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ABSTRACT  
Object Detection is critical for automatic military operations. However, the performance of current object 
detection algorithms is deficient in terms of the requirements in military scenarios. This is mainly because the 
object presence is hard to detect due to the indistinguishable appearance and dramatic changes of object's 
size which is determined by the distance to the detection sensors.   Recent advances in deep learning have 
achieved promising results in many challenging tasks. The state-of-the-art in object detection is represented 
by convolutional neural networks (CNNs), such as the fast R-CNN algorithm. These CNN-based methods 
improve the detection performance significantly on several public generic object detection datasets. However, 
their performance on detecting small objects or undistinguishable objects in visible spectrum images is still 
insufficient. In this study, we propose a novel detection algorithm for military objects by fusing multi-channel 
CNNs. We combine spatial, temporal and thermal information by generating a three-channel image, and they 
will be fused as CNN feature maps in an unsupervised manner. The backbone of our object detection 
framework is from the fast R-CNN algorithm, and we utilize cross-domain transfer learning technique to fine-
tune the CNN model on generated multi-channel images. In the experiments, we validated the proposed method 
with the images from SENSIAC (Military Sensing Information Analysis Centre) database and compared it with 
the state-of-the-art. The experimental results demonstrated the effectiveness of the proposed method on both 
accuracy and computational efficiency. 

1.0 INTRODUCTION 

Automatic target detection (ATD) is key to automatic military operations and surveillance missions. In a 
military mission, sensors can be placed on the ground or mounted on unmanned aerial vehicles(UAVs) and 
unmanned ground vehicles (UGVs) to acquire information. The acquired sensory data will be processed using 
ATD algorithms which aim to find bounding boxes where the targets can be located. Fast and accurate object 
detector can increase lethality and survivability of the weapon platform/soldiers. Whether the tactical scenario 
is the onslaught of an array of combat vehicles coming through the Fulda Gap, which was feared during the 
Cold War [1], or the identification of humans with intent to kill in an urban scene, the identification of the 
threat for avoidance and engagement is paramount to survival and threat neutralization. 

Numerous ATD algorithms have been proposed during past decades. Generally, these algorithms can be 
classified into two main categories: 1) background modeling approaches, 2) and learning-based approaches. 

Background modeling approaches assume that background pixels have a similar color (or intensity) over time 
in a fixed camera, and the background model is built on this assumption. The background is abstracted from 
the input image, and the foreground (moving objects) region is determined by marking the pixels in which a 
significant difference occurs. In [2], the authors modeled the background using a Kernel density estimation 
(KDE) method over a joint domain-range representation of image pixels. Multilayer codebook-based 
background subtraction (MCBS) model was proposed in [3], which can remove most of the non-stationary 
background and significantly increase the processing efficiency. Reference [4] proposed a motion detection 
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model based on probabilistic neural networks. Above methods are designated for the stationary camera 
scenario. In the work of [5] [6] [7], the authors proposed several schemes that can handle the problems in the 
moving camera scenario. The background modeling based methods are effective for detecting moving objects, 
whereas when the objects are still or moving slowly, those methods will always be unsatisfying. 

Another popular category is the learning-based approaches. Traditionally, hand-engineered features like SIFT 
[8] or HOG [9] are firstly extracted and then fed into a classifier, such as Boosting [10], support vector machine 
(SVM) [11], and random forest [12]. The typical work in this paradigm is the deformable part models (DPM) 
[13]. More recently, Convolutional Neural Networks (CNN) shows its significant impact on ATD applications, 
which can achieve promising results in many difficult object detection challenges [14] [15] [16]. The Overfeat 
algorithm [17] successfully used CNN models in a sliding window fashion on ATD task. The algorithm has 
two CNNs: one for classifying if a window contains an object and the other for predicting the bounding box 
of the object. The most popular CNN-based ATD framework, R-CNN, was introduced in [18], which uses a 
pre-trained CNN to extract features from box proposals generated by selective search [19] and classifies the 
features with class specific linear SVMs. The significant advantage of this work is replacing hand-engineered 
features with features from the CNN feature extractor. Then, the variants of R-CNN were proposed to mainly 
solve the problem with computational load [20] [21] [22]. 

Figure 1:  Left: the appearance of target is undistinguishable from background environment. 
Right: the scale of target is various dramatically. 

Nevertheless, above mentioned ATD methods are only applicable to the general natural scene, and many 
challenges come up from the military scenario. First, the environment of battlefields is extremely complex. As 
shown in Fig.1, the appearance of the object includes color and texture is similar to the background in left 
example, because soldiers always attempt to decorate themselves or their vehicles similar to the environment 
in order to be invisible. And due to the vast battlefield, the scale of objects always dramatically changes with 
their distance to sensors. Thus, those environmental factors will always limit the ability of generic object 
detection algorithm. Second, military ATD application always runs on the embedded platform whose 
computational and memory resources are limited. In this case, the ability to run at high frame rates with 
relatively high accuracy becomes a crucial issue for military ATD. 

Several image fusion based methods were proposed to enhance target representation in literature [23] [24] [25] 
[26]. Multiple images acquired with different range of electromagnetic spectrum were fused into one image 
by pixel-level image fusion algorithms such as PCA-based weighted fusion [26] and Discrete Wavelet 
Transform (DWT) [24], and then fed into an ATD system. When the fused images are used in ATD tasks, 
there are still deficient. To address the serious limitation, we propose a novel image fusion approach to 
improving detector performance in the military scenario, which exploits the significant advantage of the 
unsupervised feature learning characteristic of CNNs. Compared with high-level image fusion, the proposed 
method can achieve a higher accuracy and computational efficiency. In addition, we adopted the state-of-the-
art generic object detection framework into the military scenario and used a cross-domain transfer learning 
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techniques to cover the shortage of insufficient data. In this way, the proposed framework achieved promising 
results on SENSIAC [34] military dataset. To sum up, our contributions in this work are as follows: 

• Both spatial-temporal and multiple spectral bands information are employed in the ATD task.

• An unsupervised learning-based image fusion approach is proposed, which can automatically learn
how to fuse the essential information from the different type of images into a set of discriminative
feature maps.

• The proposed framework has the capability to transfer learning from visible images to our created
complex fused images. Moreover, the proposed method can achieve 98.34% average precision and
98.90% top1accuracy on SENSIAC datasets.

Figure 2: The pipeline of proposed object detector framework, which includes four main 
modules: 1) image fusion, 2) CNN feature extractor, 3) ROI proposal, and 4) ROI classification 

and regression. 

2.0 METHODOLOGY 

In this paper, we proposed a framework, namely, image fused object detector (IFOD). As illustrated in Fig.2, 
the whole system is composed of four modules: 1) an image fusion module, which can fuse three different 
type of images into a BGR image; 2) a CNN feature extractor,  used for extracting high-level semantic 
representations from the fused image; 3) a region of interest (ROI) proposal module manipulated on fused 
image is utilized for generating hundreds or thousands of candidate bounding boxes, for each ROI on feature 
map produced by feature extractor module; and 4) an ROI classification and regression is performed to 
obtain fine bounding boxes and corresponding class. 

2.1 Image Fusion 
2.1.1 Image Selection 

Multi-sensor data often provide complementary information for context enhancement, which may further 
enhance the performance of object detection. In our work, we investigated two type of images from different 
sensors, mid-wave infrared image (MWIR) and visible image (VI), respectively. In addition to the images 
acquired from these two sensors, we also incorporate motion image generated from two consecutive visible 
frames in order to complement sufficient description of objects. 

MWIR: Depending on the different range of electromagnetic spectrum, the infrared (IR) spectrum can be 
divided into different spectral bands. Basically, the IR bands include the active IR band and the passive 
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(thermal) IR band. The main difference between active and passive infrared bands is that the passive IR 
image can be acquired without any external light source whereas the active IR required that. The passive 
(thermal) IR band is further divided into the mid-wave infrared (3-5 um) and the long-wave infrared (7-14 
um). In general, the mid-wave infrared (MWIR) cameras can sense temperature variations over targets and 
background at a long distance, and produce thermograms in the form of 2D images. Its ability to present 
large contrasts between cool and hot surfaces is extremely useful for many computer vision tasks such as 
image segmentation and object detection. However, the MWIR sensor is not sensitive to cool background. 
And due to low-resolution sensor arrays and the possible absence of auto-focus lens capabilities, high-
frequency content of the objects like edges and texture are mostly missed. 

VI: The range of the electromagnetic spectrum of visible image is from 380 nm to 750 nm. This type of 
image can be easily and conveniently acquired via various kinds of general cameras. In comparison with 
MWIR image, the VI image is sensitive to illumination changes, preserve high-frequency information and 
can provide a relatively clear perspective of the environment. In most of the computer vision topics, the VI 
image has become major studying object for many decades. Thus, there are a large number of public VI 
datasets across many research areas. On the other hand, the significant drawbacks of VI image are that it 
has poor quality in the harsh environmental conditions with unfavourable lighting and pronounced shadows, 
and there is no dramatic contrast between background and foreground when the environment is extremely 
complicated such as the battlefield. 

Figure 3: The procedure of motion estimation: where t is the current frame and t-5 is the 
previous 5th frame, and the motion is what our algorithm estimate. 

Motion image: In general, the moving objects are the targets in the battle fields. Therefore, estimating the 
motion of objects can provide significant cues to segment those targets.  Various motion estimation 
algorithms have been proposed in recent decades, such as dense optical flow methods, points 
correspondence methods, and background subtraction. And each of them has shown effectiveness on many 
computer vision tasks. However, considering the trade-off between accuracy and computational complexity, 
we do not opt for any of the complicated motion estimation approaches but utilize a straightforward and 
easier to be implemented method. The method is illustrated in Fig.3, we estimate the motion map based on 
two consecutive frames. To be specific, the objective images are sampled at every 5 frames, and then force 
the current frame to subtract the last frame, the resulting image is the desired motion image. The method 
can be formulated as follow: 

5( , ) | ( , ) ( , ) |n n nM x y I x y I x y           (1) 

where ( , )nM x y represents the motion value of frame n at pixel point ( , )x y  and ( , )nI x y  denotes the pixel 
value of frame n at pixel point ( , )x y  . 

In this way, we do not need to consider multiple frames to estimate background, like the background 
subtraction methods, and only the subtraction operator is employed in this procedure, which is more efficient 
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that other state-of-the-art methods. Even though this method can bring lots of noise in the motion image, 
this image still can provide enough complementary information in the later fusion stage. 

2.1.2 Fusion Method 

Here, we formalize the possible configurations of information fusion for object detection into three 
categories, namely, pixel-, feature- and decision-level fusion architecture. An illustration is shown in Fig. 4. 
Having these possibilities in mind will help to highlight the important benefits of our proposed fusion 
method in terms of efficiency and effectiveness. 

Pixel-level fusion: A typical pixel-level fusion architecture is illustrated in Fig.4(a). Where it deals with the 
pixels obtained from the sensor directly and tries to improve the visual enhancement. Typically, multiple 
images from different sources are combined into one single image in a pixel-wise manner, after which it is 
fed into the object detection system to generate final results. One of the main advantages of the pixel-level 
fusion methods is the low computational complexity and easy implementation. 

Figure 4: Illustration of different image fusion architectures: (a) pixel-level fusion architecture; 
(b) feature-level fusion architecture; (c) decision-level fusion architecture. 

Feature-level fusion: As a higher-level fusion system to Fig.4 (a), one might pursue Fig.4(b), in which 
different type of images are simultaneously fed into their independent lower part of the entire object 
detection system, which is typically called feature extractor. For instance, this lower-level system might be 
the hand-engineered feature extractor for the traditional object detection system and high-level convolution 
layer for the CNN-based system. After which the concatenated features produced by the various independent 
lower system are fed into one upper (decision-making) system to produce the final results. Although this 
feature-level fusion is usually robust to the noise, it always requires almost double memory and computing 
resource to deal with feature fusion procedure in a parallel fashion, especially for the CNN-based methods. 

Decision-level fusion: The decision-level fusion scheme, illustrated in Fig.4(c), operates on the highest 
level and refers to fusing discriminative results from different systems designed for various type images. 
Note that for an object detection system which usually based on machine learning algorithms, this high-
level fusion probably could not establish a good relationship of interior characteristics between different 
type of images. In addition, it might also be practically challenging to be implement as this duplication 
would multiply the number of resources and running time. 

In our framework, we proposed a novel image fusion approach which is similar to pixel-level fusion style. 
As you can see in the image fusion module in Fig. 2, firstly, the three type of raw images (MWIR, VI and 
Motion image) are concatenated into a BGR-style three-channel image where MWIR in the red channel, 
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motion image in green channel and VI in the blue channel. It is worthy noted that we do not modify any 
pixel values of the raw images but just put them into independent channels of final fused image. After the 
fused image is obtained, we fed it into a convolutional neural network (CNN) for training our object detector 
in an end-to-end manner. Meanwhile, the feature from different source images can be fused together in the 
last feature maps of the CNN in an unsupervised learning fashion. Therefore, compared with feature-level 
and decision-level fusion methods, our approach is easier to implement and low computational complexity. 
And to pixel-level fusion, we employ unsupervised learning style to fuse images from different sources 
instead of utilizing hand-engineered pixel-level fusion algorithms such as discrete wavelet transform (DWT) 
pixel-level image fusion methodologies. 

2.2 Regions of Interest (ROIs) Proposal 
As you can see in the ROIs proposal module in Fig.2, given an image, the ROIs proposal algorithms can 
output a set of class-independent locations that are likely to contain objects. Different from the exhaustive 
search "sliding window" paradigm which will propose every possible candidate locations and generate 
around 104-105 windows per image, ROIs proposal methods try to reach high object recall with considerably 
fewer windows. In the most popular object detectors such as R-CNN [18] and fast R-CNN [20], they usually 
select Selective Search [19] method as their ROIs proposal module. 

The Selective Search [19] is a ROIs proposal that combines the intuitions of bottom-up segmentation and 
exhaustive search. The whole algorithm can be simplified as follows. Firstly, [28] algorithm is adopted to 
create initial regions. Then the similarities between all neighbor regions are calculated and the two most 
similar regions are grouped together. After that, the new similarities are calculated between the resulting 
region and its neighbors. In this iterative manner, the process of grouping the most similar regions is repeated 
until the whole image becomes a single region. Finally, the object location boxes can be extracted from each 
region. Because of this hierarchical grouping process, the generated locations come from all scales. 

2.3 Network Architecture 
The great success of Convolutional Neural Networks (CNNs) in recent years aroused broader interest in 
CNNs-based generic object detection among researchers. In typically, a CNN comprises a stack of 
convolutional and pooling layers. The convolutional layer can generate feature maps by convolving the 
input feature maps or image with a set of learnable kernels. And the pooling layer can pool information of 
a given region on output feature maps in order to achieve down sampling and expansion of the receptive 
field.  

The most typical CNNs-based object detector is the R-CNN [18], which utilize Selective Search method to 
generate a set of ROIs proposal from an input image and then feed each ROI to the CNN to obtain final 
results. However, due to lots of heavily overlapped ROIs need to go through the CNN separately, a large 
amount of redundant computation is consumed. SPP-Net [21] and fast R-CNN [20] successful solved this 
problem by proposing a Spatial Pyramid Pooling (SPP) and ROI pooling, respectively. They suggested the 
whole image can go through CNN once and the final decision is made at the last feature maps produced by 
the CNN by using their proposed pooling strategies. 

Our proposed framework is illustrated in Fig.2. The fused three channel image is firstly fed into the CNN 
feature extractor to generate conv feature maps. It should be noted that the final conv feature maps in our 
project are also the fusing results of the three types of images by unsupervised learning. After which, for 
each ROIs generated by the ROIs proposal, we conduct an ROI pooling process directly on the conv feature 
maps instead of an input image to extract a fixed length feature vector. The reason to choose ROI pooling 
instead of SPP is that the gradients can propagate to the CNN layers in training stage and this can help CNN 
learn how to fuse the multiple channel-independent images in an unsupervised fashion. Finally, the extracted 
vector need to be sent to a fully connected neural network which has two output ports where one is for 
classification and another one is for bounding boxes regression.  
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Taking the trade-off between accuracy and computational complexity into account, the VGGM from [30] is 
selected as the CNN feature extractor in our framework. Specifically, The VGGM is a shallow version of 
VGG16 [31] and wider version of AlexNet [32], but faster than VGG16 as well as more accurate than 
AlexNet. More detail about the VGGM configuration can be seen in Table.1 

Table 1: Network configuration: The complete network architecture contains two modules, the 
first module is called CNN feature extractor which includes 5 convolutional layers (conv 1-5), the 

second module is the ROI classification and regression which has an ROI pooling layer and 4 
fully connected layers. 

Name Conv1 Norm1 Pool1 Conv2 Norm2 Pool2 Conv3 Conv4 Conv5 ROI 
Pooling FC6 FC7 

Input 
Channels 3 96 96 96 256 256 256 512 512 512 36 4096 

Output 
Channels 96 96 96 256 256 256 512 512 512 36 4096 1024 

Kernel 
Size 7*7 3*3 5*5 3*3 3*3 3*3 3*3 6*6 

Type Conv LRN Max-
pool Conv LRN Max-

pool Conv Conv Conv ROI-
pool Fc Fc 

Stride 2 2 2 2 1 1 1 

Pad 1 1 1 1 
Activation 
function Relu Relu Relu Relu Relu 

Dropout √ √ 

2.4 Training Details 
2.4.1 Transfer Learning 

Transferring general information between different data source for related tasks is an effective technique to 
help deal with insufficient training data and overfitting in the deep learning community. For instance, 
training a CNN model on the large ImageNet [14] dataset firstly and then fine tuning it on the domain-
specific dataset. However, these general techniques are limited to transferring information between RGB 
(visible image) models. 

The target training dataset includes the visible images, IR images, and generated motion maps, whose data 
distribution is significantly different to the large-scale public visible image datasets, such as ImageNet [14]. 
Our goal is to leverage the CNN model gain essential common knowledge from a large-scale visible dataset 
and then transfer these information for accelerating training in the domain-specific dataset as well as 
boosting overall performance. 

Based on the general transfer learning techniques, the VGGM model is pre-trained on the large-scale RGB 
image dataset, ImageNet, which contains most common objects and scenes in daily life. Before training the 
network on the fused dataset, the weights of conv1 to conv5 in the network are initialized by transferring 
learned weights. Unlike some prior work, we do not freeze the lower layers of CNN and allow our network 
to adapt the new data distribution in an end-to-end learning setting. 

2.4.2 Loss Function 

As shown in Table.1, the network has two output heads. The first is for classifying each ROI, which will 
output a discrete probability distribution over two categories (background and target). And the second is for 
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regressing the bounding box offsets of ROI where for each category, it will output a tuple of ( , , , )x y w ht t t t  
, the elements indicate the shift value relative to the central coordinate, height and width of original proposal 
ROI.  

Similar to [20], the following negative log likelihood objective is used for classification: 

( , ) log( )cls uL p u p        (2) 

where p represents the predicted probability of one of the categories and u is the ground truth class. 

For regression, the smooth L1 loss function is used: 

1
{ , , , }

( , ) ( )u
bbox L i i

i x y w h
L t v smooth t v



         (3) 

in which ut is the bounding box offsets of the u class. And v is the true offsets. 

In training stage, both of them will be combined together as follow: 

( , , , ) ( , ) [ 1] ( , )u
cls bboxL p u t v L p u u L t v    (4) 

1u  means only when the class is the target, the bounding box regression can be trained. The    is used 
to control the balance between classification and regression, we set it as 1 in all experiments. 

3.0 EXPERIMENTS 

3.1 Datasets 
We evaluate our approach on a public released ATR database from Military Sensing Information Analysis 
Centre (SENSIAC) [34]. This database package contains 207 GB of MWIR imagery and 106 GB of visible 
imagery along with ground truth data. All imagery was taken using commercial cameras operating in the 
MWIR and visible bands. The types of targets are various, which include people, foreign military vehicles, 
and civilian vehicles. The datasets were collected during both daytime and night and the distance between 
cameras and targets varied from 500 to 5000 meters. 

In our experiments, we only considered the objects of the vehicle and split 5 types of vehicles as training 
targets and 3 types of vehicles as testing targets. The name and appearance of the objects are showed in 
Fig.5. We selected each type of vehicles with 3 different range of distance between cameras and targets 
(1000, 1500 and 3000 meters). It should be noted that no matter how many fine-grained types of vehicle it 
has, we treated them as one class, "vehicle". Thus, the problem become a binary (vehicle and background) 
object detection problem. Moreover, because the format of raw data is video, we sampled the images at 
every 5 frames to maximize the difference between each frame. In total, we used 4573 images as training 
data and 2812 images as testing data. 

3.2 Experimental Setup 
Our framework is implemented by using Caffe deep learning toolbox [33]. For the training machine, we 
used a computer with a NVIDIA GeForce GTX 1080 GPU, an Intel Core i7 CPU, and 32 GB RAM. For the 
setup of hyper-parameters, we followed the fast R-CNN [20]. Where we train all the networks each for 40000 
iterations with initial learning rate 0.001 and 0.0001 for the last 10000 iterations, momentum 0.9 and weight 
decay 0.0005. 
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Figure 5: Appearance of targets in training data and testing data. 

3.3 Evaluation 
3.3.1 Metrics 

For all the metrics, we considered the detection as true or false positives based on whether the area of overlap 
with ground truth bounding boxes exceed 0.5. The overlap area can be calculated by the below equation: 

(
(

p gt
o

p gt

area B B
a

area B B





       (5) 

where oa   denotes the overlap area, pB and gtB  denote the predicted bounding box and ground truth 
bounding box, respectively. 

Mean Average Precision(mAP) is a golden standard metric for evaluating the performance of an object 
detection algorithm, where it first calculates the average precision (AP) of each class and then average all 
the obtained AP values. Because there is only one class (vehicle) in our experiments, we select AP as one 
of the evaluation metrics. The AP value can be easily obtained by computing the area under the precision-
recall curve. 

Top1 Accuracy is a metric that is widely used in classification tasks, where the probability of multiple 
classes is predicted and one having the highest score is selected, then the top1 precision score is computed 
as the numbers a predicted label matched the target label, divided by the number of whole data. In our case, 
there is only one target in each image. Thus, we can employ top1 precision metric in experiments to evaluate 
the performance of our framework in a practical scenario. 

3.3.2 Results and Analysis 

Figure 6 shows the AP curves of the six incremental experiments. In independent image experiments, we 
can see that the CNN-based detector performed well enough in overall, especially for the single visible 
image which achieved 97.31% average precision and 98.04% top1 accuracy, as shown in accuracy column 
of Table.2. The visible-MWIR fused image get a better result than the best performance of single image. It 
should be noted that our 3-channels image achieved both the highest average precision (98.34%) and top1 
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accuracy (98.90%) which means our method only false detect 16 frames in the totally 2812 testing frames. 
It is also interesting that even though the average precision of the decision fusion method is higher than 
the best single image method, but when it comes to practical application, its top1 accuracy is lower than 
the single visible image approach and it is extremely time-consuming in running time (3.961s). 

Figure 6:  Average precision (AP) comparison between different experimental designs. 
Independent input of visible, MWIR and Motion image, fusion image of visible and MWIR image 

(Visible-MWIR), fusion image of visible, MWIR and Motion (3-Channels) and decision-level 
fusion, respectively. 

Table 2: Performance comparison on accuracy and time cost of different methods. 

Methods 
Accuracy (%) Running Time (s/image) 

AP Top1 ROIs Proposal Networks Overall 

Visible 97.31 98.04 1.378 0.164 1.542 

MWIR 95.63 96.91 1.144 0.069 1.213 

Motion 91.64 92.39 1.167 0.038 1.205 
Visible-MWIR 97.37 98.18 1.505 0.248 1.753 

3-Channels 98.34 98.90 1.272 0.235 1.507 

Decision-level Fusion 97.52 97.93 3.690 0.271 3.961 

To further verify the effectiveness of our unsupervised image fusion method, we visualize the feature map 
of the last convolutional layer and the final output of our framework in Fig. 7. The feature map is the output 
of CNN feature extractor in Fig.2 and for the fused image, it is the fused high-level features. It could be 
reasoned that if the object in feature map is segmented clearly, the framework will get a better result. In the 
examples of Fig.7, we can see that the 3-channels can well fuse the complementary information from the 
three independent images and make its feature map get enhanced. And its final outputs also verify the fact 
that the enhanced feature map can boost the performance. 

4.0 CONCLUSION 

In this work, an unsupervised learning based image fusion method is proposed to integrate the ATD network, 
which fused visible, MWIR and motion information effectively. We further adopted state-of-the-art generic 
object detector for the battle field object detection. We also utilized cross-domain transfer learning 
techniques to deal with the insufficient data by training the model on large-scale visible image dataset firstly 
and then fine-tuning on the small-scale fused image dataset. The proposed framework was evaluated with 
the SENSIAC dataset. It achieved 98.34% average precision and 98.90% top1 accuracy. However, the 
processing time is still too long for real-time applications. This remains a topic for our future work.  
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Figure 7: Example visualizing results of our framework. Example 1 and 2 demonstrate the 
performance of the different input types of the system on large and small object detection, 
respectively. Different columns denote different type of input image. The raw input image 

generated feature map and the final output are showed in consecutive rows. In the final output 
image, the green bounding box represents the position of object predicted by the system. 
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