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ABSTRACT  
Swarm technology applications involving mobile ad hoc sensor agents is growing increasingly and expandable 
to multiple military problem domains such as tactical intelligence, surveillance, target acquisition, and 
reconnaissance (ISTAR). In ISTAR, a team of semi-autonomous sensors cooperatively achieve collection tasking 
and execution to bridge the gap between information need and information gathering in order to maintain 
persistent situational awareness. State-of-the-art contributions largely expose multi-dimensional problem 
complexity. Highlighting limited on-board sensor platform resource capacity and energy budget, they often 
adopt ad hoc prescribed sensor behaviors, leading to over conservative connectivity constraints, biased 
decision-making and/or fusion solution structures. These may arbitrarily convey a significant opportunity cost 
and detrimentally impact overall performance. An innovative approach is proposed to handle the mobile ad hoc 
sensor network/swarm collection tasking problem, subject to on-board limited processing power and bounded 
energy budget for data dissemination/communication routing. Driven by limited on-board power considerations, 
collection planning is centralized and episodically mediated by a swarm leader, while plan execution is 
decentralized. Collection planning relies on a new open-loop with feedback decision model formulation. It 
consists to repeatedly solve a static decision problem maximizing collection value over a receding time horizon. 
Episodic decision-making is conditioned by incoming requests, cumulative collection value, ongoing resource 
commitments, remaining resource capacity and feedback from the previous stage. The approach combines a new 
compact graph representation and a sound approximate decision model to perform sensor agent path planning 
optimization, subject to periodic connectivity in order to achieve information-sharing, fusion, situational 
awareness and dynamic retasking/planning. The proposed minimum spanning tree communication scheme 
conferring swarm topology-awareness, in conjunction with the advocated connectivity constraint handling 
approach  offer the desired flexibility to significantly expand overall observable domain; explore a larger 
solution space; reduce energy consumption; maximize network extent; and provide expected collection gains 
ultimately enhancing situational awareness. 

1.0 INTRODUCTION 

Sharing commonality with fixed and mobile ad hoc sensor/agent network (MANET), emerging swarm 
technology applicable to multiple military problem domains is growing increasingly. It ranges from Force 
protection, offensive and defensive coalition operations (e.g. coalition urban environment), combat support, 
intelligence, surveillance and reconnaissance missions, mission planning, command and control, logistics and 
emergency management, to name a few [1]. A typical problem domain of interest includes tactical ISTAR, in 
which a swarm of semi-autonomous sensors jointly perform collection tasking to enable and maintain situational 
awareness at the tactical edge. Constrained collection tasking optimization and base-level 
observation/communication actions coordination govern adaptive swarm behavior. Both play a key role in 
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maintaining persistent situational awareness reducing uncertainty (maximize information gain) on state 
estimation while timely informing decision-makers. Key comprehensive references on mobile sensor networks 
may be found in [2] and [3]. Selected surveys on specific unmanned aerial vehicle (UAV) network dimensions 
such as swarming, coverage task planning and communication have alternatively been reported in [4]-[6]. 
Relevant to swarm coordination, reference [7] alternatively proposed a general survey on multi-agent systems. 
Those surveys highlight the various conditions and stringent constraints driving the choice of a particular swarm 
or ad hoc sensor network solution to properly operate at the tactical edge.  

This work focuses on a mobile ad hoc sensor network/swarm collection tasking problem, subject to on-board 
limited processing power and bounded energy budget for data dissemination/communication routing.  Typical 
assets include heterogeneous unmanned fully/semi- autonomous systems/platforms dedicated to collection 
and/or communication. An innovative swarm collection tasking approach is proposed to maintain persistent 
situational awareness in a tactical context. The open-loop with feedback approach aims at maximizing collection 
value to carry out a diversity of collection tasks over a receding time horizon while periodically ensuring 
maximum collection dissemination (to a sink node) subject to energy budget constraints, as well as supporting 
fusion, situational awareness and dynamic retasking/planning. The reported novelties are multifold: A novel 
graph representation to capture combinatorial complexity, and a new mathematical formulation derived from a 
sound approximate decision model exploiting prior knowledge (bounding the number of task visits). Then, 
communication planning/routing aimed at disseminating collection is based either on a minimum spanning tree 
problem solution to minimize energy consumption. Consequently, the approach, allows to significantly expand 
observable areas, and relax myopic planning, improving collection tasking, while providing an upper bound  on 
solution optimality when using exact methods. It also reduces costly energy consumption to ultimately mediate 
fusion and situation awareness, as well as to support next tasking coordination episode through periodic team 
connectivity reinforcement. 

The remainder of the paper is broken down as follows. Section 2 introduces the swarm collection tasking 
problem. A new swarm collection tasking approach is then highlighted in section 3. A general overview is 
presented and its main features underlined. An innovative collection graph representation and a mathematical 
formulation are then further described respectively. Details on the communication planning /routing scheme are 
then presented. Then, problem complexity reduction is briefly discussed in section 4. Finally, the main reported 
contributions and anticipated future work are summarized in section 5. 

2.0 PROBLEM DESCRIPTION 

Given a set of weighted collection requirements/task requests, the basic collection tasking problem consists to 
allocate collection assets or agents a  Ag (e.g. unmanned autonomous systems, unmanned aerial/ground 
vehicles, aircraft/helicopters) to tasks in order to optimize single or multiple objectives (typically to maximize 
collection value) over a predetermined time horizon. It focuses on a mobile ad hoc sensor network/swarm 
collection tasking problem, subject to on-board limited processing power and a bounded energy budget for data 
dissemination/communication routing.  

A typical collection tasking context for ISR mission tasks such as target (e.g. vehicles, weapons) search, 
detection, tracking and identification behavior is pictured in Figure 1. It defines a grid cognitive map 
representation reflecting situational awareness over a specific region of interest, capturing prior knowledge, 
belief and/or known probability distribution on cell occupancy and target behavior. Accordingly, collection 
coordination amongst connected cooperative swarm members (sensor agents) shown in red is mediated by the 
swarm leader (displayed in blue) through centralized planning, to maximize collection value and maintain 
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persistent situational awareness. Collection plan execution is decentralized. The swarm leader interchangeably 
acts as a local sink node consuming sensor readings /observation outcomes from source nodes before achieving 
data fusion, followed by team’s collection task and communication planning. Episodic sink election may be 
determined either randomly based on residual energy level in order to share a fair cost across the swarm, or reuse 
state-of-the art election schemes [8]. 

 

Figure 1 - Swarm Collection Tasking Context. Collection assets (red) include heterogeneous 
unmanned fully/semi- autonomous systems/platforms dedicated to collection and/or 

communication. Coordination is mediated by the swarm leader (blue). 

Maintaining persistent situational awareness aims at maximizing swarm collection value defined as the 
cumulative products of respective task value (weight) and related task plan quality of collection (QoC), summed 
over all visited tasks. It consists to maximize relative coverage on search tasks; maximize probability of success 
over detection/localization/tracking tasks; and maximize information gain (minimize entropy) over 
target/behavior identification tasks.  

3.0 APPROACH OVERVIEW 

3.1 Main Features 
An innovative swarm collection tasking approach aimed at maintaining persistent situational awareness in a 
tactical context is proposed. Using a network flow optimization framework exploiting the new graph 
representation, the approach sequentially maximize overall collection value and periodically maximize 
disseminated collection over receding horizons for a mobile ad hoc swarm, subject to on-board limited 
processing power and bounded energy budget for data dissemination/communication routing. Collection tasking 
is based upon a novel open-loop with feedback (OLF) formulation as shown in Figure 2. Episodic decision-
making is conditioned by incoming requests, cumulative collection value, ongoing resource commitments, 
remaining resource capacity and feedback from the previous stage.  Communication is achieved via periodic 
team connectivity reinforcement (topology control). Accordingly, topology control over agent swarm is ensured 
by either building a minimum spanning tree or solving a separate optimization problem minimizing 
communication cost.  The open-loop with feedback approach aims at maximizing collection value to carry out a 
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diversity of collection tasks over a receding time horizon T while periodically performing maximum collection 
dissemination (to a sink node) at time ∆Td , subject to energy budget constraints, as well as supporting fusion, 
situational awareness and dynamic retasking/planning during time interval ∆Tpl. 

 

Figure 2 - Open-loop with feedback collection tasking optimization over receding time horizon T. An 
episode involves decision (d), collection/observation (ob) and data dissemination (dl) actions. 

3.2 Collection Tasking  
A new network flow optimization –based approach is envisioned to handle the mobile ad hoc sensor 
network/swarm collection tasking problem. It couples adaptive collection tasking and communication planning 
subject to resource capacity constraints (power/fuel, memory storage, duty cycle) over a rolling planning time 
horizon.   

3.2.1  Collection Graph Representation 

A new directed acyclic graph representation for each agent a  Ag is introduced to capture collection asset 
observation moves (opportunities) over a limited time horizon.  The network structure is exploited for an 
episodic collection tasking problem with duration ∆T, including a set of tasks r  M = {1,2,…,m} to be serviced 
by a swarm of sensor agents a in Ag over a receding time horizon T > ∆T, subject to a variety of resource 
capacity, itinerary and time constraints. Collection tasking occur episodically every period ∆T. An agent a 
collection network interleaves two graphs connected via a set of predetermined nodes reflecting candidate 
communication positions for that agent as shown in Figure 3. Each graph is bi-partite including collection site 
nodes and intermediate communication nodes. A first cyclic graph G1(V1,A1) captures legal observation moves 
or collections that can be carried out by the agent a over a period ∆T starting from an origin position node O.  
The set of vertices V1 represents feasible task visits /collection opportunities by the sensor agent. A task can be 
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Figure 3 - Agent Collection Graph with communication at ∆Τ, over planning horizon T (exceeding 
period ∆Τ).  

associated with multiple vertices. Terminal nodes forming a set of vertices Vc  V1 define a communication 
layer. These correspond to predetermined candidate positions that can ensure periodic communication at time 
∆T. Typically, an agent may be located on a specific task site or at one out of K different discrete positions 
determined along a path connecting two task sites, forming the set of communication vertices Vc V1 (| | = 
K(2m(2m-1)/2) + 2m). The set of arcs A1 refers to possible legal node transitions connecting two vertices. A 
second cyclic graph G2(V2,A2) partly overlapping G1(V1,A1)  then depicts longer term path collection planning 

beyond agent communication at ∆T up to the end of time horizon T. Accordingly, the set of vertices G2 first 
shares terminal candidate communication position nodes Vc from G1, before duplicating remaining G1 core  
topology structure including related task/observation nodes. Duplicated task nodes capturing possible moves 
over remaining time horizon T are then connected to a fictitious terminal destination node D. G1 shows a two-
layer structure referring respectively to a first and a possible/optional second visit (collection/observation) to be 
conducted over a given task by the asset if desired. Any path connecting origin O and destination D nodes from 
the graph G1 G2 constitutes a collection path solution for agent a.  

An integer binary decision variable xia related to node visit i V defines a basic agent a path’s construct. 
Accordingly, a path solution for sensor agent a includes vertex i if xia =1. A service time svcia is associated with 
each task collection site i accounting for observation duration by agent a. The decision variables xia are coupled 
to binary flow decision variables uija characterizing node transition from i to j (uija = 1). A travel time travelija is 
associated with each node transition to cover the distance separating i and j. Agent a communication occurring at 
time ∆T is mediated through xka binary decision variables reflecting candidate position nodes k  Vc to ensure 
periodic information exchange. Therefore, assuming to visit a node at most once, a feasible sensor agent path 
solution may be built by moving along arcs across the directed acyclic network G(V,A) = G1(V1,A1)  G2(V2,A2) 
connecting O to D nodes, while instantiating a sequence of flow decision variables along the way. It should be 
noticed that the selected acyclic agent graph representation keeps polynomial the number of vertices and arcs in 
the problem size, with set cardinality  O(m2K). 
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3.2.2 Connectivity  

Periodic swarm connectivity is imposed to support observation outcomes dissemination, data/information fusion, 
situation assessment and replanning at the sink node.  It is ensured through a novel constraint formulation 
iteratively connecting respective agent position node at ∆T to one another. Based on an iterative neighborhood 
construction Sl  set procedure establishing for a sensor agent a degree of linkage l reflecting the number of hops 
necessary to reach a predetermined  sink position node, overall connectivity is originally achieved using a simple 
linear formulation to reinforce a natural flow between consecutive Sl  sets. Figure 4 pictures a specific 
swarm/team configuration dividing the swarm in two sets to ensure agent node connectivity. 

 
Figure 4 – Sensor agents divided in 2 sets S1 and S2, respectively based on hop distance to the 

centrally located sink node. 

Iterative neighborhood construction set procedure - Disjoint sets Sl of possible periodic agent position 
nodes (k,a)  are first iteratively pre-generated for l = 0,1,2,…,  based on single hop distance with 
neighbor agent positions, to feasibly and ultimately disseminate information (e.g. cumulative observation 
outcomes) to a  sink (leader) located l-hop away to a predetermined rendezvous position kRDV.   

N0 =  set of possible agent position nodes (k ,a) at ∆T  
S0 = {(initial position, sink)} 
l=1 
while (Sl-1 ≠ ) do 

Sl: {agent position nodes (k ,a) in Nl =N0|  having 1-hop distance from 
Sl-1 and then, l-hop distance with sink node} 

 Agent position node (k ,a) is  within 1-hop distance (or adjacent) from (k’,a’) if  both 
agents a,a’ can mutually exchange/ communicate  (k’,a’) is within (k ,a)‘s  
communication range. Such condition can be verified through a pre-computed binary 
adjacency matrix    

l=l+1 
end while  
 L=l-1   
Return Sl and L for l = 0,1,2,...,L 
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Computational complexity of the neighborhood generation procedure  O(( )2) and can be computed 
offline. Exploiting the sets Sl an innovative linear inequality constraint set can be specified to iteratively 
reinforce swarm connectivity. Inspired from a formulation for a flow conservation constraint in directed acyclic 
graphs, the proposed inequality expression ensures an agent currently located to a position in Sl to be 
successfully connected to at least 1-hop neighbor agent whose current location is in Sl-1, one hop closer to the 
sink. The detailed mathematical connectivity constraint formulation is given in the next section.  

3.2.3 Mathematical Decision Model 

The approach relies on a mathematical quadratic programming formulation exploiting problem structure 
(collection graph or network) and prior domain knowledge to compute an efficient solution. Departing from a 
general complex non-linear objective function supporting multiple collector assignments on every task, it relies 
on an approximate objective function enabling utilization of well-known commercially available exact problem-
solving techniques such as CPLEX [9]. It is founded on a limited Taylor series expansion of the original 
objective function, coupled with a maximum number of visits (2 or 3) constraint to pay on a task, a typical 
feature observed on high-quality computed path solutions.  

The parameters and variables used to specify the basic problem model formulation are described as follows: 

H: mission time horizon 

T: receding planning time horizon  

∆T: communication period  

SEQ: integer parameter exceeding maximum number of nodes any agent path solution can include over 
horizon T. 

Task requests: 

M: set of task requests r {1,2,…,m} 

vr : value of task r 

Ar : area of interest (AOI) of task request r 

 : task r time window visit lower bound 

: task r time window visit upper bound 
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Collection assets/agents: 

Ag: set of heterogeneous assets/agents a  
{1,2,…,n}  

dist_maxa: maximum cumulative distance (duty 
cycle) characterizing an agent a  path 
solution (equivalent to a traveling energy 
budget). 

: asset a collection energy capacity/budget 

eoa:   energy consumption rate for a collection 
opportunity/observation  by asset a 

esa:  energy consumption rate for collection 
opportunity transition by asset a 

setupa: set-up time of collection asset a  

:  asset a communication energy 
capacity/budget 

Transition: 

travelija: agent a transition/travel time associated 
with vertex transition from i to j. It corresponds 
to the distance distij over agent a velocity ratio.  

distij: distance separating vertices i and j.   

 

Collection/observation opportunities: 

tia: agent a collection opportunity i visit time,  
i . 

svcia: agent a service and set-up time associated 
with collection opportunity i . 

pia: probability of successful agent a observation 
associated with collection opportunity i  

qia : normalized aggregated quality of collection 
associated with agent a assignment to collection 
opportunity i. 0 ≤ qia  ≤ 1. It reflects a task-
dependent measure of performance that can be 
derived from a mixture of prior knowledge, 
prediction models, simulation and/or subproblem 
optimization using a fast task-dependent planning 
heuristic.  

qiai’a’ :  normalized compound/fused/ aggregated 
quality of collection associated with agent a and 
a’ assignments to collection opportunity i and i′ 
respectively, related to a given task. 0 ≤  qiai’a’≤ 1 

costia: agent a observation cost associated with 
collection opportunity i 

costmax: maximum financial budget associated with 
team collection observation  

Connectivity:  

kRDV: predetermined sink (leader) rendezvous 
position at ∆T. k RDV . 

Sl: set of agent position nodes (k ,a)  
within l-hop distance from the rendezvous sink 
position node at ∆T. 

L: Maximum length/extent of the agent 
swarm/network ensuring connectivity at ∆T. 

 

 binary adjacency matrix reflecting that agent 
a’ located in position k’  and agent a located in 
position k  are within respective communication 
range and can mutually exchange (or not)   | | = 
mK 

Communication: 

svcia: agent a service time associated with vertex 
i , accounting for agent a communication 
duration (assumed to be zero by default to 
maximize planned collection value).  
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Decision variables  

xia: agent a collection network binary decision variable indicating whether node i is scheduled. The 
assignment xia = 1 indicates that vertex i visit is scheduled. Note that for k Vc reflecting candidate 
position nodes ensuring periodic  information exchange at time ∆T, the instantiation xka =1 refers to an 
agent disseminating observation outcomes/ receiving revised collection plan from/in position k. 

uija:  agent a collection network binary flow decision variables characterizing node transition from i to j. 
The assignment uija = 1 indicates a transition from node i to j. 

seqia: integer or real decision variable, serializing visits in the agent a collection network to avoid 
undesirable disjoint directed cycles as subpath solutions. 0 ≤ seqia ≤ SEQ. 

 

The decision model consists in maximizing collection value CV as follows:  

   
Subject to: 

,   
                                       (2) 

Bound on node visits: 
,       (3) 

Periodic communication: 

+ )   
                                                                 (4) 

Planning time horizon: 

+ )        
                                                                (5) 

Itinerary/Duty cycle: 

  
(6) 

Energy collection budget: 

 
+ )                     (7) 

Collection cost: 

                                                                                      (8) 

 

Connectivity: 

           (9) 
= 0                                                                                       (10) 

 

Known sink node position for communication rendezvous RDV: 

                                                                                                                   (11) 
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Flow Conservation: 

 },           (12) 

 

Origin and destination path nodes: 

         (13) 

Disjoint subpath solutions free (prohibited isolated 
cycles): 

)     
                    (i,j) ,         (14) 

SEQ     i ,                      (15) 
                                                   (16) 

       
 

The episodic mixed-integer quadratic program consists in maximizing swarm collection value as governed by 
Eq. (1), subject to constraints (2)-(16). It is defined as the cumulative products of respective task value (weight) 
and related task plan quality of collection, summed over all visited tasks. In Eq.  (1), V(r) V refers to vertices 
relevant to task r. Swarm collection value maximization correlates with persistent situational awareness 
maintenance and may be expressed  through relative coverage over search tasks, probability of success over 
detection/localization/tracking tasks and information gain (minimize entropy) over target/behavior identification 
tasks. Explicit quality of collection functions involving various sensor mix utilization for such tasks may be 
found in [10]. Constraint sets (2)-(3) capture node visit and flow variables relationship and, a single node visit at 
most. Expressions (4)-(5) reflect gent path solution temporal constraints. Inequalities (6)-(8) refer respectively to 
episodic maximum traveling distance defining a duty cycle, an energy budget devoted to collection activities and 
a financial budget associated to each visit. Periodic swarm/network connectivity is translated by the constraint 
formulation (9)-(11), based on iterative neighborhood sets construction. Combined with flow conservation, 
inequality (9) iteratively ensures swarm connectivity, connecting agents positioned in consecutive neighborhood 
sets Sl and  Sl-1 distanced by one hop, back-propagating up to the sink position. The latter naturally imposes all 
current agent positions at time ∆T to be part of neighborhood sets, a condition reinforced by inequality (10) to 
exclude disconnected/prohibited communication zones, and subject to a known predetermined sink location at 
∆T expressed by Eq. (11) to ensure a link to a remote base/command station. Graph flow conservation is ensured 
through constraints sets (12)-(13). Inequalities (14)-(15) prohibit unsuitable disjoint cyclic subpath components, 
imposing an implicit order by sequencing node visits. Should task time windows be considered, inequalities 
(14)-(15) would be modified to introduce a continuous node time variables  defining effective node i 

visit time in order to meet visit ordering/precedence and time window (  constraints 

respectively: 

)              (14’) 

                                                                 (15’) 

 
Binary integer and continuous decision variable domains are specified in expressions (16). 
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3.3 Communication Planning/Routing 
Cumulative sensor observations and task plan dissemination between sensor agents is assumed to be driven by 
limited on-board sensor power budget making casual information-sharing via intermittent contacts very costly. 
This energy-constrained communication condition rather imposes the swarm to adopt a suitable topological 
configuration to ensure periodic connectivity. Information-sharing is devoted to disseminate observation 
outcomes and to enable centralized sensor fusion and episodic dynamic replanning at the sink site. 

Periodic data dissemination enabling feasible sensor data routing is facilitated through an innovative linear 
constraint formulation based on recurrent node neighborhood construction, reinforcing sensor network 
connectivity or topology control at the end of each period. Relieved from maintaining persistent connectivity, 
collector network nodes can then cost-effectively reach attractive distant sites, improving overall situational 
awareness. Observations locally collected by sensor agents are then disseminated toward the sink node at the end 
of each episode. Dissemination is based on a minimum spanning tree agent network (swarm) solution over an 
undirected graph, minimizing overall communication cost. A minimum spanning arborescence extracted from a 
directed graph would alternatively be derived should asymmetric communication be considered. A minimum 
spanning tree is a subset of weighted edges extracted from a connected graph relating all vertices together, 
without any cycles and with the minimum possible total edge weight (e.g. communication cost) as shown in 
Figure 5. Such a tree is generated at the sink site in polynomial time using Kruskal’s method [11] for an 
undirected graph or Edmond’s algorithm [12] for a directed graph. It can be exploited to both ensure collected 
data dissemination and, local sensor agent retasking over the next episode. Consequently, the resulting tree 
structure may be shared across the team, making members topology-aware ahead of time. Accordingly, 
topology-awareness at communication time enables swarm nodes (sorted in decreasing hop-distance order to the 
sink) to easily and quickly derive low cost message routing tables. It minimizes overall message-passing, further 
down toward the sink, therefore reducing energy consumption to a bare minimum. 

 

Figure 5 – Swarm minimum spanning tree structure shown in red, connecting the root (sink) to other 
sensor agents. Weights on edges refer to communication cost. 

4.0 DISCUSSION - COMPLEXITY REDUCTION 

Problem complexity can be further reduced considering a combination of factors such as temporal discretization, 
shorter planning time horizon, and restricted search space exploration limiting graph node transitions to nearest 
neighbor tasks to overlook unnecessary high cost transitions. Connectivity constrainedness drives also 
complexity as it strongly depends on candidate position set cardinality over possible agent positions to achieve 
periodic communication and information-sharing. Some strategies may nonetheless be envisioned to reduce 
computational complexity and simplify problem-solving. They provide faster computation and easier constraint 
handling at the cost of additional traveling time, energy consumption and opportunity losses resulting in 
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information gain or collection value degradation. A first scheme might consist to bound the number of candidate 
positions sparsely distributed between close/neighbor task sites while ignoring unlikely intermediate positions 
between distant task locations. This comes at the expense of additional waiting time and possibly slight 
collection value degradation.  Distance separating neighbor candidate positions should be larger than minimum 
agent communication range. An alternate strategy is to impose symmetric communication to facilitate 
information-sharing between the sink and agent nodes in both directions. Partitioning sensor agents in subteams 
or confining their movement to a closed neighborhood to ensure periodic local connectivity with the base station 
is another option, but may significantly impact solution quality. At the other end of the spectrum, imposing a 
team rendezvous position among predetermined candidate locations, or simply relying on a subset of dedicated 
agents defining communication hub nodes in a fixed subnetwork guaranteeing periodic swarm connectivity, 
remain of course optional well-known fallback strategies. However, it is unclear that benefits expected from 
those naive and convenient communication schemes will outweigh the multiple collection opportunity losses and 
the additional energy consumption and travel costs incurred by all sensor agents to share information.  

5.0 CONCLUSION  

An innovative swarm collection tasking approach has been proposed to maintain persistent situational awareness 
in a tactical setting. It defines a new open-loop with feedback decision model problem formulation for a mobile 
ad hoc sensor network/swarm aimed at maximizing collection value in servicing a diversity of tasks subject to a 
variety of resource capacity and side constraints. The selection of a centralized decision-making configuration 
mediated through a sink node is mainly driven by energy constraint considerations. Exploiting a new compact 
graph representation to capture combinatorial complexity, and using a sound approximate decision model,  asset 
tasking relies on path planning optimization over a receding time horizon while periodically imposing sensor 
connectivity in order to efficiently support data and plan dissemination enabling fusion, situational awareness 
and dynamic retasking/planning. Accordingly, adaptable to easily reflect or mimic known information-sharing 
schemes, a novel connectivity constraint is introduced to take on the mobile ad hoc sensor swarm collection 
tasking decision model, extending swarm’s ability to better meet task demand. The latter condition plays a key 
role in relaxing artificially imposed connectivity constraints, further expanding observable domain, and reducing 
energy consumption expectedly resulting in additional information gain. The new problem formulation also 
paves the way toward a computable upper bound on solution optimality, if exact problem-solving methods are 
used. 

Future work aims at implementing problem-solving algorithms to carry out comparative performance study as 
well as investigating the relative impact of various swarm communication schemes on collection gains. Other 
research directions include learning collection tasking coordination, collective belief-sharing management, and 
fusion in distributed settings involving multiple co-evolving clusters. Alternative work consists to explore 
adaptive planning and communication coordination under harsh operational conditions, data source 
heterogeneity, and net latency due to unreliable communication channels or node failures. 
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