A geometric approach to passive target localization

S. Wong, R. Jassemi, D. Brookes, B. Kim
Space and ISR Applications Section
DRDC Ottawa, Canada

NATO 9-th Military Sensing Symposium
May 31-June 2, 2017
Quebec City, Canada
Drone surveillance can pose a threat

- A popular use of drones is in surveillance
- Some of the surveillance activities may present security concerns in a number of scenarios
- A situational awareness capability of the drone’s presence is desirable
Drones are getting harder to detect

- Small size, low thermal signature, non-reflective radar materials
- Can be camouflaged and capable of hiding in a non-conspicuous location (e.g., perching on tree branches)
- These drones may present a challenge to EO, IR and radar detection and target localization
Radio-Frequency (RF) emission for detection and target localization

- As an alternative, RF signals emitted by the drones can be exploited for detection and localization.
- RF: remote piloting (First Person View) image transmission (HD/UHD videos and pictures).
- Time-Difference-Of-Arrival (TDOA) method can be used to process the detected RF signals and to find the target location.
- The TDOA method is also capable of detecting and locating multiple moving targets simultaneously.
Estimating target location by **Time-Difference-Of-Arrival (TDOA)**

- A geometric approach to solving the TDOA problem will be presented
- It offers a simpler and more intuitive way to solve the problem
 - as an alternative to the conventional iterative numerical methods
- It may offer a means to provide real-time multi-target localization
The TDOA problem:

\[\begin{align*}
d_{12} &= c\tau_{12} = r_1 - r_2 \\
d_{34} &= c\tau_{34} = r_3 - r_4 \\
d_{14} &= c\tau_{14} = r_1 - r_4
\end{align*} \]

- **Equations** express the time difference of a signal arriving at a pair of receivers.
- **4 receivers** needed to obtain 3 independent TDOA measurements, \(d_{ij} \)
- **3 equations** to compute the target location \((x,y,z)\)

\(d_{ij} \) is the TDOA measurement (range difference)
\(\tau_{ij} = \tau_i - \tau_j \) is the TDOA; \(d_{ij} = c \tau_{ij} \)

\(r_i \) is the distance between the target and receiver \(i \)

\[r_i(x, y, z) = \sqrt{(x - X_i)^2 + (y - Y_i)^2 + (z - Z_i)^2} \]
TDOA measurements d_{ij}

- The d_{ij} measurements are made by cross-correlating the signals detected by a pair of receivers
 - d_{12} (receiver-pair S1-S2), d_{34} (S3-S4), d_{14} (S1-S4)

- The cross-correlation is obtained using a matched filter

\[
\chi(\tau_{ij}, f_{D,ij}) = \int \mu_i(t - t'(\tau_i, f_{D,i})) \mu^*_j(t - t'(\tau_j, f_{D,j})) dt
\]

\[
\tau_{ij} = \tau_i - \tau_j \quad \text{(TDOA, time-difference-of-arrival)}
\]

\[
f_{D,ij} = f_{D,i} - f_{D,j} \quad \text{(FDOA, frequency-difference-of-arrival)}
\]

The peak of the cross-correlation gives the $d_{ij} (=c\tau_{ij})$ value
Solving the TDOA Equations for the target location \((x,y,z)\)

\[
d_{12} = r_1 - r_2 \\
d_{34} = r_3 - r_4 \\
d_{14} = r_1 - r_4
\]

\[
r_i = \sqrt{(x - X_i)^2 + (y - Y_i)^2 + (z - Z_i)^2}; \quad i = 1, 2, 3, 4
\]

- A set of 3 non-linear equations
- Conventionally solved by iterative numerical methods (e.g., Least Square)
- Complex algorithms and require an initial value; bad guess means slower convergence, hence long computation time
Geometric approach to solving the TDOA equations

TDOA equations:

\[d_{ij} = r_i - r_j \]

\[= \sqrt{(x - X_i)^2 + (y - Y_i)^2 + (z - Z_i)^2} - \sqrt{(x - X_j)^2 + (y - Y_j)^2 + (z - Z_j)^2} \]

- Using geometry, each TDOA equation can be solved individually.
- The solution is given by a hyperboloid,

\[\frac{x' \,^2}{(d_{ij}^2 / 4)} - \left(\frac{y' \,^2}{(d^2 / 4) - (d_{ij}^2 / 4)} + \frac{z' \,^2}{(d^2 / 4) - (d_{ij}^2 / 4)} \right) = 1 \]

in a local coordinate system \((x', y', z')\) (target)

where \((X'_1, Y'_1, Z'_1) = (-d/2, 0, 0), \) (S1)
\((X'_2, Y'_2, Z'_2) = (+d/2, 0, 0), \) (S2)

\(d_{ij}\) = TDOA measurement

\(d\) = distance between the two receivers
TDOA solution = hyperboloid

\[d_{ij} = r_i - r_j \quad \text{TDOA equation} \]

Solution:

\[
\frac{x'^2}{(d_{ij}^2 / 4)} - \left(\frac{y'^2}{(d_{ij}^2 / 4)} + \frac{z'^2}{(d_{ij}^2 / 4)} \right) = 1
\]

- Positive \(d_{ij} \), right hand side surface \((r_i > r_j)\);
 negative \(d_{ij} \), left hand side surface \((r_i < r_j)\).

- The target is somewhere on the surface of the hyperboloid
- Since the +/− sign of d_{ij} is known from the cross-correlator, and knowing the target is above ground, we can further narrow down the target’s location.

- Do the same for the other 2 equations (i.e., receiver pairs S3-S4 and S1-S4)

- Hence obtain 3 hyperboloids as solutions for the 3 TDOA equations

- The 3 hyperboloids are then used to pinpoint the target’s location.
Target localization from intersection of 3 hyperboloids

4 receivers in a “forward-looking” system configuration, with 3 receiver-pairs: S1-S2, S3-S4, S1-S4

- Place the 3 hyperboloids in the same orientations as the receiver pairs in the system configuration
- The 3 hyperboloids will intersect with one another
- The target location is where the 3 hyperboloids intersect at one point \((x,y,z)\)
The intersection point is searched by scanning the intersecting hyperboloids layer by layer along z.

This intersection point is found at z where the 3 intersecting hyperbolic curves form the smallest area (i.e., the sharpest point).
The positioning precision of the hyperboloid depends on the accuracy of d_{ij}.

If TDOA measurements (d_{ij}) have very small error, then target localization would be very accurate because the hyperboloids can be placed precisely.

Using error-free d_{ij} measurements

<table>
<thead>
<tr>
<th>Time (arb.unit)</th>
<th>Target ground truths (m)</th>
<th>Computed target locations (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X_{Tg}</td>
<td>Y_{Tg}</td>
</tr>
<tr>
<td>1</td>
<td>-660.00</td>
<td>9998.50</td>
</tr>
<tr>
<td>2</td>
<td>-608.44</td>
<td>9328.48</td>
</tr>
<tr>
<td>3</td>
<td>-556.89</td>
<td>8658.46</td>
</tr>
<tr>
<td>4</td>
<td>-505.33</td>
<td>7988.44</td>
</tr>
<tr>
<td>5</td>
<td>-453.78</td>
<td>7318.42</td>
</tr>
<tr>
<td>6</td>
<td>-402.22</td>
<td>6648.40</td>
</tr>
<tr>
<td>7</td>
<td>-350.67</td>
<td>5978.38</td>
</tr>
<tr>
<td>8</td>
<td>-299.11</td>
<td>5308.36</td>
</tr>
<tr>
<td>9</td>
<td>-247.56</td>
<td>4638.34</td>
</tr>
<tr>
<td>10</td>
<td>-196.00</td>
<td>3968.32</td>
</tr>
</tbody>
</table>
TDOA measurements deviated from the error-free values

- Real TDOA measurements \((d_{ij}) \) have errors
- The errors are characterized by the Cramer-Rao Lower Bound variance \(\sigma^2 \)
- The standard deviation ("root mean square error"),
 \[
 \sigma \geq \frac{1}{\beta \sqrt{6.5 \text{SNR}}}
 \]
- \(\sigma \) is dependent on signal bandwidth \(\beta \) and SNR
- Drone’s emitting signal bandwidths:
 - 1-3 MHz (telemetry data)
 - 15 MHz (first person view)
 - 20 MHz (UHD videos)
- \(\text{SNR} = 16 \) (12 dB) “detection threshold” of signals
- \(\sigma \approx 10^{-8} – 10^{-7} \) s
- Error for \(d_{ij} \):
 \[
 \varepsilon = c \sigma \approx 3 – 30 \text{ m} \quad (c = \text{speed of light})
 \]
TDOA measurements \((d_{ij}) \) with large deviations from the error-free values

- \(\epsilon = c\sigma = 30 \, \text{m} \)
- \(\sigma \) parameters: \(\beta = 1 \, \text{MHz}, \, \text{SNR} = 12 \, \text{dB} \)

<table>
<thead>
<tr>
<th>Time (arb.unit)</th>
<th>Target ground truths (m)</th>
<th>Computed target locations (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(X_{T_g})</td>
<td>(Y_{T_g})</td>
</tr>
<tr>
<td>1</td>
<td>-660.00</td>
<td>9998.50</td>
</tr>
<tr>
<td>2</td>
<td>-608.44</td>
<td>9328.48</td>
</tr>
<tr>
<td>3</td>
<td>-556.89</td>
<td>8658.46</td>
</tr>
<tr>
<td>4</td>
<td>-505.33</td>
<td>7988.44</td>
</tr>
<tr>
<td>5</td>
<td>-453.78</td>
<td>7318.42</td>
</tr>
<tr>
<td>6</td>
<td>-402.22</td>
<td>6648.40</td>
</tr>
<tr>
<td>7</td>
<td>-350.67</td>
<td>5978.38</td>
</tr>
<tr>
<td>8</td>
<td>-299.11</td>
<td>5308.36</td>
</tr>
<tr>
<td>9</td>
<td>-247.56</td>
<td>4638.34</td>
</tr>
<tr>
<td>10</td>
<td>-196.00</td>
<td>3968.32</td>
</tr>
</tbody>
</table>
TDOA measurements \((d_{ij}) \) with a smaller error

- \(\epsilon = 1.5 \text{ m} \)
- \(\sigma \) parameters: \(\beta = 20 \text{ MHz} \), \(\text{SNR} = 12 \text{ dB} \)

<table>
<thead>
<tr>
<th>Time (arb.unit)</th>
<th>(X_{Tg})</th>
<th>(Y_{Tg})</th>
<th>(Z_{Tg})</th>
<th>(x)</th>
<th>(y)</th>
<th>(z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-660.00</td>
<td>9998.50</td>
<td>1000.00</td>
<td>-658.36</td>
<td>9985.12</td>
<td>1000.00</td>
</tr>
<tr>
<td>2</td>
<td>-608.44</td>
<td>9328.48</td>
<td>1000.00</td>
<td>-607.37</td>
<td>9320.40</td>
<td>1000.00</td>
</tr>
<tr>
<td>3</td>
<td>-556.89</td>
<td>8658.46</td>
<td>1000.00</td>
<td>-556.09</td>
<td>8649.78</td>
<td>1000.00</td>
</tr>
<tr>
<td>4</td>
<td>-505.33</td>
<td>7988.44</td>
<td>1000.00</td>
<td>-504.86</td>
<td>7981.78</td>
<td>1000.00</td>
</tr>
<tr>
<td>5</td>
<td>-453.78</td>
<td>7318.42</td>
<td>1000.00</td>
<td>-452.51</td>
<td>7313.34</td>
<td>1000.00</td>
</tr>
<tr>
<td>6</td>
<td>-402.22</td>
<td>6648.40</td>
<td>1000.00</td>
<td>-401.72</td>
<td>6644.95</td>
<td>1000.00</td>
</tr>
<tr>
<td>7</td>
<td>-350.67</td>
<td>5978.38</td>
<td>1000.00</td>
<td>-349.92</td>
<td>5975.92</td>
<td>1000.00</td>
</tr>
<tr>
<td>8</td>
<td>-299.11</td>
<td>5308.36</td>
<td>1000.00</td>
<td>-298.84</td>
<td>5306.21</td>
<td>1000.00</td>
</tr>
<tr>
<td>9</td>
<td>-247.56</td>
<td>4638.34</td>
<td>1000.00</td>
<td>-247.41</td>
<td>4636.79</td>
<td>1000.00</td>
</tr>
<tr>
<td>10</td>
<td>-196.00</td>
<td>3968.32</td>
<td>1000.00</td>
<td>-195.37</td>
<td>3966.59</td>
<td>1000.00</td>
</tr>
</tbody>
</table>
Summarize briefly:

- The target localization accuracy is fundamentally linked to the signal’s bandwidth and the SNR via the Cramer-Rao Lower Bound relation that characterizes the error in the TDOA measurements (d_{ij})
Multi-targets detection and localization

- Drones are becoming cheaper and more accessible
- Use of multiple drones in surveillance will become more likely and may even be a norm
- An effective drone detection system must be able to detect and localize multiple targets simultaneously and in real-time in order to deal with the threats
- There has not been much work published on multi-target localization
- Applying the geometric method to multi-target localization
A 7-target scenario

Open circles:
TDOA measurements made by the receiver pairs
S1-S2
S3-S4
S1-S4
at 10 time instants

target altitude = 1000 m
Multiple Target Localization Scenario

- Each receiver-pair detects 7 targets and generates 7 TDOA d_{ij}; i.e.,
 - S1-S2: 7 d_{12} values
 - S3-S4: 7 d_{34} values
 - S1-S4: 7 d_{14} values

- 3 sets of 7 TDOA measurements (d_{ij}) feeding the TDOA equations

- Need to search a n^3 permutation ($7^3 = 343$ sets) of TDOA ($3-d_{ij}$) combinations to determine the locations of the 7 targets

- TDOA equations have to be solved 343 times; this requires a bit of computing time

TDOA equations:

\[
\begin{align*}
 d_{12} &= r_1 - r_2 \\
 d_{34} &= r_3 - r_4 \\
 d_{14} &= r_1 - r_4
\end{align*}
\]
Target localization results for the case, $\varepsilon = 1.5$ m (TDOA measurement error)

- 5 target mis-locations occur
- They are due to combinations of d_{ij} values in the permutation that are not all from the same target, but have nonetheless generated the sharpest intersection point from the 3 intersecting hyperboloids
- Mis-locations are due to the TDOA measurements (d_{ij}) having too large an error ε

- target ground truth (x,y)
- computed location (x,y)
Reducing TDOA error to $\varepsilon = 0.15 \text{ m}$ (from 1.5)

$\beta = 20 \text{ MHz, SNR} = 32 \text{ dB}$

For multi-target localization, the TDOA error ε should be kept small to minimize mis-locations

<table>
<thead>
<tr>
<th>time</th>
<th>T#5</th>
<th>T#3</th>
<th>T#7</th>
<th>T#1</th>
<th>T#6</th>
<th>T#2</th>
<th>T#4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1000.00</td>
<td>1000.00</td>
<td>1000.00</td>
<td>1000.00</td>
<td>1000.00</td>
<td>1000.00</td>
<td>1000.00</td>
</tr>
<tr>
<td>2</td>
<td>1000.00</td>
<td>1000.00</td>
<td>1000.00</td>
<td>1000.00</td>
<td>1000.00</td>
<td>1000.00</td>
<td>1000.00</td>
</tr>
<tr>
<td>3</td>
<td>1000.00</td>
<td>1000.00</td>
<td>1000.00</td>
<td>1000.00</td>
<td>1000.00</td>
<td>1000.00</td>
<td>1000.00</td>
</tr>
<tr>
<td>4</td>
<td>1000.00</td>
<td>1000.00</td>
<td>1000.00</td>
<td>1000.00</td>
<td>1000.00</td>
<td>1000.00</td>
<td>1000.00</td>
</tr>
<tr>
<td>5</td>
<td>1000.00</td>
<td>1000.00</td>
<td>1000.00</td>
<td>1000.00</td>
<td>1000.00</td>
<td>1000.00</td>
<td>1000.00</td>
</tr>
<tr>
<td>6</td>
<td>1000.00</td>
<td>1000.00</td>
<td>1000.00</td>
<td>1000.00</td>
<td>1000.00</td>
<td>1000.00</td>
<td>1000.00</td>
</tr>
<tr>
<td>7</td>
<td>1000.00</td>
<td>1000.00</td>
<td>1000.00</td>
<td>1000.00</td>
<td>1000.00</td>
<td>1000.00</td>
<td>1000.00</td>
</tr>
<tr>
<td>8</td>
<td>1000.00</td>
<td>1000.00</td>
<td>1000.00</td>
<td>1000.00</td>
<td>1000.00</td>
<td>1000.00</td>
<td>1000.00</td>
</tr>
<tr>
<td>9</td>
<td>1000.00</td>
<td>1000.00</td>
<td>1000.00</td>
<td>1000.00</td>
<td>1000.00</td>
<td>1000.00</td>
<td>1000.00</td>
</tr>
<tr>
<td>10</td>
<td>1000.00</td>
<td>1000.00</td>
<td>1000.00</td>
<td>1000.00</td>
<td>1000.00</td>
<td>1000.00</td>
<td>1000.00</td>
</tr>
</tbody>
</table>

actual target altitude = 1000 m

= ground truth

= computed target location (x,y)
Geometric approach to achieve real-time multi-target localization?

- The geometry-based solution is not real-time
- Most of the computing time is spent on the hyperboloids

<table>
<thead>
<tr>
<th>n (no. of targets detected)</th>
<th>t (non-coplanar receiver configuration) per time instant of sampling</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18.6s</td>
</tr>
<tr>
<td>3</td>
<td>56.1</td>
</tr>
<tr>
<td>7</td>
<td>147.1</td>
</tr>
<tr>
<td>10</td>
<td>236.0</td>
</tr>
</tbody>
</table>

- Real-time via the geometric method: each of the 3 TDOA Equations is solved individually (i.e., computing a hyperboloid)

$$d_{12} = r_1 - r_2 \quad \Rightarrow \quad \text{hyperboloid1}$$
$$d_{34} = r_3 - r_4 \quad \Rightarrow \quad \text{hyperboloid2}$$
$$d_{14} = r_1 - r_4 \quad \Rightarrow \quad \text{hyperboloid3}$$

- The hyperboloids can be pre-computed for a range of different d_{ij} values for each of the 3 TDOA equations and stored as look-up tables to save considerable computing time
Approach to real-time multi-target processing

\[d_{ij} = r_i - r_j \]

\[
\frac{x'\,^2}{(d_{ij}^2 / 4)} - \left(\frac{y'\,^2}{(d^2 / 4) - (d_{ij}^2 / 4)} + \frac{z'\,^2}{(d^2 / 4) - (d_{ij}^2 / 4)} \right) = 1
\]

- Each single TDOA equation has a hyperboloid as solution
- \(d \) is the known separation distance between a pair of receivers
- \(-d < d_{ij} < d\)
- For a given TDOA error \(\varepsilon \), there are \((2d/\varepsilon + 1)\) possible \(d_{ij} \) values
- \((2d/\varepsilon + 1)\) hyperboloids can be pre-computed and stored as look-up tables
Number of look-up tables for the hyperboloids

TDOA error: \(\epsilon = 1.5 \text{m} \)

(\(\sigma \) parameters: \(\beta = 20 \) MHz, SNR=12dB)

+ detection system size with \(d \) as shown on the left

of hyperboloids = \((2d/\epsilon + 1)\)

13334 \((S1-S4)\)

6417 \((S1-S2)\)

6417 \((S3-S4)\)

= 26168 (total)

hyperboloids to be pre-computed and stored as look-up tables; each corresponds to a specific \(d_{ij} \) value.

This total is applicable to any \(n \)-target scenarios, as long as the correlator can resolve 2 targets to within \(\epsilon \).

Assume FPV transmitter power = 500 mW
How multi-target localization in real-time could be achieved

- Use look-up tables
 - Large data storage capacity and fast data retrieval algorithms make this viable

- Apply parallel computing algorithms
 - The n^3 permutation is highly parallel in computing structure

- Using both look-up tables and multi-core parallel computing, real-time (~ 1s) multi-target localization may be realizable
Thank you
Computing time: coplanar vs non-coplanar

Table 5.10: Computation time consumed in target localization processing for different number of targets detected using sequential processing.

<table>
<thead>
<tr>
<th>n (no. of targets detected)</th>
<th>t (coplanar configuration)</th>
<th>t (non-coplanar configuration)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.4s</td>
<td>18.6s</td>
</tr>
<tr>
<td>3</td>
<td>2.8</td>
<td>56.1</td>
</tr>
<tr>
<td>7</td>
<td>30.8</td>
<td>147.1</td>
</tr>
<tr>
<td>10</td>
<td>89.5</td>
<td>236.0</td>
</tr>
</tbody>
</table>
Parallel structure in permutation

<table>
<thead>
<tr>
<th></th>
<th>Target #1</th>
<th>Target #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1-S2</td>
<td>A</td>
<td>D</td>
</tr>
<tr>
<td>S3-S4</td>
<td>B</td>
<td>E</td>
</tr>
<tr>
<td>S1-S4</td>
<td>C</td>
<td>F</td>
</tr>
</tbody>
</table>

permutations:

ABC
ABF
AEC
AEF
DBC
DBF
DEC
DEF
Numerical method and closed-form solutions need to solve 3 TDOA equations simultaneously

\[d_{12} = c\tau_{12} = r_1 - r_2 \]
\[d_{34} = c\tau_{34} = r_3 - r_4 \]
\[d_{14} = c\tau_{14} = r_1 - r_4 \]

Pre-computing needs combinations of 3 \(d_{ij} \) values as one single set. The no. of permutated sets required \(6417 \times 6417 \times 13334 \approx 5 \times 10^{11} \)
Coplanar receiver configuration

- 4 receivers are located at the same $z = 0$ level
- $\beta = 1$ MHz, SNR = 16, $\varepsilon = 30$ m

<table>
<thead>
<tr>
<th>Time (arb. unit)</th>
<th>X_{Tg}</th>
<th>Y_{Tg}</th>
<th>Z_{Tg}</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-660.00</td>
<td>9998.50</td>
<td>1000.00</td>
<td>-649.17</td>
<td>9889.12</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>-608.44</td>
<td>9328.48</td>
<td>1000.00</td>
<td>-700.88</td>
<td>9881.41</td>
<td>3660.00</td>
</tr>
<tr>
<td>3</td>
<td>-556.89</td>
<td>8658.46</td>
<td>1000.00</td>
<td>-803.17</td>
<td>10144.20</td>
<td>6610.00</td>
</tr>
<tr>
<td>4</td>
<td>-505.33</td>
<td>7988.44</td>
<td>1000.00</td>
<td>-490.19</td>
<td>7932.89</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>-453.78</td>
<td>7318.42</td>
<td>1000.00</td>
<td>-438.48</td>
<td>7262.07</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>-402.22</td>
<td>6648.40</td>
<td>1000.00</td>
<td>-391.61</td>
<td>6549.75</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>-350.67</td>
<td>5978.38</td>
<td>1000.00</td>
<td>-485.88</td>
<td>6316.99</td>
<td>5650.00</td>
</tr>
<tr>
<td>8</td>
<td>-299.11</td>
<td>5308.36</td>
<td>1000.00</td>
<td>-292.53</td>
<td>5252.69</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>-247.56</td>
<td>4638.34</td>
<td>1000.00</td>
<td>-242.15</td>
<td>4595.37</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>-196.00</td>
<td>3968.32</td>
<td>1000.00</td>
<td>-187.34</td>
<td>3950.14</td>
<td>0</td>
</tr>
</tbody>
</table>
Coplanar receiver configuration

- 4 receivers are located at the same $z = 0$ level
- $\beta = 20$ MHz, SNR = 16, $\varepsilon = 1.5$ m

Table 4.5

<table>
<thead>
<tr>
<th>Time (arb.unit)</th>
<th>X_{Tg}</th>
<th>Y_{Tg}</th>
<th>Z_{Tg}</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-660.00</td>
<td>9998.50</td>
<td>1000.00</td>
<td>-659.84</td>
<td>9994.90</td>
<td>1080.00</td>
</tr>
<tr>
<td>2</td>
<td>-608.44</td>
<td>9328.48</td>
<td>1000.00</td>
<td>-609.10</td>
<td>9332.24</td>
<td>1130.00</td>
</tr>
<tr>
<td>3</td>
<td>-556.89</td>
<td>8658.46</td>
<td>1000.00</td>
<td>-561.09</td>
<td>8678.75</td>
<td>1270.00</td>
</tr>
<tr>
<td>4</td>
<td>-505.33</td>
<td>7988.44</td>
<td>1000.00</td>
<td>-504.69</td>
<td>7981.44</td>
<td>1020.00</td>
</tr>
<tr>
<td>5</td>
<td>-453.78</td>
<td>7318.42</td>
<td>1000.00</td>
<td>-461.56</td>
<td>7355.42</td>
<td>1520.00</td>
</tr>
<tr>
<td>6</td>
<td>-402.22</td>
<td>6648.40</td>
<td>1000.00</td>
<td>-403.99</td>
<td>6653.53</td>
<td>1150.00</td>
</tr>
<tr>
<td>7</td>
<td>-350.67</td>
<td>5978.38</td>
<td>1000.00</td>
<td>-353.01</td>
<td>5984.02</td>
<td>1250.00</td>
</tr>
<tr>
<td>8</td>
<td>-299.11</td>
<td>5308.36</td>
<td>1000.00</td>
<td>-293.74</td>
<td>5301.20</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>-247.56</td>
<td>4638.34</td>
<td>1000.00</td>
<td>-258.45</td>
<td>4619.69</td>
<td>1900.00</td>
</tr>
<tr>
<td>10</td>
<td>-196.00</td>
<td>3968.32</td>
<td>1000.00</td>
<td>-193.72</td>
<td>3976.66</td>
<td>720.00</td>
</tr>
</tbody>
</table>