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ABSTRACT 

This study is focused on a multi-criteria simulation-based approach for defense planning, where the concern 
is the best use of available resources in military ground warfare operations. As the number of possible 
combination of parameter values is extremely large we use a data farming approach. The scenario is 
simulated using the FLAMES simulation framework. We analyze large amounts of output data from the 
simulations in order to find the best parameter values. Since the quality of a plan is determined by several 
measures of effectiveness, it may be difficult to directly determine which plan is best. Often the desired result 
for all criteria cannot be achieved. We use preference analysis where decision makers’ may indicate which 
criteria are most important. Based on these preferences we can determine which plan best meet all criteria. 
Finally, we develop methods that demonstrate why the best plan is good. 

1.0 INTRODUCTION 

In this paper we describe the modelling, simulation and data analysis of a multi-criteria simulation-based 
approach for defense planning. With this method a decision maker can analyze alternative scenarios, where 
the concern is the best use of available resources in military operations. We evaluate tens of thousands of 
alternative ground warfare plans with different settings using multiple measures of effectiveness that 
measure how well each individual plan performs. The basic scenario represents a limited ground combat 
situation and describes military units and their capabilities. Using war-gaming we investigate how a combat 
sequence in a typical scenario proceeds and can be described in terms of simulation parameters. As the 
number of possible combination of parameter values is extremely large we use a data farming approach. This 
allows us to manipulate the simulation models through experiment design where the different parameters in 
the simulation are varied in a systematic way, while limiting the number of simulations. The scenario is 
simulated using the FLAMES simulation framework. We develop a scenario model that represent various 
military units and contain basic logic for various components of each unit, such as platforms, sensors, 
cognition models governing the behavior of different units, etc. We analyze large amounts of output data 
from the simulations with different values of the input data in order to find the best parameter values for the 
blue side, e.g., number of red and blue platoons, red and blue sensors ranges, red and blue force tactical 
behavior, and avenues of approach. Since the quality of a plan is determined by several measures of 
effectiveness, it may be difficult to directly determine which plan is best. A particular plan might be good in 
minimizing blue losses, another plan might be better from the point of view that the red side fails its 
objective. Often the desired result for all criteria cannot be achieved. We use preference analysis where 
decision makers’ may indicate which criteria are most important. Based on these preferences we can 
determine which plan best meet all criteria. Finally, we develop methods that demonstrate why the best plan 
is good. With this methodology it is possible to find which combination of parameter ranges that leads to 
overall blue success. 
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In section 2 we describe the data farming process, and present how it is used in this paper. In section 3 we 
continue by describing the defense planning scenario that we investigate in this study. The modelling and 
simulation approaches used are described in section 4. After this, the data analysis methods and the decision 
support it provides is presented in section 5. Finally, conclusions are drawn (section 6). 

2.0 DATA FARMING 

Data farming [1] is a process that can be said to be a combination of already existing processes and 
technologies that make up a tool suite to maximize the information available. The focus is on trying to 
produce a sufficiently complete landscape of potential outcomes, and identify areas of special significance, 
rather than identifying an individual response [2]. In addition to identifying significant effects and 
relationships between the factors, great importance is also placed on detecting possible anomalies and 
including them in the decisions. 

Data farming aims to provide insights into the problem formulations and is an iterative process consisting of 
a “loop of loops”, see Figure 1. 

 

Figure 1: Scenario development and experimentation loop. 

There is perhaps no optimal decision in a system where there are opponents acting on its own mind, but since 
the decision maker is allowed to understand the landscape of possibilities the notion is that more informed 
decisions can be made. 

Based on the characteristics of the problem to be solved, there is a need for modeling nonlinearities, 
abstractions and influence between the various parts in a functional way. It is the combination of simple, 
efficient, and abstract models, as well as high performance computing, together with effective experiment 
design that enables quick exploration of a solution space. Simple models make it easier to manage a large 
number of simulation runs, which enables exploration of a large parameter and value space, and allows for 
the investigation of the solution space. The result is a landscape of output which can then be used to analyze 
trends, detect anomalies and to generate insights about multiple parameter dimensions. In addition to 
identifying the General characteristics the analysis also strives to give understanding of the spread and 
central tendencies as well as elucidate internal parameter relationships and thresholds. 

The core of data farming is based on a rich and diverse array of different simulation runs that are carried out 
on supercomputers to check different assumptions, to gain new insights into relevant relationships, as well as 
to get more robust statements on opportunities and risks in specific mission situations. This is achieved by 
systematically varying the different parameter values for the input parameters that are assumed to be crucial 
as a measure of effectiveness. 

As the problem we intend to simulate contains 32 binary parameters and three continuous the number of 
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possible simulations become 4.3 x 1012 if we assume 10 options for the continuous parameters. For a PC 
with 12 processors take this about 4900 years to complete. Instead we let data farming make a selection of 
1 000 000 simulations which can be simulated in 10 hours on the same PC. 

With data farming, we can manipulate the simulation models to our advantage through experiment design 
because the simulation of every value and combination of values is not feasible – despite high performance 
calculations. The choice of experiment design limits the information that can be extracted from the model 
which stresses the importance of filling up the parameter space as efficiently as possible. 

Latin hyper cubes are an experimental design that focuses on many factors with complex models. Since these 
can also be combined with more classic experiment design to tailor the design based on the problem in 
question it is often used in data farming. The strength of using Latin hypercube design is that the design 
works especially well when a priori knowledge regarding the factors response is low. Some other strength is 
its effectiveness, space filling properties, and design and analysis flexibility. Orthogonal and nearly 
orthogonal Latin hyper cubes (NOLH) have advantages when it comes to match the model to the data. By 
using NOLH the model’s factors are guaranteed to be un-confounded. This experimental design achieves an 
exploration without major cavities and it becomes possible to identify the dominant factors and cater to non-
linear behaviors. 

NOLH designs are important in a number of ways, they are very effective in the number of computer runs 
(n) needed to examine the number of parameters (k) that are of interest. Since these designs usually have 
good space filling and orthogonality, they are an attractive alternative to explore an unknown response 
function. If the simulation model contains a mixture of continuous and discrete parameters which can assume 
a different number of values per parameter, we may use a method that extends the methodology for 
constructing NOLH to manage discrete elements. The model also includes the categorical parameters; we 
can use a methodology called nearly orthogonal, nearly balanced mixed design (NONB). 

In order to obtain maximum statistical significance in the output and allow for good conclusions over 17 
input parameters on the Blue side which are control parameters in the defense planning context we are 
choosing to construct two separate NONB-designs for the Blue and Red side. From this we construct a 
complete design for all input to our simulation tool by crossing these designs, taking all instances of input 
parameters on the Blue side, and simulating them against all instances of input parameters on the Red side. 

For the Blue side we construct a NONB with 50 alternative instances of input parameters for all 17 Blue 
parameters (n = 50 and k = 17). In order to obtain a larger NONB we are building four copies of this NONB 
through permutations. We stack these five NONBs and get a larger NONB for 250 alternative simulations of 
the Blue page parameters. For the Red side designs a NONB with 50 alternative instances of input 
parameters for the 18 Red parameters (n = 50 and k = 18). Here, we choose to build three copies of the Red 
NONB through permutations. In the same way we stack these four NONBs for the Red side and get a full 
NONB for 200 alternative simulations of the 18 Red parameters. A simple rule of thumb is that a NONB for 
control parameters (the 17 blue as we assume to control) should be greater or equal to the NONB for the 18 
parameters that the opponent controls. 

We combine the Blue and Red NONBs to get a full design for all input parameters, i.e., we take all 250 
alternative instances of input parameters on the Blue side against all 200 alternative instances of input 
parameters on the Red side. We get a design for 50 000 alternative instances of input parameters for all 35 
scenario parameters (we have n = 50 000 = 250 x 200 and k = 35 = 17 + 18). Finally, we run the 50 000 
alternative instances of input parameters 20 times each, since the simulator use stochastic processes and we 
must run each instance of input parameters several times in order to be able to rely on the results. This gives 
us statistical significance in the subsequent data analysis. In total we run 1 000 000 (= 50 000 x 20) 
simulations. 
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3.0 SCENARIO 

One of the initial tasks of the project is to investigate how a combat sequence in a scenario proceeds in order 
to set the foundation for developing the simulation model. This is done using war gaming [3], which helps us 
to come up with the key parameters and decision situations. We begin the process by defining and agreeing 
on different concepts such as scenario and events. Next, we break down a game situation in various events in 
order to come up with different ways to identify parameters, decision rules and actions. Based on this we 
develop a scenario using war gaming on a map. We analyze the course of the game; followed by suggestions 
on how the scenario and the identified decision situations can be described in terms of simulation parameters. 
Since we plan to deploy the data farming method in this work, we need to be able to create different versions 
of the scenario to act as input to our simulation runs. Hence, when modelling the scenario we need a set of 
general variables that can be used for all versions of it and a set of scenario-specific variables that depend on 
the current scenario terrain, types of units, tasks, and situations requiring tactical decisions. 

To model the scenario in this project, it is important to broaden the space of possible decisions that the 
simulated unit leaders can make, and the actions that the simulated units can take. Again, the reason is to not 
miss any possible and interesting situations when running simulations using a data farming approach. 
However, we initially choose mainly the decision and policy options identified during a portion of the war 
game. The idea is that in the future as the project proceeds forward, the scenario model is enhanced until the 
entire course of the game with all the actors can be modelled. Continued games will also provide additional 
data for the parameters that are important to simulate and the interactions between different actors that may 
be relevant to deal with in the simulation. 

Typically speaking a scenario in context of the defense planning games is a description of the roles of 
different actors and their activities extended over a long period of time and over large areas. We initially 
focus on a smaller part of a scenario, as explained earlier, where only a few actors are active. This is called a 
vignette which consists of a number of events together with actors who perform some specific activities, 
such as moving forward, reconnaissance, opening fire, etc. 

In dialogue with the client, the project has agreed that an initial vignette should include a limited ground 
combat situation. Hence, the vignette used in our work unfolds in the context of defense against armed 
attack, where an attack has been going on for a number of days before this happens. In this situation the red 
forces has air-dropped a parachute battalion (1st Fskbat) at an airport and are in battle with a mechanized 
battalion (1st Mekbat) reinforced with a tank company (Strvkomp). 

A new airdropping of a 2nd Fskbat (red forces) occurs in the areas around Gimo (see figure 2). The task of 
this unit is to move forward towards the airport in order to support the 1st Fskbat in ensuring that the airport 
stays open for landing of transport aircrafts, carrying new military units. At the same time a 2nd Mekbat 
(blue forces) has regrouped and is positioned in northern part of Uppsala. The task of this battalion is to 
prevent red forces from reaching the airport. 
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Figure 2: Scenario map. 

This part of the scenario (2nd Fskbat vs. 2nd Mekbat) is the focus of our simulation. Organization of the 
forces (Order of Battle - ORBAT) is as follows, a mechanized battalion on the blue side and a parachute 
battalion on the red side. In this example, these units are organized as described in figure 3, respectively 
figure 4. The units are greatly simplified for several reasons. As previously explained the main reason is that 
the project should initially have a manageable number of actors to consider. As work progresses, the vignette 
will evolve with more types of units which will also include other types of systems. 

 

Figure 3: Blue order of battle. 

 

Figure 4: Red order of battle. 

The next step of this work is to describe the scenario in terms that can easily be adapted to our simulation 
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tool. Furthermore we describe what values (states) the different parameters can be assigned. 

4.0 MODELING AND SIMULATION 

4.1 Modeling 
One of the main requirements of the project is that the defined scenario should be suitably and rapidly 
modeled and simulated such that it answers the questions that are relevant to the defense planning. Based on 
this requirement, already in the early stages of the project it is decided to use the FLAMES (Flexible 
Analysis and Mission Effectiveness System) simulation framework in our work. The FLAMES simulation 
framework [4] is primarily used for simulation of complex military scenarios at the combat/tactical level. 
The tool is modular and provides general simulation functionality such as time management, database 
management, scenario generation, visualization and analysis. It also contains a number of ready-made 
models of various military units on different levels, which is a good starting point and can reduce 
development time. 

The main aspect of the modelling work is to translate the defined scenario in terms that is understandable by 
FLAMES. The scenario as explained in section 3 is at tactical level and consists of 15 red platoons and 15 
blue platoons. The blue platoons include 4 “Combat Vehicle 90” units and the red platoons 3 BMP-1 
(Infantry Fighting Vehicle) units. Each platoon also consists of a leader and the rest, so called “wingmen”. 
The reds are located in the north at various points, while the blue ones are located in different areas along the 
different routes to the south. The objective of the scenario is that the Reds try to get past the defense line 
located at about the same level as the route 77 to the south, see figure 2. 

In order to build a simulation model in FLAMES based on the scenario, we use a map of Sweden (in 
GeoTiff) with elevation data (DTED), and develop models describing the basic logic for different classes of 
objects, such as platforms, sensors, cognitive models, etc. Generally, when building models (components) in 
FLAMES, one can start with some basic models that are already available, which can then be extended to fit 
one’s own needs. In our case, we have developed some special models to manage more complex cases that 
take place in the scenario. These models include three cognition models (SWECon, BMPTank and 
S90Tank), two platform models (Stridsfordon90 and BMPTankPlatform) and a formation model 
(SWEGroundFormation), see Figure 5. 

 

Figure 5: Cognition, platform, and formation models. 
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Cognition models are used for simulating human behavior and cognitive processes, while platform models 
are deployed for simulation of man-made devices and equipment, such as sensors, missiles, vehicles, ships, 
munition, etc. The formation model, as the name implies, contains logic about placement of the entities. 

4.1.1 SWECon 

One of the main requirements of the project is that the defined scenario should be suitably and rapidly 
modeled and simulated such that it answers the questions that are relevant to the defense planning. Based on 
this requirement, already in the early stages of the project it is decided to use the FLAMES (Flexible 
Analysis and Mission Effectiveness System) simulation framework in our work. The FLAMES simulation 
framework is primarily used for simulation of complex military scenarios at the combat/tactical level. The 
tool is modular and provides general simulation functionality such as time management, database 
management, scenario generation, visualization and analysis. It also contains a number of ready-made 
models of various military units on different levels, which is a good starting point and can reduce 
development time. 

SWECon is a cognition class, which acts as a “logger” that records various events during the course of the 
simulation. What happens in practice is that SWECon polls FLAMES-kernel for all available data on all 
devices. Data of interest include: 

• Simulation time, 

• Total number of units, 

• Total number of blue units, 

• Number of blue entities that are alive, 

• The total ammunition for blue, 

• Ammunition left blue, 

• Total number of red units, 

• Number of red units that are alive, 

• The total ammunition for red, 

• Ammunition left red, 

• Number of red crossed line of defense, 

• Route selected by the red force. 

After the simulation is complete, SWECon prints out the information (i.e. collected data), which can then be 
used by other programs for analysis. In SBFP SWECon can be seen as the brain that provides information on 
what we are interested in. It is also capable of reporting damages. For this reason a “Damage” method is 
implemented in “BMPTankPlatform” and “Stridsfordon90” platforms. 

4.1.2 S90Tank 

S90Tank is another cognition class based on an existing tank class in FLAMES. In addition to the existing 
functionality we include properties to enable activation of the platform, customization of various attacking 
behavior, inching behavior and reporting of damage to the SWECon. S90Tank-cognition model, along with 
the driver’s cognitive model, act as the brain of a Combat Vehicle 90. Any changes regarding the behavior of 
the Combat Vehicle 90, such as how to respond to enemies is made in this class. 
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4.1.3 BMPTank 

Just as S90Tank this cognition class, along with the driver’s cognition class, act as the brain of the enemy’s 
combat vehicles of type BMP-1. However, they lack the special behavior for inching and ambushes. 

4.1.4 Stridsfordon90 (platform) 

This class serves as the platform for the Combat Vehicle 90. For a device to appear in FLAMES it must have 
a platform and for the platform to be shot at, it has to have a signature. Stridsfordon90 platform provides 
information on how the vehicle can move around, including which advance behavior the vehicle has. This 
platform also calculates the damage done to it. 

Stridsfordon90 platform is coupled with S90Tank-cognition model in one “Pattern”. This then enables the 
Combat Vehicle 90 to be selected as a “Unit” in FLAMES. 

4.1.5 BMPTankPlatform 

This class is the platform for BMP-1, which is then connected to BMPTank-cognitive model in a “Pattern”. 
The only thing that is extended in this class apart from the basic functionality is the ability to calculate the 
damage to the platform. 

4.1.6 SWEGroundFormation 

SWEGroundFormation is a formation model that includes logic for how entities are placed e.g. in a platoon. 
In this formation model, we have implemented a logic in which the entities are placed randomly behind a 
leader based on the leader’s position. 

4.2 Simulation 
In SBFP we analyze the simulation results not based on a single run, rather hundred thousands of runs. We 
do this by creating many outputs based on a defined amount of input data. For this purpose we develop many 
different variations of the same scenario by varying the input parameters (scenario variables), thus we will 
have a better statistical certainty. The whole process is called Data Farming in which we actually “grow” a 
huge number of possible outputs based on a large combination of input data. Table 1 depicts the input data 
which we have defined for the simulation and the range of values they can assume. 

The challenge is that input data must be selected in such a way so that there is not a combinatorial explosion. 
To support data farming we have created programs which depend on FLAMES running the scenarios in 
batch mode. These programs first produce an input file containing permutations of our basic scenario, which 
is done by randomizing between the minimum and maximum values of each scenario variable. These 
permutated scenarios are then fed to our simulation. Later the results are gathered in an output file generated 
by the SWECon model, and verified against the input file. Here we can check whether an error has occurred, 
and what the error is about. If there are no errors the results are delivered to the analysis program. In order to 
reduce the execution time the data farming scenarios are run in parallel. 

In our experiment we have 50 000 permutated scenarios, where each scenario is run 20 times with different 
seeds, making a total of 1 000 000 runs. When deploying a standard desktop with 12 processors, the 
experiment takes about 10 hours to complete. 
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Table 1: Scenario values. 

Scenario variables Values 

Number of blue units that are active 1..15 

Sensor range for the blue forces 1500..2500 m 

Firing behavior for the blue forces 1 = flames default, 2 = multi-target-mode 

Sensor range for the red forces 1500..2500 m 

Speed of the red tanks 8..45 mph 

Number of the red units that are active 1..15 

Routes that the reds can take A, B, C (3 different routes with the coordinates given below) 

(waypoint(x)_lat, waypoint(x)_long) A = [(59.783598, 18.138005), (59.775169, 18.134743), 
(59.766412, 18.14192), (59.763128, 18.139527), (59.752291, 
18.148227), (59.739812, 18.157796)] 

B = [(59.785569, 18.228042), (59.769696, 18.223475), 
(59.761924, 18.208904), (59.753823,18.224562), (59.745176, 
18.205859), (59.741235, 18.204336)] 

C = [(59.779876, 18.248702), (59.772214, 18.242178), 
(59.766631, 18.229782), (59.754371, 18.252182), (59.746927, 
18.25153), (59.73598, 18.252617)] 

  

5.0 DATA ANALYSIS AND DECISION SUPPORT 

When data is collected, experiment design, and simulations are done, often large amount of data is generated 
– a result that can be both cumbersome and unwieldy. We are interested to find out what the results really 
means and what conclusions that can be drawn. This may also generate a variety of issues that need to be 
dealt with. An example of areas in which we may want to shed light on is: 

• distribution of system response,  

• central tendencies of system responses, 

• relationships between system response, 

• how various factors (input variables) affect each other and the system response, 

• interesting areas or thresholds for factors, 

• General characteristics of the landscape of possibilities. 

How can information on the above points be helpful? By modeling and simulation we know what the 
building blocks looks like and what results are generated – however, we often have very little knowledge of 
the inner system, the dynamics, which causes the outcomes observed. Through the application of useful 
methods for analysis and visualization of output data our understanding may deepen and answers may be 
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found. 

In data farming we often deploy a mixture of techniques from the fields of visualization, data mining and 
statistical analysis. Statistical analysis techniques are used to explore the previously mentioned points – for 
example, through characterization of distributions, to put up confidence intervals and implement hypothesis 
testing. Data mining is used to search for patterns and relationships, and visualization techniques can be 
powerful tools to investigate, explore, and present data. To examine data through visualization may serve as 
a validation method, but also for the quality assurance of data. Visualization for exploration contributes 
instead to find new information and new insights. Finally, visualization concerns how to convey message 
and understanding of how data and results should be presented so that the messages become easily 
comprehensible and easily accessible. Technologies and their purposes can therefore look quite different – 
common to all of them, however, is the starting point that a good simulation must be efficient, precise, 
aesthetic and adaptable. 

Rather than relying on a few technologies, data farming take advantage of a combination of methods in 
which each technology’s special strength is used in an as efficient way as possible. These areas are not 
completely separated, instead they overlap – both in terms of techniques and the information they seek to 
extract. Often, it may be a good idea to begin the analysis of a problem involving a large number of 
influencing factors with visualization in order to reach a broader holistic understanding. This can then be 
followed by the application of more statistical analysis methods and then include additional visualization – 
simply an interaction in which the purpose controls the selection of methods. 

5.1 Pareto and preference analysis 
Pareto analysis is a form of multi-criteria analysis. The simulation results are analyzed for both input and 
output, and a number of criteria that must be met are set up. Such as Blue losses should be as small as 
possible and as few Red units as possible reach their desired goal. The Pareto analysis states that if there is a 
set of input that on all output criteria provides better outcomes than what a different set of input gives, so is 
the first is Pareto optimal over the other. 

In our simulation, we simulated 50 000 alternative input instances, each 20 times with different random 
seeds (that is, a total of 1 000 000 simulations). We have analyzed how each output parameter varies over the 
20 simulations with different random seeds (e.g., how many red units reached at most or at least its 
objective). This gives us an idea of how much randomness can influence the outcome with the same input 
data. 

Initially, we try to find the most effective plan instance as evaluated by all measures of effectiveness 
(MOEs). When there are many such measures we are faced with a multiple-criteria decision making problem 
when assessing which plan instances are preferred. As a first step, we develop a new method for finding the 
Pareto optimal frontier of the entire set of all plan instances where utility intervals over each measure of 
effectiveness is received from the 20 simulations, due to the stochastic nature of the simulations. The plans 
on the Pareto optimal frontier are the plans that are better than all other plans regardless of how the measures 
of effectiveness might be weighted in a subsequent assessment process. 

As we assume that it is impossible for decision makers to assign precise weights to all measures of 
effectiveness, we let a group of decision makers express any number of preferences on the importance 
between any two disjoint subsets of MOEs [5][6]. We further develop an extension to Utkin’s [7] preference 
ranking method which is focused on finding the order of importance of the measures of effectiveness from 
the preference assignments made by the decision makers. 

Using the preference order of importance for all MOEs we develop a Monte Carlo approach for assigning 
weights to these MOEs. In this method we randomly assign weights that abide by the preferred order of 
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importance of the MOEs. That is, the most preferred measure will be weighted higher than the second most 
preferred measure, etc. In the spirit of the Monte Carlo approach we perform 1000 alternative weight 
assignments for all measures, yielding 1000 alternative rankings of all alternative plan instances. The plans 
with the highest average ranking over the 1000 alternative rankings are the most preferred plan instances. A 
process overview is provided in Figure 6. 

 

Figure 6: Process overview. 

In our example, it turns out that 23% of the simulation outcomes are screened out as non-Pareto optimal, 
meaning that they are worse on all criteria for at least one other simulation. In future we focus the data 
analysis on the remaining 78% of the simulations that have a crucial influence on the outcome of the 
subsequent data analysis. 

5.2 Decision support 
A first overview of input and result variables is provided by the histogram that shows how often the variables 
assume different values at the given interval. Note that we are measuring the values that different parameters 
takes over 1 000 000 simulations. Thus, we do not measure what values a parameter takes given some fixed 
input. A fact that soon becomes obvious based on the histograms is that the amount of ammunition is not a 
limiting factor for either side. Figure 7 shows the histogram of the percentage of remaining ammunition for 
the Blue and Red side. Neither side ever spends more than one-third of available ammunition and typically 
less than 5% is spent. Thus, ammunition variables are seen as insignificant (given this model) and therefore 
are ignored in the subsequent analysis. 

   

Figure 7. Histograms of percentage remaining ammunition for the Blue (left) and Red (right). 

Looking at other result variables (Figure 8), we see that the most common individual cases are no loss, and 
that no red reaches the finish line, but variables are also distributed over other values. 
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Figure 8. Histogram of the number of Blue and Red losses, as well as the number of Red 
successful, respectively. 

To study how the balance of power between Blue and Red, in terms of number of platoons and sensor 
ranges, affect the outcome we draw up heat maps of losses and number of successful red units as a function 
of number of platoons on either side as well as sensor ranges on each side, see Figure 9, where dark and light 
represents the high and low values in the resulting dimension. 

We see a certain tendency that more platoons on one side leads to more losses on the same side. It also 
appears to be a remarkably weak trend to more losses when the opposing side is large. Sensor ranges exhibit 
a clearer picture. Each side is favoured strongly by having longer ranges than the opposing side, both in 
terms of losses and finishing statistics. 

 

Figure 9. Grayscale charts that illustrate the outcomes as a function of strength and ability 
between Blue and Red. Upper row: number of Blue (BPI) or Red (RPI) units. Bottom row: sensor 

rages for Blue (BSR) or Red (RSR) side. Column 1: Blue losses (BUL); column 2: Red losses 
(RUL); column 3: Red that are successful (RUF). 

In order to further study how the finishing statistics of Red looks in proportion to the number of participating 
platoons on each side, we draw up box plot charts, see Figure 10, where the result variable distribution is 
displayed for each value on the input variable, where median is designated as a red line and the span between 
the quartiles closest to the median is marked with a blue box. Here we see that when the number of blue 
platoons exceeds six the likelihood that some Red will finish successfully drops to below 50%. The same 
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applies when the number of Red platoons is less than 10. 

 

Figure 10. Box plot charts indicating how many Red units that finish varies with the number of 
participating Blue (left) and Red (right) platoons. Left picture: the number of Reds that finish as a 
function of the number of Blue units involved; Right picture: the number of Reds that finish as a 

function of the number of Red units involved. 

We can also study the impact of the categorical tactics variables BFB (Blue fire behavior) and RW (Red 
avenue of approach) has on the output dimensions using box plot charts, see Figure 11. 

 

Figure 11. Box plot charts over output (BUL, RUL and RUF) as a function of tactics variables 
BFB and RW. Upper row: Blue tactics (BFB) “1” = shoot immediately, “2” = lie in ambush. 
Bottom row: Red avenue of approach (RW) “1” = circumvention, “2” = attack route 2, “3” = 
attack route 3. Column 1: Red that finish successfully (RUF); column 2: Red losses (RUL); 

column 3: Blue losses (BUL). 

Here it becomes clear that the BFB have only marginal impact on the outcome, while the RW variable has a 
larger significance: choosing avenue “1” for approach appears to be a winning strategy for Red, as it seems 
to lead to many more Red finishing successfully than the other two routes by avoiding confrontation (i.e., by 
bypassing the Blue forces). 

Regression trees are equivalent to decision trees for continuous variables. It is a method suitable to predict 
the outcome of any result dimension based on given values on input. This allows the tree to give a picture of 
which input variables that are most significant for the outcome. A regression tree for result variable RUF 
(Red case) shown in Figure 12. 
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Figure 12. Regression trees, with which the RUF can be predicted based on given values on 
input variables. For a variable appearing high up in the tree indicates that it is of great 

importance for the output value. 

Here it becomes clear that the Red approach road (RW), as previously observed, is crucial to the outcome of 
the simulation. In addition, sensor ranges (BSR/RSR) and Red speed (RSpd) are important predictors. With 
the help of the regression tree the input variables relative predictive importance can be quantified, as shown 
in Figure 13. 

 

Figure 13. The input variables relative importance for prediction of the number of Reds that 
finishes successfully. 

Sensor ranges (BSR, RSR), Red avenue of approach (RW) and Red speed (RSpd) dominates; second are the 
number of Red and Blue platoons (RPI, BPI). The image matches well with the message from the other 
figures. 

6.0 CONCLUSIONS 

We have developed a simulation-based decision support system for analysis of alternative situations in 
defense planning. With this system we can simulate situation examples using a data farming approach that 
systematically draws samples by varying all input parameters. We have developed a multi-process multiple-
criteria decision making methodology for assessing the large amounts of output data from the simulation. 
The alternative simulations are evaluated by several different measures of effectiveness. The decision 
support methodology uses Pareto analysis followed by preference analysis of measures of effectiveness and 
Monte Carlo weighting of the measures within the given preference order. With this methodology we first 
find the most important input parameters that lead to Blue forces success. Secondly, we investigate 
parameter values and parameter combinations to explain the causes that lead to Blue success. 
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