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ABSTRACT  

Pilot training is effective when subject matter experts (SMEs) fly – in exercises or simulations – as 
adversaries. However, SMEs are costly and scarce, thus pilots train with them infrequently. Training is 
potentially more accessible when Computer Generated Forces exercise pilot trainees. However, CGFs often 
do not respond smartly to trainees, so the training effectiveness of CGFs alone is questionable. What is 
needed are AI opponents with tactical expertise, agents that make tactical decisions that train, not just win. 
AFRL has sponsored development of agents by eight American firms. The developers fly and assess their 
pilot agents on a purpose-built testbed, components of which are freely available to the NATO community. In 
this paper, we describe the AI pilots and testbed, and present an assessment of those pilots. The AI developed 
here are designed to win, not to train human pilots. However, the variance in AI performance presents an 
opportunity to select from among these agents the ones most likely to train well. We describe several 
approaches to smartly selecting AI for a training task: selection by rule, by expert judgment, by model, and 
by empirical effects. 

1.0 INTRODUCTION 

Pilots learn best when they exercise against aviators who are expert in tactical flight and in training. These 
experts are rare. Thus, they, like the aircraft and simulators used in training, are costly and rarely available to 
a given trainee. Pilots can readily exercise against Computer Generated Forces in simulators and in training 
events that combine live, virtual, and constructive assets. However, CGFs rarely make the smart, adaptive 
moves of expert human opponents. Thus, their training value decreases as the expertise of the student 
increases, and their predictable behavior presents the potential for negative transfer of bad lessons to real 
engagements. 

What is needed to lower cost, increase access to training, and improve the quality of training are synthetic 
(Red) pilots who challenge human trainees (Blue pilots) well. Creating this artificial intelligence (AI) is one 
mission of the Air Force Research Laboratory, Airman Systems Directorate. 

The Directorate funds eight American AI firms in a program of data-driven development, execution, and 
assessment of tactically adaptive Red AI pilots. The program is called Not-So-Grand Challenge (NSGC), in 
a nod to the scale of the program, which is modest relative to its ambitions. The program has developed a 
testbed designed to exercise AI pilots and assess their performance. Key components of the testbed are freely 
available to partner nations. (Certain back-end components cannot be distributed (they are “For Official Use 
Only), but the testbed development team can help NATO users integrate their own replacements for those 
components.) 

The testbed hosts six dozen systematically varied scenarios. The number and variety of scenarios supports 
development of robust agents. Nonetheless, we find that each pilot AI excels on some scenarios, performs 
poorly on others, and differs from other AI in its patterns of success. This finding has led us to ask whether 
and how to select among AI those that provide the best training effects, given that these agents are designed 
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only to win simulated battles; they are not designed to exhibit instructional expertise. We plan to develop an 
automated librarian that picks the best agent for a given training mission. Below, we present several methods 
for creating this librarian, methods that vary in cost and effectiveness. The methods, in ascending order of 
cost, employ simple rules that leverage AI performance data, use expert judgment, apply expertise to model 
and automate adaptive instruction, or apply empirical data concerning training effectiveness. 

2.0 AI PILOTS AND THE AGENT TESTBED 

2.1 AI Pilots 
The NSGC funds development and application of diverse architectures for creating AI pilots. These 
architectures range from production systems (rules selected to attain dynamic goals and mediated by conflict 
resolution mechanisms), state transition networks, mathematical models of cognition, to reinforcement 
learning algorithms. Here, we briefly summarize the architectures used in the NSGC. We then turn to the 
testbed on which these agents fly, and with which program leadership assesses them. 

TiER1 Performance Solutions, LLC, applies a hybrid architecture that integrates two different human 
behavior representations. A task network model represents operator goals or functions in graph form. An 
accumulator model aggregates data over time to control transitions through the task network.  

Stottler Henke Associates, Inc., uses the SimBionic architecture, which implements an agent as an integrated 
set of behavior transition networks. This open source architecture supports a dynamic scripting machine 
learning algorithm, developed to adapt the behavior of agents by learning from experience.  

Aptima, Inc., employs reinforcement learning techniques to infer tactical state and appropriate tactical 
response. These populate a Behavior Definition Language (BDL) that expresses goals, tactical state, 
behavioral constraints, actions, predictive measures and other attributes necessary for intelligent agent 
behavior. BDL is input to Soar agents.  

Soar Technology, Inc., applies the principles of the Soar cognitive architecture, a production system that 
dynamically processes environmental states to accomplish goals. When such a system is defined with a high 
level of fidelity, the resultant behavior model captures a set of policies that map inferred state with intended 
behaviors, a paradigm that lends itself to scalability, real-time execution, and explainability. 

Eduworks Corporation employs Brahms-Lite, a streamlined and interoperable evolution of Brahms, a 
government-developed agent modeling framework created to design, simulate, and develop work systems 
composed of humans and technologies. Brahms-Lite is particularly useful for representing and simulating 
human-human and human-machine interaction and for working in concert with other simulations and agent 
architectures. 

Discovery Machine, Inc., applies a cognitive architecture called DMInd that represents hierarchies of 
prespecified problem spaces and response strategies, which are retrieved as a function of fit to context. These 
functions are designed to achieve accurate inference and tactical action concerning tactics.  

CHI Systems applies its Personality-enabled Architecture for Cognition (PAC), a system that uses narrative 
threads to control perception and behavior. PAC explicitly represents characteristics such as risk tolerance 
and perception of threat that may vary between individuals or national forces. 

Charles River Analytics uses its reactive behavior modeling framework, Hap, to provide realistic, dynamic, 
and situation-adaptive behavior. Hap is designed to support highly parallelized behavior and manage the 
exchange between potentially competing goals (e.g., performing a Sweep mission and engaging a specific 



Assessing and Selecting AI Pilots for Tactical and Training Skill 

STO-MP-MSG-177 14 - 3 

 

 

adversary). Within Hap, to address combat pilot reactions and decision-making, we have constructed expert 
behaviors grounded in recognition-primed decision-making, which focuses on rapid loops of information 
gathering, situation assessment, and decision-making.   

These developers build AI pilots that are optimized to fight robustly, across a range of simulated battles. 
(None are designed with instructional capabilities.) The developers craft or train their agents on their choice 
of 72 unclassified scenarios created by expert pilot trainers. These scenarios require AI pilots (Red air) to 
generate and coordinate tactical actions in the face of different opponent presentations and limited resources 
(Blue air).  The 72 scenarios offer the initial conditions of two Blue adversary aircraft (single group, azimuth, 
and range), the maneuvers they perform from each presentation (4 variations), and the fuel and weapons load 
variations for the two Red aircraft (6 initial variations of fuel, from just above Bingo to comfortably above 
Joker with weapons, from zero to full load per aircraft). 

2.2 The AGENT Testbed 
The AI pilots fly scenarios on the Agent Generation & Evaluation Networked Testbed. AGENT was 
developed by Aptima for AFRL to facilitate independent exercise and assessment of AI pilots by the 
distributed modelers with minimum support from SMEs. Here, we describe the architecture of the AGENT 
testbed.  

 

Figure 1: The architecture of the AGENT testbed. 

The AGENT testbed [1] is a system of systems that includes components responsible for: generating the 
constructive Red and Blue players, robust data recording & playback tools, and data capture and 
performance measurement. AGENT is capable of integrating multiple Computer Generated Forces (CGF) 
systems and uses the Next Generation Threat System (NGTS) to generate Blue forces along with AFRL’s 
Network Integrated Combat Environment (NICE) to generate Red Forces. AGENT employs a CGF-agnostic 
architecture that communicates AI pilots’ intent to multiple distributed CGFs via a Distributed Interactive 
Simulation (DIS) network connection. Performance measurement and data collection within AGENT are 
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handled by the Performance Evaluation and Tracking System (PETS™), which uses the testbed’s DIS data 
to drive operationally-validated performance measurement and assessment algorithms and stores the 
resulting information in a data lake architecture.  

AGENT is a distributed systems design that abstracts away the details of the underlying modeling and 
simulation (M&S) architecture from the AI pilot agent. AGENT provides developers with multiple levels of 
data access and abstraction. At the syntactic level the testbed API’s provide wrappers around the native 
M&S data; at the semantic level the testbed provides access to the Tactical Observation Agent (TOA) 
computed air picture that simulates the level of information available to pilots from an airborne or ground 
control station; at the pragmatic level AGENT provides a high level Fighter Combat-Tactical Awareness 
Capability (FC-TAC) API focused on overall state of and beliefs about the environment. 

The AGENT Software Development Kit (SDK) provides developers with multiple language bindings and 
supports agent development in Python, C# and Java. The AGENT SDK allows developers to maximize their 
agent’s running time through a batch processing capability wherein developers queue up multiple scenarios 
that are then automatically run by the AGENT framework. Visualization of agent performance is done 
through the Live, Virtual and Constructive Network Control Suite (LNCS), which provides 2D and 3D 
geospatial views of the DIS data and automatically records all scenarios run on AGENT. Developers can use 
LNCS to replay and analyse previously executed AI agent performance. 

3.0 ASSESSMENT OF PILOT AI 

The NSGC hosts an annual assessment event, in which AI pilots execute one scenario (from the library of 
72) that is announced in advance, and one scenario that is announced at the event. SMEs comment on each 
scenario execution, to provide some immediate feedback to the developers and to launch discussion between 
them. In a subsequent meeting, the SMEs and program leaders perform a systematic assessment and 
comparison of agents. This assessment combines automated measures and SME judgment to score and 
characterize each agent.  

PETS generates measures during this event (and during the modelers’ development exercises): one measure 
of effects that combines Blue kills and Red losses, and several process measures: fratricide, deconfliction 
between Red aircraft, aircraft location relative to adversary weapon lethality range, time inside adversary’s 
weapon lethality range, and airspeed. These measures each have up to four levels of assessment: successful, 
passing, not optimal, and failure. 

The use of automated measures frees SMEs from the tedium of counting observable behaviors and events, so 
that they can apply nuanced judgment and generate insightful guidance for developers. 

SMEs generate one measure of effects -- a kill ratio -- and several process measures concerning the quality 
of intercept geometry, adherence to contract, split decision, deconfliction, spike awareness, post merge 
maneuver, fuel management, weapons management, element targeting/sorting. In addition SMEs, assess the 
overall tactical intelligence of the AI pilot, and the agent’s provision of explanations of its behaviors.  

Assessments over two recent years of program activity illustrate high variance in AI performance. For 
example (Table 1), AI pilot E scored between 13% and 100% on tactical effects (left table) across four 
scenarios, and the seven AI scored between 18% and 96% on tactical process (right table) in scenario #2.   
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Table 1: Scores for seven AI pilots (A-G) over four scenarios illustrate variance in tactical effects 
(kill ratios, left)) and tactical process (right) both within AI between scenarios (rows), and 

between AI within scenarios (columns). 

 

4.0 METHODS FOR SELECTING AI AGENTS TO TRAIN HUMAN PILOTS 

The AI pilots vary in their performance between scenarios. Thus, no one agent is the ideal training partner 
across all scenarios. While it is certainly possible to select, for all trainees and training events, the one agent 
that performs best on the average over all scenarios, this seems likely to produce inferior training for most 
trainees. The variance in performance presents an opportunity to choose the most tactically competent agent 
agent for each scenario and, ideally, the most instructionally effective agent for each trainee who executes 
that scenario.  

An automated librarian could accomplish this task. But, how would this librarian work? Here, we present 
several schemes. We order them from least to most costly, and arguably least to most reliable and 
instructionally effective.   

Select by rule: The assessment technique described above scores AI by proficiency. An automated librarian 
would use these rankings to select the most tactically proficient AI pilot as the adversary for a given 
scenario. The challenge is to do this efficiently at scale. NSGC is technically able to run each AI through all 
72 scenarios. This would enable us to automatically compute the 504 ranking scores (7 agents x 72 
scenarios) of agents on tactical effects (kill ratios) and tactical process per scenario. A more robust set of 
rankings might be generated by running each agent through many instances of each scenario against 
synthetic Blue pilots that vary systematically or probabilistically in the timing or accuracy of their 
maneuvers.  

It is, of course, possible to generate rankings of AI pilots using only or also SME judgments. However, the 
scale of the work might require that SMEs judge AI pilots on a sample of scenarios. This sampling could be 
done smartly by the SMEs themselves, or by clustering scenarios on the automated measures and selecting 
the central scenario in each cluster as a representative for its neighbors.  

Some variants of the librarian might train better. One variant might rank all agents by their performance at 
critical moments (or vignettes) within each scenario (not just rank them by their performance across the 
complete scenario). For example, Red AI might be ranked on its decisions to pursue Blue or return to base at 
moments when Blue turns away and Red fuel is low or ample. These ratings would enable the librarian to 
swap agents within scenarios, effectively ensuring that the sharpest AI is engaged in each vignette.  

Another variant of the librarian might choose an AI pilot that slightly underperforms its peers or that 
performs well on some process measures but poorly on others.  This strategy gives the trainee experience 
with a range of Red behaviors in one tactical situation, and in this sense it is a substitute for systematically 
varying Blue behaviors across many runs of the same scenario. 

Measures of Tactical Effects Measures of Tactical Process
AI Pilot Scenario #1 Scenario #2 Scenario #3 Scenario #4 Scenario #1 Scenario #2 Scenario #3 Scenario #4
A 100% 50% 50% 50% 15% 25% 30% 8%
B 25% 50% 100% 33% 18% 86% 81%
C 13% 50% 50% 16% 34% 1%
D 100% 100% 50% 50% 54% 95% 20% 22%
E 13% 50% 100% 50% 60% 33% 97% 90%
F 88% 75% 75% 100% 13% 96% 87% 90%
G 75% 75% 52% 13%
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Select by expert judgment: An alternative librarian leverages the training effects of the AI as predicted by 
training experts. SMEs would examine the actions of the most tactically proficient Red pilot agents in each 
scenario, as determined by the measurements discussed above. The SMEs would then predict the training 
effects of actions by each agent in each scenario. Critically, SMEs would make this prediction for imagined 
trainees at several levels of expertise. For example, a SME might predict that the tactical decisions of a 
specific Red AI will grow the skills of inexperienced pilots, but have no effect on experienced ones. During 
training, the librarian would select the AI pilot that SMEs predict will have the greatest training effect given 
an assessment of the trainee and the identity of the current training scenario.  

A useful variant of this librarian periodically tests the SME predictions of training effects. It would substitute 
an alternative agent in the current scenario, measure the effects on trainee performance, and report the 
difference in effects obtained by different agents. These data would be used to refine SME predictions of 
training effects. 

Select by probabilistic model: Yet another librarian applies expert judgements in a formal, computational 
model to select agents and scenarios that improve learning over the course of training. (In contrast, the 
librarians above select an agent given a scenario, and thus attempt to optimize training for that scenario 
only). This librarian represents trainees, agents, scenarios, and measures in a formal model that estimates the 
probabilistic effects of selecting a scenario and agent (i.e., taking a training action) on trainee learning, given 
imperfect knowledge of those effects and of the current state of trainee expertise. A computational solver is 
then applied to that model to produce a training policy (a large and potentially complex set of rules). The 
automated librarian uses this policy and measures of trainee performance to dynamically choose the next 
scenario and agent, the pair that will most certainly pull each trainee closest to expertise. Military research 
studies have demonstrated the impact of such models (e.g., a Partially Observable Markov Decision Process, 
or POMDP) and policies on learning [2][3].  

This formal approach has several benefits. First, it automates the selection of scenarios and agents to fit each 
trainee’s needs, and revises that selection continuously as training measurements roll in.  Second, policy-
driven, dynamic curricula optimize learning over the full course of training (not just the current training 
trial). Third, this technique systematically addresses unavoidable uncertainty concerning trainee expertise 
and the effects of training actions. Finally, this approach captures the empirical data needed to iteratively 
reduce uncertainty, refine the model, compute better training policy, and improve training outcomes.  

Select by empirical effects: The formal method, above, uses expert estimates of training effects to compute 
an optimal selection of scenario and agent. Empirical data concerning training effects would produce better 
selections than would expert estimates, but at considerably higher cost in laboratory data collection. That 
cost may be warranted where the stakes are high, as in training pilots in novel tactics against novel threats, or 
where there is significant uncertainty concerning training effects.  

When these special cases are identified, training experiments would be run to systematically measure the 
effects of each agent and scenario on pilot proficiency. These experiments would consider the effects of 
scenarios, agents, their combinations, and their ordering. Thus, any given experiment could be quite large, 
even if it merely sampled the large factorial space. How large is that space? Consider a small case of 5 
scenarios x 5 AI x 3 levels of trainee proficiency x n = 8 trainees per level. Full factorial design requires 600 
experimental training trials (irrespective of order effects and other confounds). Where those costs are 
warranted, the experimental data would feed a librarian – either rule based (above) or model-based (above) – 
that select a scenario and agent that demonstrably optimize training effectiveness. However, we note that the 
size of these experiments is probably not sufficient to train sophisticated and data-hungry machine learning 
algorithms (such as reinforcement learning) that might provide additional benefits in training administration.  
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5.0 FUTURE RESEARCH 

Training AI agents requires robust and sizeable data sets. Accurately generating data in the tactical air 
combat domain requires high fidelity systems such as those described above, and these requirements present 
a ceiling to AGENT’s vertical scalability, because scenarios must be executed at or close to wall-clock speed 
to achieve high fidelity. This limits the amount of training data that an AGENT instance produces during any 
given time interval. Therefore, an option to be explored is the horizontal scalability of such a testbed 
architecture. While a single scenario cannot execute at 100x, a testbed that scales horizontally to run 100 
simultaneous scenarios will achieve the intended result of generating significantly more agent AI training 
data in a shorter time period.  

Our primary goal concerning the assessment techniques used in the NSGC is to automate measurements that 
are most predictive of mission effects, and those that are more accurately and reliably computed than 
observed by SMEs. If successful, the automation of these measures should free SMEs to make subtler 
judgments and, critically, generate feedback for pilots that accelerates learning.  

Finally, we framed the automated librarian as a tool that leverages the variance in performance by tactical AI 
to improve training effects. However, these methods would succeed even using AI that have instructional 
intelligence (as well as tactical skill). A set of agents that is diverse with respect to training strategies would 
likely show variance in its tactical effects and its trainee effects. So, smart selection between instructionally 
proficient agents is worthwhile. The hypothesis to test is whether smart selection among tactically proficient 
AI produces training outcomes that are at least as good as selection among AI that are tactically and 
instructionally smart but also more costly to build and maintain. 
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