

STO-MP-SAS-OCS-ORA-2021 7 - 1

Deep Self-optimizing Artificial Intelligence for Tactical Analysis,
Training and Optimization

Matthias Sommer, Michael Rüegsegger
armasuisse Science and Technology

SWITZERLAND

matthias.sommer@armasuisse.ch, michael.rueegsegger@armasuisse.ch

Oleg Szehr, Giacomo Del Rio
Dalle Molle Institute for Artificial Intelligence (IDSIA) - SUPSI/USI

SWITZERLAND
oleg.szehr@idsia.ch, giacomo.delrio@idsia.ch

ABSTRACT
The increasing complexity of modern multi-domain conflicts has made their tactical and strategic
understanding and the identification of appropriate courses of action challenging endeavors. Modelling and
simulation as part of concept development and experimentation (CD&E) provide new insight at higher speed
and lower cost than what physical maneuvers can achieve. Amongst other, human-machine teaming through
computer games provides a powerful means of simulating defense scenarios at various abstraction levels.
However, conventional human-machine interaction is time-consuming and restricted to pre-designed
scenarios, e.g., in terms of pre-programmed conditional computer actions. If one side of the game could be
taken by Artificial Intelligence, this would increase the diversity of explored courses of actions and thus lead
to a more robust and comprehensive analysis. If the AI plays both sides, this would allow employing the
Data Farming methodology and thus creating and analyzing a database of a very large number of played
games. To this goal, we employ combined Reinforcement Learning and Search algorithms, which have
demonstrated super-human performance in various complex planning problems. Such Artificial Intelligence
systems avoid the reliance on human experience and predictions by learning tactics and strategy through
self-optimization in a large number of realistic scenarios. In this contribution, we present the benefits and
challenges of applying a Neural-Network-based Monte Carlo Tree Search algorithm for strategic planning
and training in air-defense scenarios and virtual war-gaming with systems that are available currently or
potentially in the future to the Swiss Armed Forces.

1.0 INTRODUCTION

Today, wargaming is a widely applied and accepted tool within the military domain for planning, training
and decision-making. However, traditional wargaming, where military planners, operators and decision
makers play against Red Team operators, faces limitations [1]. Wargames are driven by player decisions and
are therefore not reproducible. Objective tracking of cause and effect is difficult, and outcomes often depend
on the subjective assessments of human players. Usually, Red Team operators rely upon long established
techniques, tactics and procedures leading to over-constrained Courses of Action (CoA). Finally, the number
of CoAs that can be explored by human operators is limited, both by the availability of financial and human
resources. This is even more true given the complexity of continuous-time decision making and the large
numbers of available options (high branching factors) that characterize real-world scenarios. In practice this
results in a relatively small number of explored scenarios and a lack of strategic diversity in CoAs
exploration, leading to biased and potentially vulnerable decision-making.

Recent developments in the Artificial Intelligence (AI) area and in particular Reinforcement Learning (RL),
have demonstrated the ability of artificial agents to master commercial real-time strategy (RTS) video games
of increasing complexity, reaching super-human performance in games such as StarCraft [2]. Artificial

mailto:matthias.sommer@armasuisse.ch
mailto:michael.rueegsegger@armasuisse.ch
mailto:oleg.szehr@idsia.ch
mailto:giacomo.delrio@idsia.ch

Deep Self-optimizing Artificial Intelligence
for Tactical Analysis, Training and Optimization

7 - 2 STO-MP-SAS-OCS-ORA-2021

agents have also proven super-human tactical and strategic capabilities in complex games such as Chess and
Go [3]. Typically, modern RL systems learn ‘tabula rasa’, i.e., without relying on human experience, by
exploring complex decision-spaces in a large number of scenarios and subsequent self-optimization. This
avoids the bias towards human experience and perception in learning and leads to more robust, stronger, and
non-emotional decisions in execution. While the learning process of AI systems often involves significant
computational effort, their speed in execution is fast, often outperforming the ‘discussion-based’ human
decision process.

In this work, we investigate AI systems, in particular Neural-Network-based Monte Carlo Tree Search
algorithms, to support planning, training and decision-making in the field of Ground-Based Air Defence
(GBAD). We apply the AI to the commercial of the shelf (COTS) wargame “Command: Modern
Operations” (CMO) to explore complex decision-spaces, and to generate surprising new Red Force CoAs.
This will challenge the preconception of Blue Force operators and stimulate the development of new
techniques, tactics, and concepts.

2.0 METHODS

Two main software components are involved in the application described above. First, there is the model
with rules and physical constraints of the scenario to be simulated (the so-called simulator), and second, an
AI algorithm that controls one or both players in the conflict represented by the model. Both components and
their integration are described in this section. In the current scenarios, one side of the game is played by an
AI agent, while the other is controlled by the game engine itself, through pre-scripted, conditional actions.
Specifically, the AI controls the attacking red fighter jet while the game engine controls the blue air defense
batteries.

2.1 Model
The use of commercial over-the-shelf (COTS) games as simulation engines has a number of advantages: low
cost, large user-base, high fidelity and good support to name just a few. Also, the gaming industry has been a
driver for the development of realistic warfare scenarios, respective visualizations, and tailor-made hardware.
Two central requirements for a model to be controlled by an external AI are:

1. faster than real-time simulations, this in turn requires in general to run the simulation without
graphics;

2. interface to control and assess the state of the game externally.

The game “Command: Modern Operations” (CMO) fulfils these requirements in its professional version
(Command Professional Edition) and additionally covers the domain of interest, namely air defense. It is a
real-time strategy game mainly for air and sea combat that features a comprehensive and realistic database of
past, current and future weapon systems.

 Deep Self-optimizing Artificial Intelligence
for Tactical Analysis, Training and Optimization

STO-MP-SAS-OCS-ORA-2021 7 - 3

Figure 2-1: User interface of Command: Modern Operations

It comes with an API that allows interaction with the running simulation in batch mode, i.e., without
graphics. In order to make the game more amendable to the AI, we introduced a turn-based mode for the
real-time game. The game is paused and the AI can assess the scenario and select an action. Subsequently,
the action is executed and the game is simulated for a given time window, here 10 seconds simulation time.

Figure 2-2: Turn-based game mode of Command: Modern Operations

In the design mode, one has the possibility to create a scenario with pre-defined or custom assets. In game
mode, the simulation is then executed with the actions from either the players or the external AI.

2.1 AI
For complex game search problems, such as the CMO scenarios, the direct computation of optimal policies
is intractable. The development of suitable approximation techniques has been an active area of research for

Deep Self-optimizing Artificial Intelligence
for Tactical Analysis, Training and Optimization

7 - 4 STO-MP-SAS-OCS-ORA-2021

many years leading to striking AI systems that outperform humans and classical tree search algorithms in
strategic games such as Chess and Go [3]. At the core of the AI lies a sophisticated neural network-based
Monte Carlo Tree Search algorithm (neural MCTS), whose performance is the result of a combination of
techniques from diverse areas including Reinforcement Learning, Monte Carlo simulations and Deep Neural
Networks. Traditionally search algorithms (such as alpha-beta search) are employed to study game play, but
the search tree grows exponentially with its depth leading to large computational effort even for simple
games. The tree’s terminal nodes must be evaluated by a tailor-made valuation function, whose design
involves significant human expertise. On the other hand, the choice of actions in a (Markovian) game can be
viewed as a planning problem, with an agent whose goal it is to win, or, in other words, to maximize the total
reward over the planning horizon. Such planning problems are footed on the theory of Markov decision
processes [4]. The research area concerned with their solution has been commonly called Reinforcement
Learning (RL) in recent years. In RL the Value/Policy iteration algorithms proceed by performing repeated
Bellman updates over the state space and are guaranteed to yield the optimal policy if sufficient resources are
granted. However, even for planning problems of moderate complexity the required resources tend to be
immense because each Bellman update involves the entire state space. An important idea to improve the
performance is to rely on Monte Carlo simulations to estimate state values [5]. In brief each state is evaluated
by trying every possible action a certain number of times, and recursively, from each generated state every
possible action the same number of times, too, until the depth of the planning horizon is reached [6]. Again,
this yields the optimal course of actions in theory but in practice the width and depth of the Monte Carlo
simulations are such that a near optimal solution becomes elusive. The key idea behind MCTS is to combine
the iterative algorithms from RL with (the more traditional) tree search techniques [7]. Thus, instead of
relying on ’brute force Monte Carlo’ for state valuation, a problem-specific, restricted and asymmetric
decision tree is built. The growth of the decision tree is controlled by a dedicated tree policy, whose purpose
it is to trade-off the creation of new branches versus the execution of existing promising lines. The missing
piece to engineer a world-champion AI are deep neural networks. The MCTS design is enhanced by deep
neural networks [8] to guide the construction of the decision tree and to provide accurate evaluation of leaf-
nodes. At the core of the neural MCTS algorithm lies an ‘expert iteration’ scheme, where the MCTS search
and the neural networks mutually improve each other in an iterative process. In each iteration an instance of
MCTS (the expert) delivers a list of strong actions and a neural network (the apprentice) is trained via
supervised learning to imitate the MCTS tree policy. In the next iteration, the trained neural network, in turn,
is used to bias the MCTS’ tree construction towards stronger actions. The purpose of the expert is to
accurately determine good actions. The purpose of the apprentice is to generalize those actions across states
and to provide faster access to expert advice. Specifically, the apprentice policy π is trained on tree-policy
targets by minimizing cross-entropy loss at state s

Here, n(a) is the number of times action a has been chosen so far and n is the total number of executed
actions. The value network reduces search depth and avoids inaccurate rollout-based value estimation. It is
trained to minimize the mean-squared error to the MCTS valuation z of the state

In turn the apprentice improves the expert by guiding tree search towards stronger actions. For this the
standard MCTS tree policy (UCB1) is enhanced with an extra term

 Deep Self-optimizing Artificial Intelligence
for Tactical Analysis, Training and Optimization

STO-MP-SAS-OCS-ORA-2021 7 - 5

where a hyper-parameter w weights the contributions of standard MCTS tree policy (UCB1) and the neural
network. Neural MCTS branch selection proceeds by choosing the action a that maximizes NUCB1. To
regularize value prediction and accelerate tree policy and valuation function are simultaneously covered by a
multitask network with separate outputs. The loss for this network is the sum of losses from value and tree
policy networks.

2.1.1 Training process

To achieve faster learning and higher stability the RL agent is pre-trained before operating on the game
CMO directly. In order to optimize the training process, a surrogate model was written in the language
(Python) that was used for the AI algorithms. This allowed the agents to be pre-trained from scratch,
later to be refined by training on the full game engine. Thus, the process involves the training on a
reduced but faster simulator, then transferring the pretrained agent to the CMO simulator for fine-tuning.
This way the data-intensive (and therefore slow) initialization of the RL process can be handled efficiently,
while there is no reduction in the agent’s performance due to training in a restricted setting.

3.0 SCENARIO

The reason armasuisse Science and Technology is interested in this technology, is the application to air
defense training, concept development and experimentation (CD&E) as well as procurement projects. The
main assets employed in the warfare scenarios are fighter jets, radars, and air defense missile systems.
Ideally, an intelligent agent would be capable of identifying and executing a close-to-optimal strategy for all
assets of one side simultaneously. Due to the complexity of fully realistic scenarios, developing and training
of such an agent is beyond the goals of the current project stage. Instead, the aim is a feasibility study with
reduced scenarios, where the RL agent controls a single asset. This scenario will be extended in a later stage
of the project. The simple test scenarios are characterized in the above figure 2-1 and the following table 3-1:

Table 3-1: Scenario description

 Red Side Blue Side
Assets 1 Fighter Jet 1 SAM Battery (Radar, missile system)
Mission Penetrate blue Zurich airspace (yellow) Defend blue Zurich airspace (yellow)
Red
Scoring

+1 for attacker mission success
-1 for loss of aircraft

-1 for defender mission success
+1 for attacker mission success

4.0 RESULTS

The AI controlling red aircraft learns quickly that flying the direct path from its takeoff to the target will
make it visible to the blue radar and therefore vulnerable to blue air defense. It thus chooses a more northern
route to avoid the radar cone. In the following, we will work out what went well and where we see the
challenges and bottlenecks for the transition to more interesting and complex scenarios.

Deep Self-optimizing Artificial Intelligence
for Tactical Analysis, Training and Optimization

7 - 6 STO-MP-SAS-OCS-ORA-2021

Figure 4-1: Example trajectory of trained red agent around the range of the blue air

defense system

4.0.1 COTS Game as simulation engine and its interface
The use of a commercial over-the-shelf computer (COTS) games has a positive impact on the outcome for
the reasons mentioned above. Additionally, the separation of AI, simulation engine and analytics tools make
the application design more flexible and re-use of components possible. In particular, this approach avoids a
large black-box simulation engine, where insight and extensibility are limited.

4.0.2 Application of neural MCTS to CMO scenarios
In all investigated scenarios the outlined training procedure led to neural MCTS finding the maximal
theoretical reward after only a short number of learning cycles (5 neural training cycles, each based on 500
episodes and 100 MCTS samples per search step for all investigated scenarios). While this is somewhat
expected given the relatively low complexity of the combat scenario and the proven ability of neural MCTS
to solve sophisticated strategic problems, the presented work provides proof of concept that the practical
implementation in the CMO context is successful. Connecting neural MCTS to CMO requires a dedicated
API with fast access. In our experiments we have observed that access via the existing Lua API is too slow
for MCTS to guide the behavior of CMO. To overcome this issue a dedicated surrogate simulator has been
developed, which provides fast access in a simplified setting. The pretrained MCTS agents are subsequently
handed to the full CMO setting for fine-tuning. As a result, we observe solidly increasing rewards on the
simulator and the trained agent can be transferred to CMO successfully.

5.0 CONCLUSIONS AND OUTLOOK

Our results provide proof of concept of the application of RL and search techniques in the context of COTS
wargames. In forthcoming research, the complexity of war game scenarios will be increased successively.
The more complex setting is reflected by adaptations in the neural MCTS architecture. While simple linear,
feed-forward networks are sufficient for the basic scenarios, we plan a deep convolutional architecture for
the more complex setting. The additional computational burden of the complex scenarios is covered by code
parallelization and cluster computing. We expect that MCTS will also be successful in complex scenarios as
neural MCTS algorithms proved their superior performance in strategy games like Chess and Go. Overall,
the value of an independent and innovative simulation application for training as well as CD&E seems larger
than the prize to overcome the challenges in developing it.

 Deep Self-optimizing Artificial Intelligence
for Tactical Analysis, Training and Optimization

STO-MP-SAS-OCS-ORA-2021 7 - 7

REFERENCES

[1] Wargaming Handbook, UK Ministry of Defense (2017)

[2] Vinyals, Oriol, et al. “Grandmaster Level in StarCraft II Using Multi-Agent Reinforcement Learning.”
Nature News, Nature Publishing Group, 30 Oct. 2019, www.nature.com/articles/s41586-019-1724-
z#citeas.

[3] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre, D.
Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, and D. Hassabis. A general reinforcement learning
algorithm that masters Chess, Shogi, and Go through self-play. Science, 362(6419):1140–1144, 2018.

[4] M.L. Puterman. Markov decision processes: discrete stochastic dynamic programming. Wiley
Interscience, New York, 1994

[5] Michael Kearns, Yishay Mansour, and Andrew Y. Ng. A Sparse Sampling Algorithm for Near-
OptimalPlanning in Large Markov Decision Processes. Machine Learning, 49(2/3):193–208, 2002

[6] Michael Kearns, Yishay Mansour, and Andrew Y. Ng. A Sparse Sampling Algorithm for Near-
OptimalPlanning in Large Markov Decision Processes. Machine Learning, 49(2/3):193–208, 2002

[7] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfshagen, S. Tavener, D.
Perez, S. Samothrakis, and S. Colton. A Survey of Monte Carlo Tree Search Methods.
IEEETransactions on Computational Intelligence and AI in Games, 4(1):1–43, 2012

[8] J. Schmidhuber. Deep Learning in Neural Networks: An Overview. Neural Networks, Volume 61,
January 2015, Pages 85-117 (DOI: 10.1016/j.neunet.2014.09.003)

Deep Self-optimizing Artificial Intelligence
for Tactical Analysis, Training and Optimization

7 - 8 STO-MP-SAS-OCS-ORA-2021

