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+ Introduction
+ State-of-Art and Beyond

Defi n iti o ns * New Maritime Requirements

*  Operator-on-the-Loop

Automatic
» the ability of a system to automatically carry out processes or perform actions

» does not make choices for itself — follows a script where the choice out of all
possible courses of action have already been made

= if it encounters the unexpected it cannot adapt and waits for human help

» for an automated system, choices have been
made or encoded, or are made externally
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+ Introduction
+ State-of-Art and Beyond
New Maritime Requirements

D Efi n iti O n S Operator-on-the-Loop

Autonomy

= ability of a system to govern itself by making decisions, implement / action the
decision and check the effectiveness of the actions taken

* an autonomous system / robot makes choices of its own
— tries to accomplish its objectives, without human intervention, even when
encountering uncertainty or unanticipated events |

» in the context of autonomous systems, autonomy is the ability to make
choices, enforce decisions by applying actions, evaluate results and adapt
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Autonomous Maritime Systems

Deploying Marine Sensors on Autonomous Systems

hovering UUV

= unmanned underwater vehicles (UUV)
— free-swimming & powered by batteries
— hover, flyby, sawtooth profile, skim surface (1 — 4 kt)
— bring the sonar to any point in the water column
<:| * sonar positioning error not easily bounded

= unmanned surface vehicles (USV)
— displaces water at rest; continuous GPS
— high transmission bandwidth, e.g., planing craft,
catamaran, semi-submersible, hovercraft (5-30 kt)
— deploy sonar only from high in the water column

wave glider
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* Sonar positioning error is bounded y
= unmanned aerial vehicles (UAV) /



+ Introduction
+ State-of-Art and Beyond

Marine Autonomy — Outcomes New Maritime Requirements

Operator-on-the-Loop

= until recently marine autonomous systems executed scripted missions (automatic)

» realize full potential of marine robots by conferring autonomy to adapt to dynamic
ocean environment — scripted missions are inadequate for complex environments!

» ability for marine robots to autonomously:
— reason, learn
— make decisions
— re-plan missions
— adapt mission based on sensor measurement analysis / robot changes
— collaborate with other robots and systems (manned or unmanned)
— adapt to dynamic ocean environment, change in themselves, etc.
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Autonomous System Capabilities

Introduction
State-of-Art and Beyond
New Maritime Requirements

Maritime Motivation
= |ess human interaction

= overcome coms challenges

= dynamic environment

= manage workload

» compelling argument for
maritime robot missions
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State-of-the-Art Maritime Autonomy

Example: Naval Mine Countermeasures (NMCM)

= naval mine counter-measures: persistence and reach
— most est naval use of autonomous systems (c. 1990’s PerS|an Gulf War)

mission: search classify map reacquire & ID neutralize

UuV: survey MLO?  georeference navigate to MLO
operator: analyze & decide

— surveys, especially wide-area ones, can be performed autonomously
— on-board analysis of sonar imagery to classify and georeference MLOs
— replan mission to reacquire (re-image) MLO at high res and confirm its location
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* Introduction
+ State-of-Art and Beyond

State-of-the-Art Maritime Autonomy - New artime Recuemens

Operator-on-the-Loop

= NMCM is a fairly static mission
— targets are not mobile or rapidly evolving

— UUV payload sensor is the side scan / synthetic aperture
sonar to deploy in-water

— sensors, in situ analysis, coms, localization, deciSIONS, . canadian Navy prepares to depioy on
etc. integrated into one system of systems — the UUV MCH mission wiih & REMUS 100 UV

Anti-Submarine Warfare (ASW) is a much more dynamic mission
— targets are mobile at high speeds and actively work to evade

— higher tempo and multiple sensors deployed across multiple platform types
— sensors, analysis, coms, and decisions not integrated into systems of systems
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New Maritime Autonomy Requirements

* Introduction

+ State-of-Art and Beyond

* New Maritime Requirements
*  Operator-on-the-Loop

Example: Anti-Submarine Warfare (ASW) — Sensors not Integrated = Challenges
= ASW uses manned platforms (ships, MPA, helos) with passive and active sonar:

= different OEM for each sensor and their sub-systems = lack of common tools

Underwater Warfare Supervisor
— dalrays N
- h U I I'mou nted Sona r = makes decision on the UWW sensor
configuration and its management
— SOftwa e * does integration of sensors and
recommends actions to UWW CDR
— sonobuoys
Operators
X7
C b t M t S t = |ook for tracks and contacts with
- ompa anagemen yS em hull-mounted sonar and sonobuoy
processing system

 C—

confirmed tracks

and contacts

Towed Array Supervisor

= communicates verbally to UWW

Supervisor

® manages towed array operators
= |ooks at the what-ifs for say a track

Operators

= |ooks for tracks and contacts with

towed array

= mostly manually fuse these systems’ measurements to localize and track mobile
u/w targets = such stove-piped systems limit what is possible in the autonomy

» NMCM was at that point once — ASW sensor OEMs to design for UUVs and USV
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* Introduction
+ State-of-Art and Beyond

New Maritime Autonomy Requirements ; NewWariime Rogurement

Example: Anti-Submarine Warfare (ASW)

* a concept with some gravitas is a distributed network
of UUVs (1000’s)

— manned and unmanned sensors distributed from
seabed to above-water and integrated into a
system of systems

Distributed UUVs (source: CMRE) [1]

— adversary overwhelmed by many small targets cf a naval group of a few
surface vessels — expend ordinance to take out only an UUV at a time

— UUVs collaborate to det target heading, speed, and position (sonobuoys, LBL)
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* Introduction
+ State-of-Art and Beyond

New Maritime Autonomy Requirements +Now Marime Reauiement

Example: Anti-Submarine Warfare

= USV or UAVs to adaptively sample with dipping sonars to passively
localize an u/w mobile target in a wide-area search

— such sonars designed for manned helicopter deployments

globalsecurity.org

» USV used as a relay / router (as in NMCM)

= manned assets like ships support UUV / USV / UAV operations
— coordinate sensors and weapons
— integrate intel from other sources
— make decisions that have high consequences
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* Introduction
+ State-of-Art and Beyond

New Maritime Autonomy Requirements + Now Mariime Requremeris

Operator-on-the-Loop

Example: Anti-Submarine Warfare
* autonomy requirements for this vision above and beyond NMCM:

1. higher energy density on-board UUVs

2. on-board signal processing to interpret sensor measurements (beamforming)
3. persistence of in-water UUVs towing arrays

4. long range robust underwater acoustic coms for collaborative robots

5. how to address: uncertainty in sensor measurements and adversary intel,
RoE, COLREGS, IMO International Law, doctrine, etc.
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¢ Introduction
» State-of-Art and Beyond

Emerging Maritime Autonomy - o arime Fequromr

1. High Energy Density On-board UUV Sources

= given propulsion, vehicle sub-systems, payload sensor (tow) and autonomy
computations of a free-swimming platform there is enormous demand for energy
— lithium-ion batteries of high energy densities have limits
— also volatile chemistry so difficult to transport commercially (use DND ships)

» fuel cells have emerged as an option for UUVs (e.g. Solus-LR)

250 KWh of energy
(1200 W continuous)

3000 km range
3000 m depth
8.5 mlength x 1 m dia
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¢ Introduction
» State-of-Art and Beyond

Emerg i ng Mariti me Autonomy + New Maritime Requirements

*  Operator-on-the-Loop

2. On-board Signal Processing to Interpret Sensor Measurements

Moore’s Law — The number of transistors on integrated circuit chips (1971-2018)

L}
n O n - b O a rd fu e I Ce I I S l I l e a n S I I l O re p rO Ce S S I n g Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.

This advancement is important as other aspects of technologieal progress — such as processing speed or the price of electronice products — are
linked to Moore's law.
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board machine learning models
— increasingly powerful GPU computers
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Emerging Maritime Autonomy
3. Persistence of In-Water UUVs Towing Arrays

MDbI|E AUV dUCk”]g a”DWS 4 Two-way high speed, high
. e capacity communication
for persistent autonomous %

threat detection S
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3 USV docking station charges
AUV and downloads data

* Introduction

+ State-of-Art and Beyond

+ New Maritime Requirements
*  Operator-on-the-Loop

novel underway docking station
— ML det UUV pose rel dock

UUV downloads its data and is
charged while underway

— array maintains its (safe)
underway profile

collaboration of UUV, USV and
UAV for persistent surveillance

operate as an unattended
system in the Canadian Arctic
DALHOUSIE Maritime Autonomy — A System Perspective (M. Seto) 15
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¢ Introduction
» State-of-Art and Beyond

Emerg i ng Mariti me Autonomy + New Maritime Requirements

*  Operator-on-the-Loop

4. Long Range Robust Underwater Acoustic Coms — Departure from Above-Water

» challenges in remote sensing, wireless communications and localization
— best sensing and communications modality is acoustics

* frequency and range dependent attenuation
— ranges are low by comparison to above-water

* poor bandwidth
— low carrier frequencies (10’s of kHz) by comparison to above-water

* no universal positioning system in featureless (or over-cluttered) environments
— mostly reliant on aided inertial navigation and localization methods

811:%\1;{3?{?181!5 Maritime Autonomy — A System Perspective (M. Seto)



¢ Introduction
State-of-Art and Beyond

Emerg i ng Mariti me Autonomy New Maritime Requirements

4.

*  Operator-on-the-Loop

Long Range Robust Underwater Acoustic Coms — Departure from Above-Water

If many UUVs are distributed in a network there is a requirement to communicate
over much longer distances and with greater bandwidth than presently common

how to overcome the communications challenges?

underwater software-defined modems / radios for coms
— more adaptive to the temperamental underwater acoustic channel
— full-duplex communications underwater
— Increase bandwidth > 2 X

},_.

Subnero Ltd.

satellite communications protocol specification (SCPS)
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H, = hypothesis: noise-only
H, = hypothesis: signal present ...

Emerging Maritime Autonomy

¢ Introduction

+ State-of-Art and Beyond
+ New Maritime Requirements
*  Operator-on-the-Loop

5. Uncertainty in Sensing and Intel — Sensors with Uncertainty Informing Decisions

= underwater ambient is high
= water temperatures increasingly warmer

» fluctuations over wide range of temporal and
spatial scales — global — local episodic events

» . SNR poor by comparison to above-water

at receiver input
[ground truth]

signal-present, H,

noise-only, H

Positive Negative
. correct detection false alarm
signal-present p p
c " D f
.g Positive [TP] (FP]
@ oise-onl missed detection | null decision
N Ne ati\/ey Fn=1=Fp 1= Py
i [FN] [TN]

» stochastic approaches for decisions based on in-water sensor measurements
— detection SNR is not high = high FP and FN rates
- absolutely need confidence when consequences are based on such decisions
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H, = hypothesis: noise-only
H, = hypothesis: signal present ...

Emerging Maritime Autonomy

¢ Introduction

+ State-of-Art and Beyond
* New Maritime Requirements

+  Operator-on-the-Loop

5. Uncertainty in Sensing and Intel — Sensors with Uncertainty Informing Decisions

= given poor SNR underwater
. classifications and reacquisitions may also be poor
- difficult to automate under such conditions

— a mistake like sinking a vessel or misidentifying an
entity as friendly has severe consequences

= processing for correlation and identification is complex so
an operator is needed for high level of confidence before
a track is engageable

= operator-on-the-loop also provides oversight for systems
that can be automated or autonomous
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¢ Introduction
+ State-of-Art and Beyond
* New Maritime Requirements

Emerging Maritime Autonomy - New Martime Roauir
5. Uncertainty in Sensing and Intel — Operator-on-the-Loop Part of Autonomy System

= operators’ training and experience allows them to assemble an overall picture to

/ payload sensor + robot + other systems / can provide this

— [data = information ] = [knowledge]
[raw numbers] = [numbers processed = [context, experience,
with some context] beliefs, perspective]

— data and information integration can happen over a long time period to classify

* imperfect information: may draw on a database of limited signatures
adversary actively shifting their actions and tactics

» when large A in knowledge and large o in sensing (ASW) = operator knowledge
IS a vital autonomy system component
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* Introduction
+ State-of-Art and Beyond

Emerging Maritime Autonomy New Maritime Requirements

5. Uncertainty in Sensing and Intel — Layered System of Systems

Operator-on-the-Loop

UAV / USV with dipping sonars to autonomously sampling to
passively localize an u/w mobile target in a wide-area search

— operator should only need to monitor this

globalsecurity.org

AN/AQS -18 dipping sonar
when a threshold number of positive fixes are acquired and the autonomous Ifleet

]

IS In agreement there may be a target, the operator takes over
— directs the autonomous dipping sonars’ mission

https://www.mdis.edu.sg/blog/ma
n-and-machine-can-they-co-exist/

higher operator involvement may make it tactical and the posture ohénges

when the target appears to be well out of range the autonomous fleet could revert
to autonomous adaptive sampling again
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Concluding Remarks

* harsh underwater environment for sensing,
communications and localization makes maritime
autonomy different from above-water autonomy

= complex maritime missions like ASW should have an
operator-on-the-loop:

— operator knowledge is a vital component of the
autonomy system of systems

— also provides oversight for autonomous tasks like
surveys, sampling, etc. — autonomy aids operator

Credit: Klaus Meiners WHOI

SeaBED AUV mapping of ice thicknesses.
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Questions?

mae.seto@dal.ca

ISE Ltd.

Explorer UUV approaches underway dock to re-charge
batteries and download data while remaining underway
like it would have to if it was towing an array.

Intelligent Systems Laboratory (Ocean Tech Hub)
Irving Shipbuilding Research Chair in Marine Engineering and Autonomous Systems
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