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ABSTRACT 
Single-photon avalanche diodes (SPADs) have been demonstrated on a variety of CMOS technologies since the early 
2000s. While initially inferior to their counterparts implemented dedicated technologies, modern CMOS SPADs have 
recently matched them in sensitivity, noise, and timing jitter. Indeed, high time resolution, enabled by low jitter, has 
helped demonstrate the most impressive developments in fields of imaging and detection, including fluorescence lifetime 
imaging microscopy (FLIM), Förster resonance energy transfer (FRET), fluorescence correlation spectroscopy (FCS), 
time-of-flight positron emission tomography (TOF-PET), and light detection and ranging (LiDAR), just to name a few. 
The SPAD’s power of detecting single photons in pixels that can be replicated in great numbers, typically in the 
millions, is currently having a major impact in computational imaging and quantum imaging. These two emerging 
disciplines stand to take advantage of larger and larger SPAD image sensors with increasingly low jitter and noise, and 
high sensitivity. Finally, due to the computational power required at pixel level, power consumption must be reduced; 
we thus advocate the use of in situ computational engines, which, thanks of CMOS’ economy of scale and 3D-stacking, 
enable vast computation density. Some examples of this trend are given, along with a general perspective on SPAD 
image sensors.   

1.0 INTRODUCTION 

A single-photon avalanche diode (SPAD) is a reverse-biased photodiode operating above breakdown 
voltage, a regime generally referred to as Geiger mode of operation [1]. Thus, SPADs are often called 
Geiger-mode avalanche photodiodes (GM-APDs). Due the high electric fields in play, designed to achieve 
impact ionization, a conventional planar photodiode needs to be modified, so as to prevent premature edge 
breakdown.  

The figure above shows the typical cross-section of a SPAD and the biasing regime to achieve Geiger mode 
of operation, thereby enabling virtually infinite optical gain and thus single-photon detectability. The figure 
also shows important parameters, such as the breakdown voltage (VB) and excess bias voltage (VE), i.e. the 
voltage in excess of the breakdown used for biasing the SPAD. To avoid the destruction of SPADs, it is 
necessary to quench the avalanche as quickly as possible and to recharge the device to its original idle 
voltage. The figure below describes a possible scheme, known as passive quenching, that can be used for this 

Figure 198-1: Generic SPAD cross-section and operation. 
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purpose. Other schemes, involving active quenching and/or recharge, are also known in the literature. It is 
important to note that fast quenching can have positive implications in the reduction of afterpulsing and 
timing jitter, but also in long-term reliability of SPADs. Fast recharge mostly reduces dead time, which in 
turn increases the maximum photon flux one can detect; it can also be used to control afterpulsing probability 
[2-4]. 

A CMOS SPAD can achieve today sub-10ps timing resolution, measured as single-photon time resolution 
(SPTR) [5,46,47], while recently SPADs have reported sensitivity, measured as photon detection probability 
(PDP), as high as 90% [42]. Photon detection efficiency (PDE) is often reported and it is defined as 
PDP´FF, where FF denotes the fill factor, i.e. the ratio between active area and total area of the pixel. 
Another important performance measure for SPADs is dark count rate (DCR), which relates to counts 
measured in the SPAD in the dark on average [6-8]. With the introduction of CMOS SPADs in 2003 [9], 
new scalable devices have appeared, with the possibility of integrating thousands or millions on the same 
chip [10-14]. New performance measures have thus emerged, which relate to large arrays, such as crosstalk 
both of optical and electrical nature, and the uniformity of performance measures, such as dead time, 
PDP/PDE, DCR, and SPTR. Uniformity is usually defined in %-variation over the area of the chip, and it is 
usually a function of technology, temperature, and excess bias voltage.   

To achieve large-format SPAD image sensors, it was necessary to scale SPADs down to smaller dimensions, 
so as to achieve small pitch pixels. This required the development of SPADs in deep-submicron CMOS 
technologies. Over the years, 180-nm, 160-nm, 150-nm, 130-nm, 110-nm, 65-nm, 55-nm, and 40-nm SPADs 
were thus created [15-25], whereas SOI SPADs [20], p-i-n SPADs [21], and subsequently backside-
illuminated (BSI) SPADs were developed to enable 3D-stacking, which was introduced in 2015 [26]. With 
3D-stacking it was now possible to implement complex functionality back-to-back with the SPADs. 
Moreover, SPAD optimization could now be decoupled from logic and mixed-signal design miniaturization, 
thus enabling further improvement of density. As a result, a flurry of applications of SPADs appeared in the 
biomedical [27,28] field, in LiDAR [29], and many other applications requiring time-resolved imaging, 
including a new emerging field of research: quantum imaging [30]. 

Thanks to all these advances, in the mid-2010s, researchers began increasing pixel counts [31] to achieve the 
megapixel milestone in 2020 [32]. 3D-stacking and BSI SPADs advanced as well, with the creation of 
architectures that could enable higher excess bias and thus higher PDE and better SPTR [33]. Moreover, 
research on high-dynamic range imaging could yield a better understanding of SPAD operation, especially at 
low and high illumination regimes [34,35]. New materials are available today for the extension of SPAD 
PDE, especially in the near infrared spectrum [36], along with more advanced models thanks to a deep 
understanding of the physics of avalanching [37-41] as well as alternative methods to detect single photons 
[40]. Even traditional CMOS SPADs have continued to advance and have now become commonplace in 
consumer electronics [43-47]. The table below summarizes recent achievements in CMOS SPADs in terms 
of the performance measures described above. 

Figure 198-2: SPAD passive quenching and conversion to a digital signal. 
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Recently, a number of SPAD imagers has also been used in quantum distillation [48], quantum LiDAR 
[49,50], and quantum plenoptic cameras [51], where pairs of entangled photons generated through 
spontaneous parametric downconversion (SPDC) are employed extract appropriate information from scenes 
suffering from extensive background illumination and challenging interpretation [52]. The figure below 
shows a micrograph of the first megapixel SPAD image sensor, MegaX [32].  

This sensor was employed in several classical applications, like the light-in-flight experiments, LiDAR 
imaging, and widefield FLIM, and quantum imaging applications, like quantum distillation and quantum 
LiDAR. Quantum imaging, though, requires not only single-photon detection, but also dedicated 
architectures enabling to use photogenerated pulses in situ or at least not to degrade the timing resolution of 
the detection. The principles and architectures recently emerged to implement quantum and classical imaging 
using SPAD sensors and the challenges of such implementations at system level focus on the promise of 
better resolution, PDE, DCR, and especially pixel count [52,53,54]. In addition, with the introduction of 
larger formats in SPAD imagers, several applications introduced earlier in the literature have been improved. 
This is so especially in the presence of massive radiation and background illumination. Examples are non-

Table 198-1. Summary of SPAD performance [46]. 

Figure 198-3. The MegaX chip.
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line-of-sight imaging [54,55,56] and diffuse imaging [57,58]. At the same time, new imaging modalities, 
such as quanta burst photography (QBP) [59], quantum state tomography, and quantum holography are 
emerging. Researchers involved in these activities request multi-megapixel SPAD cameras, along with RGB 
and non-Bayer color filters for low-light illumination applications, as well as multi-spectral and hyper-
spectral filter patterns. Similarly, reconfigurable SPAD sensors are sought to achieve solutions capable of 
adapting to various conditions of illumination and dynamic of the scene. One such example has recently 
been proposed in [60].   

In conclusion, the field of single-photon imaging has found its application in a wide variety of imaging 
modalities, which require an increasingly rich set of specifications. Emerging computational imaging and 
quantum imaging are increasingly demanding larger formats and more computation in situ. This trend is 
opening the use of natively digital photodetectors, such as SPADs, to localized processing and artificial 
intelligence, which is currently under development and will be facilitated by the economy of scale of CMOS 
applied to SPADs, enabling lower power, higher functionality, and scalable designs. This is a clear trend for 
the future. 
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