

Artificial Intelligence: Powering Human Spaceflight **Exploration of the Moon and Mars**

Dr. Jeremy Frank NASA Ames Research Center

This work is the work of the United States Government and is not subject to copyright.

Overview

1. Human Spaceflight Exploration

- Mission Operations Functions
- Human Exploration Destinations
- Motivations for Artificial Intelligence

2. Artificial Intelligence Technology

- Planning
- Plan Execution
- Fault Management
- Associated Technologies

3. NASA Investments

NASA Technology Development

Human Spaceflight Exploration Needs

0

8

Bate Bills

-

TITAN

Mission Operation Functions

Monitoring

- What is the state of the spacecraft?
- Process and abstract data from sensors.
- Group resulting information into displays.
- Displays are specific to major spacecraft system and/or phase of mission.
- Monitoring ensures plans are being performed as expected, and spacecraft state is known.

Planning and Scheduling

- What is the spacecraft doing and when?
- · Plans are created to achieve specific objectives.
- · Plans are created days to weeks ahead of time.
- Plans are often created for major spacecraft subsystems separately, then integrated.
- Unexpected events or faults may require replanning on shorter time scales.

Mission Operation Functions

Execution

- What is the next activity to perform?
- Execution involves issuing commands to spacecraft subsystems and ensuring results are as expected. (See Monitoring)
- If unexpected events occur, replanning may be needed. (See Planning and Fault Management)

Fault Management

- Is something wrong? What are the impacts?
- Fault management involves the detection and isolation of faults (See Monitoring).
- Fault management also involves determining the consequences of faults.
- Recovering from or mitigating faults involves replanning. (See Planning)

Motivations for Artificial Intelligence

Enabling human spaceflight autonomy requires:

- A new balance of responsibility between crew and ground.
- A new balance of responsibility between crew and vehicle.
- New concepts of operations to fit new division of labor.
- Application of AI technology to automate systems, augment crew expertise and knowledge, and reduce crew workload.

Planning and Scheduling

Purpose

- Build a plan by choosing activities to achieve goals.
- Build a schedule by ordering activities and choosing activity start times.

Functions

- Choose and order activities.
- Determine how to meet constraints on activities.
 - Absolute time *Take image between 10:00 and 10:30 a.m.*
 - Relative time
 Take image at least 5 minutes after turning spacecraft
 - Resources
 Battery state of charge must be above 65%
 - Resources
 Two instruments can't be used simultaneously
- Ensure activity effects satisfy activity conditions.
 - Preconditions
 Power must be on for instrument to take image
 - Effects
 Image reduces available storage by 10 Mb
- Validate plans or schedules to identify constraint / condition violations.

Task Execution

Purpose

- Carry out a plan using an appropriate execution strategy.
- Execution strategy incudes **discrete** and **continuous** control.

Functions

- Executive processes a timeline, or set of tasks, to perform.
- Executive starts tasks, stops tasks, and monitors execution.
- Executive performs continuous adjustment of parameters.
- Executive may need to handle **conditionals** (branches, loops), failures / contingencies, and other features.
 - Start time Start actions after they are scheduled to start
 - End time Check action completion status when they are scheduled to end
 - Condition Do not start actions when it is unsafe (delay if needed)
 - Condition Terminate actions if specific unexpected events occur

Fault Management

Purpose

- Monitor system to determine whether faults have occurred.
- Determine what faults have taken place.
- Assess remaining system capability.

Functions

- Detects when a system is off-nominal.
 - Off-nominal behavior may (but need not) signify impending faults.
- Detect the presence of faults.
- Isolate faults by eliminating possible candidates.
 - It may be not always be possible to uniquely isolate the fault in all cases.
- Determine the **consequences** of faults.
 - Loss of capability or redundancy may preclude accomplishing the current plan.
- Trigger **safing**, **recovery** actions or **replan** if mission objectives can no longer be met.

Associated Technology Needs

Human Interfaces

• Includes decision support for planning interfaces and fault management, and situational awareness for plan execution.

Flight Software Integration

• Autonomous spacecraft require integration of each autonomy capability with flight software.

High Performance Computing

• Al software require sufficient on-board computational resources (CPU, memory, bandwidth).

Machine Learning

 Adapt to changing operational environment and spacecraft performance changes using machine learning technology, both in the control center and ultimately onboard spacecraft.

Challenges for Artificial Intelligence

System Interaction

 Many disparate AI components must interact with each other, with underlying flight software

Human-Machine Interaction

• Al capabilities must be designed to facility human-machine interaction, both for crew and for flight controllers.

AI Engineering Best Practices

- Best practices are needed for engineering AI systems to operate in resource-constrained environments (CPU and memory limitations)
- Best practices for building AI applications are also needed (e.g. modeling)

Autonomous Nission Operations: Projects

8

🛞 Marca Conse 🚱 🛞 🕀

Autonomous Mission Operations: Capability Demonstrations

 ISS demonstration of Crew Decision support for spacecraft habitation systems

AMO EXPRESS

 ISS demonstration of Automation and Decision support

Advanced Caution and Warning (ACAWS)

 Orion Decision support for dynamic spacecraft operations

Vehicle System Management (VSM)

Orion and Gateway spacecraft autonomy

In-Vehicular Robotics

In-Vehicle robot task and motion planning
 NATO SCI-335 RSM: Autonomy from a System Perspective

Autonomous Mission Operations: Projects Overview

	SSC	ТОСА	Orion ACAWS	Robotics	AMO EXPRESS	Hab. VSM	Orion VSM
Monitoring	\checkmark	\checkmark					
Planning		\checkmark	·			\checkmark	
Execution	\checkmark	·			\checkmark	\checkmark	
Fault Management		\checkmark				\checkmark	\checkmark
Anomaly Detection		\checkmark				\checkmark	
User Interfaces	\checkmark	\checkmark			\checkmark		
Flight Software	v	v	v		\checkmark	\checkmark	\checkmark
Machine Learning		\checkmark				\checkmark	

Navy / Air Force vs Space: Similarities

Navy / Air Force

- Ground systems automation
- Commander decision aids
- Crew size reduction
- Vehicle autonomy
- Variable communication coverage (e.g. GPS denial)
- Risk of upgrades to ongoing missions
- High communication latency (e.g. submarines)
- Risks to crew

Space

- Ground systems automation
- Astronaut decision aids
- Smaller crews to Mars
- Spacecraft / Robot autonomy
- Variable communication coverage (LEO vs deep space)
- Risk of upgrades to ongoing missions
- High communication latency (deep spacecraft)
- Risks to crew

Navy / Air Force vs Space: Differences

Navy / Air Force

- Large fleet size
- High system diversity
- High operating time => fewer defects
- High value from modest gains (accrued over large fleet)
- Highly regulated
- High compute power available
- Mostly known environment

Space

- Small fleet size
- Low(er) system diversity
- Lower operating time => more defects
- Less value amortized from modest gains (due to fleet size)
- Few/no regulations
- Low compute power available
- Less known environment

Conclusions

NASA investments in AI technology will augment crew expertise and knowledge, reduce crew workload, and enable efficient dormant operations.

> These investments will, ultimately, pave the way for future human exploration of the Solar system.

Autonomous Mission Operations

Thank you!

AMO TOCA SSC

Evaluate astronaut's ability to autonomously manage spacecraft systems.

- AI Technology: Planning, Monitoring, Fault Management
- Associated Technology: Human Interfaces

ISS Systems: TOCA and SSCs

- Water Quality analyzer, used/operated 1-2 times / week
- Crew non-critical (office) computers used for multiple functions
- Several fault modes, some experienced regularly on orbit
- Deployed software onboard ISS (on non-critical computer network); crew managed systems for 7 months.

AMO EXPRESS

Evaluate astronaut's ability to autonomously manage spacecraft systems.

- AI Technology: Execution
- Associated Technology: Human Interfaces

ISS Systems: Payload Racks.

- Payload equipment racks operations is operator intensive, subject to many operational constraints.
- These racks can be controlled by computers and plan execution software (Timeliner) onboard ISS.
- Developed Timeliner scripts to implement conditional plans to power on the racks.
- Developed displays to provide crew with situational awareness of state of executed state.

Orion Advanced Caution and Warning System (ACAWS)

Evaluate astronaut's ability to autonomously manage spacecraft systems.

- AI Technology: Fault Management
- Associated Technology: Human Interfaces

Orion: NASA's next human-capable spacecraft

- ACAWS presents Orion system Loss of Capability and Loss of Redundancy information to flight controllers and crew.
- Tested using the live downlink from Exploration Flight Test 1 from pre-launch through postlanding.
- Subsequent testing in simulation environments with flight controllers and crew.

Orion Vehicle Systems Management

Evaluate autonomous spacecraft fault management.

- AI Technology: Fault Management
- Associated Technology: Flight Software

Orion: NASA's next human-capable spacecraft

- The Orion model and architecture being scaled to Artemis 1 (first Lunar mission), and ultimately Artemis 2 (first crewed Lunar mission)
- Integrated and ran Orion ACAWS on embedded computers running real-time operating systems.

Habitat Vehicle Systems Management

Evaluate autonomous spacecraft mission operations.

- AI Technology: Planning, Execution, Fault Management
- Associated Technology: Flight Software

Gateway: Human outpost in Lunar orbit

- Gateway will be dormant (uncrewed) 10-11 months out of the year.
- Developed and tested a Vehicle Systems Management (VSM) for Gateway, managing many spacecraft subsystems (power, thermal, life support).
- Integrated and run VSM on embedded computers running real-time operating systems.

In-Vehicle Robotics

Evaluate autonomous robotic planning and execution.

• AI Technology: Planning, Execution.

Gateway: Human outpost in Lunar orbit

- Dexterous Manipulators and other service robotics will enable Gateway dormant operations and assist crew.
- Demonstrated manipulator robot planning and execution in the presence of unexpected events and faults.

Bibliography

- J. Frank, D. Iverson, C. Knight, S. Narasimhan, K. Swanson, M. Scott, M. Windrem, K. Pohlkamp, J. Mauldin, K. McGuire, H. Moses. Demonstrating Autonomous Mission Operations Onboard the International Space Station. Proceedings of the AIAA Conference on Space Operations, September 2015.
- H. Stetson, J. Frank, A. Haddock, R. Cornelius; L. Wang; L. Garner. AMO EXPRESS: A Command and Control Experiment for Crew Autonomy. Proceedings of the AIAA Conference on Space Operations, September 2015.
- G. Aaseng. Scaling Up Model-Based Diagnostic and Fault Effects Reasoning for Spacecraft. Proceedings of the AIAA Conference on Space Operations, September 2015.
- G. Aaseng, E. Barszcz, H. Valdez, and H. Moses. Scaling up Model-based Diagnostic and Fault Effects Reasoning for Spacecraft. InProceedings of the AIAA Conference on Space Operations, 2015.
- G. Aaseng, and J. Frank. Transitioning Autonomous Systems Technology Research to a Flight Software Environment. In Proceedings of the AIAA Conference on Space Operations, 2016.
- R. Cornelius and J. Frank. International Space Station Payload Autonomous Operations Past, Present and Future. Proceedings of the AIAA Conference on Space Operations, 2016
- G. Aaseng, J. Frank, M. latauro, C. Knight, R. Levinson, John Ossenfort, M. Scott, A. Sweet, J. Csank, J. Soeder, A. Loveless, D, Carrejo, T. Ngo, Z. Greenwood. Development and Testing of a Vehicle Management System for Autonomous Spacecraft Habitat Operations. Proceedings of the AIAA Space Conference, 2018.
- S. Azimi, E. Zemler, and R. Morris. Autonomous Robotics Manipulation for In-Space Intra-Vehicle Activity. In Proceedings of the ICAPS Workshop on Planning and Robotics, 2019.

NASA Artemis Overview

LUNAR SOUTH POLE CRATER TARGET SITE

NATO SCI-335 RSM: Autonomy from a System Perspective

2024