

MSG-SET-183 - DETECTION AND CHARACTERIZATION OF A UAS RF FHSS COMMUNICATION LINK VINCENT VAN DER KNAAP, MILLAD MOURI, PETER ZWAMBORN, DANIELA DEIANA

29 April 2021

INDEX DETECTION AND CHARACTERIZATION OF A UAS RF FHSS COMMUNICATION LINK

01. PROBLEM BACKGROUND

02. THE FHSS SIGNAL

03. DETECTION AND COARSE PARAMETER ESTIMATION

04. FINE PARAMETER ESTIMATION

05. SUMMARY

06. FUTURE WORK

BACKGROUND MOTIVATION AND PROBLEM DESCRIPTION

MOTIVATION

- Capabilities of Unmanned Aerial Systems (UAS), in both military and civilian applications, are growing rapidly
-) UAS hardware has become ubiquitous
- Reliable detection techniques to enable appropriate counter measures is becoming crucial

PROBLEM DESCRIPTION

Detection and characterization of a RF uplink using FHSS modulation used for drone communications

SIGNAL PROCESSING CHAIN OVERVIEW

Received FHSS signal

Detection and Coarse Parameter Estimation

Fine Parameter Estimation

RECEIVED SIGNAL

 In this study, Frequency Hopping Spread Spectrum (FHSS) is identified as one of the main communication techniques in use by UAS.

DETECTION

 Detecting UAS through characterization of their communication link is very promising as it directly provides information useful for possible counter measures, such as smart jamming.

PARAMETER ESTIMATION

 An algorithm based on the combination of Wavelet Transform and Sparse Learning is investigated.

FHSS WAVEFORM PARAMETERS

) Carrier frequency and bandwidth f_c , B;

FHSS WAVEFORM PARAMETERS

) Carrier frequency and bandwidth f_c , B;

> hopping pattern with 16 hops (96 ms);

FHSS WAVEFORM PARAMETERS

) Carrier frequency and bandwidth f_c , B;

> hopping pattern with 16 hops (96 ms);

FHSS WAVEFORM PARAMETERS

) Carrier frequency and bandwidth f_c , B;

> hopping pattern with 16 hops (96 ms);

FHSS WAVEFORM PARAMETERS

Carrier frequency and bandwidth f_c, B;
hopping pattern with 16 hops (96 ms);
Dwell-Time T_d = 6 ms (167 hops/s);
Duty cycle D = 0.1

FHSS WAVEFORM PARAMETERS

-) Carrier frequency and bandwidth f_c , B;
- > hopping pattern with 16 hops (96 ms);
-) Dwell-Time $T_d = 6$ ms;
-) Duty cycle D = 0.1

ASSUMPTIONS

-) f_c and B are known and constant
-) Fixed hopping pattern
- A single FHSS signal is presented at each time

RF LINK DETECTION AND CHARACTERIZATION PARAMETRIC AND NON-PARAMETRIC METHODS

CWT-BASED DETECTION

- Detection of FHSS signal performed based on CWT
- A rough estimate of the hop time, dwell time, duty cycle and hopping pattern duration are provided

CWT-BASED FHSS DETECTION CONTINUOUS WAVELET TRANSFORM

DETECTION PROBLEM

) Detect if an FHSS signal is present

 \mathcal{H}_0 : noise only \mathcal{H}_1 : signal and noise

CONTINUOUS WAVELET TRANSFORM

 Captures both the slowly varying changes (hopping pattern) as the abrupt changes (single hops)

DETECTION PROCEDURE

Detect peaks indicating hopping pattern, not individual hops.

DETECTION PROBLEM

-) Detect if an FHSS signal is present
 - \mathcal{H}_0 : noise only \mathcal{H}_1 : signal and noise

CONTINUOUS WAVELET TRANSFORM

 Captures both the slowly varying changes (hopping pattern) as the abrupt changes (single hops)

DETECTION PROCEDURE

Detect peaks indicating hopping pattern, not individual hops.

Mean of wavelet coefficients

CWT-BASED FHSS DETECTION CONTINUOUS WAVELET TRANSFORM

DETECTION PROBLEM

- > Detect if an FHSS signal is present
 - \mathcal{H}_0 : noise only \mathcal{H}_1 : signal and noise

CONTINUOUS WAVELET TRANSFORM

 Captures both the slowly varying changes (hopping pattern) as the abrupt changes (single hops)

DETECTION PROCEDURE

Detect peaks indicating hopping pattern, not individual hops.

Mean of Fourier coefficients

CWT-BASED FHSS DETECTION CONTINUOUS WAVELET TRANSFORM

DETECTION PROBLEM

) Detect if an FHSS signal is present

 \mathcal{H}_0 : noise only \mathcal{H}_1 : signal and noise

CONTINUOUS WAVELET TRANSFORM

 Captures both the slowly varying changes (hopping pattern) as the abrupt changes (single hops)

DETECTION PROCEDURE

Detect peaks indicating hopping pattern, not individual hops.

Mean of wavelet coefficients: two hops

CWT-BASED FHSS DETECTION RESULTS

SCENARIO

-) Single FHSS signal in AWGN
-) Range of SNR regimes
- > Single snapshot (two hopping sequences)

MULTIPLE SNAPSHOTS

- Single snapshot, relatively low integration time
- Realistic observation time is larger

Single Snapshot Detection Results T SNR = 6 dB0.8 SNR = 3 dB – SNR = 0 dB0.6---SNR = -3 dB- P_D 0.40.20 0.20.6 0.80.40 FAR

CWT-BASED FHSS DETECTION SUMMARY

CWT-BASED DETECTION

- Captures both the slowly varying changes (hopping pattern) as the abrupt changes (single hops)
- Enables detection of FHSS signals

LIMITATIONS

-) Differentiate between FHSS and other signal types
-) Practical problem of multiple signals present at the same time

POSSIBLE SOLUTIONS

-) ML approach; performs both detection and classifications.
-) i.e. known with high probability if the received signal is indeed FHSS modulated.

29 April 2021

RELATIONSHIP BETWEEN CWT AND SLR NON – PARAMETRIC AND PARAMETRIC

CWT-BASED DETECTION

- Detection of FHSS signal performed based on CWT
- A rough estimate of the hop time, dwell time, duty cycle and hopping pattern duration are provided

SLR-BASED RF LINK CHARACTERIZATION

- Initialize using coarse bandwidth CWT estimate
- **)** Fine estimation of signal parameters

SLR-BASED FHSS PARAMETER ESTIMATION SPARSE LINEAR REGRESSION

SPARSE LINEAR REGRESSION*

- A sparse representation of Time-Frequency distribution (TFD) is estimated from the time samples
-) θ represents samples of the TFD of the signal
-) First term is a standard data matching least squares

$$\widehat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} \|\mathbf{Y}_{K} - \mathbf{M}\boldsymbol{\theta}\|_{F} - \lambda_{1} \|\boldsymbol{\theta}\|_{1} - \lambda_{2} \|\mathbf{D}\boldsymbol{\theta}\|_{1}$$

* D. Angelosante, G. B. Giannakis and N. D. Sidiropoulos, "Estimating multiple frequency-hopping signal parameters via sparse linear regression," *IEEE Trans. Signal Process.*, vol. 58, no. 10, pp. 5044-5056 (2010).

SLR-BASED FHSS PARAMETER ESTIMATION SPARSE LINEAR REGRESSION

SPARSE LINEAR REGRESSION*

- A sparse representation of TFD is estimated from the time samples
- **θ** represents samples of the Time-Frequency distribution (TFD) of the signal
-) First term is a standard data matching least squares
-) Sparsity in frequency is controlled by λ_1

$$\widehat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} \|\boldsymbol{Y}_{K} - \boldsymbol{M}\boldsymbol{\theta}\|_{F} - \lambda_{1} \|\boldsymbol{\theta}\|_{1} - \lambda_{2} \|\boldsymbol{D}\boldsymbol{\theta}\|_{1}$$

* D. Angelosante, G. B. Giannakis and N. D. Sidiropoulos, "Estimating multiple frequency-hopping signal parameters via sparse linear regression," *IEEE Trans. Signal Process.*, vol. 58, no. 10, pp. 5044-5056 (2010).

29 April 2021

SLR-BASED FHSS PARAMETER ESTIMATION SPARSE LINEAR REGRESSION

SPARSE LINEAR REGRESSION*

- A sparse representation of TFD is estimated from the time samples
- θ represents samples of the Time-Frequency distribution (TFD) of the signal
-) First term is a standard data matching least squares
-) Sparsity in frequency is controlled by λ_1
-) Sparsity (of transitions) in time is controlled by λ_2

$$\widehat{\mathbf{\Theta}} = \arg\min_{\mathbf{\Theta}} \|\mathbf{Y}_{K} - \mathbf{M}\mathbf{\Theta}\|_{F} - \lambda_{1} \|\mathbf{\Theta}\|_{1} - \lambda_{2} \|\mathbf{D}\mathbf{\Theta}\|_{1}$$

* D. Angelosante, G. B. Giannakis and N. D. Sidiropoulos, "Estimating multiple frequency-hopping signal parameters via sparse linear regression," *IEEE Trans. Signal Process.*, vol. 58, no. 10, pp. 5044-5056 (2010).

TNO innovation 21

SLR-BASED FHSS PARAMETER ESTIMATION RESULTS

SCENARIO

-) Single hop from FHSS sequence
-) SNR 20 dB

DISCUSSION

- Super resolution time-frequency estimate can be obtained based on SLR
- > Resolution vs processing trade-off

SLR-BASED FHSS PARAMETER ESTIMATION RESULTS

SCENARIO

-) Single hop from FHSS sequence
-) SNR 20 dB

DISCUSSION

- Super resolution time-frequency estimate can be obtained based on SLR
- > Resolution vs processing trade-off

CHALLENGES IMPLEMENTING SLR BIG DATA VOLUME

SPARSE LINEAR REGRESSION

-) The data matrix \mathbf{Y}_{K} is constructed by full over-segmentation of the data
 - The sampling rate is relatively high (hundreds of MHz)
 - Large system of equations must be solved (at each iteration)
-) Both the mixing matrix **M**, and the unknown vector $\boldsymbol{\theta}$ are (block) sparse
 - MinresQLP as a candidate Krylov subspace based solver is used
 - Operations involving the matrices M and D are implemented as subroutines (to avoid large memory requirements)
- Results from detection methods are used to reduce data volume

Processing time ~10 minutes for N = 13000 samples on a typical laptop (e.g. Pentium i7 with 12GB memory).

SUMMARY DETECTION AND FHSS PARAMETER ESTIMATION

- Detection and classification
 - Demonstrate machine Learning based detection and classification of multiple signal types in simulation environment
-) Counter Measures
 - Jamming selective in time and frequency with low transmit power
 - > Demonstrate feasibility and effectiveness of selective jamming in lab environment
-) Multiple targets and harsh transmission environments
 - > Exploiting spectral diversity
 - Source separation (e.g. based on direction finding)

ACKNOWLEDGEMENTS

) Joint counter UAS knowledge build-up program financed by the Netherlands Ministry of Defence and the National Police

Ministerie van Defensie

