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ABSTRACT  
The increasing complexity of modern multi-domain conflicts has made their tactical and strategic 
understanding and the identification of appropriate courses of action challenging endeavors. Modelling and 
simulation as part of concept development and experimentation (CD&E) provide new insight at higher speed 
and lower cost than what physical maneuvers can achieve. Amongst other, human-machine teaming through 
computer games provides a powerful means of simulating defense scenarios at various abstraction levels. 
However, conventional human-machine interaction is time-consuming and restricted to pre-designed 
scenarios, e.g., in terms of pre-programmed conditional computer actions. If one side of the game could be 
taken by Artificial Intelligence, this would increase the diversity of explored courses of actions and thus lead 
to a more robust and comprehensive analysis. If the AI plays both sides, this would allow employing the 
Data Farming methodology and thus creating and analyzing a database of a very large number of played 
games. To this goal, we employ combined Reinforcement Learning and Search algorithms, which have 
demonstrated super-human performance in various complex planning problems. Such Artificial Intelligence 
systems avoid the reliance on human experience and predictions by learning tactics and strategy through 
self-optimization in a large number of realistic scenarios. In this contribution, we present the benefits and 
challenges of applying a Neural-Network-based Monte Carlo Tree Search algorithm for strategic planning 
and training in air-defense scenarios and virtual war-gaming with systems that are available currently or 
potentially in the future to the Swiss Armed Forces. 

1.0 INTRODUCTION 

Today, wargaming is a widely applied and accepted tool within the military domain for planning, training 
and decision-making. However, traditional wargaming, where military planners, operators and decision 
makers play against Red Team operators, faces limitations [1]. Wargames are driven by player decisions and 
are therefore not reproducible. Objective tracking of cause and effect is difficult, and outcomes often depend 
on the subjective assessments of human players. Usually, Red Team operators rely upon long established 
techniques, tactics and procedures leading to over-constrained Courses of Action (CoA). Finally, the number 
of CoAs that can be explored by human operators is limited, both by the availability of financial and human 
resources. This is even more true given the complexity of continuous-time decision making and the large 
numbers of available options (high branching factors) that characterize real-world scenarios. In practice this 
results in a relatively small number of explored scenarios and a lack of strategic diversity in CoAs 
exploration, leading to biased and potentially vulnerable decision-making. 

Recent developments in the Artificial Intelligence (AI) area and in particular Reinforcement Learning (RL), 
have demonstrated the ability of artificial agents to master commercial real-time strategy (RTS) video games 
of increasing complexity, reaching super-human performance in games such as StarCraft [2]. Artificial 
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agents have also proven super-human tactical and strategic capabilities in complex games such as Chess and 
Go [3]. Typically, modern RL systems learn ‘tabula rasa’, i.e., without relying on human experience, by 
exploring complex decision-spaces in a large number of scenarios and subsequent self-optimization. This 
avoids the bias towards human experience and perception in learning and leads to more robust, stronger, and 
non-emotional decisions in execution. While the learning process of AI systems often involves significant 
computational effort, their speed in execution is fast, often outperforming the ‘discussion-based’ human 
decision process. 

In this work, we investigate AI systems, in particular Neural-Network-based Monte Carlo Tree Search 
algorithms, to support planning, training and decision-making in the field of Ground-Based Air Defence 
(GBAD). We apply the AI to the commercial of the shelf (COTS) wargame “Command: Modern 
Operations” (CMO) to explore complex decision-spaces, and to generate surprising new Red Force CoAs. 
This will challenge the preconception of Blue Force operators and stimulate the development of new 
techniques, tactics, and concepts. 

2.0  METHODS 

Two main software components are involved in the application described above. First, there is the model 
with rules and physical constraints of the scenario to be simulated (the so-called simulator), and second, an 
AI algorithm that controls one or both players in the conflict represented by the model. Both components and 
their integration are described in this section. In the current scenarios, one side of the game is played by an 
AI agent, while the other is controlled by the game engine itself, through pre-scripted, conditional actions. 
Specifically, the AI controls the attacking red fighter jet while the game engine controls the blue air defense 
batteries.  

2.1 Model 
The use of commercial over-the-shelf (COTS) games as simulation engines has a number of advantages: low 
cost, large user-base, high fidelity and good support to name just a few. Also, the gaming industry has been a 
driver for the development of realistic warfare scenarios, respective visualizations, and tailor-made hardware. 
Two central requirements for a model to be controlled by an external AI are: 

1. faster than real-time simulations, this in turn requires in general to run the simulation without 
graphics; 

2. interface to control and assess the state of the game externally. 

The game “Command: Modern Operations” (CMO) fulfils these requirements in its professional version 
(Command Professional Edition) and additionally covers the domain of interest, namely air defense. It is a 
real-time strategy game mainly for air and sea combat that features a comprehensive and realistic database of 
past, current and future weapon systems. 
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Figure 2-1: User interface of Command: Modern Operations 

It comes with an API that allows interaction with the running simulation in batch mode, i.e., without 
graphics. In order to make the game more amendable to the AI, we introduced a turn-based mode for the 
real-time game. The game is paused and the AI can assess the scenario and select an action. Subsequently, 
the action is executed and the game is simulated for a given time window, here 10 seconds simulation time. 

 
Figure 2-2: Turn-based game mode of Command: Modern Operations 

In the design mode, one has the possibility to create a scenario with pre-defined or custom assets. In game 
mode, the simulation is then executed with the actions from either the players or the external AI. 

2.1 AI 
For complex game search problems, such as the CMO scenarios, the direct computation of optimal policies 
is intractable. The development of suitable approximation techniques has been an active area of research for 
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many years leading to striking AI systems that outperform humans and classical tree search algorithms in 
strategic games such as Chess and Go [3]. At the core of the AI lies a sophisticated neural network-based 
Monte Carlo Tree Search algorithm (neural MCTS), whose performance is the result of a combination of 
techniques from diverse areas including Reinforcement Learning, Monte Carlo simulations and Deep Neural 
Networks. Traditionally search algorithms (such as alpha-beta search) are employed to study game play, but 
the search tree grows exponentially with its depth leading to large computational effort even for simple 
games. The tree’s terminal nodes must be evaluated by a tailor-made valuation function, whose design 
involves significant human expertise. On the other hand, the choice of actions in a (Markovian) game can be 
viewed as a planning problem, with an agent whose goal it is to win, or, in other words, to maximize the total 
reward over the planning horizon. Such planning problems are footed on the theory of Markov decision 
processes [4]. The research area concerned with their solution has been commonly called Reinforcement 
Learning (RL) in recent years. In RL the Value/Policy iteration algorithms proceed by performing repeated 
Bellman updates over the state space and are guaranteed to yield the optimal policy if sufficient resources are 
granted. However, even for planning problems of moderate complexity the required resources tend to be 
immense because each Bellman update involves the entire state space. An important idea to improve the 
performance is to rely on Monte Carlo simulations to estimate state values [5]. In brief each state is evaluated 
by trying every possible action a certain number of times, and recursively, from each generated state every 
possible action the same number of times, too, until the depth of the planning horizon is reached [6]. Again, 
this yields the optimal course of actions in theory but in practice the width and depth of the Monte Carlo 
simulations are such that a near optimal solution becomes elusive. The key idea behind MCTS is to combine 
the iterative algorithms from RL with (the more traditional) tree search techniques [7]. Thus, instead of 
relying on ’brute force Monte Carlo’ for state valuation, a problem-specific, restricted and asymmetric 
decision tree is built. The growth of the decision tree is controlled by a dedicated tree policy, whose purpose 
it is to trade-off the creation of new branches versus the execution of existing promising lines. The missing 
piece to engineer a world-champion AI are deep neural networks. The MCTS design is enhanced by deep 
neural networks [8] to guide the construction of the decision tree and to provide accurate evaluation of leaf-
nodes. At the core of the neural MCTS algorithm lies an ‘expert iteration’ scheme, where the MCTS search 
and the neural networks mutually improve each other in an iterative process. In each iteration an instance of 
MCTS (the expert) delivers a list of strong actions and a neural network (the apprentice) is trained via 
supervised learning to imitate the MCTS tree policy. In the next iteration, the trained neural network, in turn, 
is used to bias the MCTS’ tree construction towards stronger actions. The purpose of the expert is to 
accurately determine good actions. The purpose of the apprentice is to generalize those actions across states 
and to provide faster access to expert advice. Specifically, the apprentice policy π is trained on tree-policy 
targets by minimizing cross-entropy loss at state s 

 

Here, n(a) is the number of times action a has been chosen so far and n is the total number of executed 
actions. The value network reduces search depth and avoids inaccurate rollout-based value estimation. It is 
trained to minimize the mean-squared error to the MCTS valuation z of the state 

 

In turn the apprentice improves the expert by guiding tree search towards stronger actions. For this the 
standard MCTS tree policy (UCB1) is enhanced with an extra term 

 



 Deep Self-optimizing Artificial Intelligence 
for Tactical Analysis, Training and Optimization 

STO-MP-SAS-OCS-ORA-2021 7 - 5 

where a hyper-parameter w weights the contributions of standard MCTS tree policy (UCB1) and the neural 
network. Neural MCTS branch selection proceeds by choosing the action a that maximizes NUCB1. To 
regularize value prediction and accelerate tree policy and valuation function are simultaneously covered by a 
multitask network with separate outputs. The loss for this network is the sum of losses from value and tree 
policy networks. 

2.1.1 Training process 

To achieve faster learning and higher stability the RL agent is pre-trained before operating on the game 
CMO directly. In order to optimize the training process, a surrogate model was written in the language 
(Python) that was used for the AI algorithms. This allowed the agents to be pre-trained from scratch, 
later to be refined by training on the full game engine. Thus, the process involves the training on a 
reduced but faster simulator, then transferring the pretrained agent to the CMO simulator for fine-tuning. 
This way the data-intensive (and therefore slow) initialization of the RL process can be handled efficiently, 
while there is no reduction in the agent’s performance due to training in a restricted setting. 

3.0 SCENARIO 

The reason armasuisse Science and Technology is interested in this technology, is the application to air 
defense training, concept development and experimentation (CD&E) as well as procurement projects. The 
main assets employed in the warfare scenarios are fighter jets, radars, and air defense missile systems. 
Ideally, an intelligent agent would be capable of identifying and executing a close-to-optimal strategy for all 
assets of one side simultaneously. Due to the complexity of fully realistic scenarios, developing and training 
of such an agent is beyond the goals of the current project stage. Instead, the aim is a feasibility study with 
reduced scenarios, where the RL agent controls a single asset. This scenario will be extended in a later stage 
of the project. The simple test scenarios are characterized in the above figure 2-1 and the following table 3-1: 

Table 3-1: Scenario description 

 Red Side Blue Side 
Assets 1 Fighter Jet 1 SAM Battery (Radar, missile system) 
Mission Penetrate blue Zurich airspace (yellow) Defend blue Zurich airspace (yellow) 
Red 
Scoring 

+1 for attacker mission success 
-1 for loss of aircraft 

-1 for defender mission success 
+1 for attacker mission success 

 

4.0 RESULTS 

The AI controlling red aircraft learns quickly that flying the direct path from its takeoff to the target will 
make it visible to the blue radar and therefore vulnerable to blue air defense. It thus chooses a more northern 
route to avoid the radar cone. In the following, we will work out what went well and where we see the 
challenges and bottlenecks for the transition to more interesting and complex scenarios. 
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Figure 4-1: Example trajectory of trained red agent around the range of the blue air 

defense system 

4.0.1 COTS Game as simulation engine and its interface 
The use of a commercial over-the-shelf computer (COTS) games has a positive impact on the outcome for 
the reasons mentioned above. Additionally, the separation of AI, simulation engine and analytics tools make 
the application design more flexible and re-use of components possible. In particular, this approach avoids a 
large black-box simulation engine, where insight and extensibility are limited. 

4.0.2 Application of neural MCTS to CMO scenarios 
In all investigated scenarios the outlined training procedure led to neural MCTS finding the maximal 
theoretical reward after only a short number of learning cycles (5 neural training cycles, each based on 500 
episodes and 100 MCTS samples per search step for all investigated scenarios). While this is somewhat 
expected given the relatively low complexity of the combat scenario and the proven ability of neural MCTS 
to solve sophisticated strategic problems, the presented work provides proof of concept that the practical 
implementation in the CMO context is successful. Connecting neural MCTS to CMO requires a dedicated 
API with fast access. In our experiments we have observed that access via the existing Lua API is too slow 
for MCTS to guide the behavior of CMO. To overcome this issue a dedicated surrogate simulator has been 
developed, which provides fast access in a simplified setting. The pretrained MCTS agents are subsequently 
handed to the full CMO setting for fine-tuning. As a result, we observe solidly increasing rewards on the 
simulator and the trained agent can be transferred to CMO successfully. 

5.0  CONCLUSIONS AND OUTLOOK 

Our results provide proof of concept of the application of RL and search techniques in the context of COTS 
wargames. In forthcoming research, the complexity of war game scenarios will be increased successively. 
The more complex setting is reflected by adaptations in the neural MCTS architecture. While simple linear, 
feed-forward networks are sufficient for the basic scenarios, we plan a deep convolutional architecture for 
the more complex setting. The additional computational burden of the complex scenarios is covered by code 
parallelization and cluster computing. We expect that MCTS will also be successful in complex scenarios as 
neural MCTS algorithms proved their superior performance in strategy games like Chess and Go. Overall, 
the value of an independent and innovative simulation application for training as well as CD&E seems larger 
than the prize to overcome the challenges in developing it. 
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