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ABSTRACT  
Detecting micro drones is a difficult task, given the small sensor signature and high possible speeds they can 
achieve. Due to the variety of drone models and environmental conditions, one sensor type alone cannot 
detect all drone types with high reliability. Therefore, we propose a set of heterogeneous sensors combined 
with a sensor data fusion method to use their strengths and diminish the weaknesses. We describe below an 
RF sensor to capture the  uplink and downlink of the Unmanned Aerial Vehicle (UAV), an acoustic sensor 
for the rotor noise, a passive radar system using the mobile network and multi hypotheses tracking for the 
fusion of sensor data. 

1.0 INTRODUCTION 

Passive sensor array system plays a crucial role in identifying the target of interest without emitting a signal. 
RF-emitter localization techniques are often based on the received signal strength (RSS), measured time of 
flight (ToF), measured time difference of arrival (TDoA), and measured direction of arrival (DoA) of signal 
to localize the RF-emitter [4]. In this paper, we propose the passive array system with a switched receiver 
system and its application in estimating UAV controller signal and UAV datalink.  

In recent years, the interest in acoustic drone detection and direction finding has increased significantly, 
mainly due to its high precision and cost efficiency [13], [14]. During flight, UAVs emit sound waves whose 
characteristics depend on their design, environmental conditions such as air pressure, temperature and wind, 
and flight configurations such as speed and flight manoeuvres. The use of microphones arranged in groups 
exploiting the advantages of array processing methods such as beamforming allows determining the DoA of 
incident sound waves.   

Passive radars, also commonly called PCL (Passive Coherent Location) systems, are in principle bistatic or 
multistatic radar systems exploiting illuminators of opportunity in its surrounding. A broad variety of 
frequency bands and transmission standards are applied as illuminators of opportunity in different passive 
radar systems using terrestrial digital TV (DVB-T), digital radio (DAB), analogue radio (FM), as well as 
mobile communication base stations. In the past years the department of Sensor Data and Information Fusion 
of Fraunhofer FKIE has conducted a wide range of experiments exploiting GSM (Global System for Mobile 
communications) and more recently also LTE (Long Term Evolution) base stations for the surveillance of 
small agile vessels in coastal regions or low flying aircrafts. 

2.0 RADIO SIGNAL DIRECTION FINDING 

DoA estimation is one of the most significant tasks of array antennas and there are multiple signal processing 
techniques available to perform the direction finding (DF) [1]. A group of antennas, called an array, is 
positioned in a particular order in space to estimate the direction of arrival of the incoming signal(s) [2]. The 
spatial-temporal estimation  and  filtering  capability  can  be  exploited  for multiplexing  co-channel  users  
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and  rejecting  harmful  co-channel interference that may occur because of jamming or multipath effects [3]. 

2.1 Control Link & Data Link Signals 
Control link and datalink are the two types of signals involved in 
the deployment of drones. Control link signals are at lower 
frequency range in order to attain a long-range controllability of a 
drone, whereas datalink are at high frequency range in order to 
obtain wider bandwidth to transmit data. Estimating the DoA) of 
the datalink and control link is the fundamental requirement of a 
radio frequency (RF) direction finder (DF) in UAV application. 
Mostly UAV control link signals are frequency hopping signals, 
where the carrier frequency is changing constantly within the 
assigned bandwidth (Fig. 1). Using frequency hopping signals, 
information can be protected from various kinds of noise and 
multi-path distortion and signal concealment and encryption 
are possible [5]. 

2.2  Trademark of Radio Signal Direction Finder 
A radio signal DF can be used in cooperation with acoustic system, 
camera system and passive radar system to localize a drone. In 
absence of other systems, multiple RF DF systems are required to 
localize the target through cross bearing. A RF DF possesses an ability 
to estimate the DoA of both data link and control links signals, thereby 
it can help in localizing not only the drone (the usual target of interest) 
but also the drone’s operating pilot. This feature acts as a trademark of 
a RF DF system in comparison to other systems used for monitoring. 
The range problem associated with  the  vision  and  acoustic-based  
techniques  can  be  resolved by  using  high-gain  receiver  antennas  
together  with  a  highly sensitive receiver system to measure the UAV 
controller signals. The issue of environmental noise can be suppressed 
by employing filtering techniques. Thus making a passive radio signal 
DF system a promising solution for long range detection and 
estimation of DoA [6].  

2.3  Significance of Array Geometry 
The capability of an antenna array to estimate the DoA of a signal source in a three dimensional plane 
depends on its array geometry. The simplest form of array is a 1-D array, which is called as a linear array, 
could estimate the DoA of a signal only in azimuth. Whereas a two dimensional array, which is called as a 
planar array, is capable of estimating the DoA in both azimuth and elevation. Since drones possess a freedom 
of motion in all three axes, a 2-D array is required to estimate the DoA of the signals in both azimuth and 
elevation. Fig. 2 shows a uniform circular array (UCA) with nine vertically polarized isotropic antenna 
elements. 

2.4 Switched Receiver System 
Conventional data acquisition setup of an array requires the same number of receiving channels as that of the 
number of elements. This arrangement is often called as a full-channel receiver system but it leads to an 
enormous increase of cost, measurement complexity and overall size of the system. In order to mitigate the 

Figure 1 - Spectrogram of radio 
signals of UAV application 

Figure 2 - Uniform 
circular antenna array 
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above-mentioned issues, an innovative data acquisition system with a reduced number of receiving channels 
has been developed. This type of architecture is called as a switched receiver system (Fig. 3). The UCA has 
been developed with two channels receiver system. 
Antenna 1 has a dedicated receiving channel whereas 
the other eight elements (Antenna 2 to Antenna 9) are 
connected to the other receiving channel through a 
switch. The acquired data from the two channels are 
pre-processed to construct a complete measurement 
matrix, which in turn is processed to estimate the DoA 
of the acquired signal [7]. An antenna array with a 
modular switched receiver system can be used to select 
the various element combinations. Thereby we build a 
complete measurement dataset with lesser number of 
receivers than the number of antenna elements, which 
is equivalent to a full-channel receiver system [8].    

2.5 Direction Finding Techniques 
Precise DoA estimation of a signal, accurate spatial distinguishing of the signal sources inside the array’s 
field-of-view and high angular/spatial resolution of the system are some of the basic requirements of a 
direction finding algorithm. There are numerous direction finding techniques developed in the last decades to 
accomplish the above mentioned necessities. The direction finding algorithms can be broadly classified into 
the following three categories; namely, spectral-based, subspace-based and parametric algorithms [1]. 
Depends on the number of sources, computational effort, number and accuracy of the estimated parameters, 
angular resolution and SNR of the signals, a particular direction finding algorithm could be applied. 
Nowadays there are numerous artificial intelligence (AI) concepts are applied & tested in DoA estimation [6, 
9, 10]. 

2.6 Significance of Calibration 
Although there are various high quality DF processes 
available, these processes are sensitive to the errors 
involved in the complete system. These errors affect the 
amplitude and phase of the signal received by an array 
which results in poor DoA estimation. Basically the errors 
in an array antenna and in a receiver system, can be 
broadly classified into static and dynamic [11]. The 
electrical and mechanical manufacturing tolerances induce 
the static error, whereas the dynamic errors are highly 
dependent on temperature and operating conditions. 
Mutual coupling is another major cause of error, which 
leads to mismatches of phase and amplitude between the elements of an array. Due to non-ideal behaviour of 
the system the acquired signal deviates from the ideal behaviour. Calibration alleviates this non-ideal 
performance of the complete system (Fig. 4). Calibration can be classified into off-line and online. Off-line 
methods require sources with known direction of the incident signals, whereas online methods do not require 
a source with known signal direction. Off-line calibration method provides an increased accuracy in DoA 
estimation because of the reference measurements with known positions. More number of reference 
measurements yield a better result. This procedure does include an extensive lab facilities to perform 
numerous measurements, which implies increased cost and time. On the other hand, online calibration 
methods are time efficient and doesn’t not include diverse reference measurements in the lab. Online 
calibration is performed on the field by utilizing the signal source(s). Thereby it takes the on-field scenarios 
(environmental noise, multipath scenarios and signal attenuation) into account. Since this method executes 

Figure 3 - DoA estimation: (a) 
uncalibrated (b) calibrated 

Figure 3 – Array antenna with 
switched receiver system 
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the calibration and DoA estimation together, the accuracy of the estimation might be lesser than the accuracy 
of the estimation obtained through off-line calibration procedure. Calibration should be performed for both 
azimuth and elevation, so that a plausible and reliable results could be obtained in UAV application. In [12], 
a systematic study of various calibration processes has been performed on the UCA with measurement 
dataset. The radio signal direction finder is integrated with a navigation system to provide the actual position 
and angle of the system (Fig. 5). The earth 
fixed DoA estimate of the signals along with 
the sensor location are delivered to the fusion 
engine. The direction finder provides the 
flexibility to deliver the report to the fusion 
engine in the format it is required, so that the 
task of fusing this report with passive radar, 
acoustic system and imaging system is 
feasible. 

2.7 Challenges in Urban 
environment 

Multipath scenario, strong attenuation of 
signals and existence of diverse signals are the 
major points of consideration in an urban 
environment. Since the communication signals 
of most commercial and hobby grade UAVs are transmitted in the same frequency band as Wi-Fi and 
Bluetooth, it becomes challenging to detect and identify RF signals from the UAV controllers in the presence 
of these interferers [6]. In addition to the above mentioned challenges, multiple drone scenario will make the 
situation more demanding. 

3.0 ACOUSTIC UAV DETECTION AND BEARING ESTIMATION 

Acoustic sensors offer advantages in terms of detection range, which means that the sound signals can be 
detected from any angle, and line of sight is not mandatory. Innovative array processing methods allow the 
simultaneous detection and bearing estimation of several sound sources of same or different types. 
Challenges are posed partly by the low amplitudes of drone sounds in comparison to the ambient noise. To 
overcome this limitation, the characteristic frequency range of the drone and the continuity of the signal can 
be exploited. Nevertheless, the detection ranges are limited and depend strongly on the components used and 
the type of drone to be detected. 

3.1 Acoustic Signal Characteristics 
Extensive understanding of the UAV’s sound signatures 
characteristics is required to adequately evaluate acoustic 
detection of drones [15]. To do so, the classical short-time 
Fourier Transform can initially be used to analyse the sound 
signals emitted by UAVs and to better understand how their 
properties could be extracted. Fig. 6 shows an example of 
the radiation spectrum of the sound wave emitted by a UAV 
in flight. The characteristic acoustic signal emitted by UAVs 
is composed of the propeller noise, the engine noise and 
other random broadband noise. The number and speed of the 
propellers induce the harmonic frequencies. 

Figure 4 - Functional block diagram of a RF DF 

Figure 5 - Spectrogram of typical 
quadcopter data 
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3.2  Crow’s Nest Array 
To meet the requirements and challenges imposed by the 
acoustic detection and bearing estimation of drones, the 
compact experimental system shown in Fig. 7 was 
designed. This system is composed of a volumetric 
microphone array of 16 microphones randomly 
distributed within a sphere called ‘Crow’s Nest’ Array 
[16]. Due to this specific volumetric arrangement, 
bearing angles can be determined with a full spherical 
azimuth and elevation coverage of 360° and 180° 
respectively. The microphone selection, their 
amplification and their sampling rate were selected 
considering the type of sound to be measured, as well as 
the bandwidth. 

3.3 Experimental System 
The structure of the signal processing chain leading to source localization, in the project, is shown on Fig. 3.  

3.3.1  Filtering  

The first step of this schema after the digitalization of 
the recordings is to remove some of the noise. 
Therefore, the signals are initially band-pass filtered.  

3.3.2  Detection 

Subsequently, numerous signal processing methods 
have been implemented to efficiently detect drones. One 
of these methods selected the spectral lines separated by 
constant distances produced by drones on the 
spectrogram (see Fig. 6), in other words, the energy of 
harmonics, and then compared them with a threshold to 
produce a detection. This procedure proved to have a high positive predictive value, but also a high false 
discovery rate when sounds similar to drone sound where present, i.e. sounds of vehicles. Nowadays, drones 
can also be classified by AI methods. Indeed, very similar acoustic sounds, such as gunshots, can be 
distinguished from each other by using AI methods, such as Machine Learning (ML) and Deep Learning 
(DL) [17], therefore the distinction between different types of drones is also feasible. Feature extraction 
plays a crucial role especially in ML techniques. In fact, features are the signature of the specific event to be 
identified [18], and therefore must be specifically selected. It is also advantageous to have an adequate 
feature selection when using DL techniques, however the big data amount used plays a beneficial role in this 
case and can compensate for the preciseness of the features. Acoustic classification can thus substitute 
classical detection that used conventional signal processing methods [19]. 

3.3.3 Beamforming 

The bearing estimation method used is the coherent broadband beamforming [16]. In this method, the 
acoustic wideband array signals are windowed, band-pass filtered and Fourier transformed. Subsequently, 
frequency-space vectors are generated, weighted according to the array geometry and summed up to produce 
a beam pattern. The estimated bearing angle of the UAV corresponds to the position of the main beam 
direction of the beam pattern [19]. This method has proven to be more accurate than other methods, such as 

Figure 6 - Crow's Nest Array 

Figure 7 - Experimental System 
Flowchart 
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the incoherent beamforming method. 

3.3.4 Two-Step Filter 

Achieving acoustic outdoor measurements also imply working with acoustical reflections and reverberations. 
Moreover, often the wanted signal is overlapping interference signals, which can lead to false bearing 
estimations. For example, wind and other ambient noise 
can affect the bearing of an approaching UAV, hindering 
the correct detection of sounds. That is the reason for the 
second filter present in the flow chart on Fig. 8. This 
filter uses the normalized power of the beamforming 
pattern, and is a 2-step filter (see Fig. 9). It combines a 
threshold filter and a median filter to ensure that the 
estimated bearing corresponds to a main beam direction 
of the beam pattern such as in Fig. 10, and not to the 

maximum value of a noise pattern (see Fig. 11). In other 
words, this second filter reduce false bearings.  

3.3.5 Source Localization 

The estimated DoA, azimuth and elevation angles can be independently sent to the fusion engine [21] in 
order to achieve source localization in cooperation with another sensor system, e.g. a second acoustic array, a 
RF DF system, or a passive radar system.  

 
Figure 9 - Bearing estimation of an UAV  Figure 10 - Noise data and false bearing estimation 
 

3.4 Experimental Results 
In Fig. 12, one volumetric microphone array measured the emitted sound of one UAV in flight. To eliminate 
noise, such as wind or speech, from the measured sound signal, the data was processed using a band-pass 
filter with the lower cut-off frequency f_l=2 kHz and the upper cut-off frequency f_u=90 kHz. Since the 
UAV noise is a continuous signal, it was divided in the frequency domain into narrower windows of 400 
samples and then averaged over one second to make it more robust against noise.  Afterwards, one azimuth 
and elevation bearing angles were estimated for every second. The azimuth angles are shown along with 
their ground truth, which was provided by a navigation system on the UAV. Apart from a few outliers, the 
estimated bearing angles (orange dots) correspond very closely to the true values (blue dots).  

4 PASSIVE RADAR 

Another class of sensor systems that can greatly contribute to the multisensor task of UAV detection and 

Figure 8 - Flowchart of the second 
detection method 
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tracking are passive radars. Passive radars, also 
commonly called PCL (Passive Coherent 
Location) systems are in principle bistatic or 
multistatic radar systems exploiting illuminators 
of opportunity in their surroundings. A broad 
variety of frequency bands and transmission 
standards are applied as illuminators of 
opportunity in different passive radar systems 
using terrestrial digital TV (DVB-T), digital 
radio (DAB), analog radio (FM), as well as 
mobile communication base stations. Fraunhofer 
FKIE currently focuses its passive radar research 
activities on the use of mobile communication 
base station illuminators GSM (Global System for Mobile communications) and LTE (Long Term 
Evolution), where a wide range of experiments have been conducted in recent years for the surveillance of 
small agile vessels in coastal regions or low flying aircrafts. See for example [22, 23]. In this chapter 
exemplary results of an experimental trial to detect and track a UAV in a GSM passive radar scenario are 
shown. 

4.1. Problem Formulation 
One of the challenges when applying GSM in passive radar is the relatively low transmit power of its base 
stations resulting in a low signal-to-noise ratio (SNR) of possible target reflections. If additionally the target 
radar cross section (RCS) is low, which is the case for small commercially available UAVs treated in this 
work, successfully detecting and tracking such a target can become very difficult due to the basic principles 
of traditional tracking methods.  

In classical radar processing the target tracking task is generally divided into a detection and a tracking stage. 
In the detection stage a threshold is applied to the raw radar signal processing results. The resulting 
detections correspond to either actual target reflections or false alarms due to noise and clutter. In the 
following tracking stage target tracks are formed, updated, or discarded based on the previously obtained 
detections. In circumstances where the target SNR is high this procedure generally performs well, as a 
threshold can be found that results in high probability of target detection while at the same time exhibiting a 
low false alarm rate. If a low SNR target, like for example a drone, is present, thresholding generally results 
in missed target detections or a high false alarm rate. 

To bypass these limitations of traditional "Detect-before-Track" an alternative approach named Track-
before-Detect (TbD) has been proposed. In Track-before-Detect methods, the tracker is fed with raw 
unthresholded signal processing results. Through statistical tracking methods, hypotheses of targets are 
established over time before a decision is made about their actual existence. This allows for an integration of 
weak target reflection over time and therefore potentially unmasks weak targets previously hidden in noise. 
A particle filter for Track-before-Detect in GSM passive radar, developed in [24]  and extended to handle 
complex valued measurements and fluctuating targets in [25, 26] is applied to experimental data using a 
UAV as cooperative target. 

4.2. Track-before-Detect Particle Filter 
The passive radar system delivers a three-dimensional complex valued data cube at the output of its signal 
processing stage. Its dimensions are bistatic range, bistatic range rate, and azimuth, corresponding to time 
difference, Doppler shift and direction of arrival, respectively. The TbD method applied here aims to detect 
and track the reflection of a UAV in this measurement domain. This avoids nonlinearities introduced by the 
transformation to Cartesian space and constitutes a good compromise between centralized and distributed 

Figure 11 - DoA estimation results (orange 
dots) for azimuth angles compared with 

ground truth (blue dots) 
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fusion as described in [27]. A target with Cartesian position qk and velocity vk at measurement k exhibits a 
bistatic range according to 

 (1) 

where qrx is the position of the passive radar and qtx the position of the illuminating base station. Due to the 
Doppler effect the signal reflected by the target exhibits a range rate value of 

 (2) 

 

at the passive radar receiver. The target azimuth is given by the direction of arrival of the reflected signal 
according to 

, (3) 

where atan2 is the four-quadrant inverse tangent and xk, yk, xrx, and yrx are the Cartesian x- and y- 
coordinates of target and receiver, respectively. As described in [24] the values of equations (1) to (3) are 
part of the target state. The target state is assumed to evolve according to a linear nearly constant velocity 
model over measurement intervals k, as given in [27]. The target reflection in the data cube is modelled as a 
Gaussian function spread over a finite number of neighboring measurement grid points, as previously 
mentioned in [28, 24]. The well known Sequential Importance Resampling (SIR) particle filter [29] is 
applied to track the target states of the particle set. In the algorithm a target is declared detected when the 
majority of all particles in the particle set declare a target present, based on an auxiliary target existence state 
variable [28]. The estimated target state is then given by the arithmetic mean of all particle states with 
existing target. 

4.3. Experimental Trial 
During the experiment of about 6 minutes duration, a 
DJI Matrice 210 V2 served as a cooperative target. It 
is a quadcopter with a size of 883 mm x 886 mm x 
398 mm with extended propellers and legs. Its 
weight is about 4.8 kg. The drone was equipped with 
a GPS (Global Positioning System) logger to provide 
ground truth for evaluation. Similar to previous 
UAV passive radar experiments of Fraunhofer FKIE 
in [23], the passive radar system COMET was set up 
on the roof of a building on the site of the institute in 
Wachtberg, Germany, as can be seen in figure 13. 
COMET is a USRP (Universal Software Radio 
Peripheral) based system, which is in its current implementation capable of simultaneously receiving 6 GSM 
broadcast channels of 200 kHz channel width. The antenna of the systems consists of 16 columns of Vivaldi 
antennas in a linear array. In total 5 GSM basestations in the area of the trial were suited as illuminators and 
processed by the system. During the trial, the UAV was flying an x-shaped course in a distance between 60 
m and 320 m from the position of the passive radar system and approximately in the same height. Figure 14 
shows the flight course and the position of COMET in a Cartesian coordinate system, where the y-axis 
represents north and the x-axis east.  

4.4. Evaluation 

Figure 12 - Passive radar system components 
set up on the roof of a building 
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For the evaluation of the experiment a GSM base station, operating at 
a transmit frequency of 945.8 MHz, was chosen. It was situated in a 
distance of about 800 m north east of the receiver position. The 
acquired data was processed in the passive radar system with an 
integration time of 0.5 s. 40,000 particles were used in the evaluation 
run. Newly born particles were placed in the measurement space at 
positions were the absolute values of the measurements exceeded a 
CFAR (Constant False Alarm Rate) threshold as introduced in [29].  

The diagrams in figures 15 to 17 show the expected bistatic range 
difference (bistatic range minus distance from BTS to receiver), 
bistatic range rate, and azimuth calculated from the GPS ground truth 
together with the respective estimated target state dimension of the 
Track-before-Detect particle filter if a target was declared detected. 

The first 25 measurements are the lift off phase and between 
measurement 170 and 215 target was hovering in the air. During these 
time instances, the target should not be detectable by the method. 
Due to clutter sources in the area of the trial, which are interpreted 
as target originated reflections by the method due to the simple 
clutter model, the method detects false targets. Outside of these 
critical sequences, the target is detected almost continuously and 
with a remarkable high estimation accuracy in the bistatic range and bistatic range rate dimensions. The 
remaining inaccuracies in the azimuth domain can be attributed to clutter sources between azimuth values of  
160° and 180° on the site of the trial. The offset in bistatic range between measurements 25 and 93 results 
from the wide target reflection peak in the range domain due to the low GSM signal bandwidth of 81.3 kHz.  

Calculating the RMSE (Root Mean Squared Error) 
values for each observable dimension of the target 
state over the whole experiment results in 163.3 m 
for the bistatic range, 5.71 m/s for the bistatic range 
rate, and 17.95° for the azimuth. Note that these 
values are including the false detections of the lift off 
and hovering phase. 

During a 50 s period, between measurements 230 
and 280, the method performs particularly well. Here 
RMSE values of 16.3 m in bistatic range, 1.33 m/s in 
bistatic range rate, and 4.83° in azimuth are 
achieved. These values can be interpreted as 
optimistic expectations if the detection of false 
targets due to clutter can be avoided. It should be noted here that the influence of the false target, while the 
actual target is located in the blind zone of the system, may be significantly reduced by fusion of multiple 
bistatic pairs or multiple other sensor systems as previously mentioned. Fusion of multiple bistatic pairs is 
crucial for accurate Cartesian localization results in passive radar using mobile communication signals. 

Detecting and tracking UAVs is a challenging task for passive radar systems using mobile communication 
base stations as illuminators of opportunity. Track-before-Detect methods have previously shown to be 

 
 suitable for detecting weak targets in simulations. In this chapter an experiment conducted with a small  

Figure 13 - Cartesian course 
of UAV flights logged during 

experimental trial 

Figure 14 - Bistatic range difference of UAV 
from ground truth and corresponding state 

component of TbD particle filter 



Passive Sensor Processing and Data Fusion for Drone Detection 

11 - 10 STO-MP-MSG-SET-183 

quadcopter is presented and evaluated. The Track-before-Detect particle filter achieves a high detection rate 
of the target while also achieving a remarkable estimation accuracy in the system measurement space. These 
results show that passive radar, as applied here, can contribute greatly to the task of detecting and tracking 
UAVs in a future fusion of heterogeneous sensor systems. 

5.0 FUSION ENGINE 

The fusion engine fuses the UAV observations from 
the various sensors and provides the results to the 
command and control center in realtime to enable 
instant response capabilities. Each sensor component 
provides processed observations in the form of a 
target information vector to the fusion center. The 
target information vector includes all possible 
parameters the sensor is capable of estimating. For 
example, in the case of passive radar this vector may 
contain target range from sensor, bearing and target 
doppler information. The interface between sensors 
and fusion can be modified to fit specific sensor 
parameters. 

An appropriate fusion strategy can be chosen based 
on the available type of sensors for the system and the type and quality of data they provide to the fusion 
center. Based on the type of data a sensor can provide, there are three types of sensors:  

• Bearing sensors - a single sensor provides only bearing information 

• Sensors with localization capability - a single sensor provides enough data to localize targets 

• Tracking sensors - these sensors provide tracks of detected targets and maintain a unique 
identification over time 

Within this work a centralised data fusion system based on a multiple hypothesis tracker (MHT) [30][32] is 
implemented. For the generalisation of the implemented solution to more or different types of sensors, a 
model association method is developed where specific sensor models are assigned automatically based on 
the sensor input data. This is possible by defining the specific type of expected observation parameters from 
each sensor. Together with the adaptive interface this level of abstraction allows the fast integration of other 

Figure 15 Bistatic range rate of UAV 
from ground truth and corresponding 
state component of TbD particle filter. 

17 Azimuth of UAV from ground truth 
and corresponding state component of 

TbD particle filter. 

Figure 18 - Multi Hypotheses Tracking 
block diagram 

Figure 166 - Azimuth of UAV from 
ground truth and corresponding state 

component of TbD particle filter. 
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sensors. 

Fig. 18 depicts a block diagram of an MHT 
procedure. At each time step target states are 
propagated using dynamic models for possible target 
behaviour. When target observations are provided by 
the sensor, hypothesis are formed covering the 
various possible cases i.e. which target does this 
observation belong to, or is this target a false alarm? 
The target state and covariance update for each 
hypothesis is done using extended Kalman filter 
update equations. For hypothesis reduction, gating as 
well as hypothesis pruning and merging is used. 

For method verification camera and radar sensor are 
simulated detecting two targets. Both targets are geographically separated, however they have the 
similar/close bearings approximately in the middle of their trajectory seen in Fig. 19. Thus a bearing only 
sensor such as the camera sensor can not separate the two targets. For data generation, 1°  bearing estimation 
error is used for the camera sensor and 4° bearing estimation error and 10m range estimation error is used for 
the radar sensor. The tracking results for the scenario when only the radar sensor (dashed lines) and both 
radar and camera sensors (continuous lines) are used are shown in Fig. 20. By using both sensors an 
improvement in the location estimation when using both sensors can be noticed. Since an additional sensor is 
used, measurement to track association errors are likely, which can be seen by increase in the position error 
when the targets have similar bearings.  

We also conducted tests with real sensors within a civilian research project [31]. Due to time constraints we 
were not able to fully evaluate our approach, but we were able to demonstrate our system in field 
experiments.  

Within the project had we had four different sensor 
types with different measurement units: 

• Radar: Azimuth, Range 

• RF: Azimuth 

• Acoustic: Azimuth, Elevation 

• EO/IR: Azimuth, Elevation 

During the tests up to 11 sensors were present, one 
radar and RF sensor, five Acoustic sensors and four 
EO/IR sensors. The fusion engine had to process up to 
100 measurements per second with largely varying 
intervals and delays. While one camera and the RF sensor could deliver up to 30 measurements per seconds 
alone, the spinning radar had an update rate of roughly 2.5 seconds. The acoustic sensor delivered 
measurements up to 10 Hz, but had a delay of about second due to processing. We have had different sensor 
setups, geometries and flight patterns and have gained experience with the system: 

• Track initialization with radar is possible over great distances, however the tracks show a high 
localization error and large update interval (see Figure 21 (a)) 

Figure 19 - Bearings of the two targets 
as seen by the camera 

Figure 20 - Root mean square error for 
each of the targets 
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• The tracks can be refined with 
measurements from other sensors to minimize 
localization errors (see Figure 21 (b, c)) 

• As the tracks are supported by 
measurements from sensors with a high 
confidence, the fusion engine will continue the 
tracks, even if the target moves into sensor 
shadows (see Figure 21 (d)). This enables the 
uses of sensor nets in complex environments, 
e.g. urban scenarios. 

6.0 CONCLUSION 

Detection and tracking of drones are challenging 
tasks, but these can be carried out even with the 
restriction to passive sensors only. We have shown 
that the detection can be achieved with acoustic, RF 
and PCL sensors. Depending on the scenario and the 
environment, the use of multiple sensors may be 
necessary. We used a multi hypothesis tracker to 
perform the tracking of drones in a multi sensor 
setup. The use of these methods enable the use of 
multiple heterogeneous sensors in a single system. 

 

 

 

 

 

 

 

 

Figure 221 - Fusion Engine results: 
Track initialization with radar (a), Track 

refinement with RF (b), Track refinement 
with EO/IR sensors (c), Track 

continuation after flying through the 
sensor shadow (d) 
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