamically changing situa-
tion changes, e.g. one server may be particularly busy so that 
its capabilities drop in time. This means that the number of 
classes decreases and the classification algorithms should ad-
just to new classes. Research for a dynamically changing num-
ber of clusters is planned for the future. 
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