RSS feed Add to your Facebook page LinkedIn Watch us on Youtube

Activity title

Enhanced Raman Spectroscopy for Defense Applications

Activity Reference

SET-292

Panel

SET

Security Classification

NATO UNCLASSIFIED

Status

Active

Activity type

RTG

Start date

2020-02-18T00:00:00Z

End date

2025-02-18T00:00:00Z

Keywords

Chemicals, Decontamination Verification, Enhanced Raman, Explosives, Surface Contamination, Trace Detection

Background

Surface-enhanced Raman Spectroscopy (SERS) has demonstrated to be a vibrant field of research that is growing exponentially in scope and applicability while pushing at the ultimate limits of sensitivity. SERS occurs when metallic nanostructures locally amplify electromagnetic fields at or near particle surfaces providing enhancements over normal Raman Spectroscopy, typically over a million-fold. Along with other advantages such as, reduction of interfering fluorescence, decreased detection times, and reduction of laser power required for analysis, SERS has been positioned to be an ideal technique for low level, low consumable detection schemes while pushing towards miniaturization of instrumentation. The approved three year Research Task Group (RTG) will address military relevant application spaces working towards development of enhanced Raman techniques allowing for trace detection of chemical materials. This could improve detection, identification, and monitoring scenarios including decontamination verification, trace surface detection of contamination, vapor detection, and checkpoint screening for CE threat materials. This proposed Research Task Group is a continuation of the work from the NATO SET-ET-109 on Surface-Enhanced Raman Spectroscopy for Defense Applications.

Objectives

The objective of this Research Task Group is to develop, demonstrate, and recommend to NATO pathways for enhanced Raman techniques for use in trace detection of chemical materials and decontamination verification on a select group of military materiel.

Topics

The RTG will cover the following topics • Scenario Defining – RTG participants along with invited military users will work together to define current practices for two scenarios relating to trace detection of chemical materials on surfaces and decontamination verification of small arms and vehicle points of interest (entrance and exit points on vehicles). The acquired information from this topic will assist in guiding the RTG in defining the research tasks to demonstrate the potential advantage of the application of an enhanced Raman technique utilizing field deployable systems. • Inventory Identification – RTG participants will identify current Raman spectroscopic inventories being utilized by their respective militaries. This will include current handheld field deployed systems, potential deployable (portable or laboratory)systems, and research grade instrumentation available. Furthermore, the RTG will conduct a survey of commercial and non-commercial (supplied by participating nations) enhanced Raman substrates that could be coupled with the current or future inventory Raman spectroscopic equipment. • Assessment – RTG participants will conduct a collaborative assessment of chemical materials (to potentially include simulant CWAs, energetic materials, and synthetic opioids) in conjunction with substrates for enhanced Raman analysis and determination of trace detection levels. The chemicals, substrates, and instruments to be utilized in the assessment will be determined by Scenario Defining and Inventory Identification Topics. • Cooperative Lab Demonstration – A combination of information and research output will ultimately determine the appropriate cooperative demonstration of technology at the end of year three of the RTG. • Technical Reporting

Contact Panel Office